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Introduction

We are excited to welcome you to SIGDIAL 2019, the 20th Annual Meeting of the Special Interest
Group on Discourse and Dialogue. This year the conference is being held in Stockholm, Sweden, on
September 11-13, with the Satellite Event YRRSDS 2019 (Young Researchers’ Roundtable on Spoken
Dialog Systems), and in close temporal proximity with Interspeech 2019, held in Gratz, Austria, and
SemDial 2019, held in London, UK.

The SIGDIAL conference is a premier publication venue for research in discourse and dialogue. This
year, the program includes three keynote talks, six oral presentation sessions, three poster sessions
including six demonstrations, a panel entitled “The Future of Dialogue Research” organized by Phil
Cohen, and a special session entitled “Implications of Deep Learning for Dialogue Modeling” organized
by Nigel Ward, Yun-Nung (Vivian) Chen, Tatsuya Kawahara and Gabriel Skantze.

We received a record 146 submissions this year, about one third more than the submissions received in
2018. The 146 submissions comprised 93 long papers, 43 short papers and 10 demo descriptions. All
submissions received at least three reviews. When making our selections for the program, we carefully
considered the reviews and the comments made during the discussions among reviewers. The members
of the Program Committee did an excellent job in reviewing the submitted papers, and we thank them
for their essential role in selecting the accepted papers and helping produce a high quality program for
the conference. In line with the SIGDIAL tradition, our aim has been to create a balanced program that
accommodates as many favourably rated papers as possible. We accepted 51 papers: 33 long papers—
three of which were converted to short papers, 13 short papers, and five demo descriptions. These
numbers give an overall acceptance rate of 35%, with the following rates for the different types of papers:
35% for long papers, 30% for short papers and 50% for demo descriptions. It is worth noting that the
acceptance rate for long papers was significantly lower than that of previous years – a result of the
unusually large number of submissions.

Each of the three conference days features one keynote and one poster session, with the remaining time
given to oral presentations, demos, the panel and the special session. The oral presentations comprise
16 of the long papers and three long papers selected for the special session. The three poster sessions
feature the remaining long papers, all the short papers and two work-in-progress special session papers.
In terms of content, about a quarter of the accepted papers discuss datasets and evaluation issues, and
approximately half employ deep learning to address problems in discourse and dialogue—a trend also
exhibited in recent Language Technology conferences. Finally, this SIGDIAL features an invited demo
that showcases research conducted in the department of Robotics, Perception and Learning at KTH, the
host institution.

A conference of this scale requires advice, help and enthusiastic participation of many parties, and we
have a big ‘thank you’ to say to all of them. Regarding the program, we thank our three keynote speakers,
Dan Bohus (Microsoft Research, Redmond, Washington, US), Mirella Lapata (University of Edinburgh,
UK) and Helen Meng (Chinese University of Hong Kong, China) for their inspiring talks on situated
interaction, learning neural natural language interfaces, and dialogue research application to healthcare,
e-commerce and education. We also thank the organizer of the panel on the Future of Dialogue Research,
and the organizers of the special session on Implications of Deep Learning for Dialogue Modeling. We
are grateful for their smooth and efficient coordination with the main conference. In addition, we thank
Alex Papangelis, Mentoring Chair for SIGDIAL 2019, for his dedicated work on the mentoring process.
The goal of mentoring is to assist authors of papers that contain important ideas but require significant
stylistic modifications. In total, seven of the accepted papers received mentoring, and we thank our
mentoring team for their excellent support of the authors.

We extend special thanks to our Local Chair, Gabriel Skantze, and his team, including the student
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volunteers who provide on-site assistance. SIGDIAL 2019 would not have been possible without their
effort in arranging the conference venue, handling registration, making banquet arrangements, numerous
preparations for the conference, and last but not least, Gabriel’s personal contributions, which exceeded
those of a local organizer.

Mikio Nakano, our Sponsorship Chair, has conducted the massive task of recruiting and liaising with
our conference sponsors, many of whom continue to contribute year after year. Sponsorships support
valuable aspects of the program, such as lunches and the conference banquet. We thank Mikio for his
dedicated work and his assistance with conference planning. We gratefully acknowledge the support of
our sponsors: (Platinum level) Honda Research Institute, Interactions and Microsoft Research; (Gold
level) Amazon Alexa, Apple, Rasa Technologies and Spotify; (Silver level) Educational Testing Service
(ETS) and Monash University; and (Bronze level) Toshiba Research Europe. We also thank the KTH
Royal Institute of Technology for its generous sponsorship as host.

Koichiro Yoshino, our publicity chair, was tireless in the design and maintenance of the SIGDIAL 2019
website, cheerfully coping with multiple and constant changes; and Stefan Ultes, our publication chair,
capped the long organizational process by putting together these high quality conference proceedings.
We thank the SIGdial board, both current and emeritus officers, Gabriel Skantze, Mikio Nakano, Vikram
Ramanarayanan, Ethan Selfridge, Kallirroi Georgila, Jason Williams and Amanda Stent, for their advice
and support from beginning to end.

We once again thank our program committee members for committing their time to help us select an
excellent technical program. Finally, we thank all the authors who submitted to the conference and all
the conference participants for making SIGDIAL 2019 a success and for growing the research areas of
discourse and dialogue with their fine work.

Satoshi Nakamura, General Chair

Milica Gašić and Ingrid Zukerman, Program Co-Chairs
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12:05–13:20 Lunch

xv



11 September 2019 (continued)

13:20–15:10 Poster and Demos 1

Few-Shot Dialogue Generation Without Annotated Data: A Transfer Learning Ap-
proach
Igor Shalyminov, Sungjin Lee, Arash Eshghi and Oliver Lemon

SIM: A Slot-Independent Neural Model for Dialogue State Tracking
Chenguang Zhu, Michael Zeng and Xuedong Huang

Simple, Fast, Accurate Intent Classification and Slot Labeling for Goal-Oriented
Dialogue Systems
Arshit Gupta, John Hewitt and Katrin Kirchhoff

Time Masking: Leveraging Temporal Information in Spoken Dialogue Systems
Rylan Conway and Mathias Lambert

To Combine or Not To Combine? A Rainbow Deep Reinforcement Learning Agent
for Dialog Policies
Dirk Väth and Ngoc Thang Vu

Contextualized Representations for Low-resource Utterance Tagging
Bhargavi Paranjape and Graham Neubig

Capturing Dialogue State Variable Dependencies with an Energy-based Neural Di-
alogue State Tracker
Anh Duong Trinh, Robert J. Ross and John D. Kelleher

Leveraging Non-Conversational Tasks for Low Resource Slot Filling: Does it help?
Samuel Louvan and Bernardo Magnini

Collaborative Multi-Agent Dialogue Model Training Via Reinforcement Learning
Alexandros Papangelis, Yi-Chia Wang, Piero Molino and Gokhan Tur

Scoring Interactional Aspects of Human-Machine Dialog for Language Learning
and Assessment using Text Features
Vikram Ramanarayanan, Matthew Mulholland and Yao Qian

Spoken Conversational Search for General Knowledge
Lina M. Rojas Barahona, Pascal Bellec, Benoit Besset, Martinho Dossantos, Jo-
hannes Heinecke, munshi asadullah, Olivier Leblouch, Jeanyves Lancien, Geraldine
Damnati, Emmanuel Mory and Frederic Herledan
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11 September 2019 (continued)

Graph2Bots, Unsupervised Assistance for Designing Chatbots
Jean-Leon Bouraoui, Sonia Le Meitour, Romain Carbou, Lina M. Rojas Barahona
and Vincent Lemaire

On a Chatbot Conducting Dialogue-in-Dialogue
Boris Galitsky, Dmitry Ilvovsky and Elizaveta Goncharova

15:10–15:40 Coffee Break

15:40–16:55 Session 2 (Special Session) - Implications of Deep Learning for Dialogue Mod-
eling

DeepCopy: Grounded Response Generation with Hierarchical Pointer Networks
Semih Yavuz, Abhinav Rastogi, Guan-Lin Chao and Dilek Hakkani-Tur

Towards End-to-End Learning for Efficient Dialogue Agent by Modeling Looking-
ahead Ability
Zhuoxuan Jiang, Xian-Ling Mao, Ziming Huang, Jie Ma and Shaochun Li

Unsupervised Dialogue Spectrum Generation for Log Dialogue Ranking
Xinnuo Xu, Yizhe Zhang, Lars Liden and Sungjin Lee

16:55–17:55 Panel: The Future of Dialogue Research
Organizer: Phil Cohen

Vikram Ramanarayanan, Educational Testing Service (ETS) Research, USA
Sujith Savi, Google, USA
Gabriel Skantze, KTH Royal Institute of Technology, Sweden

18:15–19:45 Reception
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09:00–10:00 Keynote 2 - Situated Interaction
Dan Bohus

10:00–10:30 Coffee Break

10:30–11:45 Session 3 - Generation and End-to-end Dialogue Systems

Tree-Structured Semantic Encoder with Knowledge Sharing for Domain Adaptation
in Natural Language Generation
Bo-Hsiang Tseng, Paweł Budzianowski, Yen-chen Wu and Milica Gasic

Structured Fusion Networks for Dialog
Shikib Mehri, Tejas Srinivasan and Maxine Eskenazi

Flexibly-Structured Model for Task-Oriented Dialogues
Lei Shu, Piero Molino, Mahdi Namazifar, Hu Xu, Bing Liu, Huaixiu Zheng and
Gokhan Tur

11:45–13:00 Lunch

13:00–14:15 Poster and Demos 2

FriendsQA: Open-Domain Question Answering on TV Show Transcripts
Zhengzhe Yang and Jinho D. Choi

Foundations of Collaborative Task-Oriented Dialogue: What’s in a Slot?
Philip Cohen

Speaker-adapted neural-network-based fusion for multimodal reference resolution
Diana Kleingarn, Nima Nabizadeh, Martin Heckmann and Dorothea Kolossa

Learning Question-Guided Video Representation for Multi-Turn Video Question An-
swering
Guan-Lin Chao, Abhinav Rastogi, Semih Yavuz, Dilek Hakkani-Tur, Jindong Chen
and Ian Lane
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12 September 2019 (continued)

Zero-shot transfer for implicit discourse relation classification
Murathan Kurfalı and Robert Östling

A Quantitative Analysis of Patients’ Narratives of Heart Failure
Sabita Acharya, Barbara Di Eugenio, Andrew Boyd, Richard Cameron, Karen Dunn
Lopez, Pamela Martyn-Nemeth, Debaleena Chattopadhyay, Pantea Habibi, Carolyn
Dickens, Haleh Vatani and Amer Ardati

TDDiscourse: A Dataset for Discourse-Level Temporal Ordering of Events
Aakanksha Naik, Luke Breitfeller and Carolyn Rose

Real-time Generation of Unambiguous Spatial Referring Expressions
Fethiye Irmak Dogan, Sinan Kalkan and Iolanda Leite

Real Life Application of a Question Answering System Using BERT Language
Model
Francesca Alloatti, Luigi Di Caro and Gianpiero Sportelli

14:15–15:05 Session 4 - Understanding and Dialogue State Tracking

Hierarchical Multi-Task Natural Language Understanding for Cross-domain Con-
versational AI: HERMIT NLU
Andrea Vanzo, Emanuele Bastianelli and Oliver Lemon

Dialog State Tracking: A Neural Reading Comprehension Approach
Shuyang Gao, Abhishek Sethi, Sanchit Agarwal, Tagyoung Chung and Dilek
Hakkani-Tur

15:05–15:35 Coffee Break
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12 September 2019 (continued)

15:35–16:25 Session 5 - Acoustics

Cross-Corpus Data Augmentation for Acoustic Addressee Detection
Oleg Akhtiamov, Ingo Siegert, Alexey Karpov and Wolfgang Minker

A Scalable Method for Quantifying the Role of Pitch in Conversational Turn-Taking
Kornel Laskowski, Marcin Wlodarczak and Mattias Heldner

16:25–17:10 Sponsor Session

18:30–21:00 Banquet at Vasa Museum
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09:00–10:00 The Many Facets of Dialog
Helen Meng

10:00–10:30 Coffee Break

10:30–11:45 Session 6 - Evaluation and Data

A Large-Scale User Study of an Alexa Prize Chatbot: Effect of TTS Dynamism on
Perceived Quality of Social Dialog
Michelle Cohn, Chun-Yen Chen and Zhou Yu

Influence of Time and Risk on Response Acceptability in a Simple Spoken Dialogue
System
Andisheh Partovi and Ingrid Zukerman

Characterizing the Response Space of Questions: a Corpus Study for English and
Polish
Jonathan Ginzburg, Zulipiye Yusupujiang, Chuyuan Li, Kexin Ren and Paweł Łup-
kowski

11:45–13:00 Lunch
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13 September 2019 (continued)

13:00–14:50 Poster and Demos 3

From Explainability to Explanation: Using a Dialogue Setting to Elicit Annotations
with Justifications
Nazia Attari, Martin Heckmann and David Schlangen

Prediction of User Emotion and Dialogue Success Using Audio Spectrograms and
Convolutional Neural Networks
Athanasios Lykartsis and Margarita Kotti

Modelling Adaptive Presentations in Human-Robot Interaction using Behaviour
Trees
Nils Axelsson and Gabriel Skantze

Coached Conversational Preference Elicitation: A Case Study in Understanding
Movie Preferences
Filip Radlinski, Krisztian Balog, Bill Byrne and Karthik Krishnamoorthi

A Crowd-based Evaluation of Abuse Response Strategies in Conversational Agents
Amanda Cercas Curry and Verena Rieser

A Dynamic Strategy Coach for Effective Negotiation
Yiheng Zhou, He He, Alan W Black and Yulia Tsvetkov

Investigating Evaluation of Open-Domain Dialogue Systems With Human Gener-
ated Multiple References
Prakhar Gupta, Shikib Mehri, Tiancheng Zhao, Amy Pavel, Maxine Eskenazi and
Jeffrey Bigham

User Evaluation of a Multi-dimensional Statistical Dialogue System
Simon Keizer, Ondřej Dušek, Xingkun Liu and Verena Rieser

Dialogue Act Classification in Team Communication for Robot Assisted Disaster
Response
Tatiana Anikina and Ivana Kruijff-Korbayova

Multi-Task Learning of System Dialogue Act Selection for Supervised Pretraining
of Goal-Oriented Dialogue Policies
Sarah McLeod, Ivana Kruijff-Korbayova and Bernd Kiefer

B. Rex: a dialogue agent for book recommendations
Mitchell Abrams, Luke Gessler and Matthew Marge
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13 September 2019 (continued)

14:20–14:50 Coffee Break (during Poster and Demos 3)

14:50–16:05 Session 7 - Discourse

SpaceRefNet: a neural approach to spatial reference resolution in a real city envi-
ronment
Dmytro Kalpakchi and Johan Boye

Which aspects of discourse relations are hard to learn? Primitive decomposition
for discourse relation classification
Charlotte Roze, Chloé Braud and Philippe Muller

Discourse Relation Prediction: Revisiting Word Pairs with Convolutional Networks
Siddharth Varia, Christopher Hidey and Tuhin Chakrabarty

16:05–16:20 Short Coffee Break

16:20–17:20 Business meeting, Awards and Closing
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Keynote Abstracts

Keynote 1 - Learning Natural Language Interfaces with Neural Models
Mirella Lapata
Professor, School of Informatics, University of Edinburgh, UK

Abstract

In Spike Jonze’s futuristic film "Her", Theodore, a lonely writer, forms a strong emotional bond with
Samantha, an operating system designed to meet his every need. Samantha can carry on seamless
conversations with Theodore, exhibits a perfect command of language, and is able to take on complex
tasks. She filters his emails for importance, allowing him to deal with information overload, she
proactively arranges the publication of Theodore’s letters, and is able to give advice using common
sense and reasoning skills.

In this talk I will present an overview of recent progress on learning natural language interfaces which
might not be as clever as Samantha but nevertheless allow uses to interact with various devices and
services using every day language. I will address the structured prediction problem of mapping natural
language utterances onto machine-interpretable representations and outline the various challenges it
poses. For example, the fact that the translation of natural language to formal language is highly non-
isomorphic, data for model training is scarce, and natural language can express the same information
need in many different ways. I will describe a general modeling framework based on neural networks
which tackles these challenges and improves the robustness of natural language interfaces.

Biography

Mirella Lapata is professor of natural language processing in the School of Informatics at the University
of Edinburgh. Her research focuses on getting computers to understand, reason with, and generate
natural language. She is the first recipient (2009) of the British Computer Society and Information
Retrieval Specialist Group (BCS/IRSG) Karen Sparck Jones award and a Fellow of the Royal Society
of Edinburgh. She has also received best paper awards in leading NLP conferences and has served on
the editorial boards of the Journal of Artificial Intelligence Research, the Transactions of the ACL, and
Computational Linguistics. She was president of SIGDAT (the group that organizes EMNLP) in 2018.
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Keynote 2 - Situated Interaction
Dan Bohus Senior Principal Researcher, Perception and Interaction Group, Microsoft Research,
Redmond, Washington, US

Abstract

Physically situated dialog is a complex, multimodal affair that goes well beyond the spoken word. When
interacting with each other, people incrementally coordinate their actions to simultaneously resolve
several different problems: they manage engagement, coordinate on taking turns, recognize intentions,
and establish and maintain common ground as a basis for contributing to the conversation. A wide array
of non-verbal signals are brought to bear. Proximity and body pose, attention and gaze, head nods and
hand gestures, prosody and facial expressions, all play important roles in the intricate, mixed-initiative,
fluidly coordinated process we call interaction. And just like a couple of decades ago advances in speech
recognition opened up the field of spoken dialog systems, today advances in vision and other perceptual
technologies are again opening up new horizons – we are starting to be able to build machines that can
understand these social signals and the physical world around them, and begin to participate in physically
situated interactions and collaborations with people.

In this talk, using a number of research vignettes from my work, I will draw attention to some of the
challenges and opportunities that lie ahead of us in this exciting space. In particular, I will discuss
issues with managing engagement and turn-taking in multiparty open-world settings, and more generally
highlight the importance of timing and fine-grained coordination in situated interaction. Finally, I will
conclude by describing a framework that promises to simplify the development of physically situated
interactive systems and enable more research and faster progress in this area.

Biography

Dan Bohus is a Senior Principal Researcher in the Perception and Interaction Group at Microsoft
Research. His work centers on the study and development of computational models for physically
situated spoken language interaction and collaboration. The long term question that shapes his research
agenda is how can we enable interactive systems to reason more deeply about their surroundings and
seamlessly participate in open-world, multiparty dialog and collaboration with people? Prior to joining
Microsoft Research, Dan obtained his Ph.D. from Carnegie Mellon University.
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Keynote 3 - The Many Facets of Dialog
Helen Meng SProfessor, Department of Systems Engineering and Engineering Management, Chinese
University of Hong Kong, China

Abstract

Dialog is a most fascinating form of human communication. The back-and-forth exchanges convey the
speaker’s message to the listener, and the listener can derive information about the speaker’s thoughts,
intent, well-being, emotions and much more. This talk presents an overview of dialog research that
concerns our group at The Chinese University of Hong Kong. In the domain of education and learning,
we have been recording in-class student group discussions in the flipped-classroom setting of a freshman
elite mathematics course. We investigate features in the weekly, within-group dialogs that may relate to
class performance and learning efficacy. In the domain of e-commerce, we are developing dialog models
based on approximately 20 million conversation turns, to support a virtual shopping assistant in customer
inquiries and orders, logistics tracking, etc. In the domain of health and wellbeing, we are capturing and
analysing dialogs between health professionals (or their virtual equivalent) and subjects in cognitive
screening tests. We also conduct research in both semantic interpretation and dialog state tracking,
as well as affective design of virtual conversational assistants. For the former, we have developed a
Convex Polytopic Model for extracting a knowledge representation from user inputs in dialog turns by
generating a compact convex polytope to enclose all the data points projected to a latent semantic space.
The polytope vertices represent extracted semantic concepts. Each user input can then be "interpreted"
as a sequence of polytope vertices which represent the user’s goals and dialog states. For the latter, we
have developed a multimodal, multi-task, deep learning framework to infer the user’s emotive state and
emotive state change simultaneously. This enables virtual conversational assistants to understand the
emotive state in the user’s input and to generate an appropriate emotive system response in the dialog
turn, which will further influence the user’s emotive state in the subsequent dialog turn. Such an affective
design will be able to enhance user experience in conversational dialogs with intelligent virtual assistants.

Biography

Helen Meng is Patrick Huen Wing Ming Professor of Systems Engineering and Engineering
Management at The Chinese University of Hong Kong (CUHK). She is the Founding Director of
the CUHK Ministry of Education (MoE)-Microsoft Key Laboratory for Human-Centric Computing
and Interface Technologies (since 2005), Tsinghua-CUHK Joint Research Center for Media Sciences,
Technologies and Systems (since 2006), and Co-Director of the Stanley Ho Big Data Decision Analytics
Research Center (since 2013). Previously, she served as CUHK Faculty of Engineering’s Associate
Dean (Research), Chairman of the Department of Systems Engineering and Engineering Management,
Editor-in-Chief of the IEEE Transactions on Audio, Speech and Language Processing, Member of the
IEEE Signal Processing Society Board of Governors, ISCA Board Member and presently Member
of the ISCA International Advisory Council. She was elected APSIPA’s inaugural Distinguished
Lecturer 2012-2013 and ISCA Distinguished Lecturer 2015-2016. Her awards include the Ministry of
Education Higher Education Outstanding Scientific Research Output Award 2009, Hong Kong Computer
Society’s inaugural Outstanding ICT Woman Professional Award 2015, Microsoft Research Outstanding
Collaborator Award 2016 (1 in 32 worldwide), IEEE ICME 2016 Best Paper Award, IBM Faculty
Award 2016, HKPWE Outstanding Women Professionals and Entrepreneurs Award 2017 (1 in 20
since 1999), Hong Kong ICT Silver Award 2018 in Smart Inclusion, and the CogInfoComm2018
Best Paper Award. Helen received all her degrees from MIT. Her research interests include big
data decision analytics, and artificial intelligence especially for speech and language technologies to
support multilingual and multimodal human-computer interaction. Helen has given invited / keynote
presentations including INTERSPEECH 2018 Plenary Talk, World Economic Forum Global Future
Council 2018, Taihe Workshop on Building Stakeholder Networks on AI Ethics and Governance 2019
and the World Peace Forum 2019. She has served in numerous Government appointments, including

xxvii



Chairlady of the Research Grants Council’s Assessment Panel for Competitive Research Funding
Schemes for the Local Self-financing Degree Sector, Chairlady of the Working Party on Manpower
Survey of the Information/Innovation Technology Sector (since 2013), as well as Steering Committee
Member of Hong Kong’s Electronic Health Record (eHR) Sharing. Helen is a Fellow of HKCS, HKIE,
IEEE and ISCA.
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Abstract
Open domain dialog systems face the chal-
lenge of being repetitive and producing
generic responses. In this paper, we demon-
strate that by conditioning the response gener-
ation on interpretable discrete dialog attributes
and composed attributes, it helps improve the
model perplexity and results in diverse and in-
teresting non-redundant responses. We pro-
pose to formulate the dialog attribute predic-
tion as a reinforcement learning (RL) prob-
lem and use policy gradients methods to opti-
mize utterance generation using long-term re-
wards. Unlike existing RL approaches which
formulate the token prediction as a policy, our
method reduces the complexity of the policy
optimization by limiting the action space to di-
alog attributes, thereby making the policy op-
timization more practical and sample efficient.
We demonstrate this with experimental and hu-
man evaluations.

1 Introduction

Following the success of neural machine transla-
tion systems (Bahdanau et al., 2015; Sutskever
et al., 2014; Cho et al., 2014), there has been a
growing interest in adapting the encoder-decoder
models to model open-domain conversations (Sor-
doni et al., 2015; Serban et al., 2016a,b; Vinyals
and Le, 2015).This is done by framing the next
utterance generation as a machine translation prob-
lem by treating the dialog history as the source
sequence and the next utterance as the target se-
quence. Then the models are trained end-to-end
with Maximum Likelihood (MLE) objective with-
out any hand crafted structures like slot-value pairs,
dialog manager, etc used in conventional dialog
modeling (Lagus and Kuusisto, 2002). Such data
driven approaches are worth pursuing in the con-
text of open-domain conversations since the next ut-
terance distribution in open-domain conversations

∗Work done during internship at Google

exhibit high entropy which makes it impractical to
manually craft good features.

While the encoder-decoder approaches are
promising, lack of specificity has been one of the
many challenges (Wei et al., 2017) in modelling
non-goal oriented dialogs. Recent encoder-decoder
based models usually tend to generate generic or
dull responses like “I don’t know.”. One of the
main causes are the implicit imbalances present in
the dialog datasets that tend to potentially handicap
the models into generating uninteresting responses.

Imbalances in a dialog dataset can be broadly
divided into two categories: many-to-one and one-
to-many. Many-to-one imbalance occurs when the
dataset contain very similar responses to several dif-
ferent dialog contexts. In such scenarios, decoder
learns to ignore the context (considering it as noise)
and behaves like a regular language model. Such
a decoder would not generalize to new contexts
and will end up predicting generic responses for
all contexts. In the one-to-many case, the dataset
may exhibit a different type of imbalance where a
certain type of generic response may be present in
abundance compared to other plausible interesting
responses for the same dialog context (Wei et al.,
2017). When trained with a maximum-likelihood
(MLE) objective, generative models usually tend
to place more probability mass around the most
commonly observed responses for a given context.
So, we end up observing little variance in the gen-
erated responses in such cases. While these two
imbalances are problematic for training a dialog
model, they are also inherent characteristics of a
dialog dataset which cannot be removed.

Several approaches have been proposed in the lit-
erature to address the generic response generation
issue. Li et al. (2016) propose to modify the loss
function to increase the diversity in the generated
responses. Multi-resolution RNN (Serban et al.,
2017) addresses the above issue by additionally
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conditioning with entity information in the previ-
ous utterances. Alternatively, Song et al. (2016)
uses external knowledge from a retrieval model
to condition the response generation. Latent vari-
able models inspired by Conditional Variational
Autoencoders (CVAEs) are explored in (Shen et al.,
2017; Zhao et al., 2017). While models with con-
tinuous latent variables tend to be uninterpretable,
discrete latent variable models exhibit high vari-
ance during inference. Shen et al. (2017) append
discrete attributes such as sentiment to the latent
representation to generate next utterance.

1.1 Contributions

New Conditional Dialog Generation Model.
Drawing insights from (Shen et al., 2017; Zhou
et al., 2017), we propose a conditional utterance
generation model in which the next utterance is
conditioned on the dialog attributes corresponding
to the next utterance. To do this, we first predict the
higher level dialog attributes corresponding to the
next response. Then we generate the next utterance
conditioned on the dialog context and predicted
attributes. Dialog attribute of an utterance refers
to discrete features or aspects associated with the
utterance. Example attributes include dialog-acts,
sentiment, emotion, speaker id, speaker personal-
ity or other user defined discrete features of an
utterance. While previous research works lack the
framework to learn to predict the attributes of the
next utterance and mainly view the next utterance’s
attribute as a control variable in their models, our
method learns to predict the attributes in an end-
to-end manner. This alleviates the need to have
utterances annotated with attributes during infer-
ence.

RL for Dialog Attribute Selection. Further, it
also enables us to formulate the dialog attribute
selection as a reinforcement learning (RL) prob-
lem and optimize the policy initialized by the su-
pervised training using REINFORCE (Williams,
1992). While the Supervised pre-training helps the
model to generate utterances coherent with the di-
alog history, the RL formulation encourages the
model to generate utterances optimized for long
term rewards like diversity, user-satisfaction scores
etc. This way of optimizing the policy over the
discrete dialog attribute space is more practical as
the action space is low dimensional instead of the
entire vocabulary (as common in policies which
involve predicting the next token to generate).

By using REINFORCE (Williams, 1992) to fur-
ther optimize the dialog attribute selection process,
We then show improvements in specificity of the
generated responses both qualitatively (based on
human evaluations) and quantitatively (with respect
to the diversity measures). The diversity scores,
distinct-1 and distinct-2 are computed as the frac-
tion of uni-grams and bi-grams in the generated
responses as described in (Li et al., 2016).

Improvements on Dialog datasets demonstrated
through quantitative & qualitative Evaluations:
Additionally, we annotate an existing open do-
main dialog dataset using dialog attribute classi-
fiers trained with tagged datasets like Switchboard
(Godfrey et al., 1992; Jurafsky et al., 1997), Frames
(Schulz et al., 2017) and demonstrate both quan-
titative (in terms of token perplexity/embedding
metrics (Rus and Lintean, 2012; Mitchell and La-
pata, 2008)) and qualitative improvements (based
on human evaluations) in generating interesting re-
sponses. In this work, we show results with two
types of dialog attributes - sentiment and dialog-
acts. It is worth investigating this approach as we
need not invest much in training classifiers for very
high accuracy and we show empirically that anno-
tations from classifiers with low accuracy are able
to boost token perplexity. We conjecture that the
irregularities in the auto-annotated dialog attributes
induce a regularization effect while training deep
neural networks analogous to the dropout mecha-
nism. Also, annotating utterances with many types
of dialog attributes could increase the regulariza-
tion effect and potentially tip the utterance gen-
eration in the favor of certain low frequency but
interesting responses.

In this work, we are mainly interested in ex-
ploring the impact of the jointly modelling extra
discrete dialog attributes along with dialog history
for next utterance generation and their contribution
to addressing the generic response problem. Al-
though our approach is flexible enough to include
latent variables additionally, we mainly focus on
the contribution of dialog attributes to address the
”generic” response issue in this work.

2 Attribute Conditional HRED

In this paper, we extend the HRED (Serban et al.,
2016a) model (elaborated in the Appendix section)
by jointly modelling the utterances with the dialog
attributes of each utterance. HRED is a encoder-
decoder model consisting of a token-level RNN
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encoder and an utterance-level RNN encoder to
summarize the dialog context followed by a token-
level RNN decoder to generate the next utterance.
The joint probability can be factorized into dialog
attributes prediction, followed by next utterance
generation conditioned on the predicted dialog at-
tributes as shown in equation 1 .

P (Um,DA1:K|U1:m−1)

=
K∏

i=1

P (DAi|U1:m−1)∗P (Um|U1:m−1,DA1:K)

(1)

where DA1:K denote K different dialog attributes
corresponding to the utterance Um. Um is the mth

utterance, U1:m−1 are the past utterances. For in-
stance, if we condition on three dialog attributes
- sentiment, dialog-acts and emotion, we would
have K = 3. Further, we assume that the dialog
attributes are conditionally independent given the
dialog context. More simply, we predict the at-
tributes of the next utterance and then, condition
on the previous context & the predicted attributes
to generate the next utterance.

Figure 1: Dialog attribute classification: We predict the
dialog attribute of the next utterance based on the pre-
vious context and attributes corresponding to the previ-
ous utterances. Please note that we depict only a single
attribute for convenience

2.1 Dialog Attribute Prediction
We predict the dialog attribute of the next utterance
conditioned on the context vector i.e. summary of
the previous utterances and the dialog attributes of
the previous utterances. We first pass the attributes
of all the previous utterances through an RNN. We
combine only the last hidden state of this RNN
with the context vector (represents the summary
of all the previous utterances) to predict the dialog
attribute of the next utterance as shown in Figure 1.

If the dialog dataset is not annotated with the
dialog attributes, we build a classifier (with a manu-
ally tagged dataset) to annotate the dialog attributes.

Figure 2: Attribute Conditional HRED : Token genera-
tion is additionally conditioned on the predicted dialog
attributes. The dialog attribute’s embedding is concate-
nated with the context vector.

This classifier is a simple MLP. We empirically
show that this classifier need not have high accu-
racy to improve the dialog modeling. We hypothe-
size that few misclassified attributes could poten-
tially provide a regularization effect similar to the
dropout mechanism (Srivastava et al., 2014).

2.2 Conditional Response Generation
After the dialog attributes prediction, we generate
the next utterance conditioned on the dialog context
and the predicted attributes as shown in Figure 2.
Token generation of the next utterance is modelled
as in equation 2. The context and attributes are
combined by concatenating their corresponding
hidden states.

hdecm,n = fdec(hdecm,n−1 , wm,n−1, cm) (2)

where hdecm,n is the recurrent hidden state of the
decoder after seeing n− 1 words in the m-th utter-
ance, fdec is the token level response decoder, and

cm = [sm−1; da
1
m; da

2
m; ...; da

K
m] (3)

where sm−1 is the summary of previous m − 1
utterances (recurrent hidden state of the utterance-
level encoder), and da1m, da

2
m, ..., da

K
m are the K

dialog attribute embeddings corresponding to the
m-th utterance.

During inference, we first predict the dialog at-
tributes of the dialog context. We then predict the
dialog attribute of the next utterance conditioned
on the predicted attribute and the hierarchical ut-
terance representations. We combine the predicted
attribute’s embedding vector with the context rep-
resentation to generate the next utterance. Look-
ing from another perspective, we could formulate
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the conditional utterance generation problem as a
multi-task problem where we jointly learn to pre-
dict the dialog attributes and tokens of the next
utterance.

2.3 RL for Dialog Attribute Prediction

Often the MLE objective does not capture the true
goal of the conversation and lacks the framework
which can take developer-defined rewards into ac-
count for modelling such goals. Also, the MLE-
based seq2seq models fail to model long term in-
fluence of the utterances on the dialog flow causing
coherency issues. This calls for a Reinforcement
Learning (RL) based framework which has the abil-
ity to optimize policies for maximizing long term
rewards. At the core, the MLE objective tries to
increase the conditional utterance probabilities and
influences the model to place higher probabilities
over the commonly occurring utterances. On the
other hand, RL based methods circumvent this is-
sue by shifting the optimization problem to max-
imizing long term rewards which could promote
diversity, coherency, etc.

Previous approaches Li et al. (2016); Kottur et al.
(2017); Lewis et al. (2017) propose to model the
token prediction of the next utterance as a reinforce-
ment learning problem and optimize the models to
maximize hand-crafted rewards for improving di-
versity, coherency, and ease of answering. Their ap-
proaches involves pre-training the encoder-decoder
models with supervised training and then refining
the utterance generation further with RL using the
hand-engineered rewards. Their state space con-
sists of the dialog context representation (encoder
hidden states). Their action space at a given time
step includes all possible words that the decoder
can generate (which is very large).

While this approach is appealing, policy gradi-
ent methods are known to suffer from high vari-
ance when using large action spaces. This makes
training extremely unstable and requires significant
engineering efforts to train successfully.

Another potential drawback with directly acting
over the vocabulary space is that the RL optimiza-
tion procedure tends to strip away the linguistic
/ natural language aspects learned during the su-
pervised pre-training step, as observed in (Kottur
et al., 2017; Lewis et al., 2017). Since the primary
focus of the RL objective function is to improve
the final reward (which may not emphasize on the
linguistic aspects of the generated responses, for

e.g., diversity scores), the optimization algorithm
could lead the decoder into generating unnatural
responses. We propose to avoid both the issues
by reducing the action space to a higher level ab-
straction space i.e. the dialog attributes. Our action
space comprises the discrete dialog attributes and
the state space is the dialog context. Intuitively, this
enables the RL policy to view the dialog attributes
as control variables for improving dialog flow and
modelling long term influence. For instance, if the
input response was “how old are you?”, an RL pol-
icy optimized to maximize conversation length and
engagement could choose to set one of the next
utterance attributes as a question-type to generate
a response like “why do you ask?” instead of a
straightforward answer, to keep the conversation
engaging. Thus, we believe that this approach en-
ables the model to predict such rare but interesting
utterances to which the MLE objective fails to give
attention.

Our policy network comprises of the encoders
and the attribute prediction network. Given the pre-
vious utterances U1:m−1, the policy network first
encodes them by using the encoders. Then this
encoded representation is passed to the attribute
prediction network. The output of the attribute pre-
diction network is the action. While there are many
ways to design the reward function, we adopt the
ease-of-answering reward introduced by Li et al.
(2016) - negative log-likelihood of a set of manu-
ally constructed dull utterances (usually the most
commonly occurring phrases in the dataset) in re-
sponse to the next generated utterance. Let S be the
set of dull utterances. With the sampled dialog-acts,
DA1:K from the policy network, we generate the
next utterance Um using the decoder. Then we add
this generated utterance to the context and predict
the probability of seeing one of the dull utterances
in the m+ 1-th step. This is used to compute the
reward as follows:

R =
1

|S|
∑

s∈S

1

Ns
logP (s|U1:m), (4)

where Ns is the number of tokens in the dull ut-
terance s. The normalization avoids the reward
function attending to only the longer dull responses.
We use REINFORCE (Williams, 1992) to optimize
our policy, PRL(DA1:K|U1:m−1). The expected
reward is given by equation 5.

J(θ) = E[R(U1:m−1,DA1:K)] (5)
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The gradient is estimated as in equation 6.

∇J(θRL) = (R− b)∇logPRL(DA1:K|U1:m−1),
(6)

where b is the reward baseline (computed as the
running average of the rewards during training).
We initialize the policy with the supervised training
and add an L2-loss to penalize the network weights
from moving away from the supervised network
weights.

3 Training Setup

Datasets: We first start with the Reddit-discourse
dataset (Zhang et al., 2017) for training dialog at-
tribute classifiers and modelling utterance genera-
tion.
Reddit: The Reddit discourse dataset (Zhang et al.,
2017) is manually pre-annotated with dialog-acts
via crowd sourcing. The dialog-acts comprise
of answer, question, humor, agreement, disagree-
ment, appreciation, negative reaction, elaboration,
announcement. It comprises conversations from
around 9000 randomly sampled Reddit threads
with over 100000 comments and an average of 12
turns per thread.
Open-Subtitles: Additionally, we show results
with the unannotated Open-Subtitles dataset (Tiede-
mann, 2009) (we randomly sample up to 2 million
dialogs for training and validation). We tag the
dataset with dialog attributes using pre-trained clas-
sifiers.

We experiment with two types of dialog at-
tributes in this paper - sentiment and dialog-acts.
We annotate the utterances with sentiment tags -
positive, negative, neutral using the Stanford Core-
NLP tool (Manning et al., 2014). We adopt the
dialog-acts from two annotated dialog corpus -
Switchboard (Godfrey et al., 1992) and Frames
(Schulz et al., 2017).

Switchboard: Switchboard corpus(Godfrey et al.,
1992) is a collection of 1155 chit-chat style tele-
phonic conversations based on 70 topics. Jurafsky
et al. (1997) revised the original tags to 42 dialog-
acts. In our experiments, we restrict dialog-acts
to the top-10 most frequently annotated tags in
the corpus - Statement-non-opinion, Acknowledge ,
Statement-opinion, Agree/Accept, Abandoned or
Turn-Exit, Appreciation, Yes-No-Question, Non-
verbal, Yes answers, Conventional-closing. We
consider the top-10 frequently annotated tags as
a simple solution to avoid the class imbalance is-
sue (the Statement-non-opinion act is tagged 72824

times, while Thanking is tagged only 67 times) for
training the dialog attribute classifiers.

Frames: Frames(Schulz et al., 2017) is a task
oriented dialog corpus collected in the Wizard-of-
Oz fashion. It comprises of 1369 human-human
dialogues with an average of 15 turns per dialog.
The wizards had access to a database of hotels and
flights information and had to converse with users
to help finalize vacation plans. The dataset has 20
different types of dialog-acts annotations. Like the
Switchboard corpus, we adopt the top 10 frequently
occurring acts in the dataset for our experiments
- inform, offer, request, suggest, switch-frame, no
result, thank you, sorry, greeting, affirm.

Model Details: We use two-layer GRUs (Chung
et al., 2014) for both encoder and decoders with
hidden sizes of 512. We restrict the vocabulary for
both the datasets to top 25000 frequency occurring
tokens. The dialog attribute classifier for dialog at-
tributes is a simple 2-layer MLP with layer sizes of
256, and 10 respectively. We use the rectified linear
unit (ReLU) as the non-linear activation function
for the MLPs and use dropout rate of 0.3 for the to-
ken embeddings, hidden-hidden transition matrices
of the encoder and decoder GRUs.

Training Details: We ran our experiments
in Nvidia Tesla-K80 GPUs and optimized us-
ing the ADAM optimizer with the default hyper-
parameters used in (Merity et al., 2017, 2018). All
models are trained with batch size 128 and a learn-
ing rate 0.0001.

4 Experimental Results

In this section, we present the experimental results
along with qualitative analysis.

In Section 4.1, we discuss the dialog attribute
classification results for different model archi-
tectures trained on the Reddit, Switchboard and
Frames datasets.

In Section 4.2, we first demonstrate quantita-
tive improvements (token perplexity/embedding
based metrics) for the Attribute conditional HRED
model with the manually annotated Reddit dataset.
Further, we discuss the model perplexity improve-
ments along with sample conversations and human
evaluation results on the Open-Subtitles dataset.
We annotate it with sentiment and dialog-acts (from
Switchboard/Frames datasets) using pre-trained
classifiers described in Section 4.1.

Finally, in Section 4.3, we analyze the quality
of the generated responses after RL fine-tuning us-

5



ing diversity scores (distinct-1, distinct-2), sample
conversations and human evaluation results for di-
versity and relevance.

4.1 Dialog Attribute Prediction
In this section, we present the experiments with the
model architectures for the dialog attribute predic-
tion - dialog-acts from Reddit, Switchboard and
Frames datasets. First, we demonstrate the perfor-
mance of the dialog-acts classifiers on the Reddit
dataset as shown in Table 1.

Model Acc(%)
F(Ut) 57

F(DAt−1,t−2) 54
F(Ut,DAt−1,t−2) 68

Table 1: Dialog-acts prediction accuracy in Reddit val-
idation set.

The model F(Ut) refers to the architecture which
predicts the dialog-acts based on current utterance
Ut alone. The tokens in the current utterance
Ut are fed through a two-layer GRU and the fi-
nal hidden state is used to predict the dialog-acts.
The model F(DAt−1,t−2) predicts the current ut-
terance’s dialog-acts DAt based on the dialog-acts
corresponding to the previous two utterances. We
consider the dialog-acts prediction problem as a
sequence modelling problem where we feed the
dialog-acts into a single-layer GRU and predict
the current dialog-acts conditioned on the previ-
ous dialog-acts. We settled on conditioning on the
dialog-acts corresponding to the previous two utter-
ances alone as we didn’t observe any boost in the
classifier performance from the older dialog-acts.
As seen in Table 1, conditioning additionally on
the dialog attributes helps improve classifier perfor-
mance.

Next, we train classifiers to predict dialog-acts of
utterances of the Switchboard and Frames corpus.
In our experiments, the number of act types is 11
- the top 10 most frequently occurring acts in the
corpus and ”others” category covering the rest of
the tags.

As seen from Table 2, classifier performance is
not really high and yet, contribute to improvements
in perplexity for the conditional Seq2Seq models
(discussed in Section 4.2). While we aim for better
classifier performance, it is important to note here
that the primary objective of such dialog attribute
classifiers is to tag unannotated open-domain dia-

Corpus Num Acts Acc(%)
Reddit 9 68.1

Switchboard 11 67.9
Frames 11 71.1

Table 2: Dialog-acts prediction accuracy for classifiers
trained on validation set of different datasets.

log datasets. As future work, we will study how the
classification errors influence response generation.

4.2 Utterance Evaluation

Following (Serban et al., 2016a), we use token
perplexity and embedding based metrics (average,
greedy and extrema) (Mitchell and Lapata, 2008;
Rus and Lintean, 2012) for utterance evaluation.

Metric LM Seq2Seq Seq2Seq+Attr
Perplexity 176 170 163
Greedy - 0.47 0.54
Extrema - 0.37 0.47
Average - 0.67 0.62

Table 3: Perplexity and Embedding Metrics for the
Reddit validation set.

Reddit: First, we evaluate Seq2Seq models
trained on the manually annotated Reddit corpus
as shown in Table 3. Seq2Seq+Attr refers to our
model where we condition on the dialog-acts addi-
tionally. Please note that we use the notation ”Attr”
here to maintain generality as it may refer to other
dialog attributes like sentiment later in this sec-
tion. For both the baseline and conditional Seq2Seq
models, we consider a dialog context involving the
previous two turns as we did not observe signifi-
cant performance improvement with three or more
turns. We use a 2-layer GRU language model as
a baseline for comparison. As seen from Table
3, Seq2Seq+Attr fares well both in terms of per-
plexity and embedding metrics. Higher perplexity
observed in the Reddit corpus could be due to the
presence of several topics in the dataset (exhibits
high entropy) and fewer dialogs compared to other
open domain dialog datasets.

Open-Subtitles: With promising results on the
manually tagged Reddit corpus, we now evaluate
our attribute conditional HRED model on the unan-
notated Open-Subtitles dataset. We tag the Open-
Subtitles dataset with the sentiment tags using the
Stanford Core-NLP tool (Manning et al., 2014) and
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Num Dialogs(in Millions)
Model Attributes 0.2 M 0.5 M 1 M 2 M
Seq2seq - 101.63 80.05 74.78 67.28
Seq2seq Sentiment 98.61 79.15 72.23 66.11
Seq2seq Switchboard 97.03 77.81 71.51 64.21
Seq2seq Frames 96.61 77.41 72.01 65.33
Seq2seq Sentiment, Switchboard 96.67 78.01 72.17 66.01
Seq2seq Sentiment, Frames 96.32 77.61 72.15 66.13
Seq2seq Switchboard, Frames 94.80 77.40 71.18 65.01

Table 4: Validation Perplexity for the Open-Subtitles
dataset.

dialog-acts from Frames & Switchboard corpus us-
ing the pre-trained classifiers described in Section
4.1.

In Table 4, we compare the model perplexity
when trained on varying dialog corpus size. In
most of the cases, we observe that the conditioning
with acts from both the frames and switchboard
yields the lowest perplexity. We observe that the
perplexity improvement is substantial for smaller
datasets which is also corroborated from the exper-
iments with the Reddit dataset.

Human Evaluation: Following the human eval-
uation setting in (Li et al., 2016), we randomly
sample 200 input message and the generated out-
puts from the Seq2Seq+Attr & Seq2Seq models.
We present each of them to 3 judges and ask them
to decide which of the two outputs is 1) relevant
and 2) diverse or interesting. Ties are permitted.
Results for human evaluation are shown in Table
8. We observe that Seq2Seq+Attr performs better
than the Seq2Seq model both in terms of diversity
and relevance.

Seq2Seq+Attr vs Seq2Seq
Metric Wins(%) Losses(%) Ties(%)
Diversity 42 24.16 33.84
Relevance 40.16 36.83 23.01

Table 5: Human Evaluation results: Seq2Seq+Attr vs
Seq2Seq

Please note that the Seq2Seq+Attr model per-
forms better in terms of diversity compared to the
relevancy. This is in line with our expectations, as
the purpose of dialog attribute annotations is to help
the model focus better on less-frequent responses.

Additionally, we present a few sample conver-
sations in Table 6, where we observe that the
Seq2Seq+Attr model generates more interesting
responses.

Input: i wish i was home watching tv.
Seq2Seq: i dont know what i was thinking

about
Seq2Seq+Attr: i cant wait to see it.

Input: He used from his charity to settle
legal problems.

Seq2Seq: i have no idea what youre talking
about

Seq2Seq+Attr: i dont think he is going to be a presi-
dent.

Input: tell us how you really feel
Seq2Seq: i dont understand why

Seq2Seq+Attr: lmao i could hella picture your
reaction

Table 6: Sample conversations

4.3 RL For Dialog Attribute Prediction

For the RL fine-tuning, we report the diversity
scores of the generated responses with the mod-
els trained on the Open-Subtitles dataset in Table 7.
The diversity scores, distinct-1 and distinct-2 are
computed as the fraction of uni-grams and bi-grams
in the generated responses following the previous
work by Li et al. (2015).

Model distinct-1 distinct-2

Seq2Seq 0.004 0.013
Seq2Seq+Attr 0.005 0.018

RL 0.011 0.033

Table 7: Diversity scores on the Open-Subtitles valida-
tion set after RL fine-tuning .

We use the model conditioned on acts from both
Switchboard and Frames for the Seq2Seq+Attr and
RL cases. The action space for the policy in this
case, covers the 10 acts from Switchboard and
Frames each. We choose a collection of commonly
occurring phrases in the Open-Subtitles dataset as
the set of dull responses, S for the reward com-
putation in equation 4. We observe that the RL
fine-tuning improves over the conditional seq2seq
in terms of the diversity scores.

Human Evaluation: As described in Section
4.2, we present each of the 200 randomly sam-
pled input-response pairs of the Seq2Seq +Attr
and RL models to 3 judges and ask to them rate
each sample for diversity and relevance. From Ta-
ble 8, we can see that the RL model significantly
performs better both in terms of diversity and rele-
vance.

Qualitative Analysis: In Table 9, we present
the percentage of the commonly occurring generic
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RL vs Seq2Seq+Attr
Metric Wins(%) Losses(%) Ties(%)
Diversity 54.66 28.50 16.84
Relevance 43.33 26.62 30.05

Table 8: Human Evaluation results:RL vs
Seq2Seq+Attr

responses from the Open-Subtitles dataset in the
validation set samples corresponding to theRL and
Seq2Seq+Attr models. We observe very low per-
centages of such generic responses in the samples
after RL fine-tuning. It is interesting to note that
RL model has successfully learned to minimize the
generation of other dull responses like I would love
to be , I would love to see, I dont want to apart
from expected the dull responses, S (used in the
reward computation). At the same time, RL model
has scored higher in terms of the Relevancy met-
ric, as seen in Table 8 which indicates that the RL
fine-tuning actually explores interesting responses
whilst avoiding the generic responses.

Generic Responses RL(%) Seq2Seq + Attr(%)
thank you so much 7.56 7.32
i dont understand why 0.0 15.64
i would love to see 0.66 5.65
i dont know how 0.0 13.97
i dont want to 1.66 3.99
i dont know why 0.0 3.66
i would love to be 0.99 2.21
i have no idea 4.31 3.33

Table 9: Percentage of generic responses after RL fine-
tuning.

Additionally, we present a few sample conver-
sations in Table 10, where we observe that the
RL model generates more diverse and relevant re-
sponses.

5 Related Work

There are several works focusing on dialog-acts
classification and clustering based analysis (Rei-
thinger and Klesen, 1997; Liu, 2006; Khanpour
et al., 2016; Ang et al., 2005; Crook et al., 2009;
Stolcke et al., 2000; Ezen-Can and Boyer, 2013).
Shen et al. (2017) additionally add sentiment fea-
ture to the latent variables in the VAE setting for
utterance generation. In our work, we use dialog
attributes from different sources - Switchboard and
Frames corpus to model utterance generation in
a more realistic setting. As for the RL setting,
existing research efforts include (Li et al., 2016;

Input: i’m honestly a bit confused why no
one has brought me or my books any
cake

Seq2Seq+Attr: i dont think i dont think anything
RL: i cant wait to see you in the city.

Input: ive been playing spaceship with my
year old niece for the past few days

Seq2Seq+Attr: i dont even know what i was talking
about.

RL: this is the best thing ive ever seen.
Input: it makes me so happy that you like

them
Seq2Seq+Attr: i dont know what i was thinking

about it
RL: i was just thinking about the same

thing

Table 10: Sample conversations

Dhingra et al., 2016; Jaques et al., 2016) which
formulate the token prediction as a RL policy in
Seq2Seq models. However, searching over a huge
vocabulary space typically involves training with
huge number of samples and careful fine-tuning of
the policy optimization algorithms. Additionally,
as discussed in Section 2.3, it requires precaution-
ary measures to prevent the RL algorithm from
removing the linguistic aspects of the generated
utterances. In another related research work, Ser-
ban et al. (2017) use dialog-acts as one among their
hand crafted features to select responses from an
ensemble of dialog systems. They use dialog-acts
in their RL policy, however their action space com-
prises of responses from an ensemble of dialog
models. They include dialog-acts in their features
for their distributed state representation.

6 Conclusion

In this work, we address the dialog utterance gener-
ation problem by jointly modeling previous dialog
context and discrete dialog attributes. We analyze
both quantitatively (model perplexity and other em-
bedding based metrics) and qualitatively (human
evaluation, sample conversations) to validate that
composed dialog attributes help generate interest-
ing responses. Further, we formulate the dialog at-
tribute prediction problem as a reinforcement learn-
ing problem. We fine tune the attribute selection
policy network trained with supervised learning us-
ing REINFORCE and demonstrate improvements
in diversity scores compared to the Seq2Seq model.
In the future, we plan to extend the model for ad-
ditional dialog attributes like emotion, speaker per-
sona etc. and evaluate the controllability aspect of
the responses based on the dialog attributes.
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Abstract

Learning suitable and well-performing dia-
logue behaviour in statistical spoken dialogue
systems has been in the focus of research for
many years. While most work which is based
on reinforcement learning employs an objec-
tive measure like task success for modelling
the reward signal, we use a reward based on
user satisfaction estimation. We propose a
novel estimator and show that it outperforms
all previous estimators while learning tempo-
ral dependencies implicitly. Furthermore, we
apply this novel user satisfaction estimation
model live in simulated experiments where the
satisfaction estimation model is trained on one
domain and applied in many other domains
which cover a similar task. We show that ap-
plying this model results in higher estimated
satisfaction, similar task success rates and a
higher robustness to noise.

1 Introduction

One prominent way of modelling the decision-
making component of a spoken dialogue system
(SDS) is to use (partially observable) Markov
decision processes ((PO)MDPs) (Lemon and
Pietquin, 2012; Young et al., 2013). There, rein-
forcement learning (RL) (Sutton and Barto, 1998)
is applied to find the optimal system behaviour
represented by the policy π. Task-oriented dia-
logue systems model the reward r, used to guide
the learning process, traditionally with task suc-
cess as the principal reward component (Gašić
and Young, 2014; Lemon and Pietquin, 2007;
Daubigney et al., 2012; Levin and Pieraccini,
1997; Young et al., 2013; Su et al., 2015, 2016).

An alternative approach proposes user satisfac-
tion as the main reward component (Ultes et al.,
2017a). However, the applied statistical user sat-
isfaction estimator heavily relies on handcrafted
temporal features. Furthermore, the impact of the

estimation performance on the resulting dialogue
policy remains unclear.

In this work, we propose a novel LSTM-based
user satisfaction reward estimator that is able to
learn the temporal dependencies implicitly and
compare the performance of the resulting dialogue
policy with the initially used estimator.

Optimising the dialogue behaviour to increase
user satisfaction instead of task success has multi-
ple advantages:

1. The user satisfaction is more domain-
independent as it can be linked to interac-
tion phenomena independent of the underly-
ing task (Ultes et al., 2017a).

2. User satisfaction is favourable over task suc-
cess as it represents more accurately the
user’s view and thus whether the user is
likely to use the system again in the future.
Task success has only been used as it has
shown to correlate well with user satisfac-
tion (Williams and Young, 2004).

Based on previous work by Ultes et al. (2017a),
the interaction quality (IQ)—a less subjective ver-
sion of user satisfaction1—will be used for esti-
mating the reward. The estimation model is thus
based on domain-independent, interaction-related
features which do not have any information avail-
able about the goal of the dialogue. This allows
the reward estimator to be applicable for learning
in unseen domains.

The originally applied IQ estimator heavily re-
lies on handcrafted temporal features. In this
work, we will present a deep learning-based IQ
estimator that utilises the capabilities of recurrent
neural networks to get rid of all handcrafted fea-

1The relation of US and IQ has been closely investigated
in (Schmitt and Ultes, 2015; Ultes et al., 2013).
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tures that encode temporal effects. By that, these
temporal dependencies may be learned instead.

The applied RL framework is shown in Fig-
ure 1. Within this setup, both IQ estimators are
used for learning dialogue policies in several do-
mains to analyse their impact on general dialogue
performance metrics.

The remainder of the paper is organised as fol-
lows: in Section 2, related work is presented fo-
cusing on dialogue learning and the type of re-
ward that is applied. In Section 3, the interaction
quality is presented and how it is used in the re-
ward model. The deep learning-based interaction
quality estimator proposed in this work is then de-
scribed in detail in Section 4 followed by the ex-
periments and results both of the estimator itself
and the resulting dialogue policies in Section 5.

2 Relevant Related Work

Most of previous work on dialogue policy learning
focuses on employing task success as the main re-
ward signal (Gašić and Young, 2014; Gašić et al.,
2014; Lemon and Pietquin, 2007; Daubigney
et al., 2012; Levin and Pieraccini, 1997; Young
et al., 2013; Su et al., 2015, 2016). However,
task success is usually only computable for pre-
defined tasks e.g., through interactions with simu-
lated or recruited users, where the underlying goal
is known in advance. To overcome this, the re-
quired information can be requested directly from
users at the end of each dialogue (Gašić et al.,
2013). However, this can be intrusive, and users
may not always cooperate.

An alternative is to use a task success estima-
tor (El Asri et al., 2014b; Su et al., 2015, 2016).
With the right choice of features, these can also
be applied to new and unseen domains (Vandyke
et al., 2015). However, these models still at-
tempt to estimate completion of the underlying
task, whereas our model evaluates the overall user
experience.

In this paper, we show that an interaction quality
reward estimator trained on dialogues from a bus
information system will result in well-performing
dialogues both in terms of success rate and user
satisfaction on five other domains, while only us-
ing interaction-related, domain-independent infor-
mation, i.e., not knowing anything about the task
of the domain.

Others have previously introduced user sat-
isfaction into the reward (Walker et al., 1998;

Walker, 2000; Rieser and Lemon, 2008b,a) by
using the PARADISE framework (Walker et al.,
1997). However, PARADISE relies on the exis-
tence of explicit task success information which is
usually hard to obtain.

Furthermore, to derive user ratings within that
framework, users have to answer a questionnaire
which is usually not feasible in real world settings.
To overcome this, PARADISE has been used in
conjunction with expert judges instead (El Asri
et al., 2012, 2013) to enable unintrusive acquisi-
tion of dialogues. However, the problem of map-
ping the results of the questionnaire to a scalar re-
ward value still exists.

Therefore, we use interaction quality (Sec-
tion 3) in this work because it uses scalar values
applied by experts and only uses task-independent
features that are easy to derive.

3 Interaction Quality Reward Estimation

In this work, the reward estimator is based on
the interaction quality (IQ) (Schmitt and Ultes,
2015) for learning information-seeking dialogue
policies. IQ represents a less subjective variant of
user satisfaction: instead of being acquired from
users directly, experts annotate pre-recorded di-
alogues to avoid the large variance that is often
encountered when users rate their dialogues di-
rectly (Schmitt and Ultes, 2015).

IQ is defined on a five-point scale from five (sat-
isfied) down to one (extremely unsatisfied). To de-
rive a reward from this value, the equation

RIQ = T · (−1) + (iq − 1) · 5 (1)

is used where RIQ describes the final reward. It is
applied to the final turn of the dialogue of length
T with a final IQ value of iq. A per-turn penalty
of −1 is added to the dialogue outcome. This re-
sults in a reward range of 19 down to −T which
is consistent with related work (Gašić and Young,
2014; Vandyke et al., 2015; Su et al., 2016, e.g.) in
which binary task success (TS) was used to define
the reward as:

RTS = T · (−1) + 1TS · 20 , (2)

where 1TS = 1 only if the dialogue was success-
ful, 1TS = 0 otherwise. RTS will be used as a
baseline.

The problem of estimating IQ has been cast as
a classification problem where the target classes

12



Policy

Belief	
Tracking

Interaction	Quality	
Reward	Estimation

Semantic	
Decoding

Speech	
Recognition

Speech	
Synthesis

Language	
Generation Environment at

st

rt

Figure 1: The RL framework integrating an interaction quality reward estimator as proposed by Ultes et al. (2017a).
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Figure 2: Modelling of temporal information in the in-
teraction parameters used as input to the IQ estimator.

are the distinct IQ values. The input consists
of domain-independent variables called interac-
tion parameters. These parameters incorporate in-
formation from the automatic speech recognition
(ASR) output and the preceding system action.
Most previous approaches used this information,
which is available at every turn, to compute tem-
poral features by taking sums, means or counts
from the turn-based information for a window of
the last 3 system-user-exchanges2 and the com-
plete dialogue (see Fig. 2). The baseline IQ esti-
mation approach as applied by Ultes et al. (2017a)
(and originating from Ultes et al. (2015)) used a
feature set of 16 parameters as shown in Table 1
with a support vector machine (SVM) (Vapnik,
1995; Chang and Lin, 2011).

The LEGO corpus (Schmitt et al., 2012) pro-
vides data for training and testing and consists of
200 dialogues (4,885 turns) from the Let’s Go bus
information system (Raux et al., 2006). There,
users with real needs were able to call the system
to get information about the bus schedule. Each
turn of these 200 dialogues has been annotated
with IQ (representing the quality of the dialogue
up to the current turn) by three experts. The final
IQ label has been assigned using the median of the
three individual labels.

Previous work has used the LEGO corpus with

2a system turn followed by a user turn

Table 1: The parameters used for IQ estimation ex-
tracted on the exchange level from each user input
plus counts, sums and rates for the whole dialogue
(#,%,Mean) and for a window of the last 3 turns ({·}).

Parameter Description

E
xc

ha
ng

e
le

ve
l

ASRRecognitionStatus ASR status: success, no
match, no input

ASRConfidence confidence of top ASR results
RePrompt? is the system question the

same as in the previous turn?
ActivityType general type of system action:

statement, question
Confirmation? is system action confirm?

D
ia

lo
gu

e
le

ve
l MeanASRConfidence mean ASR confidence if ASR

is success
#Exchanges number of exchanges (turns)

#ASRSuccess count of ASR status is success
%ASRSuccess rate of ASR status is success

#ASRRejections count of ASR status is reject
%ASRRejections rate of ASR status is reject

W
in

do
w

le
ve

l

{Mean}ASRConfidence mean ASR confidence if ASR
is success

{#}ASRSuccess count of ASR is success
{#}ASRRejections count of ASR status is reject
{#}RePrompts count of times RePromt? is

true
{#}SystemQuestions count of ActivityType is ques-

tion

a full IQ feature set (which includes additional
partly domain-related information) achieving an
unweighted average recall3 (UAR) of 0.55 using
ordinal regression (El Asri et al., 2014a), 0.53 us-
ing a two-level SVM approach (Ultes and Minker,
2013), and 0.51 using a hybrid-HMM (Ultes and
Minker, 2014). Human performance on the same
task is 0.69 UAR (Schmitt and Ultes, 2015). A
deep learning approach using only non-temporal
features achieved an UAR of 0.55 (Rach et al.,
2017).

3UAR is the arithmetic average of all class-wise recalls.
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Figure 3: The architecture of the proposed BiLSTM
model with self attention. For each time t, the exchange
level parameter of all exchanges ei of the sub-dialogue
i ∈ {1 . . . t} are encoded to their respective hidden rep-
resentation hi and are considered and weighted with
the self attention mechanism to finally estimate the IQ
value yt at time t.

4 LSTM-based Interaction Quality
Estimation

The proposed IQ estimation model will be used as
a reward estimator as depicted in Figure 1. With
parameters that are collected from the dialogue
system modules for each time step t, the reward
estimator derives the reward rt that is used for
learning the dialogue policy π.

The architecture of our proposed IQ estimation
model is shown in Figure 3. It is based on the idea
that the temporal information that has previously
been explicitly encoded with the window and dia-
logue interaction parameter levels may be learned
instead by using recurrent neural networks. Thus,
only the exchange level parameters et are con-
sidered (see Table 1). Long Short-Term Mem-
ory (LSTM) cells are at the core of the model
and have originally been proposed by Hochreiter

and Schmidhuber (1997) as a recurrent variant that
remedies the vanishing gradient problem (Bengio
et al., 1994).

As shown in Figue 3, the exchange level param-
eters form the input vector et for each time step
or turn t to a bi-directional LSTM (Graves et al.,
2013) layer. The input vector et encodes the nom-
inal parameters ASRRecognitionStatus, Activity-
Type, and Confirmation? as 1-hot representations.
In the BiLSTM layer, two hidden states are com-
puted: ~ht constitutes the forward pass through the
current sub-dialogue and ~ht the backwards pass:

~ht = LSTM(et, ~ht−1) (3)
~ht = LSTM(et, ~ht+1) (4)

The final hidden layer is then computed by con-
catenating both hidden states:

ht = [~ht, ~ht] . (5)

Even though information from all time steps
may contribute to the final IQ value, not all time
steps may be equally important. Thus, an atten-
tion mechanism (Vaswani et al., 2017) is used that
evaluates the importance of each time step t′ for
estimating the IQ value at time t by calculating a
weight vector αt,t′ .

gt,t′ = tanh(hT
t Wt + hT

t′Wt′ + bt) (6)

αt,t′ = softmax(σ(Wagt,t′ + ba)) (7)

lt =
∑

t′
αt,t′ht′ (8)

Zheng et al. (2018) describe this as follows: “The
attention-focused hidden state representation lt
of an [exchange] at time step t is given by the
weighted summation of the hidden state represen-
tation ht′ of all [exchanges] at time steps t′, and
their similarity αt,t′ to the hidden state represen-
tation ht of the current [exchange]. Essentially, lt
dictates how much to attend to an [exchange] at
any time step conditioned on their neighbourhood
context.”

To calculate the final estimate yt of the current
IQ value at time t, a softmax layer is introduced:

yt = softmax(lt) (9)

For estimating the interaction quality using a
BiLSTM, the proposed architecture frames the
task as a classification problem where each se-
quence is labelled with one IQ value. Thus, for
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Table 2: Performance of the proposed LSTM-based
variants with the traditional cross-validation setup. Due
to overlapping sub-dialogues in the train and test sets,
the performance of the LSTM-based models achieve
unrealistically high performance.

UAR κ ρ eA Ep.

LSTM 0.78 0.85 0.91 0.99 101
BiLSTM 0.78 0.85 0.92 0.99 100
LSTM+att 0.74 0.82 0.91 0.99 101
BiLSTM+att 0.75 0.83 0.91 0.99 93

Rach et al. (2017) 0.55 0.68 0.83 0.94 -
Ultes et al. (2015) 0.55 - - 0.89 -

each time step t, the IQ value needs to be estimated
for the corresponding sub-dialogue consisting of
all exchanges from the beginning up to t. Fram-
ing the problem like this is necessary to allow for
the application of a BiLSTM-approach and still be
able to only use information that would be present
at the current time step t in an ongoing dialogue
interaction.

To analyse the influence of the BiLSTM, a
model with a single forward-LSTM layer is also
investigated where

ht = ~ht . (10)

Similarly, a model without attention is also
analysed where

lt = ht . (11)

5 Experiments and Results

The proposed BiLSTM IQ estimator is both
trained and evaluated on the LEGO corpus and ap-
plied within the IQ reward estimation framework
(Fig. 1) on several domains within a simulated en-
vironment.

5.1 Interaction Quality Estimation
To evaluate the proposed BiLSTM model with at-
tention (BiLSTM+att), it is compared with three
of its own variants: a BiLSTM without attention
(BiLSTM) as well as a single forward-LSTM layer
with attention (LSTM+att) and without attention
(LSTM). Additional baselines are defined by Rach
et al. (2017) who already proposed an LSTM-
based architecture that only uses non-temporal
features, and the SVM-based estimation model
as originally used for reward estimation by Ultes
et al. (2015).

The deep neural net models have been imple-
mented with Keras (Chollet et al., 2015) using

Table 3: Performance of the proposed LSTM-based
variants with the dialogue-wise cross-validation setup.
The models by Rach et al. (2017) and Ultes et al. (2015)
have been re-implemented. The BiLSTM with atten-
tion mechanism performs best in all evaluation metrics.

UAR κ ρ eA Ep.

LSTM 0.51 0.63 0.78 0.93 8
BiLSTM 0.53 0.63 0.78 0.93 8
LSTM+att 0.52 0.63 0.79 0.92 40
BiLSTM+att 0.54 0.65 0.81 0.94 40

Rach et al. (2017) 0.45 0.58 0.79 0.88 82
Ultes et al. (2015) 0.44 0.53 0.69 0.86 -

the self-attention implementation as provided by
Zheng et al. (2018)4. All models were trained
against cross-entropy loss using RmsProp (Tiele-
man and Hinton, 2012) optimisation with a learn-
ing rate of 0.001 and a mini-batch size of 16.

As evaluation measures, the unweighted aver-
age recall (UAR)—the arithmetic average of all
class-wise recalls—, a linearly weighted version
of Cohen’s κ, and Spearman’s ρ are used. As
missing the correct estimated IQ value by only one
has little impact for modelling the reward, a mea-
sure we call the extended accuracy (eA) is used
where neighbouring values are taken into account
as well.

All experiments were conducted with the
LEGO corpus (Schmitt et al., 2012) in a 10-fold
cross-validation setup for a total of 100 epochs per
fold. The results are presented in Table 2. Due to
the way the task is framed (one label for each sub-
dialogue), memorising effects may be observed
with the traditional cross-validation setup that has
been used in previous work. Hence, the results
in Table 2 show very high performance, which is
likely to further increase with ongoing training.
However, the corresponding models are likely to
generalise poorly.

To alleviate this, a dialogue-wise cross-
validation setup has been employed also consist-
ing of 10 folds of disjoint sets of dialogues. By
that, it can be guaranteed that there are no over-
lapping sub-dialogues in the training and test sets.
All results of these experiments are presented in
Table 3 with the absolute improvement of the two
main measures UAR and eA over the SVM-based
approach of Ultes et al. (2015) visualised in Fig-
ure 4.

4Code freely available at https://github.com/
CyberZHG/keras-self-attention
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Figure 4: Absolute improvement of the IQ estimation
models over the originally employed model by (Ultes
et al., 2017a) for IQ-based reward estimation with the
dialogue-wise cross-validation setup. UAR and eA
take values from 0 to 1

The proposed BiLSTM+att model outperforms
existing models and the baselines in all four per-
formance measures by achieving an UAR of 0.54
and an eA of 0.94 after 40 epochs. Furthermore,
both the BiLSTM and the attention mechanism
by themselves improve the performance in terms
of UAR. Based on this findings, the BiLSTM+att
model is selected as reward estimator for the ex-
periments in the dialogue policy learning setup as
shown in Figure 1.

5.2 Dialogue Policy Learning

To analyse the impact of the IQ reward estima-
tor on the resulting dialogue policy, experiments
are conducted comparing three different reward
models. The two baselines are in accordance to
Ultes et al. (2017a): having the objective task suc-
cess as principal reward component (RTS) and
having the interaction quality estimated by a sup-
port vector machine as principal reward compo-
nent (Rs

IQ). TS can be computed by comparing
the outcome of each dialogue with the pre-defined
goal. Of course, this is only possible in simulation
and when evaluating with paid subjects. This goal
information is not available to the IQ estimators,
nor is it required. Both baselines are compared to
our proposed BiLST model to estimate the inter-
action quality used as principal reward component
(Rbi

IQ).
For learning the dialogue behaviour, a policy

model based on the GP-SARSA algorithm (Gašić
and Young, 2014) is used. This is a value-based
method that uses a Gaussian process to approx-
imate the state-value function. As it takes into
account the uncertainty of the approximation, it

Table 4: Statistics of the domains the IQ reward esti-
mator is trained on (LetsGo) and applied to (rest).

Domain Code # constraints # DB items

LetsGo 4 -

CamRestaurants CR 3 110
CamHotels CH 5 33

SFRestaurants SR 6 271
SFHotels SH 6 182

Laptops L 6 126

is very sample efficient and may even be used to
learn a policy directly through real human interac-
tion (Gašić et al., 2013).

The decisions of the policy are based on a sum-
mary space representation of the dialogue state
tracker. In this work, the focus tracker (Henderson
et al., 2014)—an effective rule-based tracker—
is used. For each dialogue decision, the policy
chooses exactly one summary action out of a set
of summary actions which are based on general
dialogue acts like request, confirm or inform. The
exact number of system actions varies for the do-
mains and ranges from 16 to 25.

To measure the dialogue performance, the task
success rate (TSR) and the average interaction
quality (AIQ) are measured: the TSR represents
the ratio of dialogues for which the system was
able to provide the correct result. AIQ is calcu-
lated based on the estimated IQ values of the re-
spective model (AIQbi for the BiLSTM andAIQs

for the SVM) at the end of each dialogue. As there
are two IQ estimators, a distinction is made be-
tween AIQs and AIQbi. Additionally, the aver-
age dialogue length (ADL) is reported.

For the simulation experiments, the perfor-
mance of the trained polices on five different
domains was evaluated: Cambridge Hotels and
Restaurants, San Francisco Hotels and Restau-
rants, and Laptops. The complexity of each do-
main is shown in Table 4 and compared to the
LetsGo domain (the domain the estimators have
been trained on).

The dialogues were created using the pub-
licly available spoken dialogue system toolkit Py-
Dial (Ultes et al., 2017b)5 which contains an im-
plementation of the agenda-based user simula-
tor (Schatzmann and Young, 2009) with an addi-
tional error model. The error model simulates the
required semantic error rate (SER) caused in the
real system by the noisy speech channel. For each

5Code freely available at http://www.pydial.org
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Figure 5: Results of the simulated experiments for all domains showing task success rate (TSR) only. Each value
is computed after 100 evaluation / 1,000 training dialogues averaged over three trials. Numerical results with
significance indicators are shown in Table 5.

domain, all three reward models are compared on
three SERs: 0%, 15%, and 30%. More specif-
ically, the applied evaluation environments are
based on Env. 1, Env. 3, and Env. 6, respectively,
as defined by Casanueva et al. (2017). Hence, for
each domain and for each SER, policies have been
trained using 1,000 dialogues followed by an eval-
uation step of 100 dialogues. The task success
rates in Figure 5 with exact numbers shown in Ta-
ble 5 were computed based on the evaluation step
averaged over three train/evaluation cycles with
different random seeds.

As already known from the experiments con-
ducted by Ultes et al. (2017a), the results of the
SVM IQ reward estimator show similar results in
terms of TSR for Rs

IQ and RTS in all domains for
an SER of 0%. This finding is even stronger when
comparing Rbi

IQ and RTS . These high TSRs are
achieved while having the dialogues of both IQ-
based models result in higher AIQ values com-
pared to RTS throughout the experiments. Of
course, only the IQ-based model is aware of the
IQ concept and indeed is trained to optimise it.

For higher SERs, the TSRs lightly degrade for
the IQ-based reward estimators. However, there
seems to be a tendency that the TSR for Rbi

IQ is
more robust against noise compared to Rs

IQ while
still resulting in better AIQ values.

Finally, even though the differences are mostly
not significant, there is also a tendency for Rbi

IQ to
result in shorter dialogues compared to both Rs

IQ

and RTS .

6 Discussion

One of the major questions of this work addresses
the impact of an IQ reward estimator on the result-
ing dialogues where the IQ estimator achieves bet-
ter performance than previous ones. Analysing the
results of the dialogue policy learning experiment
leads to the conclusion that the policy learned with
Rbi

IQ performs similar or better than Rs
IQ through

out all experiments while still achieving better av-
erage user satisfaction compared to RTS . Espe-
cially for noisy environments, the improvement is
relevant.

The BiLSTM clearly performs better on the
LEGO corpus while learning the temporal depen-
dencies instead of using handcrafted ones. How-
ever, it entails the risk that these learned tempo-
ral dependencies are too specific to the original
data so that the model does not generalise well
anymore. This would mean that it would be less
suitable to be applied to dialogue policy learning
for different domains. Luckily, the experiments
clearly show that this is not the case.

Obviously, the experiments have only been con-
ducted in a simulated environment and not verified
in a user study with real humans. However, the
general framework of applying an IQ reward es-
timator for learning a dialogue policy has already
been successfully validated with real user experi-
ments by Ultes et al. (2017a) and it seems rather
unlikely that the changes we induce by changing
the reward estimator lead to a fundamentally dif-
ferent result.
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Table 5: Results of the simulated experiments for all domains showing task success rate (TSR), average interaction
quality estimated with the SVM (AIQs) and the BiLSTM (AIQbi, and average dialogue length (ADL) in number
of turns. Each value is computed after 100 evaluation / 1,000 training dialogues averaged over three trials with
different random seeds. 1,2,3 marks statistically significant difference compared to RTS , to Rs

IQ, and to AIQbi,
respectively (p < 0.05, T-test for TSR and ADL, Mann-Whitney-U test for AIQ).

Domain SER TSR AIQs AIQbi ADL

RTS Rs
IQ Rbi

IQ RTS Rs
IQ RTS Rbi

IQ RTS Rs
IQ Rbi

IQ

CR
0% 1.002,3 0.991 0.991 3.642 3.901 3.683 3.831 4.68 4.88 4.59

15% 0.97 0.94 0.96 3.352 3.651 3.453 3.631 5.853 5.33 5.101

30% 0.94 0.92 0.90 3.152 3.341 3.22 3.30 6.34 6.30 6.25

CH
0% 0.98 0.99 0.99 3.262 3.621 3.33 3.44 5.71 5.61 5.40

15% 0.962 0.891,3 0.932 2.90 2.88 3.14 3.14 6.282 7.261,3 6.312

30% 0.86 0.88 0.87 2.382 2.791 2.793 3.021 7.943 7.31 6.991

SR
0% 0.98 0.97 0.98 3.042 3.531 3.133 3.371 6.26 6.03 5.80

15% 0.903 0.88 0.841 2.402 3.001 2.853 3.011 7.99 7.55 7.33
30% 0.71 0.77 0.78 2.032 2.521 2.463 2.781 9.773 9.41 8.501

SH
0% 0.97 0.99 0.98 3.152 3.521 3.173 3.361 5.992 5.501 5.76

15% 0.88 0.88 0.89 2.632 2.941 2.773 3.171 7.983 7.593 6.631,2

30% 0.832 0.761 0.80 2.50 2.63 2.703 2.871 8.38 9.21 8.37

L
0% 0.98 0.99 0.99 3.262 3.611 3.28 3.41 5.78 5.44 5.60

15% 0.89 0.88 0.92 2.582 2.971 2.923 3.171 7.19 7.34 6.73
30% 0.80 0.74 0.77 2.43 2.57 2.79 2.92 8.222 9.321,3 7.972

All
0% 0.98 0.98 0.98 3.232 3.651 3.31 3.48 5.76 5.50 5.47

15% 0.92 0.89 0.91 2.762 3.101 3.0220 3.201 7.13 7.06 6.52
30% 0.83 0.81 0.82 2.49 2.80 2.78 2.97 8.202 8.231,3 7.662

7 Conclusion

In this work we proposed a novel model for inter-
action quality estimation based on BiLSTMs with
attention mechanism that clearly outperformed the
baseline while learning all temporal dependencies
implicitly. Furthermore, we analysed the impact
of the performance increase on learned polices that
use this interaction quality estimator as the princi-
pal reward component. The dialogues of the pro-
posed interaction quality estimator show a slightly
higher robustness towards noise and shorter dia-
logues while still yielding good performance in
terms of both of task success rate and (estimated)
user satisfaction. This has been demonstrated by
training the reward estimator on a bus information
domain and applying it to learn dialogue policies
in five different domains (Cambridge restaurants
and hotels, San Francisco restaurants and hotels,
Laptops) in a simulated experiment.

For future work, we aim at extending the inter-
action quality estimator by incorporating domain-
independent linguistic data to further improve the
estimation performance. Furthermore, the effects
of using a user satisfaction-based reward estimator
needs to be applied to more complex tasks.
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Abstract
Dialogue systems are increasingly using
knowledge bases (KBs) storing real-world
facts to help generate quality responses. How-
ever, as the KBs are inherently incomplete
and remain fixed during conversation, it lim-
its dialogue systems’ ability to answer ques-
tions and to handle questions involving enti-
ties or relations that are not in the KB. In this
paper, we make an attempt to propose an en-
gine for Continuous and Interactive Learning
of Knowledge (CILK) for dialogue systems to
give them the ability to continuously and inter-
actively learn and infer new knowledge during
conversations. With more knowledge accumu-
lated over time, they will be able to learn bet-
ter and answer more questions. Our empirical
evaluation shows that CILK is promising.

1 Introduction

Dialogue systems, including question-answering
(QA) systems are now commonly used in practice.
Early such systems were built mainly based on
rules and information retrieval techniques (Banchs
and Li, 2012; Ameixa et al., 2014; Lowe et al.,
2015; Serban et al., 2015). Recent deep learn-
ing models (Vinyals and Le, 2015; Xing et al.,
2017; Li et al., 2017c) learn from large corpora.
However, since they do not use explicit knowledge
bases (KBs), they often suffer from generic and
dull responses (Xing et al., 2017; Young et al.,
2018). KBs have been used to deal with the prob-
lem (Ghazvininejad et al., 2018; Le et al., 2016;
Young et al., 2018; Long et al., 2017; Zhou et al.,
2018). Many task-oriented dialogue systems (Eric
and Manning, 2017; Madotto et al., 2018) also use
KBs to support information-seeking conversations.

One major shortcoming of existing systems that
use KBs is that the KBs are fixed once the dialogue
systems are deployed. However, it is almost im-
possible for the initial KBs to contain all possible

knowledge that the user may ask, not to mention
that new knowledge appears constantly. It is thus
highly desirable for dialogue systems to learn by
themselves while in use, i.e., learning on the job
in lifelong learning (Chen and Liu, 2018). Clearly,
the system can (1) extract more knowledge from
the Web or other sources, and (2) learn directly
from users during conversations. This paper fo-
cuses on the latter and makes an attempt to propose
an engine for Continuous and Interactive Learning
of Knowledge (CILK) to give the dialogue system
the ability to acquire/learn new knowledge from the
user during conversation. Specifically, it focuses on
learning new knowledge interactively from the user
when the system is unable to answer a user’s WH-
question. The acquired new knowledge makes the
system better able to answer future user questions,
and no longer be limited by the fixed knowledge
provided by the human developers.

The type of knowledge that the CILK engine
focuses on is the facts that can be expressed as
triples, (h, r, t), which means that the head entity h
and the tail entity t can be linked by the relation r.
An example of a fact is (Boston, LocatedInCoun-
try, USA), meaning that Boston is located in USA.
This paper only develops the core engine. It does
not study other dialogue functions like response
generation, semantic parsing, fact extraction from
user utterances, entity linking, etc., which have
been studied extensively before and are assumed to
be available for use. Thus, this paper works only
with structured queries (h, r, ?), e.g., (Boston, Lo-
catedInCountry, ?) meaning “In what Country is
Boston located ?,” or (?, r, t), e.g., (?, PresidentOf,
USA) meaning “Who is the President of USA?” It
assumes that a semantic parser is available that can
convert natural language queries from users into
query triples. Similarly, it assumes an information
extraction tool like OpenIE (Angeli et al., 2015) is
employed to extract facts as triples (h, r, t) from
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user’s utterances during conversation. Building a
full-fledged dialogue system that can also learn dur-
ing conversation is a huge undertaking and is out
of the scope of this paper. We thus only investigate
the core knowledge learning engine here. We also
assume that the user has good intentions (i.e., user
answers questions with 100% conformity about the
veracity of his/her facts)1; but is not omniscient
(opposed to the teacher-student learning setup).

Problem Definition: Given a user query / ques-
tion (h, r, ?) [or (?, r, t)], where r and h (or t)
may not be in the KB (i.e., unknown), our goal is
two-fold: (i) answering the user query or rejecting
the query to remain unanswered in the case when
the correct answer is believed to not exist in the
KB and (ii) learning / acquiring some knowledge
(facts) from the user to help the answering task.
We only focus on the setting where the query can-
not be answered directly with the current KB and
need inference over existing facts, as considering
structured query, it’s trivial to retrieve the answer
if the answer triple is already in KB. We further
distinguish two types of queries: (1) closed-world
queries, where h (or t) and r are known to the KB,
and (2) open-world queries, where either one or
both h (or t) and r are unknown to the KB.

It is easy to see that the problem is essentially
a lifelong learning problem (Chen and Liu, 2018),
where each query to be processed is a task and the
knowledge gained is retained in the KB. To process
a new query/task, the knowledge learned and accu-
mulated from the past queries can be leveraged.

For each new open-world query, the proposed
approach works in two steps:

Step 1 - Interact with the user: It converts
open-world queries (2) to closed-world queries (1)
by asking the user questions related to h (or t) and
r to make them known to the KB (added to KB).
The reason for the conversion will be clear below.
The user answers, called supporting facts (SFs), are
the new knowledge to be added to KB. This step is
also called interactive knowledge learning. Note,
closed-world queries (1) do not need this step.

Step 2 - Infer the query answer: It solves
closed-world queries (1) by inferring the query an-
swer. The main idea is to use each entity e in the
KB to form a candidate triple (h, r, e) (or (e, r, t)),

1We envision that the proposed engine is incorporated into
a dialogue system in a multi-user environment. The system
can perform cross-verification with other users by asking them
whether the knowledge (facts) from a user is correct.

USER: (Boston, LocatedInCountry, ?) “In what
Country is Boston located?” [Query]

CILK: I do not know what “located in Country”
means? Can you provide me an example?

[Ask for Clue]
USER: (London, LocatedInCountry, UK). “London

is located in UK.” [SF1]
CILK: Got it. Can you tell me a fact about

“Boston”? [Ask for Entity Fact]
USER: (Harvard University, UniversityLocatedIn,

Boston). “Harvard university is located in
Boston.” [SF2]

CILK: (Boston, LocatedInCountry, USA) “Boston is
located in USA.” [Answer]

Figure 1: An example of interactive learning and inference.
Note that CILK only works with triples. Each triple above
is assumed to be extracted from the sentence after it. Ask
for Clue and Ask for Entity Fact are interaction query types,
discussed in Sec. 3. SF denotes supporting fact.

which is then scored. The entity e with the highest
score is predicted as the answer of the query.

Scoring each candidate is modeled as a knowl-
edge base completion (KBC) problem (Lao and Co-
hen, 2010; Bordes et al., 2011). KBC aims to infer
new facts (knowledge) from existing facts in a KB
and is defined as a link prediction problem: Given
a query triple, (e, r, ?) [or (?, r, e)], it predicts a
tail entity ttrue [head entity htrue] which makes the
query triple true and thus should be added to the
KB. KBC makes the closed-world assumption that
h, r and t are all known to exist in the KB (Lao
et al., 2011; Bordes et al., 2011, 2013; Nickel et al.,
2015). This is not suitable for knowledge learning
in conversations because in a conversation, the user
can ask or say anything, which may contain entities
and relations that are not in the KB. CILK removes
the closed-world assumption and allows all h (or
t) and/or r to be unknown (not in the KB). Step 1
above basically asks the user questions to make h
(or t) and/or r known to the KB. Then, an exist-
ing KBC model as a query inference model can be
applied to retrieve an answer entity from KB.

Figure 1 shows an example. CILK acquires sup-
porting facts SF1 and SF2 to accomplish the goal
of knowledge learning and utilizes these pieces of
knowledge along with existing KB facts to answer
the user query (i.e., to infer over the query relation
”LocatedInCountry”). CILK aims to achieve these
two sub-goals. The new knowledge (SFs) is added
to the KB for future use2. We evaluate CILK using
two real-world KBs: Nell and WordNet and obtain
promising results.

2The inferred query answer is not added to the KB as it may
be incorrect. But it can be added in a multi-user environment
through cross-verification (see footnote 1 and Sec. 4).
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2 Related Work

To the best of our knowledge, no existing system
can perform the proposed task. We reported a pril-
iminary research in (Mazumder et al., 2018).

CILK is related to interactive language learning
(Wang et al., 2016, 2017), which is mainly about
language grounding, not about knowledge learning.
Li et al. (2017a,b) and Zhang et al. (2017) train
chatbots using human teachers who can ask and
answer the chatbot questions. Ono et al. (2017), Ot-
suka et al. (2013), Ono et al. (2016) and Komatani
et al. (2016) allow a system to ask the user whether
its prediction of category of a term is correct or
not. Compared to these works, CILK performs in-
teractive knowledge learning and inference (over
existing and acquired knowledge) while convers-
ing with users after the dialogue system has been
deployed (i.e., learning on the job (Chen and Liu,
2018)) without any teacher supervision or help.

NELL (Mitchell et al., 2015) updates its KB
using facts extracted from the Web (complementary
to our work). We do not do Web fact extraction.

KB completion (KBC) has been studied in recent
years (Lao et al., 2011; Bordes et al., 2011, 2015;
Mazumder and Liu, 2017). But they mainly handle
facts with known entities and relations. Neelakan-
tan et al. (2015) work on fixed unknown relations
with known embeddings, but does not allow un-
known entities. Xiong et al. (2018) also deal with
queries involving unknown relations, but known
entities in the KB. Shi and Weninger (2018) han-
dles unknown entities by exploiting an external
text corpus. None of the KBC methods perform
conversational knowledge learning like CILK.

3 Proposed Technique

As discussed in Sec. 1, given a query (e, r, ?) [or
(?, r, e)]3 from the user, CILK interacts with the
user to acquire supporting facts to answer the query.
Such an interactive knowledge learning and infer-
ence task is realized by the cooperation of three pri-
mary components of CILK: Knowledge base (KB)
K, Interaction Module I and Inference Model
M. The interaction module I decides whether
to ask or not and formulates questions to ask the
user for supporting facts. The acquired supporting
facts are added to the KBK and used in training the
Inference ModelM which then performs inference
over the query (i.e., answers the query).

3Either e or r or both may not exist in the KB

In the following subsections, we formalize the
interactive knowledge learning problem (Sec. 3.1),
describe the Inference Model M (Sec. 3.2) and
discuss how CILK interacts and processes a query
from the user (Sec. 3.3).

3.1 Problem Formulation

CILK’s KBK is a triple store {(h, r, t)} ⊆ E×R×
E , where E is the entity set andR is the relation set.
Let q be a query of the form (e, r, ?) [or (?, r, e)]
issued to CILK, where e is termed as query entity
and r as the query relation. If e /∈ E and/or r /∈ R
(we also say e, r /∈ K), we call q an open-world
query. Otherwise, q is referred to as a closed-world
query, i.e., both e and r exist in K. Given K and
a query q, the query inference task is defined as
follows: If q is of the form (e, r, ?), the goal is to
predict a tail entity ttrue ∈ E such that (e, r, ttrue)
holds. We call such q a tail query. If q is of the
form (?, r, e), the goal is to predict a head entity
htrue ∈ E such that (htrue, r, e) holds. We call
such q a head query. In the open-world setting, it’s
quite possible that the answer entity ttrue (for a tail
query) or htrue (for a head query) does not exist in
the KB (in E). In such cases, the inference model
M cannot find the true answer. We thus further
extend the goal of query inference task to either
finding answer entity ttrue (htrue) for q or rejecting
q to indicate that the answer does not exist in E .

Given an open-world (head / tail) query q from
user u, CILK interacts with u to acquire a set of
supporting facts (SFs) [i.e., a set of clue triples Cr

involving query relation r and/or a set of entity
fact triples Fe involving query entity e] for learn-
ing r and e (discussed in Sec 3.3). In Figure 1,
(London, LocatedInCountry, UK) is a clue of query
relation “LocatedInCountry” and (Harvard Univer-
sity, UniversityLocatedIn, Boston) is an entity fact
involving query entity “Boston”. In this interaction
process, CILK decides and asks questions to the
user for knowledge acquisition in multiple dialogue
turns (see Figure 1). This is step 1 as discussed in
Sec. 1 and will be further discussed in Sec. 3.3.

Once SFs are gathered, it uses (K ∪ Cr ∪ Fe) to
infer q, which is step 2 in Sec. 1 and will be de-
tailed in Sec. 3.2. We refer to the whole interaction
process involving multi-turn knowledge acquisition
followed by the query inference step as a dialogue
session. In summary, CILK is assumed to operate
in multiple dialogue sessions with different users
and acquire knowledge in each session and thereby,
continuously learns new knowledge over time.
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3.2 Inference Model
Given a query q, the Inference ModelM attempts
to infer q by predicting the answer entity from
E . In particular, it selects each entity ei ∈ E and
forms |E| number of candidate triples {d1, ..., d|E|},
where di is of the form (e, r, ei) for a tail query [or
(ei, r, e) for a head query] and then score each di
to quantify the relevancy of ei of being an answer
to q. The top ranked entity ei is returned as the
predicted answer of q. We deal with the case of
query rejection byM later.

We use the neural knowledge base embedding
(KBE) approach (Bordes et al., 2011, 2013; Yang
et al., 2014) to designM. Given a KB represented
as a triple store, a neural KBE method learns to
encode relational information in the KB using low-
dimensional representations (embeddings) of enti-
ties and relations and uses the learned representa-
tions to predict the correctness of unseen triples. In
particular, the goal is to learn representations for
entities and relations such that valid triples receive
high scores (or low energies) and invalid triples
receive low scores (or high energies) defined by
a scoring function S(.). The embeddings can be
learned via a neural network. In a typical (linear)
KBE model, given a triple (h, r, t), input entity
h, t and relation r correspond to high-dimensional
vectors (either “one-hot” index vector or “n-hot”
feature vector) xh, xt and xr respectively, which
are then projected into low dimensional vectors vh,
vt and vr using an entity embedding matrix WE

and relation embedding matrix WR as given by-
vh =WE xh, vr =WR xr and vt =WE xt. The
scoring function S(.) is then used to compute a
validity score S(h, r, t) of the triple.

Any KBE model can be used for learning M.
For evaluation, we adopt DistMult (Yang et al.,
2014) for its state-of-the art performance over many
other KBE models (Kadlec et al., 2017). The scor-
ing function of DistMult is defined as follows:

S(h, r, t) = vT
h diag(vr)vt =

N∑

i=1

vh[i]vr[i]vt[i] (1)

where diag(vr) is the diagonal matrix in vr.
The parameters of M, i.e., WE and WR, are

learned by minimizing a margin-based ranking ob-
jective L, which encourages the scores of positive
triples to be higher than those of negative triples:

L =
∑

d∈D+

∑

d′∈D−
max{S(d′)− S(d) + 1, 0} (2)

where, D+ is a set of triples observed in K, treated
as positive triples. D− is a set of negative triples

obtained by corrupting either head entity or tail en-
tity of each +ve triple (h, r, t) inD+ by replacing it
with a randomly chosen entity h′ and t′ respectively
from K such that the corrupted triples (h′, r, t), (h,
r, t′) /∈ K. Note, M is trained continuously by
sampling a set of +ve triples and correspondingly
constructing a set of -ve triples as the KB expands
with acquired supporting facts to improve its infer-
ence capability over new queries (involving new
query relations and entities). Thus, the embedding
matrices WE and WR also grow linearly over time.

Rejection in KB Inference. For a query with
no answer entity existing in K, CILK attempts to
reject the query from being answered. To decide
whether to reject the query or not, CILK maintains
a threshold buffer T that stores entity and rela-
tion specific prediction thresholds and updates it
continuously over time, as described below.

Besides the dataset for trainingM, CILK also
creates a validation dataset Dvd, consisting of a
set of validation query tuples of the form (q, E+,
E−). Here, q is either a head or tail query involving
query entity e and relation r, E+ ={e+1 , .., e+p } is
the set of p positive (true answer) entities in K and
E− ={e−1 , .., e−n } is the set of n negative entities
randomly sampled fromK such that E+∩E− = ∅.

Let De
vd = {(q, E+, E−) | (q, E+, E−) ∈

Dvd, e ∈ q} be the validation query
tuple set involving entity e and Dr

vd =
{(q, E+, E−) | (q, E+, E−) ∈ Dvd, r ∈ q} be
the validation query tuple set involving relation r.
Then, we compute T [z], (i.e., prediction threshold
for z, where z is either e or r) as the average of
the mean scores of triples involving +ve entities
and mean scores of triples involving -ve entities,
computed over all q in Dz

vd, given by-

T [z] = 1

2|Dz
vd|

∑

(q,E+,E−)∈Dz
vd

µ+
E + µ−E (3)

where µ+E = 1
|E+|

∑
e+i ∈E+ S(q, e

+
i ) and µ−E =

1
|E−|

∑
e−i ∈E−

S(q, e−i ). Here, S(q, e+i ) =

S(e, r, e+i ) if q is a tail query and S(e+i , r, e) if
q is a head query. S(q, e−i ) can be explained in a
similar way.

Given a head or tail query q involving query
entity e and relation r, we compute the prediction
threshold µq for q as µq = max{T [e], T [r], 0}.

Inference Decision Making. If ẽ ∈ E is the
predicted answer entity by M for query q and
S(q, ẽ) > µq, CILK responds to user with answer
ẽ. Otherwise, q gets rejected.
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Algorithm 1 CILK Knowledge Learning and Inference

Input: query qj = (e, r, ?) or (?, r, e) issued by user at
session-j; Kj : CILK’s KB at session-j; Pj : Performance
Buffer at session-j; Tj : Threshold Buffer at session-j;Mj :
trained Inference Model at session-j; α: probability of
treating an acquired supporting fact as training triple; ρ: % of
entities or relations in Kj that belong to the diffident set.
Output: ẽ : predicted entity as answer of query qj in
session-j.

1: if r /∈ Kj or IsDiffident(r, Pj , ρ) then
2: Cr ← AskUserforCLUE(r) {acquire supporting

facts to learn r’s embedding}
3: end if
4: if e /∈ Kj or IsDiffident(e, Pj , ρ) then
5: Fe ← AskUserforEntityFacts(e) {Acquire

supporting facts to learn e’s embedding}
6: end if
7: if Cr 6= ∅ then
8: K(j+ 1

2
) ← Add clue triples from Cr into Kj and ran-

domly mark α% of Cr as training triples and (1-α)%
as validation triples respectively in Kj .

9: end if
10: if Fe 6= ∅ then
11: Kj+1 ← Add fact triples from Fe into K(j+ 1

2
) and

randomly mark α % of these triples as training triples
and (1-α) % as validation triples.

12: end if
13: Dr

tr , Dr
vd ← SampleTripleSet(Kj+1, r)

14: De
tr , De

vd ← SampleTripleSet(Kj+1, e)
15: Mj+1 ← TrainInfModel(Mj , Dr

tr ∪De
tr)

16: Pj+1, Tj+1 ← UpdatePerfandThreshBuffer
(Mj+1, (Dr

vd ∪De
vd), Pj , Tj)

17: ẽ← PredictAnswerEntity(Mj+1, qj , Tj+1)

3.3 Working of CILK

Given a query q involving unknown query entity
e and/or relation r, CILK has to ask the user to
provide supporting facts to learn embeddings of e
and r in order to infer q. However, the user in a
given session can only provide very few supporting
facts, which may not be sufficient for learning good
embeddings of e and r. Moreover, to accumulate
a sufficiently good validation dataset for learning
T [e] and T [r], CILK needs to gather more triples
from users involving e and r. But, asking for SFs
for any entity and/or relation can be annoying to the
user and also, is unnecessary if CILK has already
learned good emmbeddings of that entity and/or re-
lation (i.e., CILK has performed well in predicting
true answer entity for queries involving that entity
and/or relation in past dialogue sessions with other
users). Thus, it is more reasonable to ask for SFs
for the known entities and/or relations for which
CILK is not confident about performing inference
accurately, besides the unknown ones.

To minimize the rate of user interaction and jus-
tify the knowledge acquisition process, CILK uses
a performance buffer P to store the performance

statistics of CILK in past dialogue sessions. We
use Mean Reciprocal Rank (MRR) to measure the
performance of M (discussed in Sec. 4.1). In
particular, P[e] and P[r] denote the avg. MRR
achieved byM while answering queries involving
e and r respectively, evaluated on the validation
dataset Dvd. At the end of each dialogue session,
CILK detects the set of bottom ρ% query relations
and entities in P based on MRR scores evaluated
on the validation dataset. We call these sets the
diffident relation and entity sets respectively for
the next dialogue session. If the query relation
and/or entity issued in the next session belongs to
the diffident relation or entity set, CILK asks the
user for supporting facts4. Otherwise, it proceeds
with inference, answering or rejecting the query.

Algorithm 1 shows the interactive knowledge
learning and inference process of CILK on a query
qj = (e, r, ?) or (?, r, e) in a given dialogue
session-j. Let Kj , Pj , Tj andMj be the current
version of KB, performance buffer, threshold buffer
and inference model of CILK at the point when
session-j starts. Then, the interactive knowledge
learning and inference proceeds as follows:

• If r /∈ Kj or r is diffident inPj , the interaction
module I of CILK asks the user to provide clue(s)
Cr involving r [Line 1-3]. Similarly, if e /∈ Kj or e
is diffident in Pj , I asks the user to provide entity
fact(s) Fe involving e [Line 4-6].
• If the user provides Cr and/or Fe, I augments
Kj with triples from Cr and Fe respectively and
Kj expands to Kj+1 [Line 7-12]. In this process, α
% of the triples in Cr and Fe are randomly marked
as training triples and rest (1−α)% are marked as
validation triples while storing them in Kj .
• Next, a set of training triples Dr

tr, De
tr and

a set of validation triples Dr
vd, De

vd are sampled
randomly from Kj+1 involving r and e respec-
tively [Line 13-14] for training and evaluatingMj .
While sampling, we set the ratio of number of train-
ing triples to that of validation triples as α to main-
tain a fixed training and validation set distribution.
The size for (Dr

tr ∪De
tr) is set at most Ntr (tuned

based on real-time training requirements).
• Next, Mj is trained with (Dr

tr ∪ De
tr) and

gets updated toMj+1 [Line 15]. Note that, train-
ingMj with (Dr

tr ∪De
tr) encouragesMj to learn

the embeddings of both r and e before inferring qj .

4Note, if (unknown) e or r appears the first time in a user
query, then it cannot be in the diffident set. But the system has
to ask the user question by default.
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Table 1: Dataset statistics [kwn = known, unk = unknown]

KB Statistics WordNet Nell
# Relations (Korg / Kb ) 18 / 12 150 / 142
# Entities (Korg / Kb) 13, 595 / 13, 150 11, 443 / 10, 547
# Triples (Korg / Kb) 53, 573 / 33, 159 66, 529 / 51,252
# Test relations (kwn / unk) 18 (12 / 6) 25 (17 / 8)
# initial Train / intial valid /
test (or query) triples (Dq)

29846 / 3323 / 1180 46056 / 5196 / 1250

Test (or query) triples (Dq) statistics [(e, r, ?) or (?, r, e)]
% triples with only e unk 8.05 19.36
% triples with only r unk 30.25 21.84
% triples both e and r unk 5.25 10.16

Then, we evaluateMj+1 with (Dr
vd ∪ De

vd) in or-
der to update the performance buffer Pj into Pj+1

and threshold buffer Tj into Tj+1 [Line 16]. Fi-
nally,Mj+1 is invoked by CILK to either infer qj
for predicting an answer entity ẽ from Kj+1 [Line
17] or reject qj to indicated that the true answer
does not exist in Kj+1. Note, CILK trainsMj and
infers q [Line 13-17] only if e, q ∈ Kj+1.

4 Experiments

As indicated earlier, the proposed CILK system is
best used in a multi-user environment, so it nat-
urally observes many more query triples (hence,
accumulates more facts) from different users over
time. Presently CILK fulfills its knowledge learn-
ing requirement by only adding the supporting facts
into the KB. The predicted query triples are not
added as they are unverified knowledge. However,
in practice, CILK can store these predicted triples
in the KB as well after checking their correctness
through cross-verification while conversing with
other users in some future related conversations
by smartly asking them. Note that CILK may not
verify its prediction with the same user who asked
the question/query q because he/she may not know
the answer(s) for q. However, there is no problem
that it acquires the correct answer(s) of q when it
asks q to some other user u′ in a future related con-
versation and u′ answers q. At this point, CILK
can incorporate q into its KB and also, train itself
using triple q. We do not address the issue here.

4.1 Evaluation Setup
Evaluation of CILK with real users in a crowd-
source based setup would be very difficult to con-
duct and prohibitively time-consuming (and expen-
sive) as it needs a large number of real-time and
continuous user interaction. Thus, we design a sim-
ulated interactive environment for the evaluation.

We create a simulated user (a program) to inter-
act with CILK, where the simulated user issues a
query to CILK and CILK answers the query. The

(simulated) user has (1) a knowledge base (Ku) for
answering questions from CILK, and (2) an query
dataset (Dq) from which the user issues queries
to CILK.5 Here, Dq consists of a set of structured
query triples q of the form (e, r, ?) and (?, r, e)
readable by CILK. In practice, the user only issues
queries to CILK, but cannot evaluate the perfor-
mance of the system unless the user knows the an-
swer. To evaluate the performance of CILK on Dq

in the simulated setting, we also collect the answer
set for each query q ∈ Dq (discussed shortly).

As CILK is supposed to perform continuous on-
line knowledge acquisition and learning, we evalu-
ate its performance on the streaming query dataset.
We assume that, CILK has been deployed with
an initial knowledge base (Kb) and the inference
modelM has been trained over all triples in Kb for
a given number of epochs Ninit. We call Kb the
base KB of CILK which serves as its knowledge
base at the time point (teval) when our evaluation
starts. And the training process ofM using triples
in Kb is referred to as the initial training phase of
CILK onwards. In the initial training phase, we ran-
domly split Kb triples into a set of training triples
Dtr and a set of validation triples Dvd with 9:1 ra-
tio (we use α = 0.9) and trainM with Dtr. Dvd is
used to tune model hyper-parameters and populate
initial performance and threshold buffers P and
T respectively. Dtr, Dvd, P , and T get updated
continuously after teval in the online training and
evaluation phase (with new acquired triples) dur-
ing interaction with the simulated user.

The relations and entities in Kb are regarded
as known relations and known entities to CILK
till teval. Thus, the initial inference modelM is
trained and validated with triples involving only
known relations and known entities (in Kb). Dur-
ing the online training and evaluation phase, CILK
faces queries (from Dq) involving both known and
unknown relations and entities. More specifically,
if a relation (entity) appearing in a query q ∈ Dq

exists inKb, we consider that query relation (entity)
as known query relation (entity). Otherwise, it is
referred to as unknown query relation (entity).

We create simulated user’s KB Ku, base KB
(Kb) and query dataset Dq from two standard KB
datasets: (1) WordNet (Bordes et al., 2013) and (2)
Nell (Gardner et al., 2014). From each KB dataset,

5UsingKu and Dq , we can create simulated dialogues as
well. Utterances in a dialogue can be created using a language
template for each triple. Likewise, extraction of triples from
utterances can be done using templates as well.
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Table 2: Comparison of predictive performance of various versions of CILK. For each KB dataset, we compare the first four
(Threshold) variants denoted ase“X-BTr” and last three (dataset sampling strategy) variants denoted as “MaxTh-X” and marked
the highest H@1 and H@10 values (among each of the groups of four and three) in bold. Thus, some columns have at max. two
values marked bold (due to the two comparison groups). MaxTh-BTr in the table is the version of CILK proposed in Sec. 3.

Rel - K / Ent -K Rel - K / Ent -UNK Rel - UNK / Ent - K Rel - UNK / Ent -UNK Overall
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

WordNet
EntTh-BTr 0.46 34.57 57.23 0.04 3.50 4.38 0.20 16.21 25.80 0.07 4.83 8.06 0.33 25.03 40.89
RelTh-BTr 0.45 12.71 16.32 0.04 7.89 7.89 0.21 12.30 16.51 0.07 9.67 9.67 0.33 12.09 15.39
MinTh-BTr 0.45 33.81 57.99 0.03 2.63 3.50 0.22 15.93 28.05 0.07 4.84 8.06 0.33 24.43 41.91
MaxTh-BTr 0.45 34.72 56.87 0.04 5.26 6.14 0.20 15.92 25.79 0.07 6.45 9.67 0.33 25.27 40.95
MaxTh-EntTr 0.42 26.07 42.74 0.26 19.29 22.80 0.19 11.79 15.17 0.23 17.74 20.96 0.33 20.77 31.60
MaxTh-RelTr 0.45 34.48 55.93 0.003 2.63 3.51 0.13 11.25 18.01 0.11 8.06 16.13 0.30 23.46 38.09

Nell
EntTh-BTr 0.37 26.80 47.28 0.06 4.47 7.22 0.15 9.58 19.97 0.04 1.64 7.36 0.22 16.18 29.78
RelTh-BTr 0.37 17.01 25.05 0.06 3.78 4.13 0.16 8.72 17.67 0.03 3.28 4.92 0.23 11.35 17.49
MinTh-BTr 0.37 26.63 47.30 0.06 5.33 8.60 0.15 10.24 23.21 0.03 1.64 5.72 0.23 16.41 30.57
MaxTh-BTr 0.37 27.57 47.58 0.06 4.30 7.57 0.16 10.69 19.61 0.03 4.92 8.20 0.23 17.16 30.03
MaxTh-EntTr 0.34 21.82 42.65 0.13 3.95 7.91 0.22 16.48 20.56 0.06 4.06 4.06 0.24 15.46 27.44
MaxTh-RelTr 0.37 26.60 47.07 0.04 3.44 5.85 0.20 12.18 17.67 0.06 3.28 10.67 0.23 16.67 29.29

we first build a fairly large triple store and use it
as the original KB (Korg) and then, create Ku of
user, base KB (Kb) of CILK and Dq from Korg, as
discussed below (Table 1 shows the results).

Simulated User, Base KB Creation and Query
Dataset Generation. In Nell, we found 150 rela-
tions with ≥ 300 triples, and we randomly selected
25 relations for Dq. We shuffle the list of 25 rela-
tions, select 34% of them as unknown relations and
consider the rest (66%) as known relations.

For each known relation r, we randomly shuffle
the list of distinct triples for r, choose (maximum)
250 triples and randomly select 20% as test and add
a randomly chosen subset of the rest of the triples
along with the leftovers (not in the list of 250), into
Kb and the other subset are added toKu (to provide
supporting facts involving poorly learned known
relations and/or entities, if asked [see Sec 3.3]).

For each unknown relation r, we remove all
triples of r from Korg, randomly choose 20%
triples among them and reserve them as query
triples for unknown r. Rest 80% triples of un-
known r are added to Ku (for providing clues). In
this process, we also make sure that the query in-
stances involving unknown r are excluded fromKu.
Thus, the user cannot provide the query triple itself
as a clue to CILK (during inference) and also, to
simulate the case that the user does not know the
answer of its issued query. Note, if the user cannot
provide a clue for an unknown query relation or a
fact for an unknown query entity (not likely), CILK
will not be able to correctly answer the query.

At this point, Dq consists of query triples in-
volving both known and unknown relations, but all
known entities. To create queries in Dq having un-
known entities, we randomly choose 20% of the

Table 3: Performance of CILK Threshold variants on Rejec-
tion and prediction decisions. Here, AE (¬AE) means true
answer entity exists (does not exist) in KB. “Pr(pred|AE)”
means the probability of predicting an answer, given the true
answer exists in KB. “Pr(Reject| ¬AE)” means probability of
rejecting the query, given true answer does not exist in KB.

WordNet Nell

Pr(pred|AE)
Pr(Reject |
¬AE)

Pr(pred|AE)
Pr(Reject |
¬AE)

EntTh-BTr 0.85 0.24 0.82 0.15
RelTh-BTr 0.20 0.92 0.26 0.72
MinTh-BTr 0.90 0.18 0.86 0.10
MaxTh-BTr 0.83 0.33 0.72 0.31

entities in Dq triples, remove all triples involving
those entities from Korg and add them to Ku. Now,
Korg gets reduced to Kb (base KB). Next, for each
query triple (h, r, t) ∈ Dq, we convert the triple
into a head query q =(?, r, t) [or a tail query q =(h,
r, ?)] by randomly deleting the head or tail entity.
We also collect the answer set for each q ∈ Dq

based on observed triples in Korg for CILK evalua-
tion. Note, the generated query triples (with answer
entity) in Dq are not directly in Kb or Ku.

The WordNet dataset being small, we use all its
18 relations for creatingDq,Ku,Kb following Nell.
As mentioned earlier, the triples inKb are randomly
split into 90% training and 10% validation datasets
for simulating initial training phase of CILK.
Hyper-parameter Settings. Embedding dimen-
sions of entity and relations are empirically set as
250 for WordNet and Nell, initial training epochs
Ninit as 100 for WordNet (140 for Nell), train-
ing batch size 128, Ntr as 500, |Dr

vd ∪ De
vd| as

50, α = 0.9, ρ = 20%, random seed as 1000, 4
negative triples generated per positive triple, online
training epoch as 5 (2) for each closed (open) world
query processing, and learning rate 0.001 for both
KB datasets. L2-regularization parameter set as
0.001. Adam optimizer is used for optimization.
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Table 4: Overall Performance of MaxTh-BTr (CILK), vary-
ing the maximum number of clues (#C) and entity facts (#EF)
acquired from user per dialogue session (if asked by the inter-
action module I).

(#C,
#EF)

WordNet Nell
MRR H@1 H@10 MRR H@1 H@10

(1, 1) 0.30 22.09 37.83 0.23 16.89 31.14
(1, 2) 0.32 23.00 39.25 0.25 18.11 31.30
(1, 3) 0.33 25.27 40.95 0.23 17.16 30.03
(1, 3)-U 0.31 23.52 38.15 0.21 15.77 28.64
(2, 2) 0.32 23.43 39.05 0.23 16.82 30.33

Compared Models. Since there is no existing
work that solves our proposed problem, we com-
pare various versions of CILK, constructed based
on different types of prediction threshold µq for
query rejection (Sec. 3.2) and various online train-
ing Dtr = (Dr

tr ∪ De
tr) and validation dataset

Dvad = (Dr
vd∪De

vd) sampling strategies [see Line
13-14 of Algorithm 1] as discussed below:

• CILK variants based on prediction thresh-
old types, namely EntTh-BTr, RelTh-BTr, MinTh-
BTr and MaxTh-BTr (see Table 2). For EntTh-BTr,
we use µq = max{T [e], 0}, for RelTh-BTr, we
use µq = max{T [r], 0}, for MinTh-BTr, we use
µq = max{min{T [e], T [r]}, 0} and MaxTh-BTr
uses µq = max{T [e], T [r], 0} as proposed in Sec
3.2. Here, “BTr” indicates that the CILK variant
samples triples involving both query entity and re-
lation from KB to build Dtr and Dvd.
• CILK variants based on dataset sampling

strategies: MaxTh-BTr (as explained above),
MaxTh-EntTr and MaxTh-RelTr (see Table 2).
Given the query entity e and query relation r,
MaxTh-EntTr only samples triples involving e and
MaxTh-RelTr samples only triples involving r to
build Dtr and Dvd. Note, if the sampled dataset
Dtr (Dvd) is ∅, CILK skips online training (valida-
tion) steps for that session.

Evaluation Metrics. We use two common KBE
evaluation metrics: mean reciprocal rank (MRR)
and Hits@k (H@k). MRR is the average inverse
rank of the top ranked true answer entity for all
queries (Bordes et al., 2013). Hits@k is the propor-
tion of test queries for which the true answer entity
has appeared in top-k (ranked) predictions. Higher
MRR and Hits@k indicate better performance.

4.2 Results and Analysis

For evaluation on a given KB (WordNet or Nell),
we randomly generate a chronological ordering of
all query instances in Dq, which are fed to the
trained CILK (after the initial training phase is
over) in a streaming fashion, and then evaluate

Table 5: Performance of MaxTh-BTr (CILK) on test queries
observed over time, given the model has made a prediction.

% Test Data
Observed

WordNet Nell
MRR H@1 H@10 MRR H@1 H@10

Overall Performance
50% 0.37 27.50 47.19 0.29 20.77 38.87

100% 0.37 27.67 46.71 0.29 20.82 38.65
On Open-word Queries

50% 0.16 11.87 20.11 0.09 4.81 16.47
100% 0.18 12.90 22.91 0.13 8.58 19.54

CILK on the overall query dataset. The avg. test
query processing time of CILK is 1.25 sec (on a
Nvidia Titan RTX GPU). While evaluating a query
qj , if the true answer of qj does not exist in KB
Kj+1 andMj+1 rejects qj , we consider it as a cor-
rect prediction. For such qj , Reciprocal Rank (RR)
cannot be computed. Thus, we exclude qj while
computing MRR, but consider it in computing Hits.

Table 2 shows the performance of CILK variants
on the query dataset, evaluated in terms of MRR,
H@1 and H@10 for both KBs. We present the
overall result on the whole query dataset as well
as results on subsets of query datasets, denoted as
(Rel-X, Ent-Y), where X and Y can be either known
(‘K’) or unknown (‘UNK’) and ‘Rel’ denotes query
relation and ‘Ent’ denotes query entity. So, here,
(Rel-K, Ent-UNK) denotes the subset of the query
dataset that contains query triples involving only
known query relations and unknown query enti-
ties (with respect to Kb). For all variants, we fix
the maximum number of clue triples and entity
fact triples provided by the simulated user for each
query (when asked) as 1 and 3 respectively.

From Table 2, we see that, MaxTh-BTr (version
of CILK in Sec. 3) achieves the overall best results
compared to other variants for both KB datasets.
Among different threshold versions, MaxTh-BTr
and MinTh-BTr perform better than the rest. The
relatively poor result of RelTh-BTr shows thresh-
old strategy plays a vital role in performance im-
provement. Considering different dataset sampling
strategies, again we see MaxTh-BTr performs bet-
ter than other versions. As the triples involving
both query entity and relation are selected for on-
line training in MaxTh-BTr, CILK gets specifically
trained on relevant (query-specific) triples before
the query is answered. For other variants, either
triples involving query relation (for MaxTh-EntTr)
or triples involving query entity (for MaxTh-RelTr)
are discarded, causing a drop in performance.

In Table 3, we compare different CILK threshold
variants based on how often it predicts (or rejects)
the query, when the true answer exists (does not
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exist) in its current KB, given by Pr(pred | AE)
[ Pr(Reject | ¬AE) ]. For both datasets, EntTh-
BTr has a tendency to predict more and reject less.
Whereas, RelTh-BTr is more precautious in predic-
tion. MinTh-BTr is the least precautious in predic-
tion among all. MaxTh-BTr adopts the best of both
worlds (EntTh-BTr and RelTh-BTr), showing mod-
erate strategy in prediction and rejection behavior.

Table 4 shows comparative performances of
MaxTh-BTr on varying the maximum number of
clue triples and entity fact triples provided by the
user (when asked). Comparing (1, 1), (1, 2), (1,
3) we see a clear performance improvement in
MaxTh-BTr with the increase in (acquired) entity
fact triples (specially, for WordNet). This shows
that if user interacts more and provides more in-
formation for a given query, CILK can gradually
improve its performance over time [i.e., with more
accumulated triples in its KB]. For Nell, perfor-
mance improves for both (1, 2) and (1, 3) compared
to that in (1, 1), (1, 2) variant being the best over-
all. Comparing (1, 3) and (2, 2) for both KBs, we
see that acquiring more entity facts dominates the
overall performance improvement compared to ac-
quiring more clues. This is because, as a past query
relation is more probable to appear in future query
compared to a past query entity, CILK can gradu-
ally learn the relation embedding with less clues
per query unlike that for an entity. (1, 3)-U denotes
the set up, where CILK asks for clues or entity facts
only if the query triple has unknown entity and/or
relation, i.e. we disable the use of performance
buffer P (see Sec 3.3). Due to lack of sufficient
training triples to learn an unknown query rela-
tion and entity, the overall performance degrades.
This shows the importance and effectiveness of the
performance buffer in improving performance of
CILK with limited user interactions.

In Table 5, we show the performance of MaxTh-
BTr on (predicted) test queries over time. Con-
sidering overall performance, the improvement is
marginal. However, for open-world queries, there
is a substantial improvement in performance as
CILK relatively acquires more facts for open-world
queries than that of closed-world ones.

5 CILK: Use Cases in Dialogue Systems
There are many applications for CILK. Conver-
sational QA systems (Kiyota et al., 2002; Bor-
des et al., 2014), conversational recommendation
systems (Anelli et al., 2018; Zhang et al., 2018),
information-seeking conversational agents (Yang

et al., 2018), etc., that deal with real-world facts,
are all potential use cases for CILK.

Recently, (Young et al., 2018; Zhou et al., 2018)
showed that dialogue models augmented with com-
monsense facts improve dialogue generation perfor-
mance. It’s quite apparent that continuous knowl-
edge learning using CILK can help these models
grow their KBs over time and thereby, improve
their response generation quality.

The proposed version of CILK has been de-
signed based on a set of assumptions (see Sec. 1)
to reduce the complexity of the modeling. For ex-
ample, we do not handle the case of intentional or
unintentional false knowledge injection by users
to corrupt the system’s KB. Also, we do not deal
with fact extraction errors of the peripheral infor-
mation extraction module or query parsing errors
of the semantic parsing modules, which can affect
the knowledge learning of CILK. We believe these
are separate research problems and are out of the
scope of this work. In future, we plan to model an
end-to-end approach of knowledge learning where
all peripheral components of CILK can be jointly
learned with CILK itself. We also plan to solve the
cold start problem when there is little training data
for a new relation when it is first added to the KB.

Clearly, CILK does not learn all forms of knowl-
edge. For example, it does not learn new concepts
and topics, user traits and personality, and speaking
styles. They also form a part of our future work.

6 Conclusion

In this paper, we proposed a continuous (or life-
long) and interactive knowledge learning engine
CILK for dialogue systems. It exploits the situa-
tion when the system is unable to answer a WH-
question from the user (considering its existing KB)
by asking the user for some knowledge and based
on it to infer the query answer. We evaluated the
engine on two real-world factual KB data sets and
observed promising results. This also shows the po-
tentiality of CILK to serve as a factual knowledge
learning engine for future conversational agents.
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Abstract

Learning with minimal data is one of the key
challenges in the development of practical,
production-ready goal-oriented dialogue sys-
tems. In a real-world enterprise setting where
dialogue systems are developed rapidly and
are expected to work robustly for an ever-
growing variety of domains, products, and sce-
narios, efficient learning from a limited num-
ber of examples becomes indispensable.

In this paper, we introduce a technique to
achieve state-of-the-art dialogue generation
performance in a few-shot setup, without us-
ing any annotated data. We do this by lever-
aging background knowledge from a larger,
more highly represented dialogue source —
namely, the MetaLWOz dataset. We evalu-
ate our model on the Stanford Multi-Domain
Dialogue Dataset, consisting of human-human
goal-oriented dialogues in in-car navigation,
appointment scheduling, and weather informa-
tion domains.

We show that our few-shot approach achieves
state-of-the art results on that dataset by
consistently outperforming the previous best
model in terms of BLEU and Entity F1 scores,
while being more data-efficient by not requir-
ing any data annotation.

1 Introduction

Data-driven dialogue systems are becoming
widely adopted in enterprise environments. One of
the key properties of a dialogue model in this set-
ting is its data efficiency, i.e. whether it can attain
high accuracy and good generalization properties
when only trained from minimal data.

Recent deep learning-based approaches to train-
ing dialogue systems (Ultes et al., 2018; Wen
et al., 2017) put emphasis on collecting large
amounts of data in order to account for numerous
variations in the user inputs and to cover as many

dialogue trajectories as possible. However, in real-
world production environments there isn’t enough
domain-specific data easily available throughout
the development process. In addition, it’s impor-
tant to be able to rapidly adjust a system’s behav-
ior according to updates in requirements and new
product features in the domain. Therefore, data-
efficient training is a priority direction in dialogue
system research.

In this paper, we build on a technique to train
a dialogue model for a new domain in a ‘zero-
shot’ setup (in terms of full dialogues in the target
domain) only using annotated ‘seed’ utterances
(Zhao and Eskénazi, 2018).

We present an alternative, ‘few-shot’ approach
to data-efficient dialogue system training: we do
use complete in-domain dialogues while using ap-
proximately the same amount of training data as
Zhao and Eskénazi (2018), with respect to utter-
ances. However, in our method, no annotation is
required — we instead use a latent dialogue act
annotation learned in an unsupervised way from
a larger (multi-domain) data source, broadly fol-
lowing the model of Zhao et al. (2018). This ap-
proach is potentially more attractive for practical
purposes because it is easier to collect unannotated
dialogues than collecting utterances across various
domains under a consistent annotation scheme.

