2022
pdf
abs
Identification of complex words and passages in medical documents in French
Kim Cheng Sheang
|
Anaïs Koptient
|
Natalia Grabar
|
Horacio Saggion
Actes de la 29e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 1 : conférence principale
Identification de mots et passages difficiles dans les documents médicaux en français. L’objectif de la simplification automatique des textes consiste à fournir une nouvelle version de documents qui devient plus facile à comprendre pour une population donnée ou plus facile à traiter par d’autres applications du TAL. Cependant, avant d’effectuer la simplification, il est important de savoir ce qu’il faut simplifier exactement dans les documents. En effet, même dans les documents techniques et spécialisés, il n’est pas nécessaire de tout simplifier mais juste les segments qui présentent des difficultés de compréhension. Il s’agit typiquement de la tâche d’identification de mots complexes : effectuer le diagnostic de difficulté d’un document donné pour y détecter les mots et passages complexes. Nous proposons de travail sur l’identification de mots et passages complexes dans les documents biomédicaux en français.
pdf
abs
Automatic Detection of Difficulty of French Medical Sequences in Context
Anaïs Koptient
|
Natalia Grabar
Proceedings of the 18th Workshop on Multiword Expressions @LREC2022
Medical documents use technical terms (single or multi-word expressions) with very specific semantics. Patients may find it difficult to understand these terms, which may lower their understanding of medical information. Before the simplification step of such terms, it is important to detect difficult to understand syntactic groups in medical documents as they may correspond to or contain technical terms. We address this question through categorization: we have to predict difficult to understand syntactic groups within syntactically analyzed medical documents. We use different models for this task: one built with only internal features (linguistic features), one built with only external features (contextual features), and one built with both sets of features. Our results show an f-measure over 0.8. Use of contextual (external) features and of annotations from all annotators impact the results positively. Ablation tests indicate that frequencies in large corpora and lexicon are relevant for this task.
2020
pdf
abs
La désambiguisation des abréviations du domaine médical (Disambiguation of abbreviations from the medical domain)
Anaïs Koptient
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 3 : Rencontre des Étudiants Chercheurs en Informatique pour le TAL
Les abréviations, tout en étant répandues dans la langue, ont une sémantique assez opaque car seulement les premières lettres sont transparentes. Cela peut donc empêcher la compréhension des abréviations, et des textes qui les contiennent, par les locuteurs. De plus, certaines abréviations sont ambiguës en ayant plusieurs sens possibles, ce qui augmente la difficulté de leur compréhension. Nous proposons de travailler avec les abréviations de la langue médicale dans un cadre lié à la simplification automatique de textes. Dans le processus de simplification, il faut en effet choisir la forme étendue des abréviations qui soit correcte pour un contexte donné. Nous proposons de traiter la désambiguïsation d’abréviations comme un problème de catégorisation supervisée. Les descripteurs sont construits à partir des contextes lexical et syntaxique des abréviations. L’entraînement est effectué sur les phrases qui contiennent les formes étendues des abréviations. Le test est effectué sur un corpus construit manuellement, où les bons sens des abréviations ont été définis selon les contextes. Notre approche montre une F-mesure moyenne de 0,888 sur le corpus d’entraînement en validation croisée et 0,773 sur le corpus de test.
2019
pdf
abs
Simplification-induced transformations: typology and some characteristics
Anaïs Koptient
|
Rémi Cardon
|
Natalia Grabar
Proceedings of the 18th BioNLP Workshop and Shared Task
The purpose of automatic text simplification is to transform technical or difficult to understand texts into a more friendly version. The semantics must be preserved during this transformation. Automatic text simplification can be done at different levels (lexical, syntactic, semantic, stylistic...) and relies on the corresponding knowledge and resources (lexicon, rules...). Our objective is to propose methods and material for the creation of transformation rules from a small set of parallel sentences differentiated by their technicity. We also propose a typology of transformations and quantify them. We work with French-language data related to the medical domain, although we assume that the method can be exploited on texts in any language and from any domain.