Bernt Schiele


2023

pdf
Visual Coherence Loss for Coherent and Visually Grounded Story Generation
Xudong Hong | Vera Demberg | Asad Sayeed | Qiankun Zheng | Bernt Schiele
Findings of the Association for Computational Linguistics: ACL 2023

Local coherence is essential for long-form text generation models. We identify two important aspects of local coherence within the visual storytelling task: (1) the model needs to represent re-occurrences of characters within the image sequence in order to mention them correctly in the story; (2) character representations should enable us to find instances of the same characters and distinguish different characters. In this paper, we propose a loss function inspired by a linguistic theory of coherence for self-supervised learning for image sequence representations. We further propose combining features from an object and a face detector to construct stronger character features. To evaluate input-output relevance that current reference-based metrics don’t measure, we propose a character matching metric to check whether the models generate referring expressions correctly for characters in input image sequences. Experiments on a visual story generation dataset show that our proposed features and loss function are effective for generating more coherent and visually grounded stories.

pdf
Visual Coherence Loss for Coherent and Visually Grounded Story Generation
Xudong Hong | Vera Demberg | Asad Sayeed | Qiankun Zheng | Bernt Schiele
Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023)

pdf
Visual Writing Prompts: Character-Grounded Story Generation with Curated Image Sequences
Xudong Hong | Asad Sayeed | Khushboo Mehra | Vera Demberg | Bernt Schiele
Transactions of the Association for Computational Linguistics, Volume 11

Current work on image-based story generation suffers from the fact that the existing image sequence collections do not have coherent plots behind them. We improve visual story generation by producing a new image-grounded dataset, Visual Writing Prompts (VWP). VWP contains almost 2K selected sequences of movie shots, each including 5-10 images. The image sequences are aligned with a total of 12K stories which were collected via crowdsourcing given the image sequences and a set of grounded characters from the corresponding image sequence. Our new image sequence collection and filtering process has allowed us to obtain stories that are more coherent, diverse, and visually grounded compared to previous work. We also propose a character-based story generation model driven by coherence as a strong baseline. Evaluations show that our generated stories are more coherent, visually grounded, and diverse than stories generated with the current state-of-the-art model. Our code, image features, annotations and collected stories are available at https://vwprompt.github.io/.

2020

pdf
Diverse and Relevant Visual Storytelling with Scene Graph Embeddings
Xudong Hong | Rakshith Shetty | Asad Sayeed | Khushboo Mehra | Vera Demberg | Bernt Schiele
Proceedings of the 24th Conference on Computational Natural Language Learning

A problem in automatically generated stories for image sequences is that they use overly generic vocabulary and phrase structure and fail to match the distributional characteristics of human-generated text. We address this problem by introducing explicit representations for objects and their relations by extracting scene graphs from the images. Utilizing an embedding of this scene graph enables our model to more explicitly reason over objects and their relations during story generation, compared to the global features from an object classifier used in previous work. We apply metrics that account for the diversity of words and phrases of generated stories as well as for reference to narratively-salient image features and show that our approach outperforms previous systems. Our experiments also indicate that our models obtain competitive results on reference-based metrics.

2018

pdf
A vision-grounded dataset for predicting typical locations for verbs
Nelson Mukuze | Anna Rohrbach | Vera Demberg | Bernt Schiele
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

2013

pdf
Grounding Action Descriptions in Videos
Michaela Regneri | Marcus Rohrbach | Dominikus Wetzel | Stefan Thater | Bernt Schiele | Manfred Pinkal
Transactions of the Association for Computational Linguistics, Volume 1

Recent work has shown that the integration of visual information into text-based models can substantially improve model predictions, but so far only visual information extracted from static images has been used. In this paper, we consider the problem of grounding sentences describing actions in visual information extracted from videos. We present a general purpose corpus that aligns high quality videos with multiple natural language descriptions of the actions portrayed in the videos, together with an annotation of how similar the action descriptions are to each other. Experimental results demonstrate that a text-based model of similarity between actions improves substantially when combined with visual information from videos depicting the described actions.