2 Related Work

There is a substantial amount of work on learn-
ing dialogue with minimal data — starting with
the Dialog State Tracking Challenge 3 (Hender-
son et al., 2014) where the problem was to adjust
a pre-trained state tracker to a different domain us-
ing a seed dataset.

In dialogue response generation, there has also
been work on bootstrapping a goal-oriented dia-
logue system from a few examples using a lin-
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guistically informed model: (Eshghi et al., 2017)
used an incremental semantic parser – DyLan (Es-
hghi et al., 2011; Eshghi, 2015) – to obtain con-
textual meaning representations, and based the di-
alogue state on this (Kalatzis et al., 2016). In-
cremental response generation was learned using
Reinforcement Learning, again using the parser to
incrementally process the agent’s output and thus
prune ungrammatical paths for the learner. Com-
pared to a neural model — End-to-End Memory
Network (Sukhbaatar et al., 2015), this linguisti-
cally informed model was superior in a 1-shot set-
ting (Shalyminov et al., 2017). At the same time,
its main linguistic resource — a domain-general
dialogue grammar for English — makes the model
inflexible unless wide coverage is achieved.

Transfer learning for Natural Language Pro-
cessing is strongly motivated by recent advances
in vision. When training a convolutional neural
network (CNN) on a small dataset for a specific
problem domain, it often helps to learn low-level
convolutional features from a greater, more di-
verse dataset. For numerous applications in vision,
ImageNet (Deng et al., 2009) became the source
dataset for pre-training convolutional models. For
NLP, the main means for transfer were Word2Vec
word embeddings (Mikolov et al., 2013) which
have recently been updated to models capturing
contexts as well (Peters et al., 2018; Devlin et al.,
2018). While these tools are widely known to im-
prove performance in various tasks, more special-
ized models could as well be created for specific
research areas, e.g. dialogue generation in our
case.

The models above are some of the approaches
to one of the central issues of efficient knowledge
transfer — learning a unified data representation
generalizable across datasets, dubbed ‘representa-
tion learning’. In our approach, we will use one
such technique based on variational autoencoding
with discrete latent variables (Zhao et al., 2018).
In this paper we present an approach to transfer
learning which is more tailored — both model-
wise and dataset-wise — to goal-oriented dialogue
in underrepresented domains.

3 The approach

3.1 Zero-shot theoretical framework

We first describe the original Zero-Shot Dia-
logue Generation (ZSDG) theoretical framework
of (Zhao and Eskénazi, 2018) which we base our

work on. For ZSDG, there is a set of source di-
alogue domains and one target domain, with the
task of training a dialogue response generation
model from all the available source data and a
significantly reduced subset of the target data (re-
ferred to as seed data). The trained system’s per-
formance is evaluated exclusively on the target do-
main.

More specifically, the data in ZSDG is orga-
nized as follows. There are unannotated dialogues
in the form of {c,x, d}src/tgt — tuples of dialogue
contexts, responses, and domain names respec-
tively for each of the source and target domains.
There are also domain descriptions in the form of
{x,a, d}src/tgt — tuples of utterances, slot-value
annotations, and domain names respectively for
source and target domains.

ZSDG is essentially a hierarchical encoder-
decoder model which is trained in a multi-task
fashion by receiving two types of data: (1) dia-
logue batches drawn from all the available source-
domain data, and (2) seed data batches, a limited
number of which are drawn from domain descrip-
tion data for all of the source and target domains.

ZSDG model optimizes for 2 objectives. With
dialogue batches, the model maximizes the prob-
ability of generating a response given the context:

Ldialog =− log pFd(x | Fe(c, d))

+ λD(R(x, d)‖Fe(c, d))
(1)

where Fe and Fd are respectively the encoding
and decoding components of a hierarchical gener-
ative model; R is the shared recurrent utterance
encoder (the recognition model); and D is a dis-
tance function (L2 norm).

In turn, with domain description batches, the
model maximizes the probability of generating the
utterance given its slot-value annotation, both rep-
resented as sequences of tokens:

Ldd =− log pFd(x | R(a, d))
+ λD(R(x, d)‖R(a, d)) (2)

In this multi-task setup, the latent space of R
is shared between both utterances and domain de-
scriptions across all the domains. Moreover, the
distance-based loss terms make sure that (a) utter-
ances with similar annotations are closer together
in the latent space (Eq. 2), and (b) utterances
are closer to their dialogue contexts (Eq. 1) so
that their encodings capture some of the contexts’
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(a) LAED pre-training (b) Zero/few-shot dialogue generation

Figure 1: Model architecture. At the pre-training stage (1a), we train the discretized LAED dialogue representation
on the Transfer dataset. We then train a zero/few-shot dialogue generation model on SMD with this representation
incorporated (1b).

meaning. These properties of the model make it
possible to achieve better cross-domain general-
ization.

3.2 Unsupervised representation learning
As was the case with ZSDG, robust representa-
tion learning helps achieve better generalization
across domains. The most widely-adopted way
to train better representations has been to lever-
age a greater data source. In this work, we con-
sider unsupervised, variational autoencoder-based
(VAE) representation learning on a large dataset
of unannotated dialogues. The specific approach
we refer to is the Latent Action Encoder-Decoder
(LAED) model of (Zhao et al., 2018). LAED is a
variant of VAE with two modifications: (1) an op-
timization objective augmented with mutual infor-
mation between the input and the latent variable
for better and more stable learning performance,
and (2) discretized latent variable for the inter-
pretability of the resulting latent actions. Just as
in ZSDG, LAED is a hierarchical encoder-decoder
model with the key component being a discrete-
information (DI) utterance-level VAE. Two ver-
sions of this model are introduced, with respective
optimization objectives:

LDI-V AE =EqR(z|x)p(x)[log pG(x | z)]
−KL(q(z)‖p(z))

(3)

LDI-V ST = EqR(z|x)p(x)[log p
n
G(xn | z)ppG(xp | z)]

−KL(q(z)‖p(z))
(4)

where R and G are recognition and generation
components respectively, x is the model’s input,
z is the latent variable, and p(z) and q(z) are re-
spectively prior and posterior distributions of z.

DI-VAE works in a standard VAE fashion re-
constructing the input x itself, while DI-VST fol-
lows the idea of Variational Skip-Thought recon-
structing the input’s previous and next contexts:
{xn,xp}. As reported by the authors, the two
models capture different aspects of utterances, i.e.
DI-VAE reconstructs specific words within an ut-
terance, whereas DI-VST captures the overall in-
tent better — see the visualization in Figure 1a.

3.3 Proposed models1

In our approach, we simplify the ZSDG setup by
not using any explicit domain descriptions, there-
fore we only work with ‘dialogue’ batches. We
also make use of Knowledge Base information
without loss of generality (see Section 5) — thus
we work with data of the form {c,x,k, d} where
k is the KB information. We refer to this model as
Few-Shot Dialogue Generation, or FSDG.

For learning a reusable dialogue representation,
we use an external multi-domain dialogue dataset,
the Transfer dataset (see Section 4).

We perform a preliminary training stage on it
where we train 2 LAED models, both DI-VAE and
DI-VST. Then, at the main training stage, we use
the hierarchical encoders of both models and in-
corporate them with FSDG’s decoder. Thus, we
have the following encoding function (which is

1Code is available at https://bit.ly/fsdg_
sigdial2019
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Model
Domain Navigation Weather Schedule

BLEU, % Entity F1, % BLEU, % Entity F1, % BLEU, % Entity F1, %
ZSDG 5.9 14.0 8.1 31 7.9 36.9
NLU ZSDG 6.1± 2.2 12.7± 3.3 5.0± 1.6 16.8± 6.7 6.0± 1.7 26.5± 5.4
NLU ZSDG+LAED 7.9± 1 12.3± 2.9 8.7± 0.6 21.5± 6.2 8.3± 1 20.7± 4.8
FSDG@1% 6.0± 1.8 9.8± 4.8 6.9± 1.1 22.2± 10.7 5.5± 0.8 25.6± 8.2
FSDG@3% 7.9± 0.7 11.8± 4.4 9.6± 1.8 39.8± 7 8.2± 1.1 34.8± 4.4
FSDG@5% 8.3± 1.3 15.3± 6.3 11.5± 1.6 38.0± 10.5 9.7± 1.4 37.6± 8.0
FSDG@10% 9.8± 0.8 19.2± 3.2 12.9± 2.4 40.4± 11.0 12.0± 1.0 38.2± 4.2
FSDG+VAE@1% 3.6± 2.6 9.3± 4.1 6.8± 1.3 23.2± 10.1 4.6± 1.6 28.9± 7.3
FSDG+VAE@3% 6.9± 1.9 15.6± 5.8 9.5± 2.6 32.2± 11.8 6.6± 1.7 34.8± 7.7
FSDG+VAE@5% 7.8± 1.9 12.7± 4.2 10.1± 2.1 40.3± 10.4 8.2± 1.7 34.2± 8.7
FSDG+VAE@10% 9.0± 2.0 18.0± 5.8 12.9± 2.2 40.1± 7.6 11.6± 1.5 39.9± 6.9
FSDG+LAED@1% 7.1± 0.8∗ 10.1± 4.5 10.6± 2.1∗ 31.4± 8.1∗ 7.4± 1.2 29.1± 6.6
FSDG+LAED@3% 9.2± 0.8 14.5± 4.8∗ 13.1± 1.7 40.8± 6.1 9.2± 1.2∗ 32.7± 6.1
FSDG+LAED@5% 10.3± 1.2 15.6± 4.5 14.5± 2.2 40.9± 8.6 11.8± 1.9 37.6± 6.1∗

FSDG+LAED@10% 12.3± 0.9 17.3± 4.5 17.6± 1.9 47.5± 6.0 15.2± 1.6 38.7± 8.4

Table 1: Evaluation results. Marked with asterisks are individual results higher than the ZSDG baseline which are
achieved with the minimum amount of training data, and in bold is the model consistently outperforming ZSDG
in all domains and metrics with minimum data.

then plugged in to the Eq. 1):

Fe(c,k, d) = Fe
DI-V AE(c,k, d)

⊕Fe
DI-V ST (c,k, d)

⊕Fe
FSDG(c,k, d)

(5)

where⊕ is the concatenation operator. We refer
to this model as FSDG+LAED.

We compare this LAED-augmented model to a
similar one, with latent representation trained on
the same data but using a regular VAE objective
and thus providing regular continuous embeddings
(we refer to it as FSDG+VAE).

LV AE = EqR(z|x)[log pG(x | z)]
−KL(qR(z)‖p(z))

(6)

Finally, in order to explore the original ZSDG
setup as much as possible, we also consider its
version with automatic Natural Language Under-
standing (NLU) markup instead of human anno-
tations as domain descriptions. Our NLU anno-
tations include Named Entity Recognizer (Finkel
et al., 2005), a date/time extraction library (Chang
and Manning, 2012), and a Wikidata entity linker
(Pappu et al., 2017). We have models with
(NLU ZSDG+LAED) and without LAED repre-
sentation (NLU ZSDG). Our entire setup is shown
in Figure 1.

4 Datasets

We use the Stanford Multi-Domain (SMD)
human-human goal-oriented dialogue dataset

(Eric et al., 2017) in 3 domains: appointment
scheduling, city navigation, and weather informa-
tion. Each dialogue comes with knowledge base
snippet from the underlying domain-specific API.

For LAED training, we use MetaLWOz (Lee
et al., 2019), a human-human goal-oriented di-
alogue corpus specifically designed for various
meta-learning and pre-training purposes. It con-
tains conversations in 51 domains with several
tasks in each of those. The dialogues are collected
using the Wizard-of-Oz method where human par-
ticipants were given a problem domain and a spe-
cific task. No domain-specific APIs or knowledge
bases were available for the participants, and in
the actual dialogues they were free to use fictional
names and entities in a consistent way. The dataset
totals more than 40, 000 dialogues, with the aver-
age length of 11.9 turns.

5 Experimental setup and evaluation

Our few-shot setup is as follows. Given the target
domain, we first train LAED models (a dialogue-
level DI-VST and an utterance-level DI-VAE, both
of the size 10 × 5) on the MetaLWOz dataset —
here we exclude from training every domain that
might overlap with the target one.

Next, using the LAED encoders, we train a
Few-Shot Dialogue Generation model on all the
SMD source domains. We use a random sample
(1% to 10%) of the target domain utterances to-
gether with their contexts as seed data.

We incorporate KB information into our model
by simply serializing the records and prepending
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them to the dialogue context, ending up with a
setup similar to CopyNet in (Eric et al., 2017).

For the NLU ZSDG setup, we use 1000 random
seed utterances from each source domain and 200
utterances from the target domain2.

For evaluation, we follow the approach of (Zhao
and Eskénazi, 2018) and report BLEU and Entity
F1 scores — means/variances over 10 runs.

6 Results and discussion

Our results are shown in Table 1. Our objective
here is maximum accuracy with minimum train-
ing data required, and it can be seen that few-
shot models with LAED representation are the
best performing models for this objective. While
the improvements can already be seen with sim-
ple FSDG, the use of LAED representation helps
to significantly reduce the amount of in-domain
training data needed: in most cases, the state-of-
the-art results are attained with as little as 3% of
in-domain data. At 5%, we see that FSDG+LAED
consistently improves upon all other models in ev-
ery domain, either by increasing the mean accu-
racy or by decreasing the variation. In SMD, with
its average dialogue length of 5.25 turns (see Ta-
ble 4), 5% of training dialogues amounts to ap-
proximately 200 in-domain training utterances. In
contrast, the ZSDG setup used approximately 150
annotated training utterances for each of the 3 do-
mains, totalling about 450 annotated utterances.
Although in our few-shot approach we use full in-
domain dialogues, we end up having a comparable
amount of target-domain training data, with the
crucial difference that none of those has to be an-
notated for our approach. Therefore, the method
we introduced attains state-of-the-art in both ac-
curacy and data-efficiency.

The results of the ZSDG NLU setup demon-
strate that single utterance annotations, if not
domain-specific and produced by human experts,
don’t provide as much signal as raw dialogues.

The comparison of the setups with different la-
tent representations also gives us some insight:
while the VAE-powered FSDG model improves
on the baseline in multiple cases, it lacks general-
ization potential compared to LAED. The reason
for that might be inherently more stable training
of LAED due to its modified objective function

2The numbers are selected so that the domain description
task is kept secondary.

which in turn results in a more informative, gen-
eralizable representation.

Finally, we discuss the evaluation metrics.
Since we base this paper on the work of (Zhao
and Eskénazi, 2018), we have had to fully conform
to the metrics they used to enable direct compar-
ison. However, BLEU as the primary evaluation
metric, does not necessarily reflect NLG quality
in dialogue settings — see examples in Table 2 of
the Appendix (see also Novikova et al. (2017)).
This is a general issue in dialogue model eval-
uation since the variability of possible responses
equivalent in meaning is very high in dialogue.
In future work, instead of using BLEU, we will
put more emphasis on the meaning of utterances,
for example by using external dialogue act tagging
resources, using quality metrics of language gen-
eration – e.g. perplexity – as well as more task-
oriented metrics like Entity F1. We expect these
to make for more meaningful evaluation criteria.

7 Conclusion and future work

In this paper, we have introduced a technique to
achieve state-of-the-art dialogue generation per-
formance in a few-shot setup, without using any
annotated data. By leveraging larger, more highly
represented dialogue sources and learning robust
latent dialogue representations from them, we ob-
tained a model with superior generalization to
an underrepresented domain. Specifically, we
showed that our few-shot approach achieves state-
of-the art results on the Stanford Multi-Domain
dataset while being more data-efficient than the
previous best model, by not requiring any data an-
notation.

Although being state-of-the-art, the accuracy
scores themselves still suggest that our technique
is not ready for immediate adoption for real-world
production purposes, and the task of few-shot gen-
eralization to a new dialogue domain remains an
area of active research. We expect that such ini-
tiatives will be fostered by the release of large di-
alogue corpora such as MetaLWOz.

In our own future work, we will try and find
ways to improve the unsupervised representation
in order to increase the transfer potential. Adver-
sarial learning can also be beneficial in the setting
of limited data. And apart from improving the
model itself, it is necessary to consider an alter-
native criterion to BLEU-score for adequate eval-
uation of response generation.
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Domain Context Gold response Predicted response
schedule <usr> Remind me to take my pills Ok setting your medicine Okay, setting a reminder to take

<sys> What time do you need appointment for 7pm your pills at 7 pm.
to take your pills?

<usr> I need to take my pills at 7 pm.
navigate <usr> Find the address to a hospital Have a good day No problem.

<sys> Stanford Express Care is
at 214 El Camino Real.

<usr> Thank you.
navigate <usr> What is the weather forecast For what city would you For what city would you like

for the weekend? like to know that? the weekend forecast for?

Table 2: Selected FSDG+LAED model’s responses

Domain #Dialogues Domain #Dialogues Domain #Dialogues

UPDATE CALENDAR 1991 GUINESS CHECK 1886 ALARM SET 1681
SCAM LOOKUP 1658 PLAY TIMES 1601 GAME RULES 1590
CONTACT MANAGER 1483 LIBRARY REQUEST 1339 INSURANCE 1299
HOME BOT 1210 HOW TO BASIC 1086 CITY INFO 965
TIME ZONE 951 TOURISM 935 SHOPPING 903
BUS SCHEDULE BOT 898 CHECK STATUS 784 WHAT IS IT 776
STORE DETAILS 737 APPOINTMENT REMINDER 668 PRESENT IDEAS 664
GEOGRAPHY 653 SKI BOT 607 MOVIE LISTINGS 607
UPDATE CONTACT 581 ORDER PIZZA 577 EDIT PLAYLIST 574
SPORTS INFO 561 BOOKING FLIGHT 555 WEATHER CHECK 551
EVENT RESERVE 539 RESTAURANT PICKER 535 LOOK UP INFO 533
AUTO SORT 514 QUOTE OF THE DAY BOT 513 WEDDING PLANNER 510
MAKE RESTAURANT RESERVATIONS 510 AGREEMENT BOT 507 NAME SUGGESTER 499
APARTMENT FINDER 499 HOTEL RESERVE 497 PHONE PLAN BOT 496
DECIDER BOT 487 VACATION IDEAS 486 PHONE SETTINGS 473
POLICY BOT 447 PROMPT GENERATOR 446 MUSIC SUGGESTER 445
PET ADVICE 426 BANK BOT 367 CATALOGUE BOT 288

Table 3: MetaLWOz domains

A Appendices

A.1 Training details
We train our models with the Adam optimizer
(Kingma and Ba, 2014) with learning rate 0.001.
Our hierarchical models’ utterance encoder is an
LSTM cell (Hochreiter and Schmidhuber, 1997)
of size 256, and the dialogue-level encoder is a
GRU (Cho et al., 2014) of size 512.

Statistic
Domain Navigation Weather Schedule

Dialogues 800 797 8285
Utterances 5248 4314 3170
Mean length 6.56 5.41 3.83

Table 4: SMD trainset statistics

A.2 MetaLWOz dialogue example
Domain: Ski
User Task: You want to know if there are good ski
hills an hour’s drive from your current location.
Bot Task: Tell the user that there are no ski hills
in their immediate location.
Bot Hello how may I help you?
User Is there any good ski hills an hour’s drive
from my current location?
Bot I’m sorry to inform you that there are no ski
hills in your immediate location

User Can you help me find the nearest?
Bot Absolutely! It looks like you’re about 3 hours
away from Bear Mountain. That seems to be the
closest.
User Hmm.. sounds good
Bot Alright! I can help you get your lift tickets
now! When will you be going?
User Awesome! please get me a ticket for 10pax
Bot You’ve got it. Anything else I can help you
with?
User None. Thanks again!
Bot No problem!
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Abstract

Dialogue state tracking is an important compo-
nent in task-oriented dialogue systems to iden-
tify users’ goals and requests as a dialogue
proceeds. However, as most previous mod-
els are dependent on dialogue slots, the model
complexity soars when the number of slots in-
creases. In this paper, we put forward a slot-
independent neural model (SIM) to track dia-
logue states while keeping the model complex-
ity invariant to the number of dialogue slots.
The model utilizes attention mechanisms be-
tween user utterance and system actions. SIM
achieves state-of-the-art results on WoZ and
DSTC2 tasks, with only 20% of the model size
of previous models.

1 Introduction

With the rapid development in deep learning, there
is a recent boom of task-oriented dialogue sys-
tems in terms of both algorithms and datasets. The
goal of task-oriented dialogue is to fulfill a user’s
requests such as booking hotels via communica-
tion in natural language. Due to the complex-
ity and ambiguity of human language, previous
systems have included semantic decoding (Mrkšić
et al., 2016) to project natural language input into
pre-defined dialogue states. These states are typ-
ically represented by slots and values: slots indi-
cate the category of information and values specify
the content of information. For instance, the user
utterance “can you help me find the address of any
hotel in the south side of the city” can be decoded
as inform(area, south) and request(address),
meaning that the user has specified the value south
for slot area and requested another slot address.

Numerous methods have been put forward to
decode a user’s utterance into slot values. Some
use hand-crafted features and domain-specific
delexicalization methods to achieve strong perfor-
mance (Henderson et al., 2014; Zilka and Jurci-

cek, 2015). Mrkšić et al. (2016) employs CNN
and pretrained embeddings to further improve the
state tracking accuracy. Mrkšić and Vulić (2018)
extends this work by using two additional statis-
tical update mechanisms. Liu et al. (2018) uses
human teaching and feedback to boost the state
tracking performance. Zhong et al. (2018) uti-
lizes both global and local attention mechanism in
the proposed GLAD model which obtains state-of-
the-art results on WoZ and DSTC2 datasets. How-
ever, most of these methods require slot-specific
neural structures for accurate prediction. For ex-
ample, Zhong et al. (2018) defines a parametrized
local attention matrix for each slot. Slot-specific
mechanisms become unwieldy when the dialogue
task involves many topics and slots, as is typical
in a complex conversational setting like product
troubleshooting. Furthermore, due to the sparsity
of labels, there may not be enough data to thor-
oughly train each slot-specific network structure.
Rastogi et al. (2017); Ramadan et al. (2018) both
propose to remove the model’s dependency on di-
alogue slots but there’s no modification to the rep-
resentation part, which could be crucial to textual
understanding as we will show later.

To solve this problem, we need a state track-
ing model independent of dialogue slots. In other
words, the network should depend on the seman-
tic similarity between slots and utterance instead
of slot-specific modules. To this end, we propose
the Slot-Independent Model (SIM). Our model
complexity does not increase when the number
of slots in dialogue tasks go up. Thus, SIM
has many fewer parameters than existing dialogue
state tracking models. To compensate for the ex-
clusion of slot-specific parameters, we incorpo-
rate better feature representation of user utterance
and dialogue states using syntactic information
and convolutional neural networks (CNN). The re-
fined representation, in addition to cross and self-
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attention mechanisms, make our model achieve
even better performance than slot-specific mod-
els. For instance, on Wizard-of-Oz (WOZ) 2.0
dataset (Wen et al., 2016), the SIM model obtains
a joint-accuracy score of 89.5%, 1.4% higher than
the previously best model GLAD, with only 22%
of the number of parameters. On DSTC2 dataset,
SIM achieves comparable performance with previ-
ous best models with only 19% of the model size.

2 Problem Formulation

As outlined in Young et al. (2010), the dialogue
state tracking task is formulated as follows: at
each turn of dialogue, the user’s utterance is se-
mantically decoded into a set of slot-value pairs.
There are two types of slots. Goal slots indicate
the category, e.g. area, food, and the values spec-
ify the constraint given by users for the category,
e.g. South, Mediterranean. Request slots refer to
requests, and the value is the category that the user
demands, e.g. phone, area. Each user’s turn is thus
decoded into turn goals and turn requests. Fur-
thermore, to summarize the user’s goals so far, the
union of all previous turn goals up to the current
turn is defined as joint goals.

Similarly, the dialogue system’s reply from the
previous round is labeled with a set of slot-value
pairs denoted as system actions. The dialogue
state tracking task requires models to predict turn
goal and turn request given user’s utterance and
system actions from previous turns.

Formally, the ontology of dialogue, O, consists
of all possible slots S and the set of values for
each slot, V (s), ∀s ∈ S. Specifically, req is the
name for request slot and its values include all the
requestable category information. The dialogue
state tracking task is that, given the user’s utter-
ance in the i-th turn, U , and system actions from
the (i − 1)-th turn, A = {(s1, v1), ..., (sq, vq)},
where sj ∈ S, vj ∈ V (sj), the model should pre-
dict:

1. Turn goals: {(s1, v1), ..., (sb, vb)}, where
sj ∈ S, vj ∈ V (sj),

2. Turn requests: {(req, v1), ..., (req, vt)},
where vj ∈ V (req).

The joint goals at turn i are then computed by
taking the union of all the predicted turn goals
from turn 1 to turn i.

Usually this prediction task is cast as a bi-
nary classification problem: for each slot-value

pair (s, v), determine whether it should be
included in the predicted turn goals/requests.
Namely, the model is to learn a mapping function
f(U,A, (s, v))→ {0, 1}.

3 Slot-Independent Model

To predict whether a slot-value pair should be in-
cluded in the turn goals/requests, previous models
(Mrkšić et al., 2016; Zhong et al., 2018) usually
define network components for each slot s ∈ S.
This can be cumbersome when the ontology is
large, and it suffers from the insufficient data prob-
lem: the labelled data for a single slot may not
suffice to effectively train the parameters for the
slot-specific neural networks structure.

Therefore, we propose that in the classification
process, the model needs to rely on the semantic
similarity between the user’s utterance and slot-
value pair, with system action information. In
other words, the model should have only a single
global neural structure independent of slots. We
heretofore refer to this model as Slot-Independent
Model (SIM) for dialogue state tracking.

3.1 Input Representation

Suppose the user’s utterance in the i-th turn con-
tains m words, U = (w1, w2, ..., wm). For
each word wi, we use GloVe word embed-
ding ei, character-CNN embedding ci, Part-Of-
Speech (POS) embedding POSi, Named-Entity-
Recognition (NER) embedding NERi and exact
match feature EMi. The POS and NER tags are
extracted by spaCy and then mapped into a fixed-
length vector. The exact matching feature has two
bits, indicating whether a word and its lemma can
be found in the slot-value pair representation, re-
spectively. This is the first step to establish a
semantic relationship between user utterance and
slots. To summarize, we represent the user utter-
ance as XU = {u1,u2, ...,um} ∈ Rm×du ,ui =
[ei; ci; POSi; NERi; EMi].

For each slot-value pair (s, v) either in system
action or in the ontology, we get its text represen-
tation by concatenating the contents of slot and
value1. We use GloVe to embed each word in
the text. Therefore, each slot-value pair in sys-
tem actions is represented as XA ∈ Ra×d and
each slot-value pair in ontology is represented as

1To align with previous work, we prepend the word “in-
form” to goal slot.
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Figure 1: SIM model structure.

XO ∈ Ro×d, where a and o is the number of
words in the corresponding text.

3.2 Contextual Representation
To incorporate contextual information, we employ
a bi-directional RNN layer on the input represen-
tation. For instance, for user utterance,

RU = BiLSTM (XU ) ∈ Rm×drnn (1)

We apply variational dropout (Kingma et al.,
2015) for RNN inputs, i.e. the dropout mask is
shared over different timesteps.

After RNN, we use linear self-attention to get
a single summarization vector for user utterance,
using weight vector w ∈ Rdrnn and bias scalar b:

α = RUw + b ∈ Rm (2)

p = softmax(α) ∈ Rm (3)

sU = (RU )T p ∈ Rdrnn (4)

For each slot-value pair in the system actions
and ontology, we conduct RNN and linear self-
attention summarization in a similar way. As the
slot-value pair input is not a sentence, we only
keep the summarization vector sA ∈ Rdrnn and
sO ∈ Rdrnn for each slot-value pair in system ac-
tions and ontology respectively.

3.3 Inter-Attention

To determine whether the current user utterance
refers to a slot-value pair (s, v) in the ontology, the
model employs inter-attention between user utter-
ance, system action and ontology. Similar to the
framework in Zhong et al. (2018), we employ two
sources of interactions.

The first is the semantic similarity between the
user utterance, represented by embedding RU and
each slot-value pair from ontology (s, v), repre-
sented by embedding sO. We linearly combine
vectors in RU via the normalized inner product
with sO, which is then employed to compute the
similarity score y1:

α = RUsO ∈ Rm (5)

p1 = softmax(α) ∈ Rm (6)

q1 = (RU )T p1 ∈ Rdrnn (7)

y1 = wT
1 q1 + b1 ∈ R (8)

The second source involves the system actions.
The reason is that if the system requested certain
information in the previous round, it is very likely
that the user will give answer in this round, and
the answer may refer to the question, e.g. “yes” or

42



“no” to the question. Thus, we first attend to sys-
tem actions from user utterance and then combine
with the ontology to get similarity score. Suppose
there are L slot-values pairs in the system actions
from previous round2, represented by sA1 , ..., s

A
L :

p2 = softmax({sAj
T
sU}Lj=1) ∈ RL (9)

q2 =

L∑

j=1

pjs
A
j ∈ Rdrnn (10)

y2 = qT2 s
O ∈ R (11)

The final similarity score between the user utter-
ance and a slot-value pair (s, v) from the ontology
is a linear combination of y1 and y2 and normal-
ized using sigmoid function.

p(s,v) = σ(y1 + βy2) ∈ R, (12)

where β is a learned coefficient. The loss function
is the sum of binary cross entropy over all slot-
value pairs in the ontology:

L(θ) = −
∑

(s,v)∈O
y(s,v)logp(s,v)+ (13)

(1− y(s,v))log(1− p(s,v)), (14)

where y(s,v) ∈ {0, 1} is the ground truth. We il-
lustrate the model structure of SIM in Figure 1.

4 Experiment

4.1 Dataset

We evaluated our model on Wizard of Oz (WoZ)
(Wen et al., 2016) and the second Dialogue System
Technology Challenges (Williams et al., 2013).
Both tasks are for restaurant reservation and have
slot-value pairs of both goal and request types.
WoZ has 4 kinds of slots (area, food, price range,
request) and 94 values in total. DSTC2 has an ad-
ditional slot name and 220 values in total. WoZ
has 800 dialogues in the training and development
set and 400 dialogues in the test set, while DSTC2
dataset consists of 2118 dialogues in the training
and development set, and 1117 dialogues in the
test set.

4.2 Metrics

We use accuracy on the joint goal and turn re-
quest as the evaluation metrics. Both are sets of

2This includes a special sentinel action which refers to
ignoring the system action.

slot-value pairs, so the predicted set must exactly
match the answer to be judged as correct. For
joint goals, if a later turn generates a slot-value
pair where the slot has been specified in previous
rounds, we replace the value with the latest con-
tent.

4.3 Training Details

We fix GloVe (Pennington et al., 2014) as the word
embedding matrix. The models are trained using
ADAM optimizer (Kingma and Ba, 2014) with an
initial learning rate of 1e-3. The dimension of
POS and NER embeddings are 12 and 8, respec-
tively. In character-CNN, each character is embed-
ded into a vector of length 50. The CNN window
size is 3 and hidden size is 50. We apply a dropout
rate of 0.1 for the input to each module. The hid-
den size of RNN is 125.

During training, we pick the best model with
highest joint goal score on development set and
report the result on the test set.

For DSTC2, we adhere to the standard proce-
dure to use the N-best list from the noisy ASR
results for testing. The ASR results are very
noisy. We experimented with several strategies
and ended up using only the top result from the
N-best list. The training and validation on DSTC2
are based on noise-free user utterance. The WoZ
task does not have ASR results available, so we
directly use noise-free user utterance.

4.4 Baseline models and result

We compare our model SIM with a number of
baseline systems: delexicalization model (Wen
et al., 2016; Henderson et al., 2014), the neu-
ral belief tracker model (NBT) (Mrkšić et al.,
2016), global-locally self-attentive model GLAD
(Zhong et al., 2018), large-scale belief tracking
model LSBT (Ramadan et al., 2018) and scal-
able multi-domain dialogue state tracking model
SMDST (Rastogi et al., 2017).

Table 1 shows that, on WoZ dataset, SIM
achieves a new state-of-the-art joint goal accu-
racy of 89.5%, a significant improvement of 1.4%
over GLAD, and turn request accuracy of 97.3%,
0.2% above GLAD. On DSTC2 dataset, where
noisy ASR results are used as user utterance dur-
ing test, SIM obtains comparable results with
GLAD. Furthermore, the better representation in
SIM makes it significantly outperform previous
slot-independent models LSBT and SMDST.
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Model WoZ DSTC2
Joint goal Turn request Joint goal Turn request

SMDST / / 70.3% /
Delex. Model + Semantic Dictionary 83.7% 87.6% 72.9% 95.7%
Neural Belief Tracker (NBT) 84.2% 91.6% 73.4% 96.5%
LSBT 85.5% / / /
GLAD 88.1% 97.1% 74.5% 97.5%
SIM 89.5% 97.3% 74.7% 96.2%

Table 1: Joint goal and turn request accuracies on WoZ and DSTC2 restaurant reservation datasets.

Furthermore, as SIM has no slot-specific neural
network structures, its model size is much smaller
than previous models. Table 2 shows that, on WoZ
and DSTC2 datasets, SIM model has the same
number of parameters, which is only 23% and
19% of that in GLAD model.

Ablation Study. We conduct an ablation study
of SIM on WoZ dataset. As shown in Table 3,
the additional utterance word features, including
character, POS, NER and exact matching embed-
dings, can boost the performance by 2.4% in joint
goal accuracy. These features include POS, NER
and exact match features. This indicates that for
the dialogue state tracking task, syntactic informa-
tion and text matching are very useful. Character-
CNN captures sub-word level information and is
effective in understanding spelling errors, hence it
helps with 1.2% in joint goal accuracy. Variational
dropout is also beneficial, contributing 0.9% to the
joint goal accuracy, which shows the importance
of uniform masking during dropout.

Model WoZ DSTC2

SIM 1.47M 1.47M
GLAD (Zhong et al., 2018) 6.41M 7.69M

Table 2: Model size comparison between SIM and
GLAD (Zhong et al., 2018) on WoZ and DSTC2.

Model Joint Goal Turn Request

SIM 89.5 97.3
–Var. dropout 88.6 97.1
–Char. CNN 88.3 97.0
–Utt. features 87.1 97.1

Table 3: Ablation study of SIM on WoZ. We pick the
model with highest joint goal score on development set
and report its performance on test set.

5 Conclusion

In this paper, we propose a slot-independent neural
model, SIM, to tackle the dialogue state tracking
problem. Via incorporating better feature repre-
sentations, SIM can effectively reduce the model
complexity while still achieving superior or com-
parable results on various datasets, compared with
previous models.

For future work, we plan to design general
slot-free dialogue state tracking models which can
be adapted to different domains during inference
time, given domain-specific ontology information.
This will make the model more agile in real appli-
cations.
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Wen, Blaise Thomson, and Steve Young. 2016.
Neural belief tracker: Data-driven dialogue state
tracking. arXiv preprint arXiv:1606.03777.
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Abstract
With the advent of conversational assistants
like Amazon Alexa, Google Now, etc., dia-
logue systems are gaining a lot of traction,
especially in industrial settings. These sys-
tems typically include a Spoken Language un-
derstanding component which consists of two
tasks: Intent Classification (IC) and Slot La-
beling (SL). Generally, these two tasks are
modeled together jointly to achieve best per-
formance. However, this joint modeling adds
to model obfuscation. In this work, we first
design framework for a modularization of
joint IC-SL task to enhance architecture trans-
parency. Then, we explore a number of self-
attention, convolutional, and recurrent models,
contributing a large-scale analysis of model-
ing paradigms for IC+SL across two datasets.
Finally, using this framework, we propose a
class of ‘label-recurrent’ models that are non-
recurrent apart from a 10-dimensional repre-
sentation of the label history, and show that our
proposed systems are highly accurate (achiev-
ing over 30% error reduction in SL over the
state-of-the-art on the Snips dataset), as well as
fast, at 2x the inference and 2/3 to 1/2 the train-
ing time of comparable recurrent models, thus
giving an edge in critical real-world systems.

1 Introduction

At the core of task-oriented dialogue systems are
spoken language understanding (SLU) models,
tasked with determining the intent of users’ ut-
terances and labeling semantically relevant words
at each turn of the conversation. Performance on
these tasks, known as intent classification (IC) and
slot labeling (SL), upper-bounds the utility of such
dialogue systems. A large body of recent research
has improved these models through the use of re-
current neural networks, encoder-decoder archi-
tectures, and attention mechanisms. However, for

∗Equal Contribution
†Work performed while at Amazon AI

Figure 1: A general framework of joint IC+SL, decoupling
modeling tasks to permit the analysis of each component in-
dependently.

production dialogue systems in particular, system
speed is at a premium, both during training and in
real-time inference.

In this work, we propose fully non-recurrent
and label-recurrent model paradigms including
self-attention and convolution for comparison to
state-of-the-art recurrent models in terms of ac-
curacy and speed. To achieve this, we design a
framework for joint IC-SL models that is modu-
larized into different components and makes the
task agnostic to type of neural network used. This,
in turn, makes the model architecture simpler, easy
to understand and renders the task network agnos-
tic, allowing for easier plug and play using existing
components, such as pre-trained contextual word
embeddings (Devlin et al., 2019), etc. This is es-
sential for easier model debugging and quicker ex-
perimentation, especially in industrial settings.

Using this framework, we identify three dis-
tinct model families of interest: fully recurrent,
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label-recurrent, and non-recurrent. Recent state-
of-the-art models fall into the first category, as
encoder-decoder architectures have recurrent en-
coders to perform word context encoding, and pre-
dict slot label sequences using recurrent decoders
that use both word and label information as they
decode (Hakkani-Tür et al., 2016; Liu and Lane,
2016; Li et al., 2018). In second category, we
have ‘non-recurrent’ networks: fully feed-forward,
attention-based, or convolutional models, for ex-
ample. Lastly, we have a class of label-recurrent
models, inspired by structured sequential mod-
els like conditional random fields on top of non-
recurrent word contextualization components. In
this class of models, slot label decoding proceeds
such that label sequences are encoded by a recur-
rent component, but word sequences are not.

Our contributions are:

• A class of label-recurrent convolutional mod-
els that achieve state-of-the-art performance
on Snips and competitive performance on
ATIS while maintaining faster training and
inference speeds than fully-recurrent models

• A new modular framework for joint IC-SL
models that permits the analysis of individ-
ual modeling components that decomposes
these joint models into separate components
for word context encoding, summarization of
the sentence into a single vector for intent
classification, and modeling of dependencies
in the output space of slot label sequences.

• In-depth analysis of different word contextu-
alizations for Spoken Language Understand-
ing task (for instance, providing evidence for
the intuition that explicitly focusing on lo-
cal context is a useful architectural inductive
prior for slot labeling)

2 Prior Work

There is a large body of research in applying recur-
rent modeling advances to intent classification and
slot labeling (frequently called spoken language
understanding). Traditionally, for intent classifica-
tion, word n-grams were used with SVM classifier
(Haffner et al., 2003) and Adaboost (Schapire and
Singer, 2000). For the SL task, CRFs (Gorin et al.,
1997) have been used in the past.

Recently, a larger focus has been on joint mod-
eling of IC and SL tasks. Long short-term mem-
ory recurrent neural networks (Hochreiter and

Schmidhuber, 1997) and Gated Recurrent Unit
models (Cho et al.) were proposed for slot labeling
by Yao et al. (2014) and Zhang and Wang (2016)
respectively, while Guo et al. (2014) used recur-
sive neural networks. Subsequent improvements
to recurrent neural modeling techniques, like bidi-
rectionality and attention (Bahdanau et al., 2014)
were incorporated into IC+SL in recent years as
well (Hakkani-Tür et al., 2016; Liu and Lane,
2016). Li et al. (2018) introduced a self-attention
based joint model where they used self-attention
and LSTM layers along with the gating mecha-
nism for this task.

Non-recurrent modeling for language has been
re-visited recently, even as recurrent techniques
continue to be dominant. Dilated CNNs (Yu and
Koltun, 2015) with CRF label modeling were ap-
plied to named entity recognition by Strubell et al.
(2017), and earlier were applied to SL by Xu
and Sarikaya (2013). Convolutional and attention-
based sentence encoders have been applied in
complex tasks, including machine translation, nat-
ural language inference, and parsing. (Gehring
et al., 2017; Vaswani et al., 2017; Shen et al.,
2017; Kitaev and Klein, 2018) We draw from both
of these bodies of work to propose a simple yet
highly effective family of IC+SL models.

3 A general framework of joint IC+SL

Intent classification and slot labeling take as input
an utterance x1:T = {x1,x2, ...xT }, composed
of words xi and of length T . Models construct a
distribution over intents and slot label sequences
given the utterance. One intent is assigned per ut-
terance and one slot label is assigned per word:

P (l1:T , c |x1:T ) (1)

where c ∈ I, a fixed set of intents, and li ∈ L,
a fixed set of slot labels. Models are trained to
minimize the cross-entropy loss between the as-
signed distribution and the training data. To the
end of constructing this distribution, our frame-
work explicitly separates the following compo-
nents, which are explicitly or implicitly present in
all joint IC+SL systems (Figure 1):

3.1 Word contextualization
We first assume words are encoded through an
embedding layer, providing context-independent
word vectors. Overloading notation, we denote the
embedded sequence x1:T , with xi ∈ Rdx .
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In this component, word representations are en-
riched with sentential context. Each word xi is
assigned a contextualized representation hi. To
ease layering these components, we keep the di-
mensionality the same as the word embeddings;
hi ∈ Rdx . Our study consists mainly of vary-
ing this component across models, which are de-
scribed in detail in Section 4. In all models, we
assume independence of intent classification and
slot labeling given the learned representations:

P (l1:T , c|h1:T ) = P (l1:T |h1:T )P (c|h1:T ) (2)

3.2 Sentence representation

In this component, the output of the word contex-
tualization component is summarized in a single
vector,

s = SentenceRepr(h1:T ) (3)

where s ∈ Rdx . For all our experiments, we keep
this component constant, using a simple attention-
like pooling which is the weighted sum of word
contextualization for each position in the sentence.
These weights are computed using softmax over
these individual word contextualizations

While simple, this model permits word con-
textualization components freedom in how they
encode sentential information; for example, self-
attention models may spread full-sentence infor-
mation across all words, whereas 1-directional
LSTMs may focus full-sentence information in the
last word’s vector.

3.3 Intent prediction

In this component, the sentence representation is
used as features to predict the intent of the utter-
ance. For all experiments, we keep this compo-
nent fixed as well, using a simple two-layer feed-
forward block on top of s.

3.4 Slot label prediction

In this component, the output of the word contex-
tualization component is used to construct a distri-
bution over slot label sequences for the utterance.
We decompose the joint probability of the label
sequence given the contextualized word represen-
tations into a left-to-right labeling:

P (l1:T |h1:T ) =

T∏

i=1

P (li|h1:T , l1:i−1) (4)

In our experiments, we explore two models for
slot prediction, one fully-parallelizable because of
strong independence assumptions, the other per-
mitting a constrained dependence between label-
ing decisions that we call ‘label-recurrent’.

Independent slot prediction The first is a non-
recurrent model, which assumes indepdencence
between all labeling decisions once given h1:T ,
as well as independence from all word represen-
tations except that of the word being labeled:

P (li|h1:T , l1:i−1) = P (li|hi) (5)

This model is fully parallelizable on GPU archi-
tectures, and the probability of each labeling deci-
sion is modeled according to

P (li|h1:T ) = softmax(W (3)pi,SL + b(3)) (6)

pi,SL = tanh(W (4)hi + b(4)) (7)

hence, SL prediction features are learned using
each contextualized word independently.

Label-recurrent slot prediction The second
class of slot prediction models we consider lead to
our classification, ‘label-recurrent.’1 These mod-
els permit dependence of labeling decisions on the
sequence of decisions made so far, but keep the
independence assumption on the word representa-
tions:

P (li|h1:T , l1:i−1) = P (li|l1:i−1,hi) (8)

Notably, this family of models excludes traditional
encoder-decoder models, since the decoder com-
ponent uses labeling decisions l1:i−1 and earlier
word representations h1:i−1 to influence the pre-
dictor features pi,SL. However, it includes models
such as CNN-CRF.

The space of label sequences in slot labeling is
much smaller than the space of word sequences.
This adds minimal computational burden and per-
mits the model to benefit from GPU parallelism
during h1:T computation.

For our experiments, we propose a single label-
recurrent model, which encodes labeling histories
l1:−i using only a 10-dimensional LSTM. First,
slot labels are embedded, such that for each l ∈ L,
we have l ∈ Rdl . An initial tag history state, htag

0 ,
is randomly initialized. Each tag decision is fed

1We use this term for clarity in language, not to claim that
no such models have been explored in the past.
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along with the previous tag history state to the
LSTM, which returns the next tag history state:

h
tag
i = LSTM(li−1,h

tag
i−1). (9)

We omit a precise description of the LSTM model
here for space, referring the reader to (Hochreiter
and Schmidhuber, 1997).

The tag history is used at each prediction step
as additional inputs to construct the predictor fea-
tures pi,SL, replacing Eqn. 7 with:

pi,SL = tanh(W (5)[hi;h
tag
i ] + b(5)) (10)

where [a; b] denotes concatenation. This model
and other label-recurrent models are not only par-
allelizable more than fully-recurrent models, but
also provide an architectural inductive bias, sepa-
rating modeling of tag sequences from modeling
of word sequences. In our experiments, we per-
form greedy decoding to maintain a high decoding
speed.

4 Word contextualization models

In this section, we describe word contextualization
models with the goal of identifying non-recurrent
architectures that achieve high accuracy and faster
speed than recurrent models.

4.1 Feed-forward model

In this model, we set h1:T = x1:T + a1:T , where
a1:T is a learned absolute position representation,
with one vector learned per absolute position, as
used in (Gehring et al., 2017). While extremely
simple, this model provides a useful baseline as
a totally context-free model. It also permits us to
analyze the contribution of a label-recurrent com-
ponent in such a context-deprived scenario.

4.2 Self-attention models

Recent work in non-recurrent modeling has sur-
faced a number of variants of attention-based word
context modeling.

The simplest constructs each hi by incorporat-
ing a weighted average of the rest of the sequence,
x1:T \xi. We use a bilinear attention mechanism
with a residual connection while masking out the

identity in the attention weights.

hi = relu(
√
.5(ci + xi)) (11)

ci =
T∑

j=1,j 6=i

αjxj (12)

αj =
exp(xT

i W
(5)xj)∑T

j′=1 exp(x
T
i W

(5)xj′)
(13)

In this and all subsequent models, we optionally
stack multiple layers, feeding the word represen-
tations from each layer into the next; in this case
we denote the models ATTN-1L, ATTN-2L, etc.

We also analyze multi-head attention models,
drawing from (Vaswani et al., 2017). For a model
with k heads, we construct one matrix of the form
A ∈ Rdx/k for each head, and transform each
xi, xk′

i = Ak′xi for k′ ∈ {1, ..., k}. These are
passed into the attention equations above, generat-
ing context vectors c1i , ..., c

k
i ∈ Rdx/k, which are

then concatenated to form a vector in Rdx . These
context layers are usually sent through a linear
transformation to combine features between the
heads, the output of which is ci, but we found that
omitting this combination transformation leads to
significantly improved results, so we do so in all
experiments. We denote these models K-HEAD

ATTN.

4.2.1 Relative position representations
We found in early experiments that the absolute
position embeddings in self-attention models are
insufficient for representing order. Hence, in all
attention models except when explicitly noted,
we use relative position representations as fol-
lows. We follow Shaw et al. (2018), who improved
the absolute position representations of the Trans-
former model (Vaswani et al., 2017) by learning
vector representations of relative positions and in-
corporating them into the self-attention mecha-
nism as follows:

ci =

T∑

i′=1,j 6=i

αj(xj + vf(i,j)) (14)

αj =
exp(xT

i W
(5)xj + bf(i,j))∑T

j′=1 exp(x
T
i W

(5)xj′ + bf(i,j))
(15)

where vf(i,j) is a learned vector representing how
the relative positions i and j should be incor-
porated, and bf(i,j) is a learned bias that deter-
mines how the relative position should affect the
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weight given to position j when contextualizing
position i. The function f determines which rela-
tive positions to group together with a single rel-
ative position vector. Given the generally small
datasets in IC+SL, we use the following rela-
tive position function, which buckets relative po-
sitions together in exponentially larger groups as
distance increases, following the results of Khan-
delwal et al. (2018), that LSTMs represent posi-
tion fuzzily at long relative distances.

f(i, j) =





±1 , |j − i| = 1

±2 , |j − i| ∈ {2, 3}
±3 , |j − i| ∈ {4..7}
...

(16)

This is similar to the preprint of Bilan and Roth
(2018), who use linearly increasing bucket sizes;
we found exponentially increasing sizes to work
well compared to the constant bucket sizes of
Shaw et al. (2018).

4.3 Convolutional models

Convolution incorporates local word context into
word representations, where kernel width param-
eter specifies the total size (in words) of local
context considered. Each convolutional layer pro-
duces a vector representation of each word,

h1:T = relu(
√
.5 ∗ [CNN(x1:T ) + x1:T ]) (17)

and includes a residual connection, and variance
normalization, following (Gehring et al., 2017).
To maintain the dimensionality of hi as Rdx , we
use a filter count of dx. We vary the number of
CNN layers as well as the kernel width, and for
all models use a variant known as dilated CNNs.
These CNNs incorporate distant context into word
representations by skipping an increasing number
of nearby words in each subsequent convolutional
pass. We use an exponentially increasing dilation
size; in the first layer, words of distance 1 are in-
corporated; at layer two, words of distance 2, then
4, etc. This permits large contexts to be incorpo-
rated into word representations while keeping ker-
nel sizes and the number of layers low.

4.4 Recurrent models

We also construct a recurrent word contextualiza-
tion model, more or less identical to encoders of
recent state-of-the-art models. We use a bidirec-
tional LSTM to encode word contexts, h1:T =

BiLSTM(x1:T ). As with all other models, we re-
port the performance of this model with feed-
forward slot label prediction as well as with label-
recurrent slot label prediction. Though similar to
earlier work, both models are new; though the lat-
ter is recurrent both in word contextualization and
slot label prediction, it is distinct from past mod-
els in that the two recurrent components are com-
pletely decoupled until the prediction step.

5 Datasets

We evaluate our framework and models on the
ATIS data set (Hemphill et al., 1990) of spoken
airline reservation requests and the Snips NLU
Benchmark set (Coucke et al., 2018). The ATIS
training set contains 4978 utterances from the
ATIS-2 and ATIS-3 corpora; the test set consists
of 893 utterances from the ATIS-3 NOV93 and
DEC94 data sets. The number of slot labels is 127,
and the number of intent classes is 18. Only the
words themselves are used as input; no additional
tags are used.

The Snips 2017 dataset is a collection of 16K
crowdsourced queries, with about 2400 utterances
per each of 7 intents. These intents range from
‘Play Music’ to ‘Get Weather’. Training data con-
tains 13784 utterances and the test data consists
of 700 utterances. The utterance tokens are mixed
case unlike the ATIS dataset, where all the tokens
are lowercased. Total number of slot labels are 72.
We use IOB tagging, and split 10% of the train set
off to form a development set. Utterances in Snips
are, on average, short, with 9.15 words per utter-
ance compared to ATIS’ 11.2. However, slot la-
bel sequences themselves are longer in Snips, av-
eraging 1.8 tokens per span to ATIS’ 1.2, making
span-level slot labeling more difficult. For our de-
velopment experiments, we use the casing and tok-
enization provided by Snips. Co, but to compare to
prior work, in one test experiment we use the low-
ercased, tokenized version of (Goo et al., 2018)2.

6 Experiments

We evaluate multiple models from each of our
model paradigms to help determine what model-
ing structures are necessary for SLU, and where
the best accuracy-speed tradeoffs are. First, we
report extensive evaluation across the Snips and
ATIS development sets, tracking inference speed
and time to convergence along with the usual IC

2https://github.com/MiuLab/SlotGated-SLU
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Model label
recurrent IC acc SL F1 Inference

ms/utterance
Epochs to
converge s/epoch #

Snips ATIS Snips ATIS
FEED-FORWARD No 98.56 97.14 53.59 69.68 0.61 48 1.82 17k
FEED-FORWARD Yes 98.54 97.46 75.35 88.72 1.82 83 2.52 19k
CNN, 5KERNEL, 1L No 98.56 98.40 85.88 94.11 0.82 23 1.90 42k
CNN, 5KERNEL, 3L No 99.04 98.42 92.21 96.68 1.37 55 2.16 91k
CNN, 3KERNEL, 4L No 98.81 98.32 91.65 96.75 1.28 57 2.29 76k
CNN, 5KERNEL, 1L Yes 98.85 98.36 93.12 96.39 2.13 51 2.77 43k
CNN, 5KERNEL, 3L Yes 99.10 98.36 94.22 96.95 2.68 59 3.34 93k
CNN, 3KERNEL, 4L Yes 98.96 98.32 93.71 96.95 2.60 53 3.43 78k
ATTN, 1HEAD, 1L, NO-POS No 98.50 97.51 53.61 69.31 1.95 25 1.94 22k
ATTN, 1HEAD, 1L No 98.53 97.74 75.55 93.22 4.75 117 4.34 23k
ATTN, 1HEAD, 3L No 98.74 98.10 81.51 94.07 7.68 160 4.32 33k
ATTN, 2HEAD, 3L No 98.31 98.10 83.02 94.61 7.86 79 4.87 47k
ATTN, 1HEAD, 1L, NO POS Yes 98.63 97.68 74.94 88.60 3.24 60 2.66 24k
ATTN, 1HEAD, 1L Yes 98.61 98.00 86.72 94.53 6.12 89 5.53 24k
ATTN, 1HEAD, 3L Yes 98.51 98.26 88.04 94.99 9.03 109 6.06 34k
ATTN, 2HEAD, 3L Yes 98.48 98.26 89.31 95.86 9.17 93 6.54 49k
LSTM, 1L No 98.82 98.34 91.83 97.28 2.65 45 2.91 47k
LSTM, 2L No 98.77 98.20 93.10 97.36 4.72 58 5.09 77k
LSTM, 1L Yes 98.68 98.36 93.83 97.37 3.98 54 4.62 49k
LSTM, 2L Yes 98.71 98.30 93.88 97.28 6.03 69 6.82 79k

Table 1: Development results on the Snips 2017 and ATIS datasets, comparing models from feed-forward, convolutional,
self-attention, and recurrent paradigms, as well as comparing non-recurrent, label-recurrent, and fully recurrent architectures,
on IC, SL, inference speed, and training time. Inference speed, convergence time, and parameter count are drawn from Snips
experiments, but the trends hold on ATIS. The best IC and SL for each dataset is bolded within each model paradigm to help
compare between paradigms.

accuracy and SL F1. Second, we pick a small num-
ber of our best-performing models to evaluate on
ATIS and Snips test sets, to compare against prior
work.

For each experiment below, we train until con-
vergence, where convergence is defined by an
early stopping criterion with a patience of 30
epochs and an average of development set IC ac-
curacy and token-level SL F1 used as the perfor-
mance metric.

6.1 Modeling study experiments

In our first category of experiments, we evaluate
variants of each word contextualization paradigm
introduced.

We evaluate one feed-forward word contextu-
alization module (labeled as FEED-FORWARD) to
provide a baseline performance. As with all sub-
sequent models, we evaluate this word contextu-
alization module with and without our proposed
label-recurrent decoder. This baseline should help
us determine the extent to which each dataset re-
quires the modeling of context.

We evaluate 3 convolutional word contex-
tualization modules. The first has 1 layer with
a kernel size of 5, and is intended to provide
intuition as to whether a relatively large local

context can sufficiently model SL behavior. We
label this model CNN, 5KERNEL, 1L, and name
all other CNN models similarly. The next model
has 3 layers with kernel size 5, and is dilated.
This model incorporates long-distance context
hierarchically, and is shorter and wider-per-layer
than the otherwise-similar 3rd CNN model, with
4 layers and kernel size 3.

We evaluate 4 attention-based word contextual-
ization modules. The first is simple, with 1 atten-
tion head and 1 layer. Unlike all others we analyze,
it does not use relative position embeddings. Thus,
this model is word order-invariant except for a
simple absolute position embedding. If it improves
over FEEDFORWARD, then, it provides strong evi-
dence that semantic information from the context
words, irrespective of order, is useful in making
tagging decisions. We label this model with the
flag NO-POS. To evaluate the utility of relative po-
sition embeddings, we also compare a model with
1 head and one layer, labeled ATTN, 1HEAD, 1L.
We then test two increasingly complex models,
first with 3 layers and 1 head, the second with 3
layers and 2 heads per layer.

We evaluate 2 LSTM-based word contextual-
ization modules; one uses a single LSTM layer,
whereas the other stacks a second on top of the
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first. As with all other models, we test these two
models both with independent slot prediction and
label-recurrent slot prediction.

6.2 Comparison to prior work

For our second category of experiments, we take
a few high-performing models from our analysis
and evaluate them on the Snips and ATIS test sets
for comparison to prior work. For these models,
we report not only the average IC accuracy and SL
F1 across random initializations, but also the stan-
dard deviation and best model, as most work has
not reported average values. We keep all hyperpa-
rameters fixed across all experiments, potentially
hindering performance but providing a stronger
analysis of robustness.

Note on pre-trained contextual word embed-
ding: Although our framework allows easy inte-
gration of contextual pre-trained embeddings like
BERT (Devlin et al., 2019) and EMLo (Gardner
et al., 2017) by replacing the word contextualiza-
tion component, we exclude them in our exper-
imentation in order to reduce model obfuscation
and have fair comparison against baselines.

7 Results and discussion

In this section, we draw from results reported in
Table 1, on the development sets of Snips and
ATIS. It is easy to see that very little in the way
of modeling is necessary for IC task, so we focus
our analysis on SL task. We emphasize that ATIS
has shorter spans than Snips, averaging 1.2 and 1.8
tokens, respectively, leading to differing modeling
requirements.

7.1 Minimal modeling for SLU

By analyzing three simple models - FEED-
FORWARD, ATTN-1HEAD-1L-NO-POS, and CNN-
5KERNEL-1L - we conclude that explicitly incor-
porating local features is a useful inductive bias
for high SL accuracy. The purely feed-forward
model achieves 53.59 SL F1 on Snips, whereas
one layer of convolution improves that number to
85.88. The story is similar for ATIS SL. How-
ever, a single layer of attention without position
information fails to improve over the feed-forward
model whatsoever which we believe is due to the
order-invariant nature of self-attention. This also
emphasizes the fact that focusing on local context
is useful inductive prior for SL task.

For each of these simple models, switching

from independent slot label prediction to label-
recurrent prediction provides large gains on both
datasets. We find an approximate 1.3ms/utterance
slowdown from using label recurrence across all
models. Thus, in terms of accuracy-for-speed, very
simple models can achieve much of the results of
more expensive models as long as they are label-
recurrent and incorporate local context.

7.2 High-performing convolutional models

The larger convolutional models provide very
high accuracy while maintaining fast inference
and training speeds. In particular, our best CNN
model, CNN-5KERNEL-3L, achieves 94.22 SL
F1 on Snips, compared to the two-layer LSTM
with label-recurrence, which achieves 93.88. The
model achieves this modest improvement with
over 2x the inference speed, training in under 1/2
the time, and demonstrating even stronger results
on the test sets, discussed below.

On ATIS, where utterances are longer but slot
label spans are shorter, LSTMs outperform CNNs
on the development sets.

7.3 Issues with self-attention

Our strongest self-attention model underperforms
CNNs and LSTMs on both Snips and ATIS, with a
maximum SL of 89.31 and 95.86 on the datasets,
respectively. Though self-attention models have
seen success in complex tasks with lots of train-
ing data, we suggest in this study that they lack
the inductive biases to perform well on these small
datasets.

Relative position embeddings go a long way in
improving self-attention models; adding them to
a 1-layer attentional encoder improves ATIS and
Snips SL by approximately 24 and 22 points, re-
spectively. We find that adding attention heads
does not add considerably to the computational
complexity of attention models, while increasing
accuracy; thus in a speed-accuracy tradeoff, it is
likely better to add heads rather than layers as each
layer adds O(n2 ∗ dx) additional computations.

7.4 Word and label recurrence in LSTMs

Our LSTM word contextualization modules show
that with recurrent word context modeling, label-
recurrence is less important. For instance, 2-layer
LSTM achieves only .78 increase in SL with label
recurrence over independent prediction.
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Snips
IC Acc SLR F1

Model Recurrence Mean Max Mean Max
16 LSTM* (Hakkani-Tür et al., 2016) full 96.9 - 87.3 -
’16 seq2seq+attn* (Liu and Lane, 2016) full 96.7 - 87.8 -
LSTM+attn+gates (Goo et al., 2018) full 97.0 - 88.8 -
OUR CNN, 5KERNEL, 3L none 97.65±0.28 97.57 89.57±0.54 90.66
OUR CNN, 5KERNEL, 3L label 97.57±0.41 98.29 92.30±0.40 93.11
OUR LSTM, 2L word 97.28±0.36 97.57 90.66±0.55 91.53
OUR LSTM, 2L full (decoupled) 97.22±0.32 97.14 91.53±0.50 92.62

Table 2: Test set results on the Snips dataset. (*) indicates numbers reported by (Goo et al., 2018)

ATIS
IC Acc SLR F1

Model Recurrence Mean Max Mean Max
LSTM+attn+gates (Goo et al., 2018) full 94.10 - 95.20 -
’18 Two LSTMs (Wang et al., 2018) full - 98.99 - 96.89
’18 self-attn+LSTM (Li et al., 2018) full - 98.77 - 96.52
OUR CNN, 5KERNEL, 3L none 97.04±0.62 97.98 94.84±0.22 94.95
OUR CNN, 5KERNEL, 3L label 97.37±0.57 98.10 95.27±0.19 95.54
OUR LSTM, 2L word 96.84±0.49 97.65 95.13±0.29 95.41
OUR LSTM, 2L full (decoupled) 97.00±0.44 97.98 95.15±0.25 95.21

Table 3: Test set results on the ATIS dataset, compared to recent recurrent models.

7.5 Best models compared to prior work

We report test set results on Snips and ATIS in
Tables 2 and 3. Our best models from our valida-
tion study, CNN-5KERNEL-3L and LSTM-2L, out-
perform the state-of-the-art on the Snips dataset,
with label-recurrence proving crucial, especially
for Snips. In particular, CNN-5KERNEL-3L with
label recurrence achieves an average SL F1 of
92.30, improving over the previous state-of-the-art
of 88.8, by reducing error rate by 30%, and .57-
point improvement on IC.

On ATIS, our label-recurrent models outper-
form slot-gated LSTM model of Goo et al. (2018)
on both IC and SL tasks.3 Wang et al. (2018)
attribute their result to using IC and SL-specific
LSTMs and use 300-dimensional word embedding
and 200-dimensional LSTMs, but with an ATIS
vocabulary of 867 words (suggesting a relatively
simple sequence space), we are unable to deter-
mine the source of the improvement from a model-
ing standpoint. Similar observation was made for
(Li et al., 2018) where 264-dimension embeddings
is used.

We hypothesize that our models perform bet-
ter on Snips because much of Snips slot label-
ing depends on consistency within long spans,

3We note that, since this work was performed, consider-
able efforts have been put into the Snips dataset, including
the use of ELMo (Siddhant et al., 2019), BERT (Chen et al.,
2019b), and capsule networks (Zhang et al., 2019), among
other methods (Chen et al., 2019a).

Figure 2: Visualization of the weight given to each token
representation by the attention-based pooling for sentence
representation. Lighter colors indicate greater attention.

whereas ATIS slot labels have longer-distance de-
pendencies, for example between to city and
from city tags.

7.6 Attention Visualization
We note that anecdotally, few words in each ut-
terance are useful in indicating the intent. In the
example given in Figure 2, presence of possible
departure and arrival cities may be distracting, but
the attention mechanism correctly learns to focus
on words that indicate atis aircraft intent.

8 Conclusion

We presented a general family of joint IC+SL
neural architectures that decomposes the task into
modules for analysis. Using this framework, we
conducted an extensive study of word contex-
tualization methods (including utility of recur-
rence in the representation and output space)
and determined that label-recurrent models, with
non-recurrent word representation and a recurrent
model of slot label dependencies, are a good fit for
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high performance in both accuracy and speed.
With the results of this study, we proposed a

convolution-based joint IC+SL model for SLU
that achieves new state-of-the-art results on Snips
dataset while maintaining a simple design, shorter
training, and faster inference than comparable re-
current methods.

9 Implementation details

All models are implemented in MXNet (Chen
et al., 2015). For all models, we randomly ini-
tialize word embeddings and use dx = 70. We
optimize using Adadelta algorithm (Zeiler, 2012),
with initial learning rate, .01. We clip and pad
all training and development sentences to length
30, with clipping affecting a small number of ut-
terances. Dropout (Srivastava et al., 2014) prob-
ability of .3 is used in all models. We train us-
ing a batch size of 128 split across 4 GPUs on
a p3.8xlarge EC2 instance, and perform inference
using CPUs on same machine.
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Abstract
In a spoken dialogue system, dialogue state
tracker (DST) components track the state of
the conversation by updating a distribution of
values associated with each of the slots being
tracked for the current user turn, using the in-
teractions until then. Much of the previous
work has relied on modeling the natural order
of the conversation, using distance based off-
sets as an approximation of time. In this work,
we hypothesize that leveraging the wall-clock
temporal difference between turns is crucial
for finer-grained control of dialogue scenarios.
We develop a novel approach that applies a
time mask, based on the wall-clock time dif-
ference, to the associated slot embeddings and
empirically demonstrate that our proposed ap-
proach outperforms existing approaches that
leverage distance offsets, on both an internal
benchmark dataset as well as DSTC2.

1 Introduction

Modern spoken dialogue systems – such as In-
telligent Personal Digital Assistants (IPDAs) like
Google Assistant, Siri, and Alexa – provide users
a natural language interface to help complete
tasks such as reserving restaurants, checking the
weather, playing music etc. Spoken language un-
derstanding (SLU) is a central component in such
dialogue systems, and is responsible for parsing
the natural language text to semantic frames. In
task-oriented spoken dialogue systems, a key chal-
lenge is tracking entities the user introduced in
previous dialogue turns. For example, if a user
request for what’s the weather in arlington is fol-
lowed by how about tomorrow, the dialogue sys-
tem has to keep track of the entity arlington being
referenced. Typically, this is formulated as a dia-
logue state tracking (DST) task (Henderson et al.,
2014b; Mrkšić et al., 2016).

Previous approaches to dialogue state track-
ing have mostly focused on dialogue representa-

tions (Mrkšić et al., 2016), dealing with noisy in-
put (Henderson et al., 2012; Mesnil et al., 2015),
or tracking slots from multiple domains (Hender-
son et al., 2014b; Rastogi et al., 2017; Naik et al.,
2018). In this paper, we focus on temporal in-
formation associated with each dialogue turn. Al-
though the dialogue representations – typically en-
coded using LSTMs – are able to implicitly cap-
ture the temporal order in the sequence of dia-
logue turns, we hypothesize that explicitly and ac-
curately encoding temporal information is essen-
tial for resolving ambiguity in dialogue state track-
ing. Recently, (Naik et al., 2018) presented work
that models the slot distance offset from the cur-
rent turn using a one-hot representation input to
the DST module. Alternatively, (Su et al., 2018)
leverage the distance offset in an attention mech-
anism. We posit that the notion of time based
on distance offset relative to the current turn is
too coarse-grained and often insufficient for re-
solving ambiguities associated with more complex
multi-turn dialogues. For example, in a dialogue
“how far is issaquah?” followed by “what is the
weather like?” we could have two possible inter-
pretations – a follow-up utterance issued within 10
seconds would indicate that the user is referring to
the city slot of “Issaquah” from the previous turn,
whereas, if the follow-up utterance is more than
30 seconds apart there is a good chance that the
user was just inquiring about the weather in their
current location. In this case, a dialogue system
that only encodes the distance offset will be un-
able to correctly disambiguate the aforementioned
situation. Based on this intuition, we develop a
novel approach for incorporating temporal infor-
mation in dialogue state tracking by using a time
mask over the slots.

To summarize, we introduce the notion of a time
mask to incorporate temporal information into the
embedding for slots. In contrast to previous ap-
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proaches using distance offsets, we propose lever-
aging the wall-clock time difference between the
current turn and the previous turns in the dialogue
to explicitly model temporal information. Further-
more, we demonstrate how domain and intent in-
formation can be mixed in with the temporal in-
formation in this framework to improve DST ac-
curacy. We demonstrate empirically that our pro-
posed approach improves over the baseline that
only encodes distance offsets as temporal informa-
tion.

2 Approach

2.1 Slot Carryover Task Description

In this paper, we build on the approach in (Naik
et al., 2018). For completeness, we define the
carryover task formulation here, but refer read-
ers to the original work for architecture details.
A dialogue turn at time t is defined as the tu-
ple {at,St,wt}, where wt ∈ W is a sequence
of words {wit}Nt

i=1; at ∈ A is the dialogue act;
and St is a set of slots, where each slot s is a
key-value pair s = {k, v}, with k ∈ K be-
ing the slot name (or slot key), and v ∈ V be-
ing the slot value. A user turn is represented by
ut = {aut ,Su

t ,w
u
t } and a system turn is repre-

sented by vt = {avt ,Sv
t ,w

v
t }. Given a sequence

ofD user turns {ut−D, . . . ,ut−2,ut−1}; and their
associated system turns {vt−D, . . . ,vt−2,vt−1}1;
and the current user turn ut, we construct a candi-
date set of slots from the context as

C(S) =

t⋃

j=t−D
i∈u,v

Si
j . (1)

For a candidate slot s ∈ C(S), for the dialogue
turn at time t, the probability to carryover the slot
is defined as

P (+|s, d(s),ut,u
t−1
t−D,v

t−1
t−D), (2)

where d(s) ∈ [0, D] is an integer value describ-
ing the offset of the candidate slot from the cur-
rent turn ut. The final carryover decision is deter-
mined by comparing the carryover probability to a
tunable decision threshold

An encoder-decoder model is used to evaluate
each slot candidate, as shown in Figure 1. The
current turn, past user turns, and past system turns
are all encoded using an LSTM layer with atten-

1For simplicity we assume a turn taking model - a user
turn and system turn alternate.

tion. Each slot (key and value) and intent are also
encoded by averaging the word embeddings con-
tained in each. Finally, the slot distance is encoded
by counting the number of turns back that the slot
appeared in (this would equal zero for slots from
the current turn) and one-hot encoding that value.
This is shown by the ”Recenty One-Hot” input in
the diagram. The final encoded slot candidate is
passed to the decoder which produces a final car-
ryover probability that determines whether or not
the slot should be carried over to the current turn2.

2.2 Simple Time Mask (STM)

Inspired by (Li et al., 2018), we introduce the con-
cept of masked embeddings so that irrelevant di-
mensions are suppressed in the embedding of the
slots. We start by constructing a time embedding
based on the temporal distance, d∆t, of each can-
didate slot3. This is shown in Fig. 1 as the bottom
input, in the red box. The time embedding is given
by

dt = φ(Wtd∆t + bt), (3)

where dt is a nonlinear transformation imple-
mented as a single layer feedforward neural net-
work with weight matrix Wt ∈ RNt×1 and Nt is
dimensionality of the time embedding vector. The
time mask, mt, is computed by passing the time
embedding, dt, through another feedforward neu-
ral network

mt = σ(Wdtdt + bdt), (4)

where Wdt ∈ RNs×Nt and Ns is the dimensional-
ity of the candidate slot embedding, hs.

Finally, we apply the time mask to the encoded
slot embedding:

h′
s = hs �mdt , (5)

The updated candidate slot embedding, h′
s, is now

passed to the decoder in the exact same way as
in the baseline slot carryover model as described
in (Naik et al., 2018).

Temporal dialogue behavior can vary by do-
main. Figure 2 shows how much the distribution
of d∆t can differ between three different domains
in an internal IPDA dataset (described in more de-
tail in 3.1). Therefore, we consider two exten-

2The inputs shown in red are not part of the original for-
mulation in (Naik et al., 2018).

3 Defined as number of seconds in the past that the turn
which contains the slot occured relative to the current utter-
ance.
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Figure 1: Slot carryover architecture from (Naik et al., 2018) augmented with a temporal component using domain-
specific time masking as described in Section 2.2.2.

sions of the time masking approach that take into
account the multi-domain nature of IPDAs.

2.2.1 Intent Specific Time Mask (ITM)

We leverage the dialogue act or intent associated
with the current turn in the time mask model. In
this formulation the time embedding is now given
by

dt = φ(Wtd∆t,a + bt), (6)

where d∆t,a = d∆t ⊕ ha is just the temporal dis-
tance concatenated with the existing intent embed-
ding ha and now Wt ∈ RNt×(Na+1), where Na is
the number of dimensions used in the intent em-
bedding.

2.2.2 Domain Specific Time Mask (DTM)

We also try more coarse-grained, domain-level in-
formation as input to the time embedding. Here
we use a one-hot encoded representation of the do-
mains, which gives us:

dt = φ(Wtd∆t,D + bt), (7)

where d∆t,D = d∆t ⊕ 1D is the concatenation
of the temporal distance with the one-hot-encoded
domain, 1D, and Wt ∈ RNt×(ND+1), where ND

is the number of dimensions used in the one-hot-
encoded Domain representation. This architecture
is shown in in Figure 1.
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Figure 2: Distribution of temporal distance, d∆t, for all
carryover slots from three of the largest domains in the
IPDA dataset.

2.2.3 Time-Decay Attention (TDA)

For comparison, we re-implemented the time-
decay attention (TDA) model introduced in (Su
et al., 2018). However, the original work does
not actually use time as a feature input but rather
the ordinal distance (equivalent to slot distance in
our formulation) of each dialogue turn from the
current utterance. To compare with our methods
we use the actual temporal difference between di-
alogue turns in our implementation of the TDA
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model. The parameters are learned in the end-to-
end training process.

3 Experiments

3.1 Dataset
We present the results on 2 datasets. The IPDA
dataset, in Table 1, is an internal benchmark
dataset collected from an IPDA for the en-US lo-
cale based on real usage. It consists of interactions
over 7 domains - Music, Weather, LocalSearch,
SmartHome, Video, MovieShowTimes, and Ques-
tion Answering. The data is transformed into in-
dividual candidate slots that are presented to the
model, which determines whether or not they are
relevant for the given turn. For benchmarking
against a public corpora, we also measure per-
formance on DSTC2 (Henderson et al., 2014a)
dataset. We post-process the dataset similar to the
internal dataset and only consider the top ASR and
SLU hypothesis in addition to the system turn, di-
alogue acts and the associated slots.

Train Dev Test
Total 264148 32437 33747

Positive Carryover 92084 11389 11769
Avg. d∆t 15.33s 15.58s 15.31s

Table 1: IPDA dataset statistics. Here ’positive car-
ryover’ slots is the number of candidate slots that are
relevant for the current turn.

Figure 3 shows the distribution of time between
turns for both datasets. If a slot candidate came
from a context turn that was spoken 20 seconds
before the current turn then d∆t = 20. Based on
human judged ground-truth, the slots that should
be carried over to the current turn are shown in
orange and the slots that should not are shown in
blue. One clear difference between the two distri-
butions in the IPDA dataset is the long tail of the
non-carryover distribution, indicating carryovers
are more likely from a recent turn. The domain
specific distributions further indicate that leverag-
ing dialogue time could be useful.

3.2 Results on IPDA Dataset
From Table 2, we can see that the TDA models of-
fer a slight improvement over the baseline model.
Both models incorporate slot distance offset but
the attention mechanism provides an additional
boost. The time mask models show additional
gains demonstrating that leveraging dialogue time
from each turn is important. Moreover, the time

information provides complementary information
over the distance offset based measure, as shown
by the improvements of the time masking models
over the baseline model. The DTM model per-
forms the best overall in terms of F1, which sug-
gests that adding domain information into the time
mask provides additional disambiguation power.
Interestingly, we see that the ITM model does not
improve much over the STM model, possibly be-
cause the intent embeddings do not necessarily
distinguish between temporal behavior, and are al-
ready being leveraged by the slot carryover model.

3.2.1 Investigating longer temporal distance
Here, we investigate the ability of the models to
maintain higher accuracy over longer time win-
dows in the dialogue context. The overall F1
scores for each model are binned by d∆t for each
candidate slot. The results are shown in Table 2.
The domain specific time mask model performs
the best in each d∆t bin. The effect of adding dia-
logue time information significantly improves per-
formance in the largest d∆t range. This is likely
due to the model learning that older slots are less
relevant to the current turn, which is impossible
for the baseline model to do. Additionally, we can
see that the TDA model performs comparably to
the STM model in the range 0 < d∆t ≤ 30 but
in the highest bin (30 < d∆t ≤ 60) we see that it
falls well short of all of the time-masked models.

3.3 Results on DSTC2 Dataset

Since there is only one domain in DSTC2, we
chose to only implement the STM model. From
the last column in Table 2, we can see that the
STM model produces the best result. The TDA
model, contrary to previously reported results on
DSTC4, does not perform as well. Our hypothesis
is that the temporal distribution across turns is not
monotonically decaying, which is an assumption
made in their approach.

4 Related Work

Previous work on leveraging temporal information
for dialogue state tracking has focused mostly on
using distance offsets. (Chen et al., 2017) pre-
sented a time-aware attention network to leverage
both contextual and ordinal distance information
(i.e. the number of turns back from the current
turn) and saw significant improvement. Subse-
quently, (Su et al., 2018) improved upon this by
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(a) IPDA dataset. (b) DSTC2 dataset.

Figure 3: Distribution of temporal distance, d∆t, for all candidate slots. The “Carryover Slots”, shown in orange,
represent slot candidates found in the context that should be carried over to the current turn.

Model Overall d∆t = (0, 15] d∆t = (15, 30] d∆t = (30, 60] Overall DSTC2 F1
Baseline (Naik et al., 2018) 87.8 89.3 86.8 74.3 95.0

STM 88.4 89.7 87.5 77.5 96.1
ITM 88.6 89.8 87.8 76.9 -
DTM 89.2 90.5 88.3 80.0 -

TDA (Su et al., 2018) 88.4 90.0 87.5 72.8 94.6

Table 2: Overall F1 scores on the IPDA and DSTC2 dataset as well as F1 scores binned by d∆t for the IPDA
dataset, which is measured in seconds. Note: the DSTC2 dataset only contains a single domain

designing a more flexible data-driven time atten-
tion mechanism that applied continuously decay-
ing weights to past utterances before being fed into
a contextual encoder. The attention weight was
determined based on the distance offset relative to
the current turn. However, distance offset is un-
able to capture complex dialogue scenarios, and
our work improves upon this by modeling the ac-
tual wall-clock time difference between the cur-
rent turn and the contextual turns. This is particu-
larly important in a multi-domain setting where a
few second pause between consecutive user turns
can be interpreted very differently depending on
the dialogue scenario, and our experiments sup-
port our hypothesis.

Embedding masks have been explored in ma-
chine translation. (Choi et al., 2016) showed that
contextualized word embeddings could be con-
structed from static word embeddings by apply-
ing a learned context mask. This context mask
allows the word to have different representations
depending on the source sentence context around
the word that is being translated, and the authors
demonstrated improvements in machine transla-
tion tasks with this approach. The approach of
masking word representations was also explored

in (Ruseti et al., 2016) for categorizing words into
their wordnet classes. We extend this masking
concept to dialogue state tracking task, where we
encode the temporal information in the dialogue
as the masking operation over slots.

5 Conclusion

In this work we presented a novel approach for
incorporating dialogue time information in multi-
domain large-scale SLU systems. We showed
that our proposed time masking strategy provided
gains over baseline systems that simply encode di-
alogue distance. We presented several methods for
incorporating additional information such as do-
main and intents into the time mask, and showed
that this approach improved over competing ap-
proaches that indirectly incorporate time, partic-
ularly for multi-domain dialogues. In the future,
we want to investigate more contextualized rep-
resentations of the domain and intent in order to
capture more subtle variations in the dialogue for
multi-domain scenarios.
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Abstract
We explore state-of-the-art deep reinforcement
learning methods such as prioritized experi-
ence replay, double deep Q-Networks, duel-
ing network architectures, distributional learn-
ing methods for dialog policy. Our main find-
ings show that each individual method im-
proves the rewards and the task success rate
but combining these methods in a Rainbow
agent, which performs best across tasks and
environments, is a non-trivial task. We, there-
fore, provide insights about the influence of
each method on the combination and how to
combine them to form the Rainbow agent.

1 Introduction

Dialog system can be designed for generic pur-
poses, e.g. smalltalk (Weizenbaum, 1966) or a
specific task such as finding restaurants or book-
ing flights (Bobrow et al., 1977; Wen et al., 2017).
This paper focuses on task-oriented dialog sys-
tems, which interact with a user to aid achieving
their goals. The systems have several modules
which solve different subtasks (Williams et al.,
2016) starting with natural language understand-
ing (NLU) module (De Mori et al., 2008). Its
output is then passed to a belief tracking module
(Mrkšić et al., 2017) that holds the state of the dia-
log, i.e. all relevant information provided by the
user. This belief state is then passed to the di-
alog policy module (Williams and Young, 2007)
which has to decide how the system should reply.
Depending on the ontology of the task, e.g. the
restaurant search, the size of the input space for
the policy can quickly become very large. Fur-
thermore, the belief state might be wrong due to
noisy inputs, e.g. the user could be misunderstood
because of NLU errors or in general, language
ambiguity. Therefore, building such policies by
hand is rather time consuming. Reinforcement
learning (RL) can alleviate this task by allowing

to learn such policies automatically (Williams and
Young, 2007) with a user simulator such as pro-
posed in Schatzmann et al. (2007) within a task
(Dhingra et al., 2017; Peng et al., 2018), between
task and non-task (Yu et al., 2017) and also in mul-
timodal dialog systems (Manuvinakurike et al.,
2017; Zhang et al., 2018).

Deep RL has been proven to be successful with
Deep Q-Learning (DQN) (Mnih et al., 2013) in-
troducing the idea of using neural networks as a
Q-function approximator. It has been widely used
in the context of dialog policy learning (Fatemi
et al., 2016; Dhingra et al., 2017; Casanueva et al.,
2017). However according to a recent comparison
(Casanueva et al., 2017) in the context of dialog
policy learning, it performed worse than other RL
methods such as Gaussian Process in many test-
ing conditions. Recently, several advances in deep
RL such as distributional RL (Bellemare et al.,
2017) , dueling network architectures (Wang et al.,
2016) and their combination (Hessel et al., 2018) -
a Rainbow agent - have been shown to be promis-
ing for further improvements of deep RL agents in
benchmark environments, e.g. Atari 2600. How-
ever, it is still unclear whether these methods could
advance dialog policies.

This paper attempts to provide insights moti-
vated from dialog policy modeling perspectives
how to use state-of-the-art deep RL methods such
as prioritized experience replay (Schaul et al.,
2015), double DQN (Van Hasselt et al., 2016),
dueling network architecture, distributional learn-
ing method and how to combine them to train the
Rainbow agent for dialog policy learning 1. More-
over, we explore the influence of each method w.r.t
the resulting rewards and the number of successful
dialogs, highlighting methods with the biggest and
the smallest impact.

1Agent code: https://github.com/DigitalPhonetics/adviser
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Env. 1 Env. 2 Env. 3 Env. 4 Env. 5 Env. 6
Task T1.1 T1.2 T1.3 T2.1 T2.2 T2.3 T3.1 T3.2 T3.3 T4.1 T4.2 T4.3 T5.1 T5.2 T5.3 T6.1 T6.2 T6.3
Domain CR SFR LAP CR SFR LAP CR SFR LAP CR SFR LAP CR SFR LAP CR SFR LAP
SER 0% 0% 15% 15% 15% 30%
Masks On Off On Off On On
User Standard Standard Standard Standard Unfriendly Standard

Table 1: Benchmarking environments with several domains, semantic error rates (SERs), action masks and user
models (Casanueva et al., 2017).

2 Proposed Method

For value-based reinforcement learning methods
like Q-learning, potentially large state spaces as
in the dialog setting require the use of function ap-
proximators. The DQN-Algorithm (Mnih et al.,
2013) is an example of such a method where
the action-value function is approximated by a
neural network which takes a state vector as in-
put and outputs a value for each possible ac-
tion. Loss is calculated with the squared tem-
poral difference (TD) error. Efficient off-policy
batch-training is enabled by a replay buffer which
records the agent’s turn-level experiences and al-
lows the drawing of uncorrelated training samples.

Prioritized experience replay Drawing sam-
ples from this buffer uniformly is straightforward
but problematic: important state transitions might
never be drawn from the buffer or at least too few
times to have an impact on the network weights.
Motivated by the insight that a high absolute TD-
error of an experience means that the current
action-value is not an accurate estimate yet, pri-
oritized experience replay (Schaul et al., 2015)
samples experiences having higher TD-errors with
greater probability than those with lower TD-error.
This method is relevant because it is expected to
increase learning efficiency. In the context of di-
alog policy, there are some system actions which
are crucial to the outcome of the dialog and should
have a higher probability for being used as training
data if they are not well approximated. For exam-
ple, if systems end the dialog before the user’s goal
is completed by telling the user goodbye, this will
immediately terminate a dialog with a negative re-
ward and without any chance of recovery.

Double DQN Another improvement mitigates
the overestimation bias inherent to Q-learning
by introducing a second action-value network
(Van Hasselt et al., 2016) which copies the param-
eters from the online action-value network period-
ically and is held fix otherwise. This additional
network is then used to evaluate the action-value
of the action selected greedily w.r.t. the online

Q-function, thereby decoupling action choice and
evaluation which could increase stability of the
learning process.

Dueling network architecture In comparison
to the action-value function, the state-value func-
tion is a simpler estimate - it is the expectation
over a state’s action-values and therefore only a
single value. But in states where the action choice
does not matter, or to avoid visiting states with a
low state value in general, an estimate of the value
function should be sufficient. Dueling network ar-
chitecture (Wang et al., 2016) therefore splits the
calculation of the action-value function into sepa-
rate layers of a neural network, one group comput-
ing the value function and another an advantage
function chosen so that their combination results
in the action-value function again. This approach
also has the benefit that the state value estimation
is updated every time when a state is observed by
the network, regardless of the chosen action. As
a result, it should encourage generalization across
actions. In dialog settings, there are many states
where generalization across actions could prove
beneficial, e.g. exact action choice is not impor-
tant, just the choice between action classes. For
example at the beginning of a dialog, when users
greet the system without providing any informa-
tion, the only appropriate action for the system is
to ask for more information. The exact type of in-
formation should not matter and all other actions
except for the dialog ending action should be about
equally unsuitable.

Distributional learning method One of the lat-
est additions to reinforcement learning is the quan-
tile regression distributional reinforcement learn-
ing algorithm (Dabney et al., 2018). Instead of
learning only the expected value for each state-
action pair, as in regular Q-learning, the distribu-
tion of rewards is approximated instead, thereby
modeling the randomness of the reward over mul-
tiple turns induced by action selection and random
state transitions. A noisy environment like dialog
could benefit from better knowledge about the dis-
tribution of rewards.
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The Rainbow agent Following the methodol-
ogy from (Hessel et al., 2018), we extend the
DQN algorithm (Mnih et al., 2013) with priori-
tized experience replay, double DQN, and duel-
ing network architecture. Furthermore in contrast
to (Hessel et al., 2018), we apply the following
changes to successfully train the Rainbow agent:
1) we drop the multi-step method (Sutton, 1988)
because it seems to diminish the obtained rewards.
As the step size gets larger, the rewards are de-
creased more. A possible explanation could be
that the noise generated by the user simulator leads
to accumulation of noise in rewards over multiple
steps, which could lead to higher variance in value
estimates. 2) we discard the noisy linear layers
(Fortunato et al., 2018), relying on ε-greedy ex-
ploration instead. The first reason could be the ad-
ditional parameters, which usually would require
more training samples. Since the agent was al-
ready required to learn environmental noises from
the user simulator, a complementary explanation
could be that the inclusion of a second noise dis-
tribution might have been too difficult to learn,
especially when considering the relatively small
amount of training episodes. 3) we swap the cat-
egorical DQN approach (Bellemare et al., 2017)
with the quantile regression Q-learning algorithm
(Dabney et al., 2018), now consistent with the the-
oretic results from (Bellemare et al., 2017), no
longer restricting the values of the value distribu-
tion to a uniform resolution and also no longer re-
quiring knowledge about their bounds.

3 Resources

We used PyDial toolkit (Ultes et al., 2017) as a
test-bed for experiments and evaluation. It in-
cludes a configurable user simulator and provides
multiple dialog ontologies like Cambridge Restau-
rants (CR), Laptops (LAP) and San Francisco
Restaurants (SFR). The ontologies used for the
benchmarks in this paper together with their prop-
erties are listed in table 2.

Domain #slots #requests #values
CR 3 9 268
SFR 6 11 636
LAP 11 21 257

Table 2: Benchmark domains with #slots the user can
provide or #request from the system as well as #values
of each requestable slot (Casanueva et al., 2017).

Casanueva et al. (2017) propose six different en-
vironmental models, varying in user friendliness,
simulated input channel noise and the presence or
absence of action masks, which, when enabled,
simplify learning by masking some of the possi-
ble actions. An overview of all these environmen-
tal configurations and their assignment to tasks is
given in Table 1. Evaluation results in Casanueva
et al. (2017) with several dialog policy types, e.g.
a handcrafted policy and the best reported policies
serve as baselines in our experiments.

4 Experimental Results

Training and evaluation with the PyDial user sim-
ulator follows the PyDial benchmarking tasks
(Casanueva et al., 2017), where each task (see Ta-
ble 1) is trained on 10000 dialogs split into ten
training iterations of 1000 dialogs each. We eval-
uate policies after each training iteration on 1000
test dialogs. All of the following results were ob-
tained by averaging over the outcome of ten differ-
ent random seeds using the parameters described
in appendix A.

4.1 The Rainbow Agent

The first row of Table 3 and 4 show the results of
the highest scoring policy from the PyDial bench-
mark (Casanueva et al., 2017) to serve as base-
lines. Evaluations of the handcrafted policies fol-
low in the last line. The results show that Rain-
bow agent outperforms reward of the best PyDial
agents in all 18 conditions and success rate in 16
out of 18 setting. Compared to the basic DQN
agent, Rainbow agent is better in all 18 conditions
w.r.t both reward and success rate. When averaged
across all 18 tasks, Rainbow agent (mean reward
10.1) scores more than 29% higher rewards com-
pared to the best PyDial agent (DQN, mean reward
7.8) and more than 9.7% compared to our DQN
agent. An average success rate of 90.4% is supe-
rior to the best PyDial agent (GP-Sarsa, 80.2%).
Mean deviation across all tasks and random seeds
is 0.4 in reward and 1.6% in successful dialogs.

4.2 Model Ablation Analysis

Figure 1 shows the averaged success rates for each
of our Rainbow agents leaving out one particular
method after training with 10000 dialogs. Each of
the plotted values has been evaluated on 1000 di-
alogs per random seed and averaged over all tasks.
Regarding learning speed w.r.t. success rate, the
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Agent
Task

T1.1 T1.2 T1.3 T2.1 T2.2 T2.3 T3.1 T3.2 T3.3 T4.1 T4.2 T4.3 T5.1 T5.2 T5.3 T6.1 T6.2 T6.3
best PyDial 13.51 12.32 11.02 12.73 10.11 9.13 12.23 8.62 6.52 11.13 8.23 5.81 10.53 6.52 3.82 9.93 3.63 3.22

DQN 13.0 10.8 9.5 13.1 11.0 9.5 12.7 9.7 7.5 11.9 7.9 5.1 11.4 7.3 4.3 10.7 5.7 4.7
Rainbow 14.0 12.4 11.2 13.6 11.8 10.1 12.8 9.8 8.1 12.2 10.0 8.9 11.8 7.8 4.9 10.9 6.5 4.8
handcrafted 14.0 12.4 11.7 14.0 12.4 11.7 11.0 9.0 8.7 11.0 9.0 8.7 9.7 6.4 5.5 9.3 6.0 5.3

Table 3: Rewards per task and agent (1GP-SARSA, 2eNAC, 3DQN).

Agent
Task

T1.1 T1.2 T1.3 T2.1 T2.2 T2.3 T3.1 T3.2 T3.3 T4.1 T4.2 T4.3 T5.1 T5.2 T5.3 T6.1 T6.2 T6.3
best PyDial 99.41 97.31 92.12 97.91 95.41 87.51 95.81 84.12 73.32 92.61 81.13 74.01 92.63 82.32 72.82 89.61 64.83 61.22

DQN 95.1 89.4 83.7 96.9 91.4 87.6 97.1 89.6 79.6 94.3 79.8 68.0 95.6 84.9 74.4 91.7 75.8 71.1
Rainbow 99.7 97.3 93.4 98.8 94.4 90.3 97.2 90.5 83.6 96.5 88.8 87.3 97.0 87.9 78.0 92.4 80.4 73.0
handcrafted 100.0 98.2 97.0 100.0 98.2 97.0 96.7 90.9 89.6 96.7 90.9 89.6 95.9 87.7 85.1 89.6 79.0 76.1

Table 4: Success rates per task and agent (1GP-SARSA, 2eNAC, 3DQN).

results show that Rainbow agent without distribu-
tional learning method learns the fastest, surpass-
ing the final success rate of the DQN and non-
dueling agents after only 2000 dialogs. The re-
ward plot displays similar characteristics.

Figure 1: Avg. success rate for policies after training
with 10000 dialogs (1000 dialogs per iteration).

Results in Table 5 show that there is almost no
difference between the distributional and the non-
distributional approach. Their final rewards are the
same and their success rates differ by 0.1% when
averaged across all tasks. A possible reason could
be that the diversity of the training dialogs was
too little and rewards too sparse to show a benefit
by using the distributional reinforcement learning
method. This coincides with the findings in Hes-
sel et al. (2018) which found their combined agent
without distributional learning performing similar
to the combined agent with distributional learning
for the first 40 million frames on the Atari bench-
mark.

The strongest benefits to final performance
come with the dueling architecture. For some sce-
narios like the previously described dialog start
without any user-provided information, we exam-
ined the action-state values by clustering them and

observed fewer clusters and smaller within-cluster
variance for the dueling agents, indicating better
generalization and simpler action-value functions.
Prioritized experience replay helped with learning
efficiency but had no significant effect on final per-
formance, as expected. Only a small improvement
can be attributed to double DQN, but overall per-
formance seems to be slightly more stable.

Overall, Table 5 shows that the final best Rain-
bow agent performs considerably better than the
best reported PyDial agent and the DQN agent
across all the tasks and testing environments and
is on par with handcrafted policy performance.

Agent CR SFR LAP
Suc. Rew. Suc. Rew. Suc. Rew.

best PyDial 94.5%1 10.71 79.7%1 6.82 66.8%2 5.0 2

DQN 95.1% 12.2 85.1% 8.7 77.4 % 6.8
Rainbow 96.9% 12.6 89.9% 9.7 84.3% 8.0
- distributional 96.6% 12.4 89.6% 9.6 85.4% 8.2
- double 96.0% 12.3 88.5% 9.4 85.2% 8.3
- dueling 95.5% 12.1 84.7% 8.4 77.0% 6.4
- prioritization 97.4% 12.7 89.0% 9.7 82.1% 8.0
handcrafted 90.8% 9.2 90.8% 9.2 89.1% 8.6

Table 5: Success rates and rewards per domain (1GP-
SARSA, 2DQN).

5 Conclusions

We explored state-of-the-art deep RL methods for
dialog policy on different domains with various
noise levels and user behaviours. Our findings are
that not all extensions to DQN prove beneficial
in dialog policy settings, especially when learn-
ing speed is concerned: distributional reinforce-
ment learning method requires more training time
to reach the success rates and final rewards of the
non-distributional agent. The Rainbow agent that
makes use of prioritized experience replay, double
DQN and dueling network architecture is stable
across domains and evaluation settings and learns
fastest (when excluding distributional method).

65



References
Stefan Ultes et al. 2017. PyDial: A Multi-domain Sta-

tistical Dialogue System Toolkit. In ACL, System
Demonstrations.

Marc G Bellemare, Will Dabney, and Rémi Munos.
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A Hyperparameters

All neural network layers are fully connected lin-
ear layers with ReLUs as activation functions.
In case of the dueling network architecture, the
shared layer consists of 256 neurons, followed by
two value layers, each with 300 neurons, and two
advantage layers with 400 neurons per layer. Dis-
tributional agents use an atom count of 50. Where
the dueling architecture is replaced by a standard
architecture in the evaluation process, three layers
of sizes 256, 700 and 700 are used to guarantee a
fair comparison to the dueling case by providing
the same model capacity. For prioritized replay,
the prioritization exponent α is set to 0.525 and
importance sampling exponent β to 0.4 (Schaul
et al., 2015). To train the networks we use the
Adam optimizer with a learning rate of 10−4. Ex-
ploration is performed ε-greedy with linear ε de-
cay, starting at 0.3. Whenever an agent makes use
of double Q-learning, it updates its target network
after 6 dialogs. All agents use an experience re-
play buffer capacity of 16384 transitions, a dis-
count factor γ = 0.99, minibatch size 256 and the
Huber Loss κ is set to 1. Following the PyDial
benchmarking process, we leave all hyperparam-
eters constant across all environments and dialog
domains (Casanueva et al., 2017), thus also evalu-
ating the generalization capabilities of the agents.

B Example Dialogs

Tables 6 and 7 show example dialogs between the
Rainbow agent as well as the handcrafted policy
and a user recorded in the LAP domain as qualita-
tive evaluation. The Rainbow agent was trained in
a noisy environment with 15% semantic error rate.
The user’s task was to find a cheap, light note-
book with medium-sized hard drive and arbitrary
battery rating. User responses were kept identical
for all tested policies whenever possible. Both the
combined and the handcrafted agents succeeded in
fulfilling the user’s goal with the same amount of
dialog turns.

Turn Actor Utterance
1 System Hello, welcome to the laptop in-

formation system, what kind of
laptop are you after?

1 User Hi, I’m looking for a cheap and
light laptop

2 System Would you like the hard drive to
be small, medium, or large?

2 User Medium should suffice
3 System Sorry would you like a product

for business computing or not?
3 User Yes, please
4 System The satellite-pro-nb10-a-10p is

in the budget price range, is in
the light weight range and is in
the medium drive range.

4 User Thank you, bye
5 System Thank you, goodbye.

Table 6: Recorded dialog between a human and the
Rainbow agent for task T4.3.

Turn Actor Utterance
1 System Hello, welcome to the laptop in-

formation system, what kind of
laptop are you after?

1 User Hi, I’m looking for a cheap and
light laptop

2 System Would you like your battery rat-
ing to be standard, good, or ex-
ceptional?

2 User I don’t care
3 System Would you like the hard drive to

be small, medium, or large?
3 User Medium should suffice
4 System The satellite-pro-nb10-a-10p is

in the light weight range, has a
standard battery rating , is in the
budget price range and is in the
medium drive range .

4 User Thank you, bye
5 System Thank you, goodbye.

Table 7: Recorded dialog between a human and PyDi-
als handcrafted policy for task T4.3.
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Abstract

Utterance-level analysis of the speaker’s inten-
tions and emotions is a core task in conversa-
tional understanding. Depending on the end
objective of the conversational understanding
task, different categorical dialog-act or affect
labels are expertly designed to cover specific
aspects of the speakers’ intentions or emotions
respectively. Accurately annotating with these
labels requires a high level of human exper-
tise, and thus applying this process to a large
conversation corpus or new domains is pro-
hibitively expensive. The resulting paucity of
data limits the use of sophisticated neural mod-
els. In this paper, we tackle these limitations
by performing unsupervised training of utter-
ance representations from a large corpus of
spontaneous dialogue data. Models initialized
with these representations achieve competi-
tive performance on utterance-level dialogue-
act recognition and emotion classification, es-
pecially in low-resource settings encountered
when analyzing conversations in new domains.

1 Introduction

Spontaneous human conversations have been col-
lected in different domains to support research in
data-driven dialogue systems (Serban et al., 2015),
affective computing (Zadeh et al., 2018; Busso
et al., 2008; Park et al., 2014), clinical psychology
(Althoff et al., 2016) and tutoring systems (Sinha
et al., 2015). These conversations are analyzed by
segmenting transcriptions into each speaker’s utter-
ances (Traum and Heeman, 1996), which are often
labeled with different types of information. The
exact type of label to be used depends on the down-
stream task or research questions to be answered,
and thus the tagging paradigms are varied and nu-
merous. For example, the speaker’s intention can
be specified using a dialogue acts (DAs) or speech
acts (Searle and Searle, 1969), which capture the
pragmatic or semantic function of the utterance.

Utterance DA

A: Hi Greeting
B: Hi, How are you? Greeting

A: Are you done with your homework? Question
B: Yeah Yes Answer

B: How about you? Question
A: I’m having trouble with Q4 Statement

B: Yeah Backchannel
A: so it’s going to take some time Statement

Table 1: Snippets of conversation with dialogue act
tags. “Yeah” is tagged differently in different contexts.

Utterances may also be tagged with traits such as
sentiment, emotion and valence labels (Busso et al.,
2008; Zadeh et al., 2018), speaker persuasiveness
(Park et al., 2014), speaker dominance(Busso et al.,
2008) and other characteristics at the utterance and
conversational level.

While these labels vary greatly, one constant
is that they are often ambiguous and context-
dependent (Table 1), making it challenging for hu-
mans to annotate efficiently and accurately. Thus,
curating large corpora is labor-intensive, and we are
always faced with a paucity of data in new domains
and labeling paradigms of interest.

Moreover, the label assigned to an utterance de-
pends on the current state of the dialogue (Stone,
2005) and prediction of an utterance’s label bene-
fits from referring to other utterances in context and
their labels (Jaiswal et al., 2019). Deep learning
models like RNNs and CNNs have proven effec-
tive tools to encode neighbouring utterances (Chen
et al., 2018; Liu et al., 2017; Blunsom and Kalch-
brenner, 2013; Bothe et al., 2018; Kumar et al.,
2017). However such models rely on large anno-
tated corpora that are prohibitively expensive to
procure, especially for niche domains.

One recently popular method to overcome the
dearth of supervised data in NLP is unsupervised
pretraining over large unlabeled corpora. For ex-
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ample, Melamud et al. (2016); Peters et al. (2018);
Devlin et al. (2018) use language modeling as an
unsupervised task to learn word embeddings in con-
text, and demonstrate remarkable improvements on
a number of downstream NLP tasks. However,
these methods learn representations for individual
words, whereas for dialog analysis tasks, we need
representations for utterances in the context of the
entire dialog.

In this paper, we adapt the technique of learning
contextualized representations using unsupervised
pretraining to learn representations for utterances
in the context of the dialogue. We first introduce
a general model architecture consisting of a to-
ken, utterance, and conversation encoder. We then
present a method to efficiently train this model by
predicting the bag-of-word vectors of previous and
next utterances over a large heterogeneous corpus
of spoken dialogue transcripts. We quantify the
effectiveness of learnt contextual utterance repre-
sentations on two downstream utterance-labeling
tasks: DA tagging and emotion recognition. We
obtain competitive performance on two popular
DA tagging tasks (SwitchBoard and ICSI Meeting
Recorder) and an emotion labeling task (IEMO-
CAP). Particularly, we observe significant improve-
ments over training complex utterance tagging
models from scratch for simulated low-resource
settings for these tasks as well as for considerably
smaller DA datasets such as LEGO and Map Task.

2 Methodology

We consider a large collection of conversations,
where each conversation C is an ordered list of N
utterances C = {ui, u2, ..., uN} and each utterance
is a list of tokens, ui = {w1, w2, ...w|ui|}. Conver-
sations may also have labels for every utterance:
Y = {y1, y2, ..., yN} where each yi ∈ T , a finite
set of labels expertly defined for a domain.

2.1 Unsupervised Pretraining

Contextualized Utterance Representations
We adopt a hierarchical encoder model consisting
of a token encoder, an utterance encoder and
a conversation encoder, followed by an output
layer. The token encoder layer ENCtok encodes
every token wj in utterance ui into a fixed-size
embedding etokwj

, while the utterance encoder
ENCutt encodes token embeddings of an utterance
ui into a fixed-sized utterance representation euttui

.
For our specific instantiation, we combine both en-

u1 : Hi, How are
you?

u3 : Yeah,How
about you?

Transformer

ELMO BiLSTM ELMO BiLSTM ELMO BiLSTM ELMO BiLSTM

 h2,    h2

{ "Not", "yet" ,"," , "I'm", "finding", "it", "hard"}

MLP Forward

u4 : Not yet, I'm
finding it hard

u2 : I'm good,
Done with your

homework?

ELMO BiLSTM

u0 : Hey man!

{"Hey", "man", "!"}

MLP Backward

 h1,    h1   h3,    h3

eu1 eu2 eu3

Figure 1: Hierarchical conversation encoder model

coders: we use the pretrained ELMo (Peters et al.,
2018) model to encode the sequence of tokens
in an utterance ui and take the final state of the
forward and backward LSTMs (concatenated) as
our utterance representation euttui

, i = 1, 2, ..., N .
We specifically choose ELMo because it is a strong
general-purpose encoder and its character-based
representations may be more robust to noise
and OOV words in spontaneous conversations.
This is followed by a conversation encoder
ENCconv, which further converts this sequence of
context-independent representations of utterances
to a context-dependent sequence of utterance rep-
resentations. For ENCconv, we use an architecture
identical to the decoder variant of the Transformer
(Vaswani et al., 2017) with N = 2 layers. We
specifically choose the self-attentional Transformer
for this purpose, as it is efficient to train, can
easily capture long-distance dependencies over the
entire conversation, and empirically outperformed
other architectures such as LSTMs in preliminary
experiments. The outputs, hui , i = 1, 2, ..., N ,
of this hierarchical encoder of Figure 1 can be used
as contextualized representations for utterances.

Predicting Utterance Bag-of-words In order to
learn contextualized representations, the hierarchi-
cal encoder is trained to predict the bag-of-words
of the previous and next utterances in the conver-
sation using these representations. This training
is done in the forward and backward direction
respectively by allowing the self-attention layer
of the transformer to only attend to earlier posi-
tions and later positions in the utterance sequence
respectively (Figure 1). Hence, we learn con-
textual utterance embeddings in both directions:←−
hui ,
−→
hui ; i = 1, 2, ..., N . We use an MLP fol-

lowed by sigmoid function as the output layer over
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Corpus # Utterances # Tokens

SwitchBoard 460K 3M
Meeting Recorder 105K 11K

CALLHOME 27K 1M
AMI Meeting Corpus 150K 1M

BNC 1M 10M

Table 2: List of dialogue corpora for pretraining con-
textualized utterance representations

hui to predict the set of words in the neighboring
utterance. ui−1 is reconstructed from

←−
hui and ui+1

from
−→
hui . We use binary cross entropy (BCE) loss,

where the target is a vocabulary-sized binary vector
with words present in the utterance marked 1 and
others 0. Notably this formulation reduces training
time by relaxing word-order in the reconstruction
loss, unlike other methods that predict words in or-
der for surrounding utterances (Kiros et al., 2015).
For utterances ui−1 and ui+1 with vocabulary vec-
tors Ui−1 and Ui+1 ∈ {0, 1}|V | respectively, the
bag-of-word loss for utterance ui is given by:

LBOW (ui) = BCE(MLP(
←−
hui), Ui−1)

+BCE(MLP(
−→
hui), Ui+1). (1)

where,

BCE(x,y) =

|V |∑

n

[ynlog(xn)+(1−yn)log(1−xn)]

For conversation C = {u1, u2, ..., uN},

LBOW (C) = 1

N

N∑

i=0

LBOW (ui). (2)

2.2 Utterance Tagging
Once we have learned contextualized utterance rep-
resentations, we can use them to predict the se-
quence of labels Y = {y1, y2, ..., yN}, such as
dialogue acts, for utterances in the conversation. In
this work we use a linear-chain conditional random
field (Lafferty et al., 2001) as used in previous state-
of-the-art models for DA tagging (Kumar et al.,
2017; Chen et al., 2018) to predict one of the |T |
tags for each ui, where the utterance is represented
as the concatenation of the forward and backward
contextualized vectors:

←−
hui ,
−→
hui .

3 Experiments

Pretraining Datasets and Hyperparameters
We train contextualized utterance representations

on transcriptions of spontaneous human-human
conversation corpora (Serban et al., 2015). We
choose the corpora presented in Table 2 for this
work. A majority of the conversations are dia-
logues, and utterances across all corpora are 10
words long on average. However, the chosen cor-
pora have conversations of widely varying lengths
(no. of utterances/conversation). For computa-
tion/memory efficiency, and also because more dis-
tant utterances likely have diminishing influence
on discourse modeling, we divide each conversa-
tion into conversational snippets of length 64 1 by
moving a 64-length window over the conversation
with stride 1 and train the bag-of-word loss on each
snippet thus obtained. For the conversational en-
coder, we use 2 layers of the transformer with 8
attention heads of 64 dimensions each. All feed-
forward networks use 2 layers with hidden size of
512. For training and fine-tuning, we use the Adam
(Kingma and Ba, 2014) with learning rate 0.0001.

Tasks We evaluate performance of our model on
these utterance-level tagging tasks:

SwDA, the Switchboard Dialogue Act Corpus,
annotates 1,155 telephonic conversations (224K
utterances) with one of the 42 DAs in the DAMSL
(Jurafsky, 1997) taxonomy.

MRDA, the ICSI Meeting Recorder Dialogue Act
corpus annotates 75 multi-party meetings (105K ut-
terances) with DAs according to 5 domain-specific
tags (Dhillon et al., 2004).

IEMOCAP, an emotion recognition dataset of
12 hours of dyadic improvisations or scripted sce-
narios, with eight categorical emotion labels (Park
et al., 2014) (10K utterances).

LEGO, a subset (14K utterances) of the Lets
Go bus-information dialogue system corpus (Raux
et al., 2006) annotated with the ISO 24617-2 stan-
dard for conversation functions of task by (Ribeiro
et al., 2016).

Map Task, (Carletta et al., 1997; Anderson et al.,
1991) is 18 hrs of dialogue where speakers collabo-
rate to complete a map (5K utterances).

To simulate low-resource settings for the larger
datasets like SWDA and MRDA, we experiment
with different sizes of the training datasets and eval-
uate on the standard test set for these. For LEGO
and MapTask, we use 10-fold cross validation.

Experimental Settings We use four different ex-
perimental settings to measure the efficacy of our

1tuned model hyper-parameter

70



Figure 2: Performance by training data sizes. SOTA:
comparable state-of-the-art model trained on tagging
task for entire dataset.

pretrained utterance representations : No Context -
With no conversational encoder (i.e. independently
encoding every utterance using ELMo); Random
Initialization - with the conversational encoder ran-
domly initialized and trained on only the down-
stream tagging task; Freeze Network - the conver-
sational encoder initialized using the model pre-
trained on our bag-of-word objective and kept fixed
for downstream task; Pre-trained Initialization -
the initialized conversation encoder fine-tuned on
the downstream task. These settings are used to
isolate the gains from using (1) contextualized rep-
resentations, (2) pretraining them and then (3) fine-
tuning them on the downstream task.

4 Result and Discussion

We observe that using pretrained utterance repre-
sentations shows improved performance over ran-
dom initialization and is competitive with exist-
ing state-of-the-art works by Kumar et al. (2017)
for SwDA and MRDA, and Poria et al. (2017) for
IEMOCAP that use similar hierarchical architec-

DA Category % Increase Example
in accuracy

Agree/Accept 43 That’s exactly it.
Summarize/ Oh, you mean you
Reformulate 180 switched schools..
Statement-Opinion 55 I think it’s great.
Yes-Answer 33 Yes
Hold before answer
or agreement 300 I’m drawing a blank

Table 3: SwDA DA categories that improve using pre-
trained utterance embeddings with % improvements in
accuracy over other experimental settings.

DA Corpus Pretrained Random SOTA

LEGO 93.70 92.98 88.75
Map Task 79.34 77.91 72.50

Table 4: Results on LEGO and Map Task

tures but are only trained on the task (Random
initialization setting). From Figure 2, we observe
that the pretraining-based initialization is especially
helpful when the amount of training data is signifi-
cantly reduced for SWDA, MRDA and IEMOCAP,
over other experimental settings. The improved
performance of the random initialization setting
over fixing the pretrained conversational encoder
parameters underscores the need to fine-tune for
downstream tasks. Our pretrained model also out-
performs random initialization and existing best
results (Ribeiro et al., 2015; Sridhar et al., 2009)
for truly low-resource datasets like LEGO and Map
Task, as shown in Table 4. We also analyze the gain
in accuracy by dialogue act category for the pre-
trained model over other experimental settings. We
find that the pretrained model shows improvements
in the categories listed in Table 3 over random ini-
tialization. These acts typically requires models to
keep track of longer contexts than other DAs like
questions and back-channels. Dialogue examples
in Table 5 further illustrate this.

5 Conclusion

We show that using large dialogue corpora to
train contextualized utterance embeddings using
a bag-of-word reconstruction loss is beneficial for
utterance-level tagging in the low-resource set-
ting, indicating that these embeddings learn useful
and generalizeable properties of conversational dis-
course. Future work involves incorporating speaker
identity, utterance duration and speech/prosody fea-
tures.
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Utterance Gold Pre-trained Random No Context

B: where are you going to move to? Wh-Question Wh-Question Wh-Question Yes-No-Q
A: Uh, Maryland. Statement Statement Statement Hedge
B: Oh, are you? Backchannel Backchannel Backchannel Yes-No-Q

question question question
A: Uh-huh. Yes answers Yes answers Yes answers Backchannel
B: Do you have friends there? Yes-No-Q Yes-No-Q Yes-No-Q Yes-No-Q
B: or, Abandoned Abandoned Abandoned Uninterpret.
A: My fiancee is down there 〈laughter〉. Statement Statement Statement Statement
B: Oh, I see. Resp. Ack Resp. Ack Resp. Ack Resp. Ack
B: So, does he work for Yes-No-Q Yes-No-Q Yes-No-Q Yes-No-Q
a company down there?
A: Yeah, Yes answers Yes answers Yes answers Yes answers
A: he works for the government. Statement Statement Statement Statement
B: Oh, I see. Resp. Ack Resp. Ack Resp. Ack Resp. Ack
B: Oh, the big company. Summarize/ Summarize/ Statement Statement

reformulate reformulate
A: Yeah Agree/Accept Yes Answer Yes Answer Yes Answer

A: and I said no, I’m just twenty-three, Statement Statement Statement Statement
B: Uh-huh. Backchannel Backchannel Backchannel Abandoned
A: you know, because I don’t think of Statement Statement Statement Statement
myself as needing to have children
A: but the first thing he says is, well, Statement Statement Statement Statement
don’t you miss that part of your life.
A: And I just, Abandoned Abandoned Abandoned Uninterpret.
A: my, my mind just went, Statement Statement Statement Statement
B: You didn’t know what Collaborative Collaborative Statement Statement
you’re going to be missing. Completion Completion
A: I went, what. Statement Statement Statement Statement
B: 〈Laughter〉. Non-verbal Non-verbal Non-verbal Non-verbal

Table 5: Dialogue Examples from SwitchBoard with dialogue acts as labelled under different experimental settings.
The pre-trained network performs better on categories like Summarizing and Collaborative Completion
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Abstract

Dialogue state tracking requires the population
and maintenance of a multi-slot frame repre-
sentation of the dialogue state. Frequently, di-
alogue state tracking systems assume indepen-
dence between slot values within a frame. In
this paper we argue that treating the predic-
tion of each slot value as an independent pre-
diction task may ignore important associations
between the slot values, and, consequently, we
argue that treating dialogue state tracking as a
structured prediction problem can help to im-
prove dialogue state tracking performance. To
support this argument, the research presented
in this paper is structured into three stages: (i)
analyzing variable dependencies in dialogue
data; (ii) applying an energy-based method-
ology to model dialogue state tracking as a
structured prediction task; and (iii) evaluating
the impact of inter-slot relationships on model
performance. Overall, we demonstrate that
modelling the associations between target slots
with an energy-based formalism improves di-
alogue state tracking performance in a number
of ways.

1 Introduction

Dialogue management for spoken dialogue sys-
tems is a challenging research domain due in part
to difficulties arising from limited resources, the
imperfection of technologies on which dialogue
management is dependent, and of course the com-
plexities of natural human conversation (Glass,
1999; Ward and DeVault, 2015). Within a con-
ventional dialogue manager, an explicit dialogue
state tracker is a key component that attempts to
track both interlocutors’ contributions to the ex-
change. The dialogue state tracker in particular
suffers due to errors introduced by other compo-
nents such as an automatic speech recognizer, and,
where used, natural language understanding com-
ponents (Ross and Bateman, 2009). The diffi-

culties also lie within the uncertainties of spoken
interactions, and the complexity of conversation
context (Paek and Horvitz, 2000; DeVault, 2008).

To reduce the complexity of designing and pa-
rameterising a dialogue state tracker, it is typically
necessary to limit application of a dialogue state
tracker to a specific domain, and to cast the dia-
logue state as sets of slot-value pairs that are ar-
ranged into frames. This structure in its base case
is best exemplified by the well-known dialogue
state tracking datasets such as Let’s Go (Raux
et al., 2005), though the structure can also be made
more complex as is the case in the tracking of mul-
tiple frames of dialogue states throughout the con-
versation history (El Asri et al., 2017). By casting
the dialogue representation as a set of slots to be
tracked, the dialogue state tracking process itself
is most frequently tackled as a multi-task classifi-
cation problem.

In recent years, various deep learning ap-
proaches that track dialogue states as a combina-
tion of individual classification tasks have been
proposed (Ren et al., 2018; Perez and Liu, 2017;
Vodolan et al., 2017; Mrksic et al., 2017; Ras-
togi et al., 2017). However, while these systems
achieve state-of-the-art results, there remains no-
table room for improvement (Liu et al., 2018).
Our work begins with the hypothesis that by treat-
ing dialogue state tracking as a simple multi-label
classification task, we are not taking into account
the relationships between dialogue state slot vari-
ables. This hypothesis is based in part on expe-
rience from other applications of machine learn-
ing that have demonstrated that taking target vari-
able dependencies into account is useful, but is
also based on the intuition that a human interlocu-
tor would of course take multiple target variables
into account while interpreting language (Landra-
gin, 2013).

Given the above argument, in this paper we
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present an end-to-end investigation into the impact
of domain variable dependencies on the dialogue
state tracking process. For practical purposes, we
focus our work on the Dialogue State Tracking
Challenge (DSTC) series that were introduced to
help the research community focus on the spe-
cific task and subsequently improve the quality of
spoken dialogue systems (Williams et al., 2016).
Specifically, our investigation is conducted with
respect to the second and the third dialogue state
tracking challenges (Henderson et al., 2014a,b),
and is presented in three stages:

• Data analysis - We perform statistical tests
on the dialogue data to determine whether
there are indeed dependencies between slot
variables and to what extent are these depen-
dencies present.

• Model development - Tracking dialogue
states while considering the relationships be-
tween target variables casts the problem into
a structured prediction task. We develop a
deep learning based tracker that incorporates
an energy-based modelling approach that is
notably efficient for structured predictions.

• Result analysis - Our model performance is
evaluated and analyzed using a number of
metrics to provide insights into the impact of
variable dependencies on the dialogue state
tracking process. We benchmark our energy-
based approach against results for a number
of state-of-the-art systems (Vodolan et al.,
2017; Mrksic et al., 2015; Henderson et al.,
2014c,d).

To our knowledge there has been no detailed
analysis previously on the role of variable depen-
dencies in dialogue states. The contributions of
this paper are, thus, that systematic analysis, and
our energy-based structured prediction model for
dialogue state tracking.

2 Categorical Data Analysis

The investigation presented in this paper is predi-
cated on the existence of associations between tar-
get variables in a dialogue state. Therefore, in this
section we provide a concrete analysis of variable
dependencies between domain slots in DSTC data.

2.1 DSTC 2 & 3 Datasets
The Dialogue State Tracking Challenge 2 & 3
datasets contain phone calls in the restaurant and

tourism information domains (Henderson et al.,
2014a,b). Within the datasets, the main task is re-
ferred to as Joint Goals and requires systems to
estimate the value of each slot in the set of in-
formable slots at every turn of the call. The value
constraint is retrieved from the set of possible val-
ues predefined in a specified domain ontology.

The DSTC2 dataset is split into three subsets:
1612 dialogues for training; 506 for validation;
and 1117 for a test set. The DSTC2 ontology pre-
defines four informable slots.

The DSTC3 dataset contains 2275 dialogues
that are not split into subsets; the dataset defines
nine informable slots in the ontology. Four of the
nine slot types also appear in the DSTC2 data, but
the value sets are different.

A preliminary analysis shows that these slots
are not equally distributed in both datasets (see Ta-
ble 1). The informable slots are divided into two
groups with one group including highly frequent
slots (f > 50%) and the other one containing very
low frequencies (f < 10%). Therefore, we follow
the precedent of other researchers and design our
models to track only highly frequent slots. Follow-
ing this reduction, the DSTC2 Joint Goals consist
of three slot-value pairs (food, price range, area),
and DSTC3 Joint Goals consist of four slot-value
pairs (food, price range, area, and type).

Slot DSTC2 DSTC3
call turn call turn

food 87.9 79.3 63.5 55.4
price range 73.5 62.6 68.3 60.8
area 81.8 72.3 59.5 50.6
type - - 98.5 91.0
name 0.8 0.5 1.5 0.6
near - - 8.5 6.8
has tv - - 7.3 5.8
has internet - - 7.6 5.9
children allowed - - 4.9 3.6

Table 1: The analysis of informable slot propor-
tions (%) in DSTC 2 & 3 summarised over the number
of calls and turns in the whole dataset.

2.2 Variable Dependencies

To test the independence of the slot variables, we
apply Pearson’s chi-square tests on labels of the
informable slots in a pairwise fashion to gener-
ate bivariate statistics. The dependencies between
slots are confirmed if and only if the significance
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DSTC2 food - price food - area price - area
X 2 9430.5 12739.0 3937.9

Chi-square V 176 180 24
p < 2.2e-16 < 2.2e-16 < 2.2e-16
φ 0.6081 0.7068 0.3930

Coefficients C 0.5196 0.5772 0.3657
V 0.2720 0.2671 0.1757

Table 2: Statistical tests on DSTC2 dataset.

DSTC3 food - price food - area food - type price - area price - type area - type
X 2 5792.6 7985.6 6762.5 5070.7 2873.0 3626.5

Chi-square V 145 464 116 80 20 64
p < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16
φ 0.5547 0.6513 0.5994 0.5190 0.3907 0.4389

Coefficients C 0.4851 0.5458 0.5141 0.4607 0.3639 0.4019
V 0.2265 0.1580 0.2680 0.2119 0.1747 0.1963

Table 3: Statistical tests on DSTC3 dataset.

value p < 0.05. The chi-square test results are re-
ported with the X 2 statistic, degree of freedom V ,
and statistical significance p. The statistic is cal-
culated with the formula:

X 2
V =

∑

i

∑

j

(Oij − Eij)2
Eij

(1)

where Oij and Eij are observed and expected fre-
quencies of categories i and j being activated for
the observed variables at the same time in the
whole dataset.

