Carolin Lawrence


2024

pdf
A Human-Centric Evaluation Platform for Explainable Knowledge Graph Completion
Zhao Xu | Wiem Ben Rim | Kiril Gashteovski | Timo Sztyler | Carolin Lawrence
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

Explanations for AI are expected to help human users understand AI-driven predictions. Evaluating plausibility, the helpfulness of the explanations, is therefore essential for developing eXplainable AI (XAI) that can really aid human users. Here we propose a human-centric evaluation platform to measure plausibility of explanations in the context of eXplainable Knowledge Graph Completion (XKGC). The target audience of the platform are researchers and practitioners who want to 1) investigate real needs and interests of their target users in XKGC, 2) evaluate the plausibility of the XKGC methods. We showcase these two use cases in an experimental setting to illustrate what results can be achieved with our system.

2023

pdf
Linking Surface Facts to Large-Scale Knowledge Graphs
Gorjan Radevski | Kiril Gashteovski | Chia-Chien Hung | Carolin Lawrence | Goran Glavaš
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Open Information Extraction (OIE) methods extract facts from natural language text in the form of (“subject”; “relation”; “object”) triples. These facts are, however, merely surface forms, the ambiguity of which impedes their downstream usage; e.g., the surface phrase “Michael Jordan” may refer to either the former basketball player or the university professor. Knowledge Graphs (KGs), on the other hand, contain facts in a canonical (i.e., unambiguous) form, but their coverage is limited by a static schema (i.e., a fixed set of entities and predicates). To bridge this gap, we need the best of both worlds: (i) high coverage of free-text OIEs, and (ii) semantic precision (i.e., monosemy) of KGs. In order to achieve this goal, we propose a new benchmark with novel evaluation protocols that can, for example, measure fact linking performance on a granular triple slot level, while also measuring if a system has the ability to recognize that a surface form has no match in the existing KG. Our extensive evaluation of several baselines show that detection of out-of-KG entities and predicates is more difficult than accurate linking to existing ones, thus calling for more research efforts on this difficult task. We publicly release all resources (data, benchmark and code) on https://github.com/nec-research/fact-linking.

pdf
Improving Cross-Lingual Transfer for Open Information Extraction with Linguistic Feature Projection
Youmi Ma | Bhushan Kotnis | Carolin Lawrence | Goran Glavaš | Naoaki Okazaki
Proceedings of the 3rd Workshop on Multi-lingual Representation Learning (MRL)

pdf
Walking a Tightrope – Evaluating Large Language Models in High-Risk Domains
Chia-Chien Hung | Wiem Ben Rim | Lindsay Frost | Lars Bruckner | Carolin Lawrence
Proceedings of the 1st GenBench Workshop on (Benchmarking) Generalisation in NLP

High-risk domains pose unique challenges that require language models to provide accurate and safe responses. Despite the great success of large language models (LLMs), such as ChatGPT and its variants, their performance in high-risk domains remains unclear. Our study delves into an in-depth analysis of the performance of instruction-tuned LLMs, focusing on factual accuracy and safety adherence. To comprehensively assess the capabilities of LLMs, we conduct experiments on six NLP datasets including question answering and summarization tasks within two high-risk domains: legal and medical. Further qualitative analysis highlights the existing limitations inherent in current LLMs when evaluating in high-risk domains. This underscores the essential nature of not only improving LLM capabilities but also prioritizing the refinement of domain-specific metrics, and embracing a more human-centric approach to enhance safety and factual reliability. Our findings advance the field toward the concerns of properly evaluating LLMs in high-risk domains, aiming to steer the adaptability of LLMs in fulfilling societal obligations and aligning with forthcoming regulations, such as the EU AI Act.

