Bailian Qiu
2021
融合XLM词语表示的神经机器译文自动评价方法(Neural Automatic Evaluation of Machine Translation Method Combined with XLM Word Representation)
Wei Hu (胡纬)
|
Maoxi Li (李茂西)
|
Bailian Qiu (裘白莲)
|
Mingwen Wang (王明文)
Proceedings of the 20th Chinese National Conference on Computational Linguistics
机器译文自动评价对机器翻译的发展和应用起着重要的促进作用,它一般通过计算机器译文和人工参考译文的相似度来度量机器译文的质量。该文通过跨语种预训练语言模型XLM将源语言句子、机器译文和人工参考译文映射到相同的语义空间,结合分层注意力和内部注意力提取源语言句子与机器译文、机器译文与人工参考译文以及源语言句子与人工参考译文之间差异特征,并将其融入到基于Bi-LSTM神经译文自动评价方法中。在WMT’19译文自动评价数据集上的实验结果表明,融合XLM词语表示的神经机器译文自动评价方法显著提高了其与人工评价的相关性。
2020
“细粒度英汉机器翻译错误分析语料库”的构建与思考(Construction of Fine-Grained Error Analysis Corpus of English-Chinese Machine Translation and Its Implications)
Bailian Qiu (裘白莲)
|
Mingwen Wang (王明文)
|
Maoxi Li (李茂西)
|
Cong Chen (陈聪)
|
Fan Xu (徐凡)
Proceedings of the 19th Chinese National Conference on Computational Linguistics
机器翻译错误分析旨在找出机器译文中存在的错误,包括错误类型、错误分布等,它在机器翻译研究和应用中起着重要作用。该文将人工译后编辑与错误分析结合起来,对译后编辑操作进行错误标注,采用自动标注和人工标注相结合的方法,构建了一个细粒度英汉机器翻译错误分析语料库,其中每一个标注样本包括源语言句子、机器译文、人工参考译文、译后编辑译文、词错误率和错误类型标注;标注的错误类型包括增词、漏词、错词、词序错误、未译和命名实体翻译错误等。标注的一致性检验表明了标注的有效性;对标注语料的统计分析结果能有效地指导机器翻译系统的开发和人工译员的后编辑。