Supplementary Material:
Gaussian Mixture Latent Vector Grammars

Yanpeng Zhao, Liwen Zhang, Kewei Tu
School of Information Science and Technology,
ShanghaiTech University, Shanghai, China
{zhaoypl, zhanglwl, tukw}@shanghaitech.edu.cn

Abstract

This supplementary material contains the
following contents. (1) The derivation of
the gradient formulation (Equation 12 in
the paper). (2) The general idea of calcu-
lating analytic gradients for all the param-
eters in Gaussian Mixture Latent Vector
Grammars (GM-LVeGs). (3) Algorithmic
complexity and running time. (4) Statis-
tics of the data used for part-of-speech
(POS) tagging and constituency parsing.
(5) Additional experimental results and
analysis of GM-LVeGs.

1 Derivation of Gradient Formulations

Given a training dataset D = {(T;,w;)|i =
1,...,m} containing m samples, we minimize the
negative log conditional likelihood during learning
of GM-LVeGs:

L(©) = —log [P(Ti|w:;0), (1)

=1

where T; is the gold parse tree with unrefined non-
terminals for the sentence w;, and © is the set of
parameters in GM-LVeGs.

We define ¢ as a parse tree with nonterminal
subtypes, denote by f,(t) the number of occur-
rences of the unrefined rule r in the unrefined
parse tree that is obtained by replacing all the sub-
types in ¢ with the corresponding nonterminals,
and use r to represent a fine-grained production
rule of r, which is represented by the concatena-
tion of the latent vectors of the nonterminals in 7.

The weight of ¢ is defined as:

se =[] Wn(x).)

ret

The weight of T', a parse tree with unrefined non-
terminals, is defined as:

Sp = / s¢ dt 3)
t~T

where ¢ ~ T indicates that ¢ is a parse tree with
nonterminal subtypes that can be converted into a
parse tree I’ by replacing its nonterminal subtypes
with the corresponding nonterminals. The weight
of a sentence w is defined as:

oy = / s dt)
t~w

where ¢ ~ w indicates that ¢ is a parse tree of w
with nonterminal subtypes. Thus the conditional
probability density of ¢ given T is
P(T) = =, 5)
ST
the conditional probability density of ¢ given w is
P(tlw) = L | ©6)
Sw
and the conditional probability of T" given w is
P(Tlw) = 2L = / Pltlw)dt. (7)
Sw t~T

Therefore, we rewrite Equation 1 as
m
£(O) = —Zlog/ Pltjw;)dt. ()
i=1 t~T;

The derivative of £(©) with respect to ©,., where
r is an unrefined production rule, is calculated by
Equation 9 in Table 1.

2 Calculation of Analytic Gradients

In GM-LVeGs, O, is the set of parameters in a
Gaussian mixture with K, mixture components:

O, = {(pnkank’ 2r7k)|k =1,...,K.}. (13)

(P(twi))’

£ = Z t~T; ft’NT P(t'|w;) dt’
(P(t[wy)) P(t|w;)
= - dt
Z t~T; ft/NT P(t'|w;) dt’ . P(t|w;)
S P(t|wi) ,
= - log P(t|w;))" dt
~ Jior, L’NTi P(t'|w;) dt’ (log P(t[w;))
. [Tee: Wr(r) /
= - P(|T; I dt
; /tNTi Em) (% ftfwwi [Tecy Wi(r) dt,)
= —Z/ P(t|T;) x <logHW log/ dt) dt
T vt Vows np
- _Z</tTPt’T (ZlogW) dt — (log/t/ dt))
=1 ~di rct ~Wi ey
- W; r) (r)
) _; </tNTi P(tm)ZWr (r) /t’ ~wi 26; W, (r))
"~ [E r Ep(tjw) [fr(t /
_ _Z/ pam) (1 T(r)P (tjwi) Lfr ()] < W (x) dr ©
0L(© Ui
ap(r,k) - Z/ Plx) - N () dr (10)
oL®) B
Ot 2/¢) Pra S (= parg) dr . (11)
9L(©) L= i) (r =) TS = T
0%, 1 = Z/w prkzz 5 dr. (12)

Table 1: Derivation of gradient formulations.

According to Equation 9 in Table 1, we need to
take derivatives of W,(r) with respect to p, ,
My, and 3, ;. respectively:

Wr(r)/apr,k = Nr,k(r)) (14)
Wr(r)/aur,k = pr,kNr,k() 71(- N’r,k) 7(15)
W, (r) /031 = prpNoi(r)ZT;Q (I (16)

(0=)t =) 2
For brevity, we define
Ep(tjwy) [fr ()] = Epyry) [fr ()]
W, (r) ’

Substituting Equations 14-16 into Equation 9, we
have the full gradient formulations of all the pa-
rameters (Equations 10-12 in Table 1).

