Community Question-Answering (CQA) portals serve as a valuable tool for helping users within an organization. However, making them accessible to non-English-speaking users continues to be a challenge. Translating questions can broaden the community’s reach, benefiting individuals with similar inquiries in various languages. Translating questions using Neural Machine Translation (NMT) poses more challenges, especially in noisy environments, where the grammatical correctness of the questions is not monitored. These questions may be phrased as statements by non-native speakers, with incorrect subject-verb order and sometimes even missing question marks. Creating a synthetic parallel corpus from such data is also difficult due to its noisy nature. To address this issue, we propose a training methodology that fine-tunes the NMT system only using source-side data. Our approach balances adequacy and fluency by utilizing a loss function that combines BERTScore and Masked Language Model (MLM) Score. Our method surpasses the conventional Maximum Likelihood Estimation (MLE) based fine-tuning approach, which relies on synthetic target data, by achieving a 1.9 BLEU score improvement. Our model exhibits robustness while we add noise to our baseline, and still achieve 1.1 BLEU improvement and large improvements on TER and BLEURT metrics. Our proposed methodology is model-agnostic and is only necessary during the training phase. We make the codes and datasets publicly available at https://www.iitp.ac.in/~ai-nlp-ml/resources.html#DomainAdapt for facilitating further research.
Recent studies have shown that the multi-encoder models are agnostic to the choice of context and the context encoder generates noise which helps in the improvement of the models in terms of BLEU score. In this paper, we further explore this idea by evaluating with context-aware pronoun translation test set by training multi-encoder models trained on three different context settings viz, previous two sentences, random two sentences, and a mix of both as context. Specifically, we evaluate the models on the ContraPro test set to study how different contexts affect pronoun translation accuracy. The results show that the model can perform well on the ContraPro test set even when the context is random. We also analyze the source representations to study whether the context encoder is generating noise or not. Our analysis shows that the context encoder is providing sufficient information to learn discourse-level information. Additionally, we observe that mixing the selected context (the previous two sentences in this case) and the random context is generally better than the other settings.
Multilingual chatbots are the need of the hour for modern business. There is increasing demand for such systems all over the world. A multilingual chatbot can help to connect distant parts of the world together, without sharing a common language. We participated in WMT22 Chat Translation Shared Task. In this paper, we report descriptions of methodologies used for participation. We submit outputs from multi-encoder based transformer model, where one encoder is for context and another for source utterance. We consider one previous utterance as context. We obtain COMET scores of 0.768 and 0.907 on English-to-German and German-to-English directions, respectively. We submitted outputs without using context at all, which generated worse results in English-to-German direction. While for German-to-English, the model achieved a lower COMET score but slightly higher chrF and BLEU scores. Further, to understand the effectiveness of the context encoder, we submitted a run after removing the context encoder during testing and we obtain similar results.
Chatbots or conversational systems are used in various sectors such as banking, healthcare, e-commerce, customer support, etc. These chatbots are mainly available for resource-rich languages like English, often limiting their widespread usage to multilingual users. Therefore, making these services or agents available in non-English languages has become essential for their broader applicability. Machine Translation (MT) could be an effective way to develop multilingual chatbots. Further, to help users be confident about a product, feedback and recommendation from the end-user community are essential. However, these question-answers (QnA) can be in a different language than the users. The use of MT systems can reduce these issues to a large extent. In this paper, we provide a benchmark setup for Chat and QnA translation for English-Hindi, a relatively low-resource language pair. We first create the English-Hindi parallel corpus comprising of synthetic and gold standard parallel sentences. Thereafter, we develop several sentence-level and context-level neural machine translation (NMT) models, and measure their effectiveness on the newly created datasets. We achieve a BLEU score of 58.7 and 62.6 on the English-Hindi and Hindi-English subset of the gold-standard version of the WMT20 Chat dataset. Further, we achieve BLEU scores of 52.9 and 76.9 on the gold-standard Multi-modal Dialogue Dataset (MMD) English-Hindi and Hindi-English datasets. For QnA, we achieve a BLEU score of 49.9. Further, we achieve BLEU scores of 50.3 and 50.4 on question and answers subsets, respectively. We also perform thorough qualitative analysis of the outputs by the real users.
Natural Language Inference (NLI), also known as Recognizing Textual Entailment (RTE), has been one of the central tasks in Artificial Intelligence (AI) and Natural Language Processing (NLP). RTE between the two pieces of texts is a crucial problem, and it adds further challenges when involving two different languages, i.e., in the cross-lingual scenario. This paper proposes an effective transfer learning approach for cross-lingual NLI. We perform experiments on English-Hindi language pairs in the cross-lingual setting to find out that our novel loss formulation could enhance the performance of the baseline model by up to 2%. To assess the effectiveness of our method further, we perform additional experiments on every possible language pair using four European languages, namely French, German, Bulgarian, and Turkish, on top of XNLI dataset. Evaluation results yield up to 10% performance improvement over the respective baseline models, in some cases surpassing the state-of-the-art (SOTA). It is also to be noted that our proposed model has 110M parameters which is much lesser than the SOTA model having 220M parameters. Finally, we argue that our transfer learning-based loss objective is model agnostic and thus can be used with other deep learning-based architectures for cross-lingual NLI.
Multimodal Neural Machine Translation (MNMT) is an interesting task in natural language processing (NLP) where we use visual modalities along with a source sentence to aid the source to target translation process. Recently, there has been a lot of works in MNMT frameworks to boost the performance of standalone Machine Translation tasks. Most of the prior works in MNMT tried to perform translation between two widely known languages (e.g. English-to-German, English-to-French ). In this paper, We explore the effectiveness of different state-of-the-art MNMT methods, which use various data oriented techniques including multimodal pre-training, for low resource languages. Although the existing methods works well on high resource languages, usability of those methods on low-resource languages is unknown. In this paper, we evaluate the existing methods on Hindi and report our findings.
Neural Machine Translation (NMT) is a predominant machine translation technology nowadays because of its end-to-end trainable flexibility. However, NMT still struggles to translate properly in low-resource settings specifically on distant language pairs. One way to overcome this is to use the information from other modalities if available. The idea is that despite differences in languages, both the source and target language speakers see the same thing and the visual representation of both the source and target is the same, which can positively assist the system. Multimodal information can help the NMT system to improve the translation by removing ambiguity on some phrases or words. We participate in the 8th Workshop on Asian Translation (WAT - 2021) for English-Hindi multimodal translation task and achieve 42.47 and 37.50 BLEU points for Evaluation and Challenge subset, respectively.
This paper presents the experiments accomplished as a part of our participation in the MEDIQA challenge, an (Abacha et al., 2019) shared task. We participated in all the three tasks defined in this particular shared task. The tasks are viz. i. Natural Language Inference (NLI) ii. Recognizing Question Entailment(RQE) and their application in medical Question Answering (QA). We submitted runs using multiple deep learning based systems (runs) for each of these three tasks. We submitted five system results in each of the NLI and RQE tasks, and four system results for the QA task. The systems yield encouraging results in all the three tasks. The highest performance obtained in NLI, RQE and QA tasks are 81.8%, 53.2%, and 71.7%, respectively.