Furthermore, it is necessary to measure the
strength of these dependencies as the chi-square
test can only detect the presence of the dependen-
cies without saying if they are strong or not. For-
tunately, there exist several chi-square test-based
measurements of association strength between
variables. We report three such measures: φ co-
efficient, contingency coefficient C, and Cramer’s
V coefficient. All the coefficients are calculated
through adjustment of the chi-square statistic to
account for the dataset size; for instance:

V =

√
X 2

N min(r − 1, c− 1)
(2)

where X 2 is the chi-square statistic, N is the num-
ber of samples in the dataset, and r and c are the
number of rows and columns in the contingency
table. These measures are scaled between 0 and
1 indicating that 1 is the perfect relationship and

0 indicates the lack of any relationship between
variables.

We report the statistics analysis of DSTC2 data
in Table 2 and DSTC3 data in Table 3. In the
results, all variables showed significance values
p < 0.05, that indicate that there are indeed vari-
able dependencies in the dialogue domains of the
DSTC series. The association strength measured
by the chi-square based coefficients show different
level of variable dependencies ranging from a very
strong dependency (φ > 0.7, V > 0.25) to a mod-
erate one (0.3 6 φ < 0.39, 0.11 6 V < 0.15).
For example in DSTC2 data, the dependencies be-
tween the slot food and the other two, price range
and area, are strong.

While the existence of dependencies across our
labels may not be surprising, the consistency of
their strong occurrence indicates that tracking sys-
tems could achieve more accurate results if judge-
ments on trackable slots were made with reference
to the information contained within hypotheses for
neighbouring slots.

3 Energy-Based Structured State
Tracking

The data analysis performed on the DSTC series
data suggests that incorporating label dependen-
cies in the dialogue state prediction process would
be beneficial. Formally this indicates that we
should cast the dialogue state tracking process as a
structured prediction problem (Smith, 2009). This
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in itself should not be a surprise to the research
community, as several researchers have built dia-
logue state trackers around models that can in prin-
ciple be thought of as structured classifiers (Zhong
et al., 2018; Hori et al., 2016; Jang et al., 2016;
Ren et al., 2013).

One of the challenges for previous approaches
to structured prediction for dialogue state classi-
fication is that they relied on methods that had
difficulty integrating a structural component that
took inter-slot dependencies into account with a
robust underlying classifier that facilitated power-
ful feature representations from individual contri-
butions to the dialogue. Recently the application
of energy-based methods that are implemented
through neural architectures have provided one
promising avenue for structured prediction. The
idea underpinning this approach is that we learn to
rate the association between configurations of tar-
get variables and our inputs via a so-called energy
function (LeCun et al., 2006) rather than attempt
to learn to predict the structured output directly.

Below we first introduce the key principles be-
hind energy-based structured prediction, then de-
tail the energy-based dialogue state tracker that we
have constructed.

3.1 Energy-Based Structured Prediction

Let us denote the input and structured output vari-
ables as X and Y respectively. For us, X can be
thought of as the representation of a turn, while Y
is a complete dialogue state representation – not
the representation of an individual slot. Given X
and Y , a function E(X,Y ) must be trained to as-
sign some scalar value called energy to any con-
figuration of variables X and Y . This function
is called the energy function, and is traditionally
designed to assign low energy to correct variable
configurations, and higher energy to incorrect con-
figurations. In other words we have low energy
when a hypothesis for Y comes close to the ground
truth given an inputX . At run-time some interpre-
tation process moves through the space of target
configurations to find the most appropriate output
configuration for a given input.

While the energy function can be thought of as
some arbitrary scalar that is to be low for accept-
able configurations, the form of the function and
training of the function are important. Specifically
the energy function takes the following form:

E(x, y, θ) = Eglobal(y, θ) + Elocal(x, y, θ) (3)

where θ are trainable parameters of the energy net-
work, Eglobal(y, θ) is the global energy term for
labels y, and Elocal(x, y, θ) is the local energy ad-
justment of both input and output variables. Thus
the global energy function specifically considers
the acceptability of configurations of the struc-
tured target, while the local energy estimates the
appropriateness of the input with respect to indi-
vidualised elements of the prediction.

During training the parameters θ for the energy
function are estimated. This is most efficiently
done by coupling the energy function to an oracle
loss that estimates the loss between a hypothesised
output Y and the ground truth label Y ∗ for a given
input X .

Finding the parameters of a good energy func-
tion between X and Y directly is generally how-
ever not feasible, and historically was one of the
key limitations for energy-based structured pre-
diction. Instead it is generally more appropriate
to first generate some feature function F (X) that
transforms the input to an appropriate representa-
tion form that better supports the inference pro-
cess. Thus more commonly we denote the energy
function as E(F (X), Y ). Both the feature rep-
resentation and the energy function itself can be
trained through a deep neural network model ei-
ther dependently or independently.

3.2 Dialogue State Tracker

Based on the principles of energy-based structured
prediction, we have designed an energy-aware di-
alogue state tracker. The framework for training
and applying the energy-based method is based
specifically on the Deep Value Network architec-
ture proposed by Gygli et al. (2017). The archi-
tecture of our tracking model is illustrated in Fig-
ure 1.

The energy-based dialogue state tracker can be
thought of as consisting of four key elements with
associated training and inference processes; we
detail these below.

3.2.1 Feature Function Network
The Feature Function Network F (X) is a deep
learning network to process raw DSTC dialogue
data into a representation that is suitable for feed-
ing into the energy network. As DSTC dialogues
contain different input channels we implement dif-
ferent techniques to accommodate the variety of
input variables.

In detail, each input of a dialogue turn consists
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Figure 1: Deep Value Network-based Dialogue State Tracking Model.

of machine acts in a semantic format and user ut-
terance transcribed by an automatic speech recog-
nizer. We parse the machine dialogue acts with
the parsing technique by Henderson et al. (2014d)
before reducing the dimensionality of the machine
act vectors with two dense neural layers. Mean-
while, all the words in user utterances are embed-
ded with an online trained embedding layer, then
passed into a bidirectional LSTM layer (Hochre-
iter and Schmidhuber, 1997). The output vectors
of this bidirectional LSTM layer represent user ut-
terances as real-valued tensors. Following that,
the machine act and utterance vectors are concate-
nated, and fed into a unidirectional LSTM layer
that processes dialogue by turn and returns fixed-
size dialogue vector representations.

We pre-train this feature network as a multi-task
classification model following the method pro-
posed by Trinh et al. (2018). The dialogue repre-
sentations retrieved from this network are treated
as input features for the energy function.

3.2.2 Energy Function Network

The energy function network E(F (X), Y ) is im-
plemented as a feed-forward network (Belanger
and McCallum, 2016) where the general func-
tion form as illustrated in the previous section is
hard coded and the parameters are acquired dur-
ing training. Based on the energy function pro-
posed by Belanger and McCallum (2016), the gen-
eral forms of the global and local energy functions
are:

Eglobal(Y ) =W>2 f(W
>
1 Y ) (4)

Elocal(X,Y ) =

L∑

i=1

yiW
>
i F (X) (5)

where θ = {W,W1,W2} are the energy network’s
trainable parameters, f(·) is a non-linearity func-
tion, F (·) is the feature function described in the
previous section, and L is the number of classes in
the target.

This energy network produces a scalar energy
value that is the sum of global and local energy
terms for each input and output configuration.

3.2.3 Oracle Function
To train the energy function we need a signal that
estimates the compatibility of an input variable X
with an output configuration Y . We achieve this
by making use of an oracle function E∗(Y, Y ∗)
that measures the quality of any output variable
configuration Y with respect to the ground truth
label Y ∗. We implement the oracle value function
in our model with the F1 metric:

E∗F1
(y, y∗) =

2(y ∩ y∗)
(y ∩ y∗) + (y ∪ y∗) (6)

where y ∩ y∗ =
∑

imin(yi, y
∗
i ) ; and y ∪ y∗ =∑

imax(yi, y
∗
i ), that are extended for continuous

output variables.

3.2.4 Objective Function
To train and estimate the energy function, we make
use of an objective function L(E,E∗). This func-
tion calculates the error between predicted energy
E(X,Y ) and ground truth energy value that is tied
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to the oracle value E∗(Y, Y ∗). Since the F1 score
falls into the range [0, 1] we design the objective
function as a cross entropy loss function:

L = −E∗ logE − (1− E∗) log(1− E) (7)

3.3 Training Process

The training process for the energy-based dia-
logue state tracking model is summarized in Al-
gorithm 1. The learning objective is to train the
energy function to predict correct quality of output
by shaping the energy values to oracle F1 values.
All the trainable parameters of the network are up-
dated via standard backpropagation techniques.

Algorithm 1: Learning process algorithm
Function TRAIN EPOCH (dataset D, initial

weights θ, learning rate λ)
while not end of D do

Training sample
(x, y∗) ∈ D
Output generation
y ← GENERATE(x, θ)
Ground truth energy
E∗ ← E∗(y, y∗)
Predicted energy
E ← E(x, y, θ)
Objective function
L← L(E,E∗)
Backpropagation
θ ← θ − λ∇θL

end
end

In detail, for each iteration in a training epoch
we generate a batch of dialogues from the dataset.
A structured output of each turn in the dialogue is
then generated through an inference process (see
Section 3.4). The system predicts energy terms for
these variable configurations, and calculated ora-
cle values as the ground truth energies. We com-
pute the loss value of the batch, and backpropagate
the model based on this loss.

3.4 Inference Process

In the training process a GENERATE(·) func-
tion was used to come up with a candidate value
for Y given a network and input X . This genera-
tion process is based in part on the inference pro-
cess that is used at both training time and run-time
to determine a candidate Y for a given X .

The inference process predicts structured output
starting from a random initial prediction. The in-
ference process is based on the principle that the
gradient of energy with respect to Y can be cal-
culated directly and used to direct a process for
selecting Y .

In short, this prediction is generated through an
inference loop with the gradient ascent technique
for a number of steps:

y(t+1) = PY
(
y(t) + η∇yE(x, y(t), θ)

)
(8)

where PY is the projection operation to shape the
predicted output to the output variable space Y =
{yi}L ∈ {[0, 1]}L, and η is the learning rate for
gradient ascent.

4 Experimental Design

To evaluate the usefulness of the energy-based
approach we implemented and trained a tracker
based on the model outlined in the previous sec-
tion against both the DSTC2 and DSTC3 datasets.
Training is a two phase process. First, we trained
the feature network independently of the energy-
based components by casting the feature network
as a standard multi-task learning system where
each target variable is assumed to be independent
of the others. We present the results of this multi-
task based model independently, but critically we
also then make use of the trained network prior to
the output layer as the feature network that is avail-
able for training the full energy network. Thus, the
second stage of training targets the parameterisa-
tion of the energy network once the feature net-
work has already been learned.

As mentioned, the DSTC2 dataset is divided
into three subsets for training, validation, and test
purposes, while DSTC3 data are provided in a
whole set only for the test purpose. Thus we apply
DSTC2 directly, but split the DSTC3 dataset into
five folds and use cross-validation in the training
process. All experiments are run for at least five
times to ensure the stability of our results; we re-
port the average performance.

5 Result & Error Analysis

We report our multi-task and energy-based mod-
els performance on both the DSTC2 and DSTC3
datasets, and benchmark their performance against
state-of-the art systems in Table 4. A state-of-the-
art system is selected if it produces highest to date
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Model Entry DSTC2 DSTC3
Hybrid system (Vodolan et al., 2017) 0.796 -
Web-style ranking system (Williams, 2014) X 0.784 -
Multi-domain system (Mrksic et al., 2015) 0.774 0.671
Word-based system (Henderson et al., 2014d) X 0.768 -
Unsupervised RNN-based system (Henderson et al., 2014c) X - 0.646
Our work
Multi-task feature system 0.709 0.531
Energy-based system 0.760 0.622
DSTC baseline X 0.719 0.575

Table 4: Performances of state-of-the-art and our dialogue state tracking systems on DSTC 2 & 3 data. The results
for Joint Goals are reported with Accuracy metric featured in the challenge. The column Entry marks the systems
submitted to blind evaluation during the competition period.

accuracy on the Joint Goals task either during the
DSTC competition time or after the competition.
We also included the model by Henderson et al.
(2014d,c) as it includes data processing techniques
that we adopted in our work.

Overall, we find that applying an energy-based
algorithm on top of the LSTM enabled slot tracker
improves the dialogue state tracking results in
term of accuracy by a big margin, 5% for DSTC2
and 9% for DSTC3.

Comparing our work with state-of-the-art sys-
tems like the hybrid tracker (Vodolan et al., 2017)
and a multi-domain system (Mrksic et al., 2015),
the energy-based model has not yet reached their
level of performance. However, the hybrid tracker
also consists of a feature network and an algorithm
to refine the prediction. Vodolan et al. (2017) de-
signed this algorithm with a set of manual rules,
while we design the refinement with a deep neu-
ral structure and let it learn from the data. With
respect to the multi-domain system, we believe it
outperforms our energy-based model because of
the wider range of data processed by the multi-
domain system. Mrksic et al. (2015) trained and
combined their models on six datasets of different
domains, while we train our energy-based system
on a single domain at a time only.

It is also important to note that the web-style
ranking system of Williams (2014) was the best
entry during the DSTC2 competition, and is not
neural-based. It is followed by the word-base
tracker (Henderson et al., 2014d) that was devel-
oped with a special recurrent neural network ar-
chitecture. Besides, the word-based system is also
notable for its feature parsing technique that is
reused in a number of later systems (Henderson

et al., 2014c; Vodolan et al., 2015, 2017; Trinh
et al., 2017, 2018) and our work.

5.1 Slot-based Result Analysis
We argue that the feature Accuracy metric in the
DSTC series do not provide a full picture of how
well a model performs for each slot. Therefore it is
necessary to evaluate our work for the individual
slots as well as for the joint dialogue states. We
conduct a separate evaluation on the result track
file and report it in Table 5. Overall our models
achieve high accuracy across all informable slots
and the joint goals. Here the joint goals accuracy
is higher than evaluated with the DSTC evaluation
scripts due to the absence of low frequent slots that
we omit in our experiments.

We observe that the energy-based model im-
proves the tracking results of all slots both as in-
dividual and a joint set. The improvement margin
of joint goals is similar to the results measured by
the DSTC feature Accuracy metric. The tracking
result of individual slots varies from a very small
change of 0.3% to a big jump of 7%. These change
differences are related to the relative difficulties of
the slot. For example slot food has the biggest set
of possible values, which in turn makes it the most
difficult slot to track; it is for this slot that we see
the greatest improvement.

5.2 Proportional Reduction in Error
Proportional reduction in error is a statistical test
to measure association between two variables on
how one can influence the other in the prediction
process. For example given variables A and B,
this method attempts to evaluate the prediction of
A in two ways: predicting A independently; and
predicting A with the knowledge of B. Reduction
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Dataset Model Slot Joint goals
food price area type

DSTC2 Feature system 0.825 0.929 0.919 - 0.717
Energy-based 0.872 0.938 0.923 - 0.768

DSTC3 Feature system 0.730 0.844 0.781 0.937 0.587
Energy-based 0.802 0.860 0.817 0.940 0.666

Table 5: Performances of our energy-based dialogue state tracking system. The results are reported per slot and
for Joint slots of those present in the task.

in error can be formulated mathematically.

λ =
EA − EA|B

EA
(9)

where EA is the number of errors in predicting
A, and EA|B is the number of errors in predict-
ing A while taking into account B. All errors are
assumed to be absolute numbers.

From this formula we can see that λ has the
value in the range [0, 1] because EA|B ≤ EA in
all cases. If λ = 0, A and B are completely inde-
pendent, thus knowing B does not help predicting
A better. On the other hand, when λ = 1, the rela-
tionship betweenA andB is absolute, i.e., that the
knowledge of B gives us the perfect prediction of
A.

To apply this statistical method in our model
performance evaluation, we treat the prediction of
the multi-task feature system as the independent
prediction of variable A, since the output is pro-
duced without the variable dependencies. On the
other hand, we think that the energy-based model
gives prediction similar to prediction of variable
A|B, where B acts as variable associations. We
calculate the reduction in error by counting the ab-
solute number of errors for each slot and the joint
slot set of both our systems. The test result is re-
ported in Table 6.

Dataset Slot Joint
food price area type

DSTC2 0.27 0.13 0.04 - 0.18
DSTC3 0.27 0.10 0.16 0.05 0.19

Table 6: Proportional reduction in error of the energy-
based system for each slot and the joint goals.

The analysis shows that for more challenging
slots such as food, the energy-based model reduces
the error rate significantly. In both DSTC 2 &
3 a quarter of errors for food are corrected, sub-
sequently the errors in joint goals are reduced by
nearly 20%.

6 Conclusion

In this paper our contributions were two-fold. We
demonstrated, through a number of statistical tests
performed on dialogue data and an empirical anal-
ysis on variable associations presented in dialogue
domains, that dependencies between variables ex-
ist and taking them into account improves system
performance. We also demonstrated how variable
dependencies can be addressed in dialogue state
tracking through a structured prediction method-
ology, and verified our model with respect to the
second and third DSTC datasets. While our re-
sults do not directly improve on the state of the
art, we showed a significant improvement over
a non-trivial baseline. We therefore argue that
the methodology is promising, and if applied to
what is already a state-of-the-art methodology,
may help to improve existing systems beyond the
state-of-the-art.

There are a number of elements of this work that
we are looking to improve. At a fine level we are
looking at refinements of the energy-based deep
learning architecture and are considering in par-
ticular variations on our selected oracle and ob-
jective functions that would be better aligned with
the multi-categorical nature of our target variables.
Meanwhile, at a higher level we want to generalise
and further substantiate our investigation by ap-
plying the energy-based tracking methodology to
tracking architectures that already show state-of-
the-art or very near state-of-the-art performance.
Finally, we note that a key benefit of this structured
methodology is that it allows a more holistic track-
ing process for the user to be considered where
tracking aspects of personality and preference can
be neatly integrated alongside the tracking of fine-
grained dialogue state. Our longer term goal is
thus to apply the structured learning approach in
the context of user intent and preference tracking.
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Abstract

Slot filling is a core operation for utterance
understanding in task-oriented dialogue sys-
tems. Slots are typically domain-specific, and
adding new domains to a dialogue system in-
volves data and time-intensive processes. A
popular technique to address the problem is
transfer learning, where it is assumed the avail-
ability of a large slot filling dataset for the
source domain, to be used to help slot fill-
ing on the target domain, with fewer data.
In this work, instead, we propose to lever-
age source tasks based on semantically related
non-conversational resources (e.g., semantic
sequence tagging datasets), as they are both
cheaper to obtain and reusable to several slot
filling domains. We show that using auxiliary
non-conversational tasks in a multi-task learn-
ing setup consistently improves low resource
slot filling performance.

1 Introduction

Language understanding in task-oriented dialogue
systems involves recognizing information (i.e.,
slot filling) expressed in an utterance to accom-
plish a particular dialogue task. For example, in
a flight booking scenario, the utterance ”show me
all Delta flights from Milan to New York” contains
information belonging to slots in the flight do-
main, namely airline name (Delta), origin
(Milan), and destination (New York). Slots
are usually predefined and domain-specific, e.g.
in a hotel domain slots can be different, such as
room type, length of stay etc. Although
recent neural based models (Goo et al., 2018;
Wang et al., 2018; Liu and Lane, 2016) have
shown remarkable performance in slot filling, they
are still based on large labeled data, which means
that training a separate model for each domain in-
volves a resource intensive process. Thus, as more
domains are added to the system, methods that can

generalize slot filling to new domains with lim-
ited labeled data (i.e., low-resource settings) are
preferable.

Existing works in low resource slot filling are
mostly based on transfer learning (Mou et al.,
2016), whose aim is to leverage relatively large
resources in a source domain (DS) for a source
task (TS), to help a task (TT ) in a target domain
(DT ), where less data are available. Depending
on how the adaptation is performed, there are two
notable approaches: data-driven adaptation (Jaech
et al., 2016; Goyal et al., 2018; Kim et al., 2016),
and model-driven adaptation (Kim et al., 2017; Jha
et al., 2018). Essentially, both approaches produce
a model on the target domain performing training
on the same task (slot filling, in our case), i.e., as-
suming (TS = TT ), although from different do-
mains, i.e. (DS 6= DT ). All of these approaches
assume that slot filling datasets for the source do-
main are available, and little effort has been de-
voted in finding and exploiting cheaper TS , which
is crucial in a situation where a slot filling dataset
in DS is not ready yet (cold-start).

Accordingly, we attempt to leverage non-
conversational source tasks (TS 6= TT ) i.e., tasks
that use widely available non-conversational re-
sources, to help slot filling. These resources are
cheaper to obtain compared to domain-specific
slot filling datasets, and many of them are anno-
tated with rich linguistic knowledge, which is po-
tentially useful for slot filling (Chen et al., 2016).
Among these resources, we mention PropBank
(Palmer et al., 2005) and FrameNet (Baker et al.,
1998), which consist of annotated documents with
verb and frame-based semantic roles, respectively;
CoNLL 2003 (Tjong Kim Sang and De Meul-
der, 2003) and OntoNotes (Pradhan et al., 2013),
which provide named entity information; and Ab-
stract Meaning Representation (AMR) (Banarescu
et al., 2013), which provides a graph-based seman-
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Sentence what is the most expensive flight from boston to dallas

ATIS Slot O O O B-COST REL I-COST REL O O B-FROM LOC O B-TO LOC

NER O O O O O O O B-GPE O B-GPE

SemTag B-QUE B-ENS B-DEF B-TOP B-IST B-CON B-REL B-GPE O B-GPE

Table 1: An example of slot filling annotation from the ATIS (Airline Travel Information System) dataset and
author-annotated NER and SemTag in IOB format (Ramshaw and Marcus, 1995). Some ATIS slots correspond to
NER or SemTag labels, such as FROM LOC and TO LOC with GPE in NER and SemTag. Some slot tags can also
be composed of several SemTag labels such as COST REL which is composed of TOP (superlative positive) and
IST (intersective adjective).

tic formalism.
In this work, we leverage non-conversational

tasks as auxiliary tasks in a multi-task learning
(MTL) (Caruana, 1997) setup. Given appropri-
ate auxiliary tasks, MTL has shown to be partic-
ularly effective in which labeled data is scarce and
has been applied to various NLP tasks such as
parsing (Søgaard and Goldberg, 2016), POS tag-
ging (Yang et al., 2016), neural machine transla-
tion (Luong et al., 2016), and opinion role label-
ing (Marasovic and Frank, 2018). While there are
potentially many non-conversational tasks that we
can use as auxiliary tasks, we focus on those that
assign semantic class categories to a word, as they
are similar in nature to slot filling. In particular,
in this work we choose Named Entity Recognition
(NER) and the recently introduced Semantic Tag-
ging (SemTag) (Abzianidze and Bos, 2017), moti-
vated by the following rationales:
• Both NER and SemTag are semantically related

to slot filling. As illustrated in Table 1, slot
labels may correspond to either NER or Sem-
Tag labels. In addition, SemTag complements
NER as its labels subsume NER labels, and thus
could be useful to address linguistic phenom-
ena (e.g. comparative expression, intersective
adjective) relevant for slot filling and that are
beyond named entities.
• Both NER and SemTag can be re-used in many

slot filling domains. Labels in both tasks are
typically more general (coarse-grained) com-
pared to labels in slot filling.
• The resources for both tasks are cheaper to

obtain compared to domain-specific slot fill-
ing datasets, as there have been several ini-
tiatives in constructing large datasets for NER
and SemTag, for example OntoNotes (Pradhan
et al., 2013) and Parallel Meaning Bank (PMB)
(Abzianidze et al., 2017) respectively. This is
beneficial in a cold-start situation in which no
slot filling dataset is already available in DS .

Although NER has been already used in slot
filling models, most of these approaches (Mes-
nil et al., 2013, 2015; Zhang and Wang, 2016;
Gong et al., 2019; Louvan and Magnini, 2018) use
and incorporate ground truth NER labels or output
of NER systems as features to train a slot filling
model, our work differs in the method of learning
and leveraging such features from disjoint datasets
through MTL and evaluating the performance in
low-resource settings.

Our contributions are: (i) we propose to lever-
age non-conversational tasks, namely NER and
SemTag, to improve low resource slot filling
through MTL; to our knowledge this MTL combi-
nation has not been explored before. (ii) We show
that MTL models with NER and SemTag strongly
improve single-task slot filling models on three
well known datasets. While we focus on using
NER and SemTag, our study has shed light on the
potential use of non-conversational tasks in gen-
eral to help low resource slot filling.

2 Approach

Slot filling is often modeled as a sequence label-
ing problem. Given a sequence of words x =
(x1, x2, ..., xn) as input, a model M predicts the
corresponding slot labels y = (y1, y2, ..., yn) as
output.

2.1 Base Model
State-of-the-art models on sequence labeling are
typically built based on bi-directional LSTM (bi-
LSTM), on top of which there is a CRF model
(Lample et al., 2016; Ma and Hovy, 2016). The
bi-LSTM takes x as input and each word xi is
represented as an embedding ei = [wi; ci] com-
posed of the concatenation of a word embedding
wi and character embeddings ci. The bi-LSTM
layer produces the forward output state −→hi and the
backward output state ←−hi . The concatenation of
the output states, hi = [

−→hi ;
←−hi ], is then fed to a
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feed-forward (FF) layer, followed by a CRF as the
final output layer that predicts a slot label yi by
taking into account the mixture of context infor-
mation captured by the last FF layer and the slot
prediction yi−1 from the previous word.

2.2 Multi-task Learning Models

In the context of MTL, models for TS , often re-
ferred as auxiliary tasks, and for TT , referred
as the target task, are simultaneously trained
(Yang et al., 2017). In order to perform adapta-
tion, the MTL model M is partitioned into task-
specific parts (MTS and MTT ) and task-shared-
parts (MTS∩TT ). We use two notable MTL archi-
tectures:
• MTL-Fully Shared Network (MTL-FSN).

The word and character embeddings, and the bi-
LSTM layers, are parts ofMTS∩TT . The hidden
state outputs of the bi-LSTM are passed to each
of the CRF output layers in MTS and MTT .
During training a mini-batch of a particular task,
the output layers of other tasks are not updated.
• Hierarchical-MTL (H-MTL). Inspired by

(Søgaard and Goldberg, 2016; Sanh et al.,
2019), we introduce a hierarchy of tasks inM
to create different levels of supervision. Instead
of placing the output CRF layers for all tasks
after the shared bi-LSTM layer, we add a task-
specific bi-LSTM in MTT after the shared bi-
LSTM and then attach the output layer. In other
words, we supervise TS , which have coarse-
grained labels in the lower level output layer and
TT , which has more fine-grained labels in the
higher level output layer.

3 Experiments

The main objective of our experiments is to vali-
date the hypothesis that using non-conversational
tasks as auxiliary tasks in a MTL setup can help
low resource slot filling. In our MTL configura-
tion, the target task (TT ) is slot filling, and the
auxiliary tasks (TS) are set to NER or SemTag or
both.

Baselines. We compare the two MTL ap-
proaches (see §2.2) with the following baselines:
• Single-Task Learning (STL). The base model

is directly trained and tested on TT , without in-
corporating any information from TS . The base
model (see §2.1) is a bi-LSTM-CRF which is
the core of many models for slot filling (Goo

Dataset Task #train #dev #test #label

ATIS Slot Filling 4478 500 893 79
MIT Restaurant Slot Filling 6128 1532 3385 8
MIT Movie Slot Filling 7820 1955 2443 12
OntoNotes 5.0 NER 34970 5896 2327 18
PMB SemTag 67965 682 650 73

Table 2: Statistics about the datasets, reporting the
number of sentences in train/dev/test set, and the num-
ber of labels.

et al., 2018; Wang et al., 2018; Liu and Lane,
2016) and sequence tagging tasks in general.
• STL + Feature Based (STL + FB). The same

model as STL but incorporating the outputs
of the independently trained NER and SemTag
models as an additional feature in the input em-
beddings.

Datasets. The language of all the datasets that
we use is English. We evaluate our approach
on three slot filling datasets, namely ATIS (Price,
1990), MIT Restaurant, and Movie (Liu et al.,
2013). ATIS is a widely used dataset for spo-
ken language understanding which contains utter-
ances requesting flight related information. While
MIT Restaurant and Movie contain utterances re-
questing information related to restaurants and
movies. For NER, we use the newswire section
of OntoNotes 5.0 (Pradhan et al., 2012), which
is compiled from English Wall St. Journal. For
SemTag, we use Parallel Meaning Bank (PMB)
(Abzianidze et al., 2017) 2.2.0. The PMB dataset
is constructed from twelve different sources, in-
cluding OPUS News Commentary (Tiedemann,
2012), Tatoeba1, Sherlock-Holmes stories, Rec-
ognizing Textual Entailment (Giampiccolo et al.,
2007), and the bible (Christodoulopoulos and
Steedman, 2015). Following the previous pub-
lication related to SemTag (Abzianidze and Bos,
2017), we train the SemTag model using the silver
data and test on gold data. For all datasets, we use
the provided train/dev/test splits. Table 2 shows
the overall statistics of each dataset. To simulate
the low resource settings, in all experiments we
only use 10% training data on TT .

Training. We do not tune the hyperparameters2

but follow the suggestions and adapt the imple-
mentation of Reimers and Gurevych (2017)3. The
MTL models are trained in an alternate fashion

1https://tatoeba.org/eng/
2The hyperparameters are listed in Appendix B
3https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf
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(Jaech et al., 2016) between TT and TS . Conse-
quently, as the training data size of TS is larger
than TT , the same TT data is reused until the whole
TS is used in the training. We evaluate the perfor-
mance by computing the F1-score on the test set
using the standard CoNLL-2000 evaluation4.

4 Results and Discussion

Model TS TT
ATIS MIT-R MIT-M

STL - 87.910.56 67.370.26 80.710.63

STL+FB - 87.790.67 67.270.64 80.560.54

MTL-FSN N 89.560.16 68.820.18 80.770.13

S 89.190.26 68.210.71 80.570.32

N,S 89.100.41 68.210.43 79.690.33

H-MTL N 89.170.33 69.221.00 81.790.26

S 88.960.41 69.090.24 81.590.17
N,S 88.780.37 68.960.50 81.150.25

Table 3: Average F1-score and standard deviation
(numbers in subscript) of the performance on the test
sets. For the TT training split, only 10% data is used.
Bold indicates the best score for each TT . N and S in
TS denote NER and SemTag, respectively.

Overall Performance. Table 3 lists the over-
all performance of the baselines and of the MTL
models. We report the average F-1 score and
also the standard deviation, as recommended by
Reimers and Gurevych (2018), over three runs
from different random seeds. For all TT , it is
evident that the MTL models with NER or Sem-
Tag combinations yield the best results compared
to STL. MTL models also outperform the STL
+ FB baseline, indicating that training the model
simultaneously with the auxiliary task is better
than incorporating the output of the independently
trained auxiliary models as features for the slot
filling model. In terms of the effectiveness of the
auxiliary tasks, using NER produces the best re-
sults compared to the other TS combinations. The
difference between MTL with NER and MTL with
SemTag is marginal. Regarding the MTL models,
on average, H-MTL yields better scores compared
to MTL-FSN in MIT-R and MIT-M, which sug-
gests that supervising tasks with coarse-grained la-
bels and fine-grained labels on different layers is
beneficial.

Slot-wise Performance. One of our motivations
for using NER and SemTag is that their labels are

4https://www.clips.uantwerpen.be/conll2000/

TT Concept Model

STL MTL

ATIS LOC 94.740.37 95.820.34

ORG 92.520.89 93.370.29

MIT-R LOC 75.290.46 76.020.39

MIT-M PER 85.040.24 84.580.56

Table 4: Performance on slots related to person (PER),
location (LOC), and organization (ORG) concepts. We
use the best MTL from Table 3 for each TT .

coarse-grained, and that they can be re-used for
several slot filling domains. We are interested to
see whether MTL improves the performance of
slots related to these coarse-grained concepts. In
order to do this, we manually created a mapping5

from the slots to some coarse-grained entity con-
cepts used by CoNLL-2003 (Tjong Kim Sang and
De Meulder, 2003) including Person, Organiza-
tion, and Location. For example, in ATIS, the slot
airline name is mapped to Organization, the
slot fromloc.city name is mapped to Loca-
tion, etc. We perform the analysis on the dev set by
re-running the evaluation based on the mapping.
Results in Table 4 show that in ATIS and MIT-R,
MTL brings improvements on slots related to Lo-
cation and Organization. However, MTL does not
help in slots related to Person names in MIT-M.
Based on our observation on the prediction results,
most errors come from misclassifying DIRECTOR
slots as ACTOR slots.

Figure 1: Gain (∆F1) obtained using MTL over STL
on increasing training data. Positive numbers mean
MTL is better, negative numbers mean MTL is worse.
We use the best MTL from Table 3 for each TT .

Performance Gain on Increasing Data Size.
We also carried on an experiment by increasing

5We provide the mapping in Appendix A
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the amount of training data on TT , and evaluated
the performance on the dev set to understand the
usefulness of MTL on varying data size. As shown
in Figure 1, as we increase the size of the training
data, the gain that we obtain using MTL tends to
decrease. The results suggest that MTL is indeed
more useful in very low resource scenarios, ac-
cording to our initial hypothesis. After 40% train-
ing data size is used (around 2K utterances), MTL
is less useful. We believe that this is because the
slot filling datasets are relatively simple, e.g. the
texts are short and most of them express a single
specific request, thus, it is relatively easy for the
model to capture the regularities.

Impact on Auxiliary Tasks Performance. We
also perform an analysis to understand the ef-
fect of MTL to the model performance for TS .
The STL performance of OntoNotes and Seman-
tic Tagging are around 89% and 96% respectively
in terms of F1-score. With MTL, on average, the
TS model performance decrease about 0.7 points
for OntoNotes and 0.2 points for Semantic Tag-
ging. This suggests that TS models do not benefit
from the low resource TT through the MTL frame-
work and the training mechanism that we use. In
general, whether MTL can benefit model perfor-
mance in a target task given auxiliary tasks (or
vice versa) is still a question and beyond the scope
of this paper. While there is no exact answer yet
for this question, we refer to (Bingel and Søgaard,
2017; Alonso and Plank, 2017) which study the
characteristics of auxiliary tasks that is potential to
help target task performance (Bingel and Søgaard,
2017; Alonso and Plank, 2017) .

5 Conclusions

We proposed to leverage non-conversational tasks,
Named Entity Recognition and Semantic Tagging,
through multi-task learning to help low resource
slot filling. Our experiments demonstrate that: (i)
non-conversational tasks are effective to improve
slot filling performance, and they are reusable in
different slot filling domains; (ii) incorporating a
task-hierarchy in the multi-task architecture based
on the granularity of the labels is beneficial for the
model performance on two out of three datasets.

In the future, we plan to explore other non-
conversational resources such as FrameNet (Baker
et al., 1998) which provide a repository of event
frames and semantic roles that can be relevant for
intent classification and slot filling in task-oriented

dialogue systems. Also another direction is to
apply fine-tuning with the recently popular pre-
trained language model e.g. BERT (Devlin et al.,
2018).
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A Mapping of entity concepts and slots
for each dataset

Concept ATIS MIT-R MIT-M

LOC fromloc.airport code location -
fromloc.airport name
fromloc.city name
fromloc.state code
fromloc.state name
stoploc.airport name
stoploc.city name
stoploc.state code
toloc.airport code
toloc.airport name
toloc.city name
toloc.country name
toloc.state code
toloc.state name

ORG airline name - -

PER - - character
actor
director

Table 5: The mapping of entity concepts, namely Lo-
cation (LOC), Organization (ORG), and Person (PER)
to their corresponding slots in each dataset.

B Hyperparameters

Hyperparameter Value

LSTM cell size 100
Dropout 0.5
Word embedding dimension 300
Character embedding dimension 100
Mini-batch size 32
Optimizer Adam
Number of epoch 50
Early stopping 10
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Abstract

We present the first complete attempt at con-
currently training conversational agents that
communicate only via self-generated lan-
guage. Using DSTC2 as seed data, we trained
natural language understanding (NLU) and
generation (NLG) networks for each agent and
let the agents interact online. We model the
interaction as a stochastic collaborative game
where each agent (player) has a role (“assis-
tant”, “tourist”, “eater”, etc.) and their own
objectives, and can only interact via natural
language they generate. Each agent, therefore,
needs to learn to operate optimally in an envi-
ronment with multiple sources of uncertainty
(its own NLU and NLG, the other agent’s
NLU, Policy, and NLG). In our evaluation,
we show that the stochastic-game agents out-
perform deep learning based supervised base-
lines.

1 Introduction

Machine learning for conversational agents has
seen great advances (e.g. Tur and Mori, 2011; Gao
et al., 2019; Singh et al., 1999; Young et al., 2013;
Oh and Rudnicky, 2000; Zen et al., 2009; Re-
iter and Dale, 2000; Rieser and Lemon, 2010),
especially when adopting deep learning models
(Deng and Liu, 2018; Mesnil et al., 2015; Wen
et al., 2015, 2017; Su et al., 2017; Papangelis
et al., 2018; Liu and Lane, 2018b; Li et al., 2017;
Williams et al., 2017; Liu and Lane, 2018a). Most
of these works, however, suffer from the lack of
data availability as it is very challenging to design
sample-efficient learning algorithms for problems
as complex as training agents capable of meaning-
ful conversations. Among other simplifications,
this results in treating the interaction as a single-
agent learning problem, i.e. assuming that from
the conversational agent’s perspective the world
may be complex but is stationary. In this work,

we model conversational interaction as a stochas-
tic game (e.g. Bowling and Veloso, 2000) and train
two conversational agents, each with a different
role, which learn by interacting with each other
via natural language. We first train Language Un-
derstanding (NLU) and Generation (NLG) neural
networks for each agent and then use multi-agent
reinforcement learning, namely the Win or Lose
Fast Policy Hill Climbing (WoLF-PHC) algorithm
(Bowling and Veloso, 2001), to learn optimal di-
alogue policies in the presence of high levels of
uncertainty that originate from each agent’s sta-
tistical NLU and NLG, and the other agent’s er-
ratic behaviour (as the other agent is learning at
the same time). While not completely alleviating
the need for seed data needed to train the NLU
and NLG components, the multi-agent setup has
the effect of augmenting them, allowing us to gen-
erate dialogues and behaviours not present in the
original data.

Employing a user simulator is an established
method for dialogue policy learning (Schatzmann
et al., 2007, among others) and end-to-end dia-
logue training (Asri et al., 2016; Liu and Lane,
2018b). Training two conversational agents con-
currently has been proposed by Georgila et al.
(2014); training them via natural language com-
munication was partially realized by Liu and Lane
(2017), as they train agents that receive text in-
put but generate dialogue acts. However, to the
best of our knowledge, this is the first study that
allows fully-trained agents to communicate only
in natural language, and does not allow any all-
seeing critic / discriminator. Inspired by Hakkani-
Tür (2018), each agent learns in a decentralized
setting, only observing the other agent’s language
output and a reward signal. This allows new,
untrained agents to directly interact with trained
agents and learn without the need for adjusting pa-
rameters that can affect the already trained agents.
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Figure 1: Information flow between two agents on a successful example (shown in red, starting from the Informa-
tion Seeker’s policy). Where needed, slot values are populated from the tracked dialogue state.

The architecture of each agent is mirrored as
shown in Figure 1, so the effort of adding agents
with new roles is minimal. As seed data, we
use data from DSTC2 (Henderson et al., 2014),
which concerns dialogues between humans ask-
ing for restaurant information and a machine pro-
viding such information. Our contributions are:
1) we propose a method for training fully text-
to-text conversational agents from mutually gen-
erated data; and 2) we show how agents trained
by multi-agent reinforcement learning and mini-
mal seed human-machine data can produce high
quality dialogues as compared to single-agent pol-
icy models in an empirical evaluation.

1.1 Related Work

Collecting and annotating a big corpus requires
significant effort and has the additional challenge
that agents trained in a supervised manner with a
given corpus cannot easily generalize to unseen /
out of domain input. Building a good user simula-
tor to train against can be challenging as well, even
equivalent to building a dialogue system in some
cases. Directly learning from humans leads to
policies of higher quality, but requires thousands
of dialogues even for small domains (Gasic et al.,
2013). Shah et al. (2018) combine such resources
to train dialogue policies. Recently, model-based
RL approaches to dialogue policy learning are be-
ing revisited (Wu et al., 2018); however, such
methods still assume a stationary environment.

Georgila et al. (2014) concurrently learn two
negotiator agents’ dialogue policies in a set-

ting where they negotiate allocation of resources.
However, their agents do not interact via language,
but rather via dialogue acts. They use PHC and
WoLF-PHC (Bowling and Veloso, 2001) to train
their agents, who use two types of dialogue acts:
accept and offer, each of which takes two numer-
ical arguments. Lewis et al. (2017) train agents
on a similar task, but their agents are modelled as
end-to-end networks that learn directly from text.
However, the authors train their negotiator agent
on supervised data and against a fixed supervised
agent. Earlier works include English and Heeman
(2005), the first to train policies for two conversa-
tional agents, but with single-agent RL, and Chan-
dramohan et al. (2014) who applied co-adaptation
on single-agent RL, using Inverse RL to infer re-
ward functions from data.

Liu and Lane (2017) train two agents on DSTC2
data, taking text as input and producing dialogue
acts that are then fed to template-based language
generators. They pre-train their models using the
data in a supervised manner and apply reinforce-
ment learning on top. In our setup, information
providers and seekers are modeled as active play-
ers in a non-stationary environment who interact
with each other via language they generate, us-
ing statistical language generators. Each agent has
their own reward as the objectives are not iden-
tical, and their dialogue manager uses a method
designed for non-stationary environments. While
our setup still needs seed data to ensure linguistic
consistency and variability, it augments this data
and can train high quality conversational agents.
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Goal Constr(pricerange=cheap), Constr(area=north), Req(addr), Req(phone)
Agent Role Input / Output

Example of DM error (Seeker’s policy is also learning):
Prov. NLG what part of town do you have in mind?

Seeker NLU request(area)
Seeker DM act inform food

Example of NLG error:
Seeker DM act request phone
Seeker NLG what is the phone
Prov. NLU request(phone)
Prov. DM act inform phone
Prov. NLG the post code is c.b 4, 1 u.y .

Seeker NLU inform(postcode = c.b 4, 1 u.y)
Example of NLU error:

Provider NLG the phone number is 01223 356555
Seeker NLU inform(phone=01223)

Table 1: A failed dialogue between two conversational agents during training. Uncertainty originating from NLU
and NLG components on top of the erratic behaviour of each agent’s policy (as they learn concurrently) can have
a big impact on the quality of the learned dialogue policies.

Other than the works mentioned above, many
approaches have been proposed to train modular
or end-to-end dialogue systems. To the best of our
knowledge, however, none of them concurrently
trains two conversational agents.

2 System Overview

Figure 1 shows the general architecture and in-
formation flow of our system, composed of two
agents who communicate via written language.
Our system operates in the well-known DSTC2
domain (Henderson et al., 2014) which concerns
information about restaurants in Cambridge; how-
ever, our multi-agent system supports any slot-
filling / information-seeking domain. The Lan-
guage Understanding and Generation components
are trained offline as described in the follow-
ing sections, while the dialogue policies of the
agents are trained online during their interac-
tion. Given that our language generation compo-
nent is model-based rather than retrieval-based or
template-based, we believe that the quality of the
generated language and dialogues is encouraging
(see appendix for some example dialogues).

2.1 Language Understanding
The task of Natural Language Understanding
(NLU) consists of mapping a free-form sentence
to a meaning representation, usually in the form
of a semantic frame. The frame consists of
an intent and a set of slots with associated val-

ues. For instance, the semantic frame of the sen-
tence “Book me an Italian restaurant in the south
part of the city” can be mapped to the frame
“book restaurant (food: Italian, area: south)”
where book restaurant is the intent and food and
area are the slots.

In recent years, deep learning approaches have
been adopted for NLU, performing intent classi-
fication and slot tagging both independently (Tür
et al., 2012; Lee and Dernoncourt, 2016; Xu and
Sarikaya, 2013; Mesnil et al., 2015; Kurata et al.,
2016; Huang et al., 2015) and jointly (Zhang and
Wang, 2016; Rojas-Barahona et al., 2016). In
Hakkani-Tür et al. (2016), decoders tag each word
in the input sentence with a different slot name
and concatenate the intent as a tag to the end-of-
sentence token, while in Liu and Lane (2016) the
encoder is shared, but the two tasks have separate
decoders. In most cases, intent detection is treated
as a classification problem and the slot name tags
for all words are uniquely assigned to the intent
detected in the sentence.

In our case, as we decided to use the same NLU
model architecture for both agent roles, we could
not rely on multi-class classification. In particu-
lar, system outputs in DSTC2 often contain mul-
tiple acts, so an “information seeker” NLU model
has to learn to identify which intents are present
in the system utterance as well as to assign slot
values to each identified intent. An example of
this need is evident in the sentence “There are
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no Italian restaurants in the south part of the
city, but one is available in the west side” which
can be mapped to “{deny(food: Italian, area:
south), inform(area: west)}”. In order to tackle
those scenarios, we designed our decoder to pre-
dict multiple intents (casting the task as a multi-
label classification problem) where each intent is
a class and, for the “request” intent, the pair of
“request” and all requestable slots are additional
classes. This is necessary as the slot values of
the request intent are names of slots (e.g. re-
quest(food)), and they may not be mentioned ex-
plicitly in the sentences. Moreover, to account for
the multiple intents in the set tagger decoder, we
augmented the number of possible tags for each
word in the sentence concatenating the name of
the intent they are associated with. In the previ-
ous example, for instance, the word “south” is as-
signed a “deny area” tag, while the word “west”
is assigned an “inform area” tag, so the name of
the intent in the tag identifies which of the multiple
intents each slot is assigned to. This increases the
number of tags, but allows an unequivocal assign-
ment of the slot values to the intents they belong
to.

The whole model, which is composed of a con-
volutional encoder and the two decoders (one in-
tent multi-label classifier and a slot tagger), is
trained end-to-end in a multi-task fashion, with
both multi-label intent classification and slot tag-
ging tasks being optimized at the same time. The
output set of semantic frames from the NLU is
then aggregated over time and passed on to the di-
alogue policy.

Evaluating NLU Quality Table 2 summarizes
the performance (F1 scores) of the trained models,
with respect to intent, frame, and slot IOB tags,
calculated on the DSTC2 test set. The F1 measure
is used instead of accuracy due to the multiple in-
tents, acts and slots in our problem formulation.

Role Intent F1 Slots F1 Frame F1
Provider 0.929 0.899 0.927

Seeker 0.986 0.995 0.983

Table 2: F1 scores for each agent’s NLU model.

2.2 Dialogue Policy Learning
As already discussed, in this work we train
two agents: one seeking restaurant informa-
tion (“seeker”) and one providing information
(“provider”). Each agent’s dialogue policy re-

ceives the tracked dialogue state and outputs a di-
alogue act. While both agents have the same set
of dialogue acts to choose from, they have dif-
ferent arguments to use for these acts (Hender-
son et al., 2014). Each agent also has a differ-
ent dialogue state, representing its perception of
the world. The seeker’s state models its prefer-
ences (goal) and what information the provider
has given, while the provider’s state models con-
straints expressed or information requested by the
seeker, as well as attributes of the current item
in focus (retrieved from a database) and metrics
related to current database results, such as num-
ber of items retrieved, slot value entropies, etc.
The reward signal is slightly different for each
agent, even though the task is collaborative. It
assigns a positive value on successful task com-
pletion (restaurant provided matches the seeker’s
goal, and all seeker’s requests are answered), a
negative value otherwise, and a small negative
value for each dialogue turn to favor shorter in-
teractions. However, a seeker is penalised for
each request in the goal that is not expressed, and
a provider is penalised for each request that is
unanswered. To train good dialogue policies in
this noisy multi-agent environment, we opted for
WoLF-PHC as a proof of concept and leave in-
vestigation of general-sum and other methods that
scale better on richer domains for future work.
The dialogue policies that we train operate on the
full DSTC2 act and a subset of the slot space.
Specifically, not all dialogue acts have slot argu-
ments and we do not allow multiple arguments per
act or multiple acts per turn, so the size of our ac-
tion space is 23. In the input, all policies receive
the output of the NLU aggregated over the past di-
alogue turns (i.e. keeping track of slots mentioned
in the past) with - as mentioned above - the state
of the seeker including its own goal, and the state
of the provider including current database result
metrics which are fetched through SQL queries
formed using the slot-value pairs in the provider’s
state.

2.2.1 WoLF-PHC
A stochastic game can be thought of as a Markov
Decision Process extended to multiple agents. It
is defined as a tuple (n, S,A1..n, T,R1..n), where
n is the number of agents, S is the set of states,
Ai is the set of actions available to agent i, T :
S ×A× S → [0, 1] is the transition function, and
Ri : S ×A→ < is the reward function of agent i.

95



WoLF-PHC (Bowling and Veloso, 2001) is a
PHC algorithm (simple extension to Q-Learning
for mixed policies) with variable learning rate and
the principle according to which the agent should
learn quickly (i.e. with a higher learning rate)
when losing and slowly when winning. Briefly,
Q is updated as in Q-Learning and an estimate of
the average policy is maintained:
π̃(s, a′) ← π̃(s, a′) + 1

C(s)(π(s, a
′) − π̃(s, a′)),

whereC(s) is the number of times state s has been
visited. The policy then is updated as follows:

π(s, a)← π(s, a)+

{
δ a = amaxa′Q(s, a′)
−δ
|Ai|−1 otherwise

δ =

{
δw

∑
a π(s, a)Q(s, a) >

∑
a π̃(s, a)Q(s, a)

δl otherwise

where δw and δl are learning rates.

2.3 Language Generation

Natural language generation (NLG) is a critical
module in dialogue systems. It operates in the later
phase of the dialogue system, consumes the mean-
ing representation of the intended output provided
by the dialogue manager, and converts it to a nat-
ural language utterance.

Previous research has approached the NLG
problem in various ways (e.g., Langkilde and
Knight, 1998; Walker et al., 2002; Oh and Rud-
nicky, 2000). One common approach is rule-
based / template-based generation, which pro-
duces utterances from handcrafted rules or tem-
plates where slot variables are filled with values
from the meaning representation provided by the
dialogue manager. This approach has been widely
adopted in both industrial and research systems.
Although it guarantees high-quality output, it is
time-consuming to write templates especially for
all possible meaning representations and the gen-
erated sentences quickly become repetitive for the
users. Moreover, scalability and maintenance of
these templates become concerns as we expand the
system to deal with more domains or scenarios.

More recently, deep neural networks have been
widely adopted in natural language generation be-
cause of their effectiveness. Among all types
of deep learning architectures, the sequence-
to-sequence approach (seq2seq) has been most

widely and successfully adopted for language gen-
eration in several tasks as machine translation
(e.g. Sutskever et al., 2014), question answering
(e.g. Yin et al., 2016), text summarization (e.g.
Chopra et al., 2016), and conversational models
(e.g. Shang et al., 2015; Serban et al., 2016).

Our NLG model is inspired by recent state of
the art seq2seq models such as Sutskever et al.
(2014) and Wen et al. (2015), that transform one
sequence of words to another. Our seq2seq model
was constructed to take a meaning representation
string as input and generate the corresponding
natural language template as output. Both input
and output were delexicalized with slot values re-
placed by tags, and values are filled in after the
template is generated. An example of input and
output of the system NLG is shown below:
Input: act inform <food> act inform

<pricerange> act offer <name>

Output: <name> is a great restaurant

serving <food> food and it is in the

<pricerange> price range

Specifically, we implemented our Encoder-
Decoder model with Long Short-Term Memory
(LSTM) recurrent networks. We employed an at-
tention mechanism (Bahdanau et al., 2015) to em-
phasize relevant parts of the input sequence at each
step when generating the output sequence. We
further improved the model by encoding the con-
versation history as a context vector and concate-
nating it with the encoded input for output gen-
eration. We observed that context not only in-
creases the model performance, but also helps to
produce output with more variation, which has
been considered one of the important factors of a
good NLG model (Stent et al., 2005). Both agents’
NLG models were built in the same way using the
provider- or seeker-side data.

Evaluating NLG Quality BLEU score (Pap-
ineni et al., 2002) has been one of the most com-
monly used metrics for NLG evaluation. Since
it is agreed that the existing automatic evaluation
metrics for NLG have limitations (Belz and Reiter,
2006), we introduced a modified version of BLEU
which attempts to compensate the gap of the cur-
rent BLEU metric. BLEU, ranging from 0 to 1, is
a precision metric that quantifies n-gram overlaps
between a generated text and the ground truth text.
However, we observed that in the DSTC2 data a
meaning representation can map to different tem-
plates as the example shown below:
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MR: act inform <pricerange> act offer

<name>

T1: the price range at <name> is

<pricerange>

T2: <name> is in the <pricerange> price

range

Thus, to compute BLEU of a model-generated
template, instead of only comparing it against its
corresponding ground truth template, we calcu-
lated its BLEU scores with all the possible tem-
plates that have the same input meaning repre-
sentation in the DSTC2 data, and the maximum
BLEU score among them is the final BLEU of
this generated template. By doing so, the aver-
age BLEU scores of the information provider and
seeker NLG models on the test set are 0.8625 and
0.5293, respectively. Note that it is not surprising
that the seeker model does not perform as well as
the provider model because the seeker-side data
has many more unique meaning representations
and natural language templates, which make the
task of building a good seeker model harder.

3 Evaluation

The Plato Research Dialogue System1 was used
to implement, train, and evaluate the agents. To
assess the quality of the dialogues our agents are
capable of, we compare dialogue success rates, av-
erage cumulative rewards, and average dialogue
turns along two dimensions: a) access to ground
truth labels during training or not; b) stationary or
non-stationary environment during training. We
therefore train four kinds of conversational agents
for each role (eight in total) as shown in Table
3. Due to the nature of our setup, algorithms de-
signed for stationary environments (e.g. DQN) are
not considered.

Stat. Env. Non-Stat. Env.
Dial. Acts SuperDAct WoLF-Dact

Text Supervised WoLF-PHC

Table 3: The four conditions under which our conver-
sational agents are trained.

Specifically, the SuperDAct agents are mod-
elled as 3-layer Feed Forward Networks (FFN),
trained on DSTC2 data using the provided di-
alogue act annotations. The Supervised agents
(also 3-layer FFN) are trained on DSTC2 data but

1The source code for the full dialogue system can be
found here https://github.com/uber-research/
plato-research-dialogue-system

each agent’s policy uses the output of its respec-
tive NLU: the provider (dialogue system in the
dataset) generates its utterance using its trained
NLG with the dialogue acts found in the data as
input; the seeker (human caller in the dataset) then
uses the provider’s utterance as input to its NLU
whose output is then fed to its policy; and the
same approach is used for the provider’s side. The
WoLF-DAct agents are trained concurrently (i.e.
in a non-stationary environment) but interacting
via dialogue acts, while the WoLF-PHC agents are
trained concurrently and interacting via generated
language, as show in in Figure 1. All of these
agents are then evaluated on the full language to
language setup 2. Apart from the above, we trained
conversational agents using deep policy gradient
algorithms. Their performance could not match
the WoLF-PHC or the supervised agents, however,
even after alternating the policy gradient agents’
training to account for non-stationarity. This is
not unexpected, of course, since those algorithms
are designed to learn in a stationary environment.
These results therefore are not reported here.

In our evaluation, a dialogue is considered suc-
cessful if the information seeker’s goal is met
by the provider, following the standard definition
used for this domain (Su et al., 2017, e.g.). Un-
der this definition, a provider must offer an item
that matches the seeker’s constraints and must an-
swer all requests made by the seeker. However,
as seen in Table 6, even when the dialogue man-
ager’s output is correct, it can be realized by NLG
or understood by NLU erroneously. While none of
the models (NLU, DM, NLG) directly optimises
this objective, it is a good proxy of overall sys-
tem performance and allows for direct comparison
with prior work. As a reward signal for reinforce-
ment learning we use the standard reward function
found in the literature (Gasic et al., 2013; Su et al.,
2017, e.g.), tweaked to fit each agent’s perception
as described in section 2.2.

Figure 2 shows learning curves with respect to
the metrics we use for all conversational agents,
where each kind of agent was evaluated against
its counterpart (e.g. Supervised seeker against Su-
pervised provider) on the environment they were
trained on. Table 4 shows the main results of

2The SuperDAct and WoLF-DAct agents achieve 81% and
95% dialogue success rates respectively when evaluated on
a dialogue act to dialogue act setup (i.e. without LU/LG)
against an agenda-based simulated Seeker. When evaluated
against each other (Fig. 2) the performance naturally drops.
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Average Dialogue Success
SuperDAct Supervised WoLF-DAct WoLF-PHC

44.23% 46.30% 52.56% 66.30%
Average Cumulative Rewards

SuperDAct Supervised WoLF-DAct WoLF-PHC
4.42 6.68 7.84 10.93

Average Dialogue Turns
SuperDAct Supervised WoLF-DAct WoLF-PHC

10.89 8.65 9.81 9.57

Table 4: Average dialogue success, reward, and number of turns on the agents evaluated, over 3 training/evaluation
cycles with goals sampled from the test set of DSTC2. Regardless of training condition, all agents were evaluated
in the language to language setting. All differences between SuperDAct - WoLF-DAct, and Supervised - WoLF-
PHC are significant with p < 0.02.

our evaluation in the language to language set-
ting, where each cell represents the average of
3 train/evaluation cycles of policies trained un-
der the respective conditions for 20,000 dialogues
(200 epochs for the supervised agents) and eval-
uated for 1,000 dialogues. We can see that the
WoLF-PHC agents outperform the other condi-
tions in almost every metric, most likely because
they model the conversation as a stochastic game
and not as a single-agent problem. Comparing
Figure 2 with Table 4 we can see that the agents
trained on dialogue acts cannot generalise to the
language to language setting, even when paired
with NLU and NLG models that show strong per-
formance (see previous section). On a similar
setup (joint NLU and DM but without statisti-
cal NLG), Liu and Lane (2017) report 35.3% di-
alogue success rate for their supervised baseline
and 64.7% for reinforcement learning on top of
pre-trained supervised agents.

We attribute the low performance of the super-
vised policies to a lack of data and context in
the DSTC2 dataset. We believe that in the pres-
ence of errors from our statistical NLU and NLG,
there just are not enough dialogues or information
within each dialogue for the supervised policies to
learn to associate states with optimal actions. In
particular, if one of the NLGs or NLUs (for either
agent) makes a mistake, this affects the dialogue
state tracking and subsequently the database re-
trieval, resulting in a state that may not actually be
in the dataset. In the presence of this uncertainty
we found that seeker and provider do not prop-
erly learn how to make requests and address them,
respectively and this is the most frequent reason
for dialogue task failure in this condition. This is

partly due to the fact that in DSTC2 the provider’s
side responds to requests with an offer and an
inform, for example a response to a request for
phone number would be: offer(name=kymmoy),
inform(phone=01223 311911) which may be con-
fusing both models. In light of this, we trained
a supervised policy model able to output mul-
tiple actions at each dialogue turn. However,
this makes the learning problem even harder and
we found that in this case such models perform
poorly. Overall the two supervised approaches ap-
pear to perform similarly on objective dialogue
task success but the Supervised agents who have
seen uncertainty during the training seem to per-
form better in terms of rewards achieved and num-
ber of dialogue turns.

Upon pairing different combinations of the
eight agents we trained, we observe that agents
who are able to better model the seeker’s be-
haviour perform best in the joint task. In our case,
WoLF-trained agents are able to better model the
seeker’s behaviour, which partially explains the
higher success rates. However, we note that the
WoLF-DAct agents do not generalise very well to
the much harder language to language environ-
ment. Another general trend that we observe is
that the WoLF-trained agents seem to take longer
number of turns but lead to higher rewards and
success rates likely because they persist for more
turns before giving up.

It is also worth noting that while we report an
objective measure of dialogue success (i.e. if both
agents achieved the goal), from each agent’s per-
spective what is success may be different. For ex-
ample, if a seeker does not inform about all con-
straints in the goal but provider respects all con-
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Figure 2: Learning curves of the dialogue policies of
our conversational agents, each evaluated on the envi-
ronment it is trained on (see Table 3). Note that the
agents are evaluated against each other, not against ra-
tional simulators or data.

straints that the provider does mention then the di-
alogue is successful from the provider’s perspec-
tive but failed from the seeker’s perspective. On
the other hand, if the seeker provides all con-
straints and requests but the provider either ig-
nores some constraints, says it cannot help, or
does not address some requests then the dialogue
is failed from the provider’s perspective but suc-
cessful from the seeker’s perspective. To test
whether optimizing the dialogue policies directly
against these subjective measures of task success
would lead to better dialogue policies, we per-
formed similar experiments as the ones whose re-
sults are reported in Table 4. However, we found
that the overall performance was not as good be-
cause it would lead to behaviours in which the

agents would not help each other to achieve the
objective goal (e.g. the provider would not make
many requests, or the seeker would not repeat in-
forms upon wrong offers).

4 Conclusion

We presented the first complete attempt at con-
currently training conversational agents that com-
municate only via self-generated language. Using
DSTC2 as seed data, we trained NLU and NLG
networks for each agent and let the agents inter-
act and learn online optimal dialogue policies de-
pending on their role (seeker or provider). Future
directions include investigating joint optimization
of the modules and training the agents online using
deep multi-agent RL (e.g. (Foerster et al., 2018))
as well as evaluating our agents on harder envi-
ronments (e.g. TextWorld (Côté et al., 2018)) and
against human players. A natural extension is to
train a multi-tasking provider agent that can learn
to serve various kinds of seeker agents.
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A Example Dialogues

Here we show two example dialogues generated
by the WoLF-PHC agents.
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Seeker goal Constr(food=italian), Constr(pricerange=cheap), Req(addr), Req(phone)
Provider hello , welcome to the cambridge restaurant System?

you can ask for restaurants by area , price range or food type .
Seeker cheap restaurant

Provider what part of town do you have in mind?
Seeker italian food

Provider pizza hut city centre is a nice restaurant in the centre of town serving italian food
Seeker phone number

Provider the phone number is 01223 323737 .
Seeker address

Provider sure , it is on regent street city centre
Seeker (no output)

Provider what part of town do you have in mind?
Seeker good bye

Provider good bye

Table 5: A good example dialogue.

Seeker goal Constr(food=african), Constr(pricerange=expensive), Req(addr)
Provider hello , welcome to the cambridge restaurant System? how may i help you?

Seeker expensive restaurant
Provider what part of town do you have in mind?

Seeker african food
Provider bedouin is an expensive restaurant in the centre of town serving african food

Seeker i do not care
Provider sorry i am a bit confused ; please tell me again what you are looking for .

Seeker repeat
Provider what part of town do you have in mind?

Seeker address
Provider sure , it is on 100 mill road city centre

Seeker good bye
Provider good bye

Table 6: An imperfect example dialogue.
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Abstract

While there has been much work in the lan-
guage learning and assessment literature on
human and automated scoring of essays and
short constructed responses, there is little to
no work examining text features for scoring
of dialog data, particularly interactional as-
pects thereof, to assess conversational profi-
ciency over and above constructed response
skills. Our work bridges this gap by in-
vestigating both human and automated ap-
proaches towards scoring human–machine text
dialog in the context of a real-world language
learning application. We collected conversa-
tional data of human learners interacting with
a cloud-based standards-compliant dialog sys-
tem, triple-scored these data along multiple
dimensions of conversational proficiency, and
then analyzed the performance trends. We fur-
ther examined two different approaches to au-
tomated scoring of such data and show that
these approaches are able to perform at or
above par with human agreement for a major-
ity of dimensions of the scoring rubric.

Index Terms: dialog systems, computer assisted
language learning, conversational assessment, di-
alog scoring, intelligent tutoring systems.

1 Introduction

Learning and assessment solutions in today’s ed-
ucational marketplace are placing increasing im-
portance and resources on developing technolo-
gies that are dialogic (as opposed to monologic)
in nature. Conversational proficiency is a crucial
skill for success in today’s workplace (Weldy and
Icenogle, 1997; Oliveri and Tannenbaum, 2019),
which makes R&D on technologies that help de-
velop and assess this skill important to comple-
ment our understanding from sociolinguistics (see
for example Young, 2011; Doehler and Pochon-
Berger, 2015). Dialog system technologies are

one solution capable of addressing and automat-
ing this need by allowing learners to practice and
improve their interactional compentence at scale
(Suendermann-Oeft et al., 2017; Yu et al., 2019).
However, such conversational technologies need
to be able to provide targeted and actionable feed-
back to users in order for them to be useful to
learners and widely adopted. Automated scoring
of multiple aspects of conversational proficiency
is one way to address this need.

While the automated scoring of text and speech
data has been a well-explored topic for several
years, particularly for essays and short constructed
responses in the case of the former (Shermis and
Burstein, 2013; Burrows et al., 2015; Madnani
et al., 2017) and monolog speech for the latter
(Neumeyer et al., 2000; Witt and Young, 2000;
Xi et al., 2012; Bhat and Yoon, 2015), there
has been a relative dearth of work on the inter-
pretable automated scoring of dialog. Evanini
et al. (2015) examined the automatic scoring of
pseudo-dialogues, i.e., there were no branching di-
alog states; the system’s response was fixed and
did not vary based on the learner’s response. Lit-
man et al. (2016) developed a system to predict ex-
pert human rater scores based on audio signal and
fluency features. Ramanarayanan et al. (2017a)
analyzed this scoring problem at the level of each
response in the dialog (i.e., each turn) instead of
the entire conversation and across multiple dimen-
sions of speaking proficiency. However, no study
has performed a comprehensive examination of
the automated scoring of content of whole dia-
log responses (with branching) based primarily on
text features, based on a comprehensive multidi-
mensional rubric and scoring paradigm designed
specifically for dialog data, and interaction aspects
in particular.

This study describes our contributions toward
(i) developing a comprehensive rubric design
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Table 1: Human scoring rubric for interaction aspects of conversational proficiency. Scores are assigned on a
Likert scale from 1-4 ranging from low to high proficiency. A score of 0 is assigned when there were issues with
audio quality or system malfunction or off-topic or empty responses.

Construct Sub-construct Description

Interaction

Engagement Examines the extent to which the user engages with the dialog agent and
responds in a thoughtful manner.

Turn Taking Examines the extent to which the user takes the floor at appropriate
points in the conversation without noticeable interruptions or gaps.

Repair Examines the extent to which the user successfully initiates and com-
pletes a repair in case of a misunderstanding or error by the dialog agent.

Appropriateness Examines the extent to which the user reacts to the dialog agent in a
pragmatically appropriate manner.

Overall Holistic Performance Measures the overall performance.

specifically tailored to conversational dialog along
multiple dimensions, particularly those focused on
interaction, (ii) triple-scoring a selection of dialog
data based on this rubric, and finally (iii) examin-
ing the performance of two methods for automated
scoring of such data – the first a state-of-the-art
feature engineering method that passes word and
character n-grams, length and syntax features into
multiple state-of-the-art classifiers, and the second
a model engineering method that leverages end-
to-end memory networks to model dependencies
between turn and prompt histories using memory
components – and analyzing this performance vis-
a-vis human raters. Note that for the purposes of
this paper, while our data is spoken dialog, we will
focus on text features derived from transcriptions,
and therefore will focus on how they can be used
to score various aspects of interaction in an inter-
pretable manner. A subsequent future analysis will
comprehensively examine how these can be com-
bined with speech features.

2 Data

2.1 Collection
We crowdsourced, using Amazon Mechanical
Turk, the collection of 2288 conversations of non-
native speakers interacting with a dialog appli-
cation designed to test general English speaking
competence in workplace scenarios, and prag-
matic skills in particular. The application, dubbed
“Request Boss” requires participants to interact
with their boss and request a meeting with her to
review presentation slides using pragmatically ap-
propriate language. To develop and deploy this ap-
plication, we leveraged HALEF1, an open-source
modular cloud-based dialog system that is com-
patible with multiple W3C and open industry stan-

1http://halef.org

dards (Ramanarayanan et al., 2017b). The HALEF
dialog system logs speech data collected from par-
ticipants to a data warehouse, which are then tran-
scribed and scored.

2.2 Human Scoring
In order to understand how well participants per-
formed in our conversational task, we had each
of the 2288 dialog responses triple scored by hu-
man expert raters on a custom-designed rubric.
This rubric was iteratively modified and refined
to score constructs specific to dialog data2. The
final conversational scoring rubric defined 12 sub-
constructs under the 3 broad constructs of linguis-
tic control, task fulfillment and interaction, apart
from an overall holistic score. However, for pur-
poses of this first study, we will focus on the rel-
atively understudied interaction construct, in par-
ticular aspects of engagement, turn-taking, repair
and (pragmatic) appropriateness. See Table 1 for
more details. We asked expert raters to score each
dialog for each rubric dimension on a scale from 1
to 4, and to assign dialogs that contained no or cor-
rupted or significantly off-topic audio responses a
score of 0. The expert raters were scoring leaders
with significant experience in scoring various spo-
ken and written assessments of English language
proficiency. We used an automatic randomized de-
sign to assign three (out of eight possible) raters
to every dialog such that (i) all raters had a com-
mensurate number of responses to rate, and (ii) the
same group of raters did not rate the same set of
files (achieved by randomization; this prevents un-
witting biases due to individual raters affecting the
overall score analysis).

2Three scoring leaders first collaboratively adapted a
rubric originally developed to score spoken interaction based
on selected benchmark dialog responses. Based on this mod-
ified rubric and accompanying scoring notes specific to the
task, 8 scoring leaders performed the final round of scoring.
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Table 2: c-rater ML features used for machine scoring.

Feature Description
Word n-grams Word n-grams are collected for n = 1 to 2. This feature captures

patterns about vocabulary usage (key words) in responses.
Character n-grams Character n-grams (including whitespace) are collected for n =

2 to 5. This feature captures patterns that abstract away from
grammatical and other language use errors.

Response length Defined as log(chars), where chars represents the total number of
characters in a response.

Syntactic dependencies A feature that captures grammatical relationships between indi-
vidual words in a sentence. This feature captures linguistic infor-
mation about “who did what to whom” and abstracts away from
a simple unordered set of key words.

3 Machine Scoring

This section first lays out our setup for inter-
pretable machine scoring including details of the
feature extraction and machine learning methods.
We then analyze human performance (by exam-
ining inter-rater statistics) and use this to bench-
mark the performance of machine scoring meth-
ods. Following standardized convention in auto-
mated scoring, we only consider dialogs with a
non-zero score to train scoring models (because
a separate filtering mode is typically trained to
eliminate “unscorable” responses, which include
responses with no, garbled or out-of-topic audio
data, see Higgins et al., 2011, for a more detailed
motivation and rationale for this approach).

3.1 Feature Engineered Content Scoring
We used a set of features that have been employed
in many previously published approaches to build-
ing content scoring models (see Madnani et al.,
2017, 2018, for instance). We refer to this system
as c-rater ML; see Table 2 for more details. All of
the features are binary (indicating presence or ab-
sence) and try to capture how well responses con-
tain (a) the right concepts (approximately captured
by words and bigrams), (b) the right syntactic rela-
tionships between those concepts (approximately
captured by dependency triples), (c) spelling and
morphological relations (character n-grams) and
(d) length of the response (captured by length fea-
tures).

We used SKLL,3 an open-source Python pack-
age that wraps around the scikit-learn package
(Pedregosa et al., 2011) to perform machine learn-
ing experiments. We experimented with rescaled
linear support vector machine (SVM) and multi-
layer perceptron (MLP) regressors. The former

3
https://github.com/EducationalTestingService/skll

allows us to interpret how the algorithm performs,
while the latter is used for comparison purposes to
understand how deep neural networks might per-
form on this task given the data we have. In our
case, we found that the SVM classifier beat the
MLP across the board, possibly because our fea-
ture space is sparse and high-dimensional, con-
sisting of binary presence/absence features. We
ran 10 fold cross-validation experiments and re-
port the best overall results for the SVM system.
We used cross entropy (log-loss) as an objective
function for optimizing learner performance. We
further tuned and optimized the free parameters of
each learner using a grid-search method. We com-
puted both accuracy and quadratic weighted kappa
(which takes into account the ordered nature of the
categorical labels) as metrics, reported in Table 3.

3.2 End to End Memory Network
(MemN2N) architecture

We also investigated the efficacy of the End
to End Memory Network (MemN2N) architec-
ture (Sukhbaatar et al., 2015; Chen et al., 2016)
adapted to the dialog scoring task. The end to
end MemN2N architecture models dependencies
in text sequences using a recurrent attention model
coupled with a memory component, and is there-
fore suited to modeling how response and prompt
histories contribute to a dialog score. In our case,
the MemN2N architecture learns a mapping be-
tween an output score and an input tuple consist-
ing of the current response, the response history
and the prompt history. See Figure 1. We modified
the original MemN2N architecture in Sukhbaatar
et al. (2015) in the following ways: (i) instead
of the original (query, fact history, answer) tuple
that is used to train the network in the original pa-
per, we have an (current response, response his-
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Figure 1: Schematic of a single hop module of our modified end-to-end memory network (MemN2N) adapted
from Sukhbaatar et al. (2015) for our dialog scoring experiments. Stacking modules on top of each other allows us
to model multiple hops.

Table 3: Human and machine score statistics

Construct Sub-construct
c-rater ML MemN2N c-rater ML + MemN2N Human Metrics

Accuracy QWκ Accuracy QWκ Accuracy QWκ Conger κ Krippendorff α

Interaction

Engagement 0.70 0.70 0.65 0.65 0.71 0.72 0.69 0.72
Turn Taking 0.69 0.67 0.68 0.40 0.71 0.70 0.71 0.74

Repair 0.66 0.60 0.64 0.58 0.67 0.64 0.73 0.72
Appropriateness 0.67 0.67 0.62 0.58 0.67 0.67 0.70 0.72

Overall Holistic Performance 0.69 0.72 0.66 0.65 0.70 0.72 0.75 0.75

tory, prompt history, score) tuple in our case. In
other words, we not only embed and learn mem-
ory representations between the current response
and the history of previous responses, but the his-
tory of prior system prompts that have been en-
countered thus far; (ii) we used an LSTM instead
of a matrix multiplication at the final step of the
network before prediction; and (iii) we experi-
mented with Google word2vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014) initial-
izations for word embeddings in addition to ex-
perimenting with multiple memory hops. We train
the network at the turn level; in other words, for
each turn, the training data would consist of an in-
put of (response for current turn, response history,
prompt history) and an output of the dialog-level
score (in other words, each turn is assumed to have
the same score as that of the full dialog). During
testing, we compute the score for each dialog in
the test set as the median of scores predicted by
the trained network for each turn in that dialog.

We used a similar crossvalidation setup as de-
scribed in §3.1 with the exact same 10 folds with

experiments optimizing a cross-entropy-based ob-
jective function as in the earlier case to enable a
fair comparison. We tuned hyperparameters of
the network using the hyperas toolkit4. This in-
cluded the number of neurons in the Dense and
LSTM layers as well as the addition of Dropout
layers after each memory component. We exper-
imented with 1, 2 and 3 memory hops and found
2 to be optimal. Interestingly, we also found that
initializing the memory embedding matrics with
pretrained Google word2vec or GloVe embeddings
worked better than randomly-initialized ones for
prompt history encoding as compared to response
history encoding.

4 Observations and Results

The final two columns of Table 3 display two inter-
rater agreement statistics – Conger κ and Krippen-
dorff α – for the human expert scores assigned to
the data. Recall that each dialog was scored by 3
out of 8 possible raters. We observe a moderate to
high agreement between raters for all dimensions

4http://maxpumperla.com/hyperas/
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of the scoring rubric, which is not too surprising
given that all our raters had significant experience
in rating monologic speech data.

Table 3 also shows the performance of our two
different systems in scoring various aspects of in-
teraction at the level of the entire dialog. Observe
that fusing the MemN2N with the c-rater ML sys-
tem leads to a small but significant improvement
over either of the systems alone. Additionally, it
is interesting to note that the quadratic weighted
kappa (QWκ) of the fusion system is in a similar
ballpark as the κ and α metrics for human inter-
rater agreement, particularly for engagement and
turn-taking subscores. While these measures are
not directly comparable, this trend is encouraging
nonetheless, suggesting that a combination of n-
gram, length, syntactic dependency and memory-
based attention over embedding representations of
words over the entire dialog are useful in captur-
ing at least some aspects of these sub-constructs
of interaction. On the other hand, the fusion sys-
tem performance for repair and appropriateness
subscores is still below par, suggesting that more
feature engineering and modeling research is re-
quired to model these aspects of interaction. These
dimensions of interaction are also harder to pre-
dict, given that repair and pragmatic appropriate-
ness are more high-level and abstract in nature.

5 Discussion

This paper has examined approaches to both hu-
man and machine scoring of text dialogs collected
as part of a language learning application, partic-
ularly looking at interactional aspects. We ob-
served, through careful design of the human scor-
ing paradigm, a moderate-to-high agreement be-
tween the raters. We further examined two meth-
ods for automated scoring of such data – the first
a feature engineering method that passes word
and character n-grams, length and syntax features
into an SVM based classifier, and the second a
model engineering method that leverages end-to-
end memory network (MemN2N) to model depen-
dencies between turn and prompt histories using
memory components – and found that a fusion of
both methods performs close to or at par with hu-
man inter-rater agreement statistics.

While our results are encouraging, there is still
much work ahead in understanding and scoring in-
teractional competence. One of the key reasons
for this has to do with the fact that the features

were considered were text-based, and it is unclear
how some features that don’t directly consider in-
formation from audio or visual channels are use-
ful in predicting properties related to interaction
(engagement, for instance). Repair and appropri-
ateness, and even turn taking to a lesser extent are
related to proficiency in language use, and hence
it makes sense that features such as n-grams and
syntax use might be somewhat useful in predict-
ing these aspects of interaction. However, some
of the results might also be explained by some
of our examined features being highly correlated
with more interpretable/relevant features. For in-
stance, length might be an indication of a more
proficient and verbose speaker, which might in
turn correlate with a high level of engagement.
Nonetheless, an understanding of how meaningful
our text-based results are will be incomplete with-
out examining features derived from audio (and
visual streams, if available), including non-verbal
and prosodic cues.

It is also worth mentioning tangentially related
work on dialog interaction quality at this point (see
for instance Schmitt and Ultes, 2015; Stoyanchev
et al., 2019; See et al., 2019). While such work
primarily focuses on investigating techniques to
measure and improve the quality of the overall di-
alog interaction as opposed to providing targeted
assessment and feedback on the quality of spo-
ken language used during interactions, it might
nonetheless be useful to take this body of work
into account while developing techniques for au-
tomated proficiency scoring.

This lays out multiple avenues for future work.
First, as mentioned earlier, would be examining
both text and speech signals for a more complete
examination of the scoring problem. Second, we
would like to look at other broad aspects of con-
versational proficiency, such as delivery (for in-
stance, fluency, intonation, vocabulary and gram-
mar) and topic development (elaboration and task
specificity, for example) in addition to building
on the interaction aspects described here. Third,
we will investigate combining feature-engineering
and model-engineering approaches towards devel-
oping specific features and model architecture im-
provements that will help us push the automated
scoring performance even higher. These will feed
into our ultimate goal of being able to provide lan-
guage learners with targeted, actionable feedback
on different facets of conversational proficiency.
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Abstract

We present a spoken conversational ques-
tion answering proof of concept that is able
to answer questions about general knowl-
edge from Wikidata1. The dialogue com-
ponent does not only orchestrate various
components but also solve coreferences and
ellipsis.

1 Introduction

Conversational question answering is an open
research problem. It studies the integration
of question answering (QA) systems in a dia-
logue system(DS). Not long ago, each of these
research subjects were studied separately; only
very recently has studying the intersection be-
tween them gained increasing interest (Reddy
et al., 2018; Choi et al., 2018).

We present a spoken conversational ques-
tion answering system that is able to an-
swer questions about general knowledge in
French by calling two distinct QA systems.
It solves coreference and ellipsis by mod-
elling context. Furthermore, it is extensi-
ble, thus other components such as neural ap-
proaches for question-answering can be easily
integrated. It is also possible to collect a dia-
logue corpus from its iterations.

In contrast to most conversational systems
which support only speech, two input and out-
put modalities are supported speech and text.
Thus it is possible to let the user check the an-
swers by either asking relevant Wikipedia ex-
cerpts or by navigating through the retrieved
name entities or by exploring the answer de-
tails of the QA components: the confidence
score as well as the set of explored triplets.
Therefore, the user has the final word to con-
sider the answer as correct or incorrect and to

1https://www.wikidata.org

provide a reward, which can be used in the
future for training reinforcement learning al-
gorithms.

2 Architectural Description

The high-level architecture of the proposed
system consists of a speech-processing front-
end, an understanding component, a context
manager, a generation component, and a syn-
thesis component. The context manager pro-
vides contextualised mediation between the di-
alogue components and several question an-
swering back-ends, which rely on data pro-
vided by Wikidata1. Interaction with a human
user is achieved through a graphical user inter-
face (GUI). Figure 1 depicts the components
together with their interactions.

Figure 1: High-level depiction of the proposed spo-
ken conversation question answering system. Arrows
indicate data flow and direction.

In the remainder of this section, we explain
the components of our system.

2.1 Speech and Speaker Recognition

The user vocally asks her question which is
recorded through a microphone driven by the
GUI. The audio chunks are then processed
in parallel by a speech recognition component
and a speaker recognition component.

Speech Recognition The Speech Recog-
nition component enables the translation of
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speech into text. Cobalt Speech Recogni-
tion for French is a Kaldi-based speech-to-text
decoder using a TDNN (Povey et al., 2016)
acoustic model; trained on more than 2 000
hours of clean and noisy speech, a 1.7-million-
word lexicon, and a 5-gram language model
trained on 3 billion words.

Speaker Recognition The Speaker Recog-
nition component answers the question “Who
is speaking?”. This component is based
on deep neural network speaker embeddings
called “x-vectors” (Snyder et al., 2018). Our
team participated to the NIST SRE18 chal-
lenge (Sadjadi et al., 2019), reaching the 11th
position among 48 participants.

Once identified, it is possible to access
the information of the speaker by accessing
a speaker database which includes attributes
such as nationality. This is a key module
for personalising the behaviour of the system,
for instance, by supporting questions such as
”Who is the president of the country where I
was born?”.

2.2 The Dialogue System

The transcribed utterance and the speaker in-
formation are passed to the dialogue system.
This system contains an understanding com-
ponent, a context manager, and a genera-
tion component (Figure 2).

Figure 2: Internal structure of the proposed dialogue
system, with emphasis placed on the interactions of the
context manager.

Understanding The understanding com-
ponent relies on a linguistic module to
parser the user’s inputs. The linguistic mod-
ule supports part-of-the-speech (POS) tag-
ging, lemmatisation, dependency syntax and
semantics provided by an adapted version

Train Dev Test

words 208 245 45 001 89 330

sentences 10 166 2 976 4 853

mentions 15 013 3 008 6 232

incl. prons. 1 465 280 538

chains 3 793 901 1 533

Table 1: Subset of the corpus CALOR used for train-
ing, developing and testing of the coreference resolution
module. Note that the values given for the mentions
include pronouns.

of UDpipe (Straka and Straková, 2017), ex-
tended with a French full-form lexicon. UD-
pipe was trained on the French GSD treebank
version 2.32. Since the syntax of questions in
French differs from that of declaratives, we an-
notated manually about 500 questions to be
merged into the UD treebank (which originally
did not contain questions). Tests show that
the labelled attached score (LAS) is thereby
increased by 10% absolute, to 92%.

Context Manager The Context Manager
component is able to solve coreferences by us-
ing an adaptation of the end-to-end model
presented in (Lee et al., 2017), that we
trained for French by using fasttext multilin-
gual character embeddings (Bojanowski et al.,
2017). The data used to train the corefer-
ence resolution model is a subset of the cor-
pus CALOR (Marzinotto et al., 2018) (Table
1), which has been manually annotated with
coreferences. This corpus contains coreference
chains of named entities, nouns and pronouns
(such as “the president” – “JFK” – “he” –
“his”).

The dependency tree and semantic frames
provided by the linguistic module are used to
solve ellipsis by taking into account the syn-
tactic and semantic structure of the previous
question. Once the question has been resolved,
it calls the QA systems and passes their results
to the generation module.

Generation The generation component ei-
ther returns the short answer provided by QA
systems or relies on an external generation
module that uses dependency grammar tem-
plates to generate more elaborated answers.

2.3 QA Systems

Two complementary question answering com-
ponents were integrated into the system: the
Reasoning QA and Search QA. Each of these

2http://universaldependencies.org/
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QA systems computes a confidence score for
every answer by using icsiboost (Favre et al.,
2007), an Adaboost-based classifier trained on
a corpus of around 21 000 questions. The Con-
text Manager takes into account these scores
to pick the higher-confidence of the two an-
swers.

Besides the QA components, there are two
other components that are able to provide
complementary information about the Wiki-
data’s entities under discussion: Documentary
and Entity Sheet.

Reasoning QA The Reasoning QA system
first parses the question by using a Prolog def-
inite clause grammar (DCG), extended with
word-embeddings to support variability in the
vocabulary. Then it explores a graph con-
taining logical patterns that are used to pro-
duce requests in SPARQL3 that agree with the
question.

Search QA The Search QA system uses an
internal knowledge base, which finely indexes
data using Elasticsearch. It is powered by
Wikidata and enriched by Wikipedia, espe-
cially to calculate a Page-Rank (Page et al.,
1997) on each entity. This QA system first de-
termines the potential named entities in the
question (i.e. subjects, predicates, and types
of subjects). Second, it constructs a correla-
tion matrix by looking for the triplets in Wiki-
data that link these entities. This matrix is
filtered according the coverage of the question
and the relevance of each entity in order to
find the best answer.

Documentary The documentary compo-
nent is able to extract pertinent excerpts of
Wikipedia. It uses an internal documentary
base, which indexes Wikipedia’s paragraphs
by incorporating the Wikidata entity’s IDs
into elasticsearch indexes. Thus, it is possible
to find paragraphs (ranked by elasticsearch) il-
lustrating the answer to the given question by
taking into account the entities detected in the
question and in the answer.

Entity Sheet The entity sheet component
summarises an entity in Wikidata returning
the description, the picture and the type of
the entity.

3https://www.w3.org/TR/sparql11-query/

Figure 3: Distribution of question topics used to eval-
uate system performance on out-of-context questions.

2.4 Speech Synthesis

Finally, the generated response is passed to the
GUI, which in turn passes it to the Voxygen
synthesis solution.

3 Evaluation

The evaluation of the individual components
of the proposed system was performed outside
the scope of this work. We evaluated out-of-
context questions, as well as the coreference
resolution module.

Performance on out-of-context questions
was evaluated on Bench’It, a dataset contain-
ing 150 open ended questions about general
knowledge in French (Figure 3)4. The system
reached a macro precision, recall and F-1 of
64.14%, 64.33% and 63.46% respectively5.

We also evaluated the coreference resolution
model on the test-set of CALOR (Table 1), ob-
taining an average precision, recall and F-1 of
65.59%, 48.86% and 55.77% respectively. The
same model reached a average F-1 of 68.8% for
English (Lee et al., 2017). Comparable mea-
surements are not available for French. F-1
scores for French are believed to be lower be-
cause of the lower amount of annotated data.

4 Examples

On the one hand, the system is able to an-
swer complex out-of-context questions such as
“What are the capitals of the countries of the
Iberian Peninsula?”, by correctly answering
the list of capitals: “Andorra la Vella, Gibral-
tar, Lisbon, Madrid”.

4Publicly available in https://github.com/
lmrojasb/benchit.git

5Following the metrics of the task-4 of QALD-7
https://project-hobbit.eu/challenges/qald2017/
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U: Who is Michael Jackson ?

S: Michael Jackson is an American author,composer,

singer and dancer

U: What is his father’s name?

S: Joseph Jackson

U: and his mother’s?

S: Katherine Jackson

U: and his brothers’ and sisters’?

S: Tito Jackson, Rebbie Jackson, Randy Jackson,

Jackie Jackson, Marlon Jackson, La Toya Jackson,

Jermaine Jackson, Janet Jackson

Figure 4: English translation of French conversation
involving in-context questions.

On the other hand, consider the dialogue
presented in Figure 4, in which the user asks
several related questions about Michael Jack-
son. First she asks “Who is Michael Jackson?”
and the system correctly answers “Michael
Jackson is an American author, composer,
singer and dancer”, note that this is the gen-
erated long answer.

The subsequent questions are related to the
names of his family members. In order to cor-
rectly answer these questions, the resolution
of coreferences is neccesary to solve the posses-
sive pronouns, which in French agree in gender
and number with the noun they introduce. In
this specific example, while in English “his” is
used in all the cases, in French it changes to:
son père (father), sa mère (mother), ses frères
(brothers). This example also illustrates res-
olution of elliptical questions in the context,
by solving the question “and his mother’s” as
“What is the name of his mother”.

5 Conclusion and Future Work

We have presented a spoken conversational
question answering system, in French. The DS
orchestrates different QA systems and returns
the response with the higher confidence score.
The system contains modules specifically de-
signed for dealing with common spoken con-
versation phenomena such as coreference and
ellipsis.

We will soon integrate a state-of-the art
reading comprehension approach, support En-
glish language and improve the coreference
resolution module. We are also interested in
exploring policy learning, thus the system will
be able to find the best criterion to chose the
answer or to ask for clarification in the case of
ambiguity and uncertainty.

References

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2017. Enriching word vec-
tors with subword information. Transactions of
the ACL, 5:135–146.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar,
Wen-tau Yih, Yejin Choi, Percy Liang, and Luke
Zettlemoyer. 2018. QuAC: Question answering
in context. In Proceedings of EMNLP 2018,
pages 2174–2184, Brussels, Belgium.

Benoit Favre, Dilek Hakkani-Tür, and Sebastien
Cuendet. 2007. Icsiboost. https://github.
com/benob/icsiboost.

Kenton Lee, Luheng He, Mike Lewis, and Luke
Zettlemoyer. 2017. End-to-end neural coref-
erence resolution. In Proceedings of the 2017
EMNLP, pages 188–197, Copenhagen, Den-
mark. Association for Computational Linguis-
tics.

Gabriel Marzinotto, Jeremy Auguste, Frédéric
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Abstract

We present Graph2Bots, a tool for assisting
conversational agent designers. It extracts
a graph representation from human-human
conversations by using unsupervised learning.
The generated graph contains the main stages
of the dialogue and their inner transitions.
The graphical user interface (GUI) then allows
graph editing.

1 Introduction

In the field of artificial intelligence, dialogue sys-
tems are gaining popularity, especially as they
benefit from advances in the understanding of con-
versational contents and contexts. Mobile and
home applications such as Siri (Apple), Google
Assistant (Google), Cortana (Microsoft) or Alexa
(Amazon) are the most popular. To quantify this
growing interest in human-machine interfaces, and
dialogue systems in particular, let us cite the stud-
ies by the analyst firm Gartner1. They place dia-
logue systems among the 10 strategic technologies
from 2018 and for the coming years.

One of the current trends is to propose soft-
ware tools to assist the design of dialogue systems.
These tools are customized according to the de-
signer’s needs, and the domain of application (e.g.
trips reservation). Some solutions allow designing
the dialogue architecture through a GUI. However,
designers still have to perform this task manually,
based on their domain knowledge and eventually
the analysis of human conversations on a similar
task. Most of the existing solutions do not provide
a robust possibility to quickly set up an automated
dialogue from human-human conversations.

In this context, we present an unsupervised as-
sistant for the creation and adaptation of dialogue

1
https://www.gartner.com/smarterwithgartner/

gartner-top-10-strategic-technology-trends-for-2019

systems when the designer has a corpus of human-
human interactions. This is our main contribution :
this Proof of Concept can be applied for any appli-
cation domain, without any prior knowledge. Thus
the user will have a first version of the dialogue ar-
chitecture ; that he can refine it with the GUI.

The remainder of the paper is organized as fol-
lows: first we describe the motivation by detail-
ing the problem in Section 2; in Section 3 we
present the prototype and its main innovative fea-
tures. Later in Section 4 we explain the method
of unsupervised learning used to build the graph.
Section 5 shows the GUI. Finally, we present the
conclusions and future work.

2 Rationale

Throughout this document a dialogue is an ex-
change of information between two speakers (a
human or a machine). We are interested in task-
oriented dialogues: the speakers will collaborate
to achieve a common goal.

Modeling a dialogue agent specialized in a
given domain is mostly done manually: either a
priori, from the knowledge that the designer has
on the task; or a posteriori, from the consultation
of existing corpora as shown in the figure 1 below;
in both cases, the process is time-consuming.

Figure 1: A posteriori Use Case workflow

We work in the “a posteriori” use case. Our goal

114



is to automatically obtain the dialog graph from
the corpus.

We call “dialogue corpus” a set of n dialogues
related to a particular domain e.g. of transcripts of
train reservation dialogues. Each dialogue is com-
posed of t speech turns; a speech turn corresponds
to what is said by one of the speakers without any
interruption.

We want to automatically determine from the
corpus: (i) the different phases of the dialogue (in-
cluding expressed intentions - hereafter referred
to as “themes”. This term corresponds to either
generic themes or sub-goals of the dialogue); (ii)
transitions between phases. The goal is to obtain
an oriented graph showing the main transitions be-
tween themes. Our assumption is that, depend-
ing on the position in the dialogue, a given turn
is more likely to belong to a given phase than an-
other; this information is therefore taken into ac-
count during the process.

The obtained graph can be exploited in multiple
ways. For instance, it can be used to initialize a
dialogue agent. That is to say, it can serve as a ba-
sis for modeling a dialogue agent specialized in a
given domain, facilitating its design. In addition,
the graph, as well as the steps taken to obtain it,
will allow the designer, without prior knowledge
of the application domain, to have a first under-
standing of the topics of the dialogues, their struc-
ture, and more generally their knowledge. Thus he
can quickly get the most relevant information for
the conception of the dialogue agent.

3 The Architecture

Figure 2: Graph2Bots architecture

Imagine that a designer wants to set up a conver-
sational agent for a specific application domain.
He owns a domain-related corpus of dialogues.
First, he will use the unsupervised approach of-
fered by our tool (i.e. the back-end) to identify the

underlying dialogue phases, and their transitions.
He will then edit the obtained graph by using our
GUI. We describe these different steps in the fol-
lowing sections. By this way the role of the de-
signer is changed (from the Figure 1 to the Figure
2) from a specialized dialogue analyst to a dialog
graph editor.

4 Unsupervised exploitation of large
dialogue corpus

In this section we will describe the three steps nec-
essary to generate the dialogue graph from the cor-
pus: the pre-processing to normalize and prepare
the data, then the co-clustering to group speech
turns in clusters corresponding to the dialogue
phases and finally the graph generation.

4.1 Preprocessing

The corpus contains text documents with one
speech turn per line identified by: the dialogue
it belongs to, its position in the dialogue and the
speaker. We begin with an anonymization pro-
cess to replace the named entities (like customer
name, phone number, address, etc.) by a tag.
Then, the corpus is filtered in order to remove the
“stopwords”. These are words that do not convey
semantic information (e.g. prepositions, articles,
etc.). We used the list of “stopwords” provided by
the NLTK library 2. Finally we calculate the fre-
quency of the words in the corpus.

4.2 Co-clustering

To identify the dialogue phases, a co-clustering
technique (Guigourès, 2013) is used to obtain
clusters of speech turns considering the words they
contain. We consider that each speech turn cor-
responds to a text document, being composed of
words. This can be represented by a matrix. We
use the technique of co-clustering to discover the
best reordering and grouping of lines and columns.
The method used is based on the Minimum Opti-
mized Description Length (MODL) approach de-
scribed in (Boullé, 2011) (a tutorial of this ap-
proach may be found in (Boullé et al., 2013)).
Each speech turn is assigned to one and only one
cluster but a cluster can group distinct dialogue
turns. This method finds by itself the right num-
ber K of clusters and does not require any param-
eter, which is useful for non-experts. The algo-
rithm maximizes the mutual information between

2http://www.nltk.org/nltk_data
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the two clusterings (one partition corresponds to
the group of speech turns, and the other to the
group of words). A post-processing, an Agglom-
erative Hierarchical Clustering (Guigourès, 2013),
allows to reduce the number of clusters and sim-
plify the result.

It then remains to determine the transitions be-
tween the dialogue phases.

4.3 Graph Generation

The desired graph has to represent the architecture
of the dialogue, that is to say, the succession of
the phases from the beginning to the end of the
dialog and the various possible paths. The figure 3
illustrates a part of such a graph.

Figure 3: Graph for a train booking application

In our approach, a phase corresponds to a clus-
ter of turns of speech. Ideally, these speech turns
are homogeneous in relation to a given theme. Af-
ter the discovery of the different phases (the clus-
ters) the connections are computed according to
the frequency of phase successions in the corpus:
the dialogue turns are ”projected” onto the clusters
and the number of transitions between the clusters
along the dialogues are counted.

This process is illustrated in the figure 4; ’User’
represents a human customer speech turn, ’Agent’
represents a human agent or a bot and Ti corre-
sponds to the cluster identifier. When a speech
turn from cluster T1 is followed by another from
cluster T3 in a dialogue, it results in a transition
from T1 to T3 in the graph.

The resulting representation is an oriented
graph, whose vertices are the clusters, and whose
weighted edges are transitions between clusters.
For the interested reader more details of this phase
are given in (Bouraoui and Lemaire, 2017).

5 Graphical User Interface

The GUI proposes to visualize interactively in
real-time the data processed in the back-end, in the
form of graphs. We describe the main features be-
low.

Figure 4: Graph generation

5.1 Real Time and Interactive Display

Here is an example of the list of real time and in-
teractive display functionalities :

•Choice of the granularity of display, according to
the size of clusters or the frequency of relations;
• Use of the mouse pointer to “pull” a cluster
away from others, to select one or more clusters,
to zoom in and out, and so on;
• Ability to rename clusters, which are automat-
ically named with the two most representative
words and the speaker; and to browse through their
contents: the most representative words, and the
corresponding speech turns.

5.2 Dialogue Graph Edition

The designer of the interacting agent can adapt and
refine the architecture according to his needs. It is
possible to modify:

• The contents of a given cluster by deleting one
or several speech turns;

• The architecture itself. Two main features are
available. One is the fusion of two clusters (if
they are thematically similar and therefore redun-
dant). The other is the split of a cluster in two
groups when speech turns are semantically sim-
ilar, but heterogeneous with respect to the main
theme expressed in the cluster. If any of these fea-
tures are used, the display of the number of clus-
ters and their connections is updated dynamically.

Figure 5 shows the current version of the pro-
totype GUI. The graph was obtained on an ex-
tract from the Datcha corpus (Damnati et al.,
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Figure 5: A chatbot architecture displayed by our solution

2016). The extract contains 4,000 chats between
customers and call-center agents, restricted to con-
versations dealing with set-top box problems. This
corresponds to 95,000 speech turns. The max
number of clusters obtained is 497 at the most
detailed level in the hierarchy ; we have empiri-
cally chosen a level with 49 clusters. The clus-
ters (nodes of the graph) are displayed in two dif-
ferent colors corresponding to the two kinds of
speakers. The user has filtered the display by set-
ting the number of transitions. The cluster ”error
message” is selected; on the right hand the user
can consult the most relevant words for the group
and the speech turns belonging to the cluster. A
video is available at the url: https://www.
dailymotion.com/video/x6j6xi9.

We used this prototype for the usecase of a
bot specialized in online assistance to the users
of a phone company. An other application field
was also experimented: a personal home assis-
tant (Bouraoui and Lemaire, 2017).

Once the designer has refined the architecture,
he can use it to feed the dialog flow in a chatbot
creation tool. The speech turns may constitute ex-
amples for the intent detection; the most represen-
tative words may correspond to entities.

6 Conclusion and future work

We presented Graph2Bots, an unsupervised assis-
tant for dialogue designing. It is able to extract
a graph representation from a corpus of conversa-
tions by using unsupervised learning, namely co-

clustering, and to allow graph editing. The graph
displays the main stages of the dialogues and their
transitions. Our approach is independent of the
domain and the language.

In the future, we would like to improve tem-
porality management in the co-clustering (taking
speech turn indexes into account); to simplify the
graph when necessary (loops and other specific
sub-graphs removal); to enrich its state model (e.g.
detection of non-communicative actions entwined
in the dialogue); and to instantiate a chatbot auto-
matically via an interoperable format of the graph
generated.
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Abstract 

We demo a chatbot that delivers content in 

the form of virtual dialogues automatically 

produced from plain texts extracted and 

selected from documents. This virtual 

dialogue content is provided in the form of 

answers derived from the found and 

selected documents split into fragments, 

and questions are automatically generated 

for these answers. 

1 Introduction 

Presentation of knowledge in dialogue format is a 

popular way to communicate information effectively. It 

has been demonstrated in games, news, commercials, 

and educational entertainment. Usability studies have 

shown that for information acquirers dialogues often 

communicate information more effectively and 

persuade stronger than a monologue most of times 

(Cox et al., 1999, Craig et al., 2000).  

We demo a chatbot that delivers content in the form 

of virtual dialogues automatically produced from plain 

texts extracted and selected from documents. Given an 

initial query, this chatbot finds documents, extracts 

topics from them, organizes these topics in clusters 

according to conflicting viewpoints, receives users 

clarification on which cluster is most relevant to them, 

and provides the content for this cluster. This content is 

presented in the form of a virtual dialogue where the 

answers are derived from the found and selected 

documents split into fragments, and questions are 

automatically generated for these answers.  

A virtual dialogue is defined as a multi-turn 

dialogue between imaginary agents obtained as a result 

of content transformation. It is designed with the goal 

of effective information representation and is intended 

to look as close as possible to a genuine dialogue. 

Virtual dialogues as search results turn out to be more 

effective means of information access in comparison 

with original documents provided by a conventional 

chatbot or a search engine. 

2 Dialogue Construction from Plain 

Text 

To form a dialogue from text sharing information or 

explaining how to do things, we need to split it into 

parts which will serve as answers. Then for each 

answer a question needs to be formed. The 

cohesiveness of the resultant dialogue should be 

assured by the integrity of the original text; the 

questions are designed to “interrupt” the speaker 

similar to how journalists do interviews. 

We employ a general mechanism of conversion of 

conversion a text paragraph of various styles and 

genres into a dialogue form. The paragraph is split into 

text fragments serving as a set of answers, and 

questions are automatically formed for some of these 

text fragments. The problem of building dialogue from 

text T is formulated as splitting it into a sequence of 

answers A = [A1…An] to form a dialogue [A1, <Q1, A2>, 

…, <Qn-1, An>], where Ai answers Qi-1 and possibly 

previous question, and Ai = T. Qi-1 needs to be derived 

from the whole or a part of Ai by linguistic means and 

generalization; also some inventiveness may be 

required to make these questions sound natural. To 

achieve it, we try to find a semantically similar phrase 

on the web and merge it with the candidate question. 

The main foundation of our dialogue construction 

algorithm is Rhetorical Structure Theory (RST, Mann 

and Thompson, 1988). RST represents the flow of 

entities in text via Discourse Tree – a hierarchical 

structure that sets inter-relations between text 

fragments (Elementary Discourse Units, EDU): what 

elaborates on what, what explains what, what is 

attributed to what, what contradicts what, etc.  

Rhetorical relations between the EDUs are usually 

binary and anti-symmetric, which defines the main 

unites (nucleus) and the subordinate ones (satellite). 

Thus, once we split a text into EDUs, we know which 

text fragments will serve as answers to questions: 

satellites of all relations. Elaboration rhetorical relation 

is default and What-question to a verb phrase is formed. 

Background relation yields another What-question for 

the satellite ‘…as <predicate>-<subject>’. Finally, 

Attribution relation is a basis of “What/who is source” 

question. 

On a Chatbot Conducting Dialogue-in-Dialogue 
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A trivial approach to question generation is simple 

conversion of a satellite EDU into a question. But it 

would make it too specific and unnatural, such as ‘the 

linchpin of its strategy handled just a small fraction of 

the tests then sold to whom?’. Instead, a natural 

dialogue should be formed with more general questions 

like ‘What does its strategy handle?’. 

An example of converting a text into a virtual 

dialogue is shown in Figure 1. First, the text is split into 

EDUs. They act as answers in the virtual dialogue. The 

questions generated on their basis are shown in angle 

brackets and bolded. Each leave of the discourse tree 

determining an EDU starts with ‘TEXT’. Rhetorical 

relations (in italics) are followed by the tags 

‘LeftToRight’ or ‘RightToLeft’ specifying dependency 

direction between the units, or which of the following 

unit is a nucleus and a satellite. 

elaboration (LeftToRight) 

  attribution (RightToLeft) 

<who provided the evidence of responsibility?> 

TEXT: Dutch accident investigators say  

    TEXT: that evidence points to pro-Russian rebels 

as being responsible for shooting down plane . 

  contrast (RightToLeft) 

    attribution (RightToLeft) 

      TEXT: The report indicates 

      joint 

        TEXT: where the missile was fired from 

        elaboration (LeftToRight) 

          <what else does report indicate?> 

          TEXT: and identifies  

          TEXT: who was in control and pins the 

downing of the plane on the pro-Russian rebels . 

    elaboration (LeftToRight) 

      attribution (RightToLeft) 

        TEXT: However , the Investigative Committee 

of the Russian Federation believes 

        elaboration (LeftToRight) 

          TEXT: that the plane was hit by a missile from 

the air  

         <where was it produced?> 

          TEXT: which was not produced in Russia .  

      attribution (RightToLeft) 

        TEXT: At the same time , rebels deny  

         <who denied about who controlled the 

territory?> 

        TEXT: that they controlled the territory from 

which the missile was supposedly fired 

Figure 1: A discourse tree for a text paragraph with 

questions formulated for satellite EDUs as answers 

The scheme of building a dialogue from text process is 

shown in Figure 2. Each paragraph of a document is 

converted into a dialogue via building a communicative 

discourse tree for it and then generating questions from 

its Satellite Elementary Discourse Units. Current 

chatbot is development of the previously built tool that 

conducted task-oriented conventional dialogues 

(Galitsky et al., 2017). 

 

Figure 2: Scheme of dialog building process 

3 Evaluation of Effectiveness  

Evaluating the effectiveness of information delivery via 

virtual dialogues, we compare the conventional chatbot 

sessions where users were given plain-text answers, 

and the ones where users were given a content via 

virtual dialogues.  

Table 1. Evaluation of comparative effectiveness of 

conventional and virtual dialogues 
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Conv. only 4.6 6.3 10.8 - - - 

Virtual only - - - 4.1 6.0 13.7 

Convention

al followed 

by virtual 

4.0 5.7 7.6 6.1 11.3 15.1 

Virtual 

followed by 

convent. 

5.6 7.1 12.3 3.7 7.0 11.5 

The results on comparative usability of conventional 

dialogue and virtual dialogue are given in Table 1. We 

assess dialogues with respect to following usability 

properties averaged over the number of experiments: 

The speed of arriving to the sought piece of 

information (first column). It is measured as a number 

Paragraph [A1, A2, .., An]  

Form a list of Satellite EDU 

Select the question focus: entity / attribute

Load doc2dialogue results into Open-Domain 

Q/A for verification

Convert Satellite EDU into a generic question 

form

Generalize the question to the proper level

Confirm /update the question via web mining

Dialogue [A1, <Q1, A2>, …,<Qn-1, An>] 

Build DT 

Paragraph [A1, A2, .., An] 
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of iteration (a number of user utterances) preceding the 

final reply of the chatbot provided an answer wanted by 

the user. We measure the number of steps only if the 

user confirms that she accepts the answer. 

The speed of arriving to decision to commit a 

transaction, such as purchase or reservation, or 

product selection (second column). A user is expected 

to accumulate sufficient information, and this 

information, such as reviews, should be convincing 

enough for making such decision. The less these values 

are the more relevant information was delivered via the 

dialogue. 

We also measure how many entities (in linguistic 

sense) were explored during a session with the chatbot 

(third column). We are interested in how thorough and 

comprehensive the chatbot session is, how much a user 

actually learns from it. This assessment is sometimes 

opposite to the above two measures but is nevertheless 

important for understanding the overall usability of 

various conversational modes. 

We do not compare precision and recall of search 

sessions with either dialogue mode since the same 

information is delivered, but in distinct modes. 

In the first and second rows, we assess the stand-

alone systems. One can observe that virtual dialogues 

take less iteration on average for information access 

(4.1 compared to 4.6) and a little less number of 

iterations for decisions than conventional dialogues do 

(6.0 and 6.3 respectively). 

In the bottom two rows, we observe the usability of 

the hybrid system. Notice that the bottom row 

corresponds to the inverse architecture, where virtual 

dialog is followed by the conventional one. This 

scenario proceed from right to left, so, the first step’s 

results are shown in three last columns of the table, 

then the values of the first three columns are calculated. 

When a conventional dialogue is followed by a virtual 

one, a lower portion of users is satisfied by the first step 

in comparison to the inverse architecture. Thus, the 

latter accounts for much less iteration required by user 

to be satisfied with the answer and make a final 

decision. 

4 Sample ChatBot session 

We present an exploratory session that combines 

information delivery in both the traditional textual 

answers (conventional dialogue) and a virtual dialogue 

form. The chatbot session is shown in Figure 3. 

The dialogue starts from the user question, 

‘advantages and new features of 5G’. The chatbot 

consults the sources (e.g. public URLs) and extracts the 

content from each page (or documents) expected to be 

relevant for the query. In this example seven URLs 

were processed, from domain-specific to general 

knowledge portals like Quora.com. Then the chatbot 

forms the list of topics extracted from these search 

results so that the user might select one of his interest.  

Once the chatbot forms the topics for clarification of 

the user search intent, it shows them as a list. In Fig. 3 

the list of topics proposed by the chatbot is underlined, 

the topics are numbered from 1to 5. The user selects his 

topic of interest and requests a specific answer via the 

topic number or the topic expression (‘next stage in 

technology’ or ‘[5]’). Once the answer is read, there are 

multiple options (yes/more/ … / virtual dialogue):  

• navigate to the next answer from the chatbot list; 

• navigate to a specific answer from the chatbot list; 

• reject this answer and attempt to reformulate the 

query; 

• reduce search to a specified web domain (such as 

quota.com, for example); 

• proceed in the same direction to more search 

results in the form of a virtual dialogue; 

• accept the answer and conclude the session. 

Bot > ask a new question 

User > advantages and new features of 5G  

Bot > exploring…. 

I believe these are the main topics of your query: is 

that what you meant? Please select   

demonstrating the benefits of the technology [1].  

wide range of people from student' [2]. 5g new radio nr  

specification' [3]. … next generation mobile networks 

alliance [4]. the next stage in mobile technology [5]. 

User > next stage in technology (or [5]) 

Bot > Put simply, it’s the next stage in mobile 

technology. It follows 4G and 4G LTE and builds on 

what they offer, delivering everything at a faster speed.  

Are you OK with this answer? yes / more / no / 

specify [different topic] / reduce search to web domain 

/ virtual dialogue 

User > virtual dialogue 

Bot > This is what other people are chatting about your 

topic: 

User1 > What Are the Benefits of Technology? 

Bot1 > If you hopped over to Ericsson, 

you 'd find a ''5G avenue'' with multiple exhibits 

demonstrating the benefits of the technology … 

User1 > How are these benefits leveraged by new 

tablets? 

Bot1 > Samsung kicked off its press conference not 

with its new tablets, but 5G is the next wireless 

network in telecom industry … 

User2 > Are the features right for them? 

Bot1 > It is important for people to start learning 

about 5G technology now so that they can decide if 

the features are right for them ... 

User2 > Which are the dual 4G VoLTE sim 

smartphones in India? 

Bot1 > The current 4G VoLTE smartphones with dual 

SIM slots that are available in the Indian markets may 

support 4G on single or both SIM slots. 

Figure 3: Chatbot session with conventional and 

virtual dialogue 

120



 

 
 

In the example the user selects the last option and the 

chatbot builds a virtual dialogue. It is a conversation 

among imaginary people whereas the topic stays the 

same, matching the original query. The virtual dialog is 

shown in the bottom frame (Fig. 3). As long as an 

imaginary chatbot responds to the same person, the 

dialog is intended to stay cohesive; coreferences in the 

follow-up questions are maintained. The main dialogue 

can be viewed as a one in the meta-level, and the 

object-level dialogue is naturally embedded into the 

meta-level one. 

Now the user can either browse the built virtual 

dialogue or search it to find a fragment of conversation 

which is relevant to the user current exploration intent. 

If the user types the query ‘Are the features right for 

me?’, he is directed to the virtual dialogue fragment 

where some other users are discussing if the technology 

is ‘right for them’. The search matches the query either 

against the fragments of an original text, generated 

questions, or both. 

5 Related Work and Conclusions 

(Piwek et al 2007) were pioneers of automated 

construction of dialogues, proposing Text2Dialogue 

system. The authors provided a theoretical foundation 

of the mapping that the system performs from RST 

structures to Dialogue representation structures. The 

authors introduced a number of requirements for a 

dialogue generation system (robustness, extensibility, 

and variation and control) and reported on the 

evaluation of the mapping rules. 

An important body of work concerns tutorial 

dialogue systems. Some of the work in that area 

focuses on authoring tools for generating questions, 

hints, and prompts. Typically, these are, however, 

single utterances by a single interlocutor, rather than 

an entire conversation between two agents. Some 

researchers have concentrated on generating questions 

together with possible answers such as multiple 

choice test items, but this work is restricted to a very 

specific type of Q/A pairs (Mitkov et al 2006). 

Dialogue acts are an important source which 

differentiates between a plain text and a dialogue. 

Proposed algorithm of virtual dialogues can assist with 

building domain-specific chatbot training datasets. 

Recently released dataset, DailyDialog (Li et al., 2017), 

is the only dataset that has utterances annotated with 

dialogue acts and is large enough for learning 

conversation models. 

We proposed a novel mode of chatbot interaction via 

virtual dialogue. It addresses sparseness of dialogue 

data on the one hand and convincingness, perceived 

authenticity of information presented via dialogues on 

the other hand. We quantitatively evaluated 

improvement of user satisfaction with virtual dialogue 

in comparison to regular chatbot replies and confirmed 

the strong points of the former. We conclude that virtual 

dialogue is an important feature related to social search 

to be leveraged by a chatbot. 

Chatbot demo videos (please, check 10 min video) 

and instructions on how to use it are available at 

https://github.com/bgalitsky/relevance-based-on-

parse-trees in the “What is new?” section. 
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Abstract

Recent advances in neural sequence-to-
sequence models have led to promising
results for several language generation-based
tasks, including dialogue response generation,
summarization, and machine translation.
However, these models are known to have
several problems, especially in the context of
chit-chat based dialogue systems: they tend
to generate short and dull responses that are
often too generic. Furthermore, these models
do not ground conversational responses on
knowledge and facts, resulting in turns that
are not accurate, informative and engaging
for the users. In this paper, we propose
and experiment with a series of response
generation models that aim to serve in the
general scenario where in addition to the dia-
logue context, relevant unstructured external
knowledge in the form of text is also assumed
to be available for models to harness. Our
proposed approach extends pointer-generator
networks (See et al., 2017) by allowing the
decoder to hierarchically attend and copy
from external knowledge in addition to the
dialogue context. We empirically show the
effectiveness of the proposed model compared
to several baselines including (Ghazvininejad
et al., 2018; Zhang et al., 2018) through
both automatic evaluation metrics and human
evaluation on CONVAI2 dataset.

1 Introduction

Recently, deep neural networks have achieved state-
of-the-art results in various tasks including com-
puter vision, natural language and speech process-
ing. Specifically, neural sequence-to-sequence
models (Sutskever et al., 2014; Bahdanau et al.,
2015) have led to great progress in important down-
stream NLP tasks like text summarization (Rush
et al., 2015; Nallapati et al., 2016; See et al., 2017;

∗Work done while interning at Google AI.

Tan et al., 2017; Yavuz et al., 2018), machine trans-
lation (Cho et al., 2014; Sutskever et al., 2014;
Luong et al., 2015; Bahdanau et al., 2015), and
reading comprehension (Xiong et al., 2017). How-
ever, achieving satisfactory performance on dia-
logue still remains an open problem. This is be-
cause dialogues can have multiple valid responses
with varying semantic content. This is vastly dif-
ferent from the aforementioned tasks, where the
generation is more conveniently and uniquely con-
strained by the input source.

Although neural models appear to generate
meaningful responses when trained with suffi-
ciently large datasets in the chit-chat setting, such
generic chit-chat models reveal several weaknesses
that were reported by previous research (Serban
et al., 2016; Vinyals and Le, 2015). Most com-
mon problems include inconsistency in personality,
dull and generic responses, and unawareness of
long-term dialogue context. To alleviate these lim-
itations, we turn our focus on a different problem
setting for dialogue response generation where the
model is provided a set of relevant textual facts
(speaker persona descriptions) and is allowed to
harness this knowledge when generating responses
in a multi-turn dialogue. To handle the personality
inconsistency issue, we ground our dialogue gen-
eration model on external knowledge facts which
are a list of persona descriptions in our applica-
tion (Li et al., 2016a; Zhang et al., 2018). We
explicitly use the dialogue history as memory for
the model to condition on which potentially en-
courages a more natural conversation flow. To-
wards encouraging generation of more specific and
appropriate responses while avoiding generic and
dull ones, we use a hierarchical pointer network
in our model such that it can copy content from
two sources: current dialogue history and persona
descriptions.

In this work, we propose a novel and general ar-
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chitecture DEEPCOPY that extends the attentional
sequence-to-sequence model with a hierarchical
pointer network that enables the decoder to jointly
attend and copy tokens from any of the facts avail-
able as external knowledge in addition to the di-
alogue context (encoder input). This is achieved
entirely in an end-to-end fashion through factoring
the whole copy mechanism into following three
hierarchies/components: (i) a token-level atten-
tion mechanism over the dialogue context to de-
termine the probability of copying a token from
the dialogue context, (ii) A hierarchical pointer
network to determine the probability of copying a
token from each fact, and (iii) An inter-source meta
attention over the input sources dialogue context
and external knowledge, which combines the two
copying probabilities. Using these components,
a single copying probability distribution over the
unique tokens appearing in the model input is com-
puted exploiting the well-defined hierarchy among
them. In addition, the model is equipped with a
soft switch mechanism between copying and gen-
eration modes similar to (See et al., 2017), which
allows us to softly combine the copying probabil-
ities with the decoder’s generation probabilities
over a fixed vocabulary into a final output probabil-
ity distribution over an extended vocabulary. We
empirically show the effectiveness of the proposed
DEEPCOPY model compared to several baselines
including (Ghazvininejad et al., 2018; Zhang et al.,
2018) on CONVAI2 challenge.

2 Related Work
Earlier work on data-driven, end-to-end approaches
to conversational response generation treated the
task as statistical machine translation, where the
goal is to generate a response given the previous
dialogue turn (Ritter et al., 2011; Vinyals and Le,
2015). While these studies resulted in a paradigm
change compared to earlier work, they do not in-
clude mechanisms to represent conversation con-
text. To tackle this problem and have a better rep-
resentation of conversation context as input to gen-
eration, (Serban et al., 2016) proposed hierarchi-
cal recurrent encoder-decoder (HRED) networks.
HRED combines two RNNs, one at the token level,
modeling individual turns, and one at the dialogue
level, inputting turn representations from the token-
level RNNs. However, utterances generated by
such neural response generation systems are often
generic and contentless (Vinyals and Le, 2015). To
improve the diversity and content of generated re-

sponses, HRED was later extended with a latent
variable that aims to model the higher level aspects
(such as topic) of the generated responses, resulting
in the VHRED approach (Serban et al., 2017).

Another challenge for dialogue response gen-
eration is the integration of knowledge into the
generated responses. (Liu et al., 2018) extracted
facts relevant to a dialogue from knowledge using
string matching, named entity recognition and link-
ing, found additional entities from knowledge that
are most relevant to the facts by a neural similar-
ity scorer, and used these as input context features
for the dialogue generation RNN. (Ghazvininejad
et al., 2018) used end-to-end memory networks to
base the generated responses on knowledge, where
an attention over the knowledge relevant to the con-
versation context is estimated, and multiple knowl-
edge representations are included as input during
the decoding of responses. In this work, we use
end-to-end memory networks as a baseline.

Although much research has focused on re-
sponse generation in a chit-chat setting, models
trained on large datasets of human-human interac-
tions of diverse speaker characteristics often tend to
generate responses which are too vague and generic
(common for most speakers) or inconsistent in
personality (switching between different speakers’
characteristics). Recently, (Zhang et al., 2018) pre-
sented the CONVAI2 challenge containing persona
descriptions and over 10K real human chit-chats
where speakers were required to converse based on
their assigned persona. (Li et al., 2016a) learned
speaker persona embeddings from a single-speaker
setting (e.g. Twitter posts) or a speaker-address
style (human-human conversations) to generate per-
sonalized responses given a single utterance input.
Another related work (Raghu et al., 2018) applies
hierarchical memory network for task oriented dia-
log problem. In this work, we compare our model
with (Zhang et al., 2018) which uses a memory-
augmented sequence-to-sequence response genera-
tor grounded on the dialogue history and persona.

3 Model

In this section, we first set up the problem, and
then briefly revisit the baseline models using mem-
ory networks (Sukhbaatar et al., 2014) and pointer-
generator networks (See et al., 2017). Subse-
quently, we introduce the proposed DEEPCOPY

model with a hierarchical pointer network and our
training process.
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3.1 Problem Setup

Let x = (x1, x2, . . . , xn) denote the tokens in the
dialogue history. The dialogue is accompanied
by a set of K relevant supporting facts, where
f (i) = (f

(i)
1 , f

(i)
2 , . . . , f

(i)
ni ) is the list of tokens in

the i-th fact. Our goal is to generate the response as
a sequence of tokens y = (y1, y2, . . . , ym) using
the dialogue history and supporting facts. Note
here that we are not interested in retrieval/ranking
based models (Weston et al., 2018) which rely on
a set of candidate responses. Generative models
are essential for this problem because we want to
incorporate content from new facts during infer-
ence which may not be present in the training set.
Hence, using a predefined set of candidates may
not ensure high coverage.

3.2 Baseline Models

In this section, we describe several baseline re-
sponse generation models including the ones from
existing work (Ghazvininejad et al., 2018; Zhang
et al., 2018) and the in-house ones we propose as
additional baselines.

3.2.1 Seq2Seq

In a sequence-to-sequence model with attention
(Bahdanau et al., 2015), a sequence of input tokens
is encoded using an LSTM encoder. At decoder
step t, the decoder state ht, a context vector ct and
the previous decoder output yt−1 are used together
to output a distribution over a fixed vocabulary
of tokens obtained from the training set using a
non-linear function. The context vector ct is an
attention-weighted combination of the encoder out-
puts. In the following baseline models, we use
different features as inputs to the encoder. The
underlying model remains the same.
SEQ2SEQ + NOFACT. Only the dialogue context
tokens x are used as input to the encoder.
SEQ2SEQ + BESTFACTCONTEXT. We select
the fact f (c) whose tokens have highest unigram
tf-idf similarity to the dialogue context tokens.
[x||f (c)] is then used as input to the encoder, where
|| denotes concatenation.
SEQ2SEQ + BESTFACTRESPONSE. We select
the fact f (r) whose tokens have highest unigram tf-
idf similarity to the ground truth response. [x||f (r)]
is used as input to the encoder. The aim of this ex-
periment is to have a better understanding of the ef-
fect of fact selection on response generation, since
using the ground truth for fact selection is not fair.