P(r) = a7)

In the following discussion, we assume that all
the Gaussians are diagonal. It can be verified that
¥ (r) in Equation 17 is in fact a mixture of Gaus-
sians, so multiplying v (r) by N x(r) in Equa-
tion 10-12 results in another mixture of Gaus-
sians. Below we consider the special case where
the resulting Gaussian mixture contains only a sin-
gle component:

P(r) - Npg(r) = X-N(r).

Owing to the sum rule in integral, we can easily
extend our derivation on the special case to the
general case in which the Gaussian mixture con-
tains multiple components. Because N (r) is diag-
onal, it can be factorized as:

N(r) =N x -

(18)

x NIy, (19)

where N (r!),..., N(rl*l) are univariate Gaus-
sians (or normal distributions), r? (1 < d < |r|)
refers to the d-th element of r, and |r| is the di-
mension of r. The integral in Equation 10 can be
readily calculated as
)\-/N(r)dr:)\. (20)
For Equation 11, consider taking the derivative
with respect to the mean in dimension d. Since the
means in different dimensions are independent, to

solve the integral in Equation 11, we only need to
solve the following integral:

/\-/N(r)rddrl...drr|
:)\-//\f(rl)alr1 x'--x//\/'(rd)rddrd
x...x/N(rr|)drr|

=\ /N(rd)rd dr? . (21)
For Equation 12, when taking the derivative with
respect to the variance in dimension d, we also
need to solve Equation 21 and additionally need
to solve the following integral:

A /N(r)rdrd de' ... drlt!
:)\-/N(rl)drl X oo X /N(rd)rdrddrd
X ... X /./\/'(rrl)alrr|

=\ /N(rd)rdrd dr? . (22)

The integrals in Equation 21 and Equation 22
are the first order moment and the second order
moment of the univariate Gaussian A/ (r?) respec-
tively, and both of them can be calculated exactly.
Therefore, we can calculate analytic gradients of
all the parameters in GM-LVeGs.

3 Algorithmic Complexity and Running
Time

The time complexity of the learning algorithm
for each sentence in each epoch is approximately
O(en®kmd + cklmd?). The first term is the time
complexity of the extended inside-outside algo-
rithm, where c is the number of binary productions
in CNF, n is the length of the sentence, k is the

Gaussian component number of each rule weight
function, m is the maximum Gaussian component
number of an inside or outside score after prun-
ing, and d is the dimension of diagonal Gaussians.
kmd is generally much smaller than cn3. It shall
be noted that m is bounded by k45, Which is set
to 50 in our experiments. The second term is the
approximate time complexity of gradient calcula-
tion, where [is the number of times that a pro-
duction rule is used in all possible parses of a sen-
tence. The second term is much smaller than the
first term in general.

We run our learning and inference algorithms
with a CPU cluster without any GPU. In our POS
tagging experiments, GM-LVeGs are only slightly
slower than the baseline LVG models, and we
can perform all the tagging experiments on all the
datasets with our model within one day. For pars-
ing, there is a trade-off between running time and
parsing accuracy based on the amount of prun-
ing. For the best parsing accuracy of GM-LVeGs,
it takes two weeks for training. However, once
we complete training, parsing can be done within
three minutes on the whole testing data of WSJ.

There are a few ways to improve the training
efficiency. We currently use CPU parallelization
at the sentence level in training, but in the future
we may take the advantage of GPU parallelization,
e.g., we can vectorize the inside-outside algorithm
for a batch of sentences of the same length. Be-
sides, for each long sentence, we can parallelize
the inside or outside computation at the same re-
cursive depth.

4 Data Statistics

of sentences

Dataset # of tokens

train test dev
39832 2416 1700

WSJ 950028

Table 2: Statistics of WSJ used for constituency parsing.

Statistics of the data used for constituency pars-
ing are shown in Table 2. Statistics of the data used
for POS tagging are summarized in Table 3. In
the experiments of constituency parsing, in order
to study the influence of the dimension of Gaus-
sians and the number of Gaussian components on
the parsing accuracy, we experimented on a small
dataset. The small dataset only contains section 4
and section 5 of WSJ. In the two sections, we use
file IDs from 80-89 in the two sections are used

WSJ English French German Russian Spanish Indonesian Finnish Italian

#of tokens 1173766 254830 402197 298242 99389 431587 121923 181022 292471
train 38219 12543 14554 14118 4029 14187 4477 12217 12837
dev 5462 2002 1596 799 502 1552 559 716 489
test 5527 2077 298 977 499 274 557 648 489

Table 3: Statistics of WSJ and UD (English, French, German, Russian, Spanish, Indonesian, Finnish, and Italian treebanks).
Numbers in the rows of train, test, and dev indicate the number of sentences in training, testing, and development data respec-

tively.

