Dat Ba Nguyen
2016
J-NERD: Joint Named Entity Recognition and Disambiguation with Rich Linguistic Features
Dat Ba Nguyen
|
Martin Theobald
|
Gerhard Weikum
Transactions of the Association for Computational Linguistics, Volume 4
Methods for Named Entity Recognition and Disambiguation (NERD) perform NER and NED in two separate stages. Therefore, NED may be penalized with respect to precision by NER false positives, and suffers in recall from NER false negatives. Conversely, NED does not fully exploit information computed by NER such as types of mentions. This paper presents J-NERD, a new approach to perform NER and NED jointly, by means of a probabilistic graphical model that captures mention spans, mention types, and the mapping of mentions to entities in a knowledge base. We present experiments with different kinds of texts from the CoNLL’03, ACE’05, and ClueWeb’09-FACC1 corpora. J-NERD consistently outperforms state-of-the-art competitors in end-to-end NERD precision, recall, and F1.