3.2.2 Memory Network

Our variations of Seq2Seq models described in
Section 3.2.1 incorporate facts by concatenating
them to the dialogue context. Memory networks
(Ghazvininejad et al., 2018; Zhang et al., 2018)
are a more principled approach to incorporating
external facts. Similar to (Ghazvininejad et al.,
2018), we use a context encoder to embed the con-
text tokens x and obtain a list of outputs and final
hidden state u ∈ Rd. As outlined in (Ghazvinine-
jad et al., 2018), a fact f (i) is embedded into key
and value vectors ki and mi, respectively. A sum-
mary o ∈ Rd of facts is then computed as an atten-
tion weighted combination of (m1,m2, . . . ,mK)
by conditioning on u and (k1, k2, . . . , kK). We
then combine the two summaries into û = u+ o,
and use it to initialize the decoder state. We report
results on the following variants:
MEMNET. This is equivalent to the model used in
(Ghazvininejad et al., 2018), described above. This
is essentially a sequence to sequence model with-
out attention at every decoder step, except using
the combined summary û to initialize the decoder.
MEMNET+CONTEXTATTENTION. At each de-
coder step, the decoder state attends over the en-
coder outputs and obtains a context vector c(c)t .
This is equivalent to SEQ2SEQ + NOFACT model
from Section 3.2.1, except using the fact summary
û to initialize the decoder state.
MEMNET+FACTATTENTION. At each decoder
step, we use the decoder state to attend over the
value embeddings (m1,m2, . . . ,mK) correspond-
ing to facts, and obtain a context vector c(f)t . This
model is similar to the generative profile memory
network (Zhang et al., 2018), where we apply atten-
tion only on facts, and we set the decoder’s initial
state to the combined summary û.
MEMNET+FULLATTENTION. This model em-
ploys attention over both facts and dialogue context
at each decoder step. The two attention modules
are combined by concatenating c(c)t and c(f)t (Zoph
and Knight, 2016).

3.2.3 Seq2Seq with Copy Mechanism

Seq2seq models can only generate tokens present
in a fixed vocabulary obtained from the training
set. Pointer-generator network (See et al., 2017) ex-
tends the attentional sequence-to-sequence model
(Bahdanau et al., 2015) by employing a pointer net-
work (Vinyals et al., 2015). It has two decoding
modes, copying and generating, which are com-
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Figure 1: Overview of our proposed approach as described in Section 3.3. The decoder state dt is used to attend over dialogue
context and knowledge source to generate distributions for copying tokens from these sources. The decoder outputs a distribution
over a fixed vocabulary. The three distributions are combined to yield the final distribution over tokens at each step t.

bined via a soft switch mechanism, allowing it to
copy tokens from source in addition to generating
from vocabulary. We report the results for the fol-
lowing additional baselines obtained by equipping
the corresponding Seq2Seq model in Section 3.2.1
with copy mechanism: SEQ2SEQ + NOFACT +
COPY, SEQ2SEQ + BESTFACTCONTEXT + COPY,
SEQ2SEQ + BESTFACTRESPONSE + COPY.

3.3 DeepCopy with Hierarchical Pointer
Networks

Pointer-generator network (See et al., 2017) can
only copy tokens from the encoder input. In
this section, we present our proposed DEEPCOPY

model that extends pointer-generator network (See
et al., 2017) using a novel hierarchical pointer net-
work. Our model allows copying tokens from mul-
tiple input sources (facts f (i), 1 ≤ i ≤ K), besides
the encoder input (dialogue context x).

A high-level overview of the proposed approach
is illustrated in Figure 1. At decoder step t, the
decoder state ht is used to attend over the dialogue
context tokens and fact tokens to give a distribution
over the tokens present in context and facts respec-
tively. These distributions are then combined with
the distribution output by the decoder over the fixed
vocabulary to obtain the overall distribution.
Encoding a sequence. Let w = (w1, w2, . . . wn)
be a sequence of tokens. We first obtain a train-
able embedded representation of each token in the
sequence and then use a LSTM cell to encode
the sequence of embedding vectors. We define
e, s = Encode(w), where e denotes the final state
of the LSTM and s = (s1, s2, . . . sn) denotes the
outputs of the LSTM cell at all steps.

Attention. Let u = (u1, u2, . . . un) be a se-
quence of vectors where ui ∈ Rp, 1 ≤ i ≤ n
and v ∈ Rq be a conditioning vector. The at-
tention module generates a linear combination
c of elements in u by conditioning them on v
as defined by the equations below. We define
α, c = Attention(u, v), where αi ∈ Rn is the
weight assigned to ui, and c ∈ Rp is a vector rep-
resentation of the sequence u conditioned on v. In
the equations below, w1 and W2 are parameters
of appropriate dimension. In our setup, we use
p = q, w1 ∈ Rp, and W2 ∈ Rp×2p.

ei = wT
1 tanh(W2[ui; v]) (1)

αi =
exp(ei)∑n
j=1 exp(ej)

(2)

c =
n∑

i=1

αiui (3)

Copying from Dialogue Context. Similar to our
baseline models, we encode the dialogue context
tokens x (Equation 4) and apply attention to the en-
coder outputs at a decoder step t (Equation 5). This
outputs attention weights α(x)

t and a representation
of the entire context c(x)t . The attention weights are
aggregated to obtain the distribution over context
tokens p(x)t (w) (Equation 6),

e(x), s(x) = Encode(x) (4)

α
(x)
t , c

(x)
t = Attention(s(x), ht) (5)

p
(x)
t (w) =

∑

{i:xi=w}
α
(x)
t,i (6)

Copying from Facts: Hierarchical Pointer Net-
work. We introduce the hierarchical pointer net-
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Figure 2: Illustration of hierarchical pointer network. The decoder state dt is used to attend over tokens for each fact and
also over the fact-level context vectors obtained by weighted average of token-level representations (w.r.t token-level attention
weights) for each fact. The token-level attention weights are then combined with the attention distribution over facts (Equation
11) to generate the probability of copying each token in all the facts.

work (Figure 2) as a general methodology for en-
abling token-level copy mechanism from multiple
input sequences or facts. Each fact f (i) is encoded
(Equation 7) to obtain token level representations
s(f)(i) and overall representation e(f)(i). The de-
coder state ht is used to attend over token level
representations (Equation 8) and the overall fact-
level representations of each fact (Equation 9) by

e(f)(i), s(f)(i) = Encode(f (i)) (7)

α
(f)(i)
t , c

(f)(i)
t = Attention(s(f)(i), ht) (8)

βt, c
(f)
t = Attention({c(f)(i)t }Ki=1, ht)

(9)

to compute the probability of copying a word w
from facts as

p
(f)
t (w) =

K∑

j=1

p
(f)
t (f (j)) · p(f)t (w|f (j))

=
K∑

j=1

βt,j
∑

{l:f (j)
l =w}

α
(f)(j)
t,l (10)

Inter-Source Attention Fusion We now present
the mechanism to fuse the two distributions p(x)t (w)

and p(f)t (w) representing the probabilities of copy-
ing tokens from dialogue context and facts respec-
tively. We use the decoder state ht to attend over
dialogue context representation c

(x)
t and overall

fact representation c(f)t (Equation 11). The result-
ing attention weight γ′t = [γt, 1 − γt] is used to
combine the two copying distributions as shown in

Equation 12.

γt, ct = Attention([c
(x)
t , c

(f)
t ], ht) (11)

p
copy
t (w) = γt p

(x)
t (w) + (1− γt) p(f)t (w) (12)

Similar to Seq2Seq models, the decoder also out-
puts a distribution pvocab

t over the fixed training
vocabulary at each decoder step using the overall
context vector ct and decoder state ht. Having de-
fined the copy probabilities pcopy

t for tokens that
appear in the model input, either the dialogue con-
text or the facts in external knowledge source, we
combine pvocab

t and pcopy
t using the mechanism out-

lined in (See et al., 2017), except we use ct defined
in Equation 11 as the context vector instead.

To better isolate the effect of copying, a key com-
ponent of the proposed DEEPCOPY model, we also
conduct experiments with MULTISEQ2SEQ model
that incorporates the knowledge facts in the same
way (by encoding each fact separately with LSTM,
and attending on each by the decoder as in (Zoph
and Knight, 2016)), but relies completely on gener-
ation probabilities without a copy mechanism.

3.4 Training

We train all the models described in this section
using the same loss function optimization. More
precisely, given a model M that produces a proba-
bility pt(w|y<t) of generating token w at decoding
step t, we train the whole network end-to-end with
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the negative log-likelihood loss function of

Jloss(Θ) = − 1

|y|

|y|∑

t=1

log(pt(yt|y<t,x, {f (i)}Ki=1))

for a training sample (x,y, {f (i)}Ki=1) where Θ
denotes all the learnable model parameters.

4 Experiments

In this section, we describe the details of dataset,
training process, evaluation metrics, and the perfor-
mance results of DEEPCOPY model in comparison
to proposed and existing baselines.

4.1 Dataset
We perform experiments for our problem setup on
the recently released CONVAI2 conversational AI
challenge dataset, which is an extended version of
PERSONACHAT (Zhang et al., 2018). The conver-
sations in CONVAI2 are obtained by asking a pair
of crowdworkers to chat with each other naturally
based on their randomly assigned personas (from
a set of 1155 personas) towards getting to know
each other. Personas are created by a different set
of crowdworkers, and they consist of ~5 natural
language sentences, each describing an aspect of a
person that can range from common hobbies like "I
like to play basketball" to very specific facts like "I
have a pet parrot named Tasha", reflecting a wide
range of different personalities. The dataset con-
tains ~11000 dialogues with ~160000 utterances,
and 2000 dialogues with non-overlapping personas
are used for validation and test. For our setting, we
use personas as external knowledge sources that
models can ground on while generating responses.

4.2 Training and Implementation Details
In all the models explored in this paper, we set the
dialogue context to concatenation of the last two di-
alogue turns separated by a special CONCAT token.
The models are supplied with the persona facts of
the side generating the response at the current turn,
while the persona of the other side is concealed.
We use a vocabulary of 18650 most frequent to-
kens and all the remaining tokens are replaced with
a special UNK token. Embeddings of size 100 are
randomly initialized and updated during training.
We set the size of LSTM hidden layer to 100 for
both encoder and decoder. The encoder and de-
coder vocabularies and embeddings are shared. A
shared LSTM encoder is used for encoding both
dialogue context and facts of external knowledge
source. The model parameters are optimized using

Adam (Kingma and Ba, 2015) with a batch size of
32, a fixed learning rate of 0.001. We apply gradi-
ent clipping to 5 when its norm exceeds this value.
During inference, we generate responses by em-
ploying a beam search of width 4. Our models are
implemented in TensorFlow (Abadi et al., 2016).

4.3 Main Results

In this section, we present the experimental results
in terms of both automatic measures and human
evaluation.

4.3.1 Automatic Evaluation
In Table 1, we present our results in comparison
with the existing and proposed baseline models.
We report the performance of each model across
several metrics commonly used for evaluation of
text generation models including perplexity, corpus
BLEU (Papineni et al., 2002), ROUGE-L (Lin and
Och, 2004), CIDEr (Vedantam et al., 2014).

As expected, SEQ2SEQ + BESTFACTRE-
SPONSE model and its +COPY version outperform
all the other models across all the evaluation met-
rics. This model pinpoints the importance of se-
lecting the most suitable fact in the persona for the
response to be generated at each turn, justifying our
underlying motivation for conducting this experi-
ment as highlighted in Section 3.2.1. However, the
most suitable fact for the response is not available
in the real application scenario, where the models
are responsible for picking the useful pieces of in-
formation pertaining to the current dialogue turn
to generate meaningful responses. Our proposed
SEQ2SEQ + BESTFACTCONTEXT model and its
+COPY version, on the other hand, are valid base-
lines for this scenario where the best fact is selected
completely based on the dialogue context without
relying on the ground-truth response. This model
outperforms the previously proposed memory net-
work based model MEMNET (Ghazvininejad et al.,
2018) for knowledge grounded response genera-
tion on all the evaluation metrics, demonstrating
its effectiveness despite the fact that it does not
have access to all the facts unlike (Ghazvininejad
et al., 2018). However, this approach has the fol-
lowing potential weaknesses: (i) if the best persona
fact selected w.r.t dialogue context is wrong (irrele-
vant) for the ground-truth response, the generated
response might be drastically misinforming, and
furthermore it is difficult for model to recover from
this error because it has no access to other facts, (ii)
selecting the best fact w.r.t dialogue context based
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Model Perplexity BLEU ROUGE-L CIDEr Appropriateness

[M-1] MEMNET 61.30 3.07 59.10 10.52 3.14 (0.51)
[M-2] MEMNET + CONTEXTATTENTION 57.37 3.24 59.20 11.79 3.41 (0.54)
[M-3] MEMNET + FACTATTENTION 61.50 2.43 59.34 9.65 1.45 (0.25)
[M-4] MEMNET + FULLATTENTION 59.64 3.26 59.18 12.25 3.20 (0.49)

[S2S-1] SEQ2SEQ + NOFACT 60.48 3.38 59.46 11.41 3.12 (0.52)
[S2S-2] SEQ2SEQ + BESTFACTCONTEXT 58.68 3.35 59.13 10.77 3.08 (0.45)
[S2S-3] SEQ2SEQ + BESTFACTRESPONSE* 49.74 4.02 60.04 16.15 2.97 (0.51)

[S2SC-1] SEQ2SEQ + NOFACT + COPY 58.84 3.25 59.18 11.15 3.64 (0.54)
[S2SC-2] SEQ2SEQ + BESTFACTCONTEXT + COPY 60.25 3.17 59.46 11.17 3.60 (0.51)
[S2SC-3] SEQ2SEQ + BESTFACTRESPONSE + COPY* 38.60 4.54 60.96 21.47 3.83 (0.46)

[M-S2S] MULTISEQ2SEQ (no COPY) 57.94 2.88 59.10 10.92 3.32 (0.44)
DEEPCOPY† 54.58 4.09 60.30 15.76 3.67 (0.59)

G.TRUTH N/A N/A N/A N/A 4.40 (0.45)

Table 1: Main results on CONVAI2 dataset. Evaluation metrics on last three columns are better the higher. Perplexity is lower
the better. The results of the proposed approach are presented in bold. * indicates that the corresponding model should be
considered as a kind of ORACLE because it has access to the fact that is most relevant to the ground-truth response during the
inference/test time as defined in Section 3.2.1. † indicates that the improvement of DEEPCOPY in automatic evaluation metrics
over each of the other models (except S2SC-3) is statistically significant with p-value of less than 0.001 on the paired t-test.

on tf-idf similarity may result in poor fact selec-
tion when the lexical overlap between context and
response is small which might be a common case
especially for the CONVAI2 dataset as the focus
of conversation may often change swiftly across
the dialogue turns. The latter might be the reason
why copying does not help much for this model
since it might end up copying irrelevant tokens in
the scenario mentioned above.

Our proposed DEEPCOPY model is designed
to effectively address the aforementioned issues,
where it has access to the entire set of persona facts
per dialogue from which it is expected to include
the useful pieces of information in the response.
DEEPCOPY model outperforms all the models re-
ported in Table 1 except for SEQ2SEQ + BEST-
CONTEXTRESPONSE models, which we already
deem as kind of an upper bound because it has ac-
cess to the most relevant fact to the response. This
justifies the effectiveness of DEEPCOPY model
compared to the existing works (Ghazvininejad
et al., 2018; Zhang et al., 2018) and the addi-
tional baselines we explored in this work. On the
other hand, MULTISEQ2SEQ performs consider-
ably worse than the DEEPCOPY model despite the
fact they both have access to the entire set of facts
and employ the same encoder-decoder architecture
except for the copy mechanism. This further justi-
fies the effectiveness of incorporating the proposed
hierarchical pointer networks in DEEPCOPY be-
cause integrating the external knowledge simply
by employing multi-source attention as in (Zoph
and Knight, 2016) does not yield to a good solution

with competitive results, performing even worse
than SEQ2SEQ + NOFACT on 3 of the metrics.

4.3.2 Human Evaluation

Although automatic metrics provide tangible in-
formation regarding the performance of the mod-
els, we augment them with human evaluations for
a more comprehensive analysis of the resulting
model generated responses. Towards this end, we
randomly sample 100 examples from test data and
ask human raters to evaluate the candidate model
generated responses in terms of appropriateness.
Each example is rated by 3 raters, who are shown
a dialog history along with a set of persona facts
(of the person in turn), and asked to rate each re-
sponse based on its appropriateness in the dialogue
context with a score from 1 (worst) to 5 (best).

In Table 1, we present the results of human eval-
uation under the appropriateness column. Since
each response is rated by 3 different human raters,
we report the average rating along with the stan-
dard deviation in parenthesis. We observe that
DEEPCOPY outperforms both the existing memory-
network baselines and the proposed sequence-to-
sequence baselines on the appropriateness evalua-
tion. It also achieves a performance that is close
to the oracle model (S2SC-3), which has a lever-
age of having an access to the fact that is most
relevant to the ground-truth response during the
inference time. Overall, human evaluation of the
responses in terms of appropriateness further justi-
fies the promise and effectiveness of our proposed
DEEPCOPY model.
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Diversity Fact-Inclusion Agreement
Model Distinct-2 / 3 / 4 F.Inc F.Per F.Hal F.Inc / F.Per

M-1 .004 / .006 / .010 0.41 0.01 0.40 0.99 / 0.99
M-2 .010 / .019 / .031 0.43 0.01 0.42 0.97 / 0.99
M-3 .001 / .001 / .002 0.06 0.04 0.02 0.99 / 0.99
M-4 .054 / .010 / .156 0.51 0.09 0.42 0.98 / 0.98

S2S-1 .012 / .022 / .036 N/A N/A N/A N/A / N/A
S2S-2 .012 / .022 / .035 0.54 0.04 0.50 0.97 / 0.99
S2S-3 .026 / .043 / .061 0.79 0.16 0.63 0.97 / 0.97

S2SC-1 .039 / .069 / .104 N/A N/A N/A N/A / N/A
S2SC-2 .035 / .067 / .109 0.73 0.36 0.37 0.99 / 0.99
S2SC-3* .058 / .111 / .178 0.73 0.55 0.18 0.98 / 0.96

M-S2S .035 / .065 / .104 0.47 0.05 0.42 0.96 / 0.98
DEEPCOPY .059 / .121 / .201 0.62 0.23 0.39 0.95 / 0.97

G.TRUTH 0.35 / 0.66 / 0.84 0.76 0.49 0.27 0.93 / 0.96

Table 2: Lexical diversity and fact inclusion analysis results. Model names are abbreviated according to Table 1. F.Inc denotes
the ratio of responses that include factual information. F.Per and F.Hal denote the ratio of responses where the included fact is
consistent with the persona or a hallucinated one, respectively. Agreement column corresponds to Cohen’s κ statistic measuring
inter-rater agreement on binary factual evaluation metrics for F.Inc and F.Per. * indicates the ORACLE model.

Appropriateness scores also demonstrate the ad-
vantage of incorporating the soft copy mechanism.
Comparing S2S (and M-S2S) models to their copy-
equipped counterparts (S2SC) (and DEEPCOPY)
in Table 1 immediately reveals a significant gain in
appropriateness score. Another significant obser-
vation to note here is that ground-truth responses
obtain an average appropriateness score of 4.4/5,
which reflects both the noise in CONVAI2 dataset
and the difficulty of generating the perfect response
even for humans.

4.4 Further Analysis and Discussion
Lexical Diversity Analysis. In Table 2, we re-
port the lexical diversity results using the distinct-
ness metric introduced in (Li et al., 2016b). dis-
tinct-n score corresponds to the number of distinct
n-grams divided by total number of generated n-
grams. We can clearly observe that DEEPCOPY

generates the most diverse responses among all
the models including the copy-augmented oracle
model (S2SC-3). Hence, diversity results further
show that our proposed model is promising in ad-
dressing the most commonly observed generic re-
sponse problem more effectively than existing mod-
els by generating more diverse responses.
Fact Inclusion Analysis. We also conduct an anal-
ysis on the kinds of factual information included
in the model-generated responses. More precisely,
our goal is to understand how often the generated

response includes a factual information (F.Inc), and
whether this information is consistent with the per-
sona facts (F.Per) or a hallucinated one (F.Hal). A
good model can naturally include available facts
from the persona and hallucinate others when the
conversation context requires them. Towards this
end, we ask 3 human raters to label responses with
1 (or 0) based on whether a fact is included, and if
so, whether this fact is a persona-fact or not.

In Table 2, we present an analysis for the kinds
of factual information included in model generated
responses. As can be seen from this analysis, mod-
els that have a copy mechanism include more facts
from the persona than the ones that do not. Another
important observation is that the ground-truth re-
sponses include facts from persona only in 49% of
the times, which indicates that the provided persona
facts remain insufficient to cover the complexity
of the high entropy open-ended person-to-person
conversations.

In Table 2, we present Cohen’s κ score for each
model and fact analysis metric pair using the scores
from 3 raters for each example. We observe for
each model and metric pair a κ statistic of greater
than 0.9, which indicates a near perfect agreement
among raters. Note that the ratio of hallucinated
facts (F.Hal) is derived directly from human labels
for fact inclusion (F.Inc) and persona-fact (F.Per).
That is why, there is no separate labelling process
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for hallucinated facts (F.Hal). Hence, there is no κ
statistic for F.Hal in Table 2.
Error Analysis. A deeper analysis of the examples
where DEEPCOPY is assigned a worse appropri-
ateness score than the best performing memory-
network based baselines (M-2 and M-4) reveals
the following further insights: (i) Some of these
examples are corresponding to the cases where a
generic response (e.g., "I’ve a dog named radar",
one of the frequent generic responses, completely
independent of persona facts) is rated much higher
(5 to 1) than factual but slightly off (by a single
word in this example) responses (e.g., "I have a
dog for a living." coming from the persona fact
"I walk dogs for a living."), (ii) In another sub-
set of the analyzed examples, DEEPCOPY model
generates a response (e.g., "yes, but I want to be-
come a lawyer.") by incorporating a fact that has
already been used in the previous turn of the di-
alog whereas M-2 produces a generic response
(e.g., "that’s great. do you have any hobbies?",
again irrelevant to facts) which is rated higher. (iii)
And most of the remaining cases fall into the class
of examples where incorporating knowledge facts
breaks the conversation flow, which is a crucial
observation specific to this dataset that can also be
supported by the low persona-fact inclusion ratio
(49%) of ground-truth responses.

4.5 Qualitative Observations
In Figure 3, we present an example dialogue where
DEEPCOPY model generates a meaningful and flu-
ent response by effectively mixing copy and gen-
erate modes. We can observe that it is able to
attend on the right persona fact by taking the dia-
logue context (especially the question at the end of
PERSON2’s turn) into consideration. Furthermore,
attending to the tokens of this fact, it produces a
fluent and valid answer to yes/no question by gen-
erating "yes" and copying the rest (and most) of the
tokens from the fact. Although it copies most of
the tokens from the fact, it is good to observe that
it copies exactly the relevant pieces instead of just
copying the entire fact. SEQ2SEQ + BESTFACTRE-
SPONSE + COPY model’s response is also meaning-
ful and fluent although it may not be as engaging
for the continuation of dialog. However, the qual-
ity of the response by SEQ2SEQ + BESTFACTRE-
SPONSE quickly degrades compared to its +COPY

version. Although the response is still fluent and
relevant to the dialogue context, it becomes rather
irrelevant to the persona as the model seems to have

Figure 3: Example dialogue where the previous two turns
from PERSON1 and PERSON2 along with the responses gen-
erated by the models acting as PERSON1 are shown on the
right. Persona facts for PERSON1 are provided on the left,
among which the one in bold is the best fact w.r.t response.
MEMNET*, SEQ2SEQ*, SEQ2SEQ** are abbreviations for
MEMNET + FULLATTENTION, SEQ2SEQ + BESTFACTRE-
SPONSE, SEQ2SEQ + BESTFACTRESPONSE +COPY models,
respectively.

difficulty of picking the useful information from
even the best persona fact it is provided with when
the copy mechanism is disabled. Lastly, the re-
sponse generated by MEMNET+FULLATTENTION

model seems to still suffer from repetition, seman-
tic consistency, and relevancy problems that were
observed and reported by previous work.

5 Conclusion and Future Work
We propose a hierarchical pointer network for
knowledge grounded dialogue response genera-
tion. Our approach extends the pointer-generator
network to enable the decoder to simultaneously
copy tokens from the available set of relevant ex-
ternal knowledge in addition to dialogue context.
We demonstrate the effectiveness of our approach
through various automatic and human evaluations
in comparison with several baselines on the CON-
VAI2 dataset. Furthermore, we conduct diversity,
fact inclusion, and error analysis providing further
insights into model behaviors. In the future, we
plan to apply our model to datasets of the same
fashion where the dialogue is accompanied by a
much larger set of knowledge facts (e.g., Wikipedia
articles) (Galley et al., 2018). This could be done
by adding a retrieval component which identifies
a few contextually relevant facts (Ghazvininejad
et al., 2018) to be used as input to DEEPCOPY.
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Abstract

Learning an efficient manager of dialogue
agent from data with little manual intervention
is important, especially for goal-oriented dia-
logues. However, existing methods either take
too many manual efforts (e.g. reinforcement
learning methods) or cannot guarantee the di-
alogue efficiency (e.g. sequence-to-sequence
methods). In this paper, we address this prob-
lem by proposing a novel end-to-end learn-
ing model to train a dialogue agent that can
look ahead for several future turns and gener-
ate an optimal response to make the dialogue
efficient. Our method is data-driven and does
not require too much manual work for inter-
vention during system design. We evaluate our
method on two datasets of different scenarios
and the experimental results demonstrate the
efficiency of our model.

1 Introduction

Research for dialogue system attracts a lot of at-
tentions recently due to its potential huge value
of reducing human cost in many commercial do-
mains, such as restaurant reservation (Henderson
et al., 2014b), travel planning (Peng et al., 2017)
and retail service (Zhang et al., 2019). The major-
ity of dialogue agents with goals are expected to
be efficient to complete tasks with as few as pos-
sible dialogue turns, in contrast with those chit-
chat counterparts (Ritter et al., 2011). The follow-
ing two examples show the comparison of efficient
and inefficient cases respectively. The senarios is
restaurant reservation and the agent’s goal is to re-
serve a table at noon.

Efficient example:
“Human: We don’t have empty tables at
11 o’clock tomorrow. All are reserved.”
“Agent: How about 12 o’clock? We are
also okay then.”
∗Xian-Ling Mao is the corresponding author.

Inefficient example:
“Human: We don’t have empty tables at
11 o’clock tomorrow. All are reserved.”
“Agent: What else time is available?”
“Human: 12 o’clock is ok.”
“Agent: All right. We want that time.”

For expressing the same opinion, the inefficient
example consumes four turns while the efficient
example only needs two. As it can be seen, the
efficiency is important for goal-oriented dialogue
systems to achieve goals in a rapid way.

Usually, a dialogue system consists of a pipeline
of natural language understanding (NLU), dia-
logue management (DM) and natural language
generation (NLG), where the DM part is treat as
two separate components: dialogue state tracking
(DST) and dialogue control (DC, i.e. dialogue pol-
icy selection). The DM part is widely considered
to be relevant to the dialogue’s efficiency, because
it makes decisions on what to say for the next turn.
Recently, methods based on reinforcement learn-
ing are proposed for the policy selection compo-
nent to build efficient dialogue systems. However,
there are some drawbacks of reinforcement learn-
ing based methods. For example, they requires
lots of human work to design the learning strat-
egy. Also a real-world environment which is es-
sential for the agent to learn from is expensive,
such as from domain experts. Moreover, training
the dialogue manager as a two separate compo-
nents could lead to error propagation issue (Ras-
togi et al., 2018).

In addition to reinforcement learning based
methods, sequence-to-sequence based methods
are also popular recently, because they can learn a
dialogue agent purely from data and almost with-
out too many human efforts. The error prop-
agation issue can also be reduced because they
are end-to-end, and they have better scalability
for different scenarios. However, it is difficult to
build efficient dialogue agents by those methods
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since their objective functions for training mod-
els are usually inclined to general responses, such
as I don’t know, yes and OK, or often generate
the same response for totally different contexts
because the contextual information is not well-
modeled by those methods (Dodge et al., 2015).

In this paper, we address the problem of learn-
ing an efficient dialogue manager from the per-
spective of reducing manual intervention and er-
ror propagation, and propose a new sequence-to-
sequence based approach. The proposed end-to-
end model contains a novel looking-ahead module
for dialogue manager to learn the looking-ahead
ability. Our intuition is that by predicting the fu-
ture several dialogue turns, the agent could make a
better decision of what to say for current turn, and
therefore goals could be sooner achieved in a long
run.

More specifically, our model includes three
modules: (1) encoding module, (2) looking-ahead
module, and (3) decoding module. At each dia-
logue turn, three kinds of information, the goals,
historical utterances and the current user utterance,
are utilized. First they are encoded by three sepa-
rate Bidirectional Gated Recurrent Units (BiGRU)
models. Then the three encoded embeddings are
concatenated to one vector, which is then sent to
a new bidirectional neural network that can look
ahead for several turns. The decoding module will
generate utterances for each turn through a learned
language model. At last, by considering all the
predicted future utterances, a new real system ut-
terance for the next turn is re-generated by us-
ing an attention model through the same language
model.

Our proposed approach has several advantages.
First, it is an end-to-end model and does not take
too many human efforts for system design. Al-
though the goals should be handcrafted for spe-
cific scenario, the number of goals is small and
it is a relatively easy work. Moreover, compared
with naive sequence-to-sequence based models,
our agent can make the dialogue more efficient by
modeling the looking-ahead ability. Experimental
results show that our model performs better than
baselines on two datasets from different domains,
which could suggest that our model is also scal-
able to various domains.

The contributions in this paper include:

• We identify the problem that how to make di-
alogues efficient by exploiting as little as pos-

sible manual intervention during system de-
sign from the perspective of end-to-end deep
learning.

• We propose a novel end-to-end and data-
driven model that enables the dialgoue agent
to learn to look ahead and make efficient de-
cisions of what to say for the next turn.

• Experiments conducted on two datasets
demonstrate that our model performs better
over baselines and can be applied to different
domains.

2 Related Work

In most situations, the dialogue systems require
handcrafted definition of dialogue states and dia-
logue policies (Williams and Young, 2007; Hen-
derson et al., 2014a; Asher et al., 2012; Chen et al.,
2017). Those methods make the pipeline of dia-
logue systems clear to design and easy to main-
tain, but suffer from the massive expensive human
efforts and the error propagation issue (Henderson
et al., 2014c; Liu and Lane, 2017).

Reinforcement learning based methods for di-
alogue policy selection are widely studied re-
cently (Lipton et al., 2018; Dhingra et al., 2017;
Zhao and Eskenazi, 2016; Su et al., 2016). These
methods only need human to design the learn-
ing strategies and do not require massive training
data. However, the expensive domain knowledge
and human expert efforts for agents to learn from
are necessary (Liu et al., 2018; Shah et al., 2018).
Therefore, hybrid methods that integrate super-
vised learning and reinforcement learning are pro-
posed recently (Williams et al., 2017; Williams
and Zweig, 2016). Thus, collecting massive train-
ing data becomes another manual work.

More recently, end-to-end dialogue systems at-
tract much attention because almost no human
efforts are required and they are scalable for
different domains (Wen et al., 2017; Li et al.,
2017; Lewis et al., 2017; Luo et al., 2019), es-
pecially with sequence-to-sequence based mod-
els (Sutskever et al., 2014). Although those mod-
els have been proved to be effective on chit-chat
conversations (Ritter et al., 2011; Li et al., 2016a;
Zhang et al., 2018), how to build agents that
are goal-oriented with efficient dialogue managers
through end-to-end approaches still remains ques-
tionable (Bordes et al., 2017; Joshi et al., 2017),
and we investigate the question in this paper.
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Figure 1: End-to-end model for learning looking-ahead ability.

Our idea of enabling the agent to be efficient by
modeling looking-ahead ability is inspired by the
AI Planning concept, which is a traditional search-
ing technology in the field of AI, and is suitable for
goal-based tasks, such as robotics control (Norvig
and Russell, 1995). Recently, the concept is bor-
rowed to dialogue system communities and inte-
grated into deep learning models. For example,
a trade-off method for training the agents neither
with real human nor with user simulators is pro-
posed, in order to obtain better policy learning re-
sults (Peng et al., 2018). In addition, at earlier
time, the planning idea has been utilized for im-
proving the dialogue generation task (Stent et al.,
2004; Walker et al., 2007).

3 End-to-end Dialogue Model

We propose an end-to-end model that contains
three modules: (1) encoding module, (2) looking-
ahead module, and (3) decoding module. Figure 1
shows the model architecture. We leverage Bidi-
rectional GRU models (Bahdanau et al., 2014) to
encode agent goals, historical and current utter-
ances. Then the obtained representations by en-
coding goals and utterances are regarded as inputs

of the looking-ahead module, and they are used to
predict several future turns. At last the predicted
future turns are merged by an attention model and
the new real system utterance is generated for the
next turn.

Suppose for each dialogue session we have T
turns, and we do not distinguish whether it is
user’s turn or system’s turn. If the agent has S
goals that are denoted as g = {g1, g2, ..., gS}, each
goal is formalized as a binary vector. For exam-
ple in the restaurant reservation scenario, we can
define that each variate in the vector [1, 0] corre-
sponds to a yes-no condition, such as the 1 means
agent accepts bar table and the 0 means agent does
not want to change time. As to the utterance in-
formation, imagine at turn t ∈ {1, ..., T}, we de-
note utterances {u1, ..., ut−1} ∈ U for histori-
cal ones and ut ∈ U for current user utterance.
Our model predicts the system and user utterances
{ut+1, ut+2, ..., ut+K} for the next K turns and
then a new ut+1 is generated as the system utter-
ance after considering all the predicted turns. The
model separates the current user utterance from
historical ones in order to highlight the user’s cur-
rent states. In general, the model is end-to-end and
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needs little human intervention or domain knowl-
edge.

3.1 Encoding Module
In this module, the agent goals, historical utter-
ances within the dialogue session, and the current
user utterance are encoded by using three GRU
models which is expected to learn long-range tem-
poral dependencies (Cho et al., 2014). GRU (g)

is defined to encode agent’s goals g and the final
hidden state h(g) is taken as the representation of
goals. The input of GRU (g) is a one-hot binary
vector with length S. GRU (u) is used to encode
the historical utterances, and GRU (c) is used to
encode the current user utterance. h(u) and h(c)

are denoted as the final encoded representations of
GRU (u) and GRU (c) respectively.

To get the i-th hidden state for the three GRUs,
respective inputs include the previous hidden state
h
(g)
i−1, h(u)i−1 or h(c)i−1, and the embeddings of cur-

rent observations, E(gi), E(ui) or E(xi), where
gi is a goal, ui is an utterance and xi is a token.
For the textual tokens, we use the Word2vec em-
beddings as their representations (Mikolov et al.,
2013). Then the token embeddings are averaged
to represent utterances. The formal denotation of
the hidden states for the three GRU models is:

h
(g)
i = GRU (g)(h

(g)
i−1, E(gi)), (1)

h
(u)
i = GRU (u)(h

(u)
i−1, E(ui)), (2)

h
(c)
i = GRU (c)(h

(c)
i−1, E(xi)), (3)

where E(·) represents the embeddings.
The final output of the encoding module is a

concatenation of h(g), h(u) and h(c), which is de-
noted as h

−→
l
1 = [h(g), h(u), h(c)]. h

−→
l
1 serves as the

input of the following looking-ahead module. The
right arrow means the initial direction to train the
looking-ahead module is from the current to the
future.

3.2 Looking-ahead Module

With the input of h
−→
l
1 , this module predicts sev-

eral future dialogue turns. Since the process is se-
quential, we propose a recurrent neural network
to model the process. In order to exploit the pre-
dicted information for later generating a real sys-
tem utterance, another recurrent neural network is
used to backtrack the information from future to

current. To reduce the computing cost, the two
neural networks share the same parameters, and
the whole looking-ahead module looks similar to
a bidirectional GRU as shown in Figure 1.

We denote the module asGRU (l). {h(l)k |k > 0}
represent the predicted hidden states for future
turns. To get h(l)k , the hidden states from two di-

rections, h
−→
l
k and h

←−
l
k , are concatenated. To calcu-

late each h
−→
l
k or h

←−
l
k , their inputs include the previ-

ous hidden state and the previously-predicted hid-
den state. Formally, suppose we look ahead for
K turns, the hidden state of h(l)k is calculated as
following:

h
−→
l
k = GRU

−→
l (h
−→
l
k−1,Wh

(l)
k−1), (4)

h
←−
l
k = GRU

←−
l (h
←−
l
k+1,Wh

(l)
k+1), (5)

h
(l)
k = [h

−→
l
k , h

←−
l
k ], (6)

where W is a weight parameter and Wh
(l)
k is the

hidden state for predicting future turns. If K = 1,
it means our model has no looking-ahead ability
and it degrades to a naive goal-based sequence-to-
sequence model.

3.3 Decoding Module

For generating the real system utterance, as seen
in Figure 1, the green hidden states {Wh

(l)
k |k >

0} are combined through an attention based
model (Wang et al., 2016). The formal denotation
is:

ek = tanh(W (a)Wh
(l)
k )], (7)

vk =
exp (ek)∑K
k=1 exp(ek)

, (8)

r =
K∑

k=1

vkh
(l)
k , (9)

where W (a) is the attention weight parameter and
r is the input representation for generating a new
ut+1 that is regarded as the real system utterance.

Given the hidden state Wh
(l)
k , the decoding

module can also generate the corresponding utter-
ance for learning the looking-ahead ability. We
share the parameters of decoding with those in the
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encoding module, in order to reduce the comput-
ing cost (Vinyals and Le, 2015). The token se-
quence in ut+k is generated from left to right by
selecting the tokens with the maximum probabil-
ity distribution through a language model learned
by the following equation:

pθ(y
(t+k)
j |y(t+k)1,2,...,j−1) ∝ exp(ETWh

(l)
k ). (10)

3.4 Model Training
To train the proposed model, we define a loss
function to maximize three terms: (1) a language
model for predicting tokens in language genera-
tion, (2) the probability distribution of predicting
utterances of future dialogue turns, and (3) a bi-
nary classifier to predict if the dialogue will be
complete or not. The final joint loss function is
formally denoted as:

L(θ) =−
∑

u

∑

i

log pθ(xi|x1,...,i−1)
︸ ︷︷ ︸

language model loss

− α
∑

u,g

∑

k

∑

i

log pθ(y
(t+k)
i |y(t+k)1,...,i−1, u, g)

︸ ︷︷ ︸
looking ahead prediction loss

− β
∑

c

log p(zc|c, ut+1)

︸ ︷︷ ︸
dialog state prediction loss

,

(11)
where

ut+1 = argmaxypθ(y|r), (12)

log p(zc|c, ut+1) = zc log(g(c, ut+1))

+ (1− zc) log(1− g(c, ut+1)).
(13)

g(·) is a sigmoid function and zc is the label of
the dialogue that current user utterance c belongs
to, where 1 means the dialogue ends up with goals
achieved while 0 means the goals are not achieved.
The three terms are weighted with two hyper-
parameters α and β. We adopt stochastic gradient
descent method to minimize L(θ).

In the looking-ahead module, the hidden state
Wh

(l)
k is used to generate an utterance y(t+k), and

is also used to calculate h
−→
l
k+1 and h

←−
l
k−1. We design

an EM-like algorithm to optimize the loss func-
tion, as described in Algorithm 1. Line 3-4 op-
timize the language model, i.e. the first term of
L(θ). Line 5-16 optimize the looking-ahead mod-
ule, i.e. the second term, among which Line 7-
14 are for E-step and Line 15-16 are for M-step.

In E-step the language model is fixed for updating
all the hidden states h(l)k in looking-ahead module,
and in M-step all the hidden states are fixed for up-
dating the language model. Line 17-18 optimize
the third term of L(θ), which is a binary classifier.

Algorithm 1: Learning algorithm for L(θ)
input : Dialogue utterances U , Agent goals g,

Looking-ahead turns K
output: Agent model θ

1 Randomly initializing parameters;
2 for c ∈ U , g and historical utterances {u} do
3 for xi ∈ c do
4 Optimizing pθ(xi|x1,...,i−1);

5 h
−→
l
1 = [h(g), h(u), h(c)];

6 ut+1 = argmaxypθ(y|r);
E-Step: Update h(l)

k with fixed language model;
7 for k = 1 : K do
8 ut+k = argmaxypθ(y|h(l)

k );

9 h
−→
l
k = [h

−→
l
k−1,Wh

(l)
k−1];

10 h
←−
l
K = h

−→
l
K ;

11 for k = K − 1 : 1 do
12 h

←−
l
k = [h

←−
l
k+1,Wh

(l)
k+1];

13 for k = 1 : K do
14 h

(l)
k = [h

−→
l
k , h

←−
l
k ];

M-Step: Update language model with fixed h(l)
k ;

15 for k = 1 : K do
16 Optimizing pθ(y

(t+k)
i |y(t+k)1,...,i−1);

17 ut+1 = argmaxypθ(y|r);
18 Optimizing p(zc|c, ut+1);

19 return θ;

4 Experiments

4.1 Data Collection

We use two datasets for two different scenarios to
evaluate our model. Table 1 shows the statistics of
two datasets.

4.1.1 Dataset 1 - Object Division
Dataset 1 contains crowd-sourced dialogues be-
tween humans collected from Amazon Mechani-
cal Turk platform (Lewis et al., 2017). The dataset
is for object division task and both sides have sep-
arate goals of each object’s value. We use the tex-
tual data and transform their goals to yes-no ques-
tions as our binary vectors. The information of
each dialogue session’s final state, agree or dis-
agree, is used for training the agent.

4.1.2 Dataset 2 - Restaurant Reservation
To the best of our knowledge, there is no other
public dataset for goal-oriented dialogues where
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Metric Dataset 1 Dataset 2
Number of Dialogues 5,808 1,613

Average Turns per Dialogue 6.6 6.3
Average Words per Turn 7.6 8.9

Number of Words 566,779 98,726
% Goal Achieved 80.1% 71.5%

Table 1: Statistic on the two datasets.

the two sides have different goals. To this end, we
construct the Dataset 2 to testify the scalability of
our model. The common scenario of restaurant ta-
ble reservation is chosen.

In this dataset, the two agents are expected to
have different goals and they dialogue with each
other for looking for the intersection of their goals.
We denote Agent A as the role of a customer and
Agent B as the restaurant server side. At the be-
ginning of each dialogue session, Agent A is given
the available time slot, the number of people, and
several other constraints (e.g. can sit at bar or not).
All the constraints are regarded as its goals rep-
resented by a binary vector. Similarly, Agent B
has itself constraints (e.g. whether bar tables are
available or not), which are also treat as goals rep-
resented by a binary vector. We predefine a pool of
‘goals’ and at the beginning of each dialogue ses-
sion, the goals for two sides are randomly sampled
separately from the pool. The two agents cannot
see each other’s goals and they dialogue through
natural language until a final decision, agreement
or disagreement, is reached. In summary, the ob-
jective of constructing this dataset is to see if our
model can reach the intersection of the two agents’
goals in a more efficient way.

To generate dialogues for Dataset 2, we resort to
a rule-based method via AI planning search (Ghal-
lab et al., 2016; Jiang et al., 2019). Watson AI
platform 1 is leveraged for natural language un-
derstanding by defining intents and entities with
examples. A planner is designed for the dia-
logue manager by defining several states and ac-
tions. The goals are represented as part of the
states, and the STRIPS algorithm is used to search
the shortest path to goals at each turn and return
the first planned action for generating the next re-
sponse. Each action has several handcrafted utter-
ances since the diversity of utterances is not our
focus in this paper. Table 2 shows a sample dia-
logue.

1https://www.ibm.com/watson/ai-assistant/

Alice: May I reserve a table for 6 people at 17 tomorrow?
Bob: Sorry, we don’t have a table at this point.
Alice: Can we sit at the bar then?
Bob: We don’t have a bar in the restaurant.
Alice: Can I have more expensive tables then?
Bob: My apologies, we are required not to do that.
Alice: In this case, can I reserve a bigger table?
Bob: Yes, we have VIP rooms but more expensive.
Alice: I want that.
Bob: OK.
Alice: Bye.

Table 2: Sample of Dataset 2.

4.2 Training Sample Preparation
For each dialogue session with T turns, we re-
organize the utterances into T samples. For each
turn t = {1, 2, ..., T}, we can get the current user
utterance c, and a training sample is created with
a historical utterance sequence {u1, u2, ..., ut−1},
and the goals g are consistent with the same dia-
logue session. The future K turns of utterances
{ut+1, ut+2, ..., ut+K} are used as the supervised
information. In total, we get 38,333 and 10,162
samples including training set and test set for the
two datasets respectively.

4.3 Baselines
Since our model is based on purely data-driven
learning, we compare our model with the super-
vised counterparts. Our baselines include:

• Seq2Seq(goal): This is a naive base-
line by adapting the sequence-to-sequence
model (Sutskever et al., 2014) and encod-
ing goals, which removes the looking-ahead
module and the supervised information of fi-
nal state prediction from our model.

• Seq2Seq(goal+state): This is a baseline
model by removing the looking-ahead mod-
ule from our proposed model. The parameter
α is set to zero.

• Seq2Seq(goal+look): This is a baseline
model by removing the supervised informa-
tion of final state prediction from our model.
The parameter β is set to zero.

• Seq2Seq(goal+look+state): This is our pro-
posed model that includes all the modules
and supervised information.

4.4 Evaluation Criteria
In a dialogue system, it could be treat as efficient if
it obtains more final goal achievement with as few
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Figure 2: vs. looking-ahead turns on Dataset 1
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Figure 3: vs. looking-ahead turns on Dataset 2

as possible dialogue turns. Thus we set two crite-
ria for evaluating and comparing models adopted
in our experiments: (1) the goal achievement ratio
that means the ratio of the number of goal achieved
dialogue over the number of attempted dialogues),
and (2) the average dialogue turns.

4.5 Evaluator

Our experiments are to achieve goals through con-
versations, and it is difficult to directly adopt exist-
ing simulators (Asri et al., 2016). We refer to the
work (Li et al., 2016b) and fine-tune it to our task.
For each dataset, a naive sequence-to-sequence
model that encodes goals is regarded as the user
simulator. We run 1000 times of dialogue sessions
using the simulator.

Apart from using the simulator, we also invite
humans to dialogue with the agents for 100 times
each person for each dataset and we report the av-
erage results.

4.6 Training Settings

All the baselines are implemented by PyTorch.
One-hot input tokens are embedded into a 64-
dimensional space. The goals are encoded by
GRU (g) with a hidden layer of size 64. The
sizes of hidden states in input utterance en-
coder GRU (u), GRU (c) and looking-ahead mod-
ule GRU (l), h(l)k , are all set to 256. A stochas-
tic gradient descent method is employed to opti-
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Figure 4: vs. hidden state dimension on Dataset 1
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Figure 5: vs. hidden state dimension on Dataset 2

mize the model with a mini-batch size of 32 for
supervised learning, an initial learning rate of 1.0,
momentum with µ = 0.1, and clipping gradi-
ents 0.5 in L2 norm. The best model is chosen
from the processing of training the model for 400
epochs. After that, the learning rate decays by
a factor of 2 for every epoch. The initial hyper-
parameters setting in the loss function (Equation
(11)) is α = 0.05 and β = 1.0. Words that ap-
pear in the training dataset for less than 5 times
are replaced with the ‘unknown’ (〈unk〉) token. A
validation dataset is employed to choose the opti-
mal hyper-parameters.

4.7 Results and Analysis

Table 3 shows the performance of baselines
against user simulator and human on the two
datasets. Both reveal that models that learn
looking-ahead ability can achieve better perfor-
mance and deliver more efficient dialogues in
terms of both goal achievement ratio and dialogue
turns. However, in the table, the dialogue turns
of Seq2Seq(goal+look+state) are larger than those
of Seq2Seq(goal+look), which may suggest that
more dialogue turns lead to more achievement.
In spite of this, the looking-ahead ability learned
by our model is demonstrated to be effective on
the two different scenarios. Moreover, the super-
vised information of final states (the third term of
Equation (11)) is also proven effective in deliver-
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Model
Dataset 1 Dataset 2

vs. Simulator vs. Human vs. Simulator vs. Human
% Achieved # Turns % Achieved # Turns % Achieved # Turns % Achieved # Turns

Seq2Seq(goal) 76.00 4.74 67.74 7.87 67.10 7.38 54.1 7.56
Seq2Seq(goal+state) 79.41 4.74 70.97 6.35 67.37 7.42 58.1 8.04
Seq2Seq(goal+look) 80.64 6.54 74.19 5.41 83.54 5.82 60.3 6.94

Seq2Seq(goal+look+state) 85.07 4.10 77.42 5.02 83.58 6.36 61.2 7.30

Table 3: Performance on two datasets against the user simulator and human.

Seq2Seq(goal) Model:
Alice: i just want the book
Bob: no way i have the book and you can take others
Alice: bye
<Conversation end>
Seq2Seq(goal+look+state) Model:
Alice: i keep the book you can have the hat and two balls
Bob: i will take the book and you can have others
Alice: can we make a deal?
Bob: ok deal
Alice: okay
Bob: bye
<Conversation end>

Table 4: Example that tends to achieve goals on Dataset
1, vs. simulator.

ing more achievement, which can be seen from the
second and last rows of Table 3. Compared to the
human evaluation, the results with the simulator
generally are better. It is probable that human eval-
uators tend to be more rigorous and more turns are
necessary to achieve goals.

We also evaluate the models’ performance
with different parameters. Figure 2 and Fig-
ure 3 show the results of using different looking-
ahead turns K in the looking-ahead module on
Dataset 1 and Dataset 2 respectively. In most
cases, Seq2Seq(goal+look+state) is better than
Seq2Seq(goal+look). Setting the number to 3 is
the recommended value, since our scenarios are
relatively simple and it is enough for the agents to
look ahead for 3 dialogue turns. The results are
consistent with those in Table 3.

The performance on different dimension sizes
of hidden states used in all the baselines is evalu-
ated and the results are shown in Figure 4 and Fig-
ure 5. We find that setting the size to 512 yields
the optimal results by balancing the performance
and the computing cost in most cases.

In addition, we take some case studies for di-
alogue examples between the agents trained by
Seq2Seq(goal+look+state) (proposed model) and
the simulator (Seq2Seq(goal)) for the two datasets.
Alice denotes the agent and Bob denotes the sim-
ulator. Table 4 is a case where our model with the
looking-ahead ability (Seq2Seq(goal+look+state))
tends to achieve goals while consume more dia-

Seq2Seq(goal) Model:
Alice: can you help me book a table for 2 people at 6pm?
Bob: sorry, we dont have a table at this point
Alice: can i reserve the seats at the bar instead?
Bob: yes you can
Alice: can i book a table for us
Bob: sure i have written down your reservation
Alice: ok
Bob: bye
<Conversation end>
Seq2Seq(goal+look+state) Model:
Alice: can you help me book a table for 2 people at 6pm?
Bob: sorry we dont have a table at this point
Alice: can i reserve the seats at the bar instead?
Bob: sure i have written down your reservation
Alice: bye
<Conversation end>

Table 5: Example that costs less dialogue turns under
the same goals on Dataset 2, vs. simulator.

logue turns. Table 5 gives an example where our
model not only tends to achieve goals but also
takes fewer dialogue turns. Based on our obser-
vation, the language models for natural language
generation is learned well in spite of that confused
utterances are generated sometimes.

5 Conclusion

In this paper, we propose an end-to-end model to-
wards the problem of how to learn an efficient
dialogue manager without taking too many man-
ual efforts. We model the looking-ahead ability
for foreseeing several turns and then the agent can
make a decision of what to say that leads the con-
versation to achieve goals with as few as possible
dialogue turns. Experiments on two datasets from
different domains demonstrate that our model is
efficient in terms of goal achievement ratio and av-
erage dialogue turns. Our method is also scalable
and can reduce error propagation due to the nature
of end-to-end learning.

For the future work, we expect to investigate
whether other kinds of abilities, such as reason-
ing ability, can be modeled for agent towards the
problem. In addition to the efficiency issue, the
quality of natural language generation should also
be paid attention in order to guarantee the quality
of overall dialogue system.
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Abstract
Although the data-driven approaches of some
recent bot building platforms make it possi-
ble for a wide range of users to easily cre-
ate dialogue systems, those platforms don’t of-
fer tools for quickly identifying which log di-
alogues contain problems. This is important
since corrections to log dialogues provide a
means to improve performance after deploy-
ment. A log dialogue ranker, which ranks
problematic dialogues higher, is an essential
tool due to the sheer volume of log dialogues
that could be generated. However, training a
ranker typically requires labelling a substantial
amount of data, which is not feasible for most
users. In this paper, we present a novel un-
supervised approach for dialogue ranking us-
ing GANs and release a corpus of labelled dia-
logues for evaluation and comparison with su-
pervised methods. The evaluation result shows
that our method compares favorably to super-
vised methods without any labelled data.

1 Introduction

Task-oriented dialogue systems provide a natu-
ral interface to accomplish various daily-life tasks
such as restaurant finding and flight booking.
Data-driven approaches offered by common bot
building platforms (e.g. Google Dialogflow, Ama-
zon Alexa Skills Kit, Microsoft Bot Framework)
make it possible for a wide range of users to eas-
ily create dialogue systems with a limited amount
of data in their domain of interest. Typically, the
development process of a dialogue system based
on data-driven approaches (Williams et al., 2017;
Bordes et al., 2016) goes around an operational
loop in Figure 1: (1) The cycle begins with a de-
veloper creating a training dataset with seed dia-
logues. (2) A dialogue system is trained and de-
ployed. (3) Real users interact with the system
and generate log dialogues. (4) The developer
reviews the logs to identify which log dialogues

Figure 1: Operational loop of data-driven dialogue sys-
tem development.

contain problems. (5) The developer updates the
training dataset to fix the problems. (6) The cy-
cle repeats from step 2). Of all steps, (4) is the
most significant in slowing down the loop, be-
cause of the sheer volume of log dialogues that
can be generated and the need to manually inspect
each. Thus, it is essential to support tools that help
developers quickly identify problematic log dia-
logues. To achieve this goal, we propose a neural
dialog ranker whose goal is to place problematic
dialogues higher in the rank.

However, training a ranker typically requires la-
belling a substantial amount of data, which is not
feasible for most developers. Furthermore, one
might have to repeat this process whenever a sig-
nificant change is made to the system’s behav-
ior. This motivates us to explore a set of unsu-
pervised approaches to reduce the prohibitive cost.
The core idea of these methods is that we learn
a generative model to produce problematic dia-
logue examples as positive examples and train a
ranker with seed dialogues used as negative ex-
amples. Specifically, we propose a novel dialogue
generator using Generative Adversarial Networks
(GANs) and train the generator with a curriculum
learning scheme. Another possible avenue is to
leverage off-the-shelf dialogue quality classifiers
which are trained on open-domain corpora such as
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Figure 2: Overall architecture of our dialogue ranker.

dialogue breakdown detection challenge systems
in DSTC6 (Higashinaka et al., 2017). In the ex-
periment on the labelled dialogue corpus that we
collected via Amazon Mechanical Turk, we show
that our approach outperformes the off-the-shelf
model by a significant margin thanks to the capa-
bility of generating domain-relevant problematic
dialogues. The evaluation result also shows that
our unsupervised method compares favorably to
supervised methods without any labelled data.

The rest of this paper is organized as follows. In
Section 2, we formalize the dialogue ranking task
and describe our neural ranking model. In Sec-
tion 3, we introduce a set of unsupervised meth-
ods for problematic dialogue example generation.
Section 4 describes the datasets we used for this
study. Section 5 explains our experiments. In Sec-
tion 6, we discuss our experimental results. Sec-
tion 7 provides a survey of related work. We finish
with conclusions and future work in Section 8.

2 Dialogue Ranking

A dialogue ranker aims to assign higher scores
to problematic dialogues than normal ones so
that developers may quickly identify problem-
atic dialogues in the ranked list of log dia-
logues. Formally, given a dialogue D =
{S1, U1, S2, · · · , Un−1, Sn}, a dialogue ranker ψ
produces a score of D being problematic where
Si and Ui are the system and user utterance in ith

turn, respectively.1 To train the dialogue ranker ψ,
we formulate the ranking task as binary classifica-

1One turn consists of a pair of system and user utterances.

tion where problematic and normal dialogues cor-
respond to positive and negative classes, respec-
tively. We optimize the cross-entropy objective:

Lxent =
1

N

N∑

i=1

[yi log ŷi + (1− yi) log(1− ŷi)]

where ŷi = 1/(1 + exp(−ψ(Di)) and yi = 1 for
positive class and 0 otherwise.

We design a deep neural ranking model for ψ to
automatically learn salient features as illustrated
in Figure 2. We first use a bi-directional LSTM
(Bi-LSTM) to encode each utterance in dialogue
D:

Demb = {Semb1 , U emb1 , Semb2 , · · · , U embn−1, S
emb
n }

where Sembi = Bi-LSTM (Si) and U embi =
Bi-LSTM (Ui). Then, we calculate attention em-
beddings for each utterance with a multi-head self-
attention mechanism (Vaswani et al., 2017):

Dattn = softmax

(
DembDemb>
√
d

)
Demb

where d is the dimension of the embedding and
Dattn = {Sattn1 , Uattn1 , · · · , Uattnn−1 , S

attn
n }. Now,

we apply a feed-forward network (FFN) to the
concatenation of utterance embeddings Demb and
their corresponding attentive embeddings Dattn to
yield context-sensitive utterance embeddings:

Dctxt = {Sctxt1 , U ctxt1 , , · · · , U ctxtn−1, S
ctxt
n }

where S(U)ctxti = FFN([S(U)embi , S(U)attni ])
and [·, ·] denotes a concatenation operator. After
that, we apply another FFN followed by a sigmoid
activation to each pair of utterances to measure the
consistency of adjacency pairs:

Ai = sigmoid(FFN([Xctxt
i , Y ctxt

i ]))

where (Xctxt
i , Y ctxt

i ) is either (Sctxti , U ctxti ) or
(U ctxti , Sctxti+1 ). Finally, the ranker ψ produces a
ranking score for the dialogue based on the con-
sistency scores and a set of manually crafted fea-
tures:

ψ(D) = FFN([A1, · · · , An−1, f1, · · · , fm])

where fi denotes a set of manual features. In this
study, we use a single manual feature to consider
redundant turns:

f =
Num (distinct utterances)

Num (all utterances)
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Each instance of FFNs has separate parameters
and consists of two linear layers with a ReLU ac-
tivation in between:

FFN (x) = max (0, xW1 + b1)W2 + b2

3 Unsupervised Approach

Training a ranker typically requires labelling a
substantial amount of data and one might have to
repeat this process whenever a significant change
is made to the system’s behavior. This is not fea-
sible for most developers and motivates us to ex-
plore a set of unsupervised approaches. The core
idea is that we learn a generative user simulator
and have it talk with the bot to produce problem-
atic dialogues. We then train a ranker with seed
dialogues used as normal examples. A straight-
forward approach for problematic dialogue gen-
eration is to train the generative user simulator
on a dialogue corpus collected from a wide range
of different domains, dubbed as MultiDomain.
However, this approach can only produce obvious
problematic dialogues where the simulated user
mimics users who barely know what the bot is for.

To generate more relevant dialogues, one can
fine-tune the MultiDomain model on the seed
dialogues, dubbed as FineTune. But this ap-
proach gains an improved relevance at the cost of
decreased diversity and it is a formidable task to
adjust fine-tuning to strike the right balance be-
tween relevance and diversity.

We observe that, in most cases, a dialogue fol-
lows a natural course until a problem occurs and
the dialogue subsequently gets off track. Table 1
shows a problematic dialogue. To bring this to
our problematic dialogue generation, we intro-
duce a novel stepwise fine-tuning approach, called
StepFineTune. The idea is that we fine-tune
the MultiDomain model only up to l-th turn to
generate dialogues in which it normally unfolds up
to l-th turn and starts seeing problems afterward.
As we fine-tune the model in this stepwise fash-
ion from l = 1 to n, we accumulate all the dia-
logues that we generate at each step. This allows
us to produce a spectrum of diverse problematic
dialogues while controlling relevance.

However, it is widely known that the typical
MLE training scheme often generates bland and
generic responses (Li et al., 2016). To alleviate
this problem and generate naturally diverse dia-
logues, we propose a novel stepwise GAN training
scheme, dubbed as StepGAN. StepGAN differs

Figure 3: The overall pipeline of the StepGAN ap-
proach.

from StepFineTune in that it conducts GAN
training instead of the simple MLE fine-tuning for
each step. As we cast the dialogue ranking task
as binary classification in Section 2, the dialogue
ranking model ψ lends itself well to discriminat-
ing real dialogues from simulated ones. In the rest
of this section, we describe StepGAN in detail.

3.1 StepGAN overview

Figure 3 shows the overall pipeline of the
StepGAN approach. A dialogue generator con-
sists of a user simulator and the bot, and have
them talk with each other. We start off by pre-
training a generative user simulator on a large cor-
pus of dialogues collected from multiple domains
which teaches the simulator basic language skills
and helps learn diverse out-of-domain behavior.
We use the pre-trained user simulator to produce
problematic dialogues and pre-train a discrimina-
tor with seed dialogues used as normal dialogues.

We then begin stepwise GAN training. At each
step, starting from the user simulator of turn l − 1
and the pre-trrained discriminator, we further train
them using GAN to make the first l turns of a gen-
erated dialogue less distinguishable from the seed
dialogues, as listed in Algorithm 1. To achieve
this goal, we truncate both seed and generated di-
alogues up to length l when we train the user simu-
lator and discriminator. Once the GAN training is
done, we generate a set of problematic dialogues
Dlpos using the trained user simulator. Note that
we don’t truncate these dialogues so that they may
follow a normal course up to l-th turn and start
seeing problems afterward2. When we finish the
final step L, we collect all the problematic dia-
logues generated from each step and construct a

2A dialogue ends either when the system or user termi-
nates or when the pre-set maximum length is reached.
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Algorithm 1 GAN training at step l

Require: Problematic dialogues Dpos
1: Dlseed ← seed dialogues truncated at turn l
2: gl ← user simulator from turn l − 1
3: dl ← pre-trained discriminator
4: while not convergent do
5: Dlgen ← Truncate(Generate(gl), l)
6: dl ← Train d(Dlseed,Dlgen)
7: gl ← Train g(Dlgen, dl)
8: end while
9: Dlpos ← Generate(gl)

accumulated dataset:

Dpos = {D1
pos, · · · ,DLpos}

Finally, we train the dialogue ranker ψ on the ac-
cumulated problematic data Dpos and seed dia-
logues Dseed.

3.2 GAN training details
Based on our empirical study, we choose to use a
sequence-to-sequence model with attention for our
user simulator. With GAN, at the l-th iteration, we
optimize the following objective which basically
adjusts the user simulator to fool the discriminator:

J(θ) = Epθ(D)

[
dl([D<l, Ui])

]

+ λ
l∑

i=0

Hθ(Ui | D<i)
(1)

where D denotes a generated dialogue and D<i =
[S1, U1, · · · , Ui−1, Si]. dl(·) denotes the discrim-
inator being trained at the l-th iteration and re-
turns the probability of D<l being real, as reward
for training the generator. θ is the parameters for
the user simulator and H (·) is the entropy penalty
(Pereyra et al., 2017) for increasing the generation
diversity:

Hθ

(
Ui | D<i

)
=

Nu∑

j=0

Hθ

(
uj | D<i, u<j

)
(2)

where,

Hθ

(
uj | D<i, u<j

)
= −

M∑

m=0

pθ
(
umj | D<i, u<j

)

· log pθ
(
umj | D<i, u<j

)

(3)

In Eq 2 and 3, Nu is the number of tokens in Ui
and M is the vocabulary size. pθ(umj | D<i, u<j)
is the conditional distribution over the vocabulary
at time step j in the generation of Ui. Since Eq 1
is not differentiable, we adopt the REINFORCE
algorithm (Williams, 1992) for gradient updates:

5θJ (θ) ∝ dl(Ul,D<l)
l∑

i=0

5θ log pθ
(
Ui | D<i

)

+
l∑

i=0

5θHθ

(
Ui | D<i

)

To stabilize the learning process, we employ two
common techniques: 1) a baseline: we take the av-
erage of rewards in each training batch 2) teacher
forcing: we occasionally draw a random dialogue
from the seed dialogues with dl(·) set to return 1.
To increase the diversity of the output of the user
simulator, during inference, we combine sampling
with beam search. At each time step j, instead
of choosing the top beam size terms, we sample
beam size terms according to the probability dis-
tribution pθ

(
uj | D<i, u<j

)
.

Since we cast the dialogue ranking task as bi-
nary classification, we use the same architecture
as the dialogue ranking model in Section 2 to
discriminate seed dialogues from simulated ones.
The only difference is that seed and generated di-
alogues now correspond to positive and negative
classes, respectively.

4 Datasets

In this work, we build a log dialogue ranker for the
restaurant inquiry bot offered by the PyDial plat-
form.3 The task for the bot is to search for restau-
rants based on user’s requirements in a multi-turn
natural language communication. Three main cor-
pora are introduced: (1) log dialogues with labels,
(2) seed dialogues for the restaurant domain, (3) a
large corpus of dialogues collected from multiple
domains (Lee et al., 2019).

Log dialogues with labels

To collect log dialogues, we deployed the Py-
dial restaurant bot via the Amazon Mechanical
Turk (AMT) platorm.4 We ask turkers to find

3http://www.camdial.org/pydial/
4We use the data collection toolkit offered by ParlAI

http://www.parl.ai/static/docs/tutorial_
mturk.html.
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restaurants that satisfy automatically generated re-
quirements, such as food type, location and price
range, by chatting with the restaurant bot. To
make the conversation natural, we encourage turk-
ers to speak in natural utterances and do not al-
low any turkers to carry out more than 20 dia-
logues in total. At the end of each task, turkers are
required to answer a questionnaire whether they
found restaurants meeting their requirements, and
whether they experienced contextually unnatural
turns in the conversation. We control the quality
of a turker’s judgements by checking if a turker
judges correctly for some obvious cases that we
can automatically identify.

From the collected dialogues, we label success-
ful dialogues without any contextually unnatural
turns as 0 (normal dialogue), and the rest as 1
(problematic dialogue). Table 2 shows the number
and average length of log dialogues. Examples are
shown in Table 1.

We split the corpus as shown in Table 3.
Note that, the training and validation sets are

used only for supervised training, whereas the test
set is used for evaluating all approaches.

Seed dialogues

The corpus of seed dialogues has two use cases:
1) we use it to fine-tune the user simulator for the
FineTune and StepFineTune approaches, 2)
StepGAN takes it as input to the discriminator
training and teacher forcing process. Since the
restaurant bot does not have associated seed dia-
logues, we collect 100 seed dialogues by having
the bot talk with the agenda-based user simulator
that Pydial offers. 5

Multi-domain dialogues

The multi-domain corpus6 has two use cases: 1)
we use it for training the user simulator for the
MultiDomain approach, 2) we pretrain the sim-
ulator for the StepFineTune and StepGAN ap-
proaches. The multi-domain corpus consists of
around 40,000 dialogues with 11 turns on average.
Each dialogue is a task-oriented conversational in-
teraction between two real speakers over 51 do-
mains and 242 tasks, collected by crowd-sourcing
in which one turker is simulating a user and the

5We collected 100 seed dialogues based on our observa-
tions that most developers start training their bots with a seed
dialogue corpus on a similar scale.

6The multi-domain corpus (MetaLWOz) will be made
available through a DSTC8 track (Lee et al., 2019).

other one is simulating a chatbot. We preprocess
dialogues into training pairs for the sequence-to-
sequence model learning. A training pair con-
sists of a dialogue context and the correspond-
ing response. We consider three consecutive turns
as dialogue context and the following turn as re-
sponse. The number of dialogues in train/val/test
sets are 38000/1000/1000 and the training pairs
are 394821/10411/10370.

5 Experiments

We describe a set of experimental settings in Sec-
tion 5.1 and evaluation metrics in Section 5.2.

5.1 Experimental settings

We present three experiments to demonstrate the
efficacy of our approaches.
• StepGAN vs. other unsupervised approaches:

To compare the StepGAN against other unsu-
pervised approaches introduced in Section 3:
– MultiDomain: We train the user simulator

on the multi-domain corpus.
– FineTune: We fine-tune the user simulator

on the seed dialogues.
– StepFineTune: We fine-tune the user

simulator in a stepwise fashion.
We train dialogue rankers for each approach on
a balanced dataset, consisting of 1000 problem-
atic dialogues generated by each approach and
1000 normal dialogues oversampled from the
seed dialogues to balance the class distribution.
We evaluate two additional models:
– DBDC3: We use the off-the-shelf CRF model

trained on open-domain dialogue corpora7

for the dialogue breakdown detection chal-
lenge (Higashinaka et al., 2017). Since
the DBDC3 model operates at the utterance
level, we aggregate the utterance scores to
obtain a dialogue-level score. Based on
our experiments, we choose to use a model
trained on the collection of four challenge
datasets (CIC 115, IRIS 100, TKTK 100,
YI 100) and aggregate the utterance scores
through summation.

– PlainMultiDomain: Instead of training
a user simulator, we simply take the entire
multi-domain corpus (38,000 dialogues) as
problematic dialogues and train the ranker
with the same number of normal dialogues
oversampled from the seed dialogues.

7https://github.com/dbd-challenge/dbdc3
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One normal example in the labelled corpus
SYS: hello, welcome to the restaurant finding system. how may i help you?
USER: hi i ’ m looking for a restaurant.
SYS: what part of town do you have in mind?
USER: the east part of town please.
SYS: what kind of food would you like?
USER: i’d like chinese food please.
SYS: yu garden is a nice place, it serves chinese food and it is in the east part of town.
USER: what is the phone number?
SYS: yu garden is a nice place their phone number is 0 1223 248882.
USER: what is the address?
SYS: yu garden is a nice place their address is 529 newmarket road fen ditton.
USER: thank you
SYS: thank you, goodbye.

One problematic example in the labelled corpus
SYS: hello, welcome to the restaurant finding system. how may i help you?
USER: hello i would really like to eat some cheap indian tonight
SYS: what part of town do you have in mind?
USER: i would really like to eat in the centre of town
SYS: i am sorry but there is no place, in the expensive price range, serving corsica food and in the area of centre.
USER: i would really like so indian thats cheap in the centre of town
SYS: the gandhi is a nice place, it is in the cheap price range, it is in the centre of town and it serves indian food.
USER: thats great, have you got a contact number?
SYS: what part of town do you have in mind?
USER: the centre of town
SYS: efes restaurant is a nice place, it is in the centre of town, it is in the moderate price range and it serves turkish food.
USER: i want to eat at the gandhi have you got the address?
SYS: the gandhi is a nice place their address is 72 regent street city centre.
USER: thank you, have you got a phone number for the gandhi?
SYS: the gandhi is a nice place their phone number is 0 1223 353942.
USER: thanks
SYS: chiquito bar is a nice place, it serves mexican food in the expensive price range and it is in the south part of town.
USER: quit

Table 1: One normal and one problematic examples in the labelled corpus.

Normal dials Problematic dials
Num of dials 1621 1329
Avg length 5.87 turns 8.28 turns

Table 2: The number of dialogues and average dialogue
length in the log dialogue corpus.

Train Val Test
Normal dialogues 1321 100 200
Problematic dialogues 1029 100 200

Table 3: Log dialogues are randomly sampled and split
into training, validation and test sets.

• StepGAN vs. supervised approach: One ad-
vantage for the unsupervised approach is to
generate a larger training set without human
efforts. To compare the best performance of
the StepGAN model against the supervised
model, we train StepGAN models on three bal-
anced datasets with 2000, 4000 and 6000 dia-
logues each and compare them to a supervised
dialogue ranker trained on a balanced dataset
of 2000 labelled dialogues randomly sampled
from the training set described in Section 4.
• Semi-supervised learning attempts: On top of

the labelled data, we can employ unsupervised
approaches for data augmentation. For the eval-

uation of such a semi-supervised setting, we
compare the performance of supervised models
with 500 and 2000 labelled examples and that
of their counterparts which leverage additional
6000 examples generated by StepGAN.

Note that, all dialogue rankers are tested on the
400-instance balanced test set described in Ta-
ble 3. We train 10 models on randomly sampled
training sets and report average performance.

5.2 Evaluation metrics
We use ranking metrics for evaluation:
• P@K – Precision at k, corresponds to the num-

ber of problematic dialogues in the top k ranked
options.
• R@K – Recall at k, corresponds to the num-

ber of problematic dialogues in the top k ranked
options against the number of all problematic
dialogues in the test set (i.e. 200). Note that
we modified the standard of Recall at k to get
monotonic increase with respect to k.

6 Results and Discussion

In this section, we first present the results for the
experimental settings in Section 5.1 that we de-
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Figure 4: Precision@k StepGAN
vs. other unsupervised approaches.

Figure 5: Precision@k StepGAN
with different training size vs. su-
pervised approach.

Figure 6: Precision@k of semi-
supervised StepGAN vs. super-
vised settings.

Figure 7: Average length of gener-
ated dialogues in each training step.

Figure 8: Success rates of gener-
ated dialogues in each training step.

Figure 9: Average score of gener-
ated dialogues in each training step.

Model DB PM MD FT SF SG Sup
P@10 .700 .750 .911 .767 .844 .889 .850
P@20 .800 .775 .867 .794 .850 .900 .870
P@30 .800 .777 .811 .807 .859 .896 .887
P@40 .825 .763 .792 .814 .867 .886 .878
P@50 .800 .738 .762 .800 .836 .864 .870
P@100 .720 .617 .680 .758 .758 .773 .827
P@150 .713 .521 .641 .734 .738 .749 .799
P@200 .655 .499 .612 .688 .702 .708 .765
R@10 .035 .038 .046 .038 .042 .044 .043
R@20 .080 .077 .087 .079 .085 .090 .087
R@30 .120 .117 .122 .121 .129 .134 .133
R@40 .165 .153 .158 .163 .173 .177 .176
R@50 .200 .185 .191 .200 .209 .216 .218
R@100 .360 .308 .340 .379 .379 .387 .414
R@150 .535 .391 .481 .551 .553 .562 .600
R@200 .655 .499 .612 .688 .702 .708 .765

Table 4: Evaluation results. DB, PM, MD, FT, SF
and SG stand for the DBDC3, PlainMultiDomain,
MultiDomain, FineTune, StepFineTune and
StepGAN approach, respectively. The Sup denotes the
supervised approach trained on the balanced labelled
dialogues.

signed to study the efficacy of our unsupervised
approaches. Then, we analyze the generated dia-
logues to test if StepGAN can generate reason-
ably problematic dialogues. Table 4 shows the
overall results in Precision@k and Recall@k.

6.1 Comparative results

StepGAN vs. other unsupervised approaches:
Figure 4 shows that StepGAN outperforms

other unsupervised approaches by a large
margin. The only exception is MultiDomain
when k = 10. One noteworthy observation
is made by comparing MultiDomain with
FineTune – MultiDomain is more effec-
tive than FineTune when k is small, less
than 30 in this case. This is because most turns
are contextually wrong or unnatural when we
look into the most problematic dialogues (e.g.
k < 10) and MultiDomain generates exactly
such dialogues. On the contrary, as k increases,
generated dialogues gradually resemble normal
ones with less wrong turns and FineTune
essentially generates this type of dialogues.

This observation indicates that a high-quality
model should be able to generate a spec-
trum of dialogues, ranging from obvious di-
alogues to subtle ones. That is why we in-
troduced a stepwise training scheme and thus
StepFineTune shows a significantly im-
proved performance. Furthermore, StepGAN
employs the GAN training procedure to gen-
erate more natural and diverse dialogues and
almost always outperforms all other unsuper-
vised approaches. The fact that StepGAN out-
performes DBDC3 and PlainMultiDomain
highlightes that the StepGAN’s capability of
generating domain-relevant problematic dia-
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logues is crucial in obtaining high performance.

StepGAN vs. supervised approach: In Figure 5,
StepGAN2000, StepGAN4000 and Step-
GAN6000 denote ranking models trained on
2000, 4000, 6000 balanced datasets generated
by StepGAN respectively. Sup stands for
a ranker trained on 2000 balanced labelled
dialogues. Interestingly, StepGAN performs
even better than the supervised approach when
k < 50. Even though the supervised approach
yields higher performance when k is large,
StepGAN still compares favorably and the gap
is narrower if more dialogues are generated.
Note that having developers review a large
number of log dialogues (over 100) induces
a significant cognitive load. Thus, the higher
performance of StepGAN in the small k
regime can offer more practical value.

Semi-supervised learning attempts: In Figure 6,
Sup500 and Sup2000 denote supervised di-
alogue rankers trained on randomly sam-
pled 500 and 2000 balanced labelled dia-
logues, respectively. StepGAN+Sup500 and
StepGAN+Sup2000 denote semi-supervised ap-
proaches trained on the 500 and 2000 labelled
datasets plus 6000 simulated dialogues gener-
ated by StepGAN, respectively. The higher
performance of the semi-supervised approaches
compared to the supervised counterparts high-
lights that our unsupervised approach can bring
additional generalization by simulating a wide
range of dialogues that are not covered by la-
belled data. As expected, the performance gain
increases as we move to a smaller data regime,
e.g. 500 labelled dialogues.

6.2 Analysis on generated dialogues
To investigate how generated dialogues move to-
ward normal dialogues, we examine dialogues
generated at each step of StepGAN training in
terms of three quantitative metrics: average dia-
logue length, task success rate and ranking score
produced by the supervised ranker. Figure 7, 8
and 9 clearly show that as training progresses, the
characteristics of generated dialogues are getting
more similar to normal dialogues – average dia-
logue length of generated dialogues is decreasing
while task success rate and average ranking score
are increasing. In Table 5, we show example dia-
logues generated by StepGAN after two different
training steps to qualitatively examine generated

dialogues. The generated dialogues clearly show
that StepGAN manages to follow a normal course
up to the training-step turn and then start to get off
track. For the full dialogue examples generated by
different generative models, refer to Supplemental
Material A.

7 Related Work

In contrast to conventional approaches (Jokinen
and McTear, 2009), end-to-end neural models
have been recently investigated for task-oriented
dialogue systems which allows for directly learn-
ing dialogue systems from human-human dialogue
data (Wen et al., 2016; Bordes et al., 2016;
Williams et al., 2017). For such approaches, our
proposed dialogue ranking method can help de-
velopers quickly go over log dialogues to improve
their dialogue systems. There are prior studies on
dialogue quality assessment. Walker et al. (1997);
Engelbrecht et al. (2009) investigate automatic
ways of dialogue evaluation. Walker et al. (2002);
Herm et al. (2008); Kim (2007); Higashinaka et al.
(2010, 2016) focuse on dialogue breakdown de-
tection during the dialogue. Ultes et al. (2012);
Su et al. (2016) estimate dialogue quality to im-
prove dialogue policy. However, none has directly
dealt with log dialogue ranking task and offered
unsupervised approaches to reduce labelling cost.
For automatic error handling, Clark (1996); Bohus
and Rudnicky (2005); Higashinaka et al. (2015)
examined different types of errors. Whereas, for
our work, it suffices to rank problematic dialogues
higher than normal ones so that developers may
take appropriate measures based on the goal of
their bots, e.g., adding new slots or system actions
to handle previously uncovered scenarios.

8 Conclusions and Future Work
We proposed unsupervised approaches for the task
of log dialogue ranking and provided comprehen-
sive experimental results. StepGAN outperforms
other unsupervised approaches and compares fa-
vorably with the supervised approach. Moreover,
StepGAN improves upon the supervised approach
in semi-supervised settings. Finally, we release
the labelled dialogue corpus and seed dialogues.
Future work includes 1) in-depth human evalua-
tion on the quality of generated dialogues, 2) test-
ing StepGAN on a broader range of tasks 3) per-
forming dialogue clustering before ranking to re-
duce redundant workload for developers.
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Dialogues simulated by the StepGAN approach in different training steps
StepGAN training at step 1
SYS: hello, welcome to the restaurant finding system. how may i help you?
USER: hi, i want to book a table
SYS: what part of town do you have in mind?
USER: boston,.
SYS: what part of town do you have in mind?
USER: part is going up in colorado.
SYS: what part of town do you have in mind?
USER: i do not want to book a movie price range and in the usa in the west of town.
SYS: i am sorry but there is no place, serving north american food and in the area of west.
USER: alright, that’s understandable, can you tell me more?
SYS: i am sorry but there is no place, in the area of west and serving north american food.
USER: that’s sound great. oh that’s the limit. that is all i need as well though, can you help
SYS: thank you, goodbye.
StepGAN training at step 3
SYS: hello, welcome to the restaurant finding system. how may i help you?
USER: i need another restaurant.
SYS: what part of town do you have in mind?
USER: i want a venue in the moderate price range and in the north of town.
SYS: what kind of food would you like?
USER: i need a indian venue.
SYS: the nirala is a nice place, it is in the moderate price range, it serves indian food and it is in the north part of town.
USER: i am not looking for this. please change.
SYS: the nirala is a nice place, it is in the moderate price range, it serves indian food and it is in the north part of town.
USER: the account 555 - venue is great. i am in the moderate price range and i am going at town.
SYS: the nirala is a nice place, it serves indian food, it is in the moderate price range and it is in the north part of town.
USER: well, i want a venue in the business site. please do, i am going to get a brief globe.
SYS: the nirala is a nice place, it serves indian food, it is in the moderate price range and it is in the north part of town.
USER: that doesn’t matter.
SYS: the nirala is a nice place, it is in the north part of town, it is in the moderate price range and it serves indian food.
USER: okay, thanks for the help me book
SYS: thank you, goodbye.
StepGAN training at step 6
SYS: hello, welcome to the restaurant finding system. how may i help you?
USER: i need another restaurant.
SYS: what part of town do you have in mind?
USER: it doesn’t matter.
SYS: what part of town do you have in mind?
USER: it doesn’t matter.
SYS: what part of town do you have in mind?
USER: i want a venue in the expensive price range and in the centre of town.
SYS: what kind of food would you like?
USER: i need a european venue.
SYS: michaelhouse cafe is a nice place, it is in the centre of town,
it is in the expensive price range and it serves european food.
USER: what is the phone number of the restaurant?
SYS: michaelhouse cafe is a nice place their phone number is 0 1223 309147.
USER: thanks for your help, goodbye.
SYS: thank you, goodbye.
StepGAN training at step 9
SYS: hello, welcome to the restaurant finding system. how may i help you?
USER: i need a european restaurant.
SYS: what part of town do you have in mind?
USER: i prefer a venue in centre.
SYS: would you like something in the cheap, moderate, or expensive price range?
USER: i want a venue in the expensive price range.
SYS: michaelhouse cafe is a nice place, it is in the expensive price range,
it is in the centre of town and it serves european food.
USER: what is the address of michaelhouse cafe?
SYS: michaelhouse cafe is a nice place their address is st. michael’s church trinity street city centre.
USER: thanks for your help, goodbye.
SYS: thank you, goodbye.

Table 5: Dialogues simulated by the StepGAN approach in different training steps.
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Supplemental Material

A Dialogues simulated by unsupervised approaches

Dialogues simulated by the MultiDomain approach
SYS: hello, welcome to the restaurant finding system. how may i help you?
USER: i am looking for cheap french cuisine
SYS: i’m having trouble understanding what you want. could you please rephrase it?
USER: i want a champagne without a different tables
SYS: midsummer house restaurant is nice
USER: where is the restaurant?
SYS: rajmahal is nice
USER: how about champagne’s?
SYS: the good luck chinese food takeaway is nice
USER: ohh okay. that’s the problem! i really’m craving midsummer vegas.
SYS: what part of town do you have in mind?
USER: the galleria vegas adventure
SYS: galleria is a nice place it is in the centre of town.
USER: awesome, i’ll go with that topic to serve, need else
SYS: galleria is a nice place it is in the moderate price range.
USER: , my account is very good i guess
SYS: galleria is a nice place it serves european food.
USER: i will thanks anyways
SYS: thank you, goodbye.

Dialogues simulated by the FineTune approach
SYS: hello, welcome to the restaurant finding system. how may i help you?
USER: hi, i want to book a table
SYS: what part of town do you have in mind?
USER: i prefer a venue in south.
SYS: what kind of food would you like?
USER: i need a chinese venue.
SYS: would you like something in the cheap, moderate, or expensive price range?
USER: it doesn’t matter.
SYS: would you like something in the cheap, moderate, or expensive price range?
USER: i want a venue in the expensive price range.
SYS: the good luck chinese food takeaway is a nice place, it is in the south part of town, it is in the expensive
price range and it serves chinese food.
USER: thanks for your help, goodbye.
SYS: thank you, goodbye.

Table 6: Dialogues simulated by the MultiDomain approach/FineTune approach.

153



Dialogues simulated by the StepFineTune approach in different training steps
StepFineTune training at step 1
SYS: hello, welcome to the restaurant finding system. how may i help you?
USER: i need another restaurant.
SYS: what part of town do you have in mind?
USER: i need another restaurant.
SYS: what part of town do you have in mind?
USER: washington dc.
SYS: what part of town do you have in mind?
USER: in the west of town.
SYS: what kind of food would you like?
USER: i want a table
SYS: what kind of food would you like?
USER: i need another restaurant.
SYS: what kind of food would you like?
USER: i want restaurant in centre.
SYS: what kind of food would you like?
USER: i want a restaurant in east.
SYS: what kind of food would you like?
USER: i want a restaurant in the moderate price range.
SYS: what kind of food would you like?
USER: i want a restaurant in the cheap price range and in the centre of town.
SYS: what kind of food would you like?
USER: i want a restaurant in the moderate price range.
SYS: what kind of food would you like?
StepFineTune training at step 3
SYS: hello, welcome to the restaurant finding system. how may i help you?
USER: i want a restaurant in the moderate price range.
SYS: what part of town do you have in mind?
USER: i prefer a venue in west.
SYS: what kind of food would you like?
USER: i need a venue in south.
SYS: what kind of food would you like?
USER: i need a international venue.
SYS: i am sorry but there is no place, serving international food, in the area of south and in the moderate price range.
USER: no, i am not looking for this. please show me another one.
SYS: i am sorry but there is no place, serving international food, in the moderate price range and in the area of south.
USER: no, i need a venue in south.
SYS: i am sorry but there is no place, serving international food, in the area of south and in the moderate price range.
USER: what about the venue in south?
SYS: i am sorry but there is no place, in the moderate price range, in the area of south and serving international food.
USER: thanks for the help, goodbye.
SYS: thank you, goodbye.
StepFineTune training at step 6
SYS: hello, welcome to the restaurant finding system. how may i help you?
USER: hi, i want to book a table
SYS: what part of town do you have in mind?
USER: i want a venue in any part of town.
SYS: what kind of food would you like?
USER: i need a asian oriental venue.
SYS: would you like something in the cheap, moderate, or expensive price range?
USER: i want a venue in the expensive price range.
SYS: saigon city is a nice place, it serves asian oriental food, it is in the north part of town and it is in the expensive price range.
USER: what is the phone number of the restaurant?
SYS: saigon city is a nice place their phone number is 0 1223 356555.
USER: thanks for your help, goodbye.
SYS: thank you, goodbye.
StepFineTune training at step 9
SYS: hello, welcome to the restaurant finding system. how may i help you?
USER: hi, i want to book a table
SYS: what part of town do you have in mind?
USER: i prefer a venue in south.
SYS: what kind of food would you like?
USER: i need a chinese venue.
SYS: would you like something in the cheap, moderate, or expensive price range?
USER: i need a restaurant in the expensive price range.
SYS: the good luck chinese food takeaway is a nice place, it is in the south part of town,
it serves chinese food and it is in the expensive price range.
USER: thanks for your help, goodbye.
SYS: thank you, goodbye.

Table 7: Dialogues simulated by the StepFineTune approach in different training steps.154
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Abstract

Domain adaptation in natural language gener-
ation (NLG) remains challenging because of
the high complexity of input semantics across
domains and limited data of a target domain.
This is particularly the case for dialogue sys-
tems, where we want to be able to seamlessly
include new domains into the conversation.
Therefore, it is crucial for generation models
to share knowledge across domains for the ef-
fective adaptation from one domain to another.
In this study, we exploit a tree-structured se-
mantic encoder to capture the internal struc-
ture of complex semantic representations re-
quired for multi-domain dialogues in order to
facilitate knowledge sharing across domains.
In addition, a layer-wise attention mechanism
between the tree encoder and the decoder is
adopted to further improve the model’s capa-
bility. The automatic evaluation results show
that our model outperforms previous methods
in terms of the BLEU score and the slot er-
ror rate, in particular when the adaptation data
is limited. In subjective evaluation, human
judges tend to prefer the sentences generated
by our model, rating them more highly on in-
formativeness and naturalness than other sys-
tems.

1 Introduction

Building open-domain Spoken Dialogue Systems
(SDS) remains challenging. This is partially be-
cause of the difficulty of collecting sufficient data
for all domains and the high complexity of nat-
ural language. Typical SDSs are designed based
on a pre-defined ontology (Figure 1) which might
cover knowledge spanning over multiple domains
and topics (Young et al., 2013).

A crucial component of a Spoken Dialogue Sys-
tem is the Natural Language Generation (NLG)
module, which generates the text that is finally
presented to the user. NLG is especially challeng-

Figure 1: The ontology for multi-domain spoken dia-
logue systems.

ing when building a multi-domain dialogue sys-
tems. Given a semantic representation (SR), the
task for NLG is to generate natural language con-
veying the information encoded in the SR. Typ-
ically, an SR is composed of a set of slot-value
pairs and a dialogue act consistent with an ontol-
ogy. A dialogue act represents the intention of
the system output and the slots provide domain-
dependent information. Figure 2 presents exam-
ples of SRs with their corresponding natural lan-
guage representations in various datasets.

The input semantics has its own hierarchical
structure in which there are different sets of slot-
value pairs under different dialogue acts across
various domains. Modelling the semantic struc-
ture might be helpful for sharing information
across domains and achieve better performance for
domain adaptation. However, prior work encodes
semantic representation in a flat way such as us-
ing a binary vector (Wen et al., 2015a,b) or using
a sequential model such as an LSTM (Dušek and
Jurcıcek, 2016; Tran and Nguyen, 2017). In that
case, the structure of semantics is not fully cap-
tured by these encoding methods. This might limit
models’ performance especially when adapting to
a new domain.

This paper investigates the possibility of lever-
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Figure 2: Examples of semantic representations in
(a) SFX dataset (Wen et al., 2015b), (b) E2E dataset
(Novikova et al., 2017) and (c) MultiWOZ dataset
(Budzianowski et al., 2018).

aging the semantic structure for NLG domain
adaptation in dialogue systems. We present a gen-
eration model with a tree-structured semantic en-
coder that models the internal structure of the se-
mantic representation to facilitate knowledge shar-
ing across domains. Moreover, we propose a
layer-wise attention mechanism to improve the
generation performance. We perform experiments
on the multi-domain Wizard-of-Oz corpus (Mul-
tiWOZ) (Budzianowski et al., 2018) and with hu-
man subjects. The results show that the proposed
model outperforms previous methods on both au-
tomatic metrics and with human evaluation, sug-
gesting that modelling the semantic structure can
facilitate domain adaptation. To the best of our
knowledge, this work is the first study exploiting
the tree LSTM (Tai et al., 2015) to model the input
semantics of NLG in spoken dialogue systems.

2 Related Work

Recently, recurrent neural network-based NLG
models have shown their powerful capability and
flexibility compared to traditional approaches that
depend on hand-crafted rules in dialogue systems.
A key development was the heuristic gate which
turns off the slots that are already generated in the
output sentence (Wen et al., 2015a). Subsequently,
the semantically conditioned LSTM (SCLSTM)

(Wen et al., 2015b) was proposed with an extra
reading gate in the LSTM cell to let the model au-
tomatically learn to control the binary represen-
tation of the semantics during generation. The
sequence-to-sequence (seq2seq) model (Cho et al.,
2014; Sutskever et al., 2014) with attention mech-
anism (Bahdanau et al., 2014) that has achieved
huge success in machine translation has also been
applied to the NLG task. In (Dušek and Jurcıcek,
2016) the slot-value pairs in the semantics were
treated as a sequence and encoded by LSTM.
Based on the seq2seq model, in (Tran et al., 2017;
Tran and Nguyen, 2017) the refinement gate was
introduced to modify the input words and hidden
states in the decoder by considering the attention
result. Different training strategies were studied
in prior work. The hierarchical decoding method
was proposed by considering the linguistic pattern
of the generated sentence (Su et al., 2018). The
variational-based model was proposed to learn the
latent variable from both natural language and se-
mantics (Tseng et al., 2018). Lampouras and Vla-
chos (2016) proposed to use imitation learning
to train NLG models, where the Locally Opti-
mal Learning to Search framework was adopted
to train against non-decomposable loss functions.

Domain adaptation has been widely studied in
different areas such as machine translation (Koehn
and Schroeder, 2007; Foster et al., 2010), part of
speech tagging (Blitzer et al., 2006) and dialogue
state tracking (Mrkšić et al., 2015) in spoken dia-
logue systems. In NLG for spoken dialogue sys-
tems, the trainable sentence planner proposed in
(Walker et al., 2002; Stent et al., 2004) provides
the flexibility of adapting to different domains.
Subsequently, generators that can tailor user pref-
erences (Walker et al., 2007) or learn their per-
sonality traits (Mairesse and Walker, 2008, 2011;
Oraby et al., 2018) were proposed. To achieve
multi-domain NLG, exploiting the shared knowl-
edge between domains is important to handle un-
seen semantics. A multi-step procedure to train a
multi-domain NLG model was proposed in (Wen
et al., 2016). Adversarial learning is used in (Tran
and Nguyen, 2018) in which two critics were in-
troduced during model adaptation.

3 Model

Our generation model is composed of two parts:
(a) a tree-structured semantic encoder and (b) an
LSTM decoder with additional gates. The tree-
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Figure 3: The overview of our generation model. The tree-structured semantic encoder (a) encodes semantic
representation to obtain semantic embedding fSR. Each node in the tree denotes a vector representation for that
token. Grey node means it is activated during encoding with the corresponding token specified in the semantics.
The LSTM-based decoder without layer-wise attention ((b), above) and with layer-wise attention ((b), below) takes
fSR as an initial state to generate natural language. The example utterance here is ”there are @attraction-inform-
options @attraction-inform-type in the @attraction-inform-area, do you have a price range in mind?”

structured semantic encoder extracts a semantic
embedding from the semantics in a bottom-up
fashion. The obtained embedding is then fed into
the decoder as a condition to generate natural lan-
guage with corresponding delexicalised tokens1.
In addition, we further propose a layer-wise at-
tention mechanism between the tree-structured se-
mantic encoder and the decoder. The proposed at-
tention mechanism further improves the model’s
ability to generate the correct information when
adapting to a new domain with limited data.

3.1 Tree-Structured Semantic Encoder

There exists a hierarchical relationship between
dialogue acts and slot-value pairs within various
domains. Inspired by the tree-structured LSTM
(Tai et al., 2015) that encodes natural language
by capturing its syntactic properties, we propose
a tree-structured semantic encoder to encode the
semantic representation (SR) by exploiting its in-
ternal hierarchy.

3.1.1 Tree Hierarchy
Figure 3 (a) illustrates our tree-structured seman-
tic encoder. The hierarchy of the tree represents

1Each value in a natural language utterance is replaced by
a delexicalised token in the format @domain-act-slot.
For instance, the informed restaurant Golden House will
be replaced by the token @restaurant-inform-name.
The mapping from values to delexicalised tokens is called
delexicalisation. The inverse process is called lexicalisation.

the ontology with each layer symbolizing a dif-
ferent level of information. At each layer, a node
denotes a possible type defined by the ontology.
Given an SR, each slot-value pair is associated
with a dialogue act (DA) within a domain. This
relationship is modelled by the links between dif-
ferent layers in a tree as parents and children.
For instance, the node denoting slot name is the
child of the node denoting DA suggest and DA
suggest is the child of the node representing do-
main restaurant. In addition, a slot can be re-
questable, informable or binary. Each of them be-
haves differently in natural language2. Each leaf
node denotes a property that describes a slot. As a
result, given an SR there is a one-to-one mapping
between SR and its corresponding tree and a path
from the root to a leaf node describes a slot-value
pair along with its domain, DA, slot and property
of slot information.

3.1.2 Semantic Representation Encoding
Given a tree representing an SR, each node j of
the LSTM contains input, forget and output gates
ij , fj and oj respectively to obtain its hidden state
and memory cell hj and cj . With a set of children
C(j), the non-leaf node j has two sources of input:

2For instance, the utterance with a requestable slot area
might be: Which part of the city you are looking for?. The
utterance with the informable slot area might be: There are
several restaurants in the @restaurant-inform-area.
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(a) the token embedding ej3 and (b) children states
hk, ck. The transition equations are as following:

h̃j =
∑

k∈C(j)

hk,

c̃j =
∑

k∈C(j)

ck,

ij = σ(W
(i)
E ej + U

(i)
E h̃j + b

(i)
E ),

fj = σ(W
(f)
E ej + U

(f)
E h̃j + b

(f)
E ),

oj = σ(W
(o)
E ej + U

(o)
E h̃j + b

(o)
E ),

gj = tanh(W
(g)
E ej + U

(g)
E h̃j + b

(g)
E ),

cj = ij ◦ gj + fj ◦ c̃j ,
hj = oj ◦ tanh(cj),

where k is the children index, h̃j and c̃j are the
sum of children’s hidden states and memory cells
respectively.

The semantic embedding is obtained in a
bottom-up fashion. Starting from the leaf nodes
with their corresponding embeddings, the infor-
mation is propagated from the property layer
through the slot layer, act layer and domain layer
to the root. The hidden state at the root is the final
semantic embedding fSR for the SR and it will be
used to condition the decoder during generation.

During domain adaptation, the model might
have seen some semantics in source domain (de-
noted by dash lines in the tree encoder in Figure
3) that shares a partial tree structure with the se-
mantics in the target domain. For instance, the SR
informing about options, type and area in restau-
rant domain shares partial tree structure with the
SR informing about the same information in at-
traction domain. Modelling semantic structure by
the tree encoder benefits knowledge sharing across
domains.

3.2 Decoder
Figure 3 (b) presents the LSTM-based decoder
with two introduced gates. The representation of
the semantics, st, is initialised by the semantic em-
bedding fSR and then updated at each time step
duration generation. Updating the semantics at
each step is crucial to avoiding generating redun-
dant or missing information in the SR. As in stan-
dard LSTMs, the transition equations of memory

3All the domains, dialogue acts and slots appearing in
an SR are viewed as tokens and encoded in the 1-hot vec-
tors. The 1-hot vectors are then passed through an embedding
layer to attain the token embeddings as inputs to the nodes.

cell ct are as following:

it = σ(W
(i)
D xt + U

(i)
D ht−1 + b

(i)
D ),

ft = σ(W
(f)
D xt + U

(f)
D ht−1 + b

(f)
D ),

ot = σ(W
(o)
D xt + U

(o)
D ht−1 + b

(o)
D ),

gt = tanh(W
(g)
D xt + U

(g)
D ht−1 + b

(g)
D ),

ct = it ◦ gt + ft ◦ ct−1.

The two introduced gates, reading gate rt and writ-
ing gate wt, are responsible for updating the se-
mantic state st. The reading gate determines what
information should be kept from the semantics at
previous time step, while the writing gate decides
what new information should be added into the
current semantic state:

rt = σ(W
(r)
D xt + U

(r)
D ht−1 + V

(r)
D st−1 + b

(r)
D ),

wt = σ(W
(w)
D xt + U

(w)
D ht−1 + V

(w)
D st−1 + b

(w)
D ),

dt = tanh(W
(d)
D xt + U

(d)
D ht−1 + V

(d)
D st−1 + b

(d)
D ),

st = wt ◦ dt + rt ◦ st−1.

The hidden state ht is then defined as the
weighted sum of the memory cell and the semantic
state with the output gate as weight:

ht = ot ◦ tanh(ct) + (1− ot) ◦ tanh(st).

The probability of the word label yt at each time
step t is formed by a applying a softmax classifier
that takes the hidden state ht as input:

p(yt|x<t, fSR) = softmax(W (s)ht).

The objective function is the standard negative
log-likelihood:

J(θ) = −
∑

t

log p(yt|x<t, fSR). (1)

3.3 Layer-wise Attention Mechanism
The semantic embedding obtained from the tree
encoder contains high-level information regarding
the semantic representation. However, the infor-
mation in the tree is not fully leveraged during
generation. Thanks to the hierarchical structure of
a tree encoder with defined meaning for each layer,
we can apply an attention mechanism to each layer
to let the decoder concentrate on the different lev-
els of information. We expect the decoder to lever-
age information regarding domain, dialogue act
and slot from the hidden states in a tree to influ-
ence the generation process.
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Whenever the decoder generates the token @4,
the semantics st is used to drive an attention mech-
anism with hidden states in the different layers of
the tree to obtain distributions over domains p(dt),
dialogue acts p(at) and slots p(st) respectively:

p(dt|x<t, st) =
exp(score(st, hd))∑

d′∈D exp(score(st, hd′))
,

p(at|x<t, st) =
exp(score(st, ha))∑

a′∈A exp(score(st, ha′))
,

p(st|x<t, st) =
exp(score(st, hs))∑

s′∈S exp(score(st, hs′))
,

where hd, ha and hs are the hidden states of do-
main, dialogue act and slots in the tree encoder.
D, A and S are the sets of domains, dialogue acts
and slots defined in the ontology respectively. The
score function used to calculate the similarity be-
tween two vectors is defined as following:

score(f, h) = fTh.

The distributions p(dt), p(at) and p(st) are then
used to predict domain, dialogue act and slot at
time step t by taking the argmax operation to form
the delexicalised tokens @domain-act-slot
back into the generated sentence.

In order to avoid generating redundant or miss-
ing information in a given SR, the three predicted
distributions are fed into next time step to augment
the original input word 5 to condition the model on
what information has already been generated.

During training, the error signals between pre-
dicted distributions and the true labels for domain,
dialogue act and slot are added to the objective
function. The objective function for the genera-
tion model with layer-wise attention mechanism
is defined as following:

Jatt(θ) = J(θ)−
∑

t′
(log p(dt′ |x<t′ , st′)

+ log p(at′ |x<t′ , st′) + log p(st′ |x<t′ , st′)) ,

where J(θ) is the original objective function in
equation 1 and t′ is the index for the time step
where each token @ is generated.

4With the layer-wise attention mechanism, all values
in the natural language are replaced by the same delex-
icalised token @ instead of the tokens in the format
@domain-act-slot, and the corresponding information
regarding domain, dialogue act and slot will be used as sig-
nals to guide the decoder to predict the correct information.

5Only at the next time step of generating delexicalised to-
ken @ the input is the concatenation of the word vector xt

and three predicted distributions. In any other time steps, the
input is the word vector padded with zeros.

Table 1: The data statistics for each domain.

Domain Restaurant Hotel Attraction Train Taxi
Examples 8.5k 6.6k 6.4k 11k 3.4k
Distinct SR 346 378 314 338 47
Dialogue acts 8 8 8 5 2
Slots 11 14 13 11 6

4 Experimental Results

4.1 Dataset
We perform our experiments with the Multi-
Domain Wizard-of-Oz (MultiWOZ) dataset
(Budzianowski et al., 2018) that is a rich dialogue
dataset spanning over 7 domains. There are
10438 dialogues and over 115k turns in total.
The dataset contains a high level of complexity
and naturalness which is suitable for developing
multi-domain NLG models. There are multiple
utterances in a single turn with an average of 18
words, 1.6 dialogue acts and 2.9 slots per turn.
Some turns provide information for more than 1
domain. Comparing with previous NLG datasets
which contain only 1 utterance in a turn with 1
dialogue act within 1 domain, the MultiWOZ
dataset provides significantly more complexity
and makes NLG more challenging. The number
of examples, distinct semantic representation
(SR) and numbers of dialogue acts and slots are
reported in Table 1. The data split for train, dev
and test is 3:1:1. The details of the ontology is
presented in Figure 1.

4.2 Experimental Setup
The generators are implemented using the Pytorch
library (Paszke et al., 2017). Our code is pub-
lic6. The number of hidden units in the LSTMs
is 100 with 1 hidden layer. The dropout rate
is 0.25 and the Adam optimizer is used. The
learning rate is 0.0025 for the models trained
from scratch, and 0.001 for the models adapted
from one domain to another in adaptation exper-
iments. Beam search is used during decoding
with a beam size 10. For automatic metrics, the
BLEU scores and the slot error rate (SER) used
in (Wen et al., 2015b) are reported. The SER is
used to evaluate how accurate a generated sen-
tence is in terms of conveying the desired infor-
mation in the given semantic representation (SR).
The SER is defined as: (p + q)/N , where p, q
are the numbers of missing and redundant slots

6https://github.com/andy194673/
TreeEncoder-NLG-Dialogue
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Figure 4: Domain adaptation experiments in three different settings. (a) adapting to hotel from restaurant domain.
(b) adapting to attraction from restaurant domain. (c) adapting to taxi from train domain.

in a generated sentence, and N is the number of
total slots that a generated sentence should con-
tain. The results are averaged over 10 samples
and 5 random initialised seeds. As explained
above each delexicalised slot token in an utter-
ance is in the format of @domain-act-slot.
When calculating the SER, the predicted slot to-
ken is correct only if its domain, dialogue act
and slot information are all correct. For exam-
ple, if there is a desired slot area under dia-
logue act inform within restaurant domain
in SR, the model needs to generate the token
@restaurant-inform-area.

The tree-structured semantic encoder (Tree) and
the variant with attention (Tree+Att) are com-
pared against three baselines: (1) the semantically-
conditioned LSTM (SCLSTM) that has an extra
gate to update the binary vector of the seman-
tic representation (Wen et al., 2015b); (2) TGen
that is a seq2seq model with attention mecha-
nism mapping SR into a word sequence (Dušek
and Jurcıcek, 2016); (3) a refinement adjustment
LSTM (RALSTM) that is an improved seq2seq
model with a refinement gate and an adjustment
gate in the decoder (Tran and Nguyen, 2017).

As the decoding method is slightly different be-
tween our model Tree+Att and baseline models7,
in order to guarantee the optimised baseline sys-
tems, we also trained baseline models in the same

7Tree+Att only generates token @ and reply on attention
results to form the complete slot token while baseline models
directly generate slot tokens.

decoding way as Tree+Att to only predict @ with
three additional classifiers for domain, act and slot
prediction. However, baseline models obtains bet-
ter performance by the original decoding method
so we keep that in the following experiments. All
the models are optimized by selecting the best one
based on the validation set result.

4.3 Automatic Evaluation

In order to examine the models’ ability to share
knowledge between domains, we performed ex-
periments in three domain adaptation scenarios:
(a) adapting to hotel from restaurant domain; (b)
adapting to attraction from restaurant domain and
(c) adapting to taxi from train domain. The adap-
tation models were fine-tuned with adaptation data
based on the models trained on source domain8.
The SER results are presented in the first row of
Figure 4. Generally, our model without atten-
tion (Tree) performs similarly with RALSTM but
better than TGen and SCLSTM. With the layer-
wise attention mechanism, our model (Tree+Att)
improves significantly and performs better than
baselines at all different levels of adaptation data
amount. Especially when the adaptation data used
is only 1.25%, the SER is reduced from above
75% to around 25%. We found that this is because
baseline models tend to predict the slots with the
wrong dialogue act or in the wrong domain as the

8All the multi-domain turns are removed in case the
model have seen any examples related to target domain be-
fore adaptation.
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Table 2: Human evaluation for utterance quality in
three adaptation settings: Restaurant (Rest.) to Hotel
domain; Restaurant to Attraction (Attr.) domain and
Train to Taxi domain. Informativeness (Info.) and Nat-
uralness (Nat.) are reported (rating out of 5).

Model Rest. to Hotel Rest. to Attr. Train to Taxi
Info. Nat. Info. Nat. Info. Nat.

SCLSTM 2.96 3.85 2.81 3.69 3.05 4.26
TGen 2.87 3.33 3.00 3.23 3.42 3.90
RALSTM 2.79 3.48 2.91 3.40 3.48 3.15
Tree 3.08 3.54 3.38 3.41 3.81 3.81
Tree+Att 4.04 4.10 4.30 3.92 4.29 3.78

limited adaptation data makes it difficult to learn
the sentence pattern in the target domain. How-
ever, with the layer-wise attention mechanism, our
model is able to pay attention on the information
at different levels in the tree to make the correct
predictions. (See more details in section 5 with
error analysis and visualisation of attention distri-
butions.) A similar trend can be observed in the
BLEU results in the second row of Figure 4.

4.4 Human Evaluation
Because automatic evaluation such as BLEU may
not consistently agree with human perception
(Stent et al., 2005), we performed human testing
via the Amazon Mechanical Turk service. We
showed MTurk workers the generated sentences in
adaptation experiments with adaptation data from
1.25% to 10% as we focus on the models’ per-
formance with limited adaptation data. Five mod-
els were compared together by showing, for each
model, the 2 sentences with the highest probabil-
ities out of the 10 generated sentences by beam
search. The workers were asked to score each sen-
tence from 1 (bad) to 5 (good) in terms of its infor-
mativeness and naturalness. The informativeness
is defined as the degree to which the generated
sentence contains all the information specified in
the given semantic representation (SR) without
conveying extra information and the naturalness is
defined as whether the sentence is natural like hu-
man language. Ipeirotis et al. (2010) pointed out
that malicious workers might take advantage of
the difficulty of verifying the results and therefore
submit answers with low quality. In order to filter
out submissions with bad quality, we also asked
them to score the ground truth sentence and an ar-
tificial sentence containing irrelevant information
to the SR. If the worker gave ground truth sentence
a low score (< 3) or gave the artificial sentence a
high score (> 3) in terms of informativeness, the

submission was discarded.
The results pertaining to informativeness and

naturalness are reported in Table 2 in three adapta-
tion settings: Restaurant (Rest.) to Hotel domain;
Restaurant to Attraction (Attr.) domain and Train
to Taxi domain. For informativeness, our mod-
els (both Tree+Att & Tree) outperform all base-
line models in the different settings. This result
is consistent with the slot error rate of the auto-
matic evaluation reported in Figure 4 and indicates
that the tree-structured semantic encoder does help
the model to produce utterances with the correct
information. For naturalness, Tree+Att performs
the best in two settings, while SCLSTM performs
better when adapting to taxi domain. This might
be because SCLSTM is good at generating utter-
ances with simple patterns and the taxi domain is
relatively easy due to its low number of combi-
nations of SR9. When adapting to more complex
domains such as hotel or attraction, our models
provide both informative and natural utterances.
Table 3 presents example semantic representations
with corresponding ground truth sentence and the
top-1 utterance generated by each model.

5 Error Analysis and Observation

In order to investigate what type of testing data
our model performs better on, we divide all test
set into two subsets - seen and unseen. If the se-
mantics of a testing example appear in the training
set, the example is defined as seen. Otherwise, the
example is marked as unseen. Table 4 reports the
number of seen and unseen examples and the num-
ber of wrong utterances (at least 1 missing or re-
dundant slot) generated by each model with differ-
ent amount of adaptation data when adapting from
restaurant to hotel domain. With more adaptation
data, more SRs of testing examples appear in the
training set. We observe that our model obtains
better generalisation ability for unseen SRs. For
instance, with 1.25% adaptation data, Tree+Att
generates 134 wrong utterances out of 902 unseen
semantics (14.8%). However, the baseline models
such as SCLSTM produces 729 wrong sentences
out of 902 semantics (80.5%). We hypothesize
that our model is more capable of learning sen-
tence patterns from source domain and generate
correct content for domain adaptation. For exam-
ple, when adapting from restaurant to hotel do-
main (see Table 3 - Hotel column), Tree+Att cor-

9There are only 2 dialogue acts and 6 slots in taxi domain.
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Table 3: Example semantic representations (SR) with ground truth sentences in two adaptation settings with 1.25%
adaptation data and the top-1 sentences generated by each model. Both are adapted from restaurant domain. The
slot-value pairs are in bold. Each generated sentence is followed by a brief description to explain if the sentence
correctly conveys the information in the SR.

Domain Attraction Hotel

Semantic
Representation

Dialogue Act: Inform
Slot-Value pairs: [Area: west]

[Options: five] [Type: colleges]
Dialogue Act: Request

Slot-Value pairs: [Price=?]

Dialogue Act: Inform
Slot-Value pairs: [Options=two]

Dialogue Act: Select
Slot-Value pairs:

[type1=guesthouse] [type2=hotel]

Ground Truth
there are five colleges in the west.

do you mind paying an entrance fee ?
i have two, would you

prefer a guesthouse or hotel ?

SCLSTM
what type of place are you looking for ?

(miss 3 slots & request wrong)
what area would you

like to stay in ? (miss 3 slots)

TGen
there are located in the . do you have a price

range in mind ? (miss 3 slots)
i have found options. would you

prefer or ? (miss 3 slots)

RALSTM
we have five colleges in the west area . do you

have an attraction type in mind ? (request wrong)
i have two options.

do you have a preference ? (miss 2 slots)

Tree
there are five colleges in the west . do you have an
area of town you would prefer ? (request wrong)

i have found two options for you.
do you have a preference ? (miss 2 slots)

Tree+Att
there are five colleges in the west .

do you have a price range in mind ? (correct)
i have two options for you. would

you prefer guesthouse or hotel ? (correct)

Table 4: Error analysis - number of examples in the
testing set and the number of wrong generated utter-
ances (at least 1 missing or redundant slot) by each
model in different adaptation data scenarios. The test-
ing example is defined as seen if its semantics appears
in the training set.

Percentage 1.25% 5% 10% 50%
Testing
examples

seen unseen seen unseen seen unseen seen unseen
439 902 858 483 1069 272 1330 11

SCLSTM 248 729 307 412 302 190 111 5
TGen 309 741 176 353 178 168 102 6
Tree+Att 10 134 31 103 60 55 76 3

rectly learns to generalize from the training sen-
tence: ”i have two options for you, would you pre-
fer American or Chinese” in restaurant domain.
However, SCLSTM fails to produce a similar sen-
tence pattern.

Figure 5 shows the example of visualisation
of layer-wise attention distributions over domains,
acts and slots generated by the Tree+Att model.
The model is confident of generating the correct
slot tokens with the distinct peaks indicated by the
dark red color in the attention distributions even
though the adaptation data used is simply 1.25%.

6 Conclusion and Future Work

This paper investigates the possibility of leverag-
ing internal structure of input semantics for NLG
domain adaptation in dialogue systems. The pro-
posed tree-structured semantic encoder is able to

Figure 5: The visualisation of the layer-wise attention
distributions over domains, acts and slots at each time
step k when slot token is generated and the generated
utterance with lexicalised values in the parentheses.
The color shades signify the attention weight.

capture the structure of semantic representations
and facilitate knowledge sharing across domains.
In addition, we have proposed a layer-wise atten-
tion mechanism between the tree-structured se-
mantic encoder and the decoder to enhance the
performance. Our proposed model was evaluated
on the complex multi-domain MultiWOZ dataset.
The automatic evaluation results show that our
model is more efficient in terms of adaptation data
usage and outperforms previous methods by re-
ducing the slot error rate up to 50% when the adap-
tation data is limited. What is more, human judges
rate our model more highly than previous meth-
ods. Future work will explore a tree encoder ex-
ploiting both semantic representation and context
information in end-to-end dialogue systems.
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Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thom-
son, Milica Gasic, Pei-Hao Su, David Vandyke,
Tsung-Hsien Wen, and Steve Young. 2015. Multi-
domain dialog state tracking using recurrent neural
networks. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
volume 2, pages 794–799.
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Abstract

Neural dialog models have exhibited strong
performance, however their end-to-end nature
lacks a representation of the explicit structure
of dialog. This results in a loss of generaliz-
ability, controllability and a data-hungry na-
ture. Conversely, more traditional dialog sys-
tems do have strong models of explicit struc-
ture. This paper introduces several approaches
for explicitly incorporating structure into neu-
ral models of dialog. Structured Fusion Net-
works first learn neural dialog modules cor-
responding to the structured components of
traditional dialog systems and then incorpo-
rate these modules in a higher-level genera-
tive model. Structured Fusion Networks ob-
tain strong results on the MultiWOZ dataset,
both with and without reinforcement learn-
ing. Structured Fusion Networks are shown
to have several valuable properties, including
better domain generalizability, improved per-
formance in reduced data scenarios and ro-
bustness to divergence during reinforcement
learning.

1 Introduction

End-to-end neural dialog systems have shown
strong performance (Vinyals and Le, 2015; Dinan
et al., 2019). However such models suffer from a
variety of shortcomings, including: a data-hungry
nature (Zhao and Eskenazi, 2018), a tendency to
produce generic responses (Li et al., 2016b), an in-
ability to generalize (Mo et al., 2018; Zhao and Es-
kenazi, 2018), a lack of controllability (Hu et al.,
2017), and divergent behavior when tuned with re-
inforcement learning (Lewis et al., 2017). Tradi-
tional dialog systems, which are generally free of
these problems, consist of three distinct compo-
nents: the natural language understanding (NLU),
which produces a structured representation of an

∗* Equal contribution.

Figure 1: A traditional dialog system consisting of a
natural language understanding (NLU), dialog man-
ager (DM) and natural language generation (NLG).

input (e.g., a belief state); the natural language
generation (NLG), which produces output in natu-
ral language conditioned on an internal state (e.g.
dialog acts); and the dialog manager (DM) (Bo-
hus and Rudnicky, 2009), which describes a pol-
icy that combines an input representation (e.g., a
belief state) and information from some database
to determine the desired continuation of the dia-
log (e.g., dialog acts). A traditional dialog system,
consisting of an NLU, DM and NLG, is pictured
in Figure 1.

The structured components of traditional dialog
systems facilitate effective generalizability, inter-
pretability, and controllability. The structured out-
put of each component allows for straightforward
modification, understanding and tuning of the sys-
tem. On the other hand, end-to-end neural models
of dialog lack an explicit structure and are treated
as a black box. To this end, we explore several
methods of incorporating the structure of tradi-
tional dialog systems into neural dialog models.

First, several neural dialog modules are con-
structed to serve the role of the NLU, the DM
and the NLG. Next, a number of methods are pro-
posed for incorporating these dialog modules into
end-to-end dialog systems, including Naı̈ve Fu-
sion, Multitask Fusion and Structured Fusion Net-
works (SFNs). This paper will show that SFNs
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obtain strong results on the MultiWOZ dataset
(Budzianowski et al., 2018) both with and with-
out the use of reinforcement learning. Due to the
explicit structure of the model, SFNs are shown
to exhibit several valuable properties including
improved performance in reduced data scenarios,
better domain generalizability and robustness to
divergence during reinforcement learning (Lewis
et al., 2017).

2 Related Work

2.1 Generation Methods

Vinyals and Le (2015) used a sequence-to-
sequence network (Sutskever et al., 2014) for di-
alog by encoding the conversational context and
subsequently generating the reply. They trained
and evaluated their model on the OpenSubtitles
dataset (Tiedemann, 2009), which contains con-
versations from movies, with a total of 62M train-
ing sentences.

Most research on generative models of dialog
has built on the baseline introduced by Vinyals
and Le (2015) by incorporating various forms of
inductive bias (Mitchell, 1980) into their models,
whether it be through the training procedure, the
data or through the model architecture. Li et al.
(2015) use Maximum Mutual Information (MMI)
as the objective function, as a way of encourag-
ing informative agent responses. Serban et al.
(2016) proposes to better capture the semantics of
dialog with the use of a hierarchical encoder de-
coder (HRED), comprised of an utterance encoder,
a conversational context encoder, and a decoder.
Li et al. (2016b) incorporate a number of heuris-
tics into the reward function, to encourage use-
ful conversational properties such as informativity,
coherence and forward-looking. Li et al. (2016a)
encodes a speaker’s persona as a distributed em-
bedding and uses it to improve dialog genera-
tion. Liu and Lane (2016) simultaneously learn
intent modelling, slot filling and language mod-
elling. Zhao et al. (2017) enables task-oriented
systems to make slot-value-independent decisions
and improves out-of-domain recovery through the
use of entity indexing and delexicalization. Wu
et al. (2017) present Recurrent Entity Networks
which use action templates and reasons about ab-
stract entities in an end-to-end manner. Zhao and
Eskenazi (2018) present the Action Matching al-
gorithm, which maps utterances to a cross-domain
embedding space to improve zero-shot generaliz-

ability. Mehri et al. (2019) explore several dia-
log specific pre-training objectives that improve
performance on dowstrean dialog tasks, including
generation. Chen et al. (2019) present a hierarchi-
cal self-attention network, conditioned on graph
structured dialog acts and pre-trained with BERT
(Devlin et al., 2018).

2.2 Generation Problems

Despite their relative success, end-to-end neural
dialog systems have been shown to suffer from
a number of shortcomings. (Li et al., 2016b) in-
troduced the dull response problem, which de-
scribes how neural dialog systems tend to pro-
duce generic and uninformative responses (e.g.,
”I don’t know”). Zhao and Eskenazi (2018) de-
scribe generative dialog models as being data-
hungry, and difficult to train in low-resource en-
vironments. Mo et al. (2018); Zhao and Eske-
nazi (2018) both demonstrate that dialog systems
have difficulty generalizing to new domains. Hu
et al. (2017) work on the problem of controllable
text generation, which is difficult in sequence-to-
sequence architectures, including generative mod-
els of dialog.

Wang et al. (2016) describe the problem of the
overwhelming implicit language model in image
captioning model decoders. They state that the
decoder learns a language generation model along
with a policy, however, during the process of cap-
tioning certain inputs, the decoder’s implicit lan-
guage model overwhelms the policy and, as such,
generates a specific output regardless of the in-
put (e.g., if it generates ’giraffe’, it may always
output ’a giraffe standing in a field’, regardless
of the image). In dialog modelling, this problem
is observed in the output of dialog models fine-
tuned with reinforcement learning (Lewis et al.,
2017; Zhao et al., 2019). Using reinforcement
learning to fine-tune a decoder, will likely place a
strong emphasis on improving the decoder’s pol-
icy and un-learn the implicit language model of
the decoder. To this end, Zhao et al. (2019)
proposes Latent Action Reinforcement Learning
which does not update the decoder during rein-
forcement learning.

The methods proposed in this paper aim to miti-
gate these issues by explicitly modelling structure.
Particularly interesting is that the structured mod-
els will reduce the effect of the overwhelming im-
plicit language model by explicitly modelling the
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NLG (i.e., a conditioned language model). This
should lessen the divergent effect of reinforcement
learning (Lewis et al., 2017; Zhao et al., 2019).

2.3 Fusion Methods

This paper aims to incorporate several pre-trained
dialog modules into a neural dialog model. A
closely related branch of research is the work
done on fusion methods, which attempts to inte-
grate pre-trained language models into sequence-
to-sequence networks. Integrating language mod-
els in this manner is a form of incorporating struc-
ture into neural architectures. The simplest such
method, commonly referred to as Shallow Fusion,
is to add a language modeling term, pLM (y), to
the cost function during inference (Chorowski and
Jaitly, 2016).

To improve on this, Gulcehre et al. (2015) pro-
posed Deep Fusion, which combines the states of
a pre-trained machine translation models decoder
and a pre-trained language model by concatenat-
ing them using a gating mechanism with trained
parameters. The gating mechanism allows us to
decide how important the language model and de-
coder states are at each time step in the inference
process. However, one major drawback of Deep
Fusion is that the sequence-to-sequence model is
trained independently from the language model,
and has to learn an implicit language model from
the training data.