WSJ English French German Russian Spanish Indonesian Finnish Italian
Model T S T s T S T S T S T S T S T S T S
LVG-D-1 96.50 48.04 91.80 50.79 93.55 30.20 86.52 16.99 81.21 9.24 91.79 22.63 89.08 18.85 83.15 16.82 94.00 37.42
LVG-D-2 96.57 47.60 92.17 52.05 93.86 33.56 86.93 18.32 81.46 10.04 92.10 24.82 89.16 19.21 83.34 18.52 94.45 40.90
LVG-D-4 96.57 48.76 92.30 52.34 93.96 34.90 87.18 19.86 81.95 11.85 92.37 24.82 89.28 19.57 83.76 18.83 94.60 42.54
LVG-D-8 96.60 49.14 92.31 53.06 93.78 34.90 87.52 21.60 81.54 11.25 92.26 23.72 89.23 19.39 83.68 18.67 94.70 42.95
LVG-D-16 96.62 48.74 92.31 52.67 93.75 34.90 87.38 20.98 81.91 12.25 92.47 24.82 89.27 20.29 83.81 19.29 94.81 45.19
LVG-G-1 96.11 43.68 90.84 44.92 92.69 26.51 86.71 17.40 81.22 10.22 91.85 22.63 88.93 18.31 82.94 16.36 93.64 33.74
LVG-G-2 96.27 45.57 92.11 51.37 93.28 28.19 87.87 19.86 81.51 11.45 92.29 23.36 89.19 18.49 83.29 17.44 94.20 38.45
LVG-G-4 96.50 48.19 92.90 54.31 94.06 32.55 88.31 20.78 82.64 11.85 92.58 24.45 89.58 19.03 83.76 19.44 95.00 45.40
LVG-G-8 96.76 50.38 93.29 56.67 94.57 37.25 88.75 21.70 82.85 14.86 92.95 29.20 89.78 20.29 84.69 21.76 95.42 46.83
LVG-G-16 96.78 50.88 93.30 57.54 94.52 34.90 88.92 24.05 84.03 16.63 93.21 27.37 90.09 21.19 85.01 20.53 95.46 48.26
GM-LVeG-D 96.99 53.10 93.66 59.46 94.73 39.60 89.11 24.77 84.21 17.84 93.76 32.48 90.24 21.72 85.27 23.30 95.61 50.72
GM-LVeG-S 97.00 53.11 93.55 58.11 94.74 39.26 89.14 25.58 84.06 18.44 93.52 30.66 90.12 21.72 85.35 22.07 95.62 49.69

Table 4: Token accuracy (T) and sentence accuracy (S) for POS tagging on the testing data. The numerical postfix of each LVG
model indicates the number of nonterminal subtypes, and hence LVG-G-1 denotes HMM.

for testing, 90-99 for development, and the rest
are used for training. The resulting dataset con-
tains 3599 training samples, 426 test samples, and
375 development samples.

S Additional Experimental Results

The complete experimental results of POS tagging
are shown in Table 4. In addition to the results
shown in the paper, this table includes the tagging
results of LVGs with 1, 2, 4, 8 subtypes for each
nonterminal.

In the experiments of constituency parsing, in
order to investigate the impact of the maximum
Gaussian component number of inside and out-
side scores, we experiment with a new prun-
ing technique. Specifically, we use a maximum
component-pruning threshold kpq.q. We do not
prune any Gaussian component if an inside or
outside score has no more than kj,.q Gaussian
components; otherwise we keep only kpqq Gaus-
sian components with the largest mixture weights.
We experiment on the small dataset mentioned in
Section 4. For efficiency, we train GM-LVeG-
D only on sentences of no more than 20 words
and test GM-LVeG-D only on testing sentences
of no more than 25 words. We experiment with
knara = 10,20, 30, 40, 50, 60, 70, 80. The results

are shown in Figure 1. We also experiment with-
out component pruning, which corresponds to the
rightmost point in Figure 1.

We can see that a weaker component pruning or
a larger kpq.q results in a better F1 score. How-
ever, it takes much more time per epoch for learn-
ing, as is shown in the lower figure in Figure 1.
We find that k.. = 40 produces a good F1 score
and also admits efficient learning. Therefore, in
the experiments of constituency parsing, we use
kmin = 40 in learning for the component-pruning
technique introduced in Section 3.2 in the paper.

84 1
o 827
S

& 801

2

“ 781
76

= = N
5] « =3
L L

Time (min) Per Epoch
w

50 60 70 80 +inf

Knard

10 20 30 40

Figure 1: Upper: F1 scores with different kpqrq; Lower:
time (min) per epoch in learning with different kpqrq.

