Changjiang Gao
2023
Roles of Scaling and Instruction Tuning in Language Perception: Model vs. Human Attention
Changjiang Gao
|
Shujian Huang
|
Jixing Li
|
Jiajun Chen
Findings of the Association for Computational Linguistics: EMNLP 2023
Recent large language models (LLMs) have revealed strong abilities to understand natural language. Since most of them share the same basic structure, i.e. the transformer block, possible contributors to their success in the training process are scaling and instruction tuning. However, how these factors affect the models’ language perception is unclear. This work compares the self-attention of several existing LLMs (LLaMA, Alpaca and Vicuna) in different sizes (7B, 13B, 30B, 65B), together with eye saccade, an aspect of human reading attention, to assess the effect of scaling and instruction tuning on language perception. Results show that scaling enhances the human resemblance and improves the effective attention by reducing the trivial pattern reliance, while instruction tuning does not. However, instruction tuning significantly enhances the models’ sensitivity to instructions. We also find that current LLMs are consistently closer to non-native than native speakers in attention, suggesting a sub-optimal language perception of all models. Our code and data used in the analysis is available on GitHub.
机器翻译和大语言模型研究进展(Research Development of Machine translation and Large Language Model)
Wenhao Zhu (文昊 朱)
|
Hao Zhou (昊 周)
|
Changjiang Gao (长江 高)
|
Sizhe Liu (斯哲 刘)
|
Shujian Huang (书剑 黄)
Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 2: Frontier Forum)
“机器翻译旨在通过计算机自动将一种自然语言翻译成另一种自然语言,这个过程对于机器翻译模型的语言理解、语言生成能力有着极高的要求。因此机器翻译一直以来都是一项极具研究价值和研究难度的自然语言处理任务。近期研究表明,大语言模型能够根据人类指令完成包括翻译在内的许多任务,在这一过程中展现出强大的语言理解和生成能力,为自然语言处理范式革新提供了新的可能。为了在大语言模型支持下更好地完成机器翻译任务,研究人员对大语言模型的机器翻译和多语言能力进行了大量的研究和分析。本文从以下三方面介绍相关研究热点和最新进展,包括:大语言模型翻译能力评估、大语言模型翻译能力激发、大语言模型在不同语言上的能力展现。”
Search
Co-authors
- Shujian Huang 2
- Jixing Li 1
- Jiajun Chen 1
- Wenhao Zhu 1
- Hao Zhou 1
- show all...