Cold Fusion (Sriram et al., 2017) deals with
this problem by training the sequence-to-sequence
model along with the gating mechanism, thus
making the model aware of the pre-trained lan-
guage model throughout the training process. The
decoder does not need to learn a language model
from scratch, and can thus learn more task-specific
language characteristics which are not captured by
the pre-trained language model (which has been
trained on a much larger, domain-agnostic cor-
pus).

3 Methods

This section describes the methods employed in
the task of dialog response generation. In addition
to the baseline model proposed by Budzianowski
et al. (2018), several methods of incorporating
structure into end-to-end neural dialog models are
explored.

3.1 Sequence-to-Sequence
The baseline model for dialog generation, de-
picted in Figure 2, consists of a standard encoder-
decoder framework (Sutskever et al., 2014), aug-
mented with a belief tracker (obtained from the an-
notations of the dialog state) and a database vector.
The dialog system is tasked with producing the ap-
propriate system response, given a dialog context,
an oracle belief state representation and a vector
corresponding to the database output.

The dialog context is encoded using an LSTM
(Hochreiter and Schmidhuber, 1997) sequence-to-
sequence network (Sutskever et al., 2014). Exper-
iments are conducted with and without an atten-
tion mechanism (Bahdanau et al., 2015). Given
the final encoder hidden state, het , the belief state
vector, vbs, and the database vector, vdb, Equation
1 describes how the initial decoder hidden state is
obtained.

hd0 = tanh (Weh
e
t +Wbsvbs +Wdbvdb + b) (1)

Figure 2: A diagram of the baseline sequence-to-
sequence architecture. The attention mechanism is not
visualized, however experiments are conducted both
with and without attention.

3.2 Neural Dialog Modules
As seen in Figure 1, a traditional dialog system
consists of the NLU, the DM and the NLG. The
NLU maps a natural language input to a belief
state representation (BS). The DM uses the belief
state and some database output, to produce dialog
acts (DA) for the system response. The NLG uses
the dialog acts to produce a natural language re-
sponse.

A neural dialog module is constructed for each
of these three components. A visualization of
these architectures is shown in Figure 3. The NLU
architecture uses an LSTM encoder to map the
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Figure 3: A visualization of the neural architectures for
each of the three modules of traditional dialog systems.

natural language input to a latent representation,
ht, which is then passed through a linear layer
and a sigmoid function to obtain a multi-label pre-
diction of the belief state. The DM architecture
projects the belief state and database vector into a
latent space, through the use of a linear layer with
a ReLU activation, which is then passed through
another linear layer and a sigmoid function to pre-
dict the dialog act vector. The neural architecture
corresponding to the NLG is a conditioned lan-
guage model with its initial hidden state given by a
linear encoding of the dialog acts, belief state and
database vectors.

The following equations define the structure of
the modules, where the gt subscript on an interme-
diate variable denotes the use of the ground-truth
value:

bs = NLU(context) (2)

da = DM(bsgt, db) (3)

response = NLG(bsgt, db, dagt) (4)

3.3 Naı̈ve Fusion
Naı̈ve Fusion (NF) is a straightforward mechanism
for using the neural dialog modules for end-to-end
dialog response generation.

3.3.1 Zero-Shot Naı̈ve Fusion
During training, each dialog module is trained in-
dependently, meaning that it is given the ground
truth input and supervision signal. However, dur-
ing inference, the intermediate values (e.g., the di-
alog act vector) do not necessarily exist and the
outputs of other neural modules must be used in-
stead. For example, the DM module is trained
given the ground-truth belief state as input, how-
ever during inference it must rely on the belief
state predicted by the NLU module. This results

in a propagation of errors, as the DM and NLG
may receive imperfect input.

Zero-Shot Naı̈ve Fusion combines the pre-
trained neural modules at inference time. The con-
struction of the response conditioned on the con-
text, is described as follows:

bs = NLU(context) (5)

response = NLG(bs, db,DM(bs, db)) (6)

3.3.2 Naı̈ve Fusion with Fine-Tuning
Since the forward propagation described in Equa-
tions 5 and 6 is continuous and there is no sam-
pling procedure until the response is generated,
Naı̈ve Fusion can be fine-tuned for the end-to-end
task of dialog generation. The pre-trained neu-
ral modules are combined as described above, and
fine-tuned on the task of dialog generation using
the same data and learning objective as the base-
line.

3.4 Multitask Fusion

Structure can be incorporated into neural archi-
tectures through the use of multi-tasking. Multi-
task Fusion (MF) is a method where the end-to-
end generation task is learned simultaneously with
the aforementioned dialog modules. The multi-
tasking setup is seen in Figure 4.

Figure 4: A depiction of Multitask Fusion, where the
individual neural modules are learned simultaneously
with the end-to-end task of dialog generation. The
dashed boxes contain the individual components, while
the red arrows depict forward propagation for the end-
to-end task. The red arrows are the process used during
response generation.

By sharing the weights of the end-to-end archi-
tecture and each respective module, the learned
representations should become stronger and more
structured in nature. For example, the encoder is
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shared between the NLU module and the end-to-
end task. As such, it will learn to both represent
the information necessary for predicting the belief
state vector and any additional information useful
for generating the next utterance.

3.5 Structured Fusion Networks

The Structured Fusion Networks (SFNs) we pro-
pose, depicted in Figure 5, use the independently
pre-trained neural dialog modules for the task of
end-to-end dialog generation. Rather than fine-
tuning or multi-tasking the independent modules,
SFNs aim to learn a higher-level model on top of
the neural modules to perform the task of end-to-
end response generation.

The output of the NLU is concatenated at each
time-step of the encoder input. The output of the
DM is similarly concatenated to the input of the
linear layer between the encoder and the decoder
of the higher-level model. The output of the NLG,
in the form of logits at a decoding time-step, is
combined with the hidden state of the decoder via
cold-fusion (Sriram et al., 2017). Given the NLG
output as lNLG

t and the higher-level decoder hid-
den state as st, the cold-fusion method is described
as follows:

hNLG
t = DNN(lNLG

t ) (7)

gt = σ(W [st;h
NLG
t ] + b) (8)

sCF
t = [st; gt ◦ hNLG

t ] (9)

yt = softmax(DNN(sCF
t )) (10)

By pre-training the modules and using their
structured outputs, the higher-level model does not
have to re-learn and re-model the dialog structure
(i.e., representing the belief state and dialog acts).
Instead, it can focus on the more abstract mod-
elling that is necessary for the task, including rec-
ognizing and encoding complex natural language
input, modelling a policy, and effectively convert-
ing a latent representation into a natural language
output according to the policy.

The SFN architecture may seem complicated
due to the redundancy of the inputs. For example,
the context is passed to the model in two places
and the database vector in three places. This re-
dundancy is necessary for two reasons. First,
each of the neural modules must function indepen-
dently and thus needs sufficient inputs. Second,
the higher-level model should be able to function

well independently. If any of the neural modules
was to be removed, the SFN should be able to
perform reasonably. This means that the higher-
level module should not rely on any of the neu-
ral modules to capture information about the in-
put and therefore allow the neural modules to fo-
cus only on representing the structure. For exam-
ple, if the context was not passed into the higher-
level encoder and instead only to the NLU mod-
ule, then the NLU may no longer be able to suf-
ficiently model the belief state and may instead
have to more explicitly model the context (e.g., as
a bag-of-words representation).

Several variations of training SFNs are consid-
ered during experimentation, enumerated as fol-
lows. (1) The pre-trained neural modules are kept
frozen, as a way of ensuring that the structure is
not deteriorated. (2) The pre-trained neural mod-
ules are fine-tuned for the end-to-end task of re-
sponse generation. This ensures that the model is
able to abandon or modify certain elements of the
structure if it helps with the end-to-end task. (3)
The pre-trained modules are multi-tasked with the
end-to-end task of response generation. This en-
sures that the structure is maintained and poten-
tially strengthened while also allowing the mod-
ules to update and improve for the end-to-end task.

4 Experiments

4.1 Dataset

The dialog systems are evaluated on the Multi-
WOZ dataset (Budzianowski et al., 2018), which
consists of ten thousand human-human conversa-
tions covering several domains. The MultiWOZ
dataset contains conversations between a tourist
and a clerk at an information center which fall
into one of seven domains - attraction, hospital,
police, hotel, restaurant, taxi, train. Individual
conversations span one to five of the domains.
Dialogs were collected using the Wizard-of-Oz
framework, where one participant plays the role
of an automated system.

Each dialog consists of a goal and multiple user
and system utterances. Each turn is annotated with
two binary vectors: a belief state vector and a di-
alog act vector. A single turn may have multiple
positive values in both the belief state and dialog
act vectors. The belief state and dialog act vectors
are of dimensions 94 and 593, respectively.

Several metrics are used to evaluate the mod-
els. BLEU (Papineni et al., 2002) is used to com-
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Figure 5: The Structured Fusion Network. The grey dashed boxes correspond to the pre-trained neural dialog
modules. A higher-level is learned on top of the pre-trained modules, as a mechanism of enforcing structure in the
end-to-end model.

pute the word overlap between the generated out-
put and the reference response. Two task-specific
metrics, defined by Budzianowski et al. (2018), In-
form rate and Success rate, are also used. Inform
rate measures how often the system has provided
the appropriate entities to the user. Success rate
measures how often the system answers all the
requested attributes. Similarly to Budzianowski
et al. (2018), the best model is selected during val-
idation using the combined score which is defined
as BLEU + 0.5 × (Inform + Success). This
combined score is also reported as an evaluation
metric.

4.2 Experimental Settings

The hyperparameters match those used by
Budzianowski et al. (2018): embedding dimension
of 50, hidden dimension of 150, and a single-layer
LSTM. All models are trained for 20 epochs us-
ing the Adam optimizer (Kingma and Ba, 2014),
with a learning rate of 0.005 and batch size of 64.
The norm of the gradients are clipped to 5 (Pas-
canu et al., 2012). Greedy decoding is used during
inference.

All previous work uses the ground-truth belief
state vector during training and evaluation. There-
fore the experiments with the SFNs have the NLU
module replaced by an ”oracle NLU” which al-
ways outputs the ground-truth belief state. Table 4
in the Appendix shows experimental results which
demonstrate that using only the ground-truth be-

lief state results in the best performance.

4.3 Reinforcement Learning

A motivation of explicit structure is the hypoth-
esis that it will reduce the effects of the implicit
language model, and therefore mitigate degener-
ate output after reinforcement learning. This hy-
pothesis is evaluated by fine-tuning the SFNs with
reinforcement learning. The setup for this exper-
iment is similar to that of Zhao et al. (2019): (1)
the model produces a response conditioned on a
ground-truth dialog context, (2) the success rate is
evaluated for the generated response, (3) using the
success rate as the reward, the policy gradient is
calculated at each word, and (4) the parameters of
the model are updated. A learning rate of 1e-5
is used with the Adam optimizer (Kingma and Ba,
2015).

Reinforcement learning is used to fine-tune the
best performing model trained in a supervised
learning setting. During this fine-tuning, the neu-
ral dialog modules (i.e., the NLU, DM and NLG)
are frozen. Only the high-level model is updated
during reinforcement learning. Freezing maintains
the structure, while still updating the higher level
components. Since the structure is maintained, it
is unnecessary to alternate between supervised and
reinforcement learning.
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Model BLEU Inform Success Combined Score
Supervised Learning

Seq2Seq (Budzianowski et al., 2018) 18.80 71.29% 60.29% 84.59
Seq2Seq w/ Attn (Budzianowski et al., 2018) 18.90 71.33% 60.96% 85.05
Seq2Seq (Ours) 20.78 61.40% 54.50% 78.73
Seq2Seq w/ Attn (ours) 20.36 66.50% 59.50% 83.36
3-layer HDSA (Chen et al., 2019) 23.60 82.90% 68.90% 99.50
Naı̈ve Fusion (Zero-Shot) 7.55 70.30% 36.10% 60.75
Naı̈ve Fusion (Fine-tuned Modules) 16.39 66.50% 59.50% 83.36
Multitasking 17.51 71.50% 57.30% 81.91
Structured Fusion (Frozen Modules) 17.53 65.80% 51.30% 76.08
Structured Fusion (Fine-tuned Modules) 18.51 77.30% 64.30% 89.31
Structured Fusion (Multitasked Modules) 16.70 80.40% 63.60% 88.71

Reinforcement Learning
Seq2Seq + RL (Zhao et al., 2019) 1.40 80.50% 79.07% 81.19
LiteAttnCat + RL (Zhao et al., 2019) 12.80 82.78% 79.20% 93.79
Structured Fusion (Frozen Modules) + RL 16.34 82.70% 72.10% 93.74

Table 1: Experimental results for the various models. This table compares two classes of methods: those trained
with supervised learning and those trained with reinforcement learning. All bold-face results are statistically
significant (p < 0.01).

4.4 Results

Experimental results in Table 1 show that our
Structured Fusion Networks (SFNs) obtain strong
results when compared to both methods trained
with and without the use of reinforcement learn-
ing. Compared to previous methods trained only
with supervised learning, SFNs obtain a +4.26
point improvement over seq2seq baselines in the
combined score with strong improvement in both
Success and Inform rates. SFNs are outperformed
by the recently published HDSA (Chen et al.,
2019) models which relies on BERT (Devlin et al.,
2018) and conditioning on graph structured dialog
acts. When using reinforcement learning, SFNs
match the performance of LiteAttnCat (Zhao et al.,
2019) on the combined score. Though the Inform
rate is equivalent and the Success rate is lower (al-
beit still better than all supervised methods), the
BLEU score of SFNs is much better with an im-
provement of +3.54 BLEU over LiteAttnCat.

In the reinforcement learning setting, the im-
proved BLEU can be attributed to the explicit
structure of the model. This structure enables
the model to optimize for the reward (Success
rate) without resulting in degenerate output (Lewis
et al., 2017).

SFNs obtain the highest combined score when
the modules are fine-tuned. This is likely because,
while the structured modules serve as a strong ini-

tialization for the task of dialog generation, forc-
ing the model to maintain the exact structure (i.e.,
frozen modules) limits its ability to learn. In fact,
the end-to-end model may choose to ignore some
elements of intermediate structure (e.g., a particu-
lar dialog act) which prove useless for the task of
response generation.

Despite strong overall performance, SFNs do
show a -2.27 BLEU drop when compared to the
strongest seq2seq baseline and a -5.09 BLEU drop
compared to HDSA. Though it is difficult to as-
certain the root cause of this drop, one potential
reason could be that the dataset contains many so-
cial niceties and generic statements (e.g., ”happy
anniversary”) which are difficult for a structured
model to effectively generate (since it is not an ele-
ment of the structure) while a free-form sequence-
to-sequence network would not have this issue.

To a lesser degree, multi-tasking (i.e., multi-
tasked modules) would also prevent the model
from being able to ignore some elements of the
structure. However, the SFN with multitasked
modules performs best on the Inform metric with
a +9.07% improvement over the seq2seq base-
lines and a +3.10% over other SFN-based meth-
ods. This may be because the Inform metric mea-
sures how many of the requested attributes were
answered, which benefits from a structured repre-
sentation of the input.
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Zero-Shot Naı̈ve Fusion performs very poorly,
suggesting that the individual components have
difficulty producing good results when given im-
perfect input. Though the NLG module performs
extremely well when given the oracle dialog acts
(28.97 BLEU; 106.02 combined), its performance
deteriorates significantly when given the predicted
dialog acts. This observation is also applicable to
Structured Fusion with frozen modules.

HDSA (Chen et al., 2019) outperforms SFN
possibly due to the use of a more sophisticated
Transformer model (Vaswani et al., 2017) and
BERT pre-training (Devlin et al., 2018). A unique
advantage of SFNs is that the architecture of the
neural dialog modules is flexible. The perfor-
mance of HDSA could potentially be integrated
with SFNs by using the HDSA model as the NLG
module of an SFN. This is left for future work,
as the HDSA model was released while this paper
was already in review.

These strong performance gains reaffirm the hy-
pothesis that adding explicit structure to neural di-
alog systems results in improved modelling ability
particularly with respect to dialog policy as we see
in the increase in Inform and in Success. The re-
sults with reinforcement learning suggest that the
explicit structure allows controlled fine-tuning of
the models, which prevents divergent behavior and
degenerate output.

4.5 Human Evaluation

To supplement the results in Table 1, human
evaluation was used to compare seq2seq, SFN,
SFN fine-tuned with reinforcement learning, and
the ground-truth human response. Workers on
Amazon Mechanical Turk (AMT) were asked to
read the context, and score the appropriateness
of each response on a Likert scale (1-5). One
hundred context-response pairs were labeled by
three workers each. The results shown in Table
2 demonstrate that SFNs with RL outperform the
other methods in terms of human judgment. These
results indicate that in addition to improving on
automated metrics, SFNs result in user-favored re-
sponses.

5 Analysis

5.1 Limited Data

Structured Fusion Networks (SFNs) should out-
perform sequence-to-sequence (seq2seq) net-
works in reduced data scenarios due to the explicit

Model Avg Rating ≥ 4 ≥ 5
Seq2Seq 3.00 40.21% 9.61%

SFN 3.02 44.84% 11.03%
SFN + RL 3.12 44.84% 16.01%

Human 3.76 59.79% 34.88%

Table 2: Results of human evaluation experiments. The
≥ 4 and≥ 5 columns indicate the percentage of system
outputs which obtained a greater than 4 and 5 rating,
respectively.

structure. While a baseline method would require
large amounts of data to learn to infer structure,
SFNs do this explicitly.

The performance of seq2seq and SFNs are de-
termined, when training on 1%, 5%, 10% and 25%
of the training data (total size of ∼ 55,000 utter-
ances). The supervised-learning variant of SFNs
with fine-tuned modules is used. The pre-training
of the modules and fine-tuning of the full model is
done on the same data split. The full data is used
during validation and testing.

(a)

(b)

Figure 6: Variation of Inform (a) and Success (b) rate
at different amounts of training data.

The results in Figure 6 show the Inform and
Success rates for different amounts of training
data. SFNs significantly outperform the seq2seq
model in low-data scenarios. Notably, improve-
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ment is considerably higher in the most extreme
low-data scenario, when only 1% of the training
data (∼ 550 dialogs) is used. As the amount of
training data increases, the gap between the two
models stabilizes. The effectiveness at extreme
low-data scenarios reaffirms the hypothesis that
explicit structure makes SFNs less data-hungry
than sequence-to-sequence networks.

5.2 Domain Generalizability
The explicit structure of SFNs should facilitate ef-
fective domain generalizability. A domain transfer
experiment was constructed to evaluate the com-
parative ability of seq2seq and SFNs. The models
were both trained on a reduced dataset that largely
consists of out-of-domain examples and evaluated
on in-domain examples. Specifically, 2000 out-of-
domain training examples and only 50 in-domain
training examples were used. The restaurant do-
main of MultiWOZ was selected as in-domain.

Model BLEU Inform Success
Seq2Seq 10.22 35.65% 1.30%

SFN 7.44 47.17% 2.17%

Table 3: Results of the domain transfer experiment
comparing sequence-to-sequence and Structured Fu-
sion Networks. All bold-face results are statistically
significant (p < 0.01).

The results, seen on Table 3, show that SFNs
perform significantly better on both the Inform
(+11.52%) and Success rate. Although SFNs have
a slightly higher Success rate, both models per-
form poorly. This is expected since the models
would be unable to answer all the requested at-
tributes when they have seen little domain data
– their language model would not be tuned to
the in-domain task. The -2.78 BLEU reduction
roughly matches the BLEU difference observed on
the main task, therefore it is not an issue specific
to domain transfer.

6 Conclusions and Future Work

This paper presents several methods of incorporat-
ing explicit structure into end-to-end neural mod-
els of dialog. We created Structured Fusion Net-
works, comprised of pre-trained dialog modules
and a higher-level end-to-end network, which ob-
tain strong results on the MultiWOZ dataset both
with and without the use of reinforcement learn-
ing. SFNs are further shown to be robust to di-
vergence during reinforcement learning, effective

in low data scenarios and better than sequence-to-
sequence on the task of domain transfer.

For future research, the explicit structure of
SFNs has been shown to have multi-faceted bene-
fits; another potential benefit may be interpretabil-
ity. It would be interesting to investigate the use
of SFNs as more interpretable models of dialog.
While domain generalizability has been demon-
strated, it would be useful to further explore the
nature of generalizability (e.g., task transfer, lan-
guage style transfer). Another potential avenue of
research is whether the explicit structure of SFNs
could potentially allow swapping the dialog mod-
ules without any fine-tuning. Structured Fusion
Networks highlight the effectiveness of using ex-
plicit structure in end-to-end neural networks, sug-
gesting that exploring alternate means of incorpo-
rating structure would be a promising direction for
future work.
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A Belief State Ablation Study

All previous research working on dialog genera-
tion for the MultiWOZ dataset uses the ground-
truth belief state vector during training and eval-
uation. Therefore for fair comparability, the SFN
experiments in our paper had the NLU module re-
placed by an ”oracle NLU” which always outputs
the ground-truth belief state.

An ablation experiment was performed to ascer-
tain whether providing only the ground-truth be-
lief state was the optimal solution. Several meth-
ods of combining the ground-truth belief state with
the pre-trained NLU module were explored. These
methods are enumerated as follows:

(1) Ground-Truth Only: The setting used in
the primary experiments, shown in Table 1 of
the main paper. Only the ground-truth belief
state vector is used.

(2) Predicted Only: Only the belief state pre-
dicted by the pre-trained NLU module is
used.

(3) Sum: The predicted and ground-truth belief
states are summed, before being used by all
upper layers.

(4) Linear: The predicted and ground-truth
belief states area concatenated and passed
through a linear layer.

These experiments are performed using the best
model, Structured Fusion Networks with fine-
tuned modules. The results are shown in Table 4.

Model BLEU Inform Success Comb.
GT 18.51 77.30% 64.30% 89.31

Pred 16.88 73.80% 58.60% 83.04
Sum 15.93 72.90% 60.80% 82.78

Linear 15.42 66.80% 54.80% 76.22

Table 4: Results of the domain transfer experiment
comparing sequence-to-sequence and Structured Fu-
sion Networks. All bold-face results are statistically
significant (p < 0.01).

It is observed that adding the pre-trained NLU
does not provide any additional performance ben-
efit, when the ground-truth belief state is already
provided. As such, combinations of the ground-
truth and predicted belief state actually perform
worse than either of the methods independently
because of (1) additional parameters to be learned,

especially in the case of the Linear method, and
(2) a conflicting trade-off between fine-tuning a
learned NLU module and using the ground-truth
belief state.

B Qualitative Examples

Table 5 shows several examples of dialogs from
the test set of MultiWOZ, along with the produced
response from three different models: sequence-
to-sequence networks, Structured Fusion Net-
works, and Structured Fusion Networks fine-
tuned with reinforcement learning. These exam-
ples serve to provide insight into the respective
strengths and weaknesses of the different models.
A few noteworthy observations from the four ex-
amples are enumerated below:

(1) SFN fine-tuned with RL consistently pro-
vides more attribute information. It pro-
vides at least one attribute in every exam-
ple response, for a total of 14 total attributes
across the four examples. This, along with
the high Success score of this model, is a con-
sequence of the reinforcement learning fine-
tuning which directly optimizes the Success
score and rewards the model for providing the
correct attributes.

(2) Seq2Seq produces more generic responses.
In the second and fourth examples, the out-
puts produced by Seq2Seq are generic and
are unrelated to the context. This suggests
that the Seq2Seq model has an overwhelm-
ing implicit language model, which produces
generic and dull responses. On the other
hand, the explicit structure in SFN mitigates
the effect of the implicit language model by
relying on an explicit language model (in the
form of the NLG).

(3) Seq2Seq requests attributes which the user
has already provided. In the first and third
example, the Seq2Seq output is requesting
parameters that the user explicitly provided.
This highlights the lack of structured repre-
sentations in the Seq2Seq model. SFN which
explicitly models the structure of the input ef-
fectively understands and captures the infor-
mation provided in the context.
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Example 1
Dialog Context:
USER: hello . i am looking for a [value pricerange] place to eat in the [value area] .
can you help me ?
Sequence-to-Sequence Response:
i have [value count] options for you . do you have a preference on price range ?
Structured Fusion Network Response:
[̇restaurant name] is a [value pricerange] -ly priced [value food] restaurant in the [value area] .
would you like to make a reservation ?
Structured Fusion Network w/ Reinforcement Learning Response:
[̇restaurant name] is a [value pricerange] [value food] restaurant in the [value area] . it is
located at [restaurant address] . the postcode is [restaurant postcode] . the phone number
is [restaurant phone]

Example 2
Dialog Context:
...
USER: i want to book this hotel for the same group of people and [value count] nights starting
from [value day] . i’ll need a reference number please .
SYSTEM: your reservation is confirmed and the reference number is ##
USER: i am sorry ? were you able to book the express by holiday inn for [value count] people ?
Sequence-to-Sequence Response:
you are welcome . have a great day !
Structured Fusion Network Response:
you are all set . your reference number is [hotel reference] . can i help you with anything else ?
Structured Fusion Network w/ Reinforcement Learning Response:
your booking was successful . the reference number is [hotel reference] .

Example 3
Dialog Context:
USER: can you see if there are any entertainment attractions in the [value area] of town ?
Sequence-to-Sequence Response:
there are [value count] museums in the [value area] . do you have a preference for area ?
Structured Fusion Network Response:
there are [value count] museums in the [value area] . [attraction name] is a museum and
the [attraction name] is a [value count] .
Structured Fusion Network w/ Reinforcement Learning Response:
[̇attraction name] is a museum in the [value area] and the [attraction name] is located
at [attraction address] . the postcode is [attraction postcode] .

Example 4
Dialog Context:
USER: i need a taxi . i’ll be departing from [restaurant name] .
SYSTEM: i can help you with that . when do you need to leave ?
USER: i would like to leave after [value time] please .
SYSTEM: where will you be going ?
USER: i’ll be going to [restaurant name] .
Sequence-to-Sequence Response:
you are welcome . have a good time !
Structured Fusion Network Response:
you are welcome . have a great day !
Structured Fusion Network w/ Reinforcement Learning Response:
i have booked for you a [taxi type] , the contact number is [taxi phone] . is there anything else i can
help you with ?

Table 5: Four examples of dialog contexts from the dataset, and the responses generated by three different models:
Seq2Seq, SFN, and SFN with RL.
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Abstract

This paper proposes a novel end-to-end ar-
chitecture for task-oriented dialogue systems.
It is based on a simple and practical yet
very effective sequence-to-sequence approach,
where language understanding and state track-
ing tasks are modeled jointly with a struc-
tured copy-augmented sequential decoder and
a multi-label decoder for each slot. The pol-
icy engine and language generation tasks are
modeled jointly following that. The copy-
augmented sequential decoder deals with new
or unknown values in the conversation, while
the multi-label decoder combined with the se-
quential decoder ensures the explicit assign-
ment of values to slots. On the generation
part, slot binary classifiers are used to improve
performance. This architecture is scalable to
real-world scenarios and is shown through an
empirical evaluation to achieve state-of-the-art
performance on both the Cambridge Restau-
rant dataset and the Stanford in-car assistant
dataset1.

1 Introduction

A traditional task-oriented dialogue system is of-
ten composed of a few modules, such as natural
language understanding, dialogue state tracking,
knowledge base (KB) query, dialogue policy en-
gine and response generation. Language under-
standing aims to convert the input to some prede-
fined semantic frame. State tracking is a critical
component that models explicitly the input seman-
tic frame and the dialogue history for producing KB
queries. The semantic frame and the correspond-
ing belief state are defined in terms of informable
slots values and requestable slots. Informable slot
values capture information provided by the user

∗Work mostly performed as an intern at Uber AI Labs
1The code is available at https://github.com/

uber-research/FSDM

so far, e.g., {price=cheap, food=italian} indicat-
ing the user wants a cheap Italian restaurant at this
stage. Requestable slots capture the information re-
quested by the user, e.g., {address, phone} means
the user wants to know the address and phone num-
ber of a restaurant. Dialogue policy model decides
on the system action which is then realized by a
language generation component.

To mitigate the problems with such a classic
modularized dialogue system, such as the error
propagation between modules, the cascade effect
that the updates of the modules have and the
expensiveness of annotation, end-to-end training
of dialogue systems was recently proposed (Liu
and Lane, 2018; Williams et al., 2017; Lowe
et al., 2017; Li et al., 2018; Liu et al., 2018;
Budzianowski et al., 2018; Bordes et al., 2017;
Wen et al., 2017b; Serban et al., 2016, among oth-
ers). These systems train one whole model to read
the current user’s utterance, the past state (that may
contain all previous interactions) and generate the
current state and response.

There are two main approaches for modeling the
belief state in end-to-end task-oriented dialogue
systems in the literature: the fully structured ap-
proach based on classification (Wen et al., 2017b,a),
and the free-form approach based on text genera-
tion (Lei et al., 2018). The fully structured ap-
proaches (Ramadan et al., 2018; Ren et al., 2018)
use the full structure of the KB, both its schema
and the values available in it, and assumes that the
sets of informable slot values and requestable slots
are fixed. In real-world scenarios, this assump-
tion is too restrictive as the content of the KB may
change and users’ utterances may contain informa-
tion outside the pre-defined sets. An ideal end-to-
end architecture for state tracking should be able
to identify the values of the informable slots and
the requestable slots, easily adapt to new domains,
to the changes in the content of the KB, and to the
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occurrence of words in users’ utterances that are
not present in the KB at training time, while at the
same time providing the right amount of inductive
bias to allow generalization.

Recently, a free-form approach called TSCP
(Two Stage Copy Net) (Lei et al., 2018) was pro-
posed. This approach does not integrate any infor-
mation about the KB in the model architecture. It
has the advantage of being readily adaptable to new
domains and changes in the content of the KB as
well as solving the out-of-vocabulary word prob-
lem by generating or copying the relevant piece
of text from the user’s utterances in its response
generation. However, TSCP can produce invalid
states (see Section 4). Furthermore, by putting
all slots together into a sequence, it introduces an
unwanted (artificial) order between different slots
since they are encoded and decoded sequentially.
It could be even worse if two slots have overlap-
ping values, like departure and arrival airport in a
travel booking system. As such, the unnecessary
order of the slots makes getting rid of the invalid
states a great challenge for the sequential decoder.
As a summary, both approaches to state tracking
have their weaknesses when applied to real-world
applications.

This paper proposes the Flexibly-Structured
Dialogue Model (FSDM) as a new end-to-end task-
oriented dialogue system. The state tracking com-
ponent of FSDM has the advantages of both fully
structured and free-form approaches while address-
ing their shortcomings. On one hand, it is still struc-
tured, as it incorporates information about slots in
KB schema; on the other hand, it is flexible, as
it does not use information about the values con-
tained in the KB records. This makes it easily adapt-
able to new values. These desirable properties are
achieved by a separate decoder for each informable
slot and a multi-label classifier for the requestable
slots. Those components explicitly assign values to
slots like the fully structured approach, while also
preserving the capability of dealing with out-of-
vocabulary words like the free-form approach. By
using these two types of decoders, FSDM produces
only valid belief states, overcoming the limitations
of the free-form approach. Further, FSDM has a
new module called response slot binary classifier
that adds extra supervision to generate the slots
that will be present in the response more precisely
before generating the final textual agent response
(see Section 3 for details).

The main contributions of this work are

1. FSDM, a task-oriented dialogue system with
a new belief state tracking architecture that
overcomes the limits of existing approaches
and scales to real-world settings;

2. a new module, namely the response slot bi-
nary classifier, that helps to improve the per-
formance of agent response generation;

3. FSDM achieves state-of-the-art results on
both the Cambridge Restaurant dataset (Wen
et al., 2017b) and the Stanford in-car assistant
dataset (Eric et al., 2017) without the need for
fine-tuning through reinforcement learning

2 Related Work

Our work is related to end-to-end task-oriented di-
alogue systems in general (Liu and Lane, 2018;
Williams et al., 2017; Lowe et al., 2017; Li et al.,
2018; Liu et al., 2018; Budzianowski et al., 2018;
Bordes et al., 2017; Hori et al., 2016; Wen et al.,
2017b; Serban et al., 2016, among others) and those
that extend the Seq2Seq (Sutskever et al., 2014) ar-
chitecture in particular (Eric et al., 2017; Fung et al.,
2018; Wen et al., 2018). Belief tracking, which is
necessary to form KB queries, is not explicitly per-
formed in the latter works. To compensate, Eric
et al. (2017); Xu and Hu (2018a); Wen et al. (2018)
adopt a copy mechanism that allows copying in-
formation retrieved from the KB to the generated
response. Fung et al. (2018) adopt Memory Net-
works (Sukhbaatar et al., 2015) to memorize the re-
trieved KB entities and words appearing in the dia-
logue history. These models scale linearly with the
size of the KB and need to be retrained at each up-
date of the KB. Both issues make these approaches
less practical in real-world applications.

Our work is also akin to modularly connected
end-to-end trainable networks (Wen et al., 2017b,a;
Liu and Lane, 2018; Liu et al., 2018; Li et al., 2018;
Zhong et al., 2018). Wen et al. (2017b) includes
belief state tracking and has two phases in training:
the first phase uses belief state supervision, and
then the second phase uses response generation
supervision. Wen et al. (2017a) improves Wen et al.
(2017b) by adding a policy network using latent
representations so that the dialogue system can
be continuously improved through reinforcement
learning. These methods utilize classification as a
way to decode the belief state.
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Figure 1: FSDM architecture illustrated by a dialogue turn from the Cambridge Restaurant dataset with the follow-
ing components: an input encoder (green), a belief state tracker (yellow for the informable slot values, orange for
the requestable slots), a KB query component (purple), a response slot classifier (red), a component that calculates
word copy probability (grey) and a response decoder (blue). Attention connections are not drawn for brevity.

Lei et al. (2018) decode the belief state as well
as the response in a free-form fashion, but it tracks
the informable slot values without an explicit as-
signment to an informable slot. Moreover, the ar-
bitrary order in which informable slot values and
requestable slots are encoded and decoded suggests
that the sequential inductive bias the architecture
provides may not be the right one.

Other works (Jang et al., 2016; Henderson et al.,
2014; Bapna et al., 2017; Kobayashi et al., 2018;
Xu and Hu, 2018b) focus on the scalability of DST
to large or changing vocabularies. Rastogi et al.
(2017) score a dynamically defined set of candi-
dates as informable slot values. Dernoncourt et al.
(2016) addresses the problem of large vocabularies
with a mix of rules and machine-learned classifiers.

3 Methodology

We propose a fully-fledged task-oriented dialogue
system called Flexibly-Structured Dialogue Model
(FSDM), which operates at the turn level. Its over-
all architecture is shown in Figure 1, which illus-
trates one dialogue turn. Without loss of generality,
let us assume that we are on the t-th turn of a dia-

logue. FSDM has three (3) inputs: agent response
and belief state of the t− 1-th turn, and user utter-
ance of the t-th turn. It has two (2) outputs: the
belief state for the t-th turn that is used to query the
KB, and the agent response of the t-th turn based
on the query result. As we can see, belief track-
ing is the key component that turns unstructured
user utterance and the dialogue history into a KB-
friendly belief state. The success of retrieving the
correct KB result and further generating the correct
response to complete a task relies on the quality of
the produced belief state.

FSDM contains five (5) components that work
together in an end-to-end manner as follows: (1)
The input is encoded and the last hidden state of
the encoder serves as the initial hidden state of the
belief state tracker and the response decoder; (2)
Then, the belief state tracker generates a belief state
Bt = {It, Rt}, where It is the set of constraints
used for the KB query generated by the informable
slots value decoder and Rt is the user requested
slots identified by the requestable slots multi-label
classifier; (3) Given It, the KB query component
queries the KB and encodes the number of records
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returned in a one-hot vector dt; (4) The response
slot binary classifier predicts which slots should
appear in the agent response St; (5) Finally, the
agent response decoder takes in the KB output dt, a
word copy probability vector Pc computed from It,
Rt, St together with an attention on hidden states
of the input encoder and the belief decoders, and
generates a response At.

3.1 Input Encoder

The input contains three parts: (1) the agent re-
sponse At−1, (2) the belief state Bt−1 from the
(t− 1)-th turn and (3) the current user utterance Ut.
These parts are all text-based and concatenated, and
then consumed by the input encoder. Specifically,
the belief state Bt−1 is represented as a sequence
of informable slot names with their respective val-
ues and requestable slot names. As an example,
the sequence 〈cheap, end price, italian, end food,
address, phone, end belief 〉 indicates a state where
the user informed cheap and Italian as KB query
constraints and requested the address and phone
number.

The input encoder consists of an embedding
layer followed by a recurrent layer with Gated
Recurrent Units (GRU) (Cho et al., 2014). It
maps the input At−1 ◦ Bt−1 ◦ Ut (where ◦ de-
notes concatenation) to a sequence of hidden vec-
tors {hEi |i = 1, . . . , |At−1 ◦ Bt−1 ◦ Ut|} so that
hEi = GRUH(eAt−1◦Bt−1◦Ut) where e is the em-
bedding function that maps from words to vectors.
The output of the input encoder is its last hidden
state hEl , which is served as the initial state for
the belief state and response decoders as discussed
next.

3.2 Informable Slot Value Decoder

The belief state is composed of informable slot
values It and the requestable slots Rt. We describe
the generation of the former in this subsection and
the latter in the next subsection.

The informable slot values track information
provided by the user and are used to query the
KB. We allow each informable slot to have its own
decoder to resolve the unwanted artificial depen-
dencies among slot values introduced by TSCP
(Lei et al., 2018). As an example of artificial de-
pendency, ‘italian; expensive’ appears a lot in the
training data. During testing, even when the gold
informable value is ‘italian; moderate’, the decoder
may still generate ‘italian; expensive’. Modeling

one decoder for each slot exactly associates the
values with the corresponding informable slot.

The informable slot value decoder consists of
GRU recurrent layers with a copy mechanism as
shown in the yellow section of Figure 1. It is
composed of weight-tied GRU generators that take
the same initial hidden state hEl , but have differ-
ent start-of-sentence symbols for each unique in-
formable slot. This way, each informable slot value
decoder is dependent on the encoder’s output, but it
is also independent of the values generated for the
other slots. Let {kI} denote the set of informable
slots. The probability of the jth word P (yk

I

j ) being
generated for the slot kI is calculated as follows:
(1) calculate the attention with respect to the input
encoded vectors to obtain the context vector ck

I

j ,

(2) calculate the generation score φg(yk
I

j ) and the

copy score φc(yk
I

j ) based on the current step’s hid-

den state hk
I

j , (3) calculate the probability using
the copy mechanism:

ck
I

j = Attn(hkI

j−1, {hE
i }),

hkI

j = GRUI

(
(ck

I

j ◦ ey
kI

j ), hkI

j−1

)
,

φg(y
kI

j ) =WKI

g · hkI

j ,

φc(y
kI

j ) = tanh(WKI

c · hykI

j ) · hkI

j ,

yk
I

j ∈ At−1 ∪Bt−1 ∪ Ut,

P (yk
I

j |yk
I

j−1, h
kI

j−1) = Copy
(
φc(y

kI

j ), φg(y
kI

j )
)
,

(1)

where for each informable slot kI , yk
I

0 = kI and

hk
I

0 = hEl , ey
kI

j is the embedding of the cur-
rent input word (the one generated at the previous
step), and WKI

g and WKI

c are learned weight ma-
trices. We follow (Gu et al., 2016) and (Bahdanau
et al., 2015) for the copy Copy(·, ·) and attention
Attn(·, ·) mechanisms implementation respectively.

The loss for the informable slot values decoder
is calculated as follows:

LI =− 1

|{kI}|
1

|Y kI |
∑

kI

∑

j

logP (yk
I

j = zk
I

j |yk
I

j−1, h
kI

j−1),

(2)

where Y KI
is the sequence of informable slot value

decoder predictions and z is the ground truth label.

3.3 Requestable Slot Binary Classifier

As the other part of a belief state, requestable slots
are the attributes of KB entries that are explicitly
requested by the user. We introduce a separate
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multi-label requestable slots classifier to perform
binary classification for each slot. This greatly re-
solves the issues of TSCP that uses a single decoder
with each step having unconstrained vocabulary-
size choices, which may potentially lead to generat-
ing non-slot words. Similar to the informable slots
decoders, such a separate classifier also eliminates
the undesired dependencies among slots.

Let {kR} denote the set of requestable slots. A
single GRU cell is used to perform the classifica-
tion. The initial state hEl is used to pay attention
to the input encoder hidden vectors to compute a
context vector ck

R
. The concatenation of ck

R
and

ek
R

, the embedding vector of one requestable slot
kR, is passed as input and hEl as the initial state
to the GRU. Finally, a sigmoid non-linearity is ap-
plied to the product of a weight vector WR

y and the
output of the GRU hk

R
to obtain yk

R
, which is the

probability of the slot being requested by the user.

ck
R

= Attn(hE
l , {hE

i }),
hkR

= GRUR

(
(ck

R ◦ ekR

), hE
l

)
,

yk
R

= σ(WR
y · hkR

).

(3)

The loss function for all requestable slot binary
classifiers is:

LR =− 1

|{kR}|
∑

kR

zk
R

log(yk
R

) + (1− zkR

) log(1− ykR

).

(4)

3.4 Knowledge Base Query
The generated informable slot values It = {Y kI}
are used as constraints of the KB query. The KB
is composed of one or more relational tables and
each entity is a record in one table. The query
is performed to select a subset of the entities that
satisfy those constraints. For instance, if the in-
formable slots are {price=cheap, area=north}, all
the restaurants that have attributes of those fields
equal to those values will be returned. The output
of this component, the one-hot vector dt, indicates
the number of records satisfying the constraints. dt
is a five-dimensional one-hot vector, where the first
four dimensions represent integers from 0 to 3 and
the last dimension represents 4 or more matched
records. It is later used to inform the response slot
binary classifier and the agent response decoder.

3.5 Response Slot Binary Classifier
In order to incorporate all the relevant informa-
tion about the retrieved entities into the response,

FSDM introduces a new response slot binary classi-
fier. Its inputs are requestable slots and KB queried
result dt and the outputs are the response slots
to appear in the agent response. Response slots
are the slot names that are expected to appear in
a de-lexicalized response (discussed in the next
subsection). For instance, assume the requestable
slot in the belief state is “address” and the KB
query returned one candidate record. The response
slot binary classifier may predict name slot, ad-
dress slot and area slot, which are expected to ap-
pear in an agent response as “name slot is located
in address slot in the area slot part of town”2.

The response slots {kS} map one-to-one to the
requestable slots {kR}. The initial state of each
response slot decoder is the last hidden state of
the corresponding requestable slot decoder. In this
case, the context vector ck

S
is obtained by paying

attention to all hidden vectors in the informable
slot value decoders and requestable slots classifiers.
Then, the concatenation of the context vector ck

S
,

the embedding vector of the response slot ek
S

and
the KB query vector dt are used as input to a single
GRU cell. Finally, a sigmoid non-linearity is ap-
plied to the product of a weight vector WS

y and the
output of the GRU hk

S
to obtain a probability yk

S

for each slot that is going to appear in the answer.

ck
S

= Attn(hkR

,

{hkI

i |kI ∈ KI , i ≤ |Y kI |} ∪ {hkR |kR ∈ KR}),
hkS

= GRUS

(
(ck

S ◦ ekS ◦ dt), hkR
)
,

yk
S

= σ(WS
y · hkS

).

(5)

The loss function for all response slot binary clas-
sifiers is:

LS =− 1

|{kS}|
∑

kS

zk
S

log(yk
S

) + (1− zkS

) log(1− ykS

).

(6)

3.6 Word Copy Probability and Agent
Response Decoder

Lastly, we introduce the agent response decoder.
It takes in the generated informable slot values,
requestable slots, response slots, and KB query re-
sult and generates a (de-lexicalized) response. We
adopt a copy-augmented decoder (Gu et al., 2016)
as architecture. The canonical copy mechanism
only takes a sequence of word indexes as inputs but

2 Before the agent response is presented to the user, those
slot names are replaced by the actual values of the KB entries.
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does not accept the multiple Bernoulli distributions
we obtain from sigmoid functions. For this reason,
we introduce a vector of independent word copy
probabilities PC , which is constructed as follows:

PC(w) =





yk
R

, if w = kR,

yk
S

, if w = kS ,

1, if w ∈ It,
0, otherwise,

(7)

where if a word w is a requestable slot or a re-
sponse slot, the probability is equal to their binary
classifier output; if a word appears in the generated
informable slot values, its probability is equal to 1;
for the other words in the vocabulary the probabil-
ity is equal to 0. This vector is used in conjunction
with the agent response decoder prediction proba-
bility to generate the response.

The agent response decoder is responsible for
generating a de-lexicalized agent response. The
response slots are substituted with the values of
the results obtained by querying the KB before the
response is returned to the user.

Like the informable slot value decoder, the agent
response decoder also uses a copy mechanism, so
it has a copy probability and generation probabil-
ity. Consider the generation of the jth word. Its
generation score φg is calculated as:

cA
E

j = Attn(hA
j−1, {hE

i }),
cA

B

j = Attn(hA
j−1, {hkI

i |kI ∈ KI , i ≤ |Y kI |}
∪ {hkR |kR ∈ KR}) ∪ {hkS |kS ∈ KS}),
hA
j = GRUA

(
(cA

E

j ◦ cAB

j ◦ eAj ◦ dt), hA
j−1

)
,

φg(y
A
j ) =WA

g · hA
j ,

(8)

where cA
E

j is a context vector obtained by attending

to the hidden vectors of the input encoder, cA
B

j is a
context vector obtained by attending to all hidden
vectors of the informable slot value decoder, re-
questable slot classifier and response slot classifier,
and WA

g is a learned weight matrix. The concate-
nation of the two context vectors cA

E

j and cA
B

j , the
embedding vector eAj of the previously generated
word and the KB query output vector dt is used as
input to a GRU. Note that the initial hidden state is
hA0 = hEl . The copy score φc is calculated as:

φc(y
A
j ) =





PC(yAj ) · tanh(WA
c · hyA

j ) · hA
j ,

if yAj ∈ It ∪KR ∪KS ,

PC(yAj ), otherwise,
(9)

where WA
c is a learned weight matrix. The final

CamRest: restaurant reservation
dialogue split train: 408 dev: 136 test: 136

# of keys informable: 3 requestable: 7 response: 7
database record 99

KVRET: navigation, weather, calendar scheduling
dialogue split train: 2425 dev: 302 test: 302

# of keys informable: 10 requestable: 12 response: 12
database record 284

Table 1: Dataset

probability is:

P (yAj |yAj−1, h
A
j−1) = Copy(φg(y

A
j ), φc(y

A
j )). (10)

Let z denote the ground truth de-lexicalized agent
response. The loss for the agent response decoder
is calculated as follows where Y A is the sequence
of agent response decoder prediction:

LA = − 1

|Y A|
∑

j

logP (yAj = zAj |yAj−1, h
A
j−1). (11)

3.7 Loss Function
The loss function of the whole network is the
sum of the four losses described so far for the in-
formable slot values LI , requestable slot LR, re-
sponse slot LS and agent response decoders LA,
weighted by α hyperparameters:

L = αILI + αRLR + αSLS + αALA. (12)

The loss is optimized in an end-to-end fashion, with
all modules trained simultaneously with loss gradi-
ents back-propagated to their weights. In order to
do so, ground truth results from database queries
are also provided to the model to compute the dt,
while at prediction time results obtained by using
the generated informable slot values It are used.

4 Experiments

We tested the FSDM on the Cambridge Restaurant
dataset (CamRest) (Wen et al., 2017b) and the Stan-
ford in-car assistant dataset (KVRET) (Eric et al.,
2017) described in Table 1.

4.1 Preprocessing and Hyper-parameters
We use NLTK (Bird et al., 2009) to tokenize each
sentence. The user utterances are precisely the
original texts, while all agent responses are de-
lexicalized as described in (Lei et al., 2018). We
obtain the labels for the response slot decoder from
the de-lexicalized response texts. We use 300-
dimensional GloVe embeddings (Pennington et al.,
2014) trained on 840B words. Tokens not present
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Dataset CamRest KVRET
Method Inf P Inf R Inf F1 Req P Req R Req F1 Inf P Inf R Inf F1 Req P Req R Req F1

TSCP/RL† 0.970 0.971 0.971 0.983 0.935 0.959 0.936 0.874 0.904 0.725 0.485 0.581
TSCP† 0.970 0.971 0.971 0.983 0.938 0.960 0.934 0.890 0.912 0.701 0.435 0.526
FSDM/Res 0.979 0.984 0.978 0.994 0.947 0.967 0.918 0.930 0.925 0.812 0.993 0.893
FSDM 0.983* 0.986* 0.984* 0.997* 0.952 0.974* 0.92 0.935* 0.927* 0.819* 1.000* 0.900*

Table 2: Turn-level performance results. Inf: Informable, Req: Requestable, P: Precision, R: Recall. Results
marked with † are computed using available code, and all the other ones are reported from the original papers. ∗
indicates the improvement is statistically significant with p = 0.05.

Dataset CamRest KVRET
Method BLEU EMR SuccF1 BLEU EMR SuccF1

NDM 0.212 0.904 0.832 0.186 0.724 0.741
LIDM 0.246 0.912 0.840 0.173 0.721 0.762
KVRN 0.134 - - 0.184 0.459 0.540
TSCP 0.253 0.927 0.854 0.219 0.845 0.811
TSCP/RL † 0.237 0.915 0.826 0.195 0.809 0.814
TSCP† 0.237 0.913 0.841 0.189 0.833 0.81
FSDM/St 0.245 - 0.847 0.204 - 0.809
FSDM/Res 0.251 0.924 0.855 0.209 0.834 0.815
FSDM 0.258* 0.935* 0.862* 0.215 0.848* 0.821*

Table 3: Dialogue level performance results. SuccF1:
Success F1 score, EMR: Entity Match Rate. Results
marked with † are computed using available code, and
all the other ones are reported from the original papers.
∗ indicates the improvement is statistically significant
with p = 0.05.

user msg what is the date and time of
my next meeting and who will be attending it ?
belief state

GOLD informable slot (event=meeting),
requestable slot (date, time, party)

TSCP ‘meeting’ ‘〈EOS Z1〉’ ‘date’ ‘;’ ‘party’
FSDM event=meeting date=True time=True party = True

agent response
GOLD your next meeting is with

party SLOT on the date SLOT at time SLOT.
TSCP your next meeting is at time SLOT

on date SLOT at time SLOT .
FSDM you have a meeting on date SLOT

at time SLOT with party SLOT

Table 4: Example of generated belief state and response
for calendar scheduling domain

in GloVe are initialized to be the average of all
other embeddings plus a small amount of random
noise to make them different from each other.

We optimize both training and model hyperpa-
rameters by running Bayesian optimization over the
product of validation set BLEU, EMR, and SuccF1

using skopt3. The model that performed the best on
the validation set uses Adam optimizer (Kingma
and Ba, 2015) with a learning rate of 0.00025
for minimizing the loss in Equation 12 for both
datasets. We apply dropout with a rate of 0.5 after

3https://scikit-optimize.github.io/

the embedding layer, the GRU layer and any linear
layer for CamRest and 0.2 for KVRET. The dimen-
sion of all hidden states is 128 for CamRest and
256 for KVRET. Loss weights αI , αR, αS , αA are
1.5, 9, 8, 0.5 respectively for CamRest and 1, 3, 2,
0.5 for KVRET.

4.2 Evaluation Metrics

We evaluate the performance concerning belief
state tracking, response language quality, and task
completion. For belief state tracking, we report
precision, recall, and F1 score of informable slot
values and requestable slots. BLEU (Papineni et al.,
2002) is applied to the generated agent responses
for evaluating language quality. Although it is a
poor choice for evaluating dialogue systems (Liu
et al., 2016), we still report it in order to com-
pare with previous work that has adopted it. For
task completion evaluation, the Entity Match Rate
(EMR) (Wen et al., 2017b) and Success F1 score
(SuccF1) (Lei et al., 2018) are reported. EMR eval-
uates whether a system can correctly retrieve the
user’s indicated entity (record) from the KB based
on the generated constraints so it can have only
a score of 0 or 1 for each dialogue. The SuccF1

score evaluates how a system responds to the user’s
requests at dialogue level: it is F1 score of the re-
sponse slots in the agent responses.

4.3 Benchmarks

We compare FSDM with four baseline methods
and two ablations.

NDM (Wen et al., 2017b) proposes a modu-
lar end-to-end trainable network. It applies de-
lexicalization on user utterances and responses.

LIDM (Wen et al., 2017a) improves over NDM
by employing a discrete latent variable to learn
underlying dialogue acts. This allows the system
to be refined by reinforcement learning.

KVRN (Eric et al., 2017) adopts a copy-
augmented Seq2Seq model for agent response gen-
eration and uses an attention mechanism on the KB.
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It does not perform belief state tracking.
TSCP/RL (Lei et al., 2018) is a two-stage Copy-

Net which consists of one encoder and two copy-
mechanism-augmented decoders for belief state
and response generation. TSCP includes further
parameter tuning with reinforcement learning to
increase the appearance of response slots in the
generated response. We were unable to replicate
the reported results using the provided code4, hy-
perparameters, and random seed, so we report both
the results from the paper and the average of 5 runs
on the code with different random seeds (marked
with †).

FSDM is the proposed method and we report
two ablations: in FSDM/St the whole state track-
ing is removed (informable, requestable and re-
sponse slots) and the answer is generated from the
encoding of the input, while in FSDM/Res, only
the response slot decoder is removed.

4.4 Result Analysis

At the turn level, FSDM and FSDM/Res perform
better than TSCP and TSCP/RL on belief state
tracking, especially on requestable slots, as shown
in Table 2. FSDM and FSDM/Res use independent
binary classifiers for the requestable slots and are
capable of predicting the correct slots in all those
cases. FSDM/Res and TSCP/RL do not have any
additional mechanism for generating response slot,
so FSDM/Res performing better than TSCP/RL
shows the effectiveness of flexible-structured belief
state tracker. Moreover, FSDM performs better
than FSDM/Res, but TSCP performs worse than
TSCP/RL. This suggests that using RL to increase
the appearance of response slots in the response
decoder does not help belief state tracking, but our
response slot decoder does.

FSDM performs better than all benchmarks
on the dialogue level measures too, as shown in
Table 3, with the exception of BLEU score on
KVRET, where it is still competitive. Comparing
TSCP/RL and FSDM/Res, the flexibly-structured
belief state tracker achieves better task completion
than the free-form belief state tracker. Furthermore,
FSDM performing better than FSDM/Res shows
the effectiveness of the response slot decoder for
task completion. The most significant performance
improvement is obtained on CamRest by FSDM,
confirming that the additional inductive bias helps
to generalize from smaller datasets. More impor-

4https://github.com/WING-NUS/sequicity

tantly, the experiment confirms that, although mak-
ing weaker assumptions that are reasonable for real-
world applications, FSDM is capable of performing
at least as well as models that make stronger lim-
iting assumptions which make them unusable in
real-world applications.

4.5 Error Analysis

We investigated the errors that both TSCP and
FSDM make and discovered that the sequential
nature of the TSCP state tracker leads to the mem-
orization of common patterns that FSDM is not
subject to. As an example (Table 4), TSCP often
generates “date; party” as requestable slots even if
only “party” and “time” are requested like in “what
time is my next activity and who will be attending?”
or if “party”, “time” and “date” are requested like
in “what is the date and time of my next meeting
and who will be attending it?”. FSDM produces
correct belief states in these examples.

FSDM misses some requestable slots in some
conditions. For example, consider the user’s ut-
terance: “I would like their address and what part
of town they are located in”. The ground-truth re-
questable slots are ‘address’ and ‘area’. FSDM
only predicts ‘address’ and misses ‘area’, which
suggests that the model did not recognize ‘what
part of town’ as being a phrasing for requesting
‘area’. Another example is when the agent pro-
poses “the name SLOT is moderately priced and
in the area SLOT part of town . would you like
their location ?” and the user replies “i would
like the location and the phone number, please”.
FSDM predicts ‘phone’ as a requestable slot, but
misses ‘address’, suggesting it doesn’t recognize
the connection between ‘location’ and ‘address’.
The missing requestable slot issue may propagate
to the agent response decoder. These issues may
arise due to the use of fixed pre-trained embeddings
and the single encoder. Using separate encoders for
user utterance, agent response and dialogue history
or fine-tuning the embeddings may solve the issue.

5 Conclusion

We propose the flexibly-structured dialogue model,
a novel end-to-end architecture for task-oriented
dialogue. It uses the structure in the schema of
the KB to make architectural choices that intro-
duce inductive bias and address the limitations of
fully structured and free-form methods. The exper-
iment suggests that this architecture is competitive
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with state-of-the-art models, while at the same time
providing a more practical solution for real-world
applications.
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Abstract

This paper presents FriendsQA, a challenging
question answering dataset that contains 1,222
dialogues and 10,610 open-domain questions,
to tackle machine comprehension on everyday
conversations. Each dialogue, involving multi-
ple speakers, is annotated with several types of
questions regarding the dialogue contexts, and
the answers are annotated with certain spans in
the dialogue. A series of crowdsourcing tasks
are conducted to ensure good annotation qual-
ity, resulting a high inter-annotator agreement
of 81.82%. A comprehensive annotation ana-
lytics is provided for a deeper understanding in
this dataset. Three state-of-the-art QA systems
are experimented, R-Net, QANet, and BERT,
and evaluated on this dataset. BERT in partic-
ular depicts promising results, an accuracy of
74.2% for answer utterance selection and an
F1-score of 64.2% for answer span selection,
suggesting that the FriendsQA task is hard yet
has a great potential of elevating QA research
on multiparty dialogue to another level.

1 Introduction

Question answering (QA) has received lots of hype
over the recent years as deep learning models have
progressively pushed the limit of machine compre-
hension to the level of human intelligence. Several
systems have demonstrated their superiority over
human for answering quizbowl questions (Ferrucci,
2011; Yamada et al., 2017). Strong evidences have
been found that advance neural network models
will likely surpass human performance for answer-
ing open-domain questions in a foreseeable future
(Devlin et al., 2018; Liu et al., 2019). Nonetheless,
no system has reached such high intelligence for
understanding contexts in dialogue, although it is
the most natural means of human communication.
Moreover, the amount of data in this form has in-
creased at a faster rate than any other type of textual
data (Newport, 2014; Gonçalves, 2017).

Many datasets have been presented for various QA
tasks (Section 2.1). While numerous models have
shown remarkable results with these datasets (Sec-
tion 2.2), the evidence passages, where the contexts
of questions are derived from, mostly reside within
wiki articles, newswire, (non-)fictional stories, or
children’s books, but not from multiparty dialogue.
Contextual understanding in dialogue is challeng-
ing because it needs to interpret contents composed
by multiple speakers, and anticipate colloquial lan-
guage filled with sarcasms, metaphors, humors, etc.
This inspires us to create a new dataset, FriendsQA,
that aims to enhance machine comprehension on
this domain. Dialogues in this dataset are excerpted
from transcripts of the TV show Friends, that is the
world-wide and also go-to show for English learn-
ers to get familiarized with everyday conversations.

Section 3 describes the FriendsQA dataset with
annotation details. Section 4 describes the architec-
tures of QA systems experimented on this dataset.
Finally, Section 5 shows the experimental results
with an in-depth error analysis. To the best of our
knowledge, FriendsQA is the first dataset that is
publicly available and challenges span-based QA
on multiparty dialogue with everyday topics. The
contributions of this work include:

• An open-domain question answering dataset on
multiparty dialogue comprising 1,222 dialogues,
10,610 questions, and 21,262 answer spans.

• A comprehensive corpus analytics to ensure its
validity as a deep learning resource and explain
the diverse nature of this dataset for QA.

• Model comparisons between three state-of-the-
art QA systems trained on this dataset to project
its practicality in real applications.

• A thorough error analysis to illustrate major chal-
lenges found in this task and make suggestions
to future research on the dialogue domain.
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2 Related Work

2.1 QA Datasets
The NLP community has been dedicated to produce
three types of question answering (QA) datasets.
The first is for reading comprehension QA, where
the model picks answers for multiple choice ques-
tions regarding the evidence passages. MCTest is
an open-domain dataset comprising short fictional
stories (Richardson et al., 2013). RACE is a large
dataset compiled from English assessments for 12-
18 years old students (Lai et al., 2017). TQA gives
passages from middle school science lessons and
textbooks (Kembhavi et al., 2017). SciQ gives
passages from science exams collected via crowd-
sourcing (Welbl et al., 2017). DREAM gives multi-
party dialogue passages from English-as-a-foreign-
language exams (Sun et al., 2019).

The second is for cloze-style QA, for which the
model fills in the blanks that obliterate certain con-
tents in sentences describing the evidence passages.
CNN/Daily Mail targets on entities in bullet points
summarizing articles from CNN and Daily News
(Hermann et al., 2015). Children’s Book Test fo-
cuses on named entities, nouns, verbs, and preposi-
tions in passages from children’s books (Hill et al.,
2016). Who-did-What gives description sentences
and evidence passages extracted from news articles
in English Gigaword (Onishi et al., 2016). Book-
Test is similar to Children’s Book Test but 60 times
larger (Bajgar et al., 2016).

The third is for span-based QA, where the model
finds the answer contents as spans in the evidence
passages. bAbI aims to reinforce learning on event
types and infer a sequence of event descriptions
(Weston et al., 2016). WikiQA (Yang et al., 2015)
and SQuAD (Rajpurkar et al., 2016) use Wikipedia,
whereas NewsQA (Trischler et al., 2017) use CNN
articles as evidence passages. MS MARCO gives
questions involving zero to multiple answer con-
tents from web documents (Nguyen et al., 2016).
TriviaQA is compiled by trivia enthusiasts to chal-
lenge machine comprehension (Joshi et al., 2017).
CoQA focuses on conversational flows between a
questioner and an answerer (Reddy et al., 2018).

2.2 QA Systems for the Past Two Years
Wang et al. (2017) presented R-Net that used gated
attention-based recurrent networks and refined QA
representation with self-matching attention. Shen
et al. (2017) presented ReasoNet that took multi-
ple turns to reason over the relationships between

query, documents, and answers. Cui et al. (2017)
presented the Attention Over Attention Reader to
better capture similarities between questions and
answer contents. Hu et al. (2017) presented the Re-
inforced Mnemonic Reader to combine the mem-
orized attention with new attention. Vaswani et al.
(2017) applied self-attention to QA, which became
known as the Transformer.

Huang et al. (2018) presented FusionNet that
kept the history of word representations and used
multi-level attention. Salant and Berant (2018) pre-
sented a standard neural architecture with rich con-
textualized word representations. Liu et al. (2018)
presented Stochastic Answer Network (SAN) with
a stochastic prediction dropout layer as the final
layer. Yu et al. (2018) presented QANet with CNN
and self-attention to combine local and global inter-
actions. Peters et al. (2018) presented the Embed-
dings from Language Models (ELMo) that used
bi-directional LSTM and Devlin et al. (2018) pre-
sented the Bidirectional Encoder Representations
(BERT) that used deep-layered transformers to gen-
erate contextualized word embeddings.

2.3 Character Mining
The Character Mining dataset provides transcripts
of the TV show Friends as well as annotation for
several tasks. Chen and Choi (2016) annotated the
first two seasons for character identification, that is
an entity linking task identifying personal mentions
with character names. Chen et al. (2017) extended
this annotation to the next two seasons and added
annotation of ambiguous mentions. Zhou and Choi
(2018) added annotation of plural mentions to those
four seasons for character identification. Zahiri and
Choi (2018) annotated the first four seasons for fine-
grained emotion detection. Finally, Ma et al. (2018)
annotated selected dialogues from all ten seasons
for a cloze-style reading comprehension task.

2.4 FriendsQA vs. Other Dialogue QA
Three datasets have been presented for QA on dia-
logue. CoQA (Reddy et al., 2018) aims to answer
questions that are part of one-to-one conversations,
whereas FriendsQA focuses on questions asked
by third-parties listening to multiparty dialogues.
Ma et al. (2018) also provides a dataset based on
transcripts of Friends; however, their work aims
to cloze-style QA restricted by PERSON entities,
while we broadly focus on span-based QA with
open-domain questions. Similarly, DREAM (Sun
et al., 2019), although their passages are based on
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(a) Challenges with entity resolution. In this example (season 4, episode 12), {you1, boys2, us3} refer to the boys
and {you4, we8} refer to the girls. Many pronouns are used to refer different people, which makes it difficult to find
the answer span for a question like “who forced Rachel to raise the stakes” by simply matching strings.

Rachel Y’know what, you1 are mean boys2, who are just being mean!
Joey Hey, don’t get mad at us3! No one forced you4 to raise the stakes!
Rachel That is not true. She5 did! She6 forced me7!
Monica Hey, we8 would still be living here if you9 hadnt gotten the question wrong!

(b) Challenges with metaphors. In this example (season 1, episode 4), Joey mishears ‘omnipotent’ as “I’m impotent”
so that he metaphorically refers it to as “Little Joey’s dead”, which makes it difficult to answer a question like “why
would Joey want to kill himself for being omnipotent”.

Monica Hey, Joey, what would you do if you were omnipotent?
Joey Probably kill myself!
Monica Excuse me?
Joey Hey, if Little Joey’s dead, then I got no reason to live!

(c) Challenges with sarcasm. In this example (season 3, episode 1), Chandler is being sarcastic about him making
pancakes, which makes it difficult to answer a question like “did Chandler make pancakes”.

Chandler Morning.
Joey Morning, hey, you made pancakes?
Chandler Yeah, like there’s any way I could ever do that.

Table 1: Challenges with entity resolution, metaphors, and sarcasm in understanding dialogue contexts for QA.

dialogue, tackles multiple-choice questions, which
suit well for evaluating reading comprehension, but
not necessarily for practical QA applications.

3 FriendsQA Dataset

For the generation of the FriendsQA dataset, 1,222
scenes from the first four seasons of the Character
Mining dataset are selected (Section 2.3). Scenes
with fewer than five utterances are discarded (83 of
them), and each scene is considered an independent
dialogue. FriendQA can be viewed as answer span
selection, where questions are asked for some con-
texts in a dialogue and the model is expected to find
certain spans in the dialogue containing answer con-
tents. The dialogue aspects of this dataset, however,
make it more challenging than other datasets com-
prising passages in formal languages (Section 2.1).
Three challenging aspects that are commonly found
in dialogue QA are illustrated in Table 1.

3.1 Crowdsourcing
All annotation tasks are conducted on the Amazon
Mechanical Turk. TALEN, a web-based tool for
named entity annotation (Mayhew and Roth, 2018),
is extended for our QA annotation such that it dis-
plays a dialogue segmented into a sequence of utter-
ances with speaker names, and asks crowd workers
to first generate questions then select spans or utter-
ance IDs in the dialogue containing the answer con-
tents (Section 3.2). Prior to the annotation, crowd
workers are required to pass a quiz regarding the
dialogue context, to verify if they have a good un-

derstanding in this context. Upon the submission, it
validates the annotation by running several quality
assurance tests (Section 3.3).

3.2 Phase 1: Question-Answer Generation

For each dialogue, the crowd workers are required
to generate at least 4 out of six types of questions,
{who, what, when, where, why, how}, regarding
the dialogue contexts. Every question must be an-
swerable; in other words, there needs to be at least
one contiguous answer span in the dialogue. The
crowd workers are allowed to select more than one
answer span per question if appropriate. If multiple
mentions of the same entity are to be considered,
annotators are instructed to select ones that fit the
best for the question. For Q2 in Table 2, although
multiple mentions of Casey are found in this dia-
logue, only the first three are selected as the answer
because the other mentions are not relevant to this
particular question (e.g., Casey in U08). This type
of selective answer spans adds another level of dif-
ficulty to the task of FriendsQA.

Annotators are also allowed to select the speaker
names as the answer spans. This is useful for who
questions asking about certain speakers yet no men-
tions of them are found in the dialogue (e.g., Chan-
dler has no explicit mention in Table 2). Moreover,
when an entire utterance is considered the answer,
which happens often with why and how questions,
annotators are asked to select the corresponding ut-
terance ID instead of the whole utterance to reduce
span-related errors (e.g., U13 for Q5 in Table 2).
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(a) A dialogue excerpted from Friends (season 4, episode 7).

U01 [Scene: Central Perk, Joey is getting a phone number from a woman (
::::::
Casey) as Chandler watches from the doorway.]

U02
::::::
Casey: Here you go.

U03 Joey: Great! All right, so I’ll call you later.
U04

::::::
Casey: Great!

U05 Chandler: Hey-Hey-Hey! Who was that?
U06 Joey: That would be Casey. We’re going out tonight.
U07 Chandler: Goin’ out, huh? Wow! Wow! So things didn’t work out with Kathy, huh? Bummer.
U08 Joey: No, . . . . . .things. . . .are. . . . .fine . . . . .with . . . . . . .Kathy. I’m having a late dinner with her tonight, right after my early dinner with Casey.
U09 Chandler: What?
U10 Joey: Yeah-yeah. And the craziest thing is that I just ate a whole pizza by myself!
U11 Chandler: Wait! You’re going out with Kathy!
U12 Joey: Yeah. Why are you getting so upset?
U13 Chandler: Well, I’m upset for you. I mean, dating an endless line of beautiful women must be very unfulfilling for you.

(b) Six types of questions:{who, what, when, where, why, how}.
Q1 What is Joey going to do with Casey tonight? Q4 Where are Joey and Chandler?
Q2

::::
Who is Joey getting a phone number from? Q5 Why is Chandler upset?

Q3 When will Joey have dinner with Kathy? Q6 . . . . .How are things between Joey and Kathy?

Table 2: A sample dialogue from the FriendsQA dataset comprising six types of questions, where the answer spans
are annotated on the dialogue contents. Each utterance has the utterance ID, the speaker name, and the text. The
answer spans for Q[1-6] are indicated by solid underlines,

::::
wavy

:::::::::
underlines, double underlines, dashed underlines,

bold font, and . . . . . . .dotted . . . . . . . . . . .underlines, respectively.

3.3 Quality Assurance

Each MTurk annotation job gives up to 6 questions
and their answer spans, which are validated by the
following tests before the submission:

1. Are there at least 4 types of questions annotated?

2. Does each question have at least one answer
span associated with it?

3. Does any question have too much string over-
laps with the original text in the dialogue?

The first test ensures that there are sufficiently large
and diverse enough questions generated for devel-
oping practical QA models. The second test checks
if there are any inappropriate associations between
questions and answer spans. Finally, the third test
prevents from creating mundane questions by copy-
ing and pasting the original text from the dialogue.
No annotation job is accepted unless it passes all
of these assurance tests.

3.4 Phase 2: Verification and Paraphrasing

All dialogues with the questions and answer spans
annotated by the first phase (Section 3.2) are again
put to the second phase. During the second phase,
annotators are asked to first verify whether or not
the answer spans are appropriate for the questions,
and fix ones that are not or add more if necessary.
Annotators are then asked to revise questions that

are either unanswerable or too ambiguous. Finally,
they are asked to paraphrase the questions, result-
ing two sets of questions for every dialogue where
one is a paraphrase of the other. The same qual-
ity assurance tests (Section 3.3) with an additional
test of checking string overlaps between the ques-
tions from phases 1 and 2 are run to preserve the
challenging level of this dataset.

3.5 Four Rounds of Annotation
The same F1-score metric used for the evaluation
of span-based QA systems (Rajpurkar et al., 2016)
is used to measure the inter-annotation agreement
(ITA) between the answer spans annotated by the
phases 1 and 2 (Sections 3.2 and 3.4, respectively).
Four rounds of crowdsourcing tasks are conducted
to stabilize the quality of our annotation, where two
randomly selected episodes from Seasons 1-4 are
used for annotation, respectively. After each round,
ITA is measured and a sample set of annotation is
manually checked. Then, the annotation guidelines
are updated based on this assessment. The column
A from the rows R1 ∼ R4 in Table 3 illustrates
the progressive ITA improvements over these four
rounds. The followings show summaries of actions
performed after each round (R[1-4]: round 1-4):

R1 We observe that the questions are often too
ambiguous for humans to answer; thus, we update
the guidelines and request annotators to make the
questions as explicit as possible.
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S Q Qp Qr A Ap F1 F1p EM EMp

R1 24 122 98 62 264 216 66.59 83.42 48.15 61.17
R2 26 242 185 57 484 368 72.86 83.99 50.00 57.69
R3 30 264 213 66 528 422 75.34 83.12 48.92 53.97
R4 37 370 296 75 740 593 76.01 88.17 52.25 60.78
S1 288 2,908 2,560 627 5,824 5,123 69.93 79.78 42.78 49.01
S2 259 2,682 2,314 587 5,372 4,633 69.21 80.86 44.01 51.73
S3 291 2,908 2,546 610 5,826 5,099 72.12 81.92 47.22 53.88
S4 267 2,768 2,398 594 5,553 4,808 72.26 83.27 49.52 57.41

Total 1,222 12,264 10,610 2,678 2,4591 21,262 71.17 81.82 46.35 53.55

Table 3: Statistics of the FriendsQA dataset. The R[1-4] rows show the statistics for the rounds 1-4, and the S[1-4]
rows show the statistics for Seasons 1-4, respectively. S: # of dialogues, Q: # of questions, Qp: Q after pruning, Qr:
# of revised questions during phase 2, A: # of answer spans, Ap: A after pruning, F1: F1-score to measure ITA,
F1p: F1 after pruning, EM: exact matching score to measure ITA, EMp: EM after pruning.

R2 We observe the 6.27% improvement on ITA
from the first round; thus, we add more examples
of questions and answer spans to the guidelines
without updating other contents.

R3 We observe another 2.48% improvment on
ITA from the second round; no update is made to
the guidelines.

R4 We observe a marginal ITA improvement of
0.67% from the third round, which implies that our
annotation guidelines are stabilized. Thus, all of
the rest episodes are pushed for annotation.

3.6 Question/Answer Pruning

Once all annotation is collected, each question from
phase 1 is represented by the bag-of-words model
using TF-IDF scores and compared against its re-
vised counterpart from phase 2 if available. About
21.8% of the questions from phase 1 are revised
during phase 2. If the cosine similarity between the
two questions is below 0.8, they are not considered
similar so that the question and its answer spans
from phase 1 are discarded because that question
requires a major revision to be answerable. Even
when the questions are considered similar, if the
F1 score between their answer spans is below 20,
they are still discarded because annotators do not
seem to agree on the answer. As a result, 13.5% of
the questions and answer spans from phase 1 are
pruned out from our final dataset.

3.7 Inter-annotator Agreement

Table 3 show the overall statistics of the FriendsQA
dataset. There is a total of 1,222 dialogues, 10,610
questions, and 21,262 answer spans in this dataset
after pruning (Section 3.6). Note that annotators
were not asked to paraphrase questions during the
second phase of the first round (R1 in Table 3), so

the number of questions in R1 is about twice less
than ones from the other rounds. The final inter-
annotator agreement scores are 81.82% and 53.55%
for the F1 and exact matching scores respectively,
indicating high-quality annotation in our dataset.

3.8 Question Types vs. Answer Categories
Table 4 shows the statistics between the question
types and answer categories, where answers to each
question type are further analyzed into categories.
Questions show balanced distributions across dif-
ferent types, implying good diversity of the dataset.
The analysis of answer categorization is performed
manually among 250 randomly sampled questions.

Type Count Answer Categories (%)
What 2,058 Factual: 100.00
Where 1,896 Factual: 77.78 Abstract: 22.22
Who 1,847 Speaker: 30.56 Content: 69.44
Why 1,688 Explicit: 73.53 Implicit: 26.47
How 1,628 Explicit: 77.42 Implicit: 22.58
When 1,493 Absolute: 62.07 Relative: 37.93

Table 4: Statistics of the question types as well as the
answer categories.

What No distinct categorization is found for an-
swers to what questions, which are entirely factual.
This is because annotators are mostly driven by fac-
toid contents for the generation of what questions.

Where Answers to where questions can be cate-
gorized into factual and abstract, meaning that they
are either concrete facts (e.g., named entities) or
abstract concepts (e.g., the wild, out there), where
the majority is driven by factoid contents (77.78%).

Who Answers to who questions can be annotated
on either speaker names or utterance contents. The
majority of who questions (69.44%) finds their an-
swers in the utterance contents.
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Why and How Answers to why and how ques-
tions are categorized into explicit and implicit such
that they are either directly answering the questions
(e.g., why doesn’t Joey want to throw the chair out?
→ Joey: I built this thing with my own hand), or
indirectly implying the answers (e.g., How are Joey
and Chandler going to get to Monica’s place? →
Joey: we’re not gonna have to walk there, right?).
Explicit answers are more common for both why
(73.53%) and how (77.42%) questions.

When Answers to when questions can be cate-
gorized into absolute and relative such that they
can be either exact timing (e.g., clock time, specific
date, holiday) or timing of action relative to another
event (e.g., I called her while I was watching TV).
About two third of the answers are considered ex-
plicit for when questions.

4 State-of-the-Art QA Systems

Three of state-of-the-art QA systems, R-Net based
on recurrent neural networks (RNN) (Section 4.1),
QANet based on convolutional neural networks
(CNN) with self-attention (Section 4.2), and BERT
based on deep feed-forward neural networks with
transformers (Section 4.3), are used to validate
our dataset as a practical resource for building ad-
vanced deep learning models. All models will out-
put two positions which will be combined to form
answer spans. These systems are chosen because
they give a good survey among different types
of neural networks in combination with attention
mechanisms that are dominant in the research of
contemporary question answering.

4.1 R-Net
R-Net held the 1st place on the SQuAD leaderboard
at the time of its publication (Wang et al., 2017).
It builds representations for questions and evidence
passages using RNN and presents a self-matching
mechanism to aggregate key information from the
evidence passages, in order to compensate the limit-
edly memorized information from RNN. The same
configuration described in the original paper is used
to train models for our experiments.

4.2 QANet
QANet is another state-of-the-art open-domain QA
system utilizing CNN and self-attention (Yu et al.,
2018). Dramatic is the speed-up gained by QANet,
which enables to perform data augmentation. Their
original configuration cannot be fit in a 12GB GPU

machine using our dataset; thus, the configuration
is compromised for our experiments as follows:

• The number of filters: 96 instead of 128,

• The number of attention heads: 1 instead of 8.

Given this configuration, its performance may not
be optimal but at least can be directly compared to
other models trained on the FriendsQA dataset.

4.3 BERT
The Bidirectional Encoder Representations from
Transformers (BERT) pushed all current state-of-
the-art scores to another level (Devlin et al., 2018).
Trained with the masked language model on next
sentence prediction tasks, BERT shows extremely
promising results on several tasks in NLP. The pre-
trained decapitalized BERT model with 12-layers is
fine-tuned on our dataset. The larger BERT model
with 24-layers again cannot be fit in a 12GB GPU
machine; thus, it is not used for our experiments.

5 Experiments

For our experiments, all dialogues from Table 3
are randomly shuffled and redistributed as the train-
ing (80%), development (10%), and test (10%) as
shown in Table 5.

Set Dialogues Questions Answers
Training 977 8,535 17,074

Development 122 1,010 2,057
Test 123 1,065 2,131

Table 5: Data split for our experiments.

5.1 Model Development
Each instance consists of an evidence dialogue, a
question and an answer span. Utterance IDs, anno-
tated to indicate the whole utterances being answer
spans (Section 3.2), are preprocessed and replaced
by the actual spans on the dialogue contents. Since
each question can have multiple answers, the fol-
lowing strategies are experimented to acquire one
gold answer span for each training instance:

Shortest The shortest answer span is chosen and
all the other spans are discarded from training.

Longest The longest answer span is chosen and
all the other spans are discarded from training.

Multiple The question is paired with every an-
swer to create multiple instances. For example, a
question q with two answer spans, a1 and a2, gen-
erate two instances, (q, a1) and (q, a2), and trained
independently.
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Model Shortest-Answer Strategy Longest-Answer Strategy Multiple-Answer Strategy
UM SM EM UM SM EM UM SM EM

R-Net 45.41 35.69 25.55 49.50 37.26 23.77 43.77 33.97 23.02
(±1.16) (±1.28) (±1.60) (±0.54) (±0.72) (±0.42) (±0.56) (±0.75) (±1.30)

QANet 42.12 34.04 22.89 46.21 34.55 21.15 47.10 35.38 23.16
(±3.21) (±0.03) (±0.42) (±4.51) (±1.87) (±1.21) (±1.30) (±1.33) (±1.15)

BERT 72.61 63.64 48.33 72.16 60.36 43.23 74.18 64.15 48.96
(±0.20) (±0.42) (±1.41) (±1.93) (±1.53) (±1.83) (±0.21) (±0.29) (±0.42)

Table 6: Results from the three state-of-the-art QA systems. All models are experimented three times and their
average scores with standard deviations are reported. UM: Utterance Match, SM: Span Match, EM: Exact Match.

5.2 Evaluation Metrics
Two tasks are experimented, answer utterance se-
lection and answer span selection, with the Friend-
sQA dataset. The utterance match (UM) is used to
evaluate answer utterance selection, which checks
if the predicted answer span api resides within the
same utterance ugi as the gold answer span agi , and
is measured as follows: (n: # of questions):

UM =
1

n

n∑

i=1

(1 if api ∈ ugi ; otherwise,0)

Following Rajpurkar et al. (2016), the span match
(SM) is adapted to evaluate answer span selection,
where each api is treated as a bag-of-tokens (φ) and
compared to the bag-of-tokens of agi ; the macro-
average F1 score across all questions is measured
for the final evaluation (P : precision, R: recall):

SM =
1

n

n∑

i=1

2 · P (φ(api ), φ(agi ))R(φ(api ), φ(agi ))
P (φ(api ), φ(a

g
i )) +R(φ(api ), φ(a

g
i ))

Additionally, the exact match (EM) is used to evalu-
ate answer span selection that checks the exact span
match between the gold and predicted answers.

5.3 Results
Table 6 shows results from 9 models trained by the
three state-of-the-art systems in Section 5.2 using
the three answer selection strategies in Section 5.1.
All experiments are run three times and their av-
erage scores with standard deviations are reported.
BERT and QANet perform better with the multiple-
answer strategy, that gives more training instances
per question, whereas R-Net performs better with
the other strategies. This could be due to R-Net’s
self-matching mechanism that gets confused when
multiple answers are provided for training the same
question. BERT models significantly outperform
ones from the other two systems in all evaluations.
Since our hyper-parameters are tuned around grids
provided by the original papers, it is possible that

these results are still suboptimal, which points out
another important property of BERT that it is not
as sensitive to different QA datasets.

Type Dist. UM SM EM
What 19.70% 77.43 69.39 55.04
Where 18.28% 84.35 78.86 65.93
Who 17.17% 74.12 64.34 55.29
Why 15.76% 60.47 50.03 27.14
How 14.65% 65.52 52.04 32.64
When 14.44% 80.65 65.81 51.98

Table 7: Results with respect to question types using
BERT and the multiple-answer strategy.

Table 7 shows results from BERT’s multiple answer
models by question types. Answers to where and
when questions are mostly factoid, which show the
highest performance. On the other hand, answers to
why and how usually span out to longer sequences,
leading to worse performance. Answers to who and
what questions give a good mixture of proper and
common nouns and show moderate performance.
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Figure 1: Increasing score with top-20 answer candi-
dates. From top to bottom: Utterance Match, Span
Match and Exact Match.

Figure 1 shows improvement of BERT’s multiple-
answer models by accepting the top-k answer pre-
dictions; the scores are measured by picking the
best matching answer within thes top-k predictions.
UM surpasses 90% and SM approaches to 90%
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when k = 14 and 20, respectively. More impor-
tantly, the gap between UM and SM gets smaller
as k increases, which implies that FriendsQA is
not only learnable by deep learning but also can be
enhanced by re-ranking the answer predictions.

5.4 Error Analysis
An extensive error analysis is manually performed
on 100 randomly sampled, exact unmatched predic-
tions (F1 = 0) to provide insights for future research.
Figure 2 shows six types of errors that become evi-
dent through this analysis.

Figure 2: The distribution of six error types analyzed
in 100 sampled predictions. NA: Noise in annotation.

Entity Resolution This type is the most frequent
and often occurs when many of the same entities
are mentioned in multiple utterances. The recurring
use of coreference and anaphora can be confusing.
This error also occurs when the QA system is asked
about a specific person, but predicts wrong people.
For example, the question asks for Chandler’s opin-
ion about marriage, but the model matches com-
ments from Joey instead due to the lack of referent
resolution made in those comments.

Paraphrase and Partial Match This error type
may be even challenging for humans without inside
knowldege. Answers can be expressed in numerous
ways through paraphrasing, abstraction, nicknames
in dialogue, signifying the difficulty in FriendsQA.
Moreover, answers might also be partially correct,
especially for why and how questions, which could
be acceptable in practice.

Cross-Utterance Reasoning This type reveals
an universal challenge in understanding human-to-
human conversation. To correctly predict an answer
span in dialogue, the system should be equipped
with the ability to reason across multiple utterances

back and forth, especially if a story or an event
unfolds gradually, scatters in different places, and
is told by different speakers.

Question Bias This type occurs when the answer
predictions overly rely on the question types. For
why questions, the model tends to blindly selects
spans following certain keywords such as because
even though they are placed in wrong utterances
since the model is learned to be biased to the term
because, neglecting other important factors that
might otherwise lead to the correct answers.

Noise in Annotation (NA) Our dataset, although
it gives high inter-annotator agreement (Sec. 3.7),
it still includes noise caused by wrong spans, am-
biguous or unanswerable questions, or typos.

Miscellaneous Errors in this category have no
apparent cause to understand why the model pre-
dicts these answers, which often seem irrelevant to
the questions so that they need more investigation.

Given this analysis, we hope many challenges can
be overcome by future studies. For instance, coref-
erent mentions, especially plural mentions, should
be more intelligently processed (Zhou and Choi,
2018). Moreover, the speaker information, which
are currently treated as the first tokens in utterances,
can be better encoded to give more insights.

6 Conclusion

This paper presents an open-domain question an-
swering dataset called FriendsQA, compiled from
transcripts of the TV show Friends. An extensive
and comprehensive analysis is performed on this
dataset to show its validity, difficulty and diversity.
Three state-of-the-art models are run and compared,
and show the full potential of FriendsQA as a rich
QA research resource. Finally, erroneous answer
predictions are sampled out for a further analysis
to offer insightful retrospective. All our resources
are publicly available.1

For future work, the question-type (Table 7) and
error analyses (Section 5.4) can serve as guidelines
to further enhance the QA model performance. Top-
k answer analysis also brings up another challeng-
ing but tangible task to re-rank the answer predic-
tions. More tasks such as answer existence predic-
tion and an utterance-based model to select among
utterance candidates can also be issued.
1FriendsQA: https://github.com/emorynlp/
question-answering
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Abstract 

In this paper, we examine the foundations 

of task-oriented  dialogues, in which 

systems are requested to perform tasks for 

humans.  We argue that the way this 

dialogue task has been framed has limited 

its applicability to processing simple 

requests with atomic “slot-fillers”. 

However, such dialogues can contain more 

complex utterances. Furthermore, 

situations for which it would be desirable to 

build task-oriented dialogue systems, e.g., 

to engage in collaborative or multiparty 

dialogues, will require a more general 

approach. In order to provide such an 

approach,  we give a logical analysis of the 

“intent+slot” dialogue setting that 

overcomes these limitations.  

1 Introduction 

An important  problem that forms the core for 

many current spoken dialogue systems is that of 

“slot-filling”  — the system’s ability to acquire 

required and optional attribute-values of the user’s 

requested action, for example, finding the date, 

time, and number of people for booking a 

restaurant reservation, or the departure date, 

departure time, destination, airline, arrival date, 

arrival time, etc. for booking a flight (Bobrow et 

al., 1977, Zue et al., 1991).   If a required  

argument is missing, the system asks the user to 

supply it.     Although this may sound simple, 

building such systems  is more complex than one 

might suppose.    For example, real task-related 

dialogues may be constraint-based rather than 

slot-filling, and are usually collaborative, such 

that dialogue participants may together fill slots, 

                                                 
1 Inspired by Woods (1975), “What’s in a Link:  Foundations for Semantic Networks” 
2 See https://developer.amazon.com/docs/custom-skills/create-intents-utterances-and-slots.html for an example of the 

commercial interest in “intent + slots”.    

and people go beyond what was literally requested 

to address higher-level goals. 

In this paper, we discuss the limitations of the 

general slot-filling approach, and provide a formal 

theory that can be used not only to build slot-

filling task-oriented dialogue systems, but also 

other types of dialogues, especially multiparty and 

collaborative ones.  We argue first that without 

being explicit about the mental states and the 

logical forms that serve as their contents, systems 

are too tightly bound to the specific and limited 

conversational task of a single user’s getting a 

system to perform an action.    

1.1 Intent+Slots (I+S) 

The spoken language community has been 

working diligently to enable users to ask systems 

to perform actions.  This requires the system to 

recover the user’s “intent” from the spoken 

language,  meaning the action the system is being 

requested to perform, and the arguments needed 

to perform it, termed “slots”.2 The most explicit 

definition of “slot” we can find is from 

(Henderson, 2015) in describing the Dialog State 

Tracking Challenge (DSTC2/3): 
 
The slots and possible slot values of a slot-

based dialog system specify its domain, i.e. 

the scope of what it can talk about and the 

tasks that it can help the user complete. The 

slots inform the set of possible actions the 

system can take, the possible semantics of the 

user utterances, and the possible dialog 

states… For each slot s S, the set of possible 

values for the slot is denoted Vs. 

 

Henderson goes on to describe a system’s 

dialog state and two potentially overlapping slot 

Foundations of Collaborative Task-Oriented Dialogue:  

What’s in a Slot?1 
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types, so-called “informable” and “requestable” 

slots, denoted by sets Sinf  and Sreq, respectively.  
The term dialog state loosely denotes a full 

representation of what the user wants at any 

point from the dialog system. The dialog state 

comprises all that is used when the system 

makes its decision about what to say next. … 

the dialog state at a given turn consists of: 

 The goal constraint for every informable slot 

s∈ Sinf. This is an assignment of a value v∈ Vs 

that the user is specifying as a constraint, or a 

special value Dontcare, which means the user 

has no preference, or None, which means the 

user is yet to specify a valid goal for the slot. 

 A set of requested slots, the current list of 

slots that the user has asked the system to 

inform. This is a subset of Sreq.3,4 (Henderson, 

2015) … 

Most papers in the field at best have informal 

definitions of “intent” and “slot”.  In order to 

clarify these concepts, we frame their definitions in 

a logic with a precise semantics.  We find the 

following topics require further explication. 

 

2 Limitations of Slot-Filling 

2.1 Representation of Actions 

The DSTC proposes a knowledge 

representation of actions with a fixed set of slots,  

and atomic values with which to fill them, such as 
reserve(restaurant=Mykonos, cuisine=Greek, Location 

= North) to represent the user’s desire that the 

system reserve Mykonos, a Greek restaurant in 

the north of town,  or  reserve(restaurant=none, 

cuisine=Greek, Location = dontcare), which 

apparently says that the user wants the system to 

reserve a Greek restaurant anywhere.   However, 

missing from this representation is the agent of 

the action. At a minimum, we need to be able to 

distinguish between the user’s performing and the 

system’s performing an action.  Thus, such a 

representation cannot directly accommodate the 

user’s saying “I want to eat at Guillaume” because 

the user is not explicitly requesting the system to 

perform an action.5 Also missing are variables 

used as values, especially shared variables.  This 

severely limits the kinds of utterances people can 

provide.   For example, it would prevent the 

                                                 
3 This appears to be the reverse of  the definition in (Gašić 

et al., 2016, p. 557) 
4 At least implicitly, the DSTC must allow a distinguished 

symbol (e.g., ‘?’) to indicate what slot values are being 

requested.  Alternatively, we have seen request(<attribute>) 

system from representing the meaning of “I want 

you to reserve that Greek restaurant in the north 

of Cambridge that John  ate at last week.”  

2.2 Restrictions on Logical Forms (LFs) 

Next, the slot-filling approach limits the set of 

logical forms the dialogue system can consider by 

requiring the user to supply an atomic value 

(including Dontcare and None)  to fill a slot.  For 

example,  slot-filling systems can be trained to 

expect simple atomic responses like “7pm”  to 

such  questions as “what time do you want me to 

reserve a table?”   However, I+S systems 

typically will not accept such reasonable 

responses as “not before 7pm,”  “between 7 and 

8 pm,” or “the earliest time available.” What’s 

missing from these systems are true logical forms 

that employ a variety of relations and operators, 

such as and, or, not, all, if-then-else, some, every, 
before, after, count, superlatives, comparatives, 

as well as proper variables.    Critically, adequate 

meaning representations are compositional often 

employing relative clauses, such as the LF 

underlying “What are the three best Chinese or 

Japanese restaurants that are within walking 

distance of Century Link Field?”  Compositional 

utterances often require scoped representations, as 

in  “What is the closest parking to the Japanese 

restaurant nearest to the Space Needle?” which 

has two superlative expressions, one embedded 

within the other.  These phenomena are also 

problematic for requests, as in:  Book a table at 

the closest good Italian restaurant to the 

Orpheum Theater on Monday for 4 people. 

Although current I+S systems cannot parse or 

represent such utterances  (Ultes et al. 2018), 

complex logical forms such as those underlying 

the above can now be produced robustly from   

competent semantic parsers (e.g., (Duong et al., 

2017; Wang et al., 2015)).    What we claim is 

necessary is to move from an I+S representation 

language of actions with attributes and atomic 

values  to a true logical form language with which 

to represent the meaning of users’ utterances.    

2.3 Explicit Attitudes  

However, this is still not sufficient.   The I+S 

approach, as incorporated into the DSTC 2 

(Henderson, 2015),  says that the dialogue state 

with an unstated value, meaning the user is asking for the 

value of the attribute.  
5 In order to handle this as an indirect request, a system 

would need to reason about users’ plans and how the system 

can help the user achieve them.  
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“loosely denotes a full representation of what the 

user wants at any point from the dialog system”, 

but treats as implicit the desire attitude associated 

with the intent content. Thus, when a user  says  “I 

want you to reserve for Monday” the notion  of 

“want” is taken to be just syntactic sugar and  is 

generally thrown away, resulting in a 

representation that looks like this:  

inform(reserve(day = monday)).   But this is too 

simplistic for a real system  as there are many 

types of utterances about actions that a user might 

provide that cannot be so expressed.   For 

example,  the user might want to personalize the 

system by telling it  never to book a particular 

restaurant,  i.e., the user wants the system not to 

perform an action.   Moreover,   a virtual assistant 

positioned in a living room may be expected to 

help  multiple people, either as individuals or as a 

group.  A system needs to  keep separate the 

actions and parameters characterizing one 

person’s desires from another’s, or else it will be 

unable  to follow  a discussion between two 

parties about an action. For example, John says he 

wants the system to reserve Vittorio’s for he and 

Sue on Monday, and Sue says she wants the 

reservation on Tuesday.  In addition to specifying 

agents for actions,  we need to specify the agent 

of the inform, so that we can separate what John 

and Sue each said, as in:  inform(agent=john, 
reserve(patron=[john,sue],day=monday)), and 

inform(agent=sue,reserve(patron=[john,sue], day 
=tuesday)).    But, since I+S slots encode the 

speaker’s desire, how can John’s saying “Sue 

wants you to reserve Monday”   be represented? 

Does this utterance fill slots in Sue’s desired 

reservation action, both of theirs, or neither?    

And what if Sue replies “no, I don’t”?     What 

then is in the day slot for Sue?  Dontcare?   She 

didn’t say she doesn’t care what day a table is 

reserved. In fact, she does care — she does not 

want a reservation on Monday.   By merely having 

an implicit attitude, we cannot represent this.6 

All these representational weaknesses 

compound.   Imagine John’s being asked by the 

system “when do you want me to reserve 

Vittorio’s?”  and he replies “whenever Sue 

wants.” Again, whose slot and attitude is 

associated with the utterance— John’s or Sue’s?  

                                                 
6Some researchers have advocated a “negate(a=x)” action 

with an informal semantics that the user does not want the 

slot a to be filled with the value x (Young et al., 2010). In 

the multiparty case, one would need to be more explicit 

about whose slot and desire this is.  

Without a shared variable, agents for actions, and 

explicit desires, we cannot represent this either.   

2.4 Mixed initiative and collaboration  

Finally, in the dialogue below,  apart from the 

fact that I+S cannot  represent utterance (1),  

question (2) is answered with a subdialogue 

starting at question (3) that shifts the dialogue 

initiative (Bohus and Rudnicky, 2002; Horvitz, 

2007; Litman and Allen, 1987; Morbini et al., 

2012).  In utterances (4) and (6),  the system is 

proposing a value and in (5) and (7), the user is 

rejecting or accepting the proposal. Thus, both 

system and user are collaboratively filling the slot  

(Clark and Wilkes-Gibbs, 1986), not just one or 

the other. I+S systems cannot do this. 

 
(1) U:  Please book a reservation at the 

closest good restaurant to the Orpheum 
Theater on Monday for 4 people. 

(2) S:  OK,  I recommend Guillaume.  

What time would you like to eat? 

(3) U:  what’s the earliest time available? 

(4) S:  6 pm 

(5) U:  too early 

(6) S:  how about 7 pm? 

(7) U:  OK 

2.5 Dialogue state and belief 

The DSTC approach to I+S represents dialogue 

state in terms of the user’s desires.  We claim that 

task-oriented dialogue systems, especially those 

that could engage in multiparty conversations, 

will also need to explicitly represent other mental 

states, including but not limited to people’s 

beliefs.7    The naive approach to representing 

beliefs is as an embedded database  (Cohen, 1978; 

Moore, 1977).   Such an approach could perhaps 

work until one attempts to deal with vague beliefs.  

For example, you know Joe is sitting by a  window 

and able to look outside.     You can reasonably  

ask Joe “Is it raining?” because you believe that 

either Joe believes it is raining, or Joe believes it 

is not raining,  i.e., Joe knows whether it is raining 

or not.   This is different than believing that Joe 

believes that Rain  ~Rain, which is a tautology.    

But to use the database approach,   what should 

the system put into Joe’s database?   It can’t put in 

Rain,  and it can’t put in ~Rain,  or else it would 

not need to ask.  It needs to represent something  

7 This is a different notion of “belief” than “belief state” as 

used in POMDP dialogue modeling (Williams & Young, 

2007). 
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more vague – that Joe knows if it is raining,  a 

concept that was described as KNOWIF  =def (BEL x P) 

 (BEL x ~P) (Allen 1979; Cohen and Levesque, 

1990b;  Cohen and Perrault, 1979;  Miller et al., 

2017; Perrault and Allen, 1980; Sadek et al., 1997, 

Steedman and Petrick, 2015).     In the case of a 

multiparty dialogue system,  the system   should 

direct the yes/no question of whether it is raining 

to the person whom it believes knows the answer 

without having to know what they think it  is.      

2.6 Knowledge acquisition 

Any task-oriented dialogue system will need to 

acquire information, usually by asking wh-

questions, which we have argued will require it to 

deal somehow with variables.   Again, for  a 

multiparty context, in order to ask a wh-question,  

the system should be asking someone whom it 

thinks knows the answer.   We need to be able to 

represent such facts as “John knows Mary’s 

mobile phone number”,  which is different from 

saying “John knows Mary has a mobile phone 

number”. In the former case, I could ask John the 

question “what is Mary’s phone number?”,  while 

in the latter case, it would be uncertain whether he 

could reply.  This ability to represent an agent’s 

knowing the referent of a description, was called 

KNOWREF (Allen 1979; Cohen and Levesque, 

1990b; Cohen and Perrault, 1979;  Perrault and 

Allen, 1980), Bref (Sadek et al., 1997), or 

KNOWS_VAL (Young et al., 2010), and is intimately 

related to the concept of quantifying-into a modal 

operator (Barcan, 1946; Kaplan, 1968; Kripke, 

1967; Quine, 1956), about which a huge amount 

of philosophical ink has been spilled.   For  a 

database approach to representing belief, the 

problem here revolves around what to put in the 

database to represent Mary’s phone number.   One 

cannot put in a constant, or one is asserting that to 

be her phone number.   And one cannot put in an 

ordinary variable, since that provides no more 

information than the existentially quantified 

proposition that she has a phone number, not that 

John knows what it is!    Over the years, various 

researchers have attempted to incorporate special 

types of constants (Cohen, 1978;  Konolige, 

1987), but to no avail because the logic of these 

constants requires that they encode all the modal 

operators in whose scope they are quantified.   

Rather,  one needs to represent and reason with 

quantified beliefs like  

                                                 
8 Note that this has nothing to do with uncertainty in the 

probabilistic sense. I can be certain that John knows Mary’s 

phone number, but still not know what it is. 

X (BEL john phone_number(mary,X)) 
To preview our logic below, we  define some 

syntactic sugar  using roles and Prolog syntax (and 

a higher-order schematic variable ranging over 

predicates Pred):   

(KNOWREF agent:X  variable:Var predicate:Pred) 

=def   Var (BEL x Pred),  with Var bound in Pred 

 

In other words, the agent X knows the referent 

of the description ‘Var such that Pred’ .  For 

example, we can represent  “John knows Mary’s 

phone number”  as  

(KNOWREF agent:john,variable:Ph,      
             predicate:phone_number(mary,Ph)) 
In summary, a system’s beliefs about other agents 

cannot simply be a database.  Rather, the system 

needs to able to represent such beliefs without 

having precise information about what those 

beliefs are.8   If it can do so, it can separate what 

it takes to be one agent’s beliefs from another’s, 

which would be needed for a multiparty dialogue 

system. Dialogue state for task-oriented dialogue 

systems is thus considerably more complex than 

envisioned by I+S approaches. 

3 Logic of Task-Oriented Conversation 

Let us now cast the I+S dialogue setting into a 

logical framework.   We will examine intent vs. 

intention, semantics of slots,  and dialogue state.   

3.1 What is an Intent? 

How does the action description in such  

utterances as those above relate to an “intent”?   

First, let us assume “intent” bears some relation to 

“intention”. What appears to be the use within the 

spoken language community is that an “intent”  is 

the action content of a user request that 

(somehow) encodes the user’s intention.   To be 

precise here, we need to review some earlier work 

that can form the basis for a logic of task-oriented 

conversation.  

3.2 The Language L 

We will use  Cohen and Levesque’s (1990) formal 

language and model theory for expressing the 

relations among belief, goal, and intention (see 

Appendix for precise description of L). Other 

formal languages that handle belief and intention 

(e.g., (Rao and Georgeff, 1995)) may do just as 

201



 

well, but this will provide the expressivity we 

need. The language L is  a first-order multi-modal 

logical language with basic predicates, arguments, 

constants, functions, objects, quantifiers, 

variables, roles, values (atomic or variables), 

actions, lists, temporal operators (Eventually (, 

LATER), DOES and DONE), and two mental states, 

BEL and GOAL.   The logic does not consider 

agents’ preferences, assuming the agent has 

chosen those it finds superior (according to some 

metric such as expected utility).   These are called  

GOALs in the logic.  Unlike preferences, at any 

given time, goals are consistent, but they can 

change in the next instant.  As is common, we 

refer to this as a BDI logic.  See the Appendix for 

examples of well-formed formulas.  

3.3 Possible worlds semantics 

Again from  (Cohen and Levesque, 1990), the 

propositional attitudes  BEL and GOAL are given a 

relatively standard possible worlds semantics, 

with two accessibility relations B and G.    

However, for modelling slot-filling, we are 

critically interested in the semantics of 

“quantifying-in” (Barcan, 1946; Kaplan, 1968; 

Kripke, 1967; Quine, 1956).  Briefly, a  variable 

valuation function v in the semantics assigns 

some value chosen from the domain of the world 

and time at which the formula is being satisfied.    

When  “quantifying-into”  a BEL or GOAL 
formula, that value is chosen and then the BEL or 

GOAL formula is satisfied. As is standard in 

modal logic after (Kripke, 1967), the semantics 

of these modal operators is given in terms of a 

universal quantifier ranging over B- and G-

related possible worlds. Thus, the semantics of  

satisfying  y(BEL x p(y)) in world W is that there 

is a single value that is assigned by the variable 

assignment function v to y, such that for all 

worlds W’ that are B-related to W, p(y) is true in 

W’.   In other words, the value assigned to y is 

the same for all the related worlds W’.   If the 

quantifier is within the scope of the modal 

operator as in (BEL x y p(y)), then a different 

value could be assigned to the variable in each B-

related world.   Likewise, one can quantify into 

GOAL,  and even iterated modalities or modalities 

of different agents.    This gives rise to the 

theorems below, and analogous ones for GOAL.   

 

|=y (BEL x p(y))   (BEL x y p(y)),  and 

 

|=BEL x p(c)   y (BEL x p(y)) for constant c.  

 

This paper shows why quantifying into BEL and 

GOAL is key for slot-filling systems.  

3.4 Persistent goals and intentions 

Cohen and Levesque (1990) defined a concept 

of an internal commitment, namely an agent’s 

adopting a relativized persistent goal (PGOAL x P 
Q), to be an achievement goal P that x believes to 

false but desires to be true in the future,  and 

agent x will not give up P as an achievement goal 

at least until it believes P to be satisfied, 

impossible, or irrelevant (i.e., x believes ~Q). If 

the agent believes ~Q, it can drop the PGOAL. 

More formally, they have: 
 

(PGOAL x P Q) =def(GOAL x (LATER P))(BEL x ~P)  

    (BEFORE ( (BEL x P)  (BEL x ~P)  (BEL x ~Q))  
   ~(GOAL x (LATER P)) 
 

They also defined an intention to be a persistent 

goal to perform an action. More formally: 
 
(INTEND x A Q) =def  (PGOAL x  (DONE x  A)    Q). 
 

 In other words,    an agent x intending to do an 

action A is internally committed (i.e., has a 

PGOAL) to having performed the action A in the 

future. So, an intention is a future-directed 

commitment towards an action. 

3.5 What is a slot? 

Given this language,  how would one represent a 

DSTC slot, which incorporates the user’s desire?  

We propose to separate the attitude, action, and 

role-value list, then reassemble them.   First,  we 

consider the role:value argument in an action 

expression, using upper case variables (as in 

Prolog), such  as reserve(patron:P, restaurant:R, 
day:D, time:T, num_eaters:N).  Here, restaurant:R 

is the role:value expression.  Next, we need to add 

the desire attitude (as a PGOAL) in order to express 

such phrases “the day Joe wants me to reserve 

Vittorio’s Ristorante for him.” Here is how we 

would express it as part of the system’s belief:  

(1)  Day  

         (PGOAL joe [T ,N]  
            (DONE sys reserve([patron:joe,  

                  restaurant:vittorios,  
                  day:Day, time:T,  

                                num_eaters:N])) Q)   
In other words, there is a Day on which  Joe is 

committed to there being a Time, and number of 

eaters N such that the system  reserves Vittorio’s 
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on that Day at that Time and with N eaters. The 

system has represented  Joe as being  picky about 

what day he wants the system to reserve Vittorio’s 

(e.g., as a creature of habit, he always wants to eat 

there on Monday),  but the system does not know 

what day that is.   Here, we have quantified Day 

into the PGOAL, but the rest of the variables are 

existentially quantified within the PGOAL. That 

means that Joe has made no choice about the Time 

or Number of people. But because the system has 

this representation, it can reasonably ask Joe 

“What day do you want me to reserve 

Vittorio’s?”.  We can now also represent the day 

Joe does not want the system to reserve, can 

distinguish between the day Joe wants the system 

to reserve and the day Sue wants, and we can even 

equate the two, saying that Joe wants the system 

to reserve on whatever day Sue wants (See section 

2.7). So the  DSTC “slot” day turns out to have a 

variable in an action expression all right, but one 

that is now quantified into an intention or PGOAL 

operator.    This explicit representation enables the 

system to discuss the action with or without 

anyone’s wanting to perform it, and to 

differentiate between agents’ attitudes, which is 

essential for multiparty dialogues.   

3.6 Where do the slot-filling goals and 

intentions come from? 

In order to know what action to perform, an agent 

needs to know the values of the required 

arguments of an action. (Allen and Perrault, 1980; 

Appelt, 1985; Cohen and Perrault, 1979; Moore, 

1977)9.   In the case of the task-oriented dialogue 

setting, in which the agents are intended to be 

cooperative, we will have all agents obey the 

following rule. (We suppress roles below and 

hereafter.) 

   

For any agents X and Y (who could be the same): 
 
If:  (BEL Y (PGOAL X (DONE Y A) Q)),  
 
Then for the set of required but unfilled 

obligatory arguments Args, assert 
 

(2) (PGOAL Y  
        (KNOWREF Y Args  (PGOAL X  (DONE Y A)), 
          (PGOAL X  (DONE Y  A)  Q)   ),   

                                                 
9 Required arguments will be stipulated as part of a meta-

data template in the system’s knowledge base.  Knowing the 

values for arguments of actions  is not the only case in 

which having to know an argument is required.  For 

In other words, assuming Y is the system and X is 

the user,   this rule says that if the system believes 

the user is committed to the system’s doing an 

action A (as would be the result of a request), then 

the system is committed to knowing the referents 

of all required arguments of the action A that the 

user wants the system to perform.10  That is,  the 

system is committed to knowing the user’s 

desired “slot” values in the action that the user 

wants the system to perform.   For example, if the 

system believes the user wants the system to do 

the action of reserving Vittorio’s Ristorante for 

the user, then the system adopts a persistent goal 

to know the Time, Day, and Num,  for  which the 

user wants the system to reserve Vittorio’s.11   
Notice that this holds no matter how the system 

comes to infer that the user wants it to do an 

action.  For example, the system could make an 

indirect offer and the user could accept (Smith and 

Cohen, 1996), as in System: “Would you like me 

to reserve vittorio’s for you?”  User: “Sure”. 

Here, the offer is stated as a question about what 

the user wants the system to do,  and the positive 

reply provides the system with the rule antecedent 

above. 

3.7 Application of the logic to I+S:  

Expressing problematic user responses 

Let us now apply the logic to handle some of the 

expressions we claimed were problematic for an 

I+S approach.  Assume the system has asked the 

user:  “What time do you want me to reserve 

Vittorio’s Ristorante?”  We start with the base 

case, i.e. with the user’s supplying an atomic 

value, and assume the representation of the 

question has only the Time variable quantified-in. 

 

User: “7 pm”.   

Essentially, we unify the variable quantified into 

the PGOAL with the atom 7pm, resulting in:  
 
(PGOAL usr [Day,N]  
  (DONE sys reserve([usr, vittorios,Day,7pm, N])) 
Q) 
This is classic slot-filling.  

 
User: “I don’t know”.  The system would need 

to assert into its database a formula like the 

following  (assume the action variable A 

example, for the system to determine the number of 

available seats at a restaurant, it needs to know the date.    
10 When X and Y are the same agent,  (PGOAL X (DONE X A)) 
is exactly  the definition of an intention.  
11 Formula (1) is a consequence of this.  
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represents the act of reserving Vittorio’s for the 

user,  and that it has a free variable Time): 
~ (KNOWREF usr Time  

(PGOAL usr (DONE usr, A) Q )) 
In doing so, the system should retract its previous 

KNOWREF belief that enabled it to ask the original 

question.  How a system responds to this 

statement of ignorance is a different matter. For 

example, it might then ask someone else if it 

came to believe that person knows the answer.  

Thus, if the user then said “but Mom knows” and 

the system believes the user, the system could 

then ask Mom  the question.  
 

User: “I don’t care”. There are only two 

approaches we have seen to handling this in the 

I+S literature.  One is to put the Dontcare atom 

into the value of a slot  (Henderson, 2015).   

However, it is not clear what this means. It does 

not mean the same thing as “I don‘t know.”  It 

might be the equivalent of a variable, as it 

matches anything as a slot value, but that begs 

the question of variables in slots.  To express  

“I don’t care” in the logic, we can define 

CAREREF, a  similar concept to KNOWREF:  
 
(CAREREF x Var Pred)  =def  Var (GOAL x Pred),  
where Var is free in Pred. Then  for “I don’t care”, 

one could say:   ~(CAREREF x Var Pred)  with the 

formal semantics  that there is no specific value 

v for Var towards which x has a goal that Pred be 

true of it.    

Rather than have a distinguished “don’t care” 

value in a slot,  Bapna et al. (2017) create a 

“don’t_care(slot)” intent, with the informal 

meaning that the user does not  care about what 

value fills that slot.12   Here, it is not clear if this 

applies on a slot-by-slot basis, or on an 

intent+slot basis.  For example, if it is on a slot-

by-slot basis, then if the user says “I don’t care”  

to the question “Do you want me to reserve 

Monday at 7pm or Tuesday at 6pm?”  it would 

lead to four don’t_care(slot) intent expressions.  

Would these be disjunctions? How would the 

relation between Monday and 7pm be expressed?    

By contrast, we  can define a comparable 

concept to KNOWIF,  

       (CAREIF x P)  =def  (GOAL x P)  (GOAL x ~P) 
such that one can say “x doesn’t care whether P”, 

as ~(CAREIF x P), with the obvious logical 

interpretation.    With CAREIF, one could express 

                                                 
12 Notice that “intent” for Bapna et al. does not indicate an 

action being requested, so their notion of intent is different 

the reply “I don’t care” to the above disjunctive 

question as: 
~(CAREIF usr 
       (LATER   
           (DONE sys reserve([usr, mond, 7pm)])   
           (DONE sys  reserve([usr, tues , 6pm])) ) )  
 
User: “before 8 pm.”  Because all that the I+S 

approach can do is to put atomic values in slots 

or leave them unfilled,  the only approach 

possible here is to put some atom like 

before_8_pm into the slot. If one tried to give a 

semantics for this, it might be a function call or 

λ-expression that would somehow be interpreted 

as a comparative relation with whatever value 

eventually fills the slot. But, one would need a 

different comparison relation for every time 

value, not to mention for other more complex 

expressions such as 

not_before_7_pm_or_after_9_pm, or 

between_7_pm_and_9_pm.   How would the 

system infer that these are the same condition? 

Instead, one might think we only need a method 

to append new constraints to the quantified 

persistent goal “slot” expression, as in 

 Time (PGOAL usr  

                [Day,Num] 
     (DONE sys  
        reserve([usr,vittorios,Day,Time,Num])) 

    (BEFORE Time 8:15_pm)) 
However,  as a representation of the reply, the 

above is not quite what we want.  Here, the user 

has implicated (Grice, 1975) that she does not 

have a goal for a particular time such that she 

wants a reservation at that time.  Rather, she 

wants whatever time she eats to be before 8:15 

pm.   So, in fact, we want this constraint  to be 

embedded within the scope of the existential 

quantifier: 

  (PGOAL usr  [Day,Time,Num] 
      ((DONE sys reserve([usr,vittorios,  

              Day,Time, Num]))  

    (BEFORE Time 8:15_pm) ) ) 
The reason we need an inference like a Gricean 

implicature is that the system would need to 

reason that in response to the question,  if the user 

knew the answer, she would have told me,  and 

she didn’t, so she (probably) doesn’t know the 

answer.   Thus, the system needs to assert a 

weaker PGOAL. 
   

from that of (Henderson, 2015) or that used by Amazon 

Alexa.  
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User: “whenever Mary wants.”  To represent the 

content of this utterance, one can equate the 

quantified-in variables T1, T2 (and ignoring Q): 

 

[T1,T2] (equals T1,T2)   

 ((PGOAL usr [Day,Num] 
      (DONE sys reserve([usr,vittorios,Day, T1, Num])))       

   (PGOAL  mary [Day,Num] 
      (DONE sys reserve([mary,vittorios,Day, T2,Num])))) 

If the system learns that Mary wants the 

reservation to be at 7 pm, it can infer that the User 

wants it then too.  

The above examples show that the logic can 

represent users’ utterances in response to slot-

filling questions that supply constraints on slot 

values, but not the values themselves.  

4 Towards Best Practices 

This paper has provided a logical definition of  the 

DSTC 2/3 slot (and I+S slots more generally)  as 

a quantified-in formula stating the value that the 

agent wants an action’s role to have.   In addition, 

the logic presented here captures a more general 

concept than what I+S supports, in that it  can 

express multiple agents’ desires as well as non-

atomic constraints on attribute-value in logical 

forms.  

Still, our  purpose  here is not merely clarity 

and good hygiene, but ultimately to build systems 

that can engage in explainable, collaborative, 

multiparty dialogues.   Below we sketch how to 

build systems that can handle the above  issues,  

some of which we have implemented in a 

prototype system that uses the logic in this paper 

to engage in collaborative knowledge-based 

dialogues, including slot-filling.   A report on this 

system and approach will be provided in a 

subsequent paper.  

4.1 Enabling an operational semantics 

Systems based on a BDI logic will often have 

a belief-desire-intention architecture that serves as 

an  operational semantics for the logic (Rao and 

Georgeff, 1995).   By “operational semantics”, we 

mean that the system’s operation behaves (or at 

least approximates) the requirements of the logic.  

For example,  the adoption of a persistent goal to 

achieve a state of affairs results in finding a plan 

to achieve it, which then results in the agent’s 

intending  to perform the planned action. If the 

system finds a persistent goal/intention to be 

achieved, impossible or irrelevant, it drops that 

mental state, which causes an unraveling of other 

mental states as well.  Our system in fact reasons 

with the formulas shown here, engaging in slot-

filling and related question-answering dialogues. 

However, other systems may be able to make such 

distinctions without explicit logical reasoning.  

4.2 A plan-based approach to dialogue 

We advocate a plan-based model of dialogue 

(Allen, 1979, Allen and Perrault, 1980; Allen et 

al., 1995; Appelt, 1985; Cohen 1978; Cohen and 

Perrault, 1979; Cohen and Levesque, 1990b; 

Galescu et al., 2017; Litman and Allen 1987; 

Perrault and Allen, 1980; Sadek et al., 1997; 

Steedman and Petrick, 2007; Stone, 2004; Traum 

and Hinkelman, 1992) such that the same 

planning and plan recognition algorithms can 

apply to both physical, digital, and 

communicative acts.  When applied to 

communicative acts, the system plans to alter its 

own and the users’ beliefs, goals, and intentions. 

For example, goal (2) as applied to the slot 

expression in (1) will cause it to plan the wh-

question “what day would you like me to reserve 

Vittorio’s?”  to  alter the speaker’s KNOWREF  in 

goal (2) (see Appendix for definition of whq).   

Conversely, as a collaborator, on identifying a 

user’s speech act, the system asserts the user’s 

goal was to achieve the effect of the speech act. 

Based on that effect, the system attempts to 

recognize the user’s larger plan, to debug that 

plan, and to plan to overcome obstacles to it so 

that the user may achieve his/her higher level 

goals (Allen, 1979; Cohen, 1978; Cohen  et al., 

1982).  In this way, a system can engage in 

collaborative non-I+S dialogues such as  User: 

“Where is Dunkirk playing?” System: “It’s 

playing at the Roxy theater at 7:30pm, however it 

is sold out.  But you can watch it on Netflix.” 

Finally, the system is in principle explainable 

because everything it says has a plan behind it.   

4.3 A hybrid approach to handling task-

oriented dialogue variability. 

In order to incorporate such an approach into a 

useful dialogue system, we advocate building a 

semantic parser using the crowd-sourced 

“overnight”  approach (Duong et al., 2018;  Wang 

et al., 2015), which maps crowd-paraphrased 

utterances onto LFs derived from  a backend API 

or data/knowledge base. This methodology 

involves:  1) Creating a grammar of LFs whose 

predicates are chosen from the backend 

application/data base, 2) using that grammar to 

generate a large number of LFs,  3) generating a 

“clunky” paraphrase of an  LF,  and 4) collecting 
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enough crowd-sourced natural paraphrases of 

those clunky paraphrases/LFs13.  A neural 

network semantic parser trained over such a 

corpus can handle considerable utterance 

variability, including the creation of logical forms 

both for I+S utterances, and for complex 

utterances not supportable by I+S approaches. In 

the past, we have used this method to generate a 

corpus of utterances and logical forms that 

supported  the semantic parsing/understanding of 

the complex utterances in Section 2.2 (Duong et 

al., 2017; Duong et al., 2018).    

Whereas much utterance variability and 

uncertainty can be captured via the above 

approach, we believe there is less variability at the 

level of the goal/intention lifecycle, which 

includes goal adoption, commitment, planning, 

achievement, failure, abandonment, 

reformulation, etc. (Galescu et al., 2018; Johnson 

et al., 2018). This goal lifecycle would be directly 

supported by the BDI architecture and therefore 

would be available for every domain.  Rather than 

train a dialogue system end-to-end where we 

would need many examples of each of these goal 

relationships, we believe a domain independent 

dialogue manager can be written once, 

parameterized by the contents of the knowledge 

representation (Allen et al., 2019; Galescu et al., 

2018).    Beyond learning to map utterances to 

logical forms, the system needs to learn how to 

map utterances in context to goal relationships.   

For example, what does “too early” in Utterance 

(5) of Section 2.4  mean? Is that a rejection of a 

contextually-specified proposal?   The system  

also needs to learn how actions in the domain may 

lead to goals for which the user may want the 

system’s assistance. In order to be helpful to the 

user, the system must recognize the user’s goals 

and plan that led to his/her utterance(s) (Allen and 

Perrault, 1980; Sukthankar et al., 2014; Vered et 

al., 2016). One approach is to collect the action 

data needed to support plan recognition via 

crowdsourcing and text mining (Branavan et al., 

2012;  Fast et al., 2016; Jiang and Riloff, 2018). 

The upshot will be a collaborative dialogue 

manager that can be used directly in a dialogue 

system,  or can become a next generation user 

simulator   with which to train a dialogue manager 

(Schatzman et al., 2007; Shah et al., 2018). 

                                                 
13 This might take longer than overnight (vs. Wang et 

al. 2015).  
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Appendix 

The Language L 

Variables and constants 

<Action-var> ::= a, b, a 1 , a 2 . . .  b1, b 2 . . .  e, 

e1, e2 . . .  

<Agent-var> :: = x, y, x1, x2 . . . . . y1, y2 . .   

<Regular-var> ::= i,j, i1, i2 . . .  j1, j2 . . .  

<Variable>:: = <Agent-var>|<Action-var> |  

< Regular-var> |  

[<Variable1> …<Variablen>] , i.e.,  

(a list of variables)  

Predicates and Formulas 

<Role>::= distinguished Role symbols for a 

given action  

<Role-list>  ::= [<Role>1 :<Variable> 1,. . .,  

<Role>n:<Variable>n] 

<Pred-symbol> ::= an element of a  

distinguished set of predicate symbols 

<Pred> :: = (<Pred-symbol>) . 

 

Well-formed formulas (WFFS)  

<Wff> ::= <Pred> | ~<Wff>  | <Wff>  

<Wff> | <Wff>  <Wff> | <Variable> 

<Wff> | 

<Wff > — <Wff >  is true eventually 

<Wff > — <Wff > is always true  (note that 

<Pred>=def  ~ ~ <Pred>) 

<Variable> = <Variable> 

(DOES <Action-expr>) —  <Action-expr>  

happens next, 

(DONE <Action-expr>) —   

<Action-expr> has just happened, 

(Agt <Agent-var> <Action-var>):   

<Agent-var> is the only agent of  

<Action-var>, 

(BEL <Agent-var> <Wff>) —  

meaning  <Wff> follows from  

<Agent-var>'s beliefs, 

(GOAL <Agent-var> <Wff>) —   

meaning <Wff> follows  

from <Agent-var>'s goals, 

<Time-proposition> ::= <Numeral>  

(LATER <Wff>) ::= ~<Wff>  <Wff>  

<Wff> is false now but eventually true 

(BEFORE  <Wff>1 <Wff>2)   

 before <Wff>1  becomes true,   

Action expressions: 

<Action-name> ::= an element of a  

designated set of action names 

<Action-expr> :: =  

<Action-var> or one of the following: 

<Action> ::= <Action-name (Role-list>) 

<Action-expr>;<Action_expr>—   

                           sequential action, 

<Action-expr> | <Action-expr> —    

            nondeterministicchoice action, 

<Wff>?  —  test action  

<Action-expr>||<Action-expr> —  

 concurrent action 

<Action-expression>*: iterative action. 