2022

pdf
BenchIE: A Framework for Multi-Faceted Fact-Based Open Information Extraction Evaluation
Kiril Gashteovski | Mingying Yu | Bhushan Kotnis | Carolin Lawrence | Mathias Niepert | Goran Glavaš
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Intrinsic evaluations of OIE systems are carried out either manually—with human evaluators judging the correctness of extractions—or automatically, on standardized benchmarks. The latter, while much more cost-effective, is less reliable, primarily because of the incompleteness of the existing OIE benchmarks: the ground truth extractions do not include all acceptable variants of the same fact, leading to unreliable assessment of the models’ performance. Moreover, the existing OIE benchmarks are available for English only. In this work, we introduce BenchIE: a benchmark and evaluation framework for comprehensive evaluation of OIE systems for English, Chinese, and German. In contrast to existing OIE benchmarks, BenchIE is fact-based, i.e., it takes into account informational equivalence of extractions: our gold standard consists of fact synsets, clusters in which we exhaustively list all acceptable surface forms of the same fact. Moreover, having in mind common downstream applications for OIE, we make BenchIE multi-faceted; i.e., we create benchmark variants that focus on different facets of OIE evaluation, e.g., compactness or minimality of extractions. We benchmark several state-of-the-art OIE systems using BenchIE and demonstrate that these systems are significantly less effective than indicated by existing OIE benchmarks. We make BenchIE (data and evaluation code) publicly available.

pdf
MILIE: Modular & Iterative Multilingual Open Information Extraction
Bhushan Kotnis | Kiril Gashteovski | Daniel Rubio | Ammar Shaker | Vanesa Rodriguez-Tembras | Makoto Takamoto | Mathias Niepert | Carolin Lawrence
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Open Information Extraction (OpenIE) is the task of extracting (subject, predicate, object) triples from natural language sentences. Current OpenIE systems extract all triple slots independently. In contrast, we explore the hypothesis that it may be beneficial to extract triple slots iteratively: first extract easy slots, followed by the difficult ones by conditioning on the easy slots, and therefore achieve a better overall extraction. Based on this hypothesis, we propose a neural OpenIE system, MILIE, that operates in an iterative fashion. Due to the iterative nature, the system is also modularit is possible to seamlessly integrate rule based extraction systems with a neural end-to-end system, thereby allowing rule based systems to supply extraction slots which MILIE can leverage for extracting the remaining slots. We confirm our hypothesis empirically: MILIE outperforms SOTA systems on multiple languages ranging from Chinese to Arabic. Additionally, we are the first to provide an OpenIE test dataset for Arabic and Galician.

pdf
AnnIE: An Annotation Platform for Constructing Complete Open Information Extraction Benchmark
Niklas Friedrich | Kiril Gashteovski | Mingying Yu | Bhushan Kotnis | Carolin Lawrence | Mathias Niepert | Goran Glavaš
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

Open Information Extraction (OIE) is the task of extracting facts from sentences in the form of relations and their corresponding arguments in schema-free manner. Intrinsic performance of OIE systems is difficult to measure due to the incompleteness of existing OIE benchmarks: ground truth extractions do not group all acceptable surface realizations of the same fact that can be extracted from a sentence. To measure performance of OIE systems more realistically, it is necessary to manually annotate complete facts (i.e., clusters of all acceptable surface realizations of the same fact) from input sentences. We propose AnnIE: an interactive annotation platform that facilitates such challenging annotation tasks and supports creation of complete fact-oriented OIE evaluation benchmarks. AnnIE is modular and flexible in order to support different use case scenarios (i.e., benchmarks covering different types of facts) and different languages. We use AnnIE to build two complete OIE benchmarks: one with verb-mediated facts and another with facts encompassing named entities. We evaluate several OIE systems on our complete benchmarks created with AnnIE. We publicly release AnnIE (and all gold datasets generated with it) under non-restrictive license.

pdf
KGxBoard: Explainable and Interactive Leaderboard for Evaluation of Knowledge Graph Completion Models
Haris Widjaja | Kiril Gashteovski | Wiem Ben Rim | Pengfei Liu | Christopher Malon | Daniel Ruffinelli | Carolin Lawrence | Graham Neubig
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Knowledge Graphs (KGs) store information in the form of (head, predicate, tail)-triples. To augment KGs with new knowledge, researchers proposed models for KG Completion (KGC) tasks such as link prediction; i.e., answering (h; p; ?) or (?; p; t) queries. Such models are usually evaluated with averaged metrics on a held-out test set. While useful for tracking progress, averaged single-score metrics cannotreveal what exactly a model has learned — or failed to learn. To address this issue, we propose KGxBoard: an interactive framework for performing fine-grained evaluation on meaningful subsets of the data, each of which tests individual and interpretable capabilities of a KGC model. In our experiments, we highlight the findings that we discovered with the use of KGxBoard, which would have been impossible to detect with standard averaged single-score metrics.