Examples of Well-formed Formulas: 

 
 

 

(DONE joe eat(joe,vittorios,mond,7pm))            

Joe has just eaten at Vittorio’s on Monday at 7pm.  

(GOAL joe (DONE joe eat(joe,vittorios, mond,7pm))   

Joe’s goal is to eventually  have eaten at Vittorio’s at 

Monday at 7pm. 

 (BEL john  (PGOAL mary (KNOWREF john variable:Time  

                    (PGOAL mary  

             eat(mary,vittorios,mond,Time)) 

John believes Mary has a persistent goal for him to 

know the time that Mary wants to eat at Vittorio’s on 

Monday. 

 

inform([Speaker, Listener, Pred]) 

Precondition:      (BEL Speaker Pred) 
Effect:              (BEL Listener Pred) 

Constraint:         Speaker  Listener 

 

whq([Speaker, Listener, Var, Pred])  

Precondition:   (KNOWREF Listener, Var, Pred) 
Effect:    (KNOWREF Speaker, Var, Pred) 

Constraint:   Speaker  Listener 

 

ynq([Speaker,  Listener,  Pred]),  

Precondition:   (KNOWIF Listener Pred) 
Effect:    (KNOWIF Speaker Pred) 

Constraint:   Speaker  Listener 

 

informref([Speaker, Listener,  Var, Pred])  
Precondition:   (KNOWREF Speaker, Var, Pred) 
Effect:    (KNOWREF Listener, Var, Pred) 

Constraint:   Speaker  Listener 

Speech Act definitions 
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Abstract
Humans use a variety of approaches to ref-
erence objects in the external world, includ-
ing verbal descriptions, hand and head ges-
tures, eye gaze or any combination of them.
The amount of useful information from each
modality, however, may vary depending on the
specific person and on several other factors.
For this reason, it is important to learn the
correct combination of inputs for inferring the
best-fitting reference. In this paper, we inves-
tigate speaker-dependent and independent fu-
sion strategies in a multimodal reference reso-
lution task. We show that without any change
in the modality models, only through an opti-
mized fusion technique, it is possible to reduce
the error rate of the system on a reference res-
olution task by more than 50%.

1 Introduction

Reference resolution is of vital importance when
human-machine interaction is expected to become
natural and be integrated into everyday life. Hu-
mans have at their disposal a broad range of
modalities to refer to objects in their environ-
ment, including verbal and material signals (Clark,
2005). Equipping machines with the capability
to correctly interpret such reference resolutions
raises the question of how to fuse the information
derived from the different modalities.

Popular fusion methods in this domain can be
categorized along two dimensions. The first is
at which level of processing the fusion happens
and the second how the fusion is performed (see
Atrey et al. (2010); Ramachandram and Taylor
(2017) for a comprehensive overview). In so-
called early fusion or feature level fusion the fea-
tures derived from the different modalities are
combined, whereas in late fusion or decision level
fusion classification results, e.g. in the form of
probabilities, are combined. Regarding the second

dimension, the methods are mainly grouped into
classification-based and estimation-based meth-
ods.

As for the classification-based techniques, the
modalities are usually combined at the feature
level, i.e. early fusion, and the decision is ob-
tained using a classifier. Iida et al. (2011) ap-
proached a reference resolution task in which two
humans collaboratively solve a Tangram puzzle.
Their method computed linguistic, gaze and task-
specific features for each object of the board game
and the objects were ranked using an SVM clas-
sifier. In a similar puzzle task, Funakoshi et al.
(2012) proposed a model that could resolve ver-
bal descriptions as well as gestures utilizing a
Bayesian network. The Bayesian network design
was later employed by Whitney et al. (2016) for
interpreting referring expressions with speech and
pointing gestures in a real-world cooking task.

Regarding the rule-based fusion, linear
weighted fusion is one of the simplest and most
widely used rule-based methods. This method
combines the information from the different
modalities linearly and it is assumed that the share
of each modality in decision making does not
change. It has been successfully utilized in mul-
tiple studies on reference resolution (Matuszek
et al., 2014; Prasov and Yue Chai, 2010; Ken-
nington et al., 2015; Kennington and Schlangen,
2017). A constraint-based rule system was used
by (Holzapfel et al., 2004) where the constraints
considered the time correlation of events and their
semantic content for the fusion.

In this paper, we concentrate on one rule-based
method used in Kennington et al. (2015). For this
purpose, first, we explain the task and dataset in
Sec. 2. Then, we discuss different approaches
for the fusion of data in Sec. 3, including lin-
ear weighted fusion (Sec. 3.1) and our proposed
neural-network-based fusion (Sec. 3.2), which
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also provides the possibility of learning speaker-
dependent weights (Sec. 3.3). We summarize the
results in Sec. 4 and give a short conclusion and
outlook on future work in Sec. 5.

2 Previous work

2.1 The TAKE Dataset

Figure 1: Example PENTO board on the TAKE dataset
(Kennington and Schlangen, 2017)

The TAKE dataset was first introduced in Kou-
sidis et al. (2013). It is a Wizard-of-Oz study, in
which the participants were placed in front of a
screen showing 15 pieces of a PENTO board game
in random colors and shapes. The pieces were
grouped into the four corners of the screen. For
every episode, the shown objects and their posi-
tions on the screen was set randomly.

The participants were asked to instruct the sys-
tem to select one specific PENTO piece on the
board per episode. There was no instruction telling
the participants how to refer to the item. Accord-
ing to the setup, it was possible to specify the ob-
ject using spoken words, pointing gestures or eye
gaze. Next, one piece was marked and the partici-
pant confirmed whether this selection was correct.

The example episode below, corresponding to
Fig. 1, shows the English translation of the speech
input and the true referent identifier:

• then we take now the se- so the second t that
is on the top right ... out of this group there I
would like to have the yellow t ... yes

• REFERENT o3

For this work, the confirmation utterance, e.g. the
word “yes” in the above example, was removed,
since it is not available at the time the decision
is made. After this cleanup, the dataset includes
1034 episodes distributed over 7 users as shown
in Table 1. The participants were native speakers,
except for one, who spoke proficient but not native
German.

User Episodes With pointing With gaze

1 90 87 71
2 66 29 64
3 133 35 126
4 230 209 212
5 146 13 130
6 176 78 157
7 193 162 164

Total 1034 613 924

Table 1: Number of episodes, per user and cumula-
tively, in the TAKE dataset.

The speech, an average of 6.8 words per utter-
ance, was transcribed using Google Web Speech
as an automatic speech recognition (ASR), with a
vocabulary size of 1049. Additionally, the speech
was transcribed by hand, which can provide a rea-
sonable upper bound for the results. A Microsoft
Kinect above the screen captured the arm move-
ments and an eye tracker (Seeingmachines Face-
Lab) was used to determine the eye gaze.

Since the scenes in this dataset are virtual, we
can directly annotate the objects with the proper-
ties and then query the scene representation. For
this simplified task, the properties are the color, the
shape and the spatial relations of the pieces. Us-
ing image processing techniques described in Ken-
nington et al. (2015), several features for each ob-
ject are extracted, including the number of edges,
RGB (red, green, blue) values, HSV (hue, satu-
ration, value), its centroid, horizontal and vertical
skewness, and the orientation value denoting the
direction of the principal axis. These features are
used for the natural language grounding described
in the next section.

2.2 Model for Natural Language
Understanding

The idea is to treat each word in the vocabulary as
a classifier which can relate the word to the per-
ceptual information of the objects. For this pur-
pose, a logistic regression classifier is trained to
map the visual features x of each particular can-
didate object to a probability pw of these features,
given the word w.

pw(x) = σ(wᵀx+ b) (1)

Here, w is the learned weight vector and σ is the
logistic function. What is needed for further steps,
however, is one distribution over all candidate ob-
jects per episode. To accomplish that, we can av-
erage the distribution of all time steps n = 1 . . . N
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and normalize the prediction score of each object
(i ∈ I) over all the |I| = 15 object candidates via

pspeech(i) =

∑N
n=1 pwn(xi)∑|I|

k=1

∑N
n=1 pwn(xk)

. (2)

2.3 Model for Pointing Gestures and Gaze
For gaze and pointing gestures, we need a model
that takes the coordinates of gaze and pointing as
its input and returns a probability distribution over
the object candidates, given the location of ob-
jects. This model is the same for gaze and pointing
gestures.

For this purpose, we compute the average of the
gaze or pointing coordinates for each episode, pro-
ducing a reference point (R) for the modality. The
reference point is compared to the centroid of each
object (xi, yi) using a Gaussian distribution,

pd(i) ∝ exp

[
−(xR − xi)2

2 · σ2x
− (yR − yi)2

2 · σ2y

]
.

(3)
The result is then normalized over all objects to
obtain ppoint and pgaze, so that the objects closer to
the reference point will have a higher probability.

3 Fusion Models

3.1 Linear Fusion
For optimum performance, all three modalities
need to be combined. A simple approach is to per-
form a rule-based late fusion by estimating a fixed
weight for each modality and then summing the
weighted prediction distributions, as in Kenning-
ton (2016):

p(i) = pspeech(i) · α1 + ppoint(i) · α2

+pgaze(i) · (1− α1 − α2) . (4)

The system then makes a maximum-likelihood de-
cision according to

î = argmax
i∈I

p(i) . (5)

3.2 Neural-network-based Fusion
In Sec. 3.1, a baseline approach to late fusion is
shown. To decrease the error rate, we now pro-
pose a more flexible method, which can model
non-linear relations between the modalities. For
this purpose we chose a fully connected neural
network with one hidden layer, 512 neurons and
a rectified linear unit as the activation function.

Its inputs o are the three concatenated modality
vectors from (2) and (3),

o = [pspeech,ppoint,pgaze] (6)

with p = [p1, . . . , p|I|].

The output layer uses the softmax function so that
the output can be interpreted as a probability dis-
tribution and used in Eq. (5) to obtain the esti-
mated referent. To optimize the network param-
eters, we carried out preliminary tests with differ-
ently sized hidden layers and with additional re-
liability information, e.g., the variance of gaze or
pointing information. For hand-annotated data, in-
cluding the variance of all deixis coordinates of the
current episode, V, in the observation vector gave
the best results. With this update, the network in-
put becomes

o = [pspeech,ppoint,pgaze,V]. (7)

3.3 Speaker adaptation
Humans have different preferences in the way they
refer to objects. This is also reflected in the
dataset, in which many episodes from one par-
ticipant are quite alike, whereas significant differ-
ences can often be observed across participants.
Hence, depending on the participant, different
modalities are very likely to contribute a variable
amount of useful information. A model that adapts
to a specific user should therefore outperform a
general model.

However, judging from the small number of
samples per user in Tab. 1, it is evidently not
promising to train a neural network using only the
data of one participant. Inspired by Saon et al.
(2013), we addressed this problem by training on
the full training set and reducing to a smaller train-
ing set, containing just one user, for the last 5 % of
the epochs.

4 Evaluation

We evaluate all fusion methods on the same data
as Kennington et al. (2015) under the same four
conditions: speech only, speech with gaze, speech
with deixis, and speech with gaze and deixis. For
this purpose, we compare the error rate E =
100 · M−C

M under all conditions, with C as the
number of correctly estimated referents, amongM
estimates made for the test set.

However, for the linear fusion with fixed
weights (fw) presented in Sec. 3.1, we did not use

212



the weights suggested in Kennington et al. (2015).
Instead, a grid search was run on the training data
to determine optimal weights for the dataset (ow).
This yielded an average improvement of 5.9% ab-
solute for hand-annotated data and also improved
all individual cases for ASR-annotated data except
for the fusion of all modalities. Here, the results
slightly deteriorated from 60.3% to 60.0%.

We used 10-fold cross validation to obtain an
estimate of the error rate together with its standard
deviation. These results are depicted in Fig. 2.
As can be seen, there is a large difference in
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Figure 2: Error rate (%) and standard deviation for op-
timized (ow) or fixed weights (fw, adapted from (Ken-
nington et al., 2015)) in (4).

performance between the results using the hand-
annotated speech data vs. the ASR system, indi-
cating a likely high number of transcription errors
for the informative keywords. It can also be seen
that adding more modalities consistently improves
the performance.
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Figure 3: Error rate (%) of the proposed neural-
network-based fusion

The neural network-based fusion (Sec. 3.2) in-
creased performance compared to the linear fusion
(fw) notably and for all conditions. These results
are shown in Fig. 3. We obtain the best results with
an error rate of 8.9% for the fusion of all modali-
ties using the hand-annotated data. In comparison
to the fixed-weight baseline, with an error rate of
30% (see Fig. 2), the error rate is hence decreased

by 70%.

User NN ASR NN hand

User 1 17.5 (±8.5) 3.4 (±5.8)
35.8 (±10.9) 8.5 (±5.6)

User 2 11.7 (±13.9) 11.0 (±11.9)
16.2 (±8.9) 12.1 (±11.6)

User 3 10.8 (±12.8) 3.5 (±6.5)
11.9 (±11.8) 4.5 (±8.7)

User 4 12.3 (±10.2) 5.7 (±6.2)
10.5 (±9.1) 5.2 (±6.9)

User 5 22.6 (±7.9) 6.5 (±7.7)
28.3 (±11.8) 11.3 (±8.9)

User 6 19.1 (±8.8) 12.5 (±8.9)
23.4 (±10.6) 14.8 (±12.5)

User 7 31.0 (±13.5) 6.4 (±9.0)
24.0 (±10.7) 4.7 (±7.0)

average 18.6 (±10.7) 7.0 (±7.8)
22.2 (±10.3) 8.9 (±8.2)

Table 2: Results of the user-dependent (black) and the
user-independent (gray) model in terms of error rate
(%) and standard deviation σ.

Table 2 compares the results of the speaker-
dependent and -independent models for each user.
Here, we only report the results for the fusion
of all modalities. When using the hand annota-
tion, the speaker-adapted fusion reduces the er-
ror rate further, from 8.9% to 7.0%. But it can
also be seen that the results vary largely from
user to user. In particular, for user 1 (ASR data),
the speaker-adapted version outperforms the other
version easily, but for user 7, the original, speaker-
independent version is more accurate. For hand-
annotated data, the difference between the two
versions is smaller, but the users for which the
speaker-adapted version outperforms the other re-
main the same. Interestingly the speaker-adapted
version performs least well for the two users with
the most episodes that mostly contain gaze and
pointing information, as can be seen in Table 1.

5 Conclusions

We have compared different fusion strategies for
multi-modal information integration in a reference
resolution task. Our results show that a fully con-
nected neural network can reduce the error rate
significantly, compared to a weighted averaging of
single-modality posterior probabilities. Adapting
the fusion to each specific user is also helpful to
some extent, although the improvements are less
clear and consistent.
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In this work, we applied fairly simple mod-
els for speech, gaze and pointing, which simply
use the average values of all features for the cur-
rent episode. Since some words carry more se-
mantic content than others for finding the refer-
ent, and since the coordinate sequences of gaze
and pointing contain some redundancy, as well as
segments of more and of less information content,
future work will focus on the creation of a time-
dependent model for improving multi-modal fu-
sion.
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Abstract
Understanding and conversing about dynamic
scenes is one of the key capabilities of AI
agents that navigate the environment and con-
vey useful information to humans. Video
question answering is a specific scenario of
such AI-human interaction where an agent
generates a natural language response to a
question regarding the video of a dynamic
scene. Incorporating features from multiple
modalities, which often provide supplemen-
tary information, is one of the challenging
aspects of video question answering. Fur-
thermore, a question often concerns only a
small segment of the video, hence encoding
the entire video sequence using a recurrent
neural network is not computationally effi-
cient. Our proposed question-guided video
representation module efficiently generates the
token-level video summary guided by each
word in the question. The learned represen-
tations are then fused with the question to gen-
erate the answer. Through empirical evalu-
ation on the Audio Visual Scene-aware Di-
alog (AVSD) dataset (Alamri et al., 2019a),
our proposed models in single-turn and multi-
turn question answering achieve state-of-the-
art performance on several automatic natural
language generation evaluation metrics.

1 Introduction

Nowadays dialogue systems are becoming more
and more ubiquitous in our lives. It is essential for
such systems to perceive the environment, gather
data and convey useful information to humans in
an accessible fashion. Video question answering
(VideoQA) systems provide a convenient way for
humans to acquire visual information about the en-
vironment. If a user wants to obtain information
about a dynamic scene, one can simply ask the
VideoQA system a question in natural language,
and the system generates a natural-language an-
swer. The task of a VideoQA dialogue system in

User System

Video

Can you tell me what is happening in the video?

A person is packing a bag and then looking into the mirror.

Is the person a woman?

No, the person is a youngman.

What room is this person in ?

It looks like a bedroom or a dorm room.

What color are the walls?

The walls look like light purple.

Figure 1: An example from the AVSD dataset. Each
example contains a video and its associated question
answering dialogue regarding the video scene.

this paper is described as follows. Given a video
as grounding evidence, in each dialogue turn, the
system is presented a question and is required to
generate an answer in natural language. Figure 1
shows an example of multi-turn VideoQA. It is
composed of a video clip and a dialogue, where
the dialogue contains open-ended question answer
pairs regarding the scene in the video. In order to
answer the questions correctly, the system needs
to be effective at understanding the question, the
video and the dialogue context altogether.

Recent work on VideoQA has shown promising
performance using multi-modal attention fusion
for combination of features from different modali-
ties (Xu et al., 2017; Zeng et al., 2017; Zhao et al.,
2018; Gao et al., 2018). However, one of the chal-
lenges is that the length of the video sequence can
be very long and the question may concern only
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a small segment in the video. Therefore, it may
be time inefficient to encode the entire video se-
quence using a recurrent neural network.

In this work, we present the question-guided
video representation module which learns 1) to
summarize the video frame features efficiently us-
ing an attention mechanism and 2) to perform fea-
ture selection through a gating mechanism. The
learned question-guided video representation is a
compact video summary for each token in the
question. The video summary and question in-
formation are then fused to create multi-modal
representations. The multi-modal representations
and the dialogue context are then passed as in-
put to a sequence-to-sequence model with atten-
tion to generate the answer (Section 3). We em-
pirically demonstrate the effectiveness of the pro-
posed methods using the AVSD dataset (Alamri
et al., 2019a) for evaluation (Section 4). The
experiments show that our model for single-turn
VideoQA achieves state-of-the-art performance,
and our multi-turn VideoQA model shows com-
petitive performance, in comparison with existing
approaches (Section 5).

2 Related Work

In the recent years, research on visual ques-
tion answering has accelerated following the
release of multiple publicly available datasets.
These datasets include COCO-QA (Ren et al.,
2015a), VQA (Agrawal et al., 2017), and Vi-
sual Madlibs (Yu et al., 2015) for image question
answering and MovieQA (Tapaswi et al., 2016),
TGIF-QA (Jang et al., 2017), and TVQA (Lei
et al., 2018) for video question answering.

2.1 Image Question Answering

The goal of image question answering is to infer
the correct answer, given a natural language ques-
tion related to the visual content of an image. It as-
sesses the system’s capability of multi-modal un-
derstanding and reasoning regarding multiple as-
pects of humans and objects, such as their appear-
ance, counting, relationships and interactions (Lei
et al., 2018). State-of-the-art image question an-
swering models make use of spatial attention to
obtain a fixed length question-dependent embed-
ded representation of the image, which is then
combined with the question feature to predict the
answer (Yang et al., 2016; Xu and Saenko, 2016;
Kazemi and Elqursh, 2017; Anderson et al., 2018).

Dynamic memory (Kumar et al., 2016; Xiong
et al., 2016) and co-attention mechanism (Lu et al.,
2016; Ma et al., 2018) are also adopted to model
sophisticated cross-modality interactions.

2.2 Video Question Answering
VideoQA is a more complex task. As a video
is a sequence of images, it contains not only ap-
pearance information but also motion and transi-
tions. Therefore, VideoQA requires spatial and
temporal aggregation of image features to encode
the video into a question-relevant representation.
Hence, temporal frame-level attention is utilized
to model the temporal dynamics, where frame-
level attribute detection and unified video repre-
sentation are learned jointly (Ye et al., 2017; Xu
et al., 2017; Mun et al., 2017). Similarly, Lei
et al. (2018) use Faster R-CNN (Ren et al., 2015b)
trained with the Visual Genome (Krishna et al.,
2017) dataset to detect object and attribute re-
gions in each frame, which are used as input fea-
tures to the question answering model. Previous
works also adopt various forms of external mem-
ory (Sukhbaatar et al., 2015; Kumar et al., 2016;
Graves et al., 2016) to store question informa-
tion, which allows multiple iterations of question-
conditioned inference on the video features (Na
et al., 2017; Kim et al., 2017; Zeng et al., 2017;
Gao et al., 2018; Chenyou Fan, 2019).

2.3 Video Question Answering Dialogue
Recently in DSTC7, Alamri et al. (2019a)
introduce the Audio-Visual Scene-aware Dialog
(AVSD) dataset for multi-turn VideoQA. In ad-
dition to the challenge of integrating the ques-
tions and the dynamic scene information, the di-
alogue system also needs to effectively incorpo-
rate the dialogue context for coreference resolu-
tion to fully understand the user’s questions across
turns. To this end, Alamri et al. (2019b) use two-
stream inflated 3D ConvNet (I3D) model (Car-
reira and Zisserman, 2017) to extract spatiotem-
poral visual frame features (I3D-RGB features for
RGB input and I3D-flow features for optical flow
input), and propose the Naı̈ve Fusion method to
combine multi-modal inputs based on the hierar-
chical recurrent encoder (HRE) architecture (Das
et al., 2017). Hori et al. (2018) extend the Naı̈ve
Fusion approach and propose the Attentional Fu-
sion method which learns multi-modal attention
weights to fuse features from different modalities.
Zhuang et al. (2019) modify the Attentional Fu-
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Figure 2: Overview of the proposed approach. First the I3D-RGB frame features are extracted. The question-
guided video representation module takes as input the question sentence and the I3D-RGB features, generates a
video representation for each token and applies gating using question as guidance. Then the question tokens are
augmented by the per-token video representations and encoded by a bidirectional LSTM encoder. Similarly, the
dialogue context is encoded by a bidirectional LSTM encoder. Finally, the LSTM answer decoder predicts the
answer sequence.

sion method and propose to use Maximum Mutual
Information (MMI) (Bahl et al., 1986) as the train-
ing objective. Besides the HRE architecture, the
multi-source sequence-to-sequence (Multi-Source
Seq2Seq) architecture with attention (Zoph and
Knight, 2016; Firat et al., 2016) is also commonly
applied (Pasunuru and Bansal, 2019; Kumar et al.,
2019; Yeh et al., 2019). Previous works (Sanabria
et al., 2019; Le et al., 2019; Pasunuru and Bansal,
2019) also explore various attention mechanisms
to incorporate the different modal inputs, such as
hierarchical attention (Libovickỳ and Helcl, 2017)
and cross attention (Seo et al., 2017). For mod-
eling visual features, Lin et al. (2019) propose
to use Dynamic memory networks (Kumar et al.,
2016) and Nguyen et al. (2019) propose to use
feature-wise linear modulation layers (Perez et al.,
2018).

3 Approach

We formulate the multi-turn VideoQA task as fol-
lows. Given a sequence of raw video frames f , the
embedded question sentence x = {x1, . . . , xK}
and the single concatenated embedded sentence of
the dialogue context d = {d1, . . . , dM}, the out-
put is an answer sentence y = {y1, . . . , yN}.

The architecture of our proposed approach is
illustrated in Figure 2. First the Video Frame
Feature Extraction Module extracts the I3D-

RGB frame features from the video frames (Sec-
tion 3.1). The Question-Guided Video Represen-
tation Module takes as input the embedded ques-
tion sentence and the I3D-RGB features, and gen-
erates a compact video representation for each to-
ken in the question sentence (Section 3.2). In the
Video-Augmented Question Encoder, the question
tokens are first augmented by their corresponding
per-token video representations and then encoded
by a bidirectional LSTM (Section 3.3). Simi-
larly, in the Dialogue Context Encoder, the dia-
logue context is encoded by a bidirectional LSTM
(Section 3.4). Finally, in the Answer Decoder, the
outputs from the Video-Augmented Question En-
coder and the Dialogue Context Encoder are used
as attention memory for the LSTM decoder to pre-
dict the answer sentence (Section 3.5). Our en-
coders and decoder work in the same way as the
multi-source sequence-to-sequence models with
attention (Zoph and Knight, 2016; Firat et al.,
2016).

3.1 Video Frame Feature Extraction Module

In this work, we make use of the I3D-RGB
frame features as the visual modality input, which
are pre-extracted and provided in the AVSD
dataset (Alamri et al., 2019a). Here we briefly
describe the I3D-RGB feature extraction process,
and we refer the readers to (Carreira and Zisser-
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man, 2017) for more details of the I3D model.
Two-stream Inflated 3D ConvNet (I3D) is a state-
of-the-art action recognition model which operates
on video inputs. The I3D model takes as input
two streams of video frames: RGB frames and
optical flow frames. The two streams are sepa-
rately passed to a respective 3D ConvNet, which
is inflated from 2D ConvNets to incorporate the
temporal dimension. Two sequences of spatiotem-
poral features are produced by the respective 3D
ConvNet, which are jointly used to predict the
action class. The I3D-RGB features provided in
the AVSD dataset are intermediate spatiotemporal
representations from the ”Mixed 5c” layer of the
RGB stream’s 3D ConvNet. The AVSD dataset
uses the I3D model parameters pre-trained on the
Kinetics dataset (Kay et al., 2017). To reduce the
number of parameters in our model, we use a train-
able linear projection layer to reduce the dimen-
sionality of I3D-RGB features from 2048 to 256.
Extracted from the video frames f and projected
to a lower dimension, the sequence of dimension-
reduced I3D-RGB frame features are denoted by
r = {r1, . . . , rL}, where ri ∈ R256,∀i.

3.2 Question-Guided Video Representation
Module

We use a bidirectional LSTM network to en-
code the sequence of question token embedding
x = {x1, . . . , xK}. The token-level inter-
mediate representations are denoted by xtok =
{xtok

1 , . . . , xtok
K }, and the embedded representation

of the entire question is denoted by xsen. These
outputs will be used to guide the video representa-
tion.

~h0 = ~hK+1 = 0 (1)
~hk = LSTMforw

guide(xk,
~hk−1) (2)

~hk = LSTMback
guide(xk,

~hk+1) (3)

xtok
k = ~hk ⊕ ~hk (4)

∀k ∈ {1, . . . ,K}
xsen = ~hK ⊕ ~h1 (5)

where ⊕ denotes vector concatenation; ~h and ~h
represent the local forward and backward LSTM
hidden states.

3.2.1 Per-Token Visual Feature
Summarization

Generally the sequence length of the video frame
features is quite large, as shown in Table 1. There-

fore it is not computationally efficient to encode
the video features using a recurrent neural net-
work. We propose to use the attention mechanism
to generate a context vector to efficiently summa-
rize the I3D-RGB features. We use the trilinear
function (Seo et al., 2017) as a similarity measure
to identify the frames most similar to the question
tokens. For each question token xk, we compute
the similarity scores of its encoded representation
xtok
k with each of the I3D-RGB features r. The

similarity scores sk are converted to an attention
distribution watt

k over the I3D-RGB features by the
softmax function. And the video summary vk cor-
responding to the question token xk is defined as
the attention weighted linear combination of the
I3D-RGB features. We also explored using dot
product for computing similarity and empirically
found out it yields suboptimal results.

sk,l = trilinear(xtok
k , rl) (6)

=Wsim[x
tok
k ⊕ rl ⊕ (xtok

k � rl)] (7)

∀l ∈ {1, . . . , L}
watt
k = softmax(sk) (8)

vk =

L∑

l=1

watt
k,l rl (9)

∀k ∈ {1, . . . ,K}
where� denotes element-wise multiplication, and
Wsim is a trainable variable.

3.2.2 Visual Feature Gating
Not all details in the video are important for an-
swering a question. Attention helps in discarding
the unimportant frames in the time dimension. We
propose a gating mechanism which enables us to
perform feature selection within each frame. We
project the sentence-level question representation
xsen through fully-connected layers with ReLU
nonlinearity to generate a gate vector g. For each
question token xk, its corresponding video sum-
mary vk is then multiplied element-wise with the
gate vector g to generate a gated visual summary
v

g
k. We also experimented applying gating on the

dimension-reduced I3D-RGB features r, prior to
the per-token visual feature summarization step,
but it resulted in an inferior performance.

g = sigmoid(Wg, 1(ReLU(Wg, 2x
sen + bg, 2)

+ bg, 1) (10)

vgk = vk � g (11)

∀k ∈ {1, . . . ,K}
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where Wg, 1, bg, 1, Wg, 2, bg, 2 are trainable vari-
ables.

3.3 Video-Augmented Question Encoder
Given the sequence of per-token gated visual
summary vg = {vg

1, . . . , v
g
K}, we augment the

question features by concatenating the embed-
ded question tokens x = {x1, . . . , xK} with
their associated per-token video summary. The
augmented question features are then encoded
using a bidirectional LSTM. The token-level
video-augmented question features are denoted by
qtok = {qtok

1 , . . . , qtok
K }, and the sentence-level fea-

ture is denoted by qsen.

~h0 = ~hK+1 = 0 (12)
~hk = LSTMforw

ques(xk ⊕ vg
k,
~hk−1) (13)

~hk = LSTMback
ques(xk ⊕ vg

k,
~hk+1) (14)

qtok
k = ~hk ⊕ ~hk (15)

∀k ∈ {1, . . . ,K}
qsen = ~hK ⊕ ~h1 (16)

where ~h and ~h represent the local forward and
backward LSTM hidden states.

3.4 Dialogue Context Encoder
Similar to the video-augmented question encoder,
we encode the embedded dialogue context tokens
d = {d1, . . . , dM} using a bidirectional LSTM.
The embedded token-level representations are de-
noted by dtok = {dtok

1 , . . . , dtok
M }.

~h0 = ~hM+1 = 0 (17)
~hm = LSTMforw

dial (dm,
~hm−1) (18)

~hm = LSTMback
dial (dm,

~hm+1) (19)

dtok
m = ~hm ⊕ ~hm (20)

∀m ∈ {1, . . . ,M}

where ~h and ~h represent the local forward and
backward LSTM hidden states.

3.5 Answer Decoder
The final states of the forward and backward
LSTM units of the question encoder are used to
initialize the state of answer decoder. Let yn be the
output of the decoder at step n, where 1 ≤ n ≤ N ,
y0 be the special start of sentence token and yemb

n

be the embedded representation of yn. At a de-
coder step n, the previous decoder hidden state

hn−1 is used to attend over qtok and dtok to get
the attention vectors hatt, q

n and hatt, d
n respectively.

These two vectors retrieve the relevant features
from the intermediate representations of the video-
augmented question encoder and the dialogue con-
text encoder, both of which are useful for generat-
ing the next token of the answer. At each decoder
step, the decoder hidden state hn is used to gener-
ate a distribution over the vocabulary. The decoder
output y∗n is defined to be argmaxyn p(yn|y≤n−1).

h0 = qsen (21)

s
q
n,k = v>ans, q tanh(Wans, q[hn−1 ⊕ qtok

k ]) (22)

∀k ∈ {1, . . . ,K}
wq
n = softmax(sq

n) (23)

hatt, q
n =

K∑

k=1

w
q
n,k q

tok
k (24)

sd
n,m = v>ans, d tanh(Wans, d[hn−1 ⊕ dtok

m ]) (25)

∀m ∈ {1, . . . ,M}
wd
n = softmax(sd

n) (26)

hatt, d
n =

M∑

m=1

wd
n,m dtok

m (27)

hn = LSTMans(y
emb
n−1, [h

att, q
n ⊕ hatt, d

n ⊕ hn−1])
(28)

p(yn|y≤n−1) = softmax(Wanshn + bans) (29)

∀n ∈ {1, . . . , N}

where h represents the local LSTM hidden states,
and Wans, q, Wans, d, Wans, bans are trainable vari-
ables.

4 Experiments

4.1 Dataset

We consider the Audio-Visual Scene-aware Di-
alog (AVSD) dataset (Alamri et al., 2019a) for
evaluating our proposed model in single-turn and
multi-turn VideoQA. We use the official release of
train set for training, and the public (i.e., proto-
type) validation and test sets for inference. The
AVSD dataset is a collection of text-based human-
human question answering dialogues based on the
video clips from the CHARADES dataset (Sig-
urdsson et al., 2016). The CHARADES dataset
contains video clips of daily indoor human activi-
ties, originally purposed for research in video ac-
tivity classification and localization. Along with
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Training Validation Test

# of dialogues 7659 732 733
# of turns 153,180 14,680 14,660
# of words 1,450,754 138,314 138,790
Avg. length of

8.5 8.4 8.5
question (K)
Avg. length of

179.2 173.0 171.3
I3D-RGB (L)

Table 1: Data statistics of the AVSD dataset. We use
the official training set, and the public (i.e., prototype)
validation and test sets. We also present the average
length of the question token sequences and the I3D-
RGB frame feature sequences to highlight the impor-
tance of time efficient video encoding without using a
recurrent neural network. The sequence lengths of the
questions and I3D-RGB frame features are denoted by
K and L respectively in the model description (Sec-
tion 3).

the video clips and associated question answer-
ing dialogues, the AVSD dataset also provides the
pre-extracted I3D-RGB visual frame features us-
ing a pre-trained two-stream inflated 3D ConvNet
(I3D) model (Carreira and Zisserman, 2017). The
pre-trained I3D model was trained on the Kinetics
dataset (Kay et al., 2017) for human action recog-
nition.

In Table 1, we present the statistics of the AVSD
dataset. Given the fact that the lengths of the I3D-
RGB frame feature sequences are more than 20
times longer than the questions, using a recurrent
neural network to encode the visual feature se-
quences will be very time consuming, as the vi-
sual frames are processed sequentially. Our pro-
posed question-guided video representation mod-
ule summarizes the video sequence efficiently -
aggregating the visual features by question-guided
attention and weighted summation and performing
gating with a question-guided gate vector, both of
which can be done in parallel across all frames.

4.2 Experimental Setup

We implement our models using the Ten-
sor2Tensor framework (Vaswani et al., 2018). The
question and dialogue context tokens are both em-
bedded with the same randomly-initialized word
embedding matrix, which is also shared with the
answer decoder’s output embedding. The dimen-
sion of the word embedding is 256, the same di-
mension to which the I3D-RGB features are trans-
formed. All of our LSTM encoders and decoder

have 1 hidden layer. Bahdanau attention mecha-
nism (Bahdanau et al., 2015) is used in the an-
swer decoder. During training, we apply dropout
rate 0.2 in the encoder and decoder cells. We use
the ADAM optimizer (Kingma and Ba, 2015) with
α = 2 × 10−4, β1 = 0.85, β2 = 0.997, ε =
10−6, and clip the gradient with L2 norm thresh-
old 2.0 (Pascanu et al., 2013). The models are
trained up to 100K steps with early stopping on
the validation BLEU-4 score using batch size 1024
on a single GPU. During inference, we use beam
search decoding with beam width 3. We exper-
imented with word embedding dimension {256,
512}, dropout rate {0, 0.2}, Luong and Bahdanau
attention mechanisms, {1, 2} hidden layer(s) for
both encoders and the decoder. We found the
aforementioned setting worked best for most mod-
els.

5 Results

5.1 Comparison with Existing Methods

We evaluate our proposed approach using the
same natural language generation evaluation
toolkit NLGEval (Sharma et al., 2017) as the pre-
vious approaches. The corpus-wide scores of the
following unsupervised automated metrics are re-
ported, including BLEU-1 through BLEU-4 (Pa-
pineni et al., 2002), METEOR (Banerjee and
Lavie, 2005), ROUGE-L (Lin and Och, 2004) and
CIDEr (Vedantam et al., 2015). The results of
our models in comparison with the previous ap-
proaches are shown in Table 2. We report the
mean and standard deviation scores of 5 runs us-
ing random initialization and early stopping on the
public (prototype) validation set. We apply our
model in two scenarios: single-turn and multi-turn
VideoQA. The only difference is that in single-
turn VideoQA, the dialogue context encoder is ex-
cluded from the model.

First we observe that our proposed multi-turn
VideoQA model significantly outperforms the
single-turn VideoQA model. This suggests that
the additional dialogue context input can provide
supplementary information from the question and
visual features, and thus is helpful for generat-
ing the correct answer. Secondly, comparing the
single-turn VideoQA models, our approach out-
performs the existing approaches across all auto-
matic evaluation metrics. This suggests the ef-
fectiveness of our proposed question-guided video
representations for VideoQA. When comparing

220



Single-Turn VideoQA Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Naı̈ve Fusion 27.7 17.5 11.8 8.3 11.7 28.8 74.0
Multi-source Seq2Seq - - - 8.83 12.43 34.23 95.54
Ours 29.56±0.75 18.60±0.49 13.16±0.33 9.77±0.21 13.19±0.20 34.29±0.19 101.75±1.03

Multi-Turn VideoQA Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

Naı̈ve Fusion 27.7 17.6 12.0 8.5 11.8 29.0 76.5
Attentional Fusion 27.6 17.7 12.2 8.7 11.7 29.3 78.7
Modified Attn. Fusion 27.7 17.6 12.0 8.5 11.8 29.0 76.5

+MMI objective 28.3 18.1 12.4 8.9 12.1 29.6 80.5
Hierarchical Attention 29.1 18.6 12.6 9.0 12.7 30.1 82.4

+pre-trained embedding 30.7 20.4 14.4 10.6 13.6 32.0 99.5
Multi-Source Seq2Seq - - - 10.58 14.13 36.54 105.39
Ours 30.52±0.34 20.00±0.20 14.46±0.14 10.93±0.11 13.87±0.10 36.62±0.23 113.28±1.37

Table 2: Comparison with existing approaches: Naı̈ve Fusion (Alamri et al., 2019b; Zhuang et al., 2019), Atten-
tional Fusion (Hori et al., 2018; Zhuang et al., 2019), Multi-Source Sequence-to-Sequence model (Pasunuru and
Bansal, 2019), Modified Attentional Fusion with Maximum Mutual Information objective (Zhuang et al., 2019)
and Hierarchical Attention with pre-trained embedding (Le et al., 2019), on the AVSD public test set. For each
approach, we report its corpus-wide scores on BLEU-1 through BLEU-4, METEOR, ROUGE-L and CIDEr. We
report the mean and standard deviation scores of 5 runs using random initialization and early stopping on the public
(prototype) validation set.

Model BLEU-4 METEOR ROUGE-L CIDEr

Ours 10.94 13.73 36.30 111.12
-TokSumm 10.46 13.49 35.81 110.08
-Gating 10.59 13.64 36.11 108.51
-TokSumm-Gating 10.06 13.20 35.35 104.01

Table 3: Ablation study on the AVSD validation set.
We observe that the performance degrades when either
of both of the question-guided per-token visual feature
summarization (TokSumm) and feature gating (Gating)
techniques are removed.

with previous multi-turn VideoQA models, our
approach that uses the dialogue context (ques-
tions and answers in previous turns) yields state-
of-the-art performance on the BLEU-3, BLEU-4,
ROUGE-L and CIDEr metrics and competitive re-
sults on BLEU-1, BLEU-2 and METEOR. It is
worth mentioning that our model does not use pre-
trained word embedding or audio features as in the
previous hierarchical attention approach (Le et al.,
2019).

5.2 Ablation Study and Weights
Visualization

We perform ablation experiments on the valida-
tion set in the multi-turn VideoQA scenario to an-
alyze the effectiveness of the two techniques in the
question-guided video representation module. The
results are shown in Table 3.

5.2.1 Question-Guided Per-Token Visual
Feature Summarization (TokSumm)

Instead of using token-level question representa-
tions xtok = {xtok

1 , . . . , xtok
K } to generate per-token

video summary v = {v1, . . . , vK}, we experiment
with using the sentence-level representation of the
question xsen as the query vector to attend over the
I3D-RGB visual features to create a visual sum-
mary v, and use v to augment each of the question
tokens in the video-augmented question encoder.

sl = trilinear(xsen, rl) (30)

∀l ∈ {1, . . . , L}
watt = softmax(s) (31)

v =
L∑

l=1

watt
l rl (32)

We observe the performance degrades when the
sentence-level video summary is used instead of
the token-level video summary.

Figure 3 shows an example of the attention
weights in the question-guided per-token visual
feature summarization. We can see that for dif-
ferent question tokens, the attention weights are
shifted to focus on the different segment in the se-
quence of the video frame features.

5.2.2 Question-Guided Visual Feature Gating
(Gating)

We also experiment with using the non-gated
token-level video summary v = {v1, . . . , vK} to
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Figure 3: Question-guided per-token visual feature summary weights on a question. Each row represents the
attention weights watt

k of the corresponding encoded question token xtok
k over the I3D-RGB visual features. We can

observe that the attention weights are shifted to focus on the relevant segment of the visual frame features for the
question tokens “after the younger man leaves <eos>?”

Figure 4: Question-guided gate weights g for some example questions. Across the questions about similar subjects,
we observe a similar trend of weight distribution over visual feature dimensions. Conversely, questions about
different topics show different gate weights patterns.

augment the question information in the video-
augmented question encoder. We observe the
model’s performance declines when the question-
guided gating is not applied on the video summary
feature. Removing both the per-token visual fea-
ture summarization and the gating mechanism re-
sults in further degradation in the model perfor-
mance.

Figure 4 illustrates the question-guided gate
weights g of several example questions. We
observe that the gate vectors corresponding to
the questions regarding similar subjects assign
weights on similar dimensions of the visual fea-
ture. Although many of the visual feature dimen-
sions have low weights across different questions,
the feature dimensions of higher gate weights still
exhibit certain topic-specific patterns.

6 Conclusion and Future Work

In this paper, we present an end-to-end trainable
model for single-turn and multi-turn VideoQA.

Our proposed framework takes the question, I3D-
RGB video frame features and dialogue context
as input. Using the question information as guid-
ance, the video features are summarized as com-
pact representations to augment the question in-
formation, which are jointly used with the dia-
logue context to generate a natural language an-
swer to the question. Specifically, our proposed
question-guided video representation module is
able to summarize the video features efficiently for
each question token using an attention mechanism
and perform feature selection through a gating
mechanism. In empirical evaluation, our proposed
models for single-turn and multi-turn VideoQA
outperform existing approaches on several auto-
matic natural language generation evaluation met-
rics. Detailed analyses are performed, and it is
shown that our model effectively attends to rel-
evant frames in the video feature sequence for
summarization, and the gating mechanism shows
topic-specific patterns in the feature dimension se-
lection within a frame. In future work, we plan
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to extend the models to incorporate audio features
and experiment with more advanced techniques to
incorporate the dialogue context with the question
and video information, such as hierarchical atten-
tion and co-attention mechanisms. We also plan
to employ our model on TVQA, a larger scale
VideoQA dataset.

References
Aishwarya Agrawal, Jiasen Lu, Stanislaw Antol, Mar-

garet Mitchell, C Lawrence Zitnick, Devi Parikh,
and Dhruv Batra. 2017. VQA: Visual question an-
swering. International Journal of Computer Vision
(IJCV).

Huda Alamri, Vincent Cartillier, Abhishek Das, Jue
Wang, Stefan Lee, Peter Anderson, Irfan Essa, Devi
Parikh, Dhruv Batra, Anoop Cherian, Tim K. Marks,
and Chiori Hori. 2019a. Audio visual scene-aware
dialog. In Computer Vision and Pattern Recognition
(CVPR).

Huda Alamri, Chiori Hori, Tim K. Marks, Dhruv Batra,
and Devi Parikh. 2019b. Audio visual scene-aware
dialog (avsd) track for natural language generation
in dstc7. In DSTC7 at AAAI 2019 Workshop.

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei
Zhang. 2018. Bottom-up and top-down attention for
image captioning and visual question answering. In
Computer Vision and Pattern Recognition (CVPR).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In International Con-
ference on Learning Representations (ICLR).

Lalit R Bahl, Peter F Brown, Peter V De Souza, and
Robert L Mercer. 1986. Maximum mutual infor-
mation estimation of hidden markov model param-
eters for speech recognition. In International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP).

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In ACL work-
shop on intrinsic and extrinsic evaluation measures
for machine translation and/or summarization.

Joao Carreira and Andrew Zisserman. 2017. Quo
vadis, action recognition? a new model and the
Kinetics dataset. In Computer Vision and Pattern
Recognition (CVPR).

Shu Zhang Wensheng Wang Chi Zhang Heng Huang
Chenyou Fan, Xiaofan Zhang. 2019. Heterogeneous
memory enhanced multimodal attention model for
video question answering. In Computer Vision and
Pattern Recognition (CVPR).

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi
Singh, Deshraj Yadav, José MF Moura, Devi Parikh,
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Abstract

Automatically classifying the relation between
sentences in a discourse is a challenging task,
in particular when there is no overt expression
of the relation. It becomes even more chal-
lenging by the fact that annotated training data
exists only for a small number of languages,
such as English and Chinese. We present a
new system using zero-shot transfer learning
for implicit discourse relation classification,
where the only resource used for the target lan-
guage is unannotated parallel text. This system
is evaluated on the discourse-annotated TED-
MDB parallel corpus, where it obtains good
results for all seven languages using only En-
glish training data.

1 Introduction

The difference between a set of randomly se-
lected sentences and a discourse lies in coherence.
Among other attempts at defining the elusive na-
ture of coherence, one way is to look at the mean-
ing conveyed between the adjacent pair of sen-
tences. In the current study, we follow the Penn
Discourse Treebank (PDTB) framework which re-
gards abstract objects (Asher, 2012) as the units
of discourse and views the text as a collection of
discourse level predicates, each taking two argu-
ments. Such predicates, called discourse connec-
tives, may (Ex. 1) or may not (Ex. 2) be repre-
sented in the surface form:

1. Because the drought reduced U.S. stock-
piles, they have more than enough storage
space for their new crop, and that permits
them to wait for prices to rise.

2. But a few funds have taken other defensive
steps. Some have raised their cash positions
to record levels. Implicit = BECAUSE High
cash positions help buffer a fund when the
market falls.

where italics represents the first and boldface the
second argument to the underlined discourse con-
nective. The discourse relations which lack an
overt discourse connective (Ex. 2) are referred as
implicit discourse relations and are shown to be
the most challenging part of the discourse parsing
(e.g. Pitler et al., 2009).

In this paper, we perform implicit discourse re-
lation classification using three recent data sets an-
notated according to the same guidelines: Penn
Discourse Treebank (PDTB) 3.0, the Turkish Dis-
course Bank (TDB), and the multilingual TED-
MDB. To the best of our knowledge, multilingual
training and zero-shot transfer has not previously
been investigated for this problem. The results
suggest that an implicit discourse relation classi-
fier can transfer well across dissimilar languages,
and that pooling training data from unrelated lan-
guages (English and Turkish) leads to significantly
better performance for all languages.

2 Related Work

Implicit discourse relation recognition is often
handled as a classification task, where earlier stud-
ies focused on using linguistically rich features
(Pitler et al., 2009; Zhou et al., 2010; Park and
Cardie, 2012; Rutherford and Xue, 2014).

Recently, neural network approaches have be-
come popular. Ji and Eisenstein (2015) use two
RNNs on the syntactic trees of the arguments
whereas Zhang et al. (2015) use a CNN to perform
discourse parsing in a multi-task setting where
they consider both explicit and implicit discourse
relations.

Rutherford and Xue (2016) use a simple yet ro-
bust feedforward network and achieves the highest
performance on the out-of-domain blind test in the
CoNLL 2016 shared task (Xue et al., 2016).

Lan et al. (2017) apply a multi-task attention-
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based neural network model whereas Bai and
Zhao (2018) focus on the representation of the
sentence pair and take different levels of text, from
character to sentence pair, into account to achieve
a richer representation.

Dai and Huang (2018) adopt a similiar ap-
proach and represent discourse units by consid-
ering a wider paragraph-level context. The dis-
course unit representations are created by a Bi-
LSTM which takes a sequence of discourse rela-
tions in a paragraph which enables capturing the
inter-dependencies between discourse relations as
well.

3 Data

We use four different data sets: the Penn Discourse
Treebank (PDTB) version 2.0 (Prasad et al., 2008)
and version 3.0 (Prasad et al., 2018), as well as the
TED Multilingual Discourse Bank (TED-MDB,
Zeyrek et al. 2018) and the Turkish Discourse
Bank (TDB, Zeyrek and Kurfalı 2017).

The PDTB is built upon the 1 million word
Wall Street Journal corpus and is the largest avail-
able resource for discourse relations. Most related
work uses PDTB 2.0, so we include this for com-
paring our baseline to previous work.

The recently released PDTB 3.0 adopts a new
annotation schema as well as an updated sense hi-
erarchy. PDTB 3.0 includes the annotations of
PDTB 2.0 updated according to the new annota-
tion schema, as well as about 13 thousand new an-
notations, of which about 5K are implicit relations
(Prasad et al., 2018). The distribution of the top
level senses of the implicit discourse relations in
both PDTB versions is provided in Table 1.

TED-MDB (Zeyrek et al., 2018) is the first par-
allel corpus annotated for discourse relations. It
closely follows the PDTB 3.0 framework and in-
cludes the manual annotations of six TED talks in
seven languages (English, Turkish, European Por-
tuguese, Polish, German, Russian) aiming to allow
crosslingual comparison of discourse relations1. It
has recently also been updated with Lithuanian
(Oleskeviciene et al., 2019).

Despite the high number of languages covered
by TED-MDB, the amount of annotated text per
language is limited (see Table 2). Therefore, in the
current study, we limit ourselves with the top level
senses, namely Expansion, Contingency, Compar-

1The TED-MDB annotations are available at:
https://github.com/MurathanKurfali/Ted-MDB-Annotations

ison and Temporal. We only use TED-MDB for
evaluation.

Among the TED-MDB languages other than
English, only Turkish has another corpus an-
notated with PDTB 3.0 discourse annotations,
namely the Turkish Discourse Bank (TDB). TDB
is a multi-genre corpus of 40 000 words, consider-
ably less than the PDTB (see Table 2), but it pro-
vides the only directly comparable baseline to as-
sess the performance of zero-shot learning.

PDTB2 PDTB3
Sense Train Dev Test Train Dev Test
Comp. 1894 401 146 1828 404 153
Cont. 3281 628 276 5872 1159 527
Exp. 6792 1253 556 7939 1466 643
Temp. 665 93 68 1413 230 148

Table 1: Distribution of top level senses of the im-
plicit discourse relations in PDTB 2.0 and PDTB 3.0
training, development and test sets: comp(arison),
cont(ingency), exp(ansion), temp(oral).

4 Model

The main purpose of this study is to assess the per-
formance of transfer learning on the implicit dis-
course relation classification task. To this end, we
use a simple feedforward network fed with mul-
tilingual sentence embeddings following the find-
ing of (Rutherford et al., 2017) which shows that
simple discourse models with feedforward layers
perform on par or better than those of with sur-
face features or recurrent and convolutional archi-
tectures.

We follow the model of (Rutherford and Xue,
2016) due to its simplicity and robust nature even
in the multilingual setting with different argument
and discourse relation representations. We repre-
sent the arguments of the discourse relation via
pre-trained LASER model (Artetxe and Schwenk,
2018). LASER is chosen as it is the current state-
of-the-art model on several Natural Language In-
ference (NLI) transfer learning tasks, a sentence
relation classification problem similar to discourse
relation classification.

Given the argument vectors, Varg1 and Varg2,
the next step is to represent the discourse relation
in a way that the interactions between them are
captured. To this end, we model the discourse
relation vector, Vdr, by performing the following
pair-wise vector operations following the DisSent
model of (Nie et al., 2017):
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Language Comparison Contingency Expansion Temporal Total
English 20 (10.31%) 52 (26.80%) 107 (55.15%) 15 (7.73%) 194 (100%)
German 13 (6.07%) 41 (19.16%) 148 (69.16%) 12 (5.61%) 214 (100%)
Lithuanian 26 (10.57%) 53 (21.54%) 154 (62.60%) 13 (5.28%) 246 (100%)
Polish 19 (9.74%) 28 (14.36%) 130 (66.67%) 18 (9.23%) 195 (100%)
Portuguese 23 (9.06%) 47 (18.50%) 169 (66.54%) 15 (5.91%) 254 (100%)
Russian 16 (7.24%) 31 (14.03%) 169 (76.47%) 5 (2.26%) 221 (100%)
Turkish 20 (9.90%) 29 (14.36%) 140 (69.31%) 13 (6.44%) 202 (100%)
TDB (training) 71 (10.94%) 142 (21.88%) 363 (55.93%) 73 (11.25%) 649 (100%)
TDB (dev) 11 (9.82%) 31 (27.68%) 49 (43.75%) 21 (18.75%) 112 (100%)

Table 2: Distribution of top level senses of the implicit discourse relations in the TED-MDB and TDB corpora.
The numbers within the parenthesis indicate the ratio. Since there is no official training/dev split for TDB, we
arbitrarily chose two sections with different genres for the development set.

Vavg =
1

2
(Varg1 + Varg2)

Vsub = Varg1 − Varg2
Vmul = Varg1 ∗ Varg2

Vdr = [Varg1, Varg2, Vavg, Vsub, Vmul]

The resulting vector is further fed into a hidden
layer ht with d hidden units2 to achieve a more
abstract representation of the relation and finally
the output o is calculated using the sigmoid func-
tion. This model is also essentially the same as
was used by Artetxe and Schwenk (2018) for NLI
transfer learning.

5 Experiments

We formulate the implicit relation classification as
four ”one vs other” binary classification task. We
follow the conventional setting of the first study
(Pitler et al., 2009) and split the PDTB 2.0 into
training (sections 2-20), development (sections 0-
1 and 23-24) and test sets (sections 21-22) to
have directly comparable results with the previous
work. However, following the PDTB’s original
distinction but unlike some previous work, we dis-
tinguish Entity-based relations from implicit rela-
tions. Each classifier is trained on an equal number
of positive and negative instances where the nega-
tive instances are randomly selected in each epoch
to have a better representation of the data during
the training. This model is evaluated on the PDTB
2.0 test set to confirm whether our model performs
adequatly on same-language, same-domain data.
These results are directly comparable to previous
work.

2We use d=100 in the experiments

As TED-MDB is annotated according to the
PDTB 3.0 framework, we train separate classifiers
on PDTB 3.0 following the same convention as
above. We test the trained models on all the im-
plicit discourse relations in the TED-MDB corpus.

The PDTB framework allows annotations to be
labelled with more than one label. In such cases
we only keep the first label, in line with previ-
ous studies (among others Ji and Eisenstein, 2015;
Rutherford et al., 2017).

The argument vectors are kept fixed during the
training, and we do not update the parameters of
the LASER model. We use cross-entropy loss, and
AdaGrad as the optimizer. We evaluate using the
model which achieved the highest F-score on the
development set. As for the regularization, we use
a dropout layer between the input and the hidden
layer with a dropout probability of 0.3. All models
are run 100 times to estimate the variance due to
random initialization and stochastic training. All
the models are implemented in PyTorch3.

6 Results and Discussion

Table 3 shows the same-language, same-domain
performance of our system, in comparison to pre-
vious work. All figures refer to PDTB 2.0 test set
F-score, when trained on the PDBT 2.0 training
set, and are directly comparable. While our model
does not achieve state-of-the-art performance in
this setting, this experiment shows that it performs
adequately for English, and provides a reasonable
baseline for the zero-shot experiments presented
in Tables 4 and 5. We also include a naive baseline
system which always predicts TRUE and is evalu-
ated on the respective (PDTB 2.0 or PDTB 3.0)

3https://pytorch.org/
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Comparison Contingency Expansion Temporal
(Pitler et al., 2009) 21.96 47.13 - 16.76
(Zhou et al., 2010) 31.79 47.16 70.11 20.30
(Park and Cardie, 2012) 31.32 49.82 - 26.57
(Rutherford and Xue, 2014) 39.70 54.42 70.23 28.69
(Zhang et al., 2015) 33.22 52.04 69.59 30.54
(Ji and Eisenstein, 2015) 35.93 52.78 - 27.63
(Lan et al., 2017) 40.73 58.96 72.47 38.50
(Bai and Zhao, 2018) 47.85 54.47 70.60 36.87
(Dai and Huang, 2018) 46.79 57.09 70.41 45.61
Baseline 24.49 41.75 69.41 12.20
Our system 28.19 (±0.83) 50.63 (±1.00) 64.07 (±1.90) 29.22 (±2.53)

Table 3: Comparison of the F scores (%) of binary classifiers on PDTB 2.0 test set. Left out scores refer to the
results where EntRel relations are also considered to be Expansion.

Language Comparison Contingency Expansion Temporal Average
Baseline (PDTB 3.0) 18.84 52.75 60.83 18.28 37.67
PDTB 3.0 24.90 (±0.87) 59.18 (±0.72) 60.10 (±1.32) 36.73 (±1.45) 45.23
German 8.62 (±1.61) 37.34 (±1.43) 70.81 (±3.16) 40.11 (±4.32) 39.22
English 10.18 (±3.31) 40.92 (±1.80) 62.28 (±2.16) 50.45 (±5.26) 40.96
Lithuanian 23.50 (±2.33) 34.64 (±1.43) 62.35 (±2.65) 36.78 (±3.28) 39.32
Polish 16.50 (±3.51) 29.19 (±1.36) 60.32 (±2.84) 44.17 (±3.37) 37.54
Portuguese 19.59 (±1.99) 33.85 (±1.27) 66.83 (±2.57) 37.04 (±3.43) 39.33
Russian 14.90 (±2.07) 26.76 (±1.08) 70.06 (±3.97) 28.28 (±4.41) 35.00
Turkish 10.99 (±3.16) 25.28 (±1.23) 64.14 (±2.96) 33.66 (±4.31) 33.52

Table 4: F scores (%) when the model is trained only on PDTB 3.0. In the table, PDTB 3.0 refers to the test set of
the PDTB 3.0 corpus. The remaining rows refer to evaluations using TED-MDB.

test set in our comparisons.
In all zero-shot experiments, evaluation is per-

formed on the available test data with PDTB 3.0
annotations: TED-MDB, and the PDTB 3.0 test
set itself. Results in Table 4 use PDTB 3.0 only
for training, whereas Table 5 presents the effect
of having additional training data from Turkish (a
language unrelated to English). Pooling training
data from different languages is possible since our
model is language-agnostic.

In all zero-shot experiments, we see similar
levels of performance across all the evaluated
languages in TED-MDB. While not completely
comparable numerically since annotations differ
slightly between languages, this evaluation set
consists of parallel sentences annotated according
to the same guidelines. The similarity in scores
between the training language(s)—English and/or
Turkish—and the remaining languages indicates
that little accuracy is lost during transfer.

Comparing the performances with and without
additional Turkish data, TDB, reveals that adding

a small amount (relative to the size of PDTB 3.0)
of Turkish training data improves the F-scores by a
statistically significant amount4 for not only Turk-
ish, but for all the languages in TED-MDB Ta-
ble 5.

7 Conclusion

In the current paper we have presented the (to
the best of our knowledge) first study of zero-shot
learning in the implicit discourse relation classifi-
cation task. Our method does not require any dis-
course level annotation for the target languages,
yet still achieves good performance even for those
languages where no training data is available. The
performance is further increased by pooling train-
ing data from multiple languages. Using our pub-
lished code5 and publicly available resources it
can used for implicit discourse classification in

4On a sense-wise analysis, we observe that the main in-
crease is in the Expansion relations; however, there is no de-
crease in any of the other senses.

5https://github.com/MurathanKurfali/multilingual IDRC
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Language TDB PDTB3 PTDB3+TDB
PDTB3 Test 35.35 45.23 45.62
German 36.93 39.22 41.44
English 38.06 40.96 42.22
Lithuanian 36.92 39.32 41.94
Polish 35.48 37.54 39.65
Portuguese 37.58 39.33 41.04
Russian 30.92 35.00 38.23
Turkish 39.58 33.52 37.14

Table 5: Comparison of average F-scores (%) when the
model is trained on different training sets. Bold means
significantly higher F-score than the second highest
column (p < 0.001, Mann-Whitney U test).

nearly a hundred languages.
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Abstract

Patients with chronic conditions like heart fail-
ure are most likely to be re-hospitalized. One
step towards avoiding re-hospitalization is to
devise strategies for motivating patients to take
care of their own health. In this paper, we per-
form a quantitative analysis of patients’ narra-
tives of their experience with heart failure and
explore the different topics that patients talk
about. We compare two different groups of
patients- those unable to take charge of their
illness, and those who make efforts to improve
their health. We will use the findings from
our analysis to refine and personalize the sum-
maries of hospitalizations that our system au-
tomatically generates.

1 Introduction

Patients with heart failure are responsible for
around 95% of their chronic illness care and their
daily decisions have a huge impact on their qual-
ity of life (Funnell, 2000). Studies have shown that
the patients’ perspective is essential for patient ed-
ucation (Shapiro, 1993) and that engaging the pa-
tients in their own care reduces hospitalizations
and prevents further deterioration of their health
(Riegel et al., 2011; McGinnis et al., 2013).

We are engaged in a large, long-term project
that aims to improve patient discharge instructions
with a personalized and comprehensible summary
of their hospital stay that is informed by the per-
spectives of the three main stake-holders: doctors,
nurses, and patients. Over the last few years, we
have developed and implemented a framework for
summarizing heterogeneous information (textual
discharge notes from the doctor, structured infor-
mation from the nurses) and providing explana-
tions for difficult medical terms (Di Eugenio et al.,
2014; Acharya et al., 2016, 2018, 2019). Figure 1
shows a part of a summary that is generated by our
system.

You were admitted for acute subcortical
cerebrovascular accident. During your hospitaliza-
tion, you were monitored for chances of ineffec-
tive cerebral tissue perfusion, risk for falls, problem
in verbal communication and walking. We treated
difficulty walking related to nervous system disorder with
body mechanics promotion. [...] As a result, fall prevention
behavior and [...] improved slightly. With your nurse and
doctors, you learned about disease process and medication.
Follow-up: Can follow-up with General Neurology clinic
and Medicine clinic as outpatient if desired.

Figure 1: Portion of a summary generated by our sys-
tem. Underlined terms provide a lay language defini-
tion when clicked.

A high level flowchart of the algorithm is shown
in Appendix A. At this point, most inputs in pink
are available for and used by the algorithm other
than strengths and concerns of the patient (un-
covering which is part of the focus of this paper).
Specifically, the current version of our system uses
the following personalization features:
A) Participation in self-care: The Patient Activa-
tion Measure (PAM) (Hibbard et al., 2004) quan-
tifies how motivated patients are in taking care of
their health. Based on the responses to a set of 13
questions, PAM assigns a level between 1 and 4.
Level 1 indicates that the patient is overwhelmed,
while level 4 indicates that the patient is motivated
to participate in self-care.
B)Familiarity with the health issue : This fea-
ture takes into account different factors that con-
tribute towards a patient’s understanding of their
health - i) The health literacy of the patient, which
represents the ability of a patient to read and un-
derstand general health information, as measured
by the REALM metric (Davis et al., 1993) ; ii)
Patient’s prior experience - either because of their
own sufferings or because someone in their family
had the same issue; iii) Patient’s self-assessment
of their health knowledge, as obtained from some
of the questions in the PAM.
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While the developers of the PAM provide some
instructions on how to address patients at differ-
ent PAM levels1, no systematic study of these pa-
tients and their views of their illness exist. Un-
der the assumption that such a study can reveal
features useful to personalize our summaries, we
conducted interviews with 26 patients, who were
also asked to answer the PAM questionnaire. In
this paper, we describe the quantitative analyses
that we have performed on those patient inter-
views. We start with differences in the terms that
those patients use for recounting their health expe-
riences. We found that in spite of using fewer med-
ical terms, patients with high PAM levels speak a
higher proportion of unique medical terms. Our
analysis of the patients’ use of pronouns suggests
that patients with low PAM levels tend to self-
focus, which is associated with negative effects
and low self-confidence (Duval and Wicklund,
1972; Pyszczynski and Greenberg, 1987). Finally,
we discuss themes that emerge from those con-
versations, with the goal of highlighting aspects
that hold significance in the patients’ lives: for
example, patients with high PAM focus more on
activities they are interested in, patients with low
PAM on their own feelings (confirming the finding
about pronouns just discussed).

2 Related Work

While several systems exist that summarize med-
ical content (Scott et al., 2013; Pauws et al.,
2019), only a few of them produce personalized
summaries (Mahamood and Reiter, 2011). Un-
like these systems that focus on data-to-text sum-
marization, our personalized summary generation
system combines the information from physician
and nursing documents and provides hospitaliza-
tion information to patients in a form that they can
understand. Even though a lot of studies have fo-
cused on verifying the reliability of the PAM met-
ric (Fowles et al., 2009), no work uses it to pro-
duce personalized content for patients. Most of
the existing qualitative studies on the narratives of
heart failure patients (Jeon et al., 2010; Seah et al.,
2016) focus on identifying the factors that impact
the patient’s self-care and self-management skills.
However, none of these studies has looked into the
relationship between the content spoken by the pa-

1 https://participatorymedicine.org/epatients/2011/10/the
−patient−activation−measure−pam−a−framework−for
−developing−patient−engagement.html

tients and their motivation to participate in self-
care. Our quantitative analyses are inspired by
Pennebaker (2003) and are similar to the studies
that predict the empathy of the counselor based on
the words used during the session (Althoff et al.,
2016; Pérez-Rosas et al., 2017; Xiao et al., 2014).

3 Interview Collection

Category Values
Avg. number of words in an interview(P) 1655
Avg. number of words in an interview (I) 1104
Avg. number of words/utterance (P) 8
Avg. number of words/utterance (I) 6
Number of low PAM patients 14
Number of high PAM patients 12

Table 1: Distributional analysis of the interviews (P:
Patient, I: Interviewer)

Since there are no existing publicly available
data sets that provide information on the experi-
ences of heart-failure patients, we proceeded to
collect one.2 We interviewed 26 patients (age
range 20-70 years, 58% females) who were hos-
pitalized because of heart issues (snippets of an
interview can be found in Appendix A). These 50
minutes long open-ended interview sessions were
led by a sociolinguist and were later transcribed by
professional transcribers. In general, each inter-
view consists of the following stages: 1) Patients
are asked to provide their demographic informa-
tion; 2) Patients are asked to recount their first ex-
perience with heart issues, which often leads to
them talking about many other issues related to
life-style or family; 3) Patients are asked about the
recent hospitalization and their experiences; 4) Pa-
tients answer the PAM questions; 5) If interested,
patients talk about their interests or have a general
conversation with the interviewer. For our analy-
ses, we group the patients with PAM level 1 or 2
and refer to them as low PAM patients, while we
refer to the group of patients with PAM levels 3 or
4 as high PAM patients. The general statistics on
the interviews is shown in Table 1.

4 Distinguishing Low from High PAM
Patients

We extracted several features from the transcripts,
including the counts of different part-of-speech

2The data is not sharable because of human subject
protection constraints, especially as dictated by HIPAA
(the Health Insurance Portability and Accountability Act of
1996), United States legislation regarding the safeguard of
private health care information.
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tags, total positive and negative words, and med-
ical and non-medical type-token ratio (TTR) (i.e.
ratio of the number of unique words to the number
of words). We then used a Random Forest based
approach3 for determining the importance of each
feature in predicting the PAM level. This process
identified some significant features, which are fur-
ther analyzed in Section 4.1 and Section 4.2.

4.1 Usage of medical terms

We extracted the average number of words spoken
by the group of low and high PAM patients sepa-
rately, including the number of medical terms (ex-
tracted using cTAKES tool (Savova et al., 2010) ),
TTR, and medical TTR. We found that patients
with low PAM speak more but have lower value
for TTR. Similarly, patients with low PAM use
more medical terms, which account for 8% of their
words; for patients with high PAM, medical terms
constitute 6% of their total words, but they were
found to have higher medical TTR. Although none
of these differences is statistically significant, they
still suggest that there is a difference in the lexi-
cal diversity (both general and medical) of the two
groups of patients.

4.2 Patient outlook

4.2.1 Reference to self
Researchers on human psychology mention that
when individuals start to focus their attention on
themselves, they step into a self-evaluative pro-
cess, where they compare their present to where
they aspire to be. For those cases where the
present lags behind the aspired standard, self-
focus produces a negative effect (Duval and Wick-
lund, 1972; Pyszczynski and Greenberg, 1987).
Similarly, the PAM metric characterizes a patient
with low PAM score as an individual who is over-
whelmed and weighed down by negative emo-
tions. On the other hand, patients with high PAM
are ready to take on challenges and make efforts
to improve their health. Hence, in order to ver-
ify whether patients with low PAM focus more on
themselves, we compared the relative amount of
first person singular pronoun vs second and third
person pronouns (both singular and plural) used by
low and high PAM patients. We split each patient
transcript into five parts and observe the trend in
the reference to self. As seen in Figure 2, a greater

3https://scikit-learn.org/stable/modules/generated/sklearn
.ensemble.ExtraTreesClassifier.html

amount of self-focus is indeed associated with pa-
tients with low PAM. The differences across the
five parts are statistically significant with a sign
test (z-value= 2.23607, p = .02535).

Figure 2: Relative use of first person (singular) vs sec-
ond and third person pronouns by the patients.

4.2.2 Sentiment of the patient

Figure 3: Relative fraction of positive sentences used
by patients.

In order to determine how the sentiment of the
patients change throughout the conversation, we
used the VADER4 tool for performing sentiment
analysis. Figure 3 shows the relative fraction of
positive sentences that are spoken by patients. In-
terestingly, we can see that the curve for high PAM
patients drops during 20-40% of the conversation,
while the plot for low PAM patients drops during
40-60% of the conversation. One reason behind
this is because at around 20-40% of the conversa-
tion, patients are asked to describe their first en-
counter with heart issues, while at around 40-60%
of the conversation, patients are asked about their
current reason behind hospitalization (as was men-
tioned in Section 3). We can also see that high
PAM patients are fairly constant as concerns the
fraction of positive content spoken after the first
20-40% of conversation, while the curve for low
PAM patients has more rises and falls. This further
supports the observation made by the developers
of PAM that low PAM patients are overwhelmed.

4https://github.com/cjhutto/vaderSentiment
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4.3 Topics Discussed by Patients and Their
Relation to PAM Level

In order to identify the possible themes that arise
from the conversations, we extracted only the
nouns and adjectives from the patient utterances
that occur in at least 10% of the transcripts and
created a document matrix. We then performed
Principal Component Analysis (PCA), along with
Varimax rotation5 on the document matrix. We
opted for 9 components (also known as factor
loadings) that were able to explain around 75% of
the total variance in the document matrix. Simi-
lar to (Wilson et al., 2016), we consider any word
with a factor loading of at least 0.2 for a particu-
lar component as a positive contributor and words
whose factor loadings are less than -0.2 as nega-
tive contributors. For each component, we calcu-
late the normalized count of the words from each
document that are positive contributors minus the
number of negative contributors, and find the av-
erages for low and high PAM patients. Finally, we
calculate a score for each component, which is the
ratio of average normalized count for high PAM to
low PAM patients. A score>1 indicates the preva-
lence of the category in high PAM, while a score
< 1 indicates its prevalence in low PAM patients.

Topic Sample words Score
Activities ball, game, park,love, physical, 2.59
of interest recipe, swimming
Technical lasix, murmur, supplement, 2.55
medical terms admission, sign, diet, specialist
Family and husband, family, kind, everybody, 1.55
support father, parent, support
Life plan, jump, vacation, swimming, 1.02
experiences talk,breath, experience
Family and niece,church, grandkid, grandma, 0.95
beliefs honest, truth, folk
Life shower, shop,sugar, experience, 0.78
experiences contact, downtown, longtime
Feelings terrible, difficult, horrible, 0.77

difference, teaching, dizzy,force
Health muscle, workout, lunch, healthy, 0.62

vegetable, chicken, information
Food bake, turkey, potato, vegetable, 0.21

hot, green, meat, taste

Table 2: Sample words that reflect the 9 cate-
gories/themes, along with the topic scores.

Table 2 shows the sample words that repre-
sent the 9 categories/themes and the correspond-
ing scores. The topics in the first column of the
table are manual interpretations of what the sam-

5Varimax rotation causes the weights in the principal
components to be closely associated to only one component,
which makes it easier to interpret the results of PCA.

ple words refer to. The topics with scores greater
than 1 are prominent for high PAM patients, while
the ones with scores less than one are prominent
for low PAM patients. Some interesting obser-
vations can be made from this table. First, high
PAM patients seem to make more use of technical
medical terms, which complements our finding in
Section 4.1 that they are less repetitive in their us-
age of medical terms. Second, patients with low
PAM seem to talk about their feelings, most of
which relate to the negative effects of their health
conditions, while high PAM patients talk about
the activities they are interested in. This supports
our findings from Section 4.2.1 and Section 4.2.2,
which showed that patients with low PAM focus
more on the negative changes in their lives.

5 Conclusion and Future Work

In this paper, we presented a quantitative study on
the interviews with heart failure patients we col-
lected. We analyzed the difference between pa-
tients with low and high PAM levels based on their
reference to self, usage of medical terms, and the
change in their sentiment through the conversa-
tion. We also identified the key topics that the
patients from both groups talk about. The find-
ings from these analyses have provided additional
insights into the characteristics of heart failure pa-
tients and will be used for tuning different aspects
of our personalized summary generation system.
Incorporating personalization features: Cur-
rently, our personalization algorithm provides dif-
ferent levels of details to patients depending upon
their familiarity with their health issues. Similarly,
for patients with a low PAM level, we show em-
pathy with sentences like “Dealing with this is-
sue must have been tough for you”, while high
PAM patients are provided encouragement with
sentences like “Keep up the good work”.

From the analyses of the usage of medical terms
(Section 4.1) and the topics discussed by patients
(Section 4.3), we found that the PAM level of a
patient is also an indicator of the type and amount
of medical terms that patients use while recount-
ing their health experience. This suggests that in
addition to health literacy (as we do currently), the
PAM level should also be taken into account for
deciding on the details that will be provided to
the patient. Based on the findings in Section 4.2.1
and Section 4.2.2, we plan to divert low PAM pa-
tients from self-focus and its potential negative ef-
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fects, for example by focusing more on positive
outcomes and improvements in their health status.
We also plan to use some of the topics that were
discovered in Section 4.3 as multiple choice ques-
tions that will be shown to patients in real time.
Based on the values that are selected, some generic
sentences that motivate the patients to get better
will be included in the summary.
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A Supplemental Material

Patient: Quality of life is more valuable to me than working on the next project
Interviewer: Alright. Okay. So self care...
Patient: matters
Interviewer: Is primary. Yeah it matters. Yeah definitely.
Patient: Yeah
Interviewer: Now do you have some support at home? You girlfriend’s around? She is going to help you out or?
Patient: Yeah. You know I am probably the most fortunate guy you are gonna meet today. I am fortunate in that even aside
from my family, there are friends that genuinely care about me.
Interviewer: Alright
Patient: I mean really genuinely..genuinely care about me
Interviewer: Ah
Patient: Care about what I do..care about my well being..care about who I am..what I do..I have friends that will not allow me
to fail.

Figure 4: A portion of an interview where the patient talks about the things that matter to him .

Patient: Ahm hm. Yeah. So they give you this Lasix they try to get that fluid and stuff off your lungs that makes your legs
swell too.
Interviewer: Ah hm. And is that water part of the heart thing? The heart problem or?
Patient: Right. Ah hm
Interviewer: What is this Lasix thing? What is that?
Patient: it is a shot they give you. In fact they give you pills too... So they will bring water..you know..out of your body

Figure 5: A portion of an interview where the patient explains about her health issue.

Figure 6: Work-flow of the algorithm for generating personalized summaries. Extraction module is responsible for
exploring the relationship between the medical terms from the input documents. Simplification module identifies
difficult medical terms and provides explanations to them. The boxes in pink represent the features that guide the
personalization process.
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Abstract

Prior work on temporal relation classifica-
tion has focused extensively on event pairs in
the same or adjacent sentences (local), pay-
ing scant attention to discourse-level (global)
pairs. This restricts the ability of systems
to learn temporal links between global pairs,
since reliance on local syntactic features suf-
fices to achieve reasonable performance on ex-
isting datasets. However, systems should be
capable of incorporating cues from document-
level structure to assign temporal relations.
In this work, we take a first step towards
discourse-level temporal ordering by creat-
ing TDDiscourse, the first dataset focus-
ing specifically on temporal links between
event pairs which are more than one sentence
apart. We create TDDiscourse by augmenting
TimeBank-Dense, a corpus of English news
articles, manually annotating global pairs that
cannot be inferred automatically from exist-
ing annotations. Our annotations double the
number of temporal links in TimeBank-Dense,
while possessing several desirable properties
such as focusing on long-distance pairs and
not being automatically inferable. We adapt
and benchmark the performance of three state-
of-the-art models on TDDiscourse and observe
that existing systems indeed find discourse-
level temporal ordering harder.

1 Introduction

Temporal ordering of events is a crucial problem
in automated text analysis. Systems capable of
performing this task find widespread applicabil-
ity in areas such as time-aware summarization,
temporal information extraction or event timeline
construction. Prior work has focused extensively
on creating annotated corpora for temporal order-
ing, some notable efforts being the development
of the TimeML annotation schema (Pustejovsky
et al., 2003), TimeBank (Pustejovsky et al.) and

TimeBank-Dense (Cassidy et al., 2014). How-
ever, most work has focused mainly on local or-
dering, i.e., events present in the same or adjacent
sentences. This leads to a major drawback, also
pointed out by Reimers et al. (2016). Low preva-
lence of global discourse-level temporal ordering
annotation in existing datasets allows systems to
achieve moderate performance simply using local
syntactic cues. Having more global annotations
would require systems to incorporate global con-
sistency and assimilate features from document-
level structure and flow to achieve high perfor-
mance, thus presenting a more challenging task.
In this work, we present TDDiscourse, a dataset
focused on discourse-level temporal ordering.

We create TDDiscourse by augmenting
TimeBank-Dense (Cassidy et al., 2014), a corpus
of English news articles, with more long-distance
event pair annotations. Our work makes the first
attempt to explicitly annotate relations between
event pairs that are more than one sentence apart,
a more difficult annotation task than previous
datasets. In addition to facing similar challenges
as prior work (eg: hypothetical/negated events
(Cassidy et al., 2014)), we tackle new global
discourse-level issues such as incorporating
event coreference and causality/prerequisite links
arising from world knowledge. To handle these,
we design a careful coding scheme that achieves
high inter-annotator agreement (Cohen’s Kappa
of 0.69 on the test set). However, getting expert
manual annotation for all possible long-distance
event pairs is expensive. Moreover, it is possible
to leverage annotations from existing datasets to
automatically infer temporal relations for certain
event pairs. To make optimal use of expert
annotation, we develop a heuristic algorithm for
automatic inference of temporal relations using
EventTime (Reimers et al., 2016) and apply this
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to all documents.1 We then randomly subsample
the unannotated event pairs and source expert
annotations for those. At 6150 pairs, our manually
annotated subset is of the same size as TimeBank-
Dense. Adding the automatic subset makes
our dataset 7x larger (§6). Finally, we perform
a principled comparison between manual and
automatic pairs by annotating 3 test documents
(107 manual and 110 automatic event pairs) with
phenomena required to reason correctly about
the pair. These annotations suggest that our
manual subset exhibits a high proportion of global
discourse-level phenomena such as reasoning
about chains of events.

In addition to developing TDDiscourse, we
adapt three state-of-the-art models on TimeBank-
Dense for discourse-level temporal ordering and
benchmark their performance on our data, separat-
ing scores on manual and automatic subsets. We
observe that models perform worse on average on
TDDiscourse, with none beating a majority class
baseline on the manual subset. A manual analysis
of model errors reveals key shortcomings of cur-
rent temporal ordering techniques. We offer our
dataset2 as a challenging new resource for the tem-
poral ordering community and hope that insights
from our analysis will spark interest in the devel-
opment of more global discourse-aware models.

2 Related Work

2.1 Prior Work on Temporal Annotation
The development of TimeML (Pustejovsky et al.,
2003) and TimeBank (Pustejovsky et al.) marked
the first attempt towards creating a corpus for tem-
poral ordering of events. TimeML uses temporal
links (TLINKs) (Setzer, 2002), to represent order-
ing. A TLINK expresses the temporal relation be-
tween two events. For example, an event e1 can
occur before another event e2. TimeBank is an-
notated using TLINKs, but the number of possi-
ble TLINKs in a document is large (quadratic in
number of events). So annotation is restricted to
a subset of TLINKs, leading to sparsity. To com-
bat this, several works attempted to create denser
corpora (Bramsen et al., 2006; Kolomiyets et al.,
2012; Do et al., 2012; Cassidy et al., 2014), but
still focused largely on local TLINKs.

1We validate our algorithm by obtaining human annota-
tions for a subset of 100 examples and observing agreement
with the generated label in 99% cases

2https://github.com/aakanksha19/
TDDiscourse

Reimers et al. (2016) addressed high annotation
cost by proposing a new scheme in which events
were associated with explicit time expressions.
Annotation effort now scaled linearly with num-
ber of events, making it feasible to annotate all
of them. Using this scheme, they created Event-
Time, which had some discourse-level temporal
annotation. However this dataset had one ma-
jor drawback: events which could not be associ-
ated with a time expression were ignored. We ob-
served that it may not always be possible to de-
termine specific times for an event, but ordering
it with respect to other events is often possible
based on world knowledge. For example, con-
sider the snippet: “Police discover body of kid-
napped man. Police found the man’s dismembered
body wrapped in garbage bags”. In this text, dis-
membered cannot be associated with a time. But
the temporal relation between dismembered and
kidnapped is clear because the kidnapping should
have happened before dismembering. Based on
this, we address the drawback in EventTime, by
using TLINK-based annotation, which is expen-
sive but allows more expressive power. Following
TimeML, we augment TimeBank-Dense (Cassidy
et al., 2014) with global discourse-level TLINKs.
To optimize manual effort, we automatically gen-
erate all TLINKs that can be inferred from Event-
Time. Then, we manually annotate a large subset
of missing TLINKs involving events not associ-
ated with specific dates.

Most recently, Ning et al. (2018b) proposed a
new scheme, which labels TLINKs based only on
event start time. This improved inter-annotator
agreement allowing for crowdsourcing of long-
distance annotations at lower cost. However, they
focused only on verb events, whereas our work is
broader in scope and poses no such restrictions.

2.2 Prior Temporal Ordering Systems

TimeBank and the TempEval tasks (Verhagen
et al., 2007, 2010; UzZaman et al., 2013) spurred
the development of many temporal ordering sys-
tems (UzZaman and Allen, 2010; Llorens et al.,
2010; Strötgen and Gertz, 2010; Chang and Man-
ning, 2012; Chambers, 2013; Bethard, 2013).
More recently, TimeBank-Dense and EventTime
prompted development of newer models (Cham-
bers et al., 2014; Mirza and Tonelli, 2016; Cheng
and Miyao, 2017; Reimers et al., 2018). Most sys-
tems built for TimeBank/ TimeBank-Dense focus
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on TLINKs between events in the same or adjacent
sentences, relying on local features rather than
document-level structure, with some exceptions.
Chambers and Jurafsky (2008); Denis and Muller
(2011); Ning et al. (2017) introduce document-
level consistency via integer linear programming
constraints. Bramsen et al. (2006); Do et al. (2012)
also incorporate document-level structure, but fo-
cus on different corpora. Reimers et al. (2018) de-
velop a model for EventTime, which uses a de-
cision tree of CNNs to associate each event from
a document with a time. Several works have ex-
plored techniques to incorporate document-level
cues such as event coreference (Do et al., 2012;
Llorens et al., 2015) and causality (Do et al., 2012;
Ning et al., 2018a) in temporal ordering systems.
However, due to a lack of standard datasets focus-
ing on global discourse-level links, most work has
been evaluated on datasets of their own creation
or standard datasets with mainly local TLINKs.
This further stresses the need for a standardized
benchmarking effort, which we address by evalu-
ating adaptations of three state-of-the-art systems
on our dataset (§8).

3 Constructing TDDiscourse

To emphasize the need for a global discourse-level
focus in temporal ordering, we develop TDDis-
course, the first dataset which focuses explicitly on
TLINK annotations between event pairs that are
more than one sentence apart. To create TDDis-
course, we augment a subset of documents from
TimeBank with global TLINKs. We use the same
set of 36 documents as TimeBank-Dense (Cassidy
et al., 2014) and EventTime (Reimers et al., 2016)
to facilitate comparison with previous work. We
also utilize the same set of temporal relations as
TimeBank-Dense.3 Table 1 gives a brief summary
of these relations. To add global links, we use two
approaches:
• Manual annotation: We manually label a

subset of global TLINKs using document
cues, world knowledge and causality (§4). To
optimize human effort, we ensure that these
TLINKs are not automatically inferable.
• Automatic inference: We use a heuris-

tic algorithm to automatically label global
TLINKs using EventTime (§5) annotations,
to generate a large number of links at low

3We discard the “vague” label since we do not require
annotators to label all event pairs

Symbol Relation
a e1 occurs after e2
b e1 occurs before e2
s e1 and e2 are simultaneous
i e1 includes e2
ii e1 is included in e2

Table 1: Temporal relation set used in TDDiscourse.
All relations are mutually exclusive.

cost.

4 Manual Annotation

In this phase, we ask experts4 to label discourse-
level TLINKs that cannot be inferred automati-
cally.5 Getting expert annotation for all miss-
ing TLINKs is expensive. Hence, we randomly
subsample TLINKs not annotated by TimeBank-
Dense or automatic inference. This subsample is
as large as TimeBank-Dense, thus doubling the
data size while making the overall task harder (see
§8). Note that TLINKs annotated in this phase
may involve events for which a specific time of
occurrence cannot be determined, which were ig-
nored in EventTime. We refer to this subset as
TDD-Man.

Since TLINKs are not restricted to the same or
adjacent sentences, our annotation task becomes
harder, requiring cues from the entire document.
Many TLINKs also require the use of causal links
and world knowledge to label the relation. Based
on our observations, we develop a coding scheme.
To ensure high inter-annotator agreement, we re-
fine our scheme over multiple rounds of annota-
tion and discussion of disagreements.

4.1 Coding Scheme
Our scheme reduces the task of labeling a TLINK
to a set of concrete decision steps:

1. Using textual cues
2. Using world knowledge
3. Using narrative ordering

A TLINK may be assigned a label at any step.
If it cannot be assigned a label, it moves on to
the next step. Information from previous steps is
retained, making it possible to combine multiple
sources of evidence. For example, textual cues
may not suffice, but they can be used in conjunc-
tion with world knowledge to label a pair. We

4Expert annotators are the authors of the paper, with a
background in computational linguistics

5The automatic inference algorithm is explained in §5
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Snippet
Atlanta nineteen ninety-six. A bomb blast shocks the
Olympic games. One person is killed.
January nineteen ninety-seven. Atlanta again. This time
a bomb at an abortion clinic. More people are hurt.
Event pair: blast, hurt
Relation: before
Textual cues: Event blast occurred in 1996. Event hurt
occurred because of second bomb blast in 1997.

Table 2: Sample document-level textual cues used dur-
ing temporal annotation

choose to organize our coding scheme as men-
tioned above, to make the process of gathering ev-
idence about an event pair systematic, and ensure
that experts do not miss important cues. The fi-
nal step is guaranteed to assign a label. We choose
not to allow annotators to leave event pairs unla-
beled or label them “vague”, to keep them from
overusing this option. Owing to this decision, we
need to develop mechanisms for handling TLIN-
LKs containing events which have not actually oc-
curred (eg: negated, hypothetical or conditional
events). Drawing from prior work, we interpret
these events using a possible worlds analysis, in
which the event is treated as if it has occurred. We
refer interested readers to (Chambers et al., 2014)
for a more detailed discussion.

4.1.1 Using textual cues
In this step, we use document-level textual cues to
label a TLINK. The cues used are similar to those
used in previous datasets (Cassidy et al., 2014).
Table 2 gives an example of the types of cues used.

A key textual cue we use here is event coref-
erence. Event coreference has not been used for
annotation because the occurrence of coreferent
events in adjacent sentences is rare. However,
this cue is crucial for global discourse-level an-
notation. Since TimeBank does not contain event
coreference annotation, we develop a procedure to
annotate our document subset. Our procedure is
based on the ERE (Entities, Relations, and Events)
scheme (Song et al., 2015), which cannot be di-
rectly used for TimeBank due to differing notions
of what constitutes an event and different meta-
data. In our procedure, events are considered
coreferent iff they share the following:
• Entities involved in the event
• Temporal attributes
• Location attributes
• Realis (whether event is real or hypothetical)

Events which are synonymous in context are also

considered coreferent (for instance, in “...held an
interview Monday. The segment covered...”, in-
terview and segment are synonymous). These
attributes (barring temporal) are not provided in
TimeBank and must be inferred. Often, an event
may only have partial information about these at-
tributes - here we use human judgment. Our def-
inition of coreference is closer to the strict no-
tion of “event identity” in Light ERE than the re-
laxed definition in Rich ERE.6 To test our proce-
dure, we select all “simultaneous” TLINKs from
TimeBank-Dense to ensure that our sample con-
tains a sizeable proportion of possibly coreferent
event pairs. The corpus contains 179 “simultane-
ous” links, of which 93 are event pair TLINKs.
Our first annotation pass achieves high agreement
between two annotators, with a Kappa of 0.70. We
refine our guidelines through an adjudication step,
reaching perfect agreement on this sample. Post-
adjudication guidelines are used to annotate event
coreference for all documents. Resulting annota-
tions are used as textual cues in our scheme. Based
on textual cues, an appropriate label is assigned
to a TLINK. Coreferent TLINKs are labeled “si-
multaneous”. Unlabeled links move on to the next
decision step.

4.1.2 Using world knowledge
This step uses real world knowledge to determine
causal/prerequisite links which are used to label
a TLINK. We consider both events in the TLINK
and determine whether they possess one or both of
the following:
• Causal Link: Two events have a causal link

if the occurrence of one event results in the
other event coming about. For example,
in the sentence “The paper got wet when I
spilled water on it”, the event pair (spilled,
wet) have a causal link.
• Prerequisite Link: Two events have a pre-

requisite link if one event must occur before
the other can happen. For example, in the
sentence “We cooked dinner and ate it”, the
event pair (cooked, ate) have a prerequisite
link. Note that we use the knowledge that a
meal must be cooked before it can be eaten,
though it is not explicitly mentioned.

We examine the event pair in the context of the en-
tire document to detect causal/prerequisite links,
also allowing weak or transitive links. For in-

6Examples in the appendix
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Rule Label
TLINK=(A, B), A=P Before
TLINK=(A, B), A=I Includes
TLINK=(B, A), A=P After
TLINK=(B, A), A=I Is Included

Table 3: Labels assigned to event pairs based on event
and TLINK metadata

stance, in the text “Diplomacy is making head-
way in resolving the UN’s standoff with Iraq. One
major sticking point has been Iraq’s proposal...”,
proposal causes standoff, which is a prerequisite
for resolving. Hence, the pair (proposal, resolv-
ing) is considered causal/prerequisite. Our assign-
ment of causal/prerequisite links is unordered. For
example, reverse event pairs (wet, spilled), (ate,
cooked), and (resolving, proposal) are also consid-
ered causal/prerequisite. Link order is taken into
consideration while assigning a temporal relation.

If two events contain a causal/prerequisite link,
we identify the event in the pair that causes or is
a prerequisite for the other. We call this event “A”
and the other “B”. For example, (spilled, wet) is
expressed as (A, B), while (wet, spilled) is ex-
pressed as (B, A). To label the TLINK, we de-
termine whether A is a point (P) or interval (I)
event using existing date annotations from Event-
Time (Reimers et al., 2016). This helps us catch
cases where A is a long-lasting interval and the
time span for B is completely included in A. For
instance, in “the war forced civilians to evacuate”,
(war, evacuate) has a causal/prerequisite link with
war being event A. Though war caused evacua-
tion, it is reasonable to expect that the war started
before and ended after evacuation. If A is not
present in EventTime (i.e it cannot be assigned a
specific time), we use our judgment to determine
event length. We then assign a label as per table 3.
Unlabeled links are passed to the next step.

4.1.3 Using narrative ordering
This step uses a heuristic based on the intuition
that events in a narrative are often presented in
chronological order. To label a TLINK, we deter-
mine which event appeared first in the document.
This event is called “A”, and the other is “B”. We
then detect whether A is a point (P) or interval (I)
from EventTime, falling back to our own judgment
if it is not present. Finally, a label is assigned fol-
lowing table 3. This step is guaranteed to assign a
label since every pair will have a narrative-based
order.

Dataset Kappa
TimeBank 0.71
TimeBank-Dense 0.56-0.64
TDD-Man 0.69

Table 4: Inter-annotator agreement (Cohen’s Kappa)
on temporal ordering datasets. Kappa scores for TDD-
Man are reported on the test set containing 1500 links.

a b s i ii
a 137 22 0 12 22
b 30 311 1 72 23
s 0 0 42 5 4
i 9 36 3 462 35
ii 12 32 0 21 209

Table 5: Relation agreement between annotators on the
TDD-Man test set containing 1500 links.

4.2 Inter-annotator agreement
Our annotation scheme was developed over multi-
ple rounds of coding and discussion between two
experts. In each round, experts separately anno-
tated a set of 10-15 TLINKs.7 Cohen’s Kappa
was computed and disagreements were discussed.
TLINKs were changed in every round to en-
sure exposure to diverse event pair types. Inter-
annotator agreement in preliminary rounds ranged
from 0.48-0.69. The final coding scheme resulted
in an agreement of 0.69 on the test set. Table 4
shows that our agreement is comparable to prior
work. Table 5 presents a class-wise distribution
of agreements between pairs of annotators. Dis-
agreements mainly include cases where one anno-
tator chose after/before while the second chose in-
cludes/is included (64%). This indicates that de-
termining precise end-points for an interval event
is difficult, as corroborated by Ning et al. (2018b).

5 Automatic Inference

This approach uses automatic inference to de-
rive new TLINKs at low cost from EventTime
(Reimers et al., 2016), which assigns specific
times to events. EventTime divides events into
two types: SingleDay and MultiDay. SingleDay
events are assigned dates, while MultiDay events
are assigned intervals. Possible event pairs can be
divided into three categories: SS (both events are
SingleDay), SM (one event is SingleDay while the
other is MultiDay) and MM (both events are Mul-
tiDay). Not all assigned dates and intervals are ex-
act. EventTime relies heavily on under-specified

7chosen from documents in the development set
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temporal expressions (such as “after1998-06-08”),
making automatic inference non-trivial.

We follow separate algorithms to infer TLINKs
for each pair type (SS, SM and MM). For SS pairs,
both events are associated with dates, which may
be expressed in one of four ways8, resulting in
16 date combinations for SS links. We develop
heuristics9 for each combination, which generate
a temporal relation based on date values. Our
heuristics were developed with a focus on preci-
sion to avoid adding incorrect links. Often, a re-
lation cannot be generated. For example, consider
two events associated with the same date “after02-
01-1999”. We know that both events occur after
02-01-1999, but we cannot infer their order with
respect to each other. In such cases, we do not
label the pair. For SM pairs, one event is asso-
ciated with a time interval having begin and end
dates. Here we use the SS pair inference algo-
rithm to generate relations between the SingleDay
event date and the MultiDay event begin and end
dates. These relations are compared to infer the
label for the pair. For MM pairs, both events have
begin and end dates. We infer relations between
begin and end points using SS link inference and
use these to infer the pair label. After inference,
we perform temporal closure, according to Cham-
bers et al. (2014). To evaluate validity of gener-
ated TLINKs, we randomly sample a subset of 100
TLINKs and ask three annotators 10 to determine
the correctness of the labels. All annotators unani-
mously agree with the assigned label in 99% cases.
We call this subset TDD-Auto.

6 Dataset Statistics

Our data construction pipeline produces the first
dataset focused on temporal links between global
discourse-level event pairs (TDDiscourse), con-
sisting of two subsets TDD-Man and TDD-Auto.
Table 6 presents train, dev and test set sizes for
both subsets, Timebank-Dense as well as an aug-
mented version of TimeBank-Dense with addi-
tional links inferred via temporal closure. Our
complete dataset is 7x larger than both, indicating
that our construction adds valuable new TLINKs.
TDD-Man itself is as large as TimeBank-Dense

8MM-DD-YYYY, afterMM-DD-YYYY, beforeMM-DD-
YYYY, afterMM-DD-YYYYbeforeMM-DD-YYYY (MM-
DD-YYYY stands for a specific date value)

9Sample heuristics provided in the appendix
10Annotators were volunteers with no vested interest in the

corpus

Dataset Train Dev Test
TB-Dense 4032 629 1427

TB-Dense + Closure 4399 722 1575
TDD-Man 4000 650 1500
TDD-Auto 32609 1435 4258

Table 6: Dataset sizes for TimeBank-Dense and our
dataset. Note that we only count event-event TLINKs

and can be used in isolation, however incorporat-
ing TDD-Auto provides a large amount of training
data making the task more amenable to deep neu-
ral net approaches.

Table 7 presents class distributions for TDD-
Man and TDD-Auto test sets. Though there is a
clear majority class, both sets are more balanced
than TimeBank-Dense, in which 40% event pairs
are labeled “vague”. To evaluate the presence of
long-distance TLINKs, we present the distribution
of distance between event pairs from annotated
TLINKs in table 8 which shows that nearly 53%
TLINKs in our dataset comprise of event pairs
which are more than 5 sentences apart. Further,
to gain deeper insight into global discourse-level
phenomena exhibited by our dataset, we augment
3 documents from the test set (107 manual and 110
automated event pairs) with additional annotations
about phenomena required to label them correctly.
We consider the following phenomena:
• SingleSent (SS): Textual cues from sen-

tences containing the events suffice to predict
the relation (irrespective of distance).
• Chain Reasoning (CR): Correct relation

prediction requires reasoning about other
events from the document.
• Tense Indicator (TI): For verb events, tense

information indicates the correct relation.
• Future Events (FE): One or both events

from the pair will occur in the future.
• Hypothetical/ Negated (HN): One or both

events are hypothetical or negated.
• Event Coreference (EC): Event coreference

resolution is needed to predict relation.
• Causal/ Prereq (CP): Causal/ prerequisite

links must be identified to predict relation.
• World Knowledge (WK): Real world

knowledge is needed to identify the relation.
Table 9 shows the distribution of these phenomena
in TDD-Man and TDD-Auto. TDD-Man shows
a higher percentage of difficult phenomena (CR,
CP). On the other hand, TDD-Auto shows high
prevalence of SS, indicating that local information
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Dataset a b s i ii
TB-Dense 0.18 0.22 0.02 0.05 0.06
TDD-Man 0.13 0.27 0.03 0.38 0.19
TDD-Auto 0.28 0.32 0.16 0.11 0.13

Table 7: Class distributions for our test sets and
TimeBank-Dense. Note that the distribution for
TimeBank-Dense does not sum to 1, since it includes
a vague class.

Dataset <5 <10 <15 <20 >20
TDD-Man 0.40 0.40 0.15 0.04 0.01
TDD-Auto 0.50 0.32 0.12 0.05 0.01

Table 8: Distribution of distance between events for all
TLINKs in our test sets (in terms of #sentences)

may be sufficient to label many long-distance links
in this subset correctly. This principled compari-
son of both subsets leads us to hypothesize that
models which perform well on TimeBank-Dense,
should achieve similar scores on TDD-Auto but
perform much worse on TDD-Man.

7 Experiments

To statistically evaluate the difficulty of TDDis-
course, we adapt and benchmark three SOTA
models on our data. Our results reveal interesting
insights about model drawbacks, highlighting the
need to shift focus to handling global discourse-
level phenomena such as chain reasoning.

7.1 Adapting State-of-the-Art Models for
Benchmarking

As most state-of-the-art temporal ordering mod-
els are built on datasets containing mainly local
TLINKs, they are not well-equipped to handle
global TLINKs. Hence, we adapt these models to
ensure fair evaluation. We focus on the following:
CAEVO (Chambers et al., 2014): This system

Phenomenon TDDMan TDDAuto
SS 25.23% 90.91%
CR 58.88% 9.09%
TI 12.10% 46.36%
FE 36.45% 29.09%
HN 14.02% 19.09%
EC 16.82% 4.55%
CP 64.49% 29.09%
WK 16.82% 0.91%

Table 9: Distribution of various phenomena in the an-
notated test subset. These phenomena were labeled
manually.

consists of specialized learners (sieves) which in-
clude heuristic rules and trained models. For each
document, sieves run in decreasing order of pre-
cision. Decisions made by earlier sieves con-
strain following ones. This framework integrates
transitive reasoning, but decisions made by ear-
lier sieves cannot be overturned, causing error cas-
cades. To extend CAEVO, we increase window
sizes and remove the AllVague sieve.11

BiLSTM (Cheng and Miyao, 2017): Inspired by
Xu et al. (2015), this model uses a BiLSTM classi-
fier. For each pair, dependency paths from source
and target events to the sentence root are fed to a
BiLSTM. For events in adjacent sentences, source
and target event sentences are assumed to be con-
nected to a ”common root”. We follow the same
framework to build a BiLSTM.
SP+ILP (Ning et al., 2017): CAEVO and BiL-
STM make separate local decisions for each
TLINK, which may result in global inconsistency.
For example, for events A, B and C, if A oc-
curs before B and B occurs before C, transitivity
implies that A occurs before C. Models classify-
ing each pair independently may assign a differ-
ent relation to A-C. To correct this, Ning et al.
(2017) proposed SP+ILP, which uses a structured
perceptron with ILP constraints, explicitly enforc-
ing global consistency. This model was trained on
TimeBank-Dense which contains fewer TLINKs
per document, making joint learning tractable with
loose transitivity constraints. But loose transitiv-
ity is an issue for our data with 7x more TLINKs,
since the number of constraints increases tremen-
dously. To improve tractability, we define a
stricter transitivity constraint. Let E, R and P be
sets of events, temporal relations and event pairs
respectively(P = {(ei, ej) ∈ E × E|ei, ej ∈
E, i 6= j}). We define an array of binary indica-
tor variables y, where y<r,i,j> indicates whether
the relation r holds between events ei and ej . Our
objective function is defined as:

argmin
y

∑

<ei,ej>∈P

∑

r∈R
−y<r,i,j> log p<r,i,j> (1)

subject to the following constraints:
y<r,i,j> ∈ {0, 1}, ∀(ei, ej) ∈ P,∀r ∈ R (2)

∑

r∈R
y<r,i,j> = 1, ∀(ei, ej) ∈ P (3)

11since our data does not include the vague class. We also
remove the WordNet sieve and add MLEventEventDiffSent.
For more details on these sieves, we refer interested readers
to Chambers et al. (2014)
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System TB-Dense TDD-Auto TDD-Man
P R F1 P R F1 P R F1

MAJOR 40.5 40.5 40.5 34.2 32.3 33.2 37.8 36.3 37.1
CAEVO 49.9 46.6 48.2 61.1 32.6 42.5 32.3 10.7 16.1
BiLSTM 63.9 38.9 48.4 55.7 48.3 51.8 24.9 23.8 24.3

SP 37.7 37.8 37.7 43.2 43.2 43.2 22.7 22.7 22.7
SP+ILP 58.4 58.4 58.4 46.4 45.9 46.1 23.9 23.8 23.8

Table 10: Performance of SOTA models on TB-Dense, TDD-Auto and TDD-Man. MAJOR represents a majority-
class baseline. We report performance on non-vague event-event links for TB-Dense to ensure fair comparison.

y<r1,i,j> + y<r2,j,k> − y<r3,i,k> ≤ 1,

∀(ei, ej), (ej , ek), (ei, ek) ∈ P,∀(r1, r2, r3) ∈ TC
(4)

where p<r,i,j> is the probability that event pair
(ei, ej) has label r. (2) ensures that indicator vari-
ables are binary, (3) forces event pairs to be as-
signed a unique label and (4) imposes transitivity.
TC denotes the set of transitive relation triples.12

Relation probabilities (p<r,i,j>) come from the
structured perceptron. In addition to this model,
we also evaluate the structured perceptron (SP) in
isolation, which lets us study the effect of intro-
ducing global consistency via ILP.

8 Results and Analysis

We benchmark 4 adapted SOTA models
(CAEVO, BiLSTM, SP and SP+ILP) on
TDD-Auto and TDD-Man. SP is a local
perceptron-based classifier, while SP+ILP in-
troduces transitivity via ILP into the perceptron.
This . For tractability, we limit all models to
using event pairs which are 15 or fewer sentences
apart. This discards only 5% of our data (table
8). Table 10 presents the benchmarking results.
We also benchmark models on TimeBank-Dense
(TB-Dense) to demonstrate that our modifications
do not affect performance on local TLINKs.

All models perform better than a majority class
baseline on TDD-Auto. The BiLSTM and SP
perform particularly well, achieving a higher F1
than TB-Dense, while CAEVO and SP+ILP show
slight degradation in comparison to TB-Dense.
This corroborates our hypothesis that many long-
distance TLINKs in TDD-Auto can be handled
with local information. However, all models show
a significant drop on TDD-Man, with none outper-
forming a majority class baseline. Further analysis
of model errors offers valuable insights into which
phenomena are not handled by models, posing in-

12(“before”, “before”, “before”) form a transitive relation
triple as A before B and B before C implies A before C

teresting challenges for future work.
Maintaining global consistency: Most SOTA
models make separate local decisions for each pair
and are not globally consistent. Adding global
consistency improves the performance of a local
classifier, as evinced by a 3-point F1 gain observed
on adding ILP to SP. We validate this observa-
tion by performing a transitivity analysis of BiL-
STM and SP+ILP on TDD-Auto. We go through
all event triples (e1, e2, e3). For each model, if
(e1, e2), (e2, e3) and (e1, e3) are all assigned la-
bels, we check whether labels are consistent. For
example, e1 after e2, e2 after e3 and e1 after e3 is a
consistent assignment. We observe that though the
BiLSTM has higher F1, it maintains transitivity in
41.9% cases, while SP+ILP enforces transitivity
in 53.6% cases, a 12% increase. We believe that
incorporating such constraints into neural models
can help, which we delegate to future work.
Incorporating real world knowledge: To exam-
ine the dismal performance of all models on TDD-
Man, we manually look at 100 pairs on which all
models made mistakes. 40% of these cases re-
quire real world knowledge. Some examples in-
clude determining that “military actions” refers to
the same event as “air strikes” (strikes would have
to be carried out by the military which cannot be
inferred from text), or knowing that certain events
(eg: “war”) are long-term. No SOTA model cur-
rently has this ability.
Using event coreference and structure: Our
analysis reveals another source of errors arising
from models’ inability to handle event coreference
and event structure such as sub-events or aspec-
tual predication, a grammatical device which fo-
cuses on different facets of event history (eg: using
”begin” to indicate initiation) (Pustejovsky et al.,
2003). This inability causes models to fail in 22%
cases indicating that exploiting rich event structure
information is a promising direction.
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Dealing with hypothetical or negated events:
We observe that SOTA models do not possess the
ability to handle these, causing 31% of errors.

9 Conclusion and Future Work

In this work, we created TDDiscourse, the first
dataset focused on global discourse-level tempo-
ral ordering. Our annotation scheme for TDDis-
course handled several issues which have not been
explicitly addressed in prior work. We further
adapted and benchmarked 3 SOTA models. All
models, on average, performed worse on TDDis-
course, validating the difficulty of the task. Our
error analysis reveals key phenomena not handled
by current systems, such as hypothetical/negated
events, event coreference, aspectual predication,
real world knowledge and global consistency. Fu-
ture work in temporal ordering must address these
issues, and we suggest several avenues for ex-
ploration, such as a BiLSTM-ILP joint learning
framework which has the advantage of combining
representational power of neural models with key
linguistic insights, and introducing event corefer-
ence information via ILP into a structured learn-
ing approach similar to Ning et al. (2017). Fi-
nally, we hope that our dataset offers a challeng-
ing testbed for the development of more global
discourse-aware models for temporal ordering.
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Appendix

A Coreference Examples
• Coreferent example: In the example ”their

disputes have been bedeviled by a number of
disputes”, the event ”disputes” is itself the
entity enacting the event ”bedeviled”. The
events take place over the same time period
and location, and are both real events. Thus,
we can conclude the events are coreferent.

• Non-coreferent example: In ”lower rates
have helped invigorate housing by making
loans more affordable”, though the events
share an agent (”lower rates”) and realis
states, they act on different patient entities
and thus are not coreferent.

B Sample heuristic rules from SS link
inference procedure:

Assume S1 and S2 indicate the points associated
with events 1 and 2 which are to be linked. Fol-
lowing subsections provide a brief sample of some
of the heuristic rules we develop to infer the tem-
poral link based on the values of S1 and S2.

B.1 S1 is of type MM-DD-YYYY and S2 is of
type afterMM-DD-YYYY

• Get the relation (rel) between the date values
from S1 and S2

• If rel is simultaneous or before, the SS link
value is before

• Else skip this link

B.2 S1 is of type MM-DD-YYYY and S2 is of
type beforeMM-DD-YYYY

• Get the relation (rel) between the date values
from S1 and S2

• If rel is simultaneous or after, the SS link
value is after

• Else skip this link

B.3 S1 is of type MM-DD-YYYY and S2 is of
type afterMM-DD-YYYY
beforeMM-DD-YYYY

• From S2, the date associated with after is
named date1 and the date associated with be-
fore is named date2

• Get the relation (rel1) between date value
from S1 and date1 from S2

• If rel1 is simultaneous or before, the SS link
value is before

• Get the relation (rel2) between date value
from S1 and date2 from S2

• If rel2 is simultaneous or after, the SS link
value is after

• Else skip this link

We develop similar rules for the remaining 13
cases. We also develop rule-based inference pro-
cedures for SM and MM links. Please refer to the
autogeneration code for the complete set of rules.

249



Proceedings of the SIGDial 2019 Conference, pages 250–253
Stockholm, Sweden, 11-13 September 2019. c©2019 Association for Computational Linguistics

Real Life Application of a Question Answering System Using BERT
Language Model

Francesca Alloatti1,2, Luigi Di Caro2 , Gianpiero Sportelli1

1CELI - Language Technology, Italy
2Department of Computer Science - Università degli Studi di Torino, Italy
{francesca.alloatti, gianpiero.sportelli}@celi.it

luigi.dicaro@unito.it

Abstract

Real life scenarios are often left untouched by
the newest advances in research. They usually
require the resolution of some specific task ap-
plied to a restricted domain, all the while pro-
viding small amounts of data to begin with.
In this study we apply one of the newest in-
novations in Deep Learning to a task of text
classification. The goal is to create a question
answering system in Italian that provides in-
formation about a specific subject, e-invoicing
and digital billing. Italy recently introduced
a new legislation about e-invoicing and peo-
ple have some legit doubts, therefore a large
share of professionals could benefit from this
tool. We gathered few pairs of question and
answers; afterwards, we expanded the data,
using it as a training corpus for BERT lan-
guage model. Through a separate test corpus
we evaluated the accuracy of the answer pro-
vided. Values show that the automatic system
alone performs surprisingly well. The demo
interface is hosted on Telegram, which makes
the system immediately available to test.

1 Introduction

Pre-trained models have proven to be of great
help in accomplishing many NLP tasks, such as
natural language inference, text classification and
question-answering. All of these paradigms con-
tain a semi-supervised language model trained on
large corpora of data; they are later fine-tuned to
work on downstream tasks (Peters et al., 2018;
Howard and Ruder, 2018; Radford et al., 2018).
However, real life applications can’t often bene-
fit from these advances, for many reasons: lack
of data, lack of time and resources to reach a
sufficient accuracy level, or the need to address
some very specific domain that elude the scope
of a general-purpose architecture. As a result,
many concrete scenarios of applications are left
untouched by the scientific progress, even though

these obstacles are far from impossible to over-
come.

The goal of this study is to build a question-
answering systems using only BERT (Bidirec-
tional Encoder Representations from Transform-
ers) language model (Devlin et al., 2018), with-
out exploiting any rule-based refinement system or
any other proprietary algorithm. This process al-
lows to prevail over the obstacles previously listed:
scarce original data was expanded mostly by using
generative grammars; the whole project (data ex-
pansion plus the various training phases) took no
more than eight days to complete, and the com-
putational resources required were fairly afford-
able 1. Moreover, the application domain is very
specific, such that the fine-tuning of the linguistic
model significantly increased the performances 2.
The architecture is simple yet effective (as shown
in Figure 1) and the output of the system can be
tested immediately through a Telegram bot.

2 Related Works

Since its first appearance, BERT has gained a lot
of popularity in the academic community. It has
been applied to various NLP tasks, including text
classification for question answering. The origi-
nal work by Devlin et al. (2018) contained results
on BERT’s performance over the Stanford Ques-
tion Answering Dataset task (Rajpurkar et al.,
2016), where the system had to predict the answer
span for a specific question in a Wikipedia pas-
sage. Yang et al. (2019) went further, creating a
question answering system deployed as a chatbot.
However, both these studies tackled the task of
open-domain question answering, while we focus
on cases where BERT was exploited to develop
systems for real life applications. For instance,

1CPU 8 core, GPU 28 GB, RAM 32 GB
2See the Results section for details on the performance.
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Figure 1: Architecture of our question answering sys-
tem

Lee et al. (2019) created a new BERT language
model pre-trained on the biomedical field to solve
domain-specific text mining tasks (BioBERT). Its
results are impressive, but BioBERT is capable to
perform well on domain specific knowledge be-
cause of its large pre-training process. While the
pre-training surely yields better performances, it
is highly expensive with regard to computational
costs and time consumption. Our results show
good performances even without any pre-training.

JESSI, a Joint Encoders for Stable Suggestion
Inference (Park et al., 2019), was created upon the
knowledge that BERT is severely unstable for out-
of-domain samples. This is true for every system
that does not implement any other tool other than
the language model, such as ours. To solve this
problem, Park et al. (2019) combined BERT with
a non-BERT encoder and used a RNN classifier
on top of BERT. In our case, an heuristic could
be applied to the answers given by the system. It
would allow to maximize the probability that the
output is the correct match and not solely the one
with a higher confidence score.

Other studies focus on generating pre-trained
embeddings for specific domains (Beltagy et al.,
2019; Alsentzer et al., 2019), but they do not test
them on specific tasks.

3 BERT’s Head start as a Language
Model

BERT’s architecture is built as a multi-layer bidi-
rectional encoder and it is based on the Trans-
former model originally proposed by Vaswani et
al. (2017). Although BERT has been widely used
in the past year, it is not the only tool available to
automatically build a working question-answering
system. Attention based RNN models, especially
with the addition of a LSTM or GRU module, have
yielded good results on a variety of tasks (Wang
et al., 2016; Zhou et al., 2016). The use of a recur-

rent neural network for our work was eventually
ruled out for two main reasons: first, BERT en-
coder architecture is already trained to work as a
language model on more than 104 languages (in-
cluding Italian) and needs to be refined only for
the specific task of text classification. The training
of a RNN needs to be done for both the language
model creation and the fine-tuning part, which re-
quires a higher volume of data.

Second, the RNN training activities cannot be
carried out simultaneously due to network con-
straints. This causes a more time-consuming and
costly process.

4 Data and Fine-tuning Process

Since this aims to be a real life application, the
chosen domain was e-invoicing and all the new
regulations revolving around the theme of digital
billing that was recently introduced by the Italian
legislation. The field is very technical and spe-
cific; the data needed to reflect the features of the
language employed to discuss such subject.

We first gathered pairs of clauses coherent to
the domain. The data was cleaned from duplicated
questions and badly written sentences, resulting in
a corpus of approximately 300 pairs of sentences
(a question and an answer). Half of the questions
was expanded manually, while the other half - that
presented recurrent linguistic patterns - was ex-
panded using generative grammars. A grammar
is written as follows:

{vb_might} {vb_collect} an
{n_invoice} ?

Resulting is sentences such as Is it possible to
collect an e-invoice? together with all its mean-
ingful variations. The two expansion methods cre-
ated a corpus of more than 210.000 sentence pairs.
No expansion was operated on the answers, since
the goal is to match the correct answer to any pos-
sible expression of a question, and not to produce
variegated answers.

Separately, a different corpus of 200 questions
was obtained on a voluntary base from people who
did not take part in the expansion process (other-
wise, they would have had knowledge of the exist-
ing sentences in the training corpus). This distinct,
unbiased corpus served as a test set.

4.1 The Fine-tuning
During the fine-tuning process the goal is to ex-
pand the network architecture and to train it to-
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wards a specific task. A new layer is created
while the weights of the underlying original layer
are modified according to the text classification
job. The final training corpus consisted of 2300
sentences (obtained from the 210.000 previously
mentioned). This number resulted from balanc-
ing the total of manually expanded questions with
the automatically expanded ones. Otherwise we
would have had an overfitting problem, since
the automatic expansion generates way more sen-
tences than the manual one. Afterwards, we used
the test corpus to verify the output of the new net-
work.

Values such as accuracy, precision and recall
are not taken into consideration during the train-
ing process. Instead, the goal is to optimize, i.e.
minimize, a loss function. For this study the loss
function is a Cosine Proximity (1). To compute
it we created a One Hot Vector that represented
the 300 original sentences - each one of them as
a label. The loss function takes into account two
values: the One Hot Vector and the logarithm of
the network output’s softmax.

L = − y · ŷ
||y||2 · ||ŷ||2

= −

N∑
i=1

yi · ŷi
√

N∑
i=1

y2i ·
√

N∑
i=1

ŷ2i

(1)

Cosine Proximity Loss function

Each experimental round takes approximately
one hour.

5 Results

To assess the performance, different experiments
were conducted in a subsequent way to evaluate
the accuracy of the test set. The first attempts were
considered baseline for the following ones. When
BERT model was used without applying any fine-
tuning the accuracy reached 3,6 % for 40 epochs.
Fine-tuning proved to be essential: accuracy on
the first answer selected by the system is 86%.
When considering the first three answers, the value
rises up to 93,6%. The most recent experiment op-
erates on the pre-trained language model too see
if further improvement could be reached on that
front. The language model was trained with new
data extracted from reliable sources (operational
handbooks from the Italian Fiscal Agency) and

later fine-tuned with the same data of the previ-
ous trial. Accuracy gained +2 points, achieving 88
% on first answer.

We also compared our results to other intent
matching systems such as Google DialogFlow.
Using external API for intent detection accuracy
reached 84%, which is slightly lower to our first
experiment.

An example of the matched question (and its an-
swer) is presented in Table 1. The user can give a
feedback on each answer received, and the posi-
tive or negative feedback will add up to constantly
improve the performance for the next questions.
The average time to obtain a single answer is 0.2
seconds on a CPU architecture. It is therefore per-
fectly viable for a real time employ as a question
answering system.

Unfortunately, it is impossible to compare these
results with those obtained from other studies, be-
cause of the specificity of this domain, which has
never been considered in this kind of experiments
(at least for the Italian language).

6 Conclusion and Next Steps

We have demonstrated that it is possible to create a
question answering system in a few days. The hu-
man effort was minimized - no rule was handwrit-
ten and no other algorithm was implemented - and
overall the computational cost was bearable. We
also showed that scarce data is not always an in-
surmountable obstacle, since the expansion effort
can be split between manual work and automatic
one. The results show that such a system can al-
ready be used with a decent degree of success. In
the next future some improvements are going to be
made regarding the context management and the
comparison between BERT and other tools.

To improve the spectrum of questions that are
correctly matched, we propose two ways to man-
age the dialog context using BERT:

• External operation. The context is given as
an external factor to the model through the
writing of specific rules. It modifies the la-
beling, i.e. the probability assigned to a label
that selects a matching question.

• Internal operation. In this case, BERT
needs to be trained towards two inputs, where
one is always the context. The network
changes its way of calculating the probabil-
ity from p (l|t) (l being the label and t the text
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Type of Sentence Content
Question posed Hello, I have a question: do I have to issue an invoice also for private

clients? Even though they don’t refer to any VAT number?

Question matched Does an invoice need to be issued also towards people without a VAT
number?

Answer provided Yes, the electronic document has to be issued towards private clients
without a VAT number

Table 1: Given a certain question posed by an user, the system matches one of the example in his knowledge bases
and sends out the correct answer. The sentences have been translated from Italian into English for the purpose of
this paper.

of the sentence) to p (l|t ∩ c).

Regarding the other tools, our goal is to verify if
other models could perform equally or better given
the same dataset. Many platforms are currently
under review, such as Amazon Lex.
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Abstract

We present a new neural architecture for wide-
coverage Natural Language Understanding in
Spoken Dialogue Systems. We develop a hi-
erarchical multi-task architecture, which de-
livers a multi-layer representation of sentence
meaning (i.e., Dialogue Acts and Frame-like
structures). The architecture is a hierarchy
of self-attention mechanisms and BiLSTM en-
coders followed by CRF tagging layers. We
describe a variety of experiments, showing
that our approach obtains promising results
on a dataset annotated with Dialogue Acts
and Frame Semantics. Moreover, we demon-
strate its applicability to a different, publicly
available NLU dataset annotated with domain-
specific intents and corresponding semantic
roles, providing overall performance higher
than state-of-the-art tools such as RASA, Di-
alogflow, LUIS, and Watson. For example, we
show an average 4.45% improvement in en-
tity tagging F-score over Rasa, Dialogflow and
LUIS.

1 Introduction

Research in Conversational AI (also known as
Spoken Dialogue Systems) has applications rang-
ing from home devices to robotics, and has a
growing presence in industry. A key problem in
real-world Dialogue Systems is Natural Language
Understanding (NLU) – the process of extracting
structured representations of meaning from user
utterances. In fact, the effective extraction of se-
mantics is an essential feature, being the entry
point of any Natural Language interaction system.
Apart from challenges given by the inherent com-
plexity and ambiguity of human language, other
challenges arise whenever the NLU has to oper-
ate over multiple domains. In fact, interaction pat-
terns, domain, and language vary depending on the
device the user is interacting with. For example,
chit-chatting and instruction-giving for executing

an action are different processes in terms of lan-
guage, domain, syntax and interaction schemes in-
volved. And what if the user combines two inter-
action domains: “play some music, but first what’s
the weather tomorrow”?

In this work, we present HERMIT, a HiERar-
chical MultI-Task Natural Language Understand-
ing architecture1, designed for effective seman-
tic parsing of domain-independent user utterances,
extracting meaning representations in terms of
high-level intents and frame-like semantic struc-
tures. With respect to previous approaches to
NLU for SDS, HERMIT stands out for being a
cross-domain, multi-task architecture, capable of
recognising multiple intents/frames in an utter-
ance. HERMIT also shows better performance
with respect to current state-of-the-art commercial
systems. Such a novel combination of require-
ments is discussed below.

Cross-domain NLU A cross-domain dialogue
agent must be able to handle heterogeneous types
of conversation, such as chit-chatting, giving di-
rections, entertaining, and triggering domain/task
actions. A domain-independent and rich meaning
representation is thus required to properly capture
the intent of the user. Meaning is modelled here
through three layers of knowledge: dialogue acts,
frames, and frame arguments. Frames and argu-
ments can be in turn mapped to domain-dependent
intents and slots, or to Frame Semantics’ (Fill-
more, 1976) structures (i.e. semantic frames and
frame elements, respectively), which allow han-
dling of heterogeneous domains and language.

Multi-task NLU Deriving such a multi-layered
meaning representation can be approached
through a multi-task learning approach. Multi-
task learning has found success in several NLP

1https://gitlab.com/hwu-ilab/
hermit-nlu
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problems (Hashimoto et al., 2017; Strubell et al.,
2018), especially with the recent rise of Deep
Learning. Thanks to the possibility of building
complex networks, handling more tasks at once
has been proven to be a successful solution,
provided that some degree of dependence holds
between the tasks. Moreover, multi-task learning
allows the use of different datasets to train sub-
parts of the network (Sanh et al., 2018). Following
the same trend, HERMIT is a hierarchical multi-
task neural architecture which is able to deal with
the three tasks of tagging dialogue acts, frame-like
structures, and their arguments in parallel. The
network, based on self-attention mechanisms,
seq2seq bi-directional Long-Short Term Memory
(BiLSTM) encoders, and CRF tagging layers, is
hierarchical in the sense that information output
from earlier layers flows through the network,
feeding following layers to solve downstream
dependent tasks.

Multi-dialogue act and -intent NLU Another
degree of complexity in NLU is represented by
the granularity of knowledge that can be extracted
from an utterance. Utterance semantics is often
rich and expressive: approximating meaning to a
single user intent is often not enough to convey
the required information. As opposed to the
traditional single-dialogue act and single-intent
view in previous work (Guo et al., 2014; Liu and
Lane, 2016; Hakkani-Tur et al., 2016), HERMIT
operates on a meaning representation that is
multi-dialogue act and multi-intent. In fact,
it is possible to model an utterance’s meaning
through multiple dialogue acts and intents at the
same time. For example, the user would be able
both to request tomorrow’s weather and listen to
his/her favourite music with just a single utterance.

A further requirement is that for practical applica-
tion the system should be competitive with state-
of-the-art: we evaluate HERMIT’s effectiveness
by running several empirical investigations. We
perform a robust test on a publicly available NLU-
Benchmark (NLU-BM) (Liu et al., 2019) con-
taining 25K cross-domain utterances with a con-
versational agent. The results obtained show a
performance higher than well-known off-the-shelf
tools (i.e., Rasa, DialogueFlow, LUIS, and Wat-
son). The contribution of the different network
components is then highlighted through an abla-
tion study. We also test HERMIT on the smaller

Robotics-Oriented MUltitask Language Under-
Standing (ROMULUS) corpus, annotated with Di-
alogue Acts and Frame Semantics. HERMIT pro-
duces promising results for the application in a
real scenario.

2 Related Work

Much research on Natural (or Spoken, depend-
ing on the input) Language Understanding has
been carried out in the area of Spoken Dia-
logue Systems (Chen et al., 2017), where the ad-
vent of statistical learning has led to the applica-
tion of many data-driven approaches (Lemon and
Pietquin, 2012). In recent years, the rise of deep
learning models has further improved the state-
of-the-art. Recurrent Neural Networks (RNNs)
have proven to be particularly successful, espe-
cially uni- and bi-directional LSTMs and Gated
Recurrent Units (GRUs). The use of such deep
architectures has also fostered the development of
joint classification models of intents and slots. Bi-
directional GRUs are applied in (Zhang and Wang,
2016), where the hidden state of each time step is
used for slot tagging in a seq2seq fashion, while
the final state of the GRU is used for intent classifi-
cation. The application of attention mechanisms in
a BiLSTM architecture is investigated in (Liu and
Lane, 2016), while the work of (Chen et al., 2016)
explores the use of memory networks (Sukhbaatar
et al., 2015) to exploit encoding of historical user
utterances to improve the slot-filling task. Seq2seq
with self-attention is applied in (Li et al., 2018),
where the classified intent is also used to guide a
special gated unit that contributes to the slot clas-
sification of each token.

One of the first attempts to jointly detect do-
mains in addition to intent-slot tagging is the work
of (Guo et al., 2014). An utterance syntax is en-
coded through a Recursive NN, and it is used to
predict the joined domain-intent classes. Syntac-
tic features extracted from the same network are
used in the per-word slot classifier. The work
of (Hakkani-Tur et al., 2016) applies the same
idea of (Zhang and Wang, 2016), this time us-
ing a context-augmented BiLSTM, and perform-
ing domain-intent classification as a single joint
task. As in (Chen et al., 2016), the history of
user utterances is also considered in (Bapna et al.,
2017), in combination with a dialogue context en-
coder. A two-layer hierarchical structure made
of a combination of BiLSTM and BiGRU is used
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for joint classification of domains and intents, to-
gether with slot tagging. (Rastogi et al., 2018)
apply multi-task learning to the dialogue domain.
Dialogue state tracking, dialogue act and intent
classification, and slot tagging are jointly learned.
Dialogue states and user utterances are encoded to
provide hidden representations, which jointly af-
fect all the other tasks.

Many previous systems are trained and com-
pared over the ATIS (Airline Travel Information
Systems) dataset (Price, 1990), which covers only
the flight-booking domain. Some of them also
use bigger, not publicly available datasets, which
appear to be similar to the NLU-BM in terms
of number of intents and slots, but they cover
no more than three or four domains. Our work
stands out for its more challenging NLU setting,
since we are dealing with a higher number of do-
mains/scenarios (18), intents (64) and slots (54)
in the NLU-BM dataset, and dialogue acts (11),
frames (58) and frame elements (84) in the RO-
MULUS dataset. Moreover, we propose a multi-
task hierarchical architecture, where each layer is
trained to solve one of the three tasks. Each of
these is tackled with a seq2seq classification using
a CRF output layer, as in (Sanh et al., 2018).

The NLU problem has been studied also on
the Interactive Robotics front, mostly to support
basic dialogue systems, with few dialogue states
and tailored for specific tasks, such as semantic
mapping (Kruijff et al., 2007), navigation (Kollar
et al., 2010; Bothe et al., 2018), or grounded lan-
guage learning (Chai et al., 2016). However, the
designed approaches, either based on formal lan-
guages or data-driven, have never been shown to
scale to real world scenarios. The work of (Hatori
et al., 2018) makes a step forward in this direction.
Their model still deals with the single ‘pick and
place’ domain, covering no more than two intents,
but it is trained on several thousands of examples,
making it able to manage more unstructured lan-
guage. An attempt to manage a higher number of
intents, as well as more variable language, is rep-
resented by the work of (Bastianelli et al., 2016)
where the sole Frame Semantics is applied to rep-
resent user intents, with no Dialogue Acts.

3 Jointly parsing dialogue acts and
frame-like structures

The identification of Dialogue Acts (henceforth
DAs) is required to drive the dialogue manager

to the next dialogue state. General frame struc-
tures (FRs) provide a reference framework to cap-
ture user intents, in terms of required or de-
sired actions that a conversational agent has to
perform. Depending on the level of abstraction
required by an application, these can be inter-
preted as more domain-dependent paradigms like
intent, or to shallower representations, such as se-
mantic frames, as conceived in FrameNet (Baker
et al., 1998). From this perspective, semantic
frames represent a versatile abstraction that can
be mapped over an agent’s capabilities, allowing
also the system to be easily extended with new
functionalities without requiring the definition of
new ad-hoc structures. Similarly, frame argu-
ments (ARs) act as slots in a traditional intent-slots
scheme, or to frame elements for semantic frames.

In our work, the whole process of extracting
a complete semantic interpretation as required by
the system is tackled with a multi-task learning ap-
proach across DAs, FRs, and ARs. Each of these
tasks is modelled as a seq2seq problem, where
a task-specific label is assigned to each token of
the sentence according to the IOB2 notation (Sang
and Veenstra, 1999), with “B-” marking the Begin-
ning of the chunk, “I-” the tokens Inside the chunk
while “O-” is assigned to any token that does not
belong to any chunk. Task labels are drawn from
the set of classes defined for DAs, FRs, and ARs.
Figure 1 shows an example of the tagging layers
over the sentence Where can I find Starbucks?,
where Frame Semantics has been selected as un-
derlying reference theory.

3.1 Architecture description

The central motivation behind the proposed archi-
tecture is that there is a dependence among the
three tasks of identifying DAs, FRs, and ARs. The
relationship between tagging frame and arguments
appears more evident, as also developed in theo-
ries like Frame Semantics – although it is defined
independently by each theory. However, some de-
gree of dependence also holds between the DAs
and FRs. For example, the FrameNet semantic
frame Desiring, expressing a desire of the user for
an event to occur, is more likely to be used in the
context of an INFORM DA, which indicates the
state of notifying the agent with an information,
other than in an INSTRUCTION. This is clearly
visible in interactions like “I’d like a cup of hot
chocolate” or “I’d like to find a shoe shop”, where
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Where can I find Starbucks ?
DAs B-REQ INFO I-REQ INFO I-REQ INFO I-REQ INFO I-REQ INFO O
FRs B-Locating I-Locating I-Locating I-Locating I-Locating O
ARs O O B-COGNIZER B-LEXICAL UNIT B-ENTITY O

Figure 1: Dialogue Acts (DAs), Frames (FRs – here semantic frames) and Arguments (ARs – here frame elements)
IOB2 tagging for the sentence Where can I find Starbucks?

the user is actually notifying the agent about a de-
sire of hers/his.

In order to reflect such inter-task dependence,
the classification process is tackled here through a
hierarchical multi-task learning approach. We de-
signed a multi-layer neural network, whose archi-
tecture is shown in Figure 2, where each layer is
trained to solve one of the three tasks, namely la-
belling dialogue acts (DA layer), semantic frames
(FR layer), and frame elements (AR layer). The
layers are arranged in a hierarchical structure that
allows the information produced by earlier layers
to be fed to downstream tasks.

The network is mainly composed of three BiL-
STM (Schuster and Paliwal, 1997) encoding lay-
ers. A sequence of input words is initially con-
verted into an embedded representation through an
ELMo embeddings layer (Peters et al., 2018), and
is fed to the DA layer. The embedded representa-
tion is also passed over through shortcut connec-
tions (Hashimoto et al., 2017), and concatenated
with both the outputs of the DA and FR lay-
ers. Self-attention layers (Zheng et al., 2018) are
placed after the DA and FR BiLSTM encoders.
Where wt is the input word at time step t of the
sentence w = (w1, ..., wT ), the architecture can
be formalised by:

et = ELMo(wt), s
DA
t = BiLSTM(et)

aDA
t = SelfAtt(sDA

t , sDA),

sFR
t = BiLSTM(et ⊕ aDA

t ),

aFR
t = SelfAtt(sFR

t , sFR),

sAR
t = BiLSTM(et ⊕ aFR

t )

where⊕ represents the vector concatenation oper-
ator, et is the embedding of the word at time t, and
sL = (sL1 , ..., sLT ) is the embedded sequence output
of each L layer, with L = {DA,FR,AR}. Given
an input sentence, the final sequence of labels yL
for each task is computed through a CRF tagging
layer, which operates on the output of the DA and
FR self-attention, and of the AR BiLSTM em-

O O B-COGNIZER

Where can I

+ +
B-REQ_INFO I-REQ_INFO I-REQ_INFO …

B-Locating I-Locating I-Locating …

+ +

+ + + +

…

…

Embeddings

AR BiLSTM Encoder

AR CRF

DA CRF

FR CRF

FR BiLSTM Encoder

DA BiLSTM Encoder

Self-attention

Self-attention

Figure 2: HERMIT Network topology

bedding, so that:

yDA = CRFDA(aDA), yFR = CRFFR(aFR)

yAR = CRFAR(sAR),

where aDA, aFR are attended embedded se-
quences. Due to shortcut connections, layers in
the upper levels of the architecture can rely both on
direct word embeddings as well as the hidden rep-
resentation aLt computed by a previous layer. Op-
erationally, the latter carries task specific informa-
tion which, combined with the input embeddings,
helps in stabilising the classification of each CRF
layer, as shown by our experiments. The network
is trained by minimising the sum of the individual
negative log-likelihoods of the three CRF layers,
while at test time the most likely sequence is ob-
tained through the Viterbi decoding over the out-
put scores of the CRF layer.

4 Experimental Evaluation

In order to assess the effectiveness of the proposed
architecture and compare against existing off-the-
shelf tools, we run several empirical evaluations.

4.1 Datasets
We tested the system on two datasets, different in
size and complexity of the addressed language.
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NLU-Benchmark dataset The first (publicly
available) dataset, NLU-Benchmark (NLU-BM),
contains 25, 716 utterances annotated with tar-
geted Scenario, Action, and involved Entities. For
example, “schedule a call with Lisa on Monday
morning” is labelled to contain a calendar sce-
nario, where the set event action is instantiated
through the entities [event name: a call with
Lisa] and [date: Monday morning]. The Intent
is then obtained by concatenating scenario and ac-
tion labels (e.g., calendar set event). This
dataset consists of multiple home assistant task do-
mains (e.g., scheduling, playing music), chit-chat,
and commands to a robot (Liu et al., 2019).2

NLU-BM NLU-BM (reduced)

Sentences 25715 11020
Sentences length 7.06 6.84

Scenario labels set 18 18
Action labels set 54 51
Intent labels set 68 64
Entity labels set 56 54

Number of intent 25715 11020
Number of entities 20597 9130

Intents/sentence 1 1
Entities/sentence 0.8 0.83

Table 1: Statistics of the NLU-Benchmark dataset (Liu
et al., 2019).

ROMULUS dataset The second dataset, RO-
MULUS, is composed of 1, 431 sentences, for
each of which dialogue acts, semantic frames, and
corresponding frame elements are provided. This
dataset is being developed for modelling user ut-
terances to open-domain conversational systems
for robotic platforms that are expected to han-
dle different interaction situations/patterns – e.g.,
chit-chat, command interpretation. The corpus is
composed of different subsections, addressing het-
erogeneous linguistic phenomena, ranging from
imperative instructions (e.g., “enter the bedroom
slowly, turn left and turn the lights off ”) to com-
plex requests for information (e.g., “good morn-
ing I want to buy a new mobile phone is there any
shop nearby?”) or open-domain chit-chat (e.g.,
“nope thanks let’s talk about cinema”). A consid-
erable number of utterances in the dataset is col-
lected through Human-Human Interaction studies
in robotic domain (≈70%), though a small portion
has been synthetically generated for balancing the
frame distribution.

2Available at https://github.com/xliuhw/
NLU-Evaluation-Data.

ROMULUS dataset

Sentences 1431
Sentences length 7.24

Dialogue act labels set 11
Frame labels set 58

Frame element labels set 84
Number of dialogue acts 1906

Number of frames 2013
Number of frame elements 5059

Dialogue act/sentence 1.33
Frames/sentence 1.41

Frame elements/sentence 3.54

Table 2: Statistics of the ROMULUS dataset.

Note that while the NLU-BM is designed to
have at most one intent per utterance, sentences
are here tagged following the IOB2 sequence la-
belling scheme (see example of Figure 1), so
that multiple dialogue acts, frames, and frame
elements can be defined at the same time for
the same utterance. For example, three dia-
logue acts are identified within the sentence [good
morning]OPENING [I want to buy a new mobile
phone]INFORM [is there any shop nearby?]REQ INFO.
As a result, though smaller, the ROMULUS
dataset provides a richer representation of the sen-
tence’s semantics, making the tasks more complex
and challenging. These observations are high-
lighted by the statistics in Table 2, that show an av-
erage number of dialogue acts, frames and frame
elements always greater than 1 (i.e., 1.33, 1.41 and
3.54, respectively).

4.2 Experimental setup

All the models are implemented with Keras (Chol-
let et al., 2015) and Tensorflow (Abadi et al., 2015)
as backend, and run on a Titan Xp. Experiments
are performed in a 10-fold setting, using one fold
for tuning and one for testing. However, since
HERMIT is designed to operate on dialogue acts,
semantic frames and frame elements, the best hy-
perparameters are obtained over the ROMULUS
dataset via a grid search using early stopping, and
are applied also to the NLU-BM models.3 This
guarantees fairness towards other systems, that do
not perform any fine-tuning on the training data.
We make use of pre-trained 1024-dim ELMo em-
beddings (Peters et al., 2018) as word vector rep-
resentations without re-training the weights.

3Notice that in the NLU-BM experiments only the num-
ber of epochs is tuned, using 10% of the training data.
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4.3 Experiments on the NLU-Benchmark

This section shows the results obtained on the
NLU-Benchmark (NLU-BM) dataset provided by
(Liu et al., 2019), by comparing HERMIT to
off-the-shelf NLU services, namely: Rasa4, Di-
alogflow5, LUIS6 and Watson7. In order to ap-
ply HERMIT to NLU-BM annotations, these have
been aligned so that Scenarios are treated as DAs,
Actions as FRs and Entities as ARs.

To make our model comparable against other
approaches, we reproduced the same folds as in
(Liu et al., 2019), where a resized version of the
original dataset is used. Table 1 shows some
statistics of the NLU-BM and its reduced version.
Moreover, micro-averaged Precision, Recall and
F1 are computed following the original paper to
assure consistency. TP, FP and FN of intent labels
are obtained as in any other multi-class task. An
entity is instead counted as TP if there is an over-
lap between the predicted and the gold span, and
their labels match.

Experimental results are reported in Table 3.
The statistical significance is evaluated through
the Wilcoxon signed-rank test. When looking at
the intent F1, HERMIT performs significantly bet-
ter than Rasa [Z = −2.701, p = .007] and LUIS
[Z = −2.807, p = .005]. On the contrary, the im-
provements w.r.t. Dialogflow [Z = −1.173, p =
.241] do not seem to be significant. This is prob-
ably due to the high variance obtained by Di-
alogflow across the 10 folds. Watson is by a sig-
nificant margin the most accurate system in recog-
nising intents [Z = −2.191, p = .028], especially
due to its Precision score.

The hierarchical multi-task architecture of
HERMIT seems to contribute strongly to entity
tagging accuracy. In fact, in this task it performs
significantly better than Rasa [Z = −2.803, p =
.005], Dialogflow [Z = −2.803, p = .005], LUIS
[Z = −2.803, p = .005] and Watson [Z =
−2.805, p = .005], with improvements from 7.08
to 35.92 of F1.9

4https://rasa.com/
5https://dialogflow.com/
6https://www.luis.ai/
7https://www.ibm.com/watson
9Results for Watson are shown for the non-contextual

training. Due to Watson limitations, i.e. 2000 training ex-
amples for contextual training, we could not run the whole
test in such configuration. For fairness, we report results
made on 8 random samplings of 2000/1000 train/test exam-
ples a each (F1): Intent=72.64± 7.46, Slots=77.01± 10.65,
Combined=74.85± 7.54

Following (Liu et al., 2019), we then evaluated a
metric that combines intent and entities, computed
by simply summing up the two confusion matrices
(Table 4). Results highlight the contribution of the
entity tagging task, where HERMIT outperforms
the other approaches. Paired-samples t-tests were
conducted to compare the HERMIT combined F1
against the other systems. The statistical analysis
shows a significant improvement over Rasa [Z =
−2.803, p = .005], Dialogflow [Z = −2.803, p =
.005], LUIS [Z = −2.803, p = .005] and Watson
[Z = −2.803, p = .005].

4.3.1 Ablation study
In order to assess the contributions of the HER-
MIT’s components, we performed an ablation
study. The results are obtained on the NLU-BM,
following the same setup as in Section 4.3.

Results are shown in Table 5. The first row
refers to the complete architecture, while –SA
shows the results of HERMIT without the self-
attention mechanism. Then, from this latter we
further remove shortcut connections (– SA/CN)
and CRF taggers (– SA/CRF). The last row (–
SA/CN/CRF) shows the results of a simple archi-
tecture, without self-attention, shortcuts, and CRF.
Though not significant, the contribution of the sev-
eral architectural components can be observed.
The contribution of self-attention is distributed
across all the tasks, with a small inclination to-
wards the upstream ones. This means that while
the entity tagging task is mostly lexicon indepen-
dent, it is easier to identify pivoting keywords for
predicting the intent, e.g. the verb “schedule” trig-
gering the calendar set event intent. The
impact of shortcut connections is more evident
on entity tagging. In fact, the effect provided by
shortcut connections is that the information flow-
ing throughout the hierarchical architecture allows
higher layers to encode richer representations (i.e.,
original word embeddings + latent semantics from
the previous task). Conversely, the presence of the
CRF tagger affects mainly the lower levels of the
hierarchical architecture. This is not probably due
to their position in the hierarchy, but to the way the
tasks have been designed. In fact, while the span
of an entity is expected to cover few tokens, in in-
tent recognition (i.e., a combination of Scenario
and Action recognition) the span always covers all
the tokens of an utterance. CRF therefore pre-
serves consistency of IOB2 sequences structure.
However, HERMIT seems to be the most stable ar-
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Intent Entity
P R F1 P R F1

Rasa 86.31±1.07 86.31±1.07 86.31±1.07 85.93±1.05 69.40±1.66 76.78±1.27
Dialogflow 86.97±2.02 85.87±2.33 86.42±2.18 78.21±3.35 70.85±4.70 74.30±3.74

LUIS 85.53±1.14 85.51±1.15 85.52±1.15 83.69±1.31 72.46±2.05 77.66±1.45
Watson8 88.41±0.68 88.08±0.74 88.24±0.70 35.39±0.93 78.70±2.01 48.82±1.14

HERMIT 87.41±0.63 87.70±0.64 87.55±0.63 87.65±0.98 82.04±2.12 84.74±1.18

Table 3: Comparison of HERMIT with the results obtained in (Liu et al., 2019) for Intents and Entity Types.

Combined
P R F1

Rasa 86.16±0.90 78.66±1.28 82.24±1.08
Dialogflow 83.19±2.43 79.07±3.10 81.07±2.64
LUIS 84.76±0.67 79.61±1.25 82.1±0.90
Watson 54.02±0.75 83.83±1.02 65.7±0.75
HERMIT 87.52±0.61 85.03±1.11 86.25±0.66

Table 4: Comparison of HERMIT with the results
in (Liu et al., 2019) by combining Intent and Entity.

Intent Entity Combined

HERMIT 87.55±0.63 84.74±1.18 86.25±0.66
– SA 87.03±0.74 84.35±1.15 85.81±0.81
– SA/CN 87.09±0.78 82.43±1.42 84.97±0.72
– SA/CRF 83.57±0.75 84.77±1.06 84.09±0.79
– SA/CN/CRF 83.78±1.10 82.22±1.41 83.10±1.06

Table 5: Ablation study of HERMIT on the NLU-BM.

chitecture, both in terms of standard deviation and
task performance, with a good balance between in-
tent and entity recognition.

4.4 Experiments on the ROMULUS dataset

In this section we report the experiments per-
formed on the ROMULUS dataset (Table 6). To-
gether with the evaluation metrics used in (Liu
et al., 2019), we report the span F1, computed us-
ing the CoNLL-2000 shared task evaluation script,
and the Exact Match (EM) accuracy of the entire
sequence of labels. It is worth noticing that the EM
Combined score is computed as the conjunction of
the three individual predictions – e.g., a match is
when all the three sequences are correct.

Results in terms of EM reflect the complexity of
the different tasks, motivating their position within
the hierarchy. Specifically, dialogue act identifi-
cation is the easiest task (89.31%) with respect
to frame (82.60%) and frame element (79.73%),
due to the shallow semantics it aims to catch.
However, when looking at the span F1, its score
(89.42%) is lower than the frame element iden-
tification task (92.26%). What happens is that

even though the label set is smaller, dialogue act
spans are supposed to be longer than frame el-
ement ones, sometimes covering the whole sen-
tence. Frame elements, instead, are often one or
two tokens long, that contribute in increasing span
based metrics. Frame identification is the most
complex task for several reasons. First, lots of
frame spans are interlaced or even nested; this con-
tributes to increasing the network entropy. Sec-
ond, while the dialogue act label is highly related
to syntactic structures, frame identification is of-
ten subject to the inherent ambiguity of language
(e.g., get can evoke both Commerce buy and Ar-
riving). We also report the metrics in (Liu et al.,
2019) for consistency. For dialogue act and frame
tasks, scores provide just the extent to which the
network is able to detect those labels. In fact, the
metrics do not consider any span information, es-
sential to solve and evaluate our tasks. However,
the frame element scores are comparable to the
benchmark, since the task is very similar.

Overall, getting back to the combined EM ac-
curacy, HERMIT seems to be promising, with the
network being able to reproduce all the three gold
sequences for almost 70% of the cases. The im-
portance of this result provides an idea of the ar-
chitecture behaviour over the entire pipeline.

4.5 Discussion

The experimental evaluation reported in this sec-
tion provides different insights. The proposed
architecture addresses the problem of NLU in
wide-coverage conversational systems, modelling
semantics through multiple Dialogue Acts and
Frame-like structures in an end-to-end fashion. In
addition, its hierarchical structure, which reflects
the complexity of the single tasks, allows provid-
ing rich representations across the whole network.
In this respect, we can affirm that the architecture
successfully tackles the multi-task problem, with
results that are promising in terms of usability and
applicability of the system in real scenarios.
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P R F1 span F1 EM

Dialogue act 96.49±0.98 95.95±1.41 96.21±1.13 89.42±3.74 89.31±3.28
Frame 95.26±0.95 94.02±1.20 94.64±1.09 84.40±2.99 82.60±2.68

Frame element 95.62±0.61 93.98±0.76 94.79±0.56 92.26±1.22 79.73±2.03
Combined 93.90±0.89 92.95±0.86 93.42±0.83 – 69.53±2.50

Table 6: HERMIT performance over the ROMULUS dataset. P,R and F1 are evaluated following (Liu et al., 2019)
metrics

However, a thorough evaluation in the wild
must be carried out, to assess to what extent the
system is able to handle complex spoken language
phenomena, such as repetitions, disfluencies, etc.
To this end, a real scenario evaluation may open
new research directions, by addressing new tasks
to be included in the multi-task architecture. This
is supported by the scalable nature of the pro-
posed approach. Moreover, following (Sanh et al.,
2018), corpora providing different annotations can
be exploited within the same multi-task network.

We also empirically showed how the same ar-
chitectural design could be applied to a dataset
addressing similar problems. In fact, a compar-
ison with off-the-shelf tools shows the benefits
provided by the hierarchical structure, with better
overall performance better than any current solu-
tion. An ablation study has been performed, as-
sessing the contribution provided by the different
components of the network. The results show how
the shortcut connections help in the more fine-
grained tasks, successfully encoding richer repre-
sentations. CRFs help when longer spans are be-
ing predicted, more present in the upstream tasks.

Finally, the seq2seq design allowed obtaining
a multi-label approach, enabling the identification
of multiple spans in the same utterance that might
evoke different dialogue acts/frames. This rep-
resents a novelty for NLU in conversational sys-
tems, as such a problem has always been tackled
as a single-intent detection. However, the seq2seq
approach carries also some limitations, especially
on the Frame Semantics side. In fact, label se-
quences are linear structures, not suitable for rep-
resenting nested predicates, a tough and common
problem in Natural Language. For example, in the
sentence “I want to buy a new mobile phone”, the
[to buy a new mobile phone] span represents both
the DESIRED EVENT frame element of the Desir-
ing frame and a Commerce buy frame at the same
time. At the moment of writing, we are working
on modeling nested predicates through the appli-
cation of bilinear models.

5 Future Work

We have started integrating a corpus of 5M sen-
tences of real users chit-chatting with our conver-
sational agent, though at the time of writing they
represent only 16% of the current dataset.

As already pointed out in Section 4.5, there
are some limitations in the current approach that
need to be addressed. First, we have to assess the
network’s capability in handling typical phenom-
ena of spontaneous spoken language input, such
as repetitions and disfluencies (Shalyminov et al.,
2018). This may open new research directions, by
including new tasks to identify/remove any kind of
noise from the spoken input. Second, the seq2seq
scheme does not deal with nested predicates, a
common aspect of Natural Language. To the best
of our knowledge, there is no architecture that
implements an end-to-end network for FrameNet
based semantic parsing. Following previous work
(Strubell et al., 2018), one of our future goals is to
tackle such problems through hierarchical multi-
task architectures that rely on bilinear models.

6 Conclusion

In this paper we presented HERMIT NLU, a
hierarchical multi-task architecture for semantic
parsing sentences for cross-domain spoken dia-
logue systems. The problem is addressed using
a seq2seq model employing BiLSTM encoders
and self-attention mechanisms and followed by
CRF tagging layers. We evaluated HERMIT
on a 25K sentences NLU-Benchmark and out-
perform state-of-the-art NLU tools such as Rasa,
Dialogflow, LUIS and Watson, even without spe-
cific fine-tuning of the model.
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Abstract

Dialog state tracking is used to estimate the
current belief state of a dialog given all the pre-
ceding conversation. Machine reading com-
prehension, on the other hand, focuses on
building systems that read passages of text
and answer questions that require some un-
derstanding of passages. We formulate dialog
state tracking as a reading comprehension task
to answer the question what is the state of the
current dialog? after reading conversational
context. In contrast to traditional state track-
ing methods where the dialog state is often
predicted as a distribution over a closed set of
all the possible slot values within an ontology,
our method uses a simple attention-based neu-
ral network to point to the slot values within
the conversation. Experiments on MultiWOZ-
2.0 cross-domain dialog dataset show that our
simple system can obtain similar accuracies
compared to the previous more complex meth-
ods. By exploiting recent advances in contex-
tual word embeddings, adding a model that ex-
plicitly tracks whether a slot value should be
carried over to the next turn, and combining
our method with a traditional joint state track-
ing method that relies on closed set vocabu-
lary, we can obtain a joint-goal accuracy of
47.33% on the standard test split, exceeding
current state-of-the-art by 11.75%**.

1 Introduction

A task-oriented spoken dialog system involves
continuous interaction with a machine agent and a
human who wants to accomplish a predefined task
through speech. Broadly speaking, the system has

*Authors contributed equally.
**We note that after publication, a new state-of-the-art

can now be obtained with a similar attention mechanism fol-
lowed by a enoder-decoder architecture (Wu et al., 2019).

four components, the Automatic Speech Recog-
nition (ASR) module, the Natural Language Un-
derstanding (NLU) module, the Natural Language
Generation (NLG) module, and the Dialog Man-
ager. The dialog manager has two primary mis-
sions: dialog state tracking (DST) and decision
making. At each dialog turn, the state tracker up-
dates the belief state based on the information re-
ceived from the ASR and the NLU modules. Sub-
sequently, the dialog manager chooses the action
based on the dialog state, the dialog policy and
the backend results produced from previously ex-
ecuted actions.

Table 1 shows an example conversation with the
associated dialog state. Typical dialog state track-
ing system combines user speech, NLU output,
and context from previous turns to track what has
happened in a dialog. More specifically, the dia-
log state at each turn is defined as a distribution
over a set of predefined variables (Williams et al.,
2005). The distributions output by a dialog state
tracker are sometimes referred to as the tracker’s
belief or the belief state. Typically, the tracker has
complete access to the history of the dialog up to
the current turn.

Traditional machine learning approaches to di-
alog state tracking have two forms, generative and
discriminative. In generative approaches, a dia-
log is modeled as a dynamic Bayesian network
where true dialog state and true user action are un-
observed random variables (Williams and Young,
2007); whereas the discriminative approaches are
directly modeling the distribution over the dialog
state given arbitrary input features.

Despite the popularity of these approaches, they
often suffer from a common yet overlooked prob-
lem — relying on fixed ontologies. These systems,
therefore, have trouble handling previously unseen
mentions. On the other hand, reading compre-
hension tasks (Rajpurkar et al., 2016; Chen et al.,
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2017; Reddy et al., 2019) require us to find the
answer spans within the given passage and hence
state-of-the-art models are developed in such a
way that a fixed vocabulary for an answer is usu-
ally not required. Motivated by the limitations of
previous dialog state tracking methods and the re-
cent advances in reading comprehension (Chen,
2018), we propose a reading comprehension based
approach to dialog state tracking. In our approach,
we view the dialog as a passage and ask the ques-
tion what is the state of the current dialog? We use
a simple attention-based neural network model to
find answer spans by directly pointing to the to-
kens within the dialog, which is similar to Chen
et al. (2017). In addition to this attentive read-
ing model, we also introduce two simple models
into our dialog state tracking pipeline, a slot car-
ryover model to help the tracker make a binary
decision whether the slot values from the previ-
ous turn should be used; a slot type model to pre-
dict whether the answer is {Yes, No, DontCare,
Span}, which is similar to Zhu et al. (2018). To
summarize our contributions:

• We formulate dialog state tracking as a read-
ing comprehension task and propose a sim-
ple attention-based neural network to find the
state answer as a span over tokens within the
dialog. Our approach overcomes the limi-
tations of fixed-vocabulary issue in previous
approaches and can generalize to unseen state
values.

• We present the task of dialog state tracking as
making three sequential decisions: i) a binary
carryover decision by a simple slot carryover
model ii) a slot type decision by a slot type
model iii) a slot span decision by an atten-
tive reading comprehension model. We show
effectiveness of this approach.

• We adopt recent progress in large pre-
trained contextual word embeddings, i.e.,
BERT (Devlin et al., 2018) into dialog state
tracking, and get considerable improvement.

• We show our proposed model outperforms
more complex previously published methods
on the recently released MultiWOZ-2.0 cor-
pus (Budzianowski et al., 2018; Ramadan
et al., 2018). Our approach achieves a joint-
goal accuracy of 42.12%, resulting in a 6.5%
absolute improvement over previous state-of-

User: I need to book a hotel in the east that has 4 stars.
Hotel area=east, stars=4
Agent: I can help you with that. What is your price range?
User: That doesn’t matter if it has free wifi and parking.
Hotel parking=yes, internet=yes

price=dontcare, stars=4, area=east
Agent: If you’d like something cheap,

I recommend Allenbell
User: That sounds good, I would also like a

taxi to the hotel from cambridge
Hotel parking=yes, internet=yes

price=dontcare, area=east, stars=4
Taxi departure=Cambridge

destination=Allenbell

Table 1: An example conversation in MultiWOZ-2.0
with dialog states after each turn.

the-art. Furthermore, if we combine our re-
sults with the traditional joint state tracking
method in Liu and Lane (2017), we achieve
a joint-goal accuracy of 47.33%, further ad-
vancing the state-of-the-art by 11.75%.

• We provide an in-depth error analysis of
our methods on the MultiWOZ-2.0 dataset
and explain to what extent an attention-based
reading comprehension model can be effec-
tive for dialog state tracking and inspire fu-
ture improvements on this model.

2 Related Work

Dialog State Tracking Traditionally, dialog
state tracking methods assume a fixed ontology,
wherein the output space of a slot is constrained
by the predefined set of possible values (Liu and
Lane, 2017). However, these approaches are not
applicable for unseen values and do not scale
for large or potentially unbounded vocabulary
(Nouri and Hosseini-Asl, 2018). To address these
concerns, a class of methods employing scoring
mechanisms to predict the slot value from a en-
dogenously defined set of candidates have been
proposed (Rastogi et al., 2017; Goel et al., 2018).
In these methods, the candidates are derived from
either a predefined ontology or by extraction of
a word or n-grams in the prior dialog context.
Previously, Perez and Liu (2017) also formulated
state tracking as a machine reading comprehen-
sion problem. However, their model architec-
ture used a memory network which is relatively
complex and still assumes a fixed-set vocabulary.
Perhaps, the most similar technique to our work
is the pointer networks proposed by Xu and Hu
(2018) wherein an attention-based mechanism is
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employed to point the start and end token of a
slot value. However, their formulation does not in-
corporate a slot carryover component and outlines
an encoder-decoder architecture in which the slot
type embeddings are derived from the last state of
the RNN.

Reading Comprehension A reading compre-
hension task is commonly formulated as a super-
vised learning problem where for a given train-
ing dataset, the goal is to learn a predictor, which
takes a passage p and a corresponding question
q as inputs and gives the answer a as output. In
these tasks, an answer type can be cloze-style
as in CNN/Daily Mail (Hermann et al., 2015),
multiple choice as in MCTest (Richardson et al.,
2013), span prediction as in SQuaD (Rajpurkar
et al., 2016), and free-form answer as in Narra-
tiveQA (Kočiskỳ et al., 2018). In span prediction
tasks, most models encode a question into an em-
bedding and generate an embedding for each to-
ken in the passage and then a similarity function
employing attention mechanism between the ques-
tion and words in the passage to decide the starting
and ending positions of the answer spans (Chen
et al., 2017; Chen, 2018). This approach is fairly
generic and can be extended to multiple choice
questions by employing bilinear product for dif-
ferent types (Lai et al., 2017) or to free-form text
by employing seq-to-seq models (Sutskever et al.,
2014).

Deep Contextual Word Embeddings The re-
cent advancements in the neural representation of
words includes using character embeddings (Seo
et al., 2016) and more recently using contextu-
alized embeddings such as ELMO (Peters et al.,
2018) and BERT (Devlin et al., 2018). These
methods are usually trained on a very large cor-
pus using a language model objective and show
superior results across a variety of tasks. Given
their wide applicability (Liu et al., 2019), we em-
ploy these architectures in our dialog state tracking
task.

3 Our Approach

3.1 DST as Reading Comprehension

Let us denote a sub-dialog Dt of a dialog D as
prefix of a full dialog ending with user’s tth ut-
terance, then state of the dialog Dt is defined by
the values of constituent slots sj(t), i.e., St =
{s1(t), s2(t), .sj(t), . . . , sM (t)}.

Using the terminology in reading comprehen-
sion tasks, we can treat Dt as a passage, and for
each slot i, we formulate a question qi: what is
the value for slot i? The dialog state tracking task
then becomes understanding a sub-dialog Dt and
to answer the question qi for each slot i.

3.2 Encoding
Dialog Encoding For a given dialog Dt at turn
t, we first concatenate user utterances and agent
utterances {u1, a1,u2, a2, . . . ,ut}. To differenti-
ate between user utterance and agent utterance, we
add symbol [U] before each user utterance and
[A] before each agent utterance. Then, we use
pre-trained word vectors to form pi for each token
in the dialog sequence and pass them as input into
a recurrent neural network, i.e.,

{d1,d2, . . .dL} = RNN(p1,p2, . . .pL) (1)

where L is the total length of the concatenated di-
alog sequence and di is the output of RNN for
each token, which is expected to encode context-
aware information of the token. In particular, for
pre-trained word vectors pi, we experiment with
using deep contextualized word embeddings us-
ing BERT (Devlin et al., 2018). For RNN, we
use a one layer bidirectional long short-term mem-
ory network (LSTM) and each di is the concate-
nation of two LSTMs from both directions, i.e.,
di = (

←−di ;
−→di). Furthermore, we denote e(t) as our

dialog embedding at turn t as follows:

e(t) = (
←−d1;
−→dL) (2)

Question Encoding In our methodology, we
formulate questions qi defined earlier as what is
the value for slot i? For each dialog, there are
M similar questions corresponding to M slots,
therefore, we represent each question qi as a fixed-
dimension vector qi to learn.

3.3 Models
Overview In our full model set up, three dif-
ferent model components are used to make a se-
quence of predictions: first, we use a slot carry-
over model for deciding whether to carryover a
slot value from the last turn. If the first model de-
cided not to carry over, a slot type model is exe-
cuted to predict type of the answer from a set of
{Yes, No, DontCare, Span}. If the slot type
model predicts span, slot span model will finally
be predicting the slot value as a span of tokens
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Figure 1: Our attentive reading comprehension system for dialog state tracking. There are three prediction com-
ponents on top (from right to left): 1) slot carryover model to predict whether a particular slot needs to be updated
from previous turn 2) slot type model to predict the type of slot values from {Yes, No, DontCare, Span} 3) slot
span model to predict the start and end span of the value within the dialog.

within the dialog. The full model architecture is
shown in Figure 1.

Slot Carryover Model To model dynamic na-
ture of dialog state, we introduce a model whose
purpose is to decide whether to carry over a slot
value from the previous turn. For a given slot
sj , Cj(t) = 1 if sj(t) 6= sj(t − 1) and 0 if
they are equal. We multiply the dialog embedding
e(t) with a fully connected layer Wi to predict the
change for slot i as:

P (Ci(t)) = sigmoid(e(t) ·Wi) (3)

The network architecture is shown in Figure 1. In
our implementation, the weights Wi for each slot
are trained together, i.e., the neural network would
predict the slot carryover change Ci(t) jointly for
all M slots.

Slot Type Model A typical dialog state com-
prises of slots that can have both categorical and
named entities within the context of conversa-
tion. To adopt a flexible approach and inspired
by the state-of-the-art reading comprehension ap-
proaches, we propose a classifier that predicts the
type of slot value at each turn. In our setting,
we prescribe the output space to be {Yes, No,
DontCare, Span} where Span indicates the
slot value is a named entity which can be found
within the dialog. As shown in Figure 1, we con-
catenate the dialog embedding e(t) with the ques-
tion encoding qi for slot i as the input to the affine
layer A to predict the slot type Ti(t) as:

P (Ti(t)) ∝ exp(A · (e(t); qi)) (4)

Slot Span Model We map our slot values into
a span with start and end position in our flattened
conversation Dt. We then use the dialog encoding
vectors {d1,d2, . . .dL} and the question vector qi

to compute the bilinear product and train two clas-
sifiers to predict the start position and end position
of the slot value. More specifically, for slot j,

P
(start)
j (x) =

exp (dxΘ(start)qj)∑
x′ exp (dx′Θ(start)qj)

(5)

Similarly, we define P (end)
j (x) with Θ(end). Dur-

ing span inference, we choose the best span from
word i to word i′ such that i ≤ i′ and P (start)

j (i)×
P

(end)
j (i′) is maximized, in line with the approach

by Chen et al. (2017).

4 Experiments

4.1 Data
We use the recently-released MultiWOZ-2.0
dataset (Budzianowski et al., 2018; Ramadan
et al., 2018) to test our approach. This dataset con-
sists of multi-domain conversations from seven
domains with a total of 37 slots across domains.
Many of these slot types such as day and people
are shared across multiple domains. In our experi-
ments, we process each slot independently by con-
sidering the concatenation of slot domain, slot cat-
egory, and slot name, e.g., {bus.book.people},
{restaurant.semi.food}. An example of
conversation is shown in Table 1. We use stan-
dard training/development/test present in the data
set.

It is worth-noting that the dataset in the current
form has certain annotation errors. First, there is
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Method Accuracy
MultiWOZ Benchmark 25.83%
GLAD (Zhong et al., 2018) 35.57%
GCE (Nouri and Hosseini-Asl, 2018) 35.58%
Our approach (single) 39.41%
Our approach (ensemble) 42.12%
HyST (ensemble) (Goel et al., 2019) 44.22%
Our approach + JST (ensemble) 47.33%

Table 2: Joint goal accuracy on MultiWOZ-2.0. We
present both single and ensemble results for our ap-
proach.

lack of consistency between the slot values in the
ontology and the ground truth in the context of
the dialog. For example, the ontology has mod-
erate but the dialog context has moderately. Sec-
ond, there are erroneous delay in the state updates,
sometimes extending turns in the dialog. This er-
ror negatively impacts the performance of the slot
carryover model.

4.2 Experimental Setup

We train our three models independently without
sharing the dialog context. For all the three mod-
els, we encode the word tokens with BERT (De-
vlin et al., 2018) followed by an affine layer with
200 hidden units. This output is then fed into
a one-layer bi-directional LSTM with 50 hidden
units to obtain the contextual representation as
show in Figure 1. In all our experiments, we keep
the parameters of the BERT embeddings frozen.

For slot carryover model, we predict a binary
vector over 37 slots jointly to get the decisions of
whether to carry over values for each slot. For
slot type and slot span models, we treat dialog–
question pairs (Dt, qi) as separate prediction tasks
for each slot.

We use the learning rate of 0.001 with ADAM
optimizer and batch size equal to 32 for all three
models. We stop training our models when the
loss on the development set has not been decreas-
ing for ten epochs.

5 Results

Table 2 presents our results on MultiWOZ-2.0
test dataset. We compare our methods with
global-local self-attention model (GLAD) (Zhong
et al., 2018), global-conditioned encoder model
(GCE) (Nouri and Hosseini-Asl, 2018), and hy-
brid joint state tracking model (OV ST+JST) (Liu

and Lane, 2017; Goel et al., 2019). As in previous
work, we report joint goal accuracy as our met-
ric. For each user turn, joint goal accuracy checks
whether all predicted states exactly matches the
ground truth state for all slots. We can see that
our system with single model can achieve 39.41%
joint goal accuracy, and with the ensemble model
we can achieve 42.12% joint goal accuracy.

Table 3 shows the accuracy for each slot
type for both our method and the joint state
tracking approach with fix vocabulary in Goel
et al. (2019). We can see our approach
tends to have higher accuracy on some of
the slots that have larger set of possible val-
ues such as attraction.semi.name and
taxi.semi.destination. However, it is
worth-noting that even for slots with smaller
vocabulary sizes such as hotel.book.day
and hotel.semi.pricerange, our approach
achieves better accuracy than using closed vocab-
ulary approach. Our hypothesis for difference is
that such information appear more frequently in
user utterance thus our model is able to learn it
more easily from the dialog context.

We also reported the result for a hybrid model
by combining our approach with the JST approach
in (Goel et al., 2019). Our combination strategy is
as follows: first we calculated the slot type accu-
racy for each model on the development dataset;
then for each slot type, we choose to use the pre-
dictions from either our model or JST model based
on the accuracy calculated on the development
set, whichever is higher. With this approach, we
achieve the joint-goal accuracy of 46.28%. We
hypothesize that this is because our method uses
an open vocabulary, where all the possible values
can only be obtained from the conversation; the
joint state tracking method uses closed ontology,
we can get the best of both the worlds by combin-
ing two methods.

5.1 Ablation Analysis

Table 4 illustrates the ablation studies for our
model on development set. The contextual em-
bedding BERT (Devlin et al., 2018) can give us
around 2% gains. As for the oracle models, we
can see that even if using all the oracle results
(ground truth), our development set accuracy is
only 73.12%. This is because our approach is
only considering the values within the conversa-
tion, if values are not present in the dialog, the
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Slot Name Ours JST Vocab
Size

attraction.semi.area 0.9637 0.9719 16
attraction.semi.name 0.9213 0.9013 137
attraction.semi.type 0.9205 0.9637 37
bus.book.people 1.0000 1.0000 1
bus.semi.arriveBy 1.0000 1.0000 1
bus.semi.day 1.0000 1.0000 2
bus.semi.departure 1.0000 1.0000 2
bus.semi.destination 1.0000 1.0000 5
bus.semi.leaveAt 1.0000 1.0000 2
hospital.semi.department 0.9991 0.9988 52
hotel.book.day 0.9863 0.9784 11
hotel.book.people 0.9714 0.9847 9
hotel.book.stay 0.9736 0.9809 9
hotel.semi.area 0.9679 0.9570 24
hotel.semi.internet 0.9713 0.9718 8
hotel.semi.name 0.9147 0.9056 89
hotel.semi.parking 0.9563 0.9657 8
hotel.semi.pricerange 0.9679 0.9666 9
hotel.semi.stars 0.9627 0.9759 13
hotel.semi.type 0.9140 0.9261 18
restaurant.book.day 0.9874 0.9871 10
restaurant.book.people 0.9787 0.9881 9
restaurant.book.time 0.9882 0.9578 61
restaurant.semi.area 0.9607 0.9654 19
restaurant.semi.food 0.9741 0.9691 104
restaurant.semi.name 0.9113 0.8781 183
restaurant.semi.pricerange 0.9662 0.9626 11
taxi.semi.arriveBy 0.9893 0.9719 101
taxi.semi.departure 0.9665 0.9304 261
taxi.semi.destination 0.9634 0.9288 277
taxi.semi.leaveAt 0.9821 0.9524 119
train.book.people 0.9586 0.9718 13
train.semi.arriveBy 0.9738 0.9491 107
train.semi.day 0.9854 0.9783 11
train.semi.departure 0.9599 0.9710 35
train.semi.destination 0.9538 0.9699 29
train.semi.leaveAt 0.9595 0.9478 134

Table 3: Slot accuracy breakdown for our approach
versus joint state tracking method. Bolded slots are the
ones have better performance using our attentive read-
ing comprehension approach.

oracle models would fail. It is interesting to see
that if we replace our slot carryover model with
an oracle one, the accuracy improves significantly
to 60.18% (+19.08%) compared to replacing other
two models (41.43% and 45.77%). This is because
our span-based reading comprehension approach
model already gives us accuracy as high as 96%
per slot on development data, there is not much
room for improvement. Whereas our binary slot
carryover model only achieve an accuracy of 72%
per turn. We hypothesis that for slot carryover
problem is imbalanced, i.e., there are significantly
more slot carryovers than slot updates, making the

Ablation Dev Accuracy
Oracle Models 73.12%
Our approach 41.10%
- BERT 39.19%
+ Oracle Slot Type Model 41.43%
+ Oracle Slot Span Model 45.77%
+ Oracle Slot Carryover Model 60.18%

Table 4: Ablation study on our model components for
MultiWOZ-2.0 on development set for joint goal accu-
racy.

model training and predictions harder. This sug-
gest further improvements are needed for slot car-
ryover model to make overall state tracking accu-
racy higher.

5.2 Error Analysis

In Table 5, we conduct an error analysis of our
models and investigate its performance for differ-
ent use cases. Since we formulate the problem
to be an open-vocabulary state tracking approach
wherein the slot values are extracted in the dialog
context, we divide the errors into following cate-
gories:

• Unanswerable Slot Error This category
contains two type of errors: (1) Ground truth
slot is a not None value, but our prediction is
None; (2) Ground truth slot is None, but our
prediction is a not None value. This type of
error can be attributed to the incorrect predic-
tions made by our slot carryover model.

• Imprecise Slot Reference where multiple
potential candidates in the context exists. The
model refers to the incorrect entity in the con-
versation. This error can be largely attributed
to following reasons: (1) the model overfits
to the set of tokens that it has seen more
frequently in the training set; (2) the model
does not generalize well for scenarios where
the user corrects the previous entity; (3) the
model incorrectly overfits to the order or po-
sition of the entity in the context. These rea-
sons motivate future research in incorporat-
ing more neural reading comprehension ap-
proaches for dialog state tracking.

• Imprecisie Slot Resolution In this type of
errors, we cannot find the exact match of
ground truth value in the dialog context.
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Category Hypothesis Reference Context (%)
Unanswerable
Slot Error

not None None . . . 42.4
None not None . . . 23.1

Incorrect slot
Reference

4 8 . . . 3 nights, and 4 people. Thank You! [A]
Booking was unsuccessful . . . I’d like to book
there Monday for 1 night with 8 people. . . .

19.1

Incorrect Slot
Resolution

3:30 15:30 . . . you like to arrive at the Cinema? [U] I
want to leave the hotel by 3:30 [A] Your taxi
reservation departing . . .

12.9

Imprecise Slot
Boundary

nandos city
centre

nandos . . . number is 01223902168 [U] Great I am
also looking for a restaurant called nandos
city centre . . .

2.5

Table 5: Error categorization and percentage distribution: representative example from each category and an
estimate breakdown of the error types on development set, based on the analysis of 200 error samples produced by
our model. Numbers of the first category is exact because we are able to summarize this error category statistically.

However, our predicted model span is a para-
phrase or has very close meaning to the
ground truth. This error is inherent in ap-
proaches that do not extract the slot value
from an ontology but rather the dialog con-
text. On similar lines, we also observe cases
where the slot value in the dialog context
is resolved (or canonicalized) to a differ-
ent surface-form entity that is perhaps more
amenable for downstream applications.

• Imprecise Slot Boundary In this category of
errors, our model chooses a span that is ei-
ther a superset or subset of the correct ref-
erence. This error is especially frequent for
proper nouns where the model has a weaker
signal to outline the slot boundary precisely.

Table 5 provides us the error examples and es-
timated percentage from each category. ”Unan-
swerable Slot” accounts for 65.5% errors for our
model, this indicates further attention may be
needed to the slot carryover model, otherwise it
would become a barrier even if we have a perfect
span model. This finding is in alignment with our
ablation studies in Table 4, where oracle slot carry-
over model would give us the most boost in joint
goal accuracy. Additionally, 12.9% of errors are
due to imprecise slot resolution, this suggests fu-
ture directions of resolving the context words to
the ontology.

5.3 Evaluating Different Context Encoders
for Slot Carryover Model

As shown in oracle ablation studies in Table 4,
slot carryover model plays a significant role in our

pipeline. Therefore we explore the different types
of context encoders for slot carryover model to see
whether if it improves the performance in table 6.
In addition to use a flat dialog context of user
and agent turns [U] and [A] to predict carryover
for every slot in the state, we explored hierarchi-
cal context encoder with an utterance-level LSTM
over each user and agent utterance and a dialog-
level LSTM over the whole dialog with both con-
strained and unconstrained context window, simi-
lar to Liu and Lane (2017). However, we did not
witness any significant performance change across
the two variants as show in Table 6. Lastly, we em-
ployed self-attention over the flattened dialog con-
text in line with Vaswani et al. (2017). However,
we can see from Table 6 that this strategy slightly
hurts the model performance. One hypothesis for
sub par slot carryover model performance is due
to the inherent noise in the annotated data for state
updates. Through a preliminary analysis on the
development set, we encountered few erroneous
delay in the state updates sometimes extending to
over multiple turns. Nevertheless, these experi-
mental results motivate future research in slot car-
ryover models for multi-domain conversations.

5.4 Analyzing Conversation Depth

In Table 7, we explore the relationship between the
depth of a conversation and the performance of our
models. More precisely, we segment a given set of
dialogs into individual turns and measure the state
accuracy for each of these segments. We mark a
turn correct only if all the slots in its state are pre-
dicted correctly. We observe that the model perfor-
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Context Feature Per Turn
Carryover
Accuracy

Flat Context (LSTM) 75.10%
Hierarchical Context (all turns) 75.98%
Hierarchical Context (≤ 3 turns) 75.60%
Flat Context (Self-Attention) 74.75%

Table 6: Analyzing the different types of context fea-
tures for Slot Carryover Model

Conversation Total % Incorrect
Depth t Turns Turns

1 1000 23.90
2 1000 38.30
3 997 50.85
4 959 61.52
5 892 71.52
6 811 76.82
7 656 82.77
8 475 87.37
9 280 89.64
10 153 94.77

Table 7: Analyzing the overall model robustness for
conversation depth for MultiWOZ-2.0

mance degrades as the number of turns increase.
The primary reason for this behavior is that an er-
ror committed earlier in the conversation can be
carried over for later turns. This results in a strictly
higher probability for a later turn to be incorrect as
compared to the turns earlier in the conversation.
These results motivate future research in formulat-
ing models for state tracking that are more robust
to the depth of the conversation.

6 Conclusion

The problem of tracking user’s belief state in a
dialog is a historically significant endeavor. In
that context, research on dialog state tracking
has been geared towards discriminative methods,
where these methods are usually estimating the
distribution of user state over a fixed vocabulary.
However, modern dialog systems presents us with
problems requiring a large scale perspective. It is
not unusual to have thousands of slot values in the
vocabulary which could have millions variations
of dialogs. So we need a vocabulary-free way to
pick out the slot values.

How can we pick the slot values given an in-

finite amount of vocabulary size? Some methods
adopt a candidate generation mechanism to gener-
ate slot values and make a binary decision with the
dialog context. Attention-based neural network
gives a clear and general basis for selecting the
slot values by direct pointing to the context spans.
While this type of methods has already been pro-
posed recently, we explored this type of idea fur-
thermore on MultiWOZ-2.0 dataset.

We introduced a simple attention based neural
network to encode the dialog context and point to
the slot values within the conversation. We have
also introduced an additional slot carryover model
and showed its impact on the model performance.
By incorporating the deep contextual word embed-
dings and combining the traditional fixed vocabu-
lary approach, we significantly improved the joint
goal accuracy on MultiWOZ-2.0.

We also did a comprehensive analysis to see to
what extent our proposed model can achieve. One
interesting and significant finding from the obla-
tion studies suggests the importance of the slot car-
ryover model. We hope this finding can inspire
future dialog state tracking research to work to-
wards this direction, i.e., predicting whether a slot
of state is none or not.

The field of machine reading comprehension
has made significant progress in recent years. We
believe human conversation can be viewed as a
special type of context and we hope that the de-
velopments suggested here can help dialog related
tasks benefit from modern reading comprehension
models.
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man, and Milica Gašić. 2018. Multiwoz - a large-
scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Danqi Chen. 2018. Neural Reading Comprehension
and Beyond. Ph.D. thesis, Stanford University.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Association for Computa-
tional Linguistics (ACL).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Rahul Goel, Shachi Paul, Tagyoung Chung, Jeremie
Lecomte, Arindam Mandal, and Dilek Hakkani-Tur.
2018. Flexible and scalable state tracking frame-
work for goal-oriented dialogue systems. arXiv
preprint arXiv:1811.12891.

Rahul Goel, Shachi Paul, and Dilek Hakkani-Tür.
2019. Hyst: A hybrid approach for flexible and ac-
curate dialogue state tracking.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in
neural information processing systems, pages 1693–
1701.
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Abstract

Acoustic addressee detection (AD) is a mod-
ern paralinguistic and dialogue challenge that
especially arises in voice assistants. In the
present study, we distinguish addressees in two
settings (a conversation between several peo-
ple and a spoken dialogue system, and a con-
versation between several adults and a child)
and introduce the first competitive baseline
(unweighted average recall equals 0.891) for
the Voice Assistant Conversation Corpus that
models the first setting. We jointly solve both
classification problems, using three models:
a linear support vector machine dealing with
acoustic functionals and two neural networks
utilising raw waveforms alongside with acous-
tic low-level descriptors. We investigate how
different corpora influence each other, apply-
ing the mixup approach to data augmentation.
We also study the influence of various acous-
tic context lengths on AD. Two-second speech
fragments turn out to be sufficient for reliable
AD. Mixup is shown to be beneficial for merg-
ing acoustic data (extracted features but not
raw waveforms) from different domains that
allows us to reach a higher classification per-
formance on human-machine AD and also for
training a multipurpose neural network that is
capable of solving both human-machine and
adult-child AD problems.

1 Introduction

For the past years, the phenomenon of multiparty
spoken interaction has drawn many researchers’
attention (Busso et al., 2007; Gilmartin et al.,
2018; Haider et al., 2018). How do we address
other people in such conversations? Normally, we
do this either explicitly, directly specifying desir-
able addressees by their names, or implicitly, us-
ing contextual (Ouchi and Tsuboi, 2016; Zhang
et al., 2018) and multimodal markers (Tsai et al.,
2015; Akhtiamov et al., 2017b; Akhtiamov and

Palkov, 2018; Le Minh et al., 2018). Particularly,
we use acoustic markers to emphasise special ad-
dressees, such as hard-of-hearing people (Batliner
et al., 2008), elderly people, children (Schuller
et al., 2017), and automatic spoken dialogue sys-
tems (SDSs) (Batliner et al., 2008; Shriberg et al.,
2013; Akhtiamov et al., 2017a; Pugachev et al.,
2017). We act in this way if we realise that our ad-
dressee may have some communicational difficul-
ties, and therefore we modify our normal manner
of speech, making it more rhythmical, louder, and
generally more understandable as soon as we start
talking to such conversational partners (Shriberg
et al., 2012; Siegert and Krüger, 2018).

In the present research, we deal with two binary
acoustic addressee detection (AD) problems. The
first problem of human-machine addressee detec-
tion (H-M AD) arises in conversations within a
group of users solving a cooperative task by means
of an SDS. The users may talk to each other and
also contact the system from time to time. The sys-
tem is supposed to distinguish between machine-
and human-directed utterances in order to main-
tain conversations in a realistic manner. Human-
directed utterances do not require a direct system
response and should be processed with the system
in an implicit way. We use the following two cor-
pora to model the H-M AD problem: the Smart
Video Corpus (SVC) (Batliner et al., 2008) and
the Voice Assistant Conversation Corpus (VACC)
(Siegert et al., 2018). The first competitive VACC
baseline is introduced in the present paper. The
second problem of adult-child addressee detec-
tion (A-C AD) appears in conversations between
a group of adults and a child. In this case, our
system is supposed to distinguish between child-
and adult-directed utterances. A possible appli-
cation for such a system of adult-child conversa-
tion monitoring is the estimation of children’s and
adults’ conversational behaviour that will allow us
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to measure Interaction Quality (IQ) (Spirina et al.,
2016). According to this complex metric, we will
be able to assess the children’s progress in main-
taining conversations. We model the A-C AD
problem, using the HomeBank Child-Adult Ad-
dressee Corpus (HB-CHAAC, mentioned as HB
below for simplicity) (Casillas et al., 2017).

We consider both binary classification problems
as one: the utterances belonging to the first cate-
gory are directed to a special addressee that may
be an SDS or a child having a lack of communi-
cational skills. The utterances belonging to the
second category are directed to ordinary adults
without any impairments that may cause miscom-
munication. In this light, we conduct a series of
cross-corpus experiments and merge several cor-
pora with the mixup method. This data augmenta-
tion technique has already been studied on image
classification (Zhang et al., 2017), speech recogni-
tion (Medennikov et al., 2018), and acoustic emo-
tion recognition (Fedotov et al., 2018b).

The present paper has the following contribu-
tions: the H-M and the A-C AD problem are
jointly analysed by means of machine learning;
mixup in combination with state-of-the-art clas-
sifiers is applied to cross-corpus acoustic AD for
the first time; mixup capabilities are investigated
over various speech signal representations (includ-
ing raw data), acoustic context lengths, corpora,
domains, languages, and classification problems.

2 Related Work

Several studies have already been conducted on
the problem of acoustic H-M AD. The current
acoustic SVC baseline was introduced by Akhti-
amov et al. (2017a), who applied a feature se-
lection method to a large paralinguistic feature
set containing various functionals computed over
low-level descriptor (LLD) contours (2013 Com-
ParE feature set described by Eyben (2015)). The
ComParE LLDs and their functionals were shown
to be a universal solution for a wide range of
paralinguistic problems besides AD, e.g, acous-
tic emotion recognition (Fedotov et al., 2018a),
native speech detection, and neurological pathol-
ogy estimation (Schuller et al., 2015). The same
attribute set in combination with a linear sup-
port vector machine (SVM) alongside with other
models including an end-to-end neural network
was applied to the problem of acoustic A-C AD
on HB by Schuller et al. (2017). HB was in-

troduced within the Addressee Sub-Challenge of
the Interspeech 2017 Computational Paralinguis-
tics Challenge (ComParE) (Schuller et al., 2017)
that has already been finished. However, the chal-
lenge organisers proposed an extremely compet-
itive baseline (Schuller et al., 2017) that none of
the challenge participants managed to surpass, and
therefore the HB classification problem remains of
great scientific and practical interest.

There also exist speech signal representations
designed specially for acoustic H-M AD. Shriberg
et al. (2013) suggested modelling speech rhythm
and vocal effort with high-abstract attributes: en-
ergy contour features, voice quality and spec-
tral tilt features, and delta energy at voicing on-
sets/offsets. The energy contour and tilt features
employed Gaussian mixture models (GMMs) to
compute a log likelihood ratio of the two ad-
dressee classes. The machine-directed utterances
from the corpus used for experiments in the latter
study were short predefined commands consisting
of three words on average. However, the machine-
and child-directed utterances from the data that we
have at our disposal were recorded under real-life
conditions and usually contain whole sentences of
spontaneous speech. Furthermore, it is unclear
how these specific attributes perform on A-C AD.
Therefore, we would not like to confine to such a
narrow attribute set. Instead, we want to use the
ComParE features in order to capture all the vari-
ety of spontaneous speech. An argument in favour
of low-level features, such as LLDs and raw data,
is the possibility to use them in combination with
deep neural networks capable of performing fea-
ture selection and feature transformation implic-
itly for a specific problem. In the present study, we
apply the ComParE functionals jointly with sim-
ple linear models, while lower-level features (raw
audio and the ComParE LLDs) are used in combi-
nation with deep neural networks that learn high-
level feature representations for our AD problem.
Compared to Mallidi et al. (2018), we do not have
that much data for training our networks on acous-
tic AD. We offset this lack by means of data aug-
mentation.

3 Proposed Approach

3.1 Classifiers

We apply the following three models to audio clas-
sification. The first classifier (func) is a simple
SVM with a linear kernel (Hofmann and Klinken-
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berg, 2013). This model deals with the ComParE
feature set comprising 6373 functionals (Eyben,
2015) extracted at the utterance level.

The second classifier (LLD) consists of
two stacked long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) layers fol-
lowed by a global max pooling, a dropout (Sri-
vastava et al., 2014), and a softmax layer. As
input, the first layer receives the same LLD se-
quences used for computing the ComParE func-
tionals. Each sequence element is a vector of 130
LLDs extracted for a sliding time window of 60 ms
with an overlap of 50 ms. The sequences are ex-
tracted from acoustic context windows of various
lengths (from 1/8 to 8 s). The context windows are
cut out of audio files with an overlap of 75%. The
predictions obtained on several windows belong-
ing to one utterance are averaged to get the final
utterance-level prediction.

The third classifier (e2e) performing end-to-end
speech signal processing differs from the second
model in the following way: the sequences of
the ComParE LLDs are replaced by the output of
a convolutional neural network (CNN). As a re-
sult, we obtain a convolutional recurrent neural
network (CRNN) that is quite similar to the one
suggested by Trigeorgis et al. (2016) for acous-
tic emotion recognition. However, the initial net-
work architecture specified in the latter study did
not provide any reliable results on our AD problem
probably due to a lack of perceptive abilities. For
this reason, we replaced the initial two-layer CNN
by a deeper one. We took the five-layer SoundNet
architecture (Aytar et al., 2016) as the reference
point for our CNN, cut off its last convolutional
layer and scaled the filter sizes and the number of
units in each layer in accordance with the input
signal resolution and the available amount of our
training data. The final shape of the e2e model is
depicted in Figure 1.

For the func and LLD models, we use statistical
corpus normalisation by bringing the handcrafted
features to zero mean and unit variance. For the
e2e model, we employ batch normalisation (Ioffe
and Szegedy, 2015) between each convolution and
activation instead. Training our neural networks,
we use the following parameters optimised on a
development set: Gaussian noise applied to the in-
put signal if mixup is disabled, 20% dropout ap-
plied directly before the softmax layer, rectified
linear unit (ReLU) as an activation function for all
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Figure 1: E2e classifier. To obtain the LLD model,
we replace the middle part of the e2e model by the
ComParE LLD sequences. Notation of the layers in
the middle part of the e2e model: layer name(n units,
filter size, stride), other layers: layer name(n units).

convolutional layers, categorical cross-entropy as
a loss function, Adam (Kingma and Ba, 2014) as
a weight optimisation algorithm, 100 epochs, and
a batch size of 32 examples. The initial learning
rate is chosen from the set {10−3, 10−4, 10−5}
and then divided by 10 if there is no performance
improvement observed for the past 10 epochs on
the development set. We make checkpoints, sav-
ing the current model weights at each epoch and
using the best checkpoint as the resulting model
according to its performance on the development
set.

Both neural networks were designed with Ten-
sorFlow (Abadi et al., 2016). The func model
was implemented with RapidMiner (Hofmann and
Klinkenberg, 2013). We used the openSMILE
toolkit (Eyben et al., 2013) and its 2013 Com-
ParE feature configuration (Eyben, 2015) to ex-
tract acoustic LLDs and their functionals.

3.2 Data Augmentation
We apply a simple yet efficient approach to data
augmentation called mixup (Zhang et al., 2017).
The core idea of this method is to regularise our
model by encouraging it to make linear predic-
tions in the vector space between seen data points.
The method generates artificial examples as lin-
ear combinations of the feature and label vectors
taken from two arbitrary real examples and mixed
at a proportion λ in the following way:

xart = λxi + (1− λ)xj , (1)

yart = λyi + (1− λ)yj . (2)

λ is randomly generated from a β-distribution for
each artificial example. This distribution is de-
fined as follows by a coefficient α that lies within
the interval (0,∞) and determines the probability
that our generated example lies close to one of real
examples:

f(x;α) = xα−1(1− x)α−1. (3)
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VACC (German) SVC (German) HB (English)
Label Train Dev Test Label Train Dev Test Label Train Dev Test

M 1809 501 1493 M 546 90 442 C 1882 420 2182
H 862 218 756 H 557 135 423 A 1160 280 1368

Total
2671
(12)

719
(3)

2249
(10) Total

1103
(48)

225
(10)

865
(41) Total

3042 700 3550
(No speaker info)

5639 (25), 2:50:20 s 2193 (99), 3:27:35 s 7292, 3:12:16 s

Table 1: General characteristics of the considered data sets and their utterance-level labelling. Number of speakers
is specified in parentheses. Utterance labels: H - human-, M - machine-, A - adult-, C - child-directed. It is assumed
that H = A and M = C.

If yi and yj from Equation 2 are different hard
targets (one-hot vectors) of a classification prob-
lem, yart will be a soft target. This solution pro-
vides better model regularisation and generalisa-
tion over various classes and partially resolves the
problem of imbalanced data.

We declare another mixup parameter k that de-
fines the proportion of the number of artificial ex-
amples that should be generated and the number of
real examples. When merging n corpora, we gen-
erate one batch from each corpus, increasing the
amount of training data in n times without using
mixup. If we simultaneously apply mixup, artifi-
cial batches are generated on the fly from n real
batches, increasing the amount of training data in
n(k+ 1) times without any considerable delays in
the training process. In most of the mixup appli-
cations investigated by Zhang et al. (2017), α lies
within the interval [0.1, 0.5], i.e., the algorithm bi-
ases toward original examples and thereby gener-
ates more realistic artificial ones. We use constant
α and k values that equal 0.5 and 2 respectively.
For greater α values, mixup leads to underfitting.

4 Corpora

We examine our models on the audio data of the
three corpora mentioned above. The VACC data
set contains experimental conversations in Ger-
man between a user, a confederate, and an Echo
Dot Amazon Alexa device (Siegert et al., 2018).
The SVC data set was collected within large-scale
Wizard-of-Oz (WOZ) experiments and consists of
realistic conversations in German between a user,
a confederate, and a mobile SDS (Batliner et al.,
2008). For compatibility with the other corpora,
we consider the two-class SVC problem intro-
duced by Batliner et al. (2008). The HB data set
contains spoken conversations in English between
a child and a group of adults recorded under real-
life conditions (Casillas et al., 2017). Each corpus
was split into a training, a development, and a test

set at a proportion defined by its developers. There
was no development set specified for SVC by Bat-
liner et al. (2008), and therefore we use 20% of
the speakers from its initial training set as a devel-
opment set. The HB test labels are unavailable to
us since this corpus was a part of the Interspeech
2017 ComParE Challenge (Schuller et al., 2017)
that has already been finished (none of the par-
ticipants managed to surpass the Addressee Sub-
Challenge baseline). Therefore, we use its devel-
opment set as a new test set and also utilise 20% of
the utterances from its initial training set as a new
development set. The partitions of the considered
corpora are presented in Table 1. A kernel density
estimation (KDE) is depicted in Figure 2 for the
utterance length distribution of each corpus.

0 2 4 6 8 10 12 14
Utterance length, s

0.0

0.5

1.0

KD
E

VACC
SVC
HB

Figure 2: Kernel density estimation (KDE) of the utter-
ance length distributions.

5 Preliminary Experiments with Linear
Models

5.1 Feature Selection

Before training the neural network-based classi-
fiers, we conduct preliminary experiments with
the func model, aiming to estimate the degree of
similarity between the corpora. After feature ex-
traction with the ComParE configuration, we per-
form recursive feature elimination (RFE), using
the coefficients of the normal vector of a linear
SVM as attribute weights similarly to Akhtiamov
et al. (2017a). Figure 3a demonstrates RFE curves
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obtained by applying ten-fold leave-one-speaker-
group-out cross-validation (LOSGO) on each cor-
pus without its test set. The resulting performance
is calculated as unweighted average recall (UAR)
for comparability with the existing studies and av-
eraged over all folds for each reduced feature set.
A feature set is considered to be optimal if fur-
ther RFE leads to a stable performance loss. For
each corpus, we choose one optimal feature set ob-
tained on a random fold and analyse their inter-
section depicted in Figure 3b. The representative
acoustic attributes vary essentially: VACC, SVC,
and HB have only 450, 2020, and 400 relevant fea-
tures out of 6373 respectively, while having only
28 features in common: some functionals over
F0final sma, audSpec Rfilt sma, mfcc sma, pcm
fftMag spectralRollOff25.0 sma, pcm fftMag spec-
tralRollOff50.0 sma, voicingFinalUnclipped sma,
and their deltas (Eyben, 2015). Besides these at-
tributes, VACC and SVC have only 172 features
in common, though these two corpora have the
same target classes. The optimal feature set size
for SVC is considerably greater than for the other
two corpora. This difference was probably caused
by the WOZ modelling of SVC dialogues as the
WOZ setup did not seem convincing enough to
some users, resulting in fuzzy addressee patterns
that concerned a greater number of acoustic fea-
tures.
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Figure 3: Preliminary analysis: performance losses
during RFE (a), and optimal feature set comparison (b).

5.2 Cross-Corpus and Multitask
Classification

We conduct a series of cross-corpus and multi-
task experiments with the func model, applying
a leave-one-corpus-out (LOCO) and an inverse
LOCO scheme. In the first scheme, the model is
trained on a mixture of all the corpora but one and
tested on each of the three corpora. In the sec-
ond scheme, the model is trained on one corpus
and tested on each of the three corpora. In both

cases, the model is trained and tested on the corre-
sponding partitions from Table 1. In these experi-
ments, we do not perform feature selection and do
not use mixup. Results of the two experimental
series are depicted in Figure 4. Let us denote the
matrix from Figure 4a as Ā, its element as āi,j , the
matrix from Figure 4b as B̄, and its element as b̄i,j .
The resulting UAR (ā2,2) and the optimal feature
set size on SVC slightly differ from those obtained
by Akhtiamov et al. (2017a) since we apply sta-
tistical corpus normalisation in the present study
instead of speaker normalisation in order to make
our results fairer as the system may face unknown
speakers in real applications. Furthermore, there
is no information regarding speakers available for
HB. ā1,2 and ā2,1 are considerably greater than the
other off-diagonal elements of Ā, demonstrating a
clear relation between VACC and SVC. This result
motivates us to explore the potential of the cross-
corpus data augmentation on VACC and SVC by
means of mixup and deep learning in our future
experiments. Ā does not reveal any relation be-
tween HB and the other two corpora, though an in-
teresting trend may be noted in B̄. b̄2,1 and b̄3,1 are
similar to ā1,1, b̄1,2 and b̄3,2 are close to ā2,2, and
b̄1,3 and b̄2,3 are similar to ā3,3. Altogether, these
three results mean that a single func model trained
on examples from two arbitrary corpora demon-
strates an adequate performance on them both as
if the model were trained on each corpora sepa-
rately or, in other words, that the three classifica-
tion problems are non-contradictory. However, A-
C AD turned out to be essentially more challeng-
ing than H-M AD.
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Figure 4: Results of the inverse LOCO (a) and LOCO
(b) experiments with the func model. All values are
presented in terms of UAR. Corpora: (1) - VACC, (2) -
SVC, (3) - HB.

6 Experiments with Neural Networks

6.1 Mixup and Acoustic Context Length
All the experiments below are presented in terms
of UAR for comparability with the existing stud-
ies. All statistical comparisons are drawn apply-
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Figure 5: Classification performance of the LLD model over various context windows and its trends after data
augmentation on the considered corpora. In each of the three cases, the training set of the target corpus (on the test
set of which UAR is measured) is mixed with itself (mix(corpus)) or with itself and with the training set of another
corpus (mix(corpus, another corpus)). The points connected with spline interpolation denote exact measurements.

ing a t-test with a significance level of 0.05. First,
we analyse the sensitivity of our neural networks
to acoustic context length variations. This hy-
perparameter was shown to be critical for par-
alinguistic problems (Fedotov et al., 2018a). We
take a context window length of 1 s as a refer-
ence point and then vary it by raising to differ-
ent powers of two. The context windows are cut
out of the audio files with an overlap of 75%.
This preprocessing partially resolves the lack of
training data. It is possible to align the obtained
logarithmic scale with basic acoustic units: given
the mean syllable duration estimated by Green-
berg (1999) for spontaneous English, we roughly
assume that the time intervals between 0, 0.125,
0.5, 1, 2, and 8 s correspond to allophones, syl-
lables, words, collocations/syntagmas, and utter-
ances respectively. In fact, these intervals may sig-
nificantly overlap since syllable duration is known
to be highly speaker-dependent (Greenberg et al.,
2003). German words and more complex acous-
tic units have longer durations compared to their
English equivalents.

Performance curves of the LLD classifier tested
on LOSGO are depicted in Figure 5. The re-
sulting UAR values are averaged over all folds.
The dashed curve is located above the solid
one in all three cases, i.e., mixup results in
a significant performance improvement already
when applied to the same corpus. Adding an-
other corpus to the mixup procedure influences
the performance depending on a context window
length. Mix(VACC, SVC) significantly surpasses
mix(VACC) on VACC for a context window of
2 s. Mix(SVC, VACC) significantly outperforms
mix(SVC) on SVC for a context window of 0.5
s. A possible explanation for these two results

is that SVC has generally longer utterances (Fig-
ure 2) and probably longer acoustic addressee pat-
terns compared to VACC. Mix(HB) does not ben-
efit from adding another corpus to the mixup pro-
cedure.

The curves from Figure 5a flatten beyond 0.5
s, meaning that VACC is less sensitive to context
length variations than SVC and HB. The optimal
context window length, which provides the high-
est UAR, is 2 s for VACC and SVC and 1 s for HB.
However, the latter corpus demonstrates virtually
the same result for a longer window of 2 s. The
e2e model shows a similar behaviour on various
context windows and reaches the highest UAR for
the same context window of 2 s on all three cor-
pora. This fact motivates us to confine to a single
context window length of 2 s in our future exper-
iments that corresponds to acoustic patterns at the
utterance level. Our results confirm an earlier con-
clusion drawn by Shriberg et al. (2013) regarding
the optimal acoustic context length for H-M AD in
English.

Table 2 contains the exact UAR values of the
two-second performance slices for both neural
networks. Similarly to the results presented in Fig-
ure 5, the values from Table 2 are obtained on
LOSGO and averaged over all folds. The LLD
model demonstrates a higher performance com-

Test
Corpus Model —— - - - · · · · - · - · mix

(all)

VACC LLD .879 .890 .901 .873 .886
e2e .853 .834 .852 .845 .846

SVC LLD .813 .823 .804 .795 .818
e2e .764 .756 .758 .749 .761

HB LLD .631 .645 .627 .640 .636
e2e .647 .632 .633 .616 .631

Table 2: Two-second UAR slices. Each marker corre-
sponds to a curve of the same style in Figure 5.

279



pared to the e2e model overall, except HB, on
which both classifiers behave similarly. In con-
trast to the LLD model, the e2e classifier does not
benefit from mixup. This result contradicts the
supposition made by Zhang et al. (2017) to ap-
ply mixup to raw speech data and may be natu-
rally explained in the following way: after apply-
ing mixup to raw speech signals, our augmented
data sounds like crowd noise that confuses the e2e
model being unable to handle the cocktail party
effect. This is not the case for some handcrafted
features, e.g., logarithmic attributes, as applying
mixup to them does not necessarily mean a simple
overlapping of two waveforms, from which these
features were extracted. We conclude that ap-
plying mixup makes more sense for acoustic fea-
tures of a higher abstraction level than raw data,
e.g., handcrafted LLDs or features extracted with
a CNN. In the present study, we confine to two
extreme cases: handcrafted LLDs and raw wave-
forms.

6.2 Cross-Corpus and Multitask
Classification

The experiments below are conducted on the par-
titions specified in Table 1. Six series of cross-
corpus experiments are depicted as performance
matrices in Figure 6. Let us denote the matrix
from Figure 6a as A and its element as ai,j , the
matrix from Figure 6b as B and its element as
bi,j , etc. A and B show inverse LOCO experi-
ments on the LLD model with mixup and on the
e2e model without mixup respectively. a1,2 and
a2,1 are considerably greater than the other off-
diagonal elements of A. b1,2 and b2,1 are also sig-
nificantly greater than the other off-diagonal ele-
ments of B. Similarly to the matrix Ā from Fig-
ure 4a, these two results demonstrate a clear rela-
tion between VACC and SVC that was better cap-
tured with the e2e model. The other four matri-
ces from Figure 6 contain results of LOCO ex-
periments: C and D - without mixup, E and F -
with mixup. The elements c1,3, c2,3, d1,3, and d2,3
are close to a random-choice UAR of 0.5, mean-
ing that both neural networks perceive HB as noise
and completely ignore it in favour of another cor-
pus. However, the situation changes if we apply
mixup: the elements e1,3 and e2,3 are similar to
a3,3 as well as the elements f1,3 and f2,3 being
close to b3,3. These two results mean that both
neural networks start perceiving both corpora in-
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Figure 6: Results of the inverse LOCO and LOCO ex-
periments with the neural networks. All values are pre-
sented in terms of UAR. Corpora: (1) - VACC, (2) -
SVC, (3) - HB.

volved in the mixup procedure as efficiently as if
the networks were trained on each data set sepa-
rately. Due to a simpler model architecture, the
func classifier did not face such a problem of over-
fitting to a specific corpus during the experiments
with multitask learning presented in Figure 4b.

A similar trend may be noted in Figure 7 that
demonstrates experiments on merging all three
corpora: if trained on all the corpora without
mixup, both LLD and e2e models discriminate
SVC and completely ignore HB. Mixup allows us
to train a multipurpose neural network that per-
forms equally well on each of the corpora as if
there were three networks trained exclusively for
single tasks. The classification performance ob-
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Figure 7: Results of the experiments on merging all
three corpora.

280



tained on VACC and HB with the func model is
generally lower compared to the results of the neu-
ral networks, and mixup is unable to improve it.
However, the func classifier does not suffer from
overfitting to a specific corpus during multitask
learning and does not need to be regularised.

7 Experiments with ASR-Based
Metafeatures

Some metafeatures obtained from an automatic
speech recogniser (ASR) are useful for H-M AD
since people speak more clearly than usual when
addressing an SDS. Machine-directed speech
tends to match the ASR patterns better compared
to human-directed speech, resulting in a higher
ASR confidence (Tsai et al., 2015). It is inter-
esting to check this approach on A-C AD. Using
the Google Cloud ASR for German (on VACC
and SVC) and for English (on HB), we extract
the following ASR metafeatures at the utterance
level: confidence of the best hypothesis, number of
hypotheses, number of words in the best hypoth-
esis, and utterance duration in seconds. These
features except the first one (it is already nor-
malised) are brought to zero mean and unit vari-
ance and fed to an SVM with a radial kernel (Hof-
mann and Klinkenberg, 2013). The UAR val-
ues obtained with this classifier on the test par-
titions from Table 1 are equal to 0.778, 0.657,
and 0.515 for VACC, SVC, and HB respectively.
The latter value is slightly above a random-choice
UAR of 0.5, meaning that ASR confidence is non-
representative for A-C AD.

8 Conclusions and Future Work

The H-M and A-C AD problems turned out to be
essentially different in certain aspects. The first
aspect concerns the previously discussed acous-
tic patterns of child- and machine-directed speech.
On the one hand, none of the considered mod-
els managed to reveal any relations between HB
and the other two corpora during our inverse
LOCO experiments. On the other hand, the LOCO
experiments with the linear model demonstrate
that the H-M and A-C AD problems are non-
contradictory. The second aspect is connected
with the degree of how often misunderstanding
situations occur in an H-M conversation. People
tend to talk to the system in a normal manner in
the absence of such situations, and this manner
of speech may be acoustically undistinguishable

from human-directed speech. The third aspect
concerns what is said during an A-C conversation.
Adults’ speech often contains separate sounds and
intonations and no verbal information when they
talk to children, and therefore ASR confidence is
non-representative for A-C AD, though it is useful
for H-M AD.

Mixup has been shown to be beneficial for neu-
ral networks using predefined acoustic features,
while not giving any significant performance im-
provement for e2e models, though Zhang et al.
(2017) supposed that it is worth applying the
method to raw speech data as well. Linear clas-
sifiers do not benefit from mixup neither due to
their simple architectures that do not require any
regularisation. Another remarkable capability of
mixup was revealed in multitask experiments and
applies to both handcrafted features and raw data.
This method allows us to merge several corpora
modelling similar classification tasks in such a
way that one neural network trained on this mix-
ture solves all the tasks equally efficiently with
single neural networks, each of which was trained
on its own corpus. The corpora being utilised
for multitask learning may essentially differ, e.g.,
VACC and SVC were collected in completely dif-
ferent domains, and HB was even collected for an-
other task and uttered in another language. With-
out mixup, the neural network overfits to the cor-
pus with the strongest correlation between its fea-
tures and labels (VACC) and starts discriminat-
ing the other corpora. Linear models do not suf-
fer from this problem, though they demonstrate a
lower classification performance overall.

Two-second speech fragments are optimal for
AD and correspond to acoustic patterns at the ut-
terance level. This result confirms an earlier con-
clusion drawn by Shriberg et al. (2013) regarding
H-M AD in English. According to our inverse
LOCO experiments, there exists a clear relation
between VACC and SVC. Furthermore, applying
mixup to these two corpora allows us to improve
classification results on VACC significantly. The
following UAR values may be taken from Figure 6
as the new baselines: e3,1 = 0.891 for VACC and
b3,3 = 0.640 for HB. b3,3 is the best baseline for
standalone classifiers compared to the results in-
troduced by Schuller et al. (2017) on the original
HB development set. Our e2e model surpasses the
one from (Schuller et al., 2017) that demonstrated
a UAR of 0.609. We achieved this performance
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improvement due to a more careful choice of the
CNN architecture. a2,2 = 0.789 is similar to the
latest SVC baseline of 0.800 established by Akhti-
amov et al. (2017a).

In our future work, we plan to extend our exper-
iments, applying mixup to two-dimensional spec-
trograms and to features extracted with a CNN.
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Abstract

Pitch has long been held as an important sig-
nalling channel when planning and deploy-
ing speech in conversation, and myriad stud-
ies have been undertaken to determine the ex-
tent to which it actually plays this role. Unfor-
tunately, these studies have required consid-
erable human investment in data preparation
and analysis, and have therefore often been
limited to a handful of specific conversational
contexts. The current article proposes a frame-
work which addresses these limitations, by en-
abling a scalable, quantitative characterization
of the role of pitch throughout an entire con-
versation, requiring only the raw signal and
speech activity references. The framework is
evaluated on the Switchboard dialogue corpus.
Experiments indicate that pitch trajectories of
both parties are predictive of their incipient
speech activity; that pitch should be expressed
on a logarithmic scale and Z-normalized, as
well as accompanied by a binary voicing vari-
able; and that only the most recent 400 ms
of the pitch trajectory are useful in incipient
speech activity prediction.

1 Introduction

Intonation is generally held to play an integral role
in the phonetic realization of turns and in the pre-
diction of more talk (see e.g. (Bögels and Torreira,
2015) for a review). There is broad consensus
that flat pitch segments are associated with turn-
holding and that rising or falling pitch segments
are associated with turn-yielding (Bögels and Tor-
reira, 2015; Caspers, 2003; Duncan, 1972; Edlund
and Heldner, 2005; Ford and Thompson, 1996;
Heldner et al., 2009; Heldner and Włodarczak,
2015; Hjalmarsson, 2011; Jefferson, 1984; Kane
et al., 2014; Koiso et al., 1998; Laskowski et al.,
2009; Local et al., 1986; Selting, 1996; Yanu-
shevskaya et al., 2014; Zellers, 2013, 2017). Stud-
ies considering finer-grained categories of the

pitch contour (Gravano and Hirschberg, 2011;
Wennerstrom and Siegel, 2003), additionally in-
cluding slowly rising and slowly falling pitch,
have tended to corroborate those findings. Fur-
thermore, they indicate that the endpoint of a pitch
segment is relevant, associating segments reaching
the top or bottom of a speaker’s range with turn-
yielding and those ending near the middle of the
range with turn-holding.

The converging results of so many studies are
astonishing given the methodological differences
between them, with regard to the speech material
(spontaneous vs. task-oriented) and to the pitch-
contour categorization method (perceptual judge-
ments, acoustic measurements, or phonologically
motivated categories). Perhaps more importantly,
the studies in question differ in how the pitch
contour is parametrized (e.g. perceptual styliza-
tion, functional data analysis, linear or polynomial
curve fitting, linear or logarithmic scale), how far
back in the speech interval relevant pitch cues are
to be found, as well as how cues are evaluated (e.g.
perceptually vs. statistically).

It is therefore not very surprising that work
which has tried to verify the above claims with
acoustic measurements of fundamental frequency
(F0) has also produced some mixed results (see
e.g. (Zellers, 2017; Walker, 2017) for reviews). A
variety of explanations for these mixed results are
believed to exist. First, it has been hypothesized
that non-pitch cues may play a more important
role than do pitch cues (e.g. (Local and Walker,
2012; Walker, 2017; Zellers, 2017). Second, it is
possible that the role of intonation varies with the
communicative situation, and that it is strongly de-
pendent on the number of participants, whether the
participants have eye contact, whether the partic-
ipants know one another, etc. Finally, there may
be considerable language-, dialect-, and domain-
specific differences in the role of pitch in turn-
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taking. At the present time, these explanations
continue to be mere hypotheses which — owing to
the many methodological differences in published
work — cannot be easily evaluated.

The main focus of the current article is to render
the evaluation and comparison of such hypotheses
tractable, if not outright easy. A key requirement
is that the proposed method be scalable, i.e. ca-
pable of ingesting sufficiently large quantities of
conversational material to generate representative
results. This in turn requires that it not rely on
time-consuming, often-contentious annotation of
either turn or pitch phenomena — authors of exist-
ing research do not always agree on what consti-
tutes a turn, for example. Furthermore, the method
needs to be quantitative if it is to permit strict com-
parison. The method proposed in the current arti-
cle is both scalable and quantitative; it relies only
on the availability of the raw signal and accurate
speech activity references, per conversation and
per conversation-side. It is presented in Section 3.

To evaluate the method itself, the current arti-
cle asks three key questions of a large, oft-studied
corpus of telephone conversations in English (de-
scribed in Section 2). These questions are:

Q1. Can attention to pitch reduce the average sur-
prise of incipient speech activity?
Q2. What is the optimal representation of pitch for
a speech prediction system?
Q3. How far back into the past should a pitch-
sensitive method look?

Experiments described in Section 4 demonstrate
that Q1 can be answered in the affirmative, that bi-
nary voicing and Z-normalized log-pitch offer the
best results when used together (Q2), and that only
the most recent 400 ms of pitch history are suf-
ficient (Q3). Furthermore, the proposed system
is able to answer Q1 and Q3 in a nearly fully-
automated fashion, for evidently any corpus; the
answer to Q2 may require human-mediated inves-
tigations, for which the proposed system provides
a suitable and convenient framework.

2 Data

Experiments used the Switchboard-1 Corpus, as
re-released in 1997 (Godfrey and Hollimann,
1997). The corpus consists of 2435 dyadic tele-
phone conversations, each approximately 10 min-
utes in duration. It was iteratively divided into
three speaker-disjoint sets as in (Laskowski and

Shriberg, 2012), such that TRAINSET, DEVSET,
and TESTSET consist of 762, 227, and 199 con-
versations, respectively. During the division pro-
cess, it was not possible to allocate 1247 of
the Switchboard-1 conversations, because each of
their two speakers had already been placed in dif-
ferent sets. Forced alignments of the manually
transcribed words (used as discussed in Subsec-
tion 3.2) for both sides of the conversation were
provided in (Deshmukh et al., 1998).

3 Methods

This article proposes a means of quantifying the
extent to which pitch, represented in a variety of
ways, reduces the surprise induced by observing
the temporal distribution of speech in unseen con-
versations. Such a means involves a probabilis-
tic formulation of the problem (Subsection 3.1), a
method for obtaining instantaneous binary speech
activity (Subsection 3.2), a method for measuring
pitch (Subsection 3.3), and a model for approxi-
mating the probabilities given those features, to-
gether with a metric for quantifying model perfor-
mance (Subsection 3.4).

3.1 Stochastic Turn Taking
As in (Laskowski, 2012), the methodology em-
ployed here relies of forming a probability distri-
bution over the side-attributed speech activity in
entire dyadic conversations. This eliminates a de-
pendency on the specific definition of a turn; the
resulting probability models attempt to account for
all speech, effectively marginalizing out alterna-
tive definitions of what turns are and where they
start and end.

The most direct means of modeling conversa-
tions for this purpose is to discretize their tempo-
ral extent; here, a frame- step and size of 100 ms
is used, representing approximately half of a nor-
mative syllable. Such discretization results in a
K × N chronogram for each conversation, ie.

Q =

[
· · · ���������

��������� · · ·
]

, (1)

where the kth row, 1 ≤ k ≤ K, represents the
speech activity of one of the K = 2 sides to the
conversation, and each column qn, 1 ≤ n ≤ N ,
represents one 100-ms interval. Each qn [k] ∈
{�,�} ≡ {0, 1}, indicating that the kth party
is either not-speaking or speaking in frame n, re-
spectively.
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The probability P of a given Q is then given by

P (Q) =
N∏

n=1

P
(
qn|qn−1

1

)
(2)

≈
N∏

n=1

P
(
qn|qn−1

n−τ

)
(3)

≈
N∏

n=1

K∏

k=1

P
(
qn [k] |qn−1

n−τ

)
, (4)

where Equation 3 represents a Markovian trunca-
tion of the history to the most recent τ frames,
and Equation 4 assumes that participants are con-
ditionally independent of one another in any given
frame, but dependent on their joint past qn−1

n−τ . The
term target participant is used to refer to that side
of the conversation for which the interior factor on
the right-hand-side of the equation is being eval-
uated; when evaluating the left-hand-side over all
cells in Q, each of the K = 2 participants be-
comes the target participant half the time.

In this framework, quantifying the impact of
pitch — or any other side information available in
K ×N matrix form as X — entails comparing the
probability in Equation 4 to

P (Q|X) ≈
N∏

n=1

K∏

k=1

P
(
qn [k] |qn−1

n−τ ,x
n−1
n−τ

)
.

By excluding the current and future xN
n

from the conditioning context, the factor
P
(
qn [k] |qn−1

n−τ ,x
n−1
n−τ

)
is observed to be a

causal prediction.

3.2 Speech Activity
The above equation forms a probability density
over speech activity Q that actually happened,
rather than speech activity that can be measured.
The most accurate means currently available for
producing Q is to perform forced time-alignment
of the kth participant’s audio channel to the words
spoken by that participant. The resulting word
boundaries are then aligned to the 100-ms frame
boundaries which define Q, and each qn [k], 1 ≤
n ≤ N and 1 ≤ k ≤ K, is assigned to 1 if the kth
participant was speaking for 50% or more of the
temporal support of the nth frame.

3.3 Pitch
Pitch was extracted using the get f0 imple-
mentation available in the Snack Sound Toolkit

(Sjölander, 2001). In order to avoid conta-
gion from the future (pitch tracking uses context
to smooth candidate per-frame fundamental fre-
quency estimates), a separate pitch track was ex-
tracted for the τ -duration conditioning context of
every frame n in every channel k of every conver-
sation1. Snack’s default frame step is 10 ms; the
resulting sequence of 10-ms pitch estimates was
then aligned to the 100-ms frames in Q, yielding
side-information P. Each cell pn [k] of P was as-
signed to the mean of those voiced 10-ms pitch
estimates of the kth participant’s speech which fell
entirely within the temporal support of frame n; it
therefore sufficed for only one 10-ms-frame to be
deemed as voiced by Snack in order for the 100-
ms frame in P to be considered voiced2; unvoiced
frames in P were assigned to NaN.

Note that pitch computed as described above
may exhibit doubling and halving errors; the ex-
ploration of the impact of (manually) corrected
pitch is beyond the scope of the current article.
Similarly, phenomena such as diplophonia and
creakiness are not explicitly treated.

3.4 Models and Metrics
The prediction probabilities described in Subsec-
tion 3.1 were approximated using a feed-forward
neural network

P
(
qn [k] |qn−1

n−τ ,x
n−1
n−τ

)
≈ f

(
qn−1

n−τ ,x
n−1
n−τ

)

with one hidden layer of H tanh units3, and one
sigmoid output unit — representing the probabil-
ity that the kth participant is speaking at frame
n. For most experiments in the current article,
H = 8. Note that the network has no recurrence
since determining the exact extent of the usefully
conditioning history is of primary interest. Net-
work weights were trained on TRAINSET, using

1This brute-force and seemingly inefficient approach
proved to have considerable impact on the numerical results
presented in Section 4, indicating that basing incremental pre-
dictions on non-incremental pitch extraction would have been
a form of cheating.

2Other policies were explored, notably that in which at
least half of the 10-ms frames need to be voiced; the results
exhibited the same trends as those reported here, although
numerically the cross entropy rates were slightly larger. It
appears that better predictions are possible when more of the
100-ms frames in P are deemed voiced, even when some of
those cells are more sensitive to outliers in the underlying 10-
ms pitch trajectory.

3Note that tanh activation units in the network implic-
itly map NaN features to zero. This approach is likely
sub-optimal, but provides a well-understood and simple-
to-train baseline for improvements like those described in
(Laskowski, 2015).
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1000 iterations of scaled conjugate gradient (SCG;
(Møller, 1993)) descent — a second-order, deter-
ministic rather than stochastic procedure.4

The appropriate objective function given a sin-
gle sigmoid output unit is the cross entropy error
(Bishop, 1995); it was used during SCG training
as well as in the subsequent evaluation of trained
models. Since, for any given conversation and par-
ticipant, the evaluation of the model for a sequence
of frames can be thought of as a causal prediction,
during testing the error is henceforth referred to as
the cross-entropy rate, and is expressed in bits per
100-ms frame.

4 Results

4.1 Representation

The first suite of experiments attempts to identify
an optimal representation of pitch for the analy-
sis task at hand. To put the ensuing results into
perspective, the baseline is a system which ex-
cludes all pitch information; Figure 1 depicts as
“Qτ ” the achieved cross entropy rate as a func-
tion of the number τ of past speech activity frames
which comprise the conditioning context. As can
be seen, the cross entropy rate exhibits a nearly
linear decline over the range τ ∈ [1, 10] for all
three of TRAINSET, DEVSET, and TESTSET. Q10

achieves 0.274371 bits/frame on DEVSET, which
is 0.014200 bits/frame lower than the 0.288571
bits/frame achievable when only that target partic-
ipant’s speech activity is considered (not shown in
the figure, but henceforth lowercase q10).

In all subsequent experiments in this subsection,
the conditioning context consists of Q10

1 — all 10
most recent frames of speech activity from both
participants to the conversation — plus the τ most
recent frames of one of several representations of
pitch for the target participant. The first of these
is just P, as computed in Subsection 3.3. As can
be seen in Figure 1 (where for notational conve-
nience the lowercase “p” indicates target partic-
ipant only), the most recent frame of pitch P1

1

by itself already provides an improvement over
Q10

1 for TRAINSET. It appears that reductions in
TRAINSET cross entropy rates begin to asymp-
tote at τ = 3 frames5. This indicates that the

4For each experimental setting, a single randomly seeded
model was trained.

5It should be noted that each model at τ , visually con-
nected by a line to the point at τ − 1, contains all of the fea-
tures of that point. As a result, the curves can reasonably be
expected to be monotonically decreasing or asymptotically

proposed model learns to exploit pitch for speech
activity prediction, and that therefore recent pitch
must be correlated with incipient speech activity
in TRAINSET. The fact that the same trends are
observed for DEVSET indicates that the correla-
tions which the model learns on TRAINSET gen-
eralize to data unseen during model training. The
model achieves a cross entropy rate minimum on
DEVSET at τ = 3 of 0.270831 bits/frame, which
is 0.0035400 bits/frame lower than the best value
for Q10

1 alone.
Absolute pitch, as represented by P, is patently

speaker-dependent; for the model to have suc-
cessfully leveraged absolute pitch, it must be ig-
noring a significant portion of the variability ob-
served in P. To quantify this, an experiment
was conducted which uses binary voicing V (in-
stead of P), whose elements vk [n] are unity if
the corresponding pk [n] is non-NaN and zero oth-
erwise. Denoted as “Q10 ∪ vτ ” in Figure 1, the
curve exhibits a minimum on DEVSET at τ = 8
of 0.271698, which 0.0026730 lower than for Q10

1

alone and represents 76% of the reduction ob-
served for P. This is suprisingly high and im-
plies that the actual value of absolute pitch is not
as relevant for prediction as is its (non-NaN) ex-
istence. Exposing the model to both V and P
for the target participant (in addition to Q10

1 ), de-
noted “Q10 ∪ vτ ∪ pτ ” in Figure 1, is seen to lower
the cross entropy rate to 0.270304 bits/frame at
τ = 9, by 0.000527 bits/frame. It is possible that
the availability of V allows the model to focus on
extracting information from frames in which abso-
lute pitch is known to exist, and not waste its finite
capacity on inferring this by itself.

Since, as expected, variability in absolute pitch
P appears to present a problem for the model, an
experiment was conducted which Z-normalizes P
by each speaker’s mean and standard deviation.
These two quantities must be known a priori; as-
suming that they do not deviate from a speaker’s
conversation-specific statistics permits their esti-
mation from each conversation separately. This
leads to a new representation, Z, whose ele-
ments zk [n] are equal to (pk [n] − µP ) /σP where
pk [n] is non-NaN, and NaN otherwise. The curve
in Figure 1, denoted “Q10 ∪ zτ ”, exhibits a DE-
VSET minimum of 0.270877 bits/frame at τ = 8.

flat. That they are not reflects the effect of random seeding
and the fact that each point represents one model rather than
an average over multiple, differently-seeded but otherwise-
same, models.
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Figure 1: Cross entropy rate, along the y-axis in bits per 100-ms frame, for several representations of pitch on top
of 10 frames of speech activity from both participants, as a function of the duration of the pitch history, along the
x-axis in number of 100-ms frames. Rates are shown from left to right for TRAINSET, DEVSET, and TESTSET.

This is only negligibly different from the mini-
mum of 0.270831 bits/frame achieved for absolute
pitch (cf. the previously-discussed curve denoted
“Q10 ∪ pτ ”) at τ = 3, and at first glance suggests
the infelicity of Z-normalization. Closer inspec-
tion reveals that while Z-normalization usefully
removes inter-speaker variability, it also brings
values close to the speaker’s mean close to zero,
which makes them — from the model’s point of
view — indistinguishable from unvoiced frames.
Exposing the model to both V and Z corrects
this, and yields a cross entropy rate of 0.268366
at τ = 4, as can be seen in Figure 1 for the
curve denoted Q10 ∪ vτ ∪ zτ . This is lower than
the rate achieved by the Q10 ∪ vτ ∪ pτ curve by
0.0019380 bits/frame, almost 4 times more than
the reduction observed when including V with P.

Pitch is claimed to be perceived on a logarith-
mic scale; to explore whether log-pitch outper-
forms pitch on the speech activity prediction task,
L ≡ log2 P was formed. Its elements lk [n] are
equal to log2 pk [n] when pk [n] is non-NaN, and
NaN otherwise. Z-normalizing L instead of P
yields a new representation Y, whose elements
yk [n] are equal to (lk [n] − µL) /σL if lk [n] is
non-NaN, and NaN otherwise. Denoted by the
curve “Q10 ∪ vτ ∪ yτ ” in Figure 1, this representa-
tion yields a DEVSET cross entropy rate minimum
of 0.268441 at τ = 4. This is actually higher than
the DEVSET minimum of the “Q10 ∪ vτ ∪ zτ ”
curve, but it is lower for all values τ 6=4, and also

smoother over the entire τ ∈ [1, 10] range.
The last experiment of this subsection builds on

the logarithmic version, including voicing and z-
normalized log-pitch not just for the target partici-
pant but also for their interlocutor. This is denoted
in Figure 1 by “Q10 ∪ Vτ ∪ Yτ ”, and its minimum
is reached at τ = 4 with a value of 0.267864
bits/frame. It can be tentatively concluded that
model sensitivity to the non-target participant’s re-
cent pitch history reduces average surprise, by the
small amount of 0.000577 bits/frame.

4.2 History Duration

Experiments in the previous subsection show that
recent pitch appears to be correlated with incipi-
ent speech activity, and that a predictor exposed
to 10 frames of most-recent speech activity should
also be exposed to at least 4 most-recent frames
of voicing (V4

1) and Z-normalized log-pitch (Y4
1).

Although it cannot be concluded that this particu-
lar representation is optimal, it is the most optimal
representation from amongst those investigated for
the Switchboard corpus. The experiments shown
in Figure 2 aim to establish whether this is true
even when much longer histories of speech ac-
tivity are considered; (Laskowski and Shriberg,
2012) had shown that speech activity histories as
long as 8 s (80 100-ms frames, compressed quasi-
logarithmically) continue to improve predictions.

Figure 2 depicts the same “Qτ ” curve shown
in Figure 1, but extends this to τ = 20 100-
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Figure 2: Cross entropy rate, along the y-axis in bits per 100-ms frame, for voicing (V) and speaker-dependent
Z-normalized log-pitch (Y) on top of either 10 or 20 frames of speech activity from both participants (shown
for reference with enlarged markers on the curve for Q alone), as a function of the duration of the pitch history,
along the x-axis in number of 100-ms frames. Rates are shown from left to right for TRAINSET, DEVSET, and
TESTSET. Lines connecting points are drawn for the purposes of visualizion.

ms frames of speech activity history. It can be
seen, for both TRAINSET and DEVSET (as well as
TESTSET), that the nearly-linear decrease in cross
entropy rate as τ increases continues, albeit less
steeply. Also shown in the figure is the same curve
as “Q10 ∪ Vτ ∪ Yτ ”, for which the DEVSET min-
imum can be found at τ = 4. What is new in the
figure is the curve denoted as “Q20 ∪ Vτ ∪ Yτ ”,
which depicts the impact of pitch when the speech
activity history is 2 seconds rather than 1 second
long. As can be seen, this third curve exhibits
its DEVSET minimum also at τ = 4. A system
trained on Q10

1 ∪ V4
1 ∪ Y4

1 reduces the cross en-
tropy rate of a system trained on Q10

1 alone by
0.274515 − 0.267864 = 0.0066510 bits/frame;
one that is trained on Q20

1 ∪ V4
1 ∪ Y4

1 exhibits a
reduction over a system trained on Q20

1 alone by
0.272448 − 0.265396 = 0.0070520 bits/frame.
This is not only a larger reduction in absolute
terms, it appears even larger relative to the speech-
only baseline. It suggests that the usefulness of the
most recent 400 ms of pitch grows as the duration
of speech activity history increases.

4.3 Model Complexity and Training

A final suite of experiments was conducted in or-
der to shed light on potential under-training or
over-fitting of the model, given the fixed size of
TRAINSET. The representation identified at the
end of Subsection 4.1 was used, namely Q10

1 ∪

V4
1 ∪ Y4

1; there, the model consisted of 8 units in
its hidden layer and its training consisted of 1000
iterations of SCG descent. Figure 3 compares
cross-entropy rates when the number of training it-
erations and the number of hidden units are varied
in {1000, 2000, 3000, 4000} and {8, 16, 32, 64},
respectively. Note that these numbers of hidden
units correspond to 305, 609, 1217, and 2433 free
parameters, given an input representation dimen-
sionality of 36.

As can be seen in the figure, extending the train-
ing regimen to 2000 iterations is clearly beneficial;
extending it further to 3000 iterations yields only
negligibly lower DEVSET cross entropy rates. In-
creasing the model complexity from 8 to 64 hid-
den units is also beneficial, but on DEVSET the
improvement from 32 to 64 units is much smaller
than on TRAINSET, indicating not-yet overfitting
but getting close. The DEVSET cross entropy rate
for 64 units and 4000 iterations is already higher
than that for 64 units and 3000 iterations. Note
that there is no evidence that more than 400 ms of
pitch might benefit any of these larger systems.

5 Discussion

5.1 Generalization

The models presented in this article have all been
trained using TRAINSET alone; model selection
has been conducted using cross entropy rate min-
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Figure 3: Cross entropy rate, along the y-axis in bits per 100-ms frame, for four models differing in the number
H of hidden units and using 4 100-ms frames of voicing (V) and speaker-dependent Z-normalized log-pitch (Y)
on top of 10 100-ms frames of speech activity from both participants, as a function of the number of iterations
of SCG training, along the x-axis in thousands. Rates are shown from left to right for TRAINSET, DEVSET, and
TESTSET. Lines connecting points are drawn for the purposes of visualizion.

Feature Set H I X
Q1 8 1000 0.285379
Q10

1 8 1000 0.275052
Q10

1 ∪ Vτ=8
tar,1 8 1000 0.272502

Q10
1 ∪ Pτ=3

tar,1 8 1000 0.271450
Q10

1 ∪ Vτ=9
tar,1 ∪ Pτ=9

tar,1 8 1000 0.271006
Q10

1 ∪ Vτ=9
tar,1 ∪ Zτ=4

tar,1 8 1000 0.269953
Q10

1 ∪ Vτ=9
tar,1 ∪ Yτ=4

tar,1 8 1000 0.269690
Q10

1 ∪ Vτ=9
1 ∪ Yτ=4

1 8 1000 0.269568
Q10

1 ∪ Vτ=9
1 ∪ Yτ=4

1 64 1000 0.267630
Q10

1 ∪ Vτ=9
1 ∪ Yτ=4

1 64 3000 0.267358

Table 1: Cross entropy rates X in bits per 100-ms
frame, obtained for TESTSET using several representa-
tions of pitch, numbers H of hidden units, and numbers
I of training iterations. All models trained on TRAIN-
SET, and model selection (over τ , H , and/or I as ap-
plicable) performed using DEVSET.

imization on DEVSET. TESTSET has been left
untouched, and therefore presents a suitable can-
didate set for characterizing how the proposed
framework generalizes to completely unseen data.
Table 1 summarizes these achievements, from the
right-hand-side of Figures 1 and 2.

As can be seen, the absolute reduction in cross
entropy rate due to the inclusion of pitch infor-
mation (in the form of voicing and Z-normalized
log-pitch) is 0.275052 − 0.267358 = 0.0076940

bits/frame. This magnitude represents approxi-
mately 75% of the reduction observed when pitch
information is excluded and the speech activity
context is increased from 1 frame to 10 frames
(0.285379 − 0.275052 = 0.010327 bits/frame, ie.
rows 1 and 2 in the table). All trends observed for
TESTSET in Figures 1, 2, and 3 are nearly identi-
cal to those observed for DEVSET.

5.2 Normalization

That the prediction of speech activity can success-
fully make use of approximately 8 s of most-recent
speech activity history (Laskowski and Shriberg,
2012), but of only 400 ms of most-recent pitch his-
tory, is surprising and somewhat deflating. How-
ever, it is important to note that the optimal rep-
resentation of pitch was determined to involve
Z-normalization, for which the conversation-side
mean and standard deviation were assumed to be
known a priori. In reality, these statistics would
need to be accumulated from the start of each con-
versation, up to and including the (n − 1)th frame.
It is also possible that estimation of these statis-
tics should favor the recent past, yielding local Z-
normalization statistics which themselves evolve
over time. This is currently under investigation.

5.3 Reproducibility

The experiments presented in this article number
just shy of 150; each experiment took approx-
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imately 6 hours to run on a hyper-threaded
6-core Intel Xeon E5645 2.40GHz machine,
running Debian Linux 3.16. The complete
experiment suite, including all source and inter-
mediate Switchboard Corpus data, are available at
www.cs.cmu.edu/˜kornel/software/
stt.html.

5.4 Potential Impact

For Switchboard conversations, the proposed
framework has demonstrated that attentiveness to
the pitch trajectories of both conversation sides
reduces the average surprise of incipient side-
attributed speech activity. It appears that it suffices
for the considered pitch trajectories to be quite
short (400 ms). The Switchboard corpus thereby
provides sufficient proof that the proposed frame-
work is capable of yielding findings such as these,
in cases in which only the actual speech activity
is available and for which pitch can be automati-
cally measured. The framework is agnostic to the
much more contentious attempts to define and an-
notate what a turn is, and not reliant on additional
turn-landmark or pitch-trajectory annotation.

The direct impact of this work is that it enables
the automated analysis — with regard to the role
of pitch in turn-taking — of large corpora which
would otherwise be intractable to analyze in their
entirety. Due to its quantitative nature, the frame-
work enables direct comparisons between corpora
which differ in arguably important ways, such as
language, dialect, or domain.

Furthermore, an indirect impact of the findings
of which the proposed framework is capable is
that such findings may inform automated speech
processing systems operating under specific lan-
guage, dialect, or domain conditions, for exam-
ple mixed-initiative dialog systems. Knowledge of
how such conditions affect the interplay between
pitch and turn-taking would enhance the natural-
ness and flexibility of those systems.

6 Conclusions

Pitch has long been held as an important signalling
channel when planning and deploying speech in
conversation, and myriad studies have been under-
taken to determine the extent to which it actually
plays this role. Unfortunately, these studies have
required considerable human investment in data
preparation and analysis, and have therefore often
been limited to a handful of specific conversational

contexts. This has made it difficult to compare and
contrast, in a quantitative way, the role played by
pitch in turn-taking as a function of language, di-
alect, domain, channel, other-party familiarity, etc.

The framework proposed in this article ad-
dresses these limitations, by enabling a nearly-
automatic quantitative characterization of the role
of pitch throughout an entire conversation, requir-
ing only the raw signal and speech activity refer-
ences. Although the latter may require prior man-
ual transcription of the lexical content (followed
by forced alignment), this is far easier than man-
ually annotating turn landmarks or pitch trajecto-
ries, and is often already available for a corpus un-
der study. The framework is adaptible to the role-
in-turn-taking analysis of any feature which can be
measured from the raw signal.

This article has evaluated the proposed frame-
work by answering three specific questions regard-
ing the role of pitch in turn-taking, in the Switch-
board corpus. First, the presented evidence sug-
gests that pitch can be leveraged to reduce the av-
erage surprise of incipient speech. Its inclusion,
on top of a conditioning context containing 1 sec-
ond of speech activity from both dialogue parties,
yields a cross entropy reduction of 0.014200 bits
per 100 ms; this is approximately half as much
as is gained by including the non-target partici-
pant’s 1-second of speech activity, over just the
target participant’s, in the first place. Second, the
optimal representation of pitch appears to be Z-
normalized log-pitch, together with the binary in-
dicator variable of voicing; at least in part, the role
of the latter is to differentiate between unvoiced
frames and voiced mean-log-pitch frames. Finally,
experiments indicate that the dynamic pitch trajec-
tory information which is useful for speech activ-
ity prediction is limited to the most recent 400 ms;
pitch trajectory information less recent than that is
necessary only to provide static Z-normalization
statistics. Furthermore, the reduction in average
surprise appears to be a function of the duration of
the considered speech activity history; the longer
the speech activity history, the more valuable do
those most recent 400 ms of pitch seem to be.

Acknowledgments

This work was funded in part by the Stif-
telsen Marcus och Amalia Wallenbergs Minnes-
fond project MAW 2017.0034, Hidden events in
turn-taking.

291



References
C. Bishop. 1995. Neural Networks for Pattern Recog-

nition. Oxford University Press, New York NY,
USA.
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Abstract 

This study tests the effect of cognitive-
emotional expression in an Alexa text-to-
speech (TTS) voice on users’ experience 
with a social dialog system. We 
systematically introduced emotionally 
expressive interjections (e.g., “Wow!”) 
and filler words (e.g., “um”, “mhmm”) in 
an Amazon Alexa Prize socialbot, 
Gunrock. We tested whether these TTS 
manipulations improved users’ ratings of 
their conversation across thousands of real 
user interactions (n=5,527). Results 
showed that interjections and fillers each 
improved users’ holistic ratings, an 
improvement that further increased if the 
system used both manipulations. A 
separate perception experiment 
corroborated the findings from the user 
study, with improved social ratings for 
conversations including interjections; 
however, no positive effect was observed 
for fillers, suggesting that the role of the 
rater in the conversation—as active 
participant or external listener—is an 
important factor in assessing social 
dialogs. 

1 Introduction  

Dialog systems, despite recent improvements, 
still face a fundamental issue of how to convey 
interest and emotion via text to speech (TTS) 
synthesis. Many TTS voices have been described 
as “robotic” or “monotonous” by human listeners 
(Baker, 2015), an issue further exacerbated for 
generation of longer utterances (Németh et al., 
2007). This is particularly relevant for non-task-
oriented dialog systems, such as those that aim to 
engage users in social chitchat (Akasaki & Kaji, 
2017; Liu et al., 2017); for example, Tokuhisa & 
Terashima (2009) found that affective (i.e., 
emotion conveying) productions relate to 

perceptions of speaker enthusiasm in non-task-
oriented human-human conversation. In another 
study, adjustment of the prosodic features of 
computer TTS affects listeners’ perceptions of 
the system’s type of clarification request 
(Skantze et al., 2006), signaling its “cognitive 
state”. Still, the ability to design a computer or 
robot system to convey cognitive-emotional 
expressiveness remains an area of rich study in 
the field of Affective Computing (AC) (cf. Tao & 
Tan, 2005). While prior approaches to model 
human-like expressiveness in various systems 
have involved manipulation of the overall TTS 
prosody, including pitch, rate, and volume (e.g., 
Gálvez et al., 2017; Henning & Chellali, 2012; 
Montero et al., 1998; Mustafa et al., 2010; Nass 
& Lee, 2001; Schröder, 2007), the present paper 
tests whether adding minimal and discrete 
emotional-cognitive expressions in a TTS voice 
impacts user experience with a social dialog 
system. More specifically, we examine whether 
a full “overhaul” of prosody is necessary to 
meaningfully improve a dialog system, or 
whether we can inject units of cognitive-
emotional expression in carefully specified 
locations to produce a similar effect. 

Yet, our understanding of what types of TTS 
modifications will result in believable and sincere 
expressions of emotion and cognitive states in a 
dialog system remains an open question; there 
have been mixed findings as to whether “human-
like” TTS adjustments, such as adding filler 
words, result in improved user metrics (e.g., 
Syrdal et al., 2010; Pfeifer & Bickmore, 2009). 

Critically, the vast majority of human-
computer dialog studies have been run on a 
limited number of participants and conversations 
(e.g., n=96 in in Brave et al., 2005) and in a lab 
setting where users are recruited to interact with 
the systems (e.g., Brave et al., 2005; Cowan et 
al., 2015; Qvarfordt et al., 2005; Yu et al., 
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2016); that is, users may not be interacting with 
real intents. For one, the presence of an 
experimenter could impact the way users interact 
with the system (cf. Orne, 1962). This is also true 
for dialog systems; users may be less comfortable 
to engage in more naturalistic conversation, or 
may be more willing to accept errors or 
incongruencies by a computer system while in 
the lab. Additionally, having fewer observations, 
as well as a participant pool largely consisting of 
college age students (e.g., Cowan et al., 2015) 
may impact researchers’ ability to generalize 
findings to other user demographic groups (cf. 
Henrich & Heine, 2010).  

In this paper, we describe an experiment 
where we systematically manipulated the 
Amazon Alexa TTS generation in Gunrock, the 
2018 Alexa Prize winner socialbot (Chen et al., 
2018). Our participants included over 5,000 real 
users who engaged with the system from their 
own homes and devices. We targeted two types 
of TTS manipulations: interjections (e.g., 
“Awesome!”) and filler words. We selected these 
two elements as they are ways humans 
communicate their cognitive-emotional states, 
but vary in their intensity: while interjections 
express enthusiasm and strong emotion, filler 
words communicate the speaker’s cognitive 
states (e.g., “Um... let me think”) in a more 
tempered fashion. Both interjections and fillers 
have also been proposed to serve as socio-
affective “glue” between interlocutors, 
expressing emotional and cognitive states that 
serve to strengthen relational bonds between 
humans and computers (Auberge et al., 2013; 
Sasa & Auberge, 2014; 2017).  

In addition to its scope, this study is novel in 
several regards. First, no prior work, to our 
knowledge, has explored how individuals 
respond to emotion  generated by a voice-
activated digital assistant (e.g., Amazon’s Alexa, 
Apple’s Siri); users may have a more personal 
connection with and may even show greater 
personification of these increasingly prevalent 
household devices (Lopatovska, & Williams, 
2018). Additionally, this paper introduces a 
methodology for designing and inserting 
interjections and filler words, both in terms of 
their context as well as their acoustic adjustments 
using Speech Synthesis Markup Language 
(SSML). Furthermore, no prior experiments have 
parametrically tested the presence of these two 

elements in controlled studies; doing so allows us 
to test whether there is a cumulative effect of 
these cognitive-emotional insertions. Finally, 
conducting an experiment directly through the 
Alexa system is an innovative approach that 
builds on past work that has largely relied on 
naturalness ratings of synthetic voices with no 
interactive component for the rater themselves 
(e.g., Marge et al., 2010; Gálvez et al., 2017; 
Hennig & Chellali, 2012; Schmitz et al., 2007).  

This study can serve as a test to the ‘Computers 
are Social Actors’ theoretical framework (CASA: 
Nass et al., 1994; Nass & Moon, 2000) that 
proposes that humans apply social norms from 
human-human interaction to computers when they 
detect a cue of humanity in the system. One 
empirical question for the CASA framework is 
what cues can trigger computer personification 
and to what extent this personification graded; 
that is, do we see cumulative effects of 
introducing multiple human-like features in a 
dialog system, or do listeners display a more 
categorical response to human-likeness? In 
particular, we ask whether individuals’ ratings of 
social dialog quality vary according to the type 
and combination of addition for interjections and 
filler words. 

In the following section, we will review the 
literature for related work on cognitive-emotional 
expression via interjections and filler words in 
human-human and human-computer interaction 
(HCI). Then, we will introduce our overall 
chatbot dialog system design and our 
interjection/filler insertion methodology in 
Section 3, our user study experiment in Section 4, 
and a perception experiment in Section 5.  

2 Related Work  

2.1 Limited Prior Work on Interjections 
and Exclamations in HCI 

Despite the prevalence of interjections in human 
speech patterns, few groups have explored 
inserting interjections in TTS systems. In human 
speech, interjections constitute words or phrases 
that can display emotion (e.g., emotive 
interjections such as “Yuck!”; cf. Wierzbicka, 
1999) or reveal the speaker’s “information state” 
(e.g., “Aha!”). Some interjections are based on 
existing words (e.g., “Neat!”), while others are 
based on non-lexical vocal productions (e.g., 
“Ooh!”; cf. Yang, 2010). Interjections can also 
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signal that the information is newsworthy (e.g., 
“Really?” in Pammi, 2012). Still, the addition of 
interjections in TTS voices remains a largely 
understudied area, while much greater attention 
has been given to overall prosodic adjustments 
over the scope of a phrase or utterance (e.g., pitch, 
duration, etc.) (e.g., Németh et al., 2007) or the 
introduction of non-linguistic affective bursts in 
robots (e.g., beeps, buzzes in Read & Belpaeme, 
2012). While not introducing interjections per se, 
but rather modeling new TTS productions based 
on positive or negative interjections (e.g., 
“Great!” vs. “Oh dear!”), Syrdal and colleagues 
(2010) found that speech trained on positive 
exclamations resulted in higher listener ratings in 
a 7-utterance simulated  dialog; they observed no 
such effect for TTS adjustments for negative 
exclamations (e.g., “Oh dear!”, “Oops!”). One 
novel line of research we explore in the present 
study is whether the presence of an interjection – 
and the degree of prosodic dynamism in the 
interjection, such as exaggerating the pitch 
contour and increasing duration – contributes to a 
user’s perception of the system as being more 
cognitive-emotionally expressive. 