2021

pdf
Offline Reinforcement Learning from Human Feedback in Real-World Sequence-to-Sequence Tasks
Julia Kreutzer | Stefan Riezler | Carolin Lawrence
Proceedings of the 5th Workshop on Structured Prediction for NLP (SPNLP 2021)

Large volumes of interaction logs can be collected from NLP systems that are deployed in the real world. How can this wealth of information be leveraged? Using such interaction logs in an offline reinforcement learning (RL) setting is a promising approach. However, due to the nature of NLP tasks and the constraints of production systems, a series of challenges arise. We present a concise overview of these challenges and discuss possible solutions.

2019

pdf
Learning Neural Sequence-to-Sequence Models from Weak Feedback with Bipolar Ramp Loss
Laura Jehl | Carolin Lawrence | Stefan Riezler
Transactions of the Association for Computational Linguistics, Volume 7

In many machine learning scenarios, supervision by gold labels is not available and conse quently neural models cannot be trained directly by maximum likelihood estimation. In a weak supervision scenario, metric-augmented objectives can be employed to assign feedback to model outputs, which can be used to extract a supervision signal for training. We present several objectives for two separate weakly supervised tasks, machine translation and semantic parsing. We show that objectives should actively discourage negative outputs in addition to promoting a surrogate gold structure. This notion of bipolarity is naturally present in ramp loss objectives, which we adapt to neural models. We show that bipolar ramp loss objectives outperform other non-bipolar ramp loss objectives and minimum risk training on both weakly supervised tasks, as well as on a supervised machine translation task. Additionally, we introduce a novel token-level ramp loss objective, which is able to outperform even the best sequence-level ramp loss on both weakly supervised tasks.

pdf bib
Attending to Future Tokens for Bidirectional Sequence Generation
Carolin Lawrence | Bhushan Kotnis | Mathias Niepert
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Neural sequence generation is typically performed token-by-token and left-to-right. Whenever a token is generated only previously produced tokens are taken into consideration. In contrast, for problems such as sequence classification, bidirectional attention, which takes both past and future tokens into consideration, has been shown to perform much better. We propose to make the sequence generation process bidirectional by employing special placeholder tokens. Treated as a node in a fully connected graph, a placeholder token can take past and future tokens into consideration when generating the actual output token. We verify the effectiveness of our approach experimentally on two conversational tasks where the proposed bidirectional model outperforms competitive baselines by a large margin.

2018

pdf
Improving a Neural Semantic Parser by Counterfactual Learning from Human Bandit Feedback
Carolin Lawrence | Stefan Riezler
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Counterfactual learning from human bandit feedback describes a scenario where user feedback on the quality of outputs of a historic system is logged and used to improve a target system. We show how to apply this learning framework to neural semantic parsing. From a machine learning perspective, the key challenge lies in a proper reweighting of the estimator so as to avoid known degeneracies in counterfactual learning, while still being applicable to stochastic gradient optimization. To conduct experiments with human users, we devise an easy-to-use interface to collect human feedback on semantic parses. Our work is the first to show that semantic parsers can be improved significantly by counterfactual learning from logged human feedback data.

2017

pdf
Counterfactual Learning from Bandit Feedback under Deterministic Logging : A Case Study in Statistical Machine Translation
Carolin Lawrence | Artem Sokolov | Stefan Riezler
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

The goal of counterfactual learning for statistical machine translation (SMT) is to optimize a target SMT system from logged data that consist of user feedback to translations that were predicted by another, historic SMT system. A challenge arises by the fact that risk-averse commercial SMT systems deterministically log the most probable translation. The lack of sufficient exploration of the SMT output space seemingly contradicts the theoretical requirements for counterfactual learning. We show that counterfactual learning from deterministic bandit logs is possible nevertheless by smoothing out deterministic components in learning. This can be achieved by additive and multiplicative control variates that avoid degenerate behavior in empirical risk minimization. Our simulation experiments show improvements of up to 2 BLEU points by counterfactual learning from deterministic bandit feedback.

2016

pdf bib
NLmaps: A Natural Language Interface to Query OpenStreetMap
Carolin Lawrence | Stefan Riezler
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations

We present a Natural Language Interface (nlmaps.cl.uni-heidelberg.de) to query OpenStreetMap. Natural language questions about geographical facts are parsed into database queries that can be executed against the OpenStreetMap (OSM) database. After parsing the question, the system provides a text based answer as well as an interactive map with all points of interest and their relevant information marked. Additionally, we provide several options for users to give feedback after a question has been parsed.