2.2 Mixed Results for Fillers in HCI 

Another element signaling cognitive-emotional 
expression in human conversations is filler 
words. In certain instances, filler words, or filled 
pauses (e.g., “um”), can be considered to be a 
type of disfluency or hesitation in a speaker’s 
production (Clark & Tree, 2002), demonstrating 
more time for the speaker to “collect” their 
thoughts (cf. Brennan & Williams, 1995). At the 
same time, filler words can signal information 
about the speaker’s cognitive state; for example, 
longer filler words have been shown to signal 
greater uncertainty or degree of thought on the 
conversational subject, while the pitch contour 
on the filler word communicates the speaker’s 
level of understanding (Ward, 2004). In some 
studies, introduction of filler words in dialog 
systems has a facilitatory effect on perceived 
naturalness and expressiveness of the voice 
(Gallé, et al., 2017; Goble & Edwards, 2018; 
Marge et al., 2010; Wigdor et al., 2016). For 
instance, a user’s “sensation of engagement” in a 
conversation with a robot improves with the 
addition of filler words (Gallé, et al., 2017). 
Filler words additionally have been shown to 
impact perceived likeability and engagement 
with a computer, even for individuals not 

directly talking to the computer/robot;  
independent raters gave higher naturalness 
ratings for “overheard” human-computer 
conversations when the computer voice included 
filler words (e.g., using the Talkie dialog system 
in Marge et al., 2010). 

Yet, at the same time, other studies have 
reported no effect of introducing filler words 
(e.g., “Hmmm”, “uh huh” in Syrdal et al., 2010), 
or a negative effect for some listeners (e.g., 
Pfeifer & Bickmore, 2009). This negative 
response might be expected given their 
association with as markers of anxiety and 
unpreparedness for some subjects. However, 
Christenfeld (1995) additionally observed that 
listeners’ evaluations varied based on their task: 
when asked to focus on the speech style, subjects 
reported more negative ratings of the filler “um”, 
but subjects had no such negative judgments 
when they were asked to focus on the content. 
This raises an important question: how might the 
experimental task impact the way users perceive 
these more human-like, but in some cases more 
“marked”, displays of cognitive-emotional 
expressiveness? Addressing a limitation of prior 
work having subjects rate stimuli presented in 
isolation (e.g., Syrdal et al., 2010), our study tests 
both actual user’s responses as well as external 
raters in assessing the introduction of fillers.  

3 Dialog System Design Amazon Alexa 
Prize Chatbot  

For the past two years, Amazon has launched the 
Alexa Prize Socialbot Challenge to support 
universities in building conversational bots to 
advance human-computer interaction. General 
public users with an Alexa-enabled device or free 
Alexa application can access the system and talk 
to the system about various topics (e.g., music, 
sports, animals, movies, food, weather, etc.) in a 
conversational manner. When a user engaged the 
social mode by saying “Let’s chat”, one of the 
socialbots in the competition was randomly 
invoked. After talking to the system, the Alexa 
Skill system automatically solicited user feedback 
(“How likely are you to talk to this bot again, on a 
scale from one to five?”), providing a measure of 
user engagement.  
   Competing in the 2018 Alexa Prize 
competition, our chatbot, Gunrock (Chen et al., 
2018), aims to produce engaging and coherent 
conversations with real human users. During the 
competition, our bot achieved an average rating 
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of 3.62 (on a 1-to-5 scale) in over 40,000 
conversations; conversations had an average of 
18.9 turns, averaging 4.35 minutes in duration. 
Our bot uses automatic speech recognition and 
text-to-speech models are provided by Amazon. 
It has a three-stage natural language 
understanding pipeline including ASR correction, 
sentence segmentation, constituency parsing, and 
dialog act prediction to aid user intent detection. 
Our system has a hierarchical agenda-based 
dialog manager that covers different topics, such 
as movies, music, etc., and a templated-based 
natural language generation module that allows 
the system to fill slots with data retrieved from 
various knowledge sources. Please refer to Chen 
et al. (2018) for system implementation details. 

3.1 Methods of Inserting Interjections 
(Speechcons)  

We designed a framework to introduce 52 
distinct interjections pre-recorded by the US 
English Alexa voice actor. These interjections, 
known as Speechcons (Amazon, 2018), are 
“special words and phrases that Alexa 
pronounces more expressively”. For a listening 
sample, refer to the Speechcon website 
(Amazon, 2018). We inserted these interjections 
using Speech Synthesis Markup Language 
(SSML) tags in the Alexa Skills Kit. These 
interjections were longer in duration and showed 
wider pitch variations and exaggerated pitch 
contours, relative to their unmodified 
counterparts (see Figure 1).  
 

 
Of the 52 interjections (see Table 1 for a 
breakdown), we inserted 39 phrase-initially 
using a rule-based system, for the following 5 
contextual scenarios, defined by conversational 
template: when the bot wanted to signal interest 
about the user’s response to encourage the user 
to elaborate, to resolve an error, to accept a 
request, to change the topic, and to express 

agreement of opinion. In each context, we 
randomly inserted an interjection appropriate for 
that context (from the subset of pre-categorized 
interjections) to increase variation and retain 
user interest. Note that insertion of interjections 
did not result in any pauses or other 
incongruencies in the Alexa TTS generation. 
 

 
Interjections were selected for each context by a 
native English speaker (Author 1) based on the 
acoustic production of the interjection and its 
semantic/pragmatic fit in the utterance. First, we 
selected positive interjections (e.g., “Wow!”) 
that could be used to signal interest (Context 1) 
and negative interjections (e.g., “Darn!”) in error 
resolution (Context 2); we used the widest 
variety of interjections for these two contexts as 
these situations arose most frequently in 
conversation. We denote the interjection version 
of words with an exclamation (e.g., 
“Awesome!”).  
 

• Context 1: To signal interest about the 
user’s response and elicit user’s expansion. 
We added 12 interjections phrase-initially to 
show Alexa’s interest in the user’s answer 
(after Alexa asks a question and the user 
provides a response); these interjections 
included “Awesome!”, “Cool!”,  “Fantastic!”, 
“Super!”, “Wow!”, “Ooh la la!”, “No way!”, 
“Fancy that!”, “Interesting!”, and more (for a 
full list, see Appendix A). For example: 
“[Wow!… | Interesting!… | Ooh la la!…]. Tell 
me more about it.” 

• Context 2: Error resolution. We also 
introduced 14 interjections in error resolution 
templates in order to show Alexa’s “feelings” 
about her misunderstanding. Possible 
interjections included “Whoops a daisy!”, 
“Darn”, “Oh brother”.  For example: 
“[Whoops-a-daisy!... | Baa!... | Darn!...] I think 
you said probably.  Can you say that one more 
time?” 

 
Figure 1: Pitch and duration differences for 
Speechcon and unmodified production of “Cool!” 
generated in Praat (Boersma & Weenik, 2018). 

 

 

 

 

 
Table 1: Total number of possible interjections 
added to defined slots in conversational templates.  
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• Context 3: To accept a request. We inserted 
4 interjections phrase-initially to reflect 
Alexa’s acceptance of the user’s request (e.g., 
such as to change topic), including: “Okey 
dokey!”, “Righto!”, “As you wish!” and “You 
bet!”. For example: “[Okey dokey!... | 
Righto!... | As you wish!...] Here’s some more 
info.” 

• Context 4: To change the topic. We used 4 
interjections to transition to a new topic, 
simulating a scenario where Alexa “just 
remembered” something she wanted to share 
with the user. We generated 2 interjection 
versions of “Ooh!” and “Ah!” to use in this 
context. For example: “[Ooh!… | Ah!… | All 
righty!...] tell me more about you! What else 
are you interested in? Do you like [music | 
movies | animals]?” 

• Context 5: To express agreement of opinion. 
We inserted 2 interjections phrase-initially to 
show Alexa’s emphatic agreement to the user’s 
opinion: “Yes!” “High Five!”. For example: 
“[High Five!… | Yes!…] We share the same 
thoughts!” 

 

Overall, our rule-based system resulted to the 
insertion of  interjections in 12-18% of turns in 
each conversation. We implemented these 
interjections with a following pause (ranging 
from 150-300ms), using SSML. Note that 13 
unique interjections, of the total 52, were added 
to very specific utterances (e.g., using “Moo!” 
with cow jokes) without using this rule-based 
system (see Appendix B for stimuli and 
descriptions). All the interjections were rated on 
two axes by a native English speaker (see 
Appendix A for full word list and classifications; 
see Table 5 for an example conversation log 
from in-lab user tests). Axis 1 is valence: 
Positive, neutral, or negative. For example, the 
interjection “Awesome!” was rated as having a 
positive valence, while “Darn!” was rated as 
having a more negative valence. Axis 2 is the 
interjection emotional orientation: self- or other-
oriented (cf. Brave et al., 2005). 

3.2 Methods of Inserting Fillers  

We added 9 fillers used in American English 
(Barbieri, 2008) in the conversational templates: 
“um”, “hmm”, “huh”, “ah”, “uh”, “oh”, “ooh”, 
“uh huh”, “mhm” (see Table 5 for an example 
conversation log from in-lab user tests). In all 
cases, we used SSML to add a pause (ranging 
from 150-200ms) following the filler word and 
slow the production of the word “so” (80% of 

original rate), if it occurred before or after the 
filler to improve naturalness. We added certain 
subsets of filler words in three specific contexts: 
to change topics, when retrieving Alexa’s 
backstory, and as an acknowledgment to the 
user’s utterance. Overall, this resulted in fillers 
added to a total of 7.8-7.9% of total turns.  
• Context 1: To change topic. We added two 

fillers, “um” and “uh”, either before or after 
“so” to introduce a new topic. We additionally 
reduced the rate of “so” (indicated by 
underlining in the following examples). For 
example: “[Um…sooo, |Sooo, um…| Uh… sooo 
| Sooo… uh,] I've been meaning to ask you: do 
you like to play videogames? 

• Context 2: When retrieving Alexa’s 
backstory. We added six fillers (“mhmm”, 
“hmm”, “um”, “uh”, “oh”, and “ooh”) at the 
beginning of the utterance when the user had 
asked Alexa a question, simulating that Alexa 
needed time to consider her own experience 
and/or opinions. For example: “[Hmm…, | 
Uh… | Oh… | Ooh…| Mhmm…] I love all 
animals, but I think my favorite is probably the 
elephant”. 

• Context 3: As an acknowledgment to the 
user’s answer to Alexa’s question. We added 
the fillers to act as feedback response tokens. 
Specifically, we added “ah”, “oh”, “uh huh”, 
“mhmm”, “huh”,  and “ooh” at the beginning 
of the utterance to show Alexa’s 
acknowledgment of the content provided by 
the user (e.g., “Oh… legos? Interesting 
choice!”). Note that while these utterances are 
often used for backchanneling, where one 
speaker provides verbal feedback while the 
other continues to hold the floor (e.g., “uh 
huh” in Pammi, 2012), we do not classify them 
as such they did not occur during the user’s 
turn. Given the limitations of the text 
transcripts of the conversations—in the 
absence of acoustic-phonetic data—we could 
not implement a real-time backchanneling 
mechanism 

4 Experiment 1: Chatbot User Study 

In the current study, we systematically tested the 
impact of adding interjections and fillers in the 
Alexa TTS voice in our chatbot (Chen et al., 
2018). We hypothesize that in a social dialog 
system, adding interjections (e.g., “Awesome!”) 
and filler words (e.g., “um”) in appropriate 
locations, with emotional valence consistencies, 
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will improve overall user ratings. This prediction 
stems from related work conducted in laboratory 
settings with other types of interlocutors (e.g., 
robot in Gallé et al., 2017; Marge et al., 2010), 
with greater expressiveness of the voice relating 
to positive ratings by users (e.g. Hennig & 
Chellali, 2012).  

4.1 Experimental Conditions 

From November 20, 2018 to December 3, 2018 
we conducted an ablation study with four possible 
conditions, varying according to the presence of 
interjections and fillers (see Table 2). Condition A 
was filtered to include interjections (and exclude 
filler words). Condition B was filtered to include 
filler words and exclude interjections. Condition 
C included both interjections and fillers, while 
Condition D excluded both elements. Condition 
was randomly invoked for each user. During this 
timeframe, no other code updates were 
implemented. A total of 5,527 users participated 
in the study for a total of 5,582 conversations, 
with 62,130 conversational turns.  

 

4.2 Statistical Analysis & Results 
We modeled user rating (produced at the end of 
the interaction on a scale from 1-to-5) with a 
mixed effects linear regression with the lme4 R 
package (Bates et al., 2015), with the fixed effect 
of Condition (A: Interjection only, B: Filler only, 
C: Interjection and Filler, or D: Neither) and by-
user random intercepts. Effects were contrast 
coded relative to Condition D (baseline 
condition).  

The linear regression model revealed a main 
effect of Condition on users’ ratings, with 
significantly higher ratings for the three 
conditions with manipulations (A: Interjection, B: 
Filler, and C: Interjection & Filler) relative to 
baseline (see Table 3 and Figure 2 below). The 
highest rating improvement was observed for 

Condition C (Interjection & Filler) with an 
average increase of 0.749.  

 

 
 

The releveled linear regression model, with 
Condition C as the reference, tested whether the 
combined condition (Interjections & Fillers) 
showed higher ratings relative to the addition of 
interjections or fillers alone. Results revealed 
that Condition C indeed showed higher user 
ratings than Conditions A (Interjections only: 
β=-0.561, t=-26.16, p<0.001) or B (Filler only: 
β=-0.326, t=-15.33, p<0.001). 

4.3 Interjections Subset Analysis & Results:  
We conducted a more fine-grained analysis on the 
subset of conversations that included the 
interjections (i.e., Condition A: Interjection, and 
Condition C: Interjection and filler). In this 
section, we test whether valence (positive, neutral, 
negative), emotion orientation (self- versus other), 
and interjection function (error resolution, change 

 
Table 2: Experimental conditions & summary 
statistics 

 

 
 

Table 3: Hierarchical linear regression model 
output: User ratings based on Condition, relative 
to the baseline condition (“D”).  

  

 

 
Figure 2: Mean user rating by Condition (error 
bars represent standard error; asterisks depict 
significance (p<0.001) relative to the baseline 
condition, “D”) 
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topic, signal interest, etc.) differentially affect user 
ratings. We predict that  more positive 
interjections, interjections that communicate more 
other-oriented displays of emotion, and 
interjections that are used to signal interest 
(relative to other functions, such as changing 
topic) will show higher user ratings, in line with 
prior work (e.g., Bono & Ilies, 2006 Brave et al., 
2005; Gibbs & Mueller, 1988).  

A mixed effects linear regression model tested 
the interjection classifications on user’s ratings. 
Fixed effects included Interjection Valence 
(positive, negative, neutral), Emotion Orientation 
(self-oriented, other-oriented), and Context (Error 
resolution, change topic, play, etc). Given the 
overlap between Emotional Valence and Function  
(with positive interjections exclusively used to 
Signal Interest and negative interjections almost 
always used in Error Resolution, see Appendix 
A), we tested these two variables in separate 
models. Random effects included by-user random 
intercepts.  

Model comparisons based on the corrected 
AIC (Burnham et al., 2011) were conducted with 
the MuMIN R package (Barton, 2017) to test the 
inclusion of Emotion Valence or Function as main 
effects, given their colinearity. Model 
comparisons revealed that the model with the 
fixed effects of Valence and Emotion Orientation 
best fit the data (AICc=1689.9), relative to the 
model including Function and Emotion 
Orientation (AICc =1694.78). The retained model 
output (see Table 4) revealed a main effect of 
Emotion Orientation, with “other” oriented 
emotional displays (e.g., “Wow!”) associated with 
higher rating than more self-oriented productions 
(e.g., “ah”). No differences were observed on the 
basis of interjection Valence.  

 

4.4 Qualitative User Study  
As part of the Alexa Prize Competition, we 
additionally recruited users to interact with the 
system for feedback and bug testing for earlier 
versions of the dialog system. In September and 
October 2018, we recorded the interactions of 
twenty volunteers (12 undergraduates, 8 graduate 
students). After talking to the socialbot, subjects 
were asked about their interaction. Several 
subjects mentioned that they liked the filler words 
in Alexa’s speech as it “sounded like she was 
actually thinking” or “seemed more realistic”. 
Additionally, we noted that subjects often laughed 
or smiled when they heard the hyper-expressive 
interjections while they were part of the 
conversation (e.g., “Wowza!”).  
 

 

5 Experiment 2: Perception  Study 

While our user study suggests an improvement on 
the basis of interjections and fillers, it is possible 
that other factors played a role in the final ratings 
(e.g., specific phrasing), as well as the co-
occurrence of certain interjections, with particular 
dialog acts (e.g., Alexa using “Darn!” to resolve 
errors).  To disentangle these factors, we 
conducted a psycholinguistic experiment using a Table 4: Mixed effect linear regression output for 

interjection classification effects on user ratings.  

  

 

USR: Hey Alexa, let’s chat. 
SYS: Hi, this is an Alexa Prize Socialbot. I'm 

glad to meet you. How are you doing 
today? 

USER: I'm okay. How are you? 
SYS: I'm good! So, tell me more about yourself! 

Do you like movies? 
USR: I do like movies. 
SYS: I'm excited to talk about movies. 

Sooo…umm… (Filler), have you seen any 
movies lately? 

USER: A Star is Born. 
SYS: Ah… (Filler) I've seen A Star is Born too! 

What would you rate this movie on a scale 
from 1 to 10? 

USER: A ten. 
SYS:  Wow!... (Interjection) A perfect 10! It 

really is an exceptional movie! Here is 
something I just learned. Some of the 
scenes were filmed at the Coachella 
Festival in 2017… 

Table 5: Conversation transcription from an in-
lab user test. Interjections and filler words are 
denoted by italics and labeled (original, 
annotations).  
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Qualtrics survey administered through Amazon’s 
Mechanical Turk1.  

5.1 Participants, Stimuli, and Procedure 

A total of 85 Amazon Mechanical Turk workers 
(i.e., “Turkers”) participated in the rating task 
(note that all Turkers had to have an approval 
rating of 97% or higher and at least 1000 prior 
HITs). Stimuli consisted of four 3-utterance 
dialogs between Alexa and  a human male talker 
(a native English speaker, age 29). The 
conversation topics were based on those discussed 
in the main social bot (animals and movies), 
though were novel utterances. The dialogs 
systematically varied as to whether the expression 
of emotion in the interjection (if expressed) was 
self- or other-oriented and had positive or 
negative valence.  

Using the rules for inserting interjections and 
fillers (see Sections 3.2 and 3.3) and mirroring the 
Condition structure from Experiment 1, we 
systematically generated four conditions for each 
dialog: A) Interjection addition, B) Filler addition, 
C) Interjection and Filler addition, and D) 
Baseline. In each of these conditions, we held the 
human’s response exactly the same, as well as all 
of the wording (for an example, see Table 6). 
Using a between-subjects design, we additionally 
tested whether the conversational context for filler 
words in the first utterance affects their ratings 
(e.g., following: “So” versus “Yeah, movies can 
be really fun….So”). 

 

 
In the experiment, subjects heard each 

utterance (randomly presented) and were asked to 
rate Alexa on several dimensions using a sliding 
bar (on a scale of 0-to-100): likeability, 
naturalness, expressiveness, and engagement 
                                                 
1 www.MTurk.com 

(e.g., “How engaged does Alexa sound in the 
conversation?”). Two listening comprehension 
questions were included to ensure that Turkers 
were attending to the stimuli and task at hand 
(e.g., “What was Alexa’s favorite animal?” 
Correct response: An elephant).   

5.2 Analysis and Results 

Subjects’ ratings for each variable were analyzed 
with separate linear mixed effects models, with a 
fixed effect of Condition and by-Subject random 
intercepts. Results showed a main effect of 
Condition, where introducing interjections 
significantly increased ratings of engagement  
(β=6.1, t=3.1, p<0.01), naturalness (β=3.7, t=3.5, 
p<0.001), expressiveness (β=9.0, t=7.7, p<0.001), 
and likeability (β=3.4, t=3.1, p<0.001) of Alexa. 
Furthermore, we observed a significant 
improvement of introducing both interjections and 
fillers on perceived expressiveness (β=8.1, t=7.0, 
p<0.001). When introducing fillers only, we 
observed a negative effect on ratings of likeability 
(β=-2.8, t=-2.5, p<0.05) and engagement (β=-2.4,  
t=-2.1, p<0.05) (see Figure 3).  
 

  
 

Subset analyses on interjections (Conditions B 
and C) relative to the baseline were conducted to 
test for an interaction of Condition*Orientation 
(self- versus other- oriented emotion) and 
Condition*Valence (positive, negative, neutral). 
The models showed significant interactions for 
both: interjections that were other-oriented 
(p<0.001) and positive in valence (p<0.001) 
showed higher ratings for likeability, engagement, 

CONDITION 1A: Interjection CONDITION 1B: Filler  
Alexa: So,  
I’ve been meaning to ask 
you. What else are you 
interested in? Do you like 
animals? 
Human: I love animals! 
Alexa: Awesome! I think my 
favorite animal is the 
elephant.  

Alexa: Sooo, um…  
I’ve been meaning to ask 
you. What else are you 
interested in? Do you like 
animals? 
Human: I love animals! 
Alexa: Awesome. I think 
my favorite animal is the 
elephant.  

Table 6: Example dialog (Conditions A and B) 
excerpt used in the perceptual ratings study. 
Interjections and fillers are annotated in italics.  

  

 

 
Figure 3: Perceptual Ratings of Alexa for each 
Condition.  
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and expressiveness. The subset analysis testing an 
interaction between the filler condition (relative to 
baseline) and Conversational Context revealed no 
effect on ratings.   

6 Discussion 

This paper combines a large-scale user study 
with a targeted perceptual ratings experiment to 
test the effect of adding hyper-expressive 
interjections (e.g., “Awesome!”) and filler words 
(e.g., “um”, "um”) in a 2018 Amazon Alexa 
Prize chatbot. Overall, our user study provides 
evidence that introducing these discrete 
expressions of cognitive-emotional expression 
improves users’ experience talking to a social 
dialog system; this was evidenced by a higher 
holistic rating that they provided at the end of the 
interaction on a scale from 1-to-5. Using both a 
large sample size and in-situ experiment of an 
Amazon Alexa Skill, such that users directly 
engaged with their own devices, is a novel 
methodology for assessing TTS expressiveness 
that extends prior in-lab studies on users 
recruited to engage with the system (e.g., Brave 
et al., 2005; Cowan et al., 2015; Qvarfordt et al., 
2005; Yu et al., 2016).  

The cumulative effect of adding interjections 
and fillers (e.g., in Condition C) suggests that 
individuals might respond better to dialog 
systems that use greater TTS dynamism, or 
variation, in the ways in which cognitive-
emotional expressiveness is conveyed. These 
findings can inform theoretical frameworks of 
computer personification (Nass, 1994; Nass & 
Moon, 2000); while in a conversation with the 
system, users appear to be reading the minimal 
and discrete “human” cognitive-emotional cues 
generated by the TTS voice – and these effects 
are additive. Additionally, our results support the 
classification of fillers and interjections as 
“socio-affective glue” in developing rapport in 
human-computer interaction (cf., Sasa & 
Auberge, 2014).  

The facilitatory effect of interjections in the 
user study was additionally replicated in our 
perceptual ratings study: we found higher ratings 
of naturalness, expressiveness, and engagement 
when Alexa used interjections (e.g., 
<speechcon>"Awesome!”</spcon>“) versus unmodified 
productions of the same words (e.g., 
“Awesome.”). At the same time, we find that 
introducing filler words improves ratings when 
the user is directly engaging with the socialbot, 
but independent raters, who are not directly part 

of the conversation, give lower ratings for filler 
words. This suggests that the role of the user in 
the conversation, as well as the conversational 
context (as being more socially oriented) may be 
important considerations in evaluating TTS 
manipulations to improve cognitive-emotional 
expressiveness. 

Finally, this work has practical applications 
for other dialog system designers, with the Alexa 
system (e.g., using Speechcons), but also more 
broadly. That we see an improvement across 
thousands of users and unique conversations 
suggests that inserting interjections and fillers 
plays a key role in perceptions of social dialog 
quality. We see the potential to use this 
expressiveness in other types of interactions, 
including task-oriented dialog (e.g., in tutoring, 
counselling sessions, etc.).  

7 Conclusion  

Overall, we present a methodology for inserting 
interjections and filler words in a socialbot 
dialog system and empirical validation of their 
use in a large-scale user study. In comparison to 
utterance- or phrase- level prosodic 
manipulations, these word-level “infusions” of 
cognitive-emotional expression are easier to 
implement and appear to improve users’ 
experience. For one, that we see an improvement 
in ratings across a large-scale pool of users, each 
with a unique conversation, suggests that 
introducing these minimal TTS manipulations in 
other types of dialog systems may be beneficial.  
Future work testing the implementation of 
interjections and/or fillers in task versus non-
task-oriented systems can further tease apart 
their generalizability. 
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 Appendix A. Interjection (Speechcon) Classifications  
Function Valence Emotional 

Orientation 
Positive Neutral Negative 

Signal Interest Great! 
Awesome! 
Fantastic! 
Super! 
Ooh la la! 
Wowza! 

Wow! 
Cool! 
Interesting! 
Fancy that! 
No way! 

 Other 
 

 Aha!   Self 

Resolve error  Jiminy cricket! 
Whoops a daisy! 

Darn! 
Shoot! 
Yikes! 
Oh boy! 
Oh dear! 
Oh brother! 
Ouch! 
Tsk tsk! 

Other 

  Ruh roh! Baa! 
Oof! 
Uh oh! 

Self 

Accept request  Okey dokey! 
Righto! 
As you wish! 
You bet! 

 Other 

Change topic Spoiler alert* 
(only with disclosure) 

Ahem! 
All righty! 

 Other 

  Ooh! 
Ah! 

 Self 

Express agreement of 
opinion 

High five! 
Yes! 

  Other 
 

Joke (phrase-finally) Just kidding!* 
 

 Wah wah* 
Neener neener!*  

Other 

   D’oh!* Self 

Joke (specific context)   Woof!^ 
Moo!^ 
Meow!^ 
Kerplop!^ 
Honk!^ 

 Other 

Other context and 
module-specific 
interjection 

Yum!^ 
Aww!^ 

   

Response to user after 
telling a joke 

Tee hee!^ 
 

   

Table A1. Interjections that are only used in very constrained contexts are annotated with an asterisk (*); those that are only 
used in one, specifically specified sentence are annotated with a carat (^).  

  

305



 
 

Appendix B. Methods of Inserting Sentiment-Specific Interjections 

We additionally added 10 interjections in sentiment-specific utterances. These were not 
interchangeable (unlike Contexts 1-4 described in Section 3.3). We used the interjection, “Spoiler 
Alert!” to change the topic by leading in to a disclosure by Alexa (see example A below). We 
introduced 2 interjections as a response to humor, that occurred after a response to a joke. “Tee hee!” 
and “Woohoo!” (see examples B and C). We implemented “Yum!” specifically in the food module, in 
response to the user’s favorite food (see example D). Similarly, we added the interjection, “Aww!” as 
a response to the user disclosing information about their pet in the animal module and “Woof!” and 
“Meow!” to respond if they indicated they liked dogs or cats, respectively (see examples E-G).  

 
 

a) Spoiler alert!... Did you know? I am definitely more of a dog person than a cat person. How about you? 
Do you like animals? 

b) Woohoo!... I’m glad you get my awesome humor.  
c) Tee hee!... I LOL’d at that as well  | If I could giggle I would. 
d) Yum!... That sounds really delicious.  
e) Woof!... I love dogs. 
f) Meow!... I love cats. 
g) Aww!... That’s so cute. 

 

Table B1: Examples of sentiment-specific interjections (denoted in italics).   

We added several interjections (e.g., “Moo!”, “Honk!”, “Woof!”, “Just Kidding!”) at the end of 
utterances to complement jokes and express playfulness (see examples G-K in Table B-2).  

 

 
h) What do you call a cow during an earthquake? … A milkshake. ... Moo! 
i) What do you call blueberries playing the guitar?... A jam session. ... Wah wah! 
j) What did the traffic light say to the car? …Don't look! I'm about to change... Honk! 
k) Why wouldn't the shrimp share his treasure?... Because he was a little shellfish...  Neener neener! 
l) Yeah, wouldn't it be (interesting|weird) if I could poop? ... Kerplop! 

 
 

Table B2: Examples of sentiment-specific interjections (denoted in italics) added phrase-finally  

Additionally, we added “Kerplop!” in our response if a user asked Alexa if she “poops” (a frequent 
question in the user studies) (see Table B2 above). 
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Abstract

We describe a longitudinal user study con-
ducted in the context of a Spoken Dialogue
System for a household robot, where we ex-
amined the influence of time displacement and
situational risk on users’ preferred responses.
To this effect, we employed a corpus of spo-
ken requests that asked a robot to fetch or
move objects in a room. In the first stage of
our study, participants selected among four re-
sponse types to these requests under two risk
conditions: low and high. After some time,
the same participants rated several responses
to the previous requests — these responses
were instantiated from the four response types.
Our results show that participants did not rate
highly their own response types; moreover,
they rated their own response types similarly
to different ones. This suggests that, at least in
this context, people’s preferences at a particu-
lar point in time may not reflect their general
attitudes, and that various reasonable response
types may be equally acceptable. Our study
also reveals that situational risk influences the
acceptability of some response types.

1 Introduction
Spoken Dialogue Systems (SDSs) must often en-
gage in follow-up interactions to deal with Auto-
matic Speech Recognizer (ASR) errors or eluci-
date ambiguous or inaccurate requests (which are
exacerbated by ASR errors):

• ASR errors, although significantly reduced in
recent times,1 may produce wrong entities or
actions, or ungrammatical utterances that can-
not be processed by a Spoken Language Under-
standing (SLU) system (e.g., “the plate inside
the microwave” being misheard as “of plating
sight the microwave”).2

19to5google.com/2017/06/01/google-speech-recognition
-humans/.

2All the sample ASR outputs in this paper are real.

• People often express themselves ambiguously
or inaccurately (Trafton et al., 2005; Moratz
and Tenbrink, 2006; Funakoshi et al., 2012;
Zukerman et al., 2015). An ambiguous refer-
ence to an object matches several objects well,
while an inaccurate reference matches one or
more objects partially. For instance, a refer-
ence to a “big blue mug” is ambiguous if there
is more than one big blue mug, and inaccurate
if there are two mugs – one big and red, and
one small and blue.

In the last two decades, research in response
generation has focused on techniques that gen-
erate response policies that optimize dialogue
completion, using Markov Decision Processes
(MDPs), e.g., (Singh et al., 2002; Lemon, 2011),
and Partially Observable MDPs (POMDPs), e.g.,
(Williams and Young, 2007; Gašić and Young,
2014). Recently, deep-learning algorithms have
been used to generate dialogue responses on the
basis of request-response pairs, e.g., (Li et al.,
2016; Prakash et al., 2016; Serban et al., 2017).
Human and simulation-based evaluations of MDP
and POMDP systems focus on dialogue com-
pletion, while evaluations of deep-learning algo-
rithms focus on individual responses.

In this paper, we draw inspiration from research
in Recommender Systems, where Amatriain et al.
(2009) and Said and Bellogín (2018) showed that
over time, users gave inconsistent ratings to items,
leading to the “magic barrier” to prediction ac-
curacy in Recommender Systems (Said and Bel-
logín, 2018). This prompted us to posit that people
may also be inconsistent when assessing responses
in a dialogue at different times, which may affect
the results of human evaluations.

To investigate this claim, we conducted a longi-
tudinal study in the context of an SDS for a house-
hold robot. We first collected a corpus of spo-
ken requests that asked a robot to fetch or move
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objects in a room. Our participants were shown
the top ASR outputs for these requests (the in-
tention was to replicate the information available
to an SDS, without the extra information people
can glean from what they hear). They were also
told that these requests had to be executed under
two risk conditions: low risk, where the conse-
quences of performing the wrong action are trivial,
and high risk, where performing the wrong action
could significantly inconvenience the speaker. The
participants had to choose among four response
types: DO the request without further interaction,
CONFIRM the intended object, ask the requester to
CHOOSE between a few candidate objects, or ask
the requester to REPHRASE all or part of the re-
quest. After 1.5-2 years, the same participants
were shown the original requests and ASR out-
puts, and were asked to rate responses generated
from their previously selected response types and
from other sources, in particular response types
selected by one of the authors and by a classifier
trained on the author’s chosen response types.

Our findings show that (1) participants down-
rated responses sourced from their previously cho-
sen response types; and (2) these responses were
liked as much as different responses sourced from
the response types selected by one of the authors
or by the above-mentioned classifier. The first re-
sult indicates that, at least in the context of one-
shot dialogues with an SDS for a household robot,
people’s preferred response types at a particular
point in time may not reflect their general atti-
tudes. The second result suggests that, instead
of one best response type, several reasonable re-
sponse types may be acceptable, including those
selected by a classifier trained on a non-target but
relevant corpus.

We also investigated the influence of situational
risk on the acceptability of response types. We
found that (3) as expected, under the high-risk
condition, the preferred response types were gen-
erally more conservative than under the low-risk
condition; but (4) surprisingly, participants’ atti-
tudes toward certain response types, e.g., CONFIRM,
were not affected by risk.

The rest of this paper is organized as follows.
In the next section, we discuss related work. Our
experimental setup is described in Section 3. In
Section 4, we present our classifier and the fea-
tures used to train it. The results of our experi-
ment are described in Section 5, and concluding
remarks appear in Section 6.

2 Related Work
Decision-theoretic approaches have been the ac-
cepted standard for response generation in di-
alogue systems for some time (Carlson, 1983).
These approaches were initially implemented in
SDSs as Bayesian reasoning processes that opti-
mize a system’s confidence when making myopic
(one-shot) decisions regarding dialogue acts (Paek
and Horvitz, 2000; Sugiura et al., 2009), and as
Dynamic Decision Networks that make decisions
about dialogue acts over time (Horvitz et al., 2003;
Liao et al., 2006).

MDPs (Singh et al., 2002; Lemon, 2011),
POMDPs (Williams and Young, 2007; Gašić and
Young, 2014), and their extensions Hidden Infor-
mation State Model (Young et al., 2010, 2013)
and Conversational Entity Dialogue Model (Ultes
et al., 2018) were used, often in combination with
Reinforcement Learning (RL), to learn policies
that optimize dialogue completion on the basis of
feedback given by real or simulated users.

Recently, deep learning has been applied to var-
ious aspects of SDSs (Wen et al., 2015; Li et al.,
2016; Mrkšic et al., 2017; Prakash et al., 2016;
Serban et al., 2017; Tseng et al., 2018; Yang et al.,
2017). Wen et al. (2015) and Tseng et al. (2018)
considered the generation of linguistically varied
responses; Li et al. (2016) and Prakash et al.
(2016) produced dialogue contributions of chat-
bots; and Serban et al. (2017) generated help-
desk responses and Twitter follow-up statements.
Mrkšic et al. (2017) proposed a dialogue-state
tracking framework, and Yang et al. (2017) a
mechanism for slot tagging and user-intent and
system-action prediction in slot-filling applica-
tions. A combination of deep learning and RL
has been used in end-to-end dialogue systems that
query a knowledge-base, where user utterances are
mapped to a clarification question or a knowledge-
base query (Williams and Zweig, 2016; Zhao and
Eskenazi, 2016; Dhingra et al., 2017). All these
systems harness large corpora comprising request-
response pairs to learn responses that are assumed
to be better than alternative options.

Like evaluations based on simulated users, hu-
man evaluations of (PO)MDP/RL systems focus
on successful dialogue completion (Singh et al.,
2002; Thomson et al., 2008; Young et al., 2010),
while human evaluations of deep-learning systems
assess individual responses (Wen et al., 2015; Li
et al., 2016; Prakash et al., 2016; Serban et al.,
2017; Dhingra et al., 2017).
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(a) Positional relations in a room (b) Colour, size and positional relations on a table

(c) Projective and positional relations on a table (d) Colour, size and positional relations in a room

Figure 1: Household scenes used in our study

The findings reported in this paper contribute
to (PO)MDP/RL research by determining whether
there are factors other than dialogue completion
that affect the suitability of responses, and to deep-
learning research by ascertaining whether indeed
there is a single best response to each request.

The research described in (Jurčíček et al., 2011)
and (Liu et al., 2016) shed light on ancillary as-
pects of human evaluations of system responses.
The former compared evaluations by Amazon Me-
chanical Turk workers with evaluations by partici-
pants recruited for a lab experiment; and the latter
conducted user studies to determine the validity of
word-based evaluation metrics.

This paper also addresses ancillary aspects of
human response evaluations, viz the influence
of temporal displacement and situational risk on
users’ attitudes toward response types, and users’
opinions of response types obtained from different
sources (including a classifier trained on a corpus
that differs from the target corpus).

3 Experimental Setup
Our experiment comprises two main stages: (1) re-
sponding to requests, and (2) rating responses to
the same requests.

Creating a corpus of requests
We created a corpus of requests by collecting

a corpus of spoken descriptions, and converting
them to requests.

To collect the spoken descriptions, we repli-
cated the experiment described in (Zukerman
et al., 2015), but we used the Google ASR, instead
of the Microsoft Speech API. In our experiment,
the top-ranked outputs produced by this ASR had
a 13% word error rate, which resulted in 53% of
the descriptions having imperfect top-ranked ASR
outputs. In addition, 33% of the descriptions had
errors in all top four ASR outputs.

Following the protocol in (Zukerman et al.,
2015), 35 participants were asked to describe 12
designated objects (labeled A to L) in four scenes
(Figure 1); speakers were allowed to restate the de-
scription of an object up to two times. In total, we
recorded 478 descriptions such as the following:
“the flower on the table” (object A in Figure 1(a)),
“the plate inside the microwave” (object D in Fig-
ure 1(b)), “the plate at the center of the table” (ob-
ject G in Figure 1(c)), and “the large pink ball in
the middle of the room” (object J in Figure 1(d)).
20% of the descriptions had an unintelligible ob-
ject in all ASR outputs, e.g., “the Heartist under
the table”, 17.9% were ambiguous (several objects
matched the description), and only 3.8% were in-
accurate (no object matched the description per-
fectly).
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We retained 292 descriptions,3 and for each de-
scription, we used the top four ASR outputs. The
corpus of requests, denoted RequestCorpus, was
created by prefixing the verb “get” (for small ob-
jects) or “move” (for large objects) to each ASR
output (which remained unchanged), e.g., “get the
flower on the table”. This corpus was divided into
sets of at most 12 requests (one request per object,
mostly from one speaker).

Demographic and risk-propensity information
We gathered information about the partici-
pants’ gender, English nativeness, age, educa-
tion and risk propensity. For the last item, we
showed the participants twelve statements ob-
tained from (Rohrmann, 2005): six risk-proneness
statements, e.g., “I follow the motto ‘nothing
ventured, nothing gained’ ”, and six risk-aversion
statements, e.g., “My decisions are always made
carefully and accurately”; (dis)agreement was in-
dicated on a 1-5 Likert scale. The hope was that
these information items would assist in predicting
participants’ responses.

Stage 1 – Responding to requests
This corpus was collected through an online sur-
vey where participants had to indicate how they
would respond to potentially misheard requests.
Each participant was shown at most 12 requests
from RequestCorpus (spoken by other people).
Each request consisted of four verb-prefixed ASR
outputs, and was accompanied by a version of the
appropriate image in Figure 1 where the objects
were numbered (to enable participants to identify
any object as the referent). Each participant was
then asked to select one of four response types for
each request: DO, CONFIRM, CHOOSE or REPHRASE.
Figure 3 in Appendix A displays a screenshot con-
taining a numbered version of Figure 1(a), four
ASR outputs for a request for object #5 (labeled
B in Figure 1(a)), and the four response types.

Prior to presenting the survey questions, partici-
pants were given a training example containing the
descriptions shown below in italics:

DO: Fetch object # [This response is suitable
if you are sure which object you should get].
Here participants were asked to enter the num-
ber of the object they would get or move.

3186 descriptions were removed as follows: 20 and 45
descriptions that were not tagged by Stage 1 and Stage 2 par-
ticipants respectively, 59 descriptions that could not be pro-
cessed by the SLU system, and 62 descriptions that had more
than one prepositional phrase (to simplify the dataset used to
train our classifier, Section 4).

CONFIRM: Ask: Did you mean object #? [This
response is suitable if you feel the need to con-
firm the requested object before taking action].
Here too participants were asked to enter the
number of the object they were confirming.

CHOOSE: Ask: Which object did you mean? [This
response is suitable when you are hesitating
between several objects]. In this case, partic-
ipants were asked to enter the numbers corre-
sponding to their candidate objects.

REPHRASE: Ask: Please rephrase your request.
[This response is suitable when a request is so
garbled you can’t understand it].4

These choices were made under two risk condi-
tions: low risk – where participants were told that
the requested object must be delivered to some-
one in the same room; and high risk – where they
were told that the object must be delivered to a
remote location (Figure 3). These settings were
designed to discriminate between situations where
mistakes are fairly inconsequential and situations
where mistakes are costly.

40 people took part in this stage of the exper-
iment, but six dropped out after this stage. Half
of the remaining participants were male, and 18
were native English speakers. 4 participants were
between 18-24 years of age, 16 between 25-34
years of age, 7 between 35-44, and 7 over 45.
In terms of education, 5 participants had a sec-
ondary education, 16 had a Bachelor, 8 a Mas-
ters, and 5 a PhD. To assess the participants’ risk
propensity, we subtracted their total risk-aversion
score from their total risk-proneness score (the to-
tal risk-aversion/proneness score was calculated
by adding up the Likert score of the six risk-
aversion/proneness statements): 16 participants
were risk prone, 8 were risk averse, and 10 were
fairly neutral (the difference between the scores
was less than 3).

In total, this corpus, denoted ResponseCorpus,
contains 584 response types (= 292 requests ×
2 conditions), which are distributed as shown in
Columns 2 and 3 of Table 1.

To determine the influence of speaker diversity
on classifier performance (Section 4), we created a
second corpus, denoted AuthorCorpus, where one
of the authors selected response types for all the

4As seen in Figure 3, this response type comprised three
options: REPHRASE OBJECT, REPHRASE POSITION and
REPHRASE ALL. But we merged them into just REPHRASE
owing to their low frequency in the dataset (Table 1).
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ResponseCorpus AuthorCorpus
Response Low High Low High

type risk risk risk risk
DO 61.3% 45.5% 56.2% 50.3%
CONFIRM 8.9% 17.8% 14.4% 20.2%
CHOOSE 20.2% 23.3% 22.9% 22.9%
REPHRASE 9.6% 13.4% 6.5% 6.5%

Table 1: Response type distribution under high- and
low-risk conditions

requests. The distribution of their response types
appears in Columns 4 and 5 of Table 1.

Stage 2 – Rating responses to the same requests
After 1.5-2 years, we were able to reach 34 par-
ticipants from Stage 1, and we built RatingsCor-
pus as follows. Each participant was shown the
requests they had seen before (without alerting
them to this fact) together with several candidate
responses. They were then asked to rate the suit-
ability of each response on a 1-5 Likert scale under
the low- and high-risk conditions.

The candidate responses were sourced from
the response types chosen by the participant (Re-
sponseCorpus) and the author (AuthorCorpus) in
Stage 1, and the response types returned by a clas-
sifier trained on AuthorCorpus (Section 4).5 In
addition, for every DO response from Stage 1, we
also presented a CONFIRM response in Stage 2, and
vice versa. Clearly, if more than one source had
the same response type for a request, this response
type was presented only once in Stage 2. Figure 4
in Appendix A displays a screenshot of Stage 2
survey questions regarding the same request as
that in Figure 3, presented to the same participant.

Two Stage 2 responses, viz DO and REPHRASE,
are direct renditions of the corresponding Stage 1
response types. However, to enable participants
to rate CONFIRM and CHOOSE response types, we
needed to refer to specific objects. We decided
to use images to mimic pointing in CONFIRM re-
sponses (e.g., “Do you want this [PICTURE]?”) and
in CHOOSE responses with two or three candidate
objects (e.g., “There are two things on the table, do
you want this [PICTURE 1] or that [PICTURE 2]?”).
We restricted the number of CHOOSE responses
with images because we deemed it unnatural to

5We chose this classifier as it posts high accuracy when
trained with limited data, while at the same time, represent-
ing a “worst case” for ResponseCorpus, as it was trained on
a different corpus (the difference between the corpora is sta-
tistically significant, χ2 with p-value < 0.05).

1 Is there an ASR output with all correct words?
2 % of wrong words in the top ASR output
3 % of wrong words in all ASR outputs
4 % of ASR outputs with all correct words

Table 2: Features that reflect the ASR’s confidence

point to more than three things.6 In addition, all
CHOOSE responses were realized as text only, e.g.,
“There are two things on the table, which one do
you want?”. That is, there were two CHOOSE re-
sponses with two or three candidate objects, and
one CHOOSE response with more candidate objects.
Figure 4 illustrates two CHOOSE responses, a CON-
FIRM response and a DO response.

4 Using a Classifier to Select Responses
One of the aims of this project is to determine
whether we can generate acceptable responses us-
ing a classifier trained on a small non-target but
relevant corpus. As noted in Section 3, in order
to simplify the classifier, we removed descriptions
with more than one prepositional phrase. Hence,
most descriptions have semantic segments corre-
sponding to an OBJECT, a POSITION SPECIFIER and a
LANDMARK (only 22 (7.5%) descriptions have no
prepositional phrase, e.g., “the big pink ball”).

4.1 Classification features
To extract features of interest, we assume an SLU
system that returns several ranked interpretations,
and can represent (a) the ASR’s confidence in the
correctness of its candidate outputs, and (b) how
well an interpretation (in the context of the room)
matches a given description.

We employed the output of the SLU system de-
scribed in (Zukerman et al., 2015), and for each
description, we automatically extracted features
that represent the above two types of information.
We also included information about situational
risk (high or low); and for ResponseCorpus, we
added the participants’ demographic characteris-
tics gender, English nativeness, age and education,
and the difference between their risk-proneness
and risk-aversion scores (Section 3).

Features that reflect the ASR’s confidence. These
features are shown in Table 2. They reflect the
ASR’s “opinion” of the correctness of its output,
rather than the ground truth. The last feature is
noteworthy because the ASR may have high con-
fidence in a few ASR outputs, e.g., “the flower on

6Only 10 (7.9%) CHOOSE responses under both risk con-
ditions had more than three candidate objects.
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1 # of interpretations with similar total match score to that of the top-ranked interpretation (×1)
2 How well the relative position of OBJECT and LANDMARK in an interpretation matches (×10)

the position specified in the description
3 Lexical-match score of the OBJECT, LANDMARK and POSITION SPECIFIER in an interpretation (×30)

with the corresponding semantic segment in the description
4-6 Other match scores of each OBJECT and LANDMARK in an interpretation with the

corresponding semantic segment in the description
4 Colour match score (×20)
5 Size match score (×20)
6 # of Unknown modifiers (×20)

Table 3: Features extracted from top-10 SLU system interpretations

the table” and “the flour on the table”, even if only
one is intended by the speaker.

Features that represent how well an interpreta-
tion matches a description. These features are
summarized in Table 3. They are calculated for
the top-N interpretations returned by the SLU sys-
tem, where N = 10 (in this system, the correct in-
terpretation is among the top ten in about 90% of
the cases). The scores calculated by the SLU sys-
tem for these features are combined into a total
match score for each interpretation, which deter-
mines its ranking. For instance, given the descrip-
tion “the brown stool near the table”, two stools in
Figure 1(d) have a high total match score, as both
are brown and near the table: the stool to the right
of the table and stool L, which is to the left of the
table. However, since the former stool is closer to
the table, it has a slightly higher total score, and is
ranked first, while stool L is ranked second.

The first feature in Table 3 represents the am-
biguity of a description through the similarity be-
tween the total match score of the top-ranked in-
terpretation and that of subsequent interpretations.
We encode this similarity as the ratio between the
total score of the i-th interpretation (i = 1, . . . , N )
and the total score of the top-ranked interpreta-
tion. All the interpretations whose ratio is above
an empirically-derived threshold are deemed sim-
ilar to the top-ranked interpretation.

The second feature, computed for each of the
top-N interpretations, represents the goodness of
the match between the position of the OBJECT in
the interpretation (i.e., in the room) and its re-
quested position in the description. For example,
both stools in Figure 1(d) are near the table, but
the position match score of the stool to the right of
the table is higher than that of stool L.

The rest of Table 3 contains features that rep-
resent the quality of the match between individ-

ual elements in an interpretation and their corre-
sponding semantic segments in the given descrip-
tion. Feature #3 represents how well the canonical
name of each element in an interpretation matches
the corresponding lexical item in the description.
For instance, the terms “stool” and “table” re-
spectively match perfectly the terms that designate
stool L and the yellow table in Figure 1(d). How-
ever, if the speaker had said “ottoman”, the lexical
match with the canonical term for stool L would
have been poorer.

Features #4-6 pertain to intrinsic attributes of
things, which are normally stated as noun modi-
fiers in a description. They are computed for the
OBJECT and LANDMARK of each of the top-N inter-
pretations. Following Zukerman et al. (2015), we
have focused on colour and size modifiers, desig-
nating other modifiers, e.g., composition or shape,
as Unknown. Features #4 and #5 respectively re-
flect the goodness of a match between the color
and size of an OBJECT or LANDMARK in an inter-
pretation and the colour and size specifications in
the corresponding semantic segment in the given
description. For example, a request for a “brown
stool” in the context of Figure 1(d) returns a high
colour match with stool L, while a request for a
“blue stool” would return a low colour match. Fi-
nally, the match score for Feature #6, which per-
tains to Unknowns, e.g., “the plastic stool”, re-
flects the badness of a match.

4.2 Classifying responses
We considered several classification algorithms to
learn response types from the corpora collected
in Stage 1 of our experiment (Section 3):7 Naïve
Bayes, Support Vector Machines, Decision Trees,
Random Forest (RF) and Recurrent Neural Nets

7We tried over- and under-sampling to deal with the large
majority class (DO, Table 1), and applied Principal Compo-
nents Analysis to reduce the number of features, but these
measures did not affect classifier performance.
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Response ResponseCorpus + AuthorCorpus
type Gender & English +

RiskPronenessDiff
Precision Recall Precision Recall

DO 0.77 0.83 0.945 0.945
CONFIRM 0.44 0.41 0.842 0.842
CHOOSE 0.77 0.72 0.985 0.985
REPHRASE 0.70 0.55 1.00 1.00
Accuracy 0.72 0.94

Table 4: Per-class and overall classifier performance

(RNNs). RF yielded the best performance for
both ResponseCorpus and AuthorCorpus (RNNs
under-performed, as there were not enough data).

Table 4 displays the per-class and overall per-
formance of the RF classifier with 10-fold cross
validation for both corpora. As seen in Table 4, RF
performed much better for AuthorCorpus than for
ResponseCorpus. This is attributable to the con-
sistency of the 584 ratings provided by one per-
son in AuthorCorpus, compared to the variabil-
ity among participants in ResponseCorpus (differ-
ent participants selected different responses for re-
quests that had the same features).

The demographic features gender and En-
glish nativeness and the difference between risk-
proneness and risk-aversion scores mitigated the
impact of speaker diversity in ResponseCorpus
(age and education had no effect). In addition, sit-
uational risk had some influence on classification
results in ResponseCorpus. This is consistent with
the observation that the vast majority of the dif-
ferences between the low- and high-risk condition
were due to changes from DO to more conservative
response types, in particular CONFIRM (represented
in Columns 2 and 3 in Table 1). Despite this, most
of the misclassifications were also between DO and
CONFIRM.

Although the performance of the RF classifier
on ResponseCorpus is disappointing, this result is
tangential to the main thrust of this paper. In Sec-
tion 5, we examine participants’ attitudes toward
responses obtained from the RF classifier trained
on AuthorCorpus (which is significantly different
from ResponseCorpus, Section 3).

5 Results
The main objective of our experiment is to de-
termine whether participants’ attitudes toward re-
sponses remain consistent over time. That is, how
well do participants like their own previous re-
sponses? And do they prefer them to other re-

sponses? As mentioned in Section 3, these other
responses were sourced from the response types in
AuthorCorpus and the response types chosen by
the RF classifier trained on AuthorCorpus.

In addition, we sought to gain insights about the
feasibility of using a classifier trained on the re-
sponses of one person, and to determine the in-
fluence of situational risk on people’s attitudes to-
ward response types.

Hypotheses pertaining to fewer than 200 sam-
ples were tested using Wilcoxon matched-pairs
signed-rank test, and for more than 200 sam-
ples, we used the Normal approximation of this
test (Siegel and Castellan, 1988).

How well do people like their previously selected
response types? In order to answer this question,
we had to address the following issues:
1. In Stage 1, participants selected a response

type for each request, while in Stage 2, they
rated responses. To compare Stage 1 selections
to Stage 2 ratings, we ascribed ratings to the
response types selected in Stage 1. In order
to account for participants’ rating bias, we as-
signed to each response type selected by a par-
ticipant in Stage 1 the highest rating this partic-
ipant gave to any response in Stage 2 (87% of
these highest ratings were 5 – the maximum on
the Likert Scale, Section 3).

2. In Stage 2, we offered two options for CHOOSE

response types with two or three candidate ob-
jects: CHOOSE+pictures and CHOOSE+text (Sec-
tion 3). For each description, we assigned to a
Stage 2 CHOOSE response type the maximum of
the ratings of the two options.

We tested the hypothesis that participants’
Stage 1 response types yield highly rated re-
sponses in Stage 2 under both risk conditions.
The result of this test was that participants’
Stage 2 ratings of responses sourced from their
own Stage 1 response types were significantly
lower than the ratings ascribed to these Stage 1
response types under the low- and high-risk con-
ditions (p-value� 0.01).

Figure 2 displays a histogram of the differences
between the ratings ascribed to Stage 1 response
types and the ratings given to the corresponding
responses in Stage 2 under both risk conditions.
For example, the leftmost bars indicate that the
ratings of 159 response types under the low-risk
condition and 123 response types under the high-
risk condition did not change between Stage 1 and
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Figure 2: Differences between ratings ascribed to
Stage 1 response types and ratings of the corresponding
Stage 2 responses under low- and high-risk conditions

Stage 2 (the difference is 0). In other words, par-
ticipants lowered their ratings of 133 response
types under the low-risk condition and 169 re-
sponse types under the high-risk condition. DO

(majority class) accounts for 71% of these down-
rated response types under the low-risk condition,
and 60% under the high-risk condition.

Do users prefer their previously selected re-
sponse types to other response types? To answer
this question, for each risk condition, we collected
the participants’ Stage 1 response types that differ
from those in AuthorCorpus for the same request,
and their response types that differ from those cho-
sen by the RF classifier trained on AuthorCorpus.

Table 5 compares participants’ ratings of re-
sponses (RS1) sourced from their Stage 1 response
types (S1) with their ratings of responses (Rd)
sourced from different response types (d) selected
by the RF classifier for the same requests under
the low- and high-risk conditions. In total, 107 re-
sponse types chosen by the classifier differ from
the participants’ selected response types under the
low-risk condition, and 126 under the high-risk
condition. In 47 of the low-risk cases and 46 of
the high-risk cases, the responses sourced from the
classifier’s response types received a higher rat-
ing than the responses sourced from the partici-
pants’ own response types (the results are similar
for AuthorCorpus). Table 6 illustrates two of these
low-risk cases, and two of these high-risk cases.
For instance, in the high-risk example pertaining
to Figure 1(a), the participant chose REPHRASE in
Stage 1, but gave it a rating of 1 in Stage 2, while
CONFIRM received a rating of 5.

As seen in Table 5, under the low-risk condi-
tion, participants generally preferred the responses
sourced from the classifier response types, while
the opposite effect was observed under the high-

Users’ Stage 1 response type (S1) Low High
versus a different response type (d) risk risk
Rating(RS1) > Rating(Rd) 32 55
Rating(RS1) = Rating(Rd) 28 25
Rating(RS1) < Rating(Rd) 47 46
# of requests where S1 6= d 107 126

Table 5: Comparison between participants’ ratings of
responses sourced from their Stage 1 response types
and responses sourced from different classifier-selected
response types

risk condition (these findings are corroborated by
the results in Table 7). Nonetheless, when we
tested the hypothesis that participants liked re-
sponses sourced from their own previous response
types as much as responses sourced from differ-
ent response types in AuthorCorpus and different
response types chosen by the classifier, both tests
returned the same result: there were no statisti-
cally significant differences between users’ rat-
ings of responses sourced from their own Stage 1
response types and their ratings of responses
sourced from different response types under the
low- and high-risk conditions (p-value > 0.15).

How does situational risk affect participants’ at-
titudes toward different response types? As seen
in Table 1, the proportion of DOs in ResponseCor-
pus decreased under the high-risk condition, while
the proportion of the other response types in-
creased (the difference between the low- and high-
risk response types is statistically significant, χ2

with p-value � 0.01). This indicates that par-
ticipants preferred more conservative (risk-averse)
response types under the high-risk condition.

Figure 2 suggests that participants were also
more critical of their own previous response types
under the high-risk condition than under the low-
risk condition (they reduced the ratings of 169 re-
sponse types under the high-risk condition com-
pared to only 133 under the low-risk condition).
This observation is confirmed by the mean ratings
of the Stage 2 responses in our corpora under the
low- and high-risk conditions, which are shown in
Table 7 for the responses sourced from Respon-
seCorpus and the responses obtained from the RF
classifier (the AuthorCorpus results are similar).

In addition, the ratings of DO and of both ver-
sions of CHOOSE were significantly lower under the
high-risk condition than under the low-risk con-
dition (p-value� 0.01 for DO and CHOOSE+text,
and p-value < 0.05 for CHOOSE+pictures). In con-
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Top four ASR outputs

a. get the paint on the wall
b. get the paint on the walls
c. get the paint on the world
d. get the painting on the wall

a. get the green light next to the blue plate
b. get the green light next to the Blue Plate
c. get the green light next to the blue planet
d. get the green light next to the blue plates

Figure, requested object 1(a), C 1(b), E
Situational risk High High
Stage 1 response type REPHRASE (rating: 1) CHOOSE (rating: 1)
Stage 2 preferred response type CONFIRM (rating: 5) CONFIRM (rating: 5)

Top four ASR outputs

a. move the green book rack
b. move the Greene book rack
c. move the Green Book rack
d. move the green book RAC

a. get the blue light on the left corner of the table
b. get the blue plate on the left corner of the table
c. get the bloop light on the left corner of the table
d. get the Blue Planet on the left corner of the table

Figure, requested object 1(d), K 1(c), H
Situational risk Low Low
Stage 1 response type DO (rating: 1) CHOOSE (rating: 3)
Stage 2 preferred response type CONFIRM (rating: 4) DO (rating: 5)

Table 6: Examples where users gave lower ratings in Stage 2 to responses sourced from their selected Stage 1
response types than to responses sourced from different response types chosen by the RF classifier; the correct
ASR output is italicized

ResponseCorpus RF Classifier
Low risk High risk Low risk High risk

3.99 (1.31) 3.59 (1.49) 4.09 (1.29) 3.54 (1.49)

Table 7: Mean (Stdev) of response ratings under low-
and high-risk conditions

trast, no statistically significant differences were
found with respect to CONFIRM and REPHRASE un-
der the two risk conditions. Also, participants
preferred CONFIRM to DO and CHOOSE+pictures
to CHOOSE+text under both risk conditions
(p-value� 0.01).

These findings suggest that situational risk
influences the acceptability of certain response
types, but further research is required to identify
these response types in a broader context.

6 Conclusion
We have offered a longitudinal study where par-
ticipants initially selected response types for ASR
outputs of spoken requests; and after some time,
they rated responses sourced from their own re-
sponse types, as well as responses sourced from
other response types. Our results show that
the participants did not think that their original
choices were the best, and that overall, they had
the same opinion of responses sourced from their
own response types, the response types chosen by
one of the authors and those selected by a classifier
trained on the response types of the author. These
findings suggest that, at least in the context of one-
shot dialogues with a household robot, people’s
response preferences at a particular point in time
may not reflect their general attitudes, and that var-

ious reasonable responses may be equally accept-
able. Our results also indicate that, at least in this
context, a classifier trained on a small non-target
but relevant corpus may yield adequate responses.

Our experiment also distinguished between two
types of situational risk: low and high. We found
that risk influences people’s general attitudes to-
ward responses — they were more risk averse
and critical under high-risk conditions than un-
der low-risk conditions. However, this attitude
was directed toward some response types (DO and
CHOOSE) and not others (CONFIRM and REPHRASE).
This finding, if generalized, may influence re-
sponse type selection.

The implications of our findings for deep-
learning systems are that training on a single best
response may be unjustified, as several responses
are equally acceptable. Further studies are re-
quired to determine whether our findings gener-
alize to longer dialogues in more complex do-
mains. If this is the case, (PO)MDP/RL systems
do not need to take into account people’s prefer-
ences when generating a response. However, if
extra-linguistic factors such as risk come into play,
they should be incorporated into policy-learning
algorithms to bias response selection in favour of
risk-sensitive responses preferred by people. Fi-
nally, our findings regarding rating inconsistency
over time may affect the results of comparative
studies, such as that of Liu et al. (2016).
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M. Gašić and S.J. Young. 2014. Gaussian processes
for POMDP-based dialogue manager optimization.
IEEE/ACM Transactions on Audio, Speech & Lan-
guage Processing, 22(1):28–40.

E. Horvitz, C. Kadie, T. Paek, and D. Hovel. 2003.
Models of attention in computing and communica-
tion: From principles to applications. Communica-
tions of the ACM, 46(3):52–57.
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B. Thomson, M. Gašić, S. Keizer, F. Mairesse,
J. Schatzmann, K. Yu, and S. Young. 2008. User
study of the Bayesian update of dialogue state ap-
proach to dialogue management. In Proceedings of
Interspeech 2008, pages 483–486, Brisbane, Aus-
tralia.

316



J.G. Trafton, N.L. Cassimatis, M.D. Bugajska, D.P.
Brock, F.E. Mintz, and A.C. Schultz. 2005.
Enabling effective human-robot interaction using
perspective-taking in robots. IEEE Transactions on
Systems, Man and Cybernetics – Part A: Systems
and Humans, 35(4):460–470.

B-H. Tseng, F. Kreyssig, P. Budzianowski,
I. Casanueva, Y-C. Wu, S. Ultes, and M. Gašić.
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A Screenshots for Stage 1 and Stage 2

Figure 3: Screenshot for Stage 1
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Figure 4: Screenshot for Stage 2
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Abstract

The main aim of this paper is to provide a char-
acterization of the response space for ques-
tions using a taxonomy grounded in a dia-
logical formal semantics. As a starting point
we take the typology for responses in the
form of questions provided in (Łupkowski and
Ginzburg, 2016). This work develops a wide
coverage taxonomy for question/question se-
quences observable in corpora including the
BNC, CHILDES, and BEE, as well as formal
modelling of all the postulated classes. Our
aim is to extend this work to cover all re-
sponses to questions. We present the extended
typology of responses to questions based on
a corpus studies of BNC, BEE and Map-
task with include 506, 262, and 467 ques-
tion/response pairs respectively. We compare
the data for English with data from Polish us-
ing the Spokes corpus (205 question/response
pairs). We discuss annotation reliability and
disagreement analysis. We sketch how each
class can be formalized using a dialogical se-
mantics appropriate for dialogue management.

1 Introduction

There are various theories of what questions
are (Groenendijk and Stokhof, 1997; Wiśniewski,
2015), and several computational theories of dia-
logue (Poesio and Rieser, 2010; Asher and Las-
carides, 2003; Ginzburg, 2012), but no attempt
yet at a comprehensive characterization of the re-
sponse space of queries.

This task, nonetheless, is of considerable theo-
retical and practical importance: it is an important
ingredient in the design of dialogue systems, spo-
ken or text–based; it provides benchmarks for dia-
logue/question theories, and of course is a compo-
nent in explicating intelligence to pass the Turing
test (Turing, 1950).

(Łupkowski and Ginzburg, 2013, 2016) tackled
one part of this problem, offering an empirical and
theoretical characterization of the range of query

responses to a query. Based on a detailed analy-
sis of the British National Corpus and three other
corpora, two task–oriented (BEE (Rosé et al.,
1999) and AmEx (Kowtko and Price, 1989)) and
a sample from CHILDES (MacWhinney, 2000),
they identified 7 classes of questions that a given
query gives rise to; we refer to these classes as
the L(upkowski)G(inzburg) classes of question re-
sponses.1 We take their work as a starting point
and make the following hypothesis:

(1) Main hypothesis: responses drawn from
or concerning the LG classes plus direct
and indirect answerhood exhaust the re-
sponse space of a query.

Specifically this amounts to the following gen-
eral types of responses (we present the detailed
taxonomy in section 3).

1. Question–Specific:
(a) Answerhood;
(b) Dependent queries (A: Who should we

invite? B: Who is in town?);
2. Clarification Requests.
3. Evasion responses:

(a) Ignore (address the situation, but not the
question);

(b) Change the topic (‘Answer my ques-
tion’);

(c) Motive (‘Why do you ask?’);
(d) IDK (‘I don’t know’);

1The study sample consisted of 1,466 query/query re-
sponse pairs. As an outcome the following query responses
(q-responses) taxonomy was obtained: (1) CR: clarification
requests; (2) DP: dependent questions, i.e. cases where the
answer to the initial question depends on the answer to a
q-response; (3) MOTIV: questions about an underlying mo-
tivation behind asking the initial question; (4) NO ANSW:
questions aimed at avoiding answering the initial question;
(5) FORM: questions considering the way of answering the
initial question; (6) QA: questions with a presupposed an-
swer, (7) IGNORE: responses ignoring the initial question—
for more details see (Łupkowski and Ginzburg, 2016, p. 355).
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(e) Difficult to provide a response.

The hypothesis has to be understood
relationally—one is not really interested in
the extension of the semantic entities (primarily
propositions and questions) that can be given as
responses. Rather, as exemplified in (2), one is
interested in the class each such entity is classified
as since that is what determines the subsequent
contextual evolution.

(2) I do not want to talk about that question.
(Direct answer to what do you not want to
do? Evasion answer to Where were you
last night?).

We provide a brief discussion of the existing lit-
erature in section 2. Following this, we provide
a description of the proposed taxonomy, in sec-
tion 3. We then set out to test our main hypothesis
in an initial study, using three corpora in English
(BNC, BEE, MapTask) and one corpus in Polish
(Spokes (Pezik, 2015)). By and large, the hypoth-
esis achieves wide coverage, as we discuss in sec-
tion 5. We sketch an account of how the different
classes can be characterized, taking a fairly gen-
eral perspective and building on the initial char-
acterization of (Łupkowski and Ginzburg, 2016)
while drawing some metatheoretical conclusions.
Finally, section 8 offers a variety of extensions we
plan to undertake.

2 Related work

Berninger and Garvey (1981) introduce their rich
taxonomy of possible replies for children conver-
sation in a nursery school. The taxonomy cov-
ers six categories, categories that are co–extensive
with the ones mentioned in the introduction to this
paper, though no semantic explication or interan-
notator study is offered: (i) Indirect answers. (ii)
Confessions of ignorance. (iii) Clarification ques-
tions. (iv) Evasive replies. (v) Miscellaneous.

An extensive 10-language comparative project
on question/response sequences in ordinary con-
versation was carried out from 2007 as the part
of the Multimodal Interaction Project at the Max
Planck Institute for Psycholinguistics (Stivers
et al., 2010). The coding scheme for the response
types covered categories of Non-response, Non-
answer response, Answer, and Can’t determine
(Stivers and Enfield, 2010, p. 2624).

The results were 76% answer responses, 19%
non-answers, and 5% non-responses. (Stivers,

Question response

Answer

DA IA

Non-answer

Question

CR
COR
DP
FORM
IND
MOTIV
CHT
IGNORE

Declarative

ACK
IDK
DPR
CHT
IGNORE

Figure 1: Response space of questions

2010, p. 2778) Interestingly, (Yoon, 2010) reports
results for Korean which though indicative of a
similar pattern (Answer > Non-Answer > Non-
response) indicate a markedly different distribu-
tion: of the sample of 326 questions-responses,
52% were answers, 33% non-answers and 15%
non-responses (Yoon, 2010, p. 2790). It is worth
stressing that the question sample was limited
to questions that functionally sought informa-
tion, confirmation or agreement see (Yoon, 2010,
p. 2783).

The work discussed in this section indicate the
need for a wider corpus study of the whole spec-
trum of answers to questions.2 The studies dis-
cussed are limited in terms of analyzed examples.
They also imposed certain limitations in terms of
numbers of response categories to be identified—
they were mainly aimed at understanding the
answer/non-answer difference. An extensive cor-
pus study is needed for a fine grained characteriza-
tion of the response space of questions. Moreover,
we aim at providing an explicit dialogical seman-
tics for each category of our corpus-based typol-
ogy.

3 A taxonomy of responses to queries

We start with the most general division of ques-
tion responses to answers and non-answers as dis-
cussed in the previous section. In the answer class
we distinguish direct and indirect answers—see
figure 1.

2For a detailed review of the literature on query responses,
see (Łupkowski and Ginzburg, 2016),pp. 245-49, which dis-
cusses work from the question generation literature, in par-
ticular (Graesser et al., 1992).
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Direct answers (DA) are (i) either sentential
and denote propositions that are answers or (ii) are
non-sentential and convey an answer as their con-
tent.3 This is clearly visible in the following
example—B is providing information required by
A:

(3) A: Who is going to check that?

B: Well I can check it.

Indirect answers (IA) involve an inference of
an answer from the utterance, as in (4):4

(4) A: What is it?

A: What’s he done?

B: Ehm, you know what I’ve said
before.

Here A has to infer the answer to his/her ques-
tions from B’s suggestion that this issue has been
addressed before.

For the non-answer group the taxonomy
(mostly) reuses the classes proposed in (Łup-
kowski and Ginzburg, 2013, 2016) with some mi-
nor renaming.

Clarification questions (CR) address some-
thing that was not completely understood in initial
question (q1)5, like:

(5) A: Why are you in?

B: What?

Corrections (COR) are declarative counterparts of
CRs in that they assert rather than query about the
original speaker’s intended meaning. This is ex-
emplified in B’s answer in (6):

(6) A: what is it?

A: Something forty <unclear>.

A: UB forty?

B: WD forty.
3 For the direct answers category we allow for additional

sub-categories, which we return to discuss briefly in sec-
tion 7. These include: (1) no/yes answer to polar questions;
(2) simple answer to wh-questions; (3) partial polar answer;
(4) partial wh-question answer.

4As with the direct answers category, we have also used
the following sub-categories of indirect answers, but do not
elaborate on this here for reasons of space: (i) indirect
answer addressing wh-question; (2) q-widening IAs (over-
informative answer to a polar question, addressing a more
general wh-question).

5This class contains intended content queries, repetition
requests and relevance clarifications—for detailed discussion
see e.g. (Purver, 2006) or (Ginzburg, 2012).

A: WD.

Dependent questions (DP) constitute the case
where the answer to the initial question (q1) de-
pends on the answer to the query-response (q2),
as in:

(7) A: Do you want me to <pause>
push it round?

B: Is it really disturbing you?
[cf. Whether I want you to push it
around depends on whether it really
disturbs you.]

See more in section 7.1.
Question responses may also address that the

way the answer to q1 will be given depends on
the answer to q2 (FORM). This type of question
response differs from DP as the response concerns
only the form in which the answer to q1 will be
given (how it will be formulated). This may be no-
ticed in (8), where the way B answers A’s question
will be dictated by A’s answer to q2—whether or
not A wants to know details point by point.

(8) A: Okay then, Hannah, what, what
happened in your group?

B: Right, do you want me to go
through every point?

One also encounters q2, which is rhetorical and
in this sense does not need to be answered and in-
directly provides an answer to q1 (IND).

(9) A: Are you Gemini?

B: Well if I’m two days away from
your, what do you think?

As for evasive question-responses we have one
type which addresses the motivation underlying
asking q1 (MOTIV). Whether an answer to q1
will be provided depends on a satisfactory answer
to q2, as in the following example:

(10) A: What’s the matter?

B: Why?

Another type of evasive question-response
is change–the–topic (CHT). These are cases
wherein q2 enables the speaker to avoid answering
q1 while attempting to force the other speaker to
answer q2 first. Instead of answering q1, the agent
provides q2 and attempts to “turn the table” on the
original querier. The original querier is pressured
to answer q2 and put q1 aside.
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(11) A: Why is it recording me?

B: Well why not?

An IGNORE type of query-response appears
when q2 relates to the situation described by q1
but not directly to the initial question:

(12) A: I’ve got Mayfair <pause> Pic-
cadilly, Fleet Street and Regent
Street, but I never got a set did
I?

B: Mum, how much, how much do
you want for Fleet Street?

A and B are playing Monopoly. A asks a question,
which is ignored by B. It is not that B does not
wish to answer A’s question and therefore asks q2.
Rather, B ignores q1 and asks a question related
to the situation (in this case, the board game). See
also the following example:

(13) A: Just one car is it there?

B: Why is there no parking there?

If a question response is not an answer and it is a
declarative we consider the following cases. For a
start declarative responses can serve the same pur-
pose as ignoring query-response:

(14) a. A: So does that mean that the am-
meter is not part of the series,
just hooked up after to the tabs?

B: Let’s take a step back.

b. A: What have you been doing
Melvin? <laugh>

B: I ain’t talking cos you’ve got
that bloody thing on.

Acknowledgement (ACK)—a speaker ac-
knowledges that s(he) has heard the question, e.g.
mhm, aha etc.

(15) A: that’s about it innit?

B: Mm mm.

The speaker states that s(he) does not know the
answer (IDK).

(16) A: When’s the first consignment
of Scottish tapes?

B: Erm <pause> don’t know.

The speaker states that it is hard to provide an
answer (DPR), points at a different information
source, etc.

(17) A: Why?

B: I’m not exactly sure.

An utterance signalizes that speaker does not
want to answer, s(he) changes the topic, gives an
evasive answer (CHT).6

(18) A: What’s dolly’s name?

B: It’s raining.

4 Corpus data used for the study

In order to test our main hypothesis, we used cor-
pora from two languages, English and Polish.

4.1 English: BNC, BEE, MapTask
The data for English comes from the BNC, BEE,
and the MapTask corpora (Burnard, 2000; Rosé
et al., 1999; Anderson et al., 1991). 506 Q-R
turns were taken from the BNC, 256 Q-R turns
from BEE, and 467 Q-R turns from the MapTask.
In each case starting points where questions oc-
cur were chosen by randomly selecting turn num-
bers, and coding the subsequent questions in that
extract. Questions were turn units ending with a
‘?’; however, tag questions and turns with missing
text (the BNC’s ‘unclear’) were eliminated from
considerations. The BNC data covers mainly top-
ically unrestricted conversations. As for BEE and
MapTask dialogues are more task oriented—BEE
contains contains tutorial dialogues from electron-
ics courses and MapTask consists of dialogues
recorded for a direction–providing task.

4.2 Polish: the Spokes Corpus
The data used for this study was drawn from the
Spokes corpus (Pezik, 2015). The corpus currently
contains 247,580 utterances (2,319,291 words) in

6These can occur in text as well:

(i) So, in answer to the question: Is Jeremy Corbyn an
anti-Semite? My response would be that that’s the
wrong question. The right questions to ask are: Has he
facilitated and amplified expressions of anti-Semitism?
Has he been consistently reluctant to acknowledge
expressions of anti-Semitism unless they come from
white supremacists and neo-Nazis? Will his actions fa-
cilitate the institutionalisation of anti-Semitism among
other progressives? Sadly, my answer to all of these is
an unequivocal yes. (D Lipstadt, Antisemitism: Here
and Now)
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transcriptions of spontaneous conversations. For
the study four files were selected from the corpus
(10,244 words, 1,424 turns)7. Within each file the
question-response pairs (Q-R) were selected man-
ually. In total we obtained 205 Q-R pairs for the
study.

5 Results

For the annotation all the question-response pairs
were supplemented with a full context. The guide-
line for annotators contained explanations of all
the classes and examples for each category. Also
the OTHER category was included. The tagset
used to annotate gathered data is presented in Ta-
ble 1. The detailed results of the annotation are
presented in figure 2. We discuss the annotation
reliablity in section 6.

5.1 English

In all three cases, the OTHER class is less than
3%, hence coverage is above 97%. The most fre-
quent classes of responses in all three corpora are
direct answers (DA); in the BNC the next biggest
are clarification requests, for BEE these are indi-
rect answers, whereas for the MapTask the second
biggest are IGNORE.

5.2 Polish

The two most frequent classes of re-
sponses for Spokes are answers: direct ones
(DA=51.71%) and—much smaller—indirect ones
(IA=13.66%).The next two most frequent classes
are IDK (stating that a person does not know
the answer to the question, IDK=10.24%) and
utterances ignoring the question asked (questions
and declaratives, IGNORE=9.76%).

5.3 Discussion

As might be expected from the results presented
in (Łupkowski and Ginzburg, 2016), the most fre-
quent question-response for English and Polish
data is the clarification request. What is more
surprising is that by adding declaratives into the
picture a relatively high number of ignoring re-
sponses is observed for both English and Polish.
Łupkowski and Ginzburg (2016) analyzed only
question-responses and this type was observed
rarely (0.57% for n=1,051 for BNC). Other eva-
sive responses (relatively) frequent in both lan-

7Files 016O, 019w, 01AO, 01dL cover casual conversa-
tion concerning youth, wine and travelling plans.

BNC: 61.26%DA
MapTask: 79.0%

BEE: 77.5%
Spokes: 51.71%

BNC: 8.30%CR
MapTask: 3.20%

BEE: 1.0%
Spokes: 3.41%

BNC: 3.95%IGNORE
MapTask: 6.0%

BEE: 4.2%
Spokes: 9.76%

BNC: 8.10%IA
MapTask: 4.50%

BEE: 12.0%
Spokes: 13.66%

BNC: 2.37%CHT
MapTask: 0.60%
BEE: 1.0%

Spokes: 5.85%

BNC: 1.58%DP
MapTask: 0.40%
BEE: 1.0%
Spokes: 0.98%

BNC: 0.40%MOTIV
MapTask: 0%
BEE: 0%
Spokes: 0%

BNC: 4.35%IDK
MapTask: 0.40%
BEE: 3.0%

Spokes: 10.24%

BNC: 3.36%ACK
MapTask: 1.90%

BEE: 0%
Spokes: 0.98%

BNC: 1.58%COR
MapTask: 0.60%
BEE: 0%
Spokes: 1.46%
BNC: 0.40%IND
MapTask: 0%
BEE: 0%
Spokes: 1.46%

BNC: 0%FORM
MapTask: 0%
BEE: 0%
Spokes: 0%
BNC: 2.17%DPR

MapTask: 0.60%
BEE: 0.4%
Spokes: 0.49%
BNC: 0.20%OTHER
MapTask: 2.60%

BEE: 0%
Spokes: 0%
BNC: 1.98%AMBIGIOUS

MapTask: 0%
BEE: 0%
Spokes: 0%

0% 50% 100%

Figure 2: Frequency of responses to questions for the
BNC (n=506), BEE (n=256), MapTask (n=467) and
Spokes (n=205) studies
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guages are CHT and IDK. For the latter, we ob-
serve that it was more frequent in Polish than in the
English data. This may be a consequence of the
lower number of examples analyzed for Polish—
Spokes is smaller and less varied than the BNC.

As regards cross-corpus differences, BNC and
Spokes data cover mainly topically unrestricted
conversations, while BEE and MapTask contain
task-oriented dialogues. Correspondingly, Map-
Task has the highest number of direct answers
(79.0%), and BEE almost the same (77.5%). How-
ever, for BNC and Spokes these numbers are lower
(respectively 61.26% and 51.71%). For both clar-
ification requests and evasive response types fre-
quencies are lower for task-oriented corpora than
for BNC and Spokes (this is in line with results
for BNC and BEE reported in (Łupkowski and
Ginzburg, 2016, p. 256–257)).

6 Annotation reliability

6.1 Inter-annotator studies

Table 1: Tagset used for annotation of the data

Category TAG

1. Direct answer DA
2. Indirect answer IA
3. Clarification response CR
4. Dependent question DP
5. The utterance does not relate to the ques-
tion, but to the situation

IGNORE

6. Question being an indirect answer IND
7. Question addressing the form of answer to
be given

FORM

8. Question about the motivation for the initial
question

MOTIV

9. I do not know IDK
10. Difficult to provide an answer DPR
11. Correction COR
12. Acknowledgement ACK
13. Utterance signalizes that speaker does not
want to answer, s(he) changes the topic, gives
evasive answer

CHT

14. Utterance that does not fit in any of the
above

OTHER

For English: For the inter-annotator study a
sample of nearly 800 Q-Rs from the BNC were
annotated by two advanced graduate students in
computational linguistics, L2 speakers of English,
who underwent several training sessions with one
of the authors, a native speaker of English with
significant experience in dialogue annotation. The
first annotator coded 622 Q-Rs and the second an-
notator annotated 730 Q-Rs. Then we chose the
initial 515 Q-Rs, which were commonly annotated

by both annotators, deleting 9 Q-Rs which were
incomplete or unclear utterances to yield the 506
commonly annotated QR pairs from the BNC. For
these we calculated the κ (Carletta, 1996) and α
(Krippendorff, 2011) measures. We used the data
mining and data analysis tool (Pedregosa et al.,
2011) in Python with its sklearn.metrics package
for calculating Cohen’s kappa, and also used the
Python implementation Krippendorff 8 for the cal-
culation of Krippendorff’s alpha. In this case, Co-
hen’s Kappa for two annotators is 0.65 (substan-
tial), and Krippendorff’s alpha is 0.66. All dis-
agreements were then discussed in detail by one of
the annotators and the afore-mentioned author and
resolved (though some ambiguous cases remain,
as discussed below.).

For Polish: The entire sample of 205 Q-Rs was
annotated by the main annotator and two other an-
notators (one of whom has previous experience in
corpus data annotation, all annotators were Polish
native speakers). Fleiss’ Kappa for all three anno-
tators was 0.53 (i.e. moderate). For the first and
the second annotator—Cohen’s Kappa 0.66 (sub-
stantial). For the first and the third annotator—
Cohen’s Kappa 0.49 (moderate).9 Krippendorff’s
alpha for all three annotators is 0.742. For the first
and second annotator the score is 0.617, while for
the first and the third annotator it is 0.379. All
measures were calculated using the irr package
(Gamer et al., 2012) from R (R Core Team, 2013),
version 3.3.1.

Disagreement analysis For reasons of space,
we restrict attention to English here. Among the
valid commonly annotated 506 BNC Q-Rs, there
are 94 cases where the annotation disagreements
between two annotators occurred The main dis-
agreements concerned DA versus IA (34), IG-
NORE versus CHT/ACK/DP/DA (16), and ACK
versus OTHER (5), as exemplified in (19). Invari-
ably, the direct/indirect disagreements occurred
with ‘why’, ‘how’ and ‘what is X doing’ ques-
tions, where answers are by and large sentential
and for which there has been significant contro-
versy in the theoretical literature on how to char-
acterize answerhood (Kuipers and Wiśniewski,
1994; Asher and Lascarides, 1998).

8https://pypi.org/project/
krippendorff/

9Whereas the first and second annotators have much expe-
rience in dialogue annotation, the third annotator is a logician
with less annotation experience.
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(19) a. ANON5: Why do they pretend not
to know?

ANON5: <pause> I mean they
should be fully aware of of of
our <unclear>

ANON2: Val, well this is a new guy.
[DA v. IA, resolved to IA.]

b. ANN: That’s not very nice.

STUART: It is.

ANN: No It isn’t.

STUART: Well it is. Why isn’t it?

ANN: Cos it isn’t. [DA v. IGNORE, re-
solved to IA since indirectly indicates
that there is no reason.]

c. JOHN: Can you spell box?

SIMON: Mhm. [ACK v. OTHER, re-
solved to DA, after consideration of
surrounding context.]

After carefully discussing all disagreements, we
concluded that there are (at least) 10 cases which
are truly ambiguous and should not be resolved;
this is in line with a recent trend in dialogue an-
notation (e.g., Passonneau and Carpenter, 2014);
though we have not implemented the more com-
plex approach this inevitably requires in the cur-
rent work. We exemplify two such cases. (20a,b)
involve an ambiguity between CR and IND, and
DA and IA, respectively; both are hard to resolve
conclusively.

(20) a. FRANCIS: What is five?

FRANCIS: Tell me <unclear>.

UNKNOWN: <pause> is there five
people?

b. HUG: What’s he working on Rog?

ROG: Oh he’s off work <unclear>
and you see he has all the time
off for councils and you know
it isn’t as if he’s there fulltime.

7 Formal Analysis

In this section, we discuss briefly the requirements
on a computational semantic theory to be able
to characterize the response space of a query in
terms of the notions discussed in previous sec-
tions. Łupkowski and Ginzburg (2016) assume
such a characterization should be formulated in di-
alogical terms, for instance as dynamics of agent
information states, since this makes the analy-
sis usable for dialogue analysis. Indeed, to the
extent that the empirical work here verifies our
main hypothesis (1), the formal rules provided
in (Łupkowski and Ginzburg, 2016) yield a com-
plete characterization of the response space for
questions in implementable form (for a sketch see
(Maraev et al., 2018)). However, using a proof the-
oretic approach along the lines of erotetic logics
like IEL (Wiśniewski, 2013) is conceivable, as-
suming it can be extended in certain respects, as
we will explain.

7.1 Question–specificity

Any speaker of a given language can recognize,
independently of domain knowledge and of the
goals underlying an interaction, that certain propo-
sitions are about or directly concern a given ques-
tion. This is the answerhood relation needed for
characterizing direct answerhood.

The most basic notion of answerhood—simple
answerhood (Ginzburg and Sag, 2000)—is the
range of the propositional abstract, plus their nega-
tions.

(21) a. SimpleAns(λ{ }p) = {p,¬p};

b. SimpleAns(λx.P (x)) =
{P (a), P (b), . . . ,¬P (a),¬P (b) . . .}

In fact, simple answerhood, though it has good
coverage, is not sufficient. Aboutness must be
sufficiently inclusive to accommodate conditional,
weakly modalized, and quantificational answers,
all of which are pervasive in actual linguistic use
(Ginzburg and Sag, 2000).

How to formally and empirically character-
ize aboutness is an interesting topic researched
within work on the semantics of interrogatives (see
e.g. Ginzburg and Sag, 2000; Groenendijk, 2006),
though a comprehensive, empirically-based, ex-
perimentally tested account for a variety of wh–
words is still elusive.
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An additional important notion a theory of ques-
tions needs to provide for is a notion of ex-
haustiveness, though this is in general pragmati-
cally parametrized (Asher and Lascarides, 2003).
Whether a response is (pragmatically) exhaustive
(or goal fulfilling) can determine whether the re-
sponse will be accepted or require a follow up
query. Hence, the need for a finer–grained sub-
division of the answer categories, as we hinted in
footnotes 3 and 4.

Given a notion of aboutness and some notion
of (partial) exhaustiveness, one can then define
question dependence (needed for the class DP),
for instance, as in (22), though various alternative
definitions have been proposed (Groenendijk and
Stokhof, 1997; Wiśniewski, 2013; Onea, 2016).
For all these definitions their coverage awaits test-
ing on empirical data:

(22) q1 depends on q2 iff any proposition
p such that p resolves q2, also satis-
fies p entails r such that r is about q1.
(Ginzburg, 2012, (61b), p. 57)

With notions of aboutness and dependency in
hand, one can define update rules licensing such
responses. For instance, a rule of the following
form:

(23) QSPEC: If q is the question under discus-
sion, respond with an utterance r which is
q–specific: About(r,q) or Depends(q,r)

7.2 Repair utterances
Clarification requests and (metacommunicative)
corrections is a domain where logics that use
simply contents of utterances are not adequate
(Ginzburg and Cooper, 2004). Their generation
requires access to the entire sign associated with
a given interrogative utterance. (Purver, 2004;
Ginzburg, 2012) show how to account for the main
classes of CRs using rules that enable clarifica-
tion questions relevant to a given utterance un-
der clarification to be accommodated into the con-
tent. Each such rule specifies an accommodated
MAX-QUD built up from a sub-utterance u1 of
the target utterance, the maximal element of the
Pending attribute of the context (MAX-Pending).
Common to all these rules is a license to fol-
low up MAX-Pending with an utterance which is
co-propositional with MAX-QUD.10 Abstracting

10 Two utterances are co-propositional if, modulo their do-
main, the questions they introduce into QUD involve similar

away from formal details, such rules can be spec-
ified as in (24), with the three disjuncts indicating
the possible clarification questions that can be ac-
commodated:

(24) Clarification Context Update Schema
Input: u: utterance by A, u1, constituent
of u
Output:
MAXQUD:
(i)reference resolution: what did A mean
by u1 ,
(ii)form resolution: what word did A utter
at u1,
(iii)confirmation of constituent content:
what is u1’s content x, given that u’s
content is C(x)

7.3 Evasion Utterances

A natural way to analyze utterances relating to
MOTIV is along the lines of a rule akin to QSPEC
above: If A has posed q, B may follow up with an
utterance specific to the issue ?Wish-Answer(B,q)

(Łupkowski and Ginzburg, 2016) postulate
fairly strong constraints on CHT and IGNORE to
ensure that they are not unrestricted and do not al-
low any issue in. IGNORE is assumed to require
the issue to be situationally shared with the posed
question q1. This requires a means of evaluating
shared–situatedness between questions. For CHT
they assume that the topic changing question q2
introduced by or addressed by the response must
be unifiable with q1 via a third question q3 (e.g.,
q1 = what do you (B) like? q2 = what do you
(A) like? q3 = Who likes what?.). This requires
a question inference mechanism for testing this
unifiability.

8 Conclusions and Future Work

In this paper we have presented an initial study for
what is, as far as we are aware, the first, detailed,
formally underpinned characterization of the re-
sponse space of queries. Achieving such a charac-
terization is a fundamental challenge for semantics

answers—a query q introduces q into QUD, whereas an as-
sertion p introduces p? into QUD. For instance ‘Whether Bo
left’, ‘Who left’, and ‘Which student left’ (assuming Bo is
a student) are all co-propositional. Hence the available fol-
low ups licensed in this way are clarification requests that
differ from MAX-QUD at most in terms of its domain, or ac-
knowledgements and corrections—propositions that instanti-
ate MAX-QUD.
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with a very wide variety of applications. It also es-
tablishes basic theoretical benchmarks for theories
of dialogue/discourse and for semantic theories of
questions.

Apart from the need to scale up the evidence
quantitatively, we are currently engaged in work
on the following strands:

• Cross-question type comparison: the Q-R
pairs annotated in the current study were se-
lected randomly, whereas it is clearly of in-
terest to consider the distribution of responses
relative to fixed classes of questions (e.g., dif-
ferent classes of wh–questions, polar ques-
tions etc.)
• Apply machine learning to acquire the re-

sponse classification scheme:
1. The learnability of non sentential an-

swers (Fernández et al., 2007; Dragone
and Lison, 2015) gives hope for learn-
ability of some other classes.

2. On the other hand, we anticipate sig-
nificant difficulty with learning heavily
inference-based classes like indirect an-
swers, and IGNORE/CHT.

• Spoken dialogue system implementation: we
plan to test the usability of these categories
in dialogue systems with sophisticated di-
alogue management (Larsson and Berman,
2016) and NLU (see Maraev et al., 2018).
• Cross-linguistic testing: a significant chal-

lenge is how to test the classification with
languages lacking large or even hardly any
speech corpora. We anticipate using online
games with a purpose to this end (see e.g.,
Łupkowski et al., 2018).
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Andrzej Wiśniewski. 2015. Questions. In Handbook
of Contemporary Semantic Theory, second edition,
Oxford. Blackwell.

329



Kyung-Eun Yoon. 2010. Questions and responses
in korean conversation. Journal of Pragmatics,
42(10):2782–2798.

330



Proceedings of the SIGDial 2019 Conference, pages 331–335
Stockholm, Sweden, 11-13 September 2019. c©2019 Association for Computational Linguistics

From Explainability to Explanation: Using a Dialogue
Setting to Elicit Annotations with Justifications

Nazia Attari
Research Institute for Cognition and Robotics

Bielefeld University, Germany
nattari@techkfak.uni-bielefeld.de

David Schlangen
Computational Linguistics

University of Potsdam, Germany

Martin Heckmann
Honda Research Institute Europe

Germany

Abstract

Despite recent attempts in the field of explain-
able AI to go beyond black box prediction
models, typically already the training data for
supervised machine learning is collected in a
manner that treats the annotator as a “black
box”, the internal workings of which remains
unobserved. We present an annotation method
where a task is given to a pair of annotators
who collaborate on finding the best response.
With this we want to shed light on the ques-
tions if the collaboration increases the qual-
ity of the responses and if this “thinking to-
gether” provides useful information in itself,
as it at least partially reveals their reasoning
steps. Furthermore, we expect that this setting
puts the focus on explanation as a linguistic
act, vs. explainability as a property of mod-
els. In a crowd-sourcing experiment, we inves-
tigated three different annotation tasks, each in
a collaborative dialogical (two annotators) and
monological (one annotator) setting. Our re-
sults indicate that our experiment elicits col-
laboration and that this collaboration increases
the response accuracy. We see large differ-
ences in the annotators’ behavior depending
on the task. Similarly, we also observe that
the dialog patterns emerging from the collabo-
ration vary significantly with the task.

1 Introduction

Imagine asking a friend whether you can borrow
their car for the afternoon, and the only reply you
get is “no”. You would presumably perceive this
as somewhat brusque, and Conversation Analy-
sis would back you up there: This kind of dis-
preferred reply typically needs more work, often
being initiated with a filled pause, and being aug-
mented with a reason for the refusal (Schegloff,
2007; Levinson, 1983). Now imagine you are ask-
ing a car rental place, via their website, whether
you can rent a car for the afternoon, and again all

you get as a reply is a “no”. You would still not
be pleased, but the difference here would be that
while your friend may have been unwilling to tell
you their reasons, the car rental company, having
used a complex statistical model that judged you
untrustworthy, based on various kinds of informa-
tion it has about you, would be unable to state rea-
sons (other than a vacuous one like “your score is
too low”).

The field of explainable AI has set itself as a
goal to open up the blackbox of current predic-
tion models in order to make their decisions more
transparent and also identifying problems con-
cerning the core issues in AI safety. (See (Gilpin
et al., 2018; Doshi-Velez and Kim, 2017; Ribeiro
et al., 2016; Lundberg and Lee, 2017; Amodei
et al., 2016) for recent overviews.) The focus there
typically is on providing explanations of decisions
in terms of examples or secondary models (e.g.
(Kim et al., 2018; Letham et al., 2015; Yuan et al.,
2019; Zhang et al., 2019)), where the resulting ex-
planations are understandable at best to experts. In
contrast, our interest is in learning to provide ver-
bal explanations, accessible also to novice users.
As a first step, we are interested in methods for
eliciting data that can be used for this. In this pa-
per, we present an annotation scheme where a pair
of annotators works in collaboration to find the
best response to a question. Our hypothesis is that
a) this leads to better quality responses compared
to non-collaborative annotation, as the annotators
can actively acknowledge/correct/help their part-
ners, b) the resulting discussions give access to the
collaborative thinking directions that lead to the fi-
nal response, and c) puts the focus on explanation
as a linguistic act, vs. explainability as a property
of models. We present results from three different
annotation tasks. For each task we compare the
accuracies of the responses we obtain in a dialog
(two annotators) and a monologue (one annotator)
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setting, analyze to what extent the task triggered
discussions in the dialog setting and quantify dia-
log patterns emerging in the interaction of the an-
notators.

2 The Annotation Game

We formalise the annotation task as a game with
the following structure. The annotation problem is
posed by a special participant in the game, which
we call Nature (N ). N poses a question Q that is
to be answered, and provides relevant information
I = {i1, . . . , in}. (e.g., Q = “what is in this im-
age?”, with I consisting of an image.) Besides N ,
there is a set of regular participants in the game,
P = {P1, . . . , Pm}. The participants produce ver-
bal turns T = {t1, . . . , tk}. In our setting, we as-
sume that there is one special token that is used to
flag a verbal turn T as a proposal for an answer A
and another token to flag a turn as a mutual agree-
ment on it; this type of game could hence also be
called an Agreement Game.

Each solved task—that is, each annotation—
can be represented as a tuple 〈Q, I,A, T 〉. Our
hypothesis is that the provided answers A, rela-
tive to the given information I and the respective
question Q, are of higher quality in settings where
T \ A is non-empty compared to those where it
is; (that is, where there has been interaction be-
tween the annotators) and moreover, that the turns
T \ A in the interactive case provide insights into
the reasoning steps that are taken to perform the
mapping from I to A, given Q—from which ulti-
mately strategies for providing explanations could
be learned.

3 Experiment

To test the hypotheses set out above, we created a
number of tasks (pairs of questions Q and infor-
mation I), which we put to individual annotators
and also to pairs of annotators in a dialogical set-
ting.

3.1 Example Tasks

Birds Here, we show images of birds of two dif-
ferent kinds, as in Figure 1. The task for the anno-
tators is to produce a characteristic description of
one of the two kinds; i.e., a description that is true
for all and only the images in the specified row.
Following the question Q = “what separates the
birds in 1 from those in 2” given the images I in
Fig. (1) A = “large wingspan, grey plumage with

1

2

Figure 1: An Example Birds Task

A

B

Figure 2: An Example Blocks Task

black head” would be a valid answer. The images
are taken from the Caltech-UCSD Birds 200-2011
dataset (Wah et al., 2011). Details on the setting
can be found in the appendix.

Blocks This task consists in providing a
characteristic rule for one of two artificial,
programmatically-created categories in the form
of blocks with patterns. A valid answer for
the example in Figure 2 could be “B has six or
more red blocks.” Note that in this kind of rule
induction task from few examples, there will
always be a large number of rules that correctly
describe the pattern, even if they are different
from the one that was actually used to generate
the examples.

1 Daniel grabbed the milk there.
2 Sandra journeyed to the garden.
3 Sandra picked up the football there.
4 Sandra put down the football.

Where is the football?

Figure 3: An Example Texts Task

Texts To provide some variety, we also tested a
text comprehension task, where a question about a
text has to be answered; see Figure 3.

3.2 The Technical Setup & Collection

We realised the dialogical game interface as a
web application, built on top of the chat server
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slurk (Schlangen et al., 2018). The Mechanical
Turk platform was used to recruit workers. After
having read the instructions for the task, workers
that accepted the task were transferred to a “wait-
ing area” in the chat tool; as soon as a second
worker entered this area, both the players were
then moved to their task room (see also figure 4
in the appendix). The participants were paid an
amount of $0.14 per minute (for a maximum of
4 minutes per game, although they could discuss
longer). We also paid a bonus amount of $0.10
when the participants talked about things related
to the task, tried to contribute equally during the
discussion and also found the correct answer.

Additionally, we ran a monological version of
the tasks with individual annotators, where we just
presented the annotation task and collected the an-
swer.

We collected 40 dialogues per setting, for a total
of 120. Each dialogue consists of the consequtive
discussion of two questions. After removing failed
dialogues (where one participant left in the mid-
dle of the game, or participants clearly failed to
follow the instructions), we were left with 93 dia-
logues: 28 for birds, 33 for synthetic, 32 for text.
For monological annotation, we collected 40 an-
notations per setting, for a total of 120 annotations.

4 Results

4.1 Descriptive Overall Statistics

Table 1 shows some statistics about the collected
data. In case of the dialogues, since the answers
were marked by a prefix /answer, we could au-
tomatically identify them and look at the discus-
sion (everything but the answer) and the answer(s)
separately. “Speaker contribution ratio” is a mea-
sure of how balanced the dialogue was in terms of
contributions by each participant. It is the ratio be-
tween the number of tokens produced by the more
talkative participant and the number of tokens pro-
duced by the other participant; a perfectly bal-
anced dialogue would rate 1 here. We also looked
at the ratio of turns by each speaker.

As these numbers show, the participants in the
dialogues produced more tokens overall, and, for
Birds, also longer answers. The dialogues tended
to be dominated by one speaker. When taking out
the outliers (ratio above 3.4), which were cases
where one participant had to explain the task to
an inattentive other player, the imbalance is lower,
but still pronounced, whereas it is not as strong

Averages Birds Blocks Texts

length (mins) 5.25 5.87 5.63
# turns 4.30 3.39 2.86
# turns w/o As 2.96 1.83 1.39
# tokens 39.61 28.09 18.33
# tokens, final A 14.43 11.41 7.48
speaker contr. ratio 3.46 5.53 6.13
. . . w/o outliers 2.85 4.15 4.30
speaker turn ratio 1.13 0.86 0.97

no discussion dlgs 35.7% 56.1% 57.8%

# tokens (monological) 11.45 12.52 9.45

Table 1: Statistical Overview of Data

in terms of turns. The numbers for Blocks and
Texts are impacted by the high proportion of dia-
logue without any discussion (just /answer fol-
lowed by /agree), as shown in row “no discus-
sion dlgs”. Looking deeper into the dialogues, we
found that in about 65% of the cases, the more
dominant speaker was also the one who proposed
the final answer.

4.2 The Answers

While we can automatically identify the proposed
answers by the players, we cannot automatically
evaluate them. For Birds and Blocks, a wide va-
riety of answers could be considered correct; for
Texts, there is a single correct answer, but differ-
ent ways of phrasing it. Hence, we manually clas-
sified the answers as correct and incorrect.

Incorrect answers often betray a misunderstand-
ing of the task, as with “The birds in Section 2 look
like the same type of bird, or breed. The birds in
Section 1 all look like different types of birds, or
breeds” for Birds, or “Mary is not in the bathroom
because the statement is in past tense” for Texts.

Table 2 shows the accuracy of the final answers
across tasks and settings (dialogue and mono-
logue). The accuracy is measured by comparing
the 40 answersA to the corresponding 40 identical
questions Q for each task used for the dialogues
and monologues. These results indicate that the
tasks seem to be of different difficulty, with Birds
eliciting the highest number of correct replies, and
the constructed, quite challenging Blocks task the
least, across settings. The numbers for the mono-
logical setting are consistently lower, lending sup-
port to our hypothesis that the dialogical setting
leads to improved quality in the answer.
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Tasks Correct Answer(%)
Dialogue Monologue

Birds 92.5 85.0
Text 90.0 85.0
Blocks 57.5 50.0

Table 2: Dialogue vs. Monologue: Correct Answers

4.3 The Discussions

To further analyze the discussions, we first catego-
rized them as active or passive. In an active dis-
cussion parts of the final answer is “rehearsed” be-
fore the official reply is given or the final answer
is assembled out of several turns. The following is
an example of this category (for the task shown in
Figure 1 above).

(1) A: Looks like the birds under 2 have red-
orange feet.

B: The difference that I notice is that the
birds in Section 1 are light feathered vs.
the dark feathered birds of Section 2.

A: Ah, I like your answer better than mine.
B: /answer The birds in section 1 do not

have red-orange feet like the birds in sec-
tion 2. Also, the feathers of the birds in
Section 1 are light-colored vs. the dark-
colored feathers of the birds in Section
2.

A: /agree

We consider all other dialogues as passive. This
includes cases where a proposal was immediately
made and accepted, as well as where one partner
didn’t engage with the proposals. 28.6% of the
Birds dialogues were passive, compared with
61.5% for Text and 65.5% for Blocks. This again
shows an influence of the task; presumably, Text
was considered too easy to warrant discussion,
while Blocks may have been seen as too hard,
with participants giving up (as also reflected in
the accuracy on that task).

To unveil the reasoning steps of the collabora-
tive thinking process we identified and quantified
typical patterns in the active discussions. (2-a)
shows an example of Proposal Extension, where
a proposal made by A is implicitly accepted and
extended; and of Counter Proposal, where a pro-
posal is implicitly rejected and replaced with a
counter proposal. (There were also explicit accep-
tances and rejections, w/o proposals.)

Tasks Patterns in active dialogues(%)
Proposal- Counter- Explicit Explicit
Extension Proposal Acceptance Rejection

Birds 52 68 60 8
Text 80 40 60 0
Blocks 30 80 70 30

Table 3: Proportions of active dialogues in each task
with different patterns.

(2) a. Proposal Extension
A: One obvious difference that I see

from the birds in section 1 is that the
birds have longer beaks. [Proposal]

B: another thing I noticed is it looks
like 2’s have softer feather colors
[Proposal-Extension]

b. Counter Proposal
A: /answer section 1 birds all look gray

feathered [Proposal]
B: They all have yellow bodies and

dark heads [Counter Proposal]

Table 3 shows the proportions of active dialogues
in which these patterns were observed, by task
type. Explicit rejections happened rarely but were
never observed in the texts task (too simple task).
For Birds, there seems to be a balance between
proposal-extension, counter-proposal and accep-
tance (balanced discussion). There were fewer
counter-proposals in texts task, for it being sim-
pler. It also looks like there were more disagree-
ments in Blocks due to the complexity of the task.

5 Conclusions

We have presented a setting for collecting anno-
tations from pairs of interacting annotators. Our
analysis indicates that this setting of an “agree-
ment game”, where explicit proposals have to be
explicitly agreed on, fosters dialogs between the
annotators. These dialogues yield to more correct
responses and provide explication of the reasoning
steps behind an annotation decision. Hence, both
of our hypotheses, that the collaboration yields to
more accurate responses and can reveal, at least
in parts, the underlying reasoning steps, are sup-
ported. In line with our third and final hypothesis,
the presence of these reasoning steps shows that
the setting moves explanation as a linguistic act in
the focus. It does however appear to be important
to tune the level of difficulty of the task: if it is too
simple, discussions do not emerge; if it is too hard,
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the incentives for crowd workers have to be prop-
erly set so as to engage them. Our set-up also illus-
trates that natural categories could bring in more
balanced discussions as well as better quality an-
swers. Overall, it could provide useful data for
developing a system which provides justifications.
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A
The Annotation Game Interface

Once two workers were presented they entered the
task room as shown in Figure 4.

Figure 4: As soon as there are two participants in the
waiting room, they are moved to the game room. Both
participants see the same content on their screen. The
content includes questionQ, information I and instruc-
tions by the game bot who is also present in the game
room.

This setup technically realises the setting de-
scribed formally in Section 2 above, where anno-
tators (“participants”) can work together to jointly
formulate an answer A to the question Q they are
given.

335



Proceedings of the SIGDial 2019 Conference, pages 336–344
Stockholm, Sweden, 11-13 September 2019. c©2019 Association for Computational Linguistics

Prediction of User Emotion and Dialogue Success Using Audio
Spectrograms and Convolutional Neural Networks

Athanasios Lykartsis
Audio Communication Group

TU Berlin
Germany

athanasios.lykartsis@tu-berlin.de

Margarita Kotti
Speech Technology Group

Toshiba Research Cambridge
United Kingdom

margarita.kotti@crl.toshiba.co.uk

Abstract

In this paper we aim to predict dialogue suc-
cess and user satisfaction as well as emo-
tion on a turn level. To achieve this, we in-
vestigate the use of spectrogram representa-
tions, extracted from audio files, in combina-
tion with several types of convolutional neural
networks. The experiments were performed on
the Let’s Go V2 database, comprising 5065 au-
dio files and having labels for subjective and
objective dialogue turn success, as well as the
emotional state of the user. Results show that
by using only audio, it is possible to predict
turn success with very high accuracy for all
three labels (90%). The best performing input
representation were 1s long mel-spectrograms
in combination with a CNN with a bottleneck
architecture. The resulting system has the po-
tential to be used real-time. Our results signif-
icantly surpass the state of the art for dialogue
success prediction based only on audio.

1 Introduction

Spoken Statistical Dialogue Systems (SDS) have
gained much popularity in the last years, espe-
cially due to the widespread need for applications
such as assisted living (Portet et al., 2013), phone
banking (AbuShawar and Atwell, 2016), intelli-
gent virtual agents (Matsuyama et al., 2016) and
health care (Korpusik and Glass, 2017).

An important part of an SDS is spoken lan-
guage, which is used to communicate directly with
the virtual agent in order to pose questions and
reply to the agent output. In a modular spoken
SDS system, the speech part is converted to text
through Automatic Speech Recognition Systems
(ASR), which is then analysed using Natural Lan-
guage Processing (NLP) methods. However, the
audio part, which could be of low audio quality, is
usually then discarded while the extracted text is
fed forward to the SDS. In our view (and this is

an important part of our motivation), when look-
ing at dialogue success prediction, this can be seen
as a waste of possible resources, since the speech
part can contain useful information regarding the
emotional state of the user, or verbal cues which
can indicate if the user is satisfied with the sys-
tem performance. The prediction or recognition
of such cues can be very helpful for supporting
a dialogue management system, which can make
better assessments as to what the next steps should
be. Taking this thought one step further, we want
to assess if it is possible to predict dialogue suc-
cess based only on the audio, in order to find a
light-weight, real-time method to manage the user
expectations and, eventually, to build more effi-
cient and user-friendly spoken SDS. A final moti-
vation of this work is that we wanted to experiment
with spectrogram input representations and convo-
lutional neural networks (CNNs) as classifiers. Al-
though there have been several examples of such
uses for other topics, especially in image process-
ing (Krizhevsky et al., 2012) and music informa-
tion retrieval (Schlüter and Böck, 2014; Schreiber
and Müller, 2018), this approach remains under-
represented in the area of dialogue success predic-
tion. Therefore, our research closes this gap and
attempts to evaluate how well such approaches can
function for dialogue success prediction.

Considering related works, the use of neu-
ral networks in the wider area of modular SDS
has been gaining some popularity the last years.
For example, neural networks have been utilised
for dialogue state tracking. Korpusik and Glass
(2018) use CNNs in order to track the user’s goal
over the whole dialogue without the use of hand-
crafted semantic dictionaries and achieve high ac-
curacy for their task. Henderson et al. (2014) sim-
ilarly employ recurrent neural networks to map
the results of ASR directly to a dialogue state and
also report high performance. Another approach
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(Zhao and Eskenazi, 2016) uses deep reinforce-
ment learning to discover dialogue states and out-
perform a standard baseline. An additional deep
reinforcement learning approach (Su et al., 2015)
shows that using both RNNs and CNNs with turn
level-features (non-audio) can be useful in predict-
ing dialogue success. Research from Wen et al.
(2016) shows that deep learning can be useful in
creating more natural conversation task-oriented
SDS, whereas Kim et al. (2016) use CNNs and
RNNs for dialogue topic tracking.

As the listing of the related previous work
shows, the use of neural networks with audio spec-
trograms or waveforms for the analysis of the au-
dio part of the SDS and its consequent use for
tasks such as dialogue success prediction has not
been researched adequately. Only a limited num-
ber of papers (Papangelis et al., 2017; Kotti et al.,
2017; Lykartsis et al., 2018) exist which explore
the possibility of dialogue success prediction us-
ing audio features extracted from speech paired
with standard machine learning techniques such as
support vector machines.

These approaches have shown promising re-
sults, especially for creating a way to reliably esti-
mate the user satisfaction. Additionally, they are
able to do so in real-time or near-real-time and
subsequently enable suitable next steps for the dia-
logue policy. Moreover, the recent success of deep
learning approaches for audio tasks suggests that
using these can bring an advantage: By exploiting
input representations such as spectrograms, the es-
timation of task success can take place even at an
ever finer time resolution level (e.g., very short
audio frames), providing the possibility for even
faster processing and reaction. Furthermore, data
augmentation methods can provide a possibility to
achieve higher accuracy rates.

Since CNNs combined with audio spectrograms
as input have been shown to provide very good re-
sults in a multitude of tasks (for example for tempo
estimation (Schreiber and Müller, 2018) and beat
tracking (Schlüter and Böck, 2014)), we choose
to employ them for the creation of an experimen-
tal setup for dialogue success prediction. In that
sense, we frame our task as an emotion recogni-
tion one: As dialogue success is expected to show
a high correlation with user satisfaction, which in
turn is closely related with the user’s emotional
state, we investigated similar works using neural
networks for speech emotion recognition.

Such works include those of Tzirakis et al.
(2017) who use a Long-Short-Term-Memory
(LSTM) network on top of a CNN in order to
extract information and consider contextual infor-
mation from raw audio data (waveforms), out-
performing existing systems for speech emotion
recognition. Similar work has been performed
by Trigeorgis et al. (2016), where audio wave-
forms are used in combination with a CNN fol-
lowed by an LSTM for speech emotion recogni-
tion, achieving high results for arousal and va-
lence. In the work of Lee et al. (2017), a CNN
is used to predict emotions based on speech spec-
trograms for a virtual elderly companion agent
with very good results. Gu et al. (2018) create a
multimodal framework with text and speech for
emotion recognition. For the audio part, besides
hand-crafted features, spectrograms with CNNs
and LSTMs are used and fused with text fea-
tures to predict 5 emotions and achieve better re-
sults than all other methods. Another interesting
method comes from Yenigalla et al. (2018), where
spectrograms of different sizes are used as an input
for a CNN, achieving very good results for 4 emo-
tional states. Neumann and Vu (2017) study the
impacts of input features, signal length and speech
type, using spectrogram or raw waveform input
and CNNs, achieving state of the art results and
reaching very useful conclusions for speech emo-
tion recognition: input representation is not as im-
portant as the model architecture, which in turn is
task and speech type specific. Fayek et al. (2015)
also achieve very good results in speech emotion
recognition using a simple deep neural network
and spectrograms as input. A similar strategy is
employed by Wang and Tashev (2017) for success-
ful prediction of emotion, as well as gender and
age on an utterance level, showing that even sim-
ple deep architectures can provide good results for
speech emotion recognition. CNNs have also been
used with success for general audio classification
(Lee et al., 2009), which is a broader task, hinting
at the suitability of this architecture for the task at
hand in this paper. For this paper, we decided - for
the sake of simplicity and due to the not enormous
size of the dataset - to resort to only CNNs and de-
termine which architectures, input representation
forms and parameters provide good classification
results for this task. Another reason for the use of
CNNs is not only their aforementioned success in
many tasks, but also the possibility to establish a
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better understanding of the suitability of this ap-
proach for the task of dialogue success prediction.
The latter is slightly different than speech emotion
recognition per se because the user’s emotional
state is not the only factor that affects the final
success label. Finally, this way we can establish
a very fast and simple pipeline, which can also be
used in a real-time setting to provide useful aux-
iliary information about the dialogue success, so
as to inform the dialogue manager. This approach
is compared to a baseline, involving hand-crafted
audio features as in (Lykartsis et al., 2018), which
have been shown to provide satisfactory results.
Experiments are performed on the publicly avail-
able Let’s Go V2 Database (Schmitt et al., 2012),
which contains three kind of labels (for objective
and subjective dialogue success and the emotional
state of the user, for more information see 2.3).

This paper is structured as follows: In the next
section the used methods are presented in depth,
whereas in section 3, the results of the classifica-
tion are shown and discussed. We close with con-
clusions and suggestions for future work.

2 Methods

2.1 Input Features

The input features chosen to be used for the
CNN classifier in our case were mel-spectrograms
(which can be seen as images summarizing the fre-
quency content of a turn over time), extracted with
the librosa python library (McFee et al., 2015).
Mel-spectrograms have been used in a multitude
of tasks for music information retrieval (Schlüter
and Böck, 2014; Lidy and Schindler, 2016; Choi
et al., 2017), as they are relatively simpler to cal-
culate (in contrast to other transforms), while also
providing a connection to human auditory percep-
tion through the use of the mel-scaling. There-
fore, we reasoned that they could be a good ba-
sis for the task of dialogue success and speech
emotion recognition. For an 1s long audio file
we acquired a resulting 32 bins x 16 frames array
(using the default librosa settings for spectrogram
extraction that is a frame size of 92ms, a hann
window and an overlap of 75% between consec-
utive frames). These settings are fairly standard
for audio processing, as they allow a good tem-
poral resolution but also a fair enough frequency
resolution. We used this window size could mean
that the speech segment is not necessarily sta-
tionary, but since we are looking for larger struc-

ture in the spectrogram (probably spanning sev-
eral frames), this should not constitute a problem
for the further processing (as it was also shown by
our results). Using a shorter time window might
produce even more temporally accurate spectro-
grams, but it would also require more computa-
tional resources. After conducting preliminary ex-
periments with a window of 46ms, we could see
that results were not improved, while at the same
time requiring much more computational power
for the spectrogram extraction. Therefore, we re-
tained the window size of 92ms for all the further
experiments. We also experimented with a length
of 2s in order to see if longer (in the time domain)
spectrograms would give better results - which can
be seen as a trade-off between speed of processing
(and therefore a close to real-time behavior of the
classification/prediction system) and the accuracy
of the prediction itself. This resulted to a 32 bins
x 32 frames input array. We did not experiment
with longer files, since most files in the Let’s Go
V2 database are not much longer than 2s (the av-
erage user turn duration is 1.5s with a standard de-
viation of 1.9s (Schmitt et al., 2012)). If the file
is shorter than the selected analysis length, it is
zero-padded at its end. All the files were of 8000
kHz sampling rate, no further preprocessing was
performed, leading to a very lightweight pipeline,
which is very close to a real-time processing. The
goal of using these input features was to determine
if a short spectrogram could suffice for providing
good classification results.

2.2 Neural Nets/Classifiers

As mentioned in Section 1, we employ CNNs in
this paper. The theory and inspiration for using
CNNs can be found in Section 1. Specifically, we
utilized Keras, which is based on the tensorflow
library in python (Abadi et al., 2016). Keras has
many advantages, such as that it is very effective,
allowing for fast prototyping and training, even
just by using CPUs (instead of GPUs). Inspired
by similar experiments in other areas, we wished
to test two different types of architectures:

• A standard bottleneck architecture, with 4
convolutional layers with 2-by-2 rectangu-
lar filters and a decreasing number of nodes
(100-75-50-25), 2-by-2 max pooling and all
activation functions being ReLU. This was
followed by a batch normalization and 2 fully
connected (FCN) layers (also with a decreas-
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Figure 1: Bottleneck architecture flowchart diagram. For the details of the CNN, see the detailed architecture
description in section 2.2

Figure 2: Parallel architecture flowchart diagram. For the details of the CNN, see the detailed architecture descrip-
tion in section 2.2

ing number of nodes, namely 50 and 12 and
a dropout of 50%) and an output layer with
softmax activation. The stride is always one,
padding is always set at “same”, so as that the
output has the same length as the original in-
put. As an optimizer, ADAM was used with a
learning rate of 0.001, whereas a categorical
cross entropy was utilized as the loss func-
tion. For this architecture we were inspired
from (Tzirakis et al., 2017; Trigeorgis et al.,
2016). The above architecture is depicted in
Figure 1.

• A parallel CNN architecture: In this case, 4
input layers with 32 nodes and with differ-
ent kernel sizes (a quadratic 4-by-4 kernel,
a quadratic 8-by-8 kernel, a 1-dimensional
32-by-1 filter (for the mel-spectrogram fre-
quency bins) and a 1-dimensional 1-by-16
or 1-by-32 filter (for the time frames, corre-
sponding to the file length of 1s or 2s, respec-
tively)) are processed in parallel and their
output is combined (concatenated and flat-
tened). In this case, the max-pooling is done
in a 4-by-4 manner and the activations are
also all ReLU. The combined output of the
four parallel layers is batch-normalized fed

into 2 FCN layers with 50 and 12 nodes with
a dropout of 0.5 between them, followed by
a 2-node output softmax layer. Same as be-
fore, the stride is always one and padding
is set at “same”. Also in this case, an
ADAM optimizer was used (with a learning
rate of 0.001), and a categorical cross en-
tropy as a loss function. For this architec-
ture we were inspired from the implementa-
tion in (Yenigalla et al., 2018) (using paral-
lel layers) and from the one in (Schreiber and
Müller, 2018), using one-dimensional filters.
Our reasoning was that combining these two
features, a powerful network could be con-
structed which would be able to learn features
pertaining to emotional states of the user, as
well as more specific signal features inherent
in the spectrogram (such as the tempo of the
utterance). The above architecture is depicted
in Figure 2.

Finally, we implemented a baseline following
the scheme in (Lykartsis et al., 2018), compris-
ing 5 hand-crafted spectral and rhythmic features
(the standard deviation of the three MFCCs and
the tempo and mean of the RMS-based beat his-
tograms) and featuring an SVM classifier with
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C = 2, γ = 1/Nfeatures and an RBF kernel using
the scikit learn python module. These parameters
were kept the same as in the aforementioned pub-
lication, since they resulted via a grid search there
for a dataset of similar audio quality, and for en-
suring comparability between the studies.

The whole pipeline was developed and tested
using python 3.6 on a Windows 7 OS with 8 GB
of RAM and an Intel i5 quad core processor run-
ning at 3.2 GHz. Using this, extracting the spec-
trogram of a turn with librosa is achieved in under
1s, whereas training of the model for one epoch
takes around 5s. After the model has been created,
prediction, that is running the validation spectro-
gram via the trained CNN, is taking 0.1-0.2s (de-
pending on the length of the turn), resulting into a
near-real-time system. We refrained from using a
development set due to the small size of the dataset
and because our averaged results over the 3 valida-
tion folds should provide sufficient validity.

2.3 Dataset

The spoken dialogue corpus used in this study is
based on the the CMU Let’s Go Bus Information
System (Schmitt et al., 2012) (from this point on
referred to as the Let’s Go V2 dataset). This has
been developed by the university of Ulm in or-
der to evaluate dialogue quality, user emotion and
task success for an SDS which was used as an
information system for bus itinerary search. The
database contains 9083 system-user exchanges (to
which we will refer as interactions in the follow-
ing). For our experiments, we kept a total of 5065
audio files for the interactions, for which all labels
where available, so as to be able to compare be-
tween the results using the different label sets.

Each interaction has been rated with three la-
bels. The first is an emotional label, signifying
the emotional state of the user. The label has four
levels, ranging from non-angry to very angry. This
label was assigned from the users themselves. An-
other label shows the subjective dialogue success,
dubbed IQ (Interaction Quality) in the corpus an-
notation (Schmitt et al., 2012), indicating whether
the user was satisfied with the interaction. This la-
bel ranges from satisfied to extremely unsatisfied
and has five levels and was agreed on by three in-
dividual external raters. We refer to it here as sub-
jective label. Finally, the objective labels indicate
whether the goal of the dialogue was reached, i.e.,
the information looked for was actually provided

by the system. This label also exists on an interac-
tion level and has two levels (successful or not).

In order to simplify the classification, we
choose to create a binary model which results from
taking the most highly ranked result of each label
set as the positive label, and all the other results
pooled together as the negative label. In that way,
it was possible to create an almost balanced dataset
for the subjective labels (53% negative and 47%
negative ones), but not for the other two labels
sets (having correspondingly a distribution of 65%
positive/35% negative for the emotional labels and
85% positive/15% negative for the objective sam-
ples). Therefore, we then created a balanced ver-
sion of the dataset for the emotional and the ob-
jective labels by taking the smaller class and ran-
domly choosing as many examples for the other
class. The balanced subjective set contained 5065
samples, the balanced objective one 1146 and the
balanced emotional one 3660 samples.

3 Results and Discussion

The results of the classification for all 3 labels can
be seen in Tables 1 and 2 for the training and the
validation set, respectively. The respective results
for the baseline system can be seen in Table 3. The
results reported here are the average accuracy over
the three folds, followed by the loss of the net-
work. The standard deviation of the accuracy over
the folds is not reported, since it ranges from 0.5%
to 1.5%, and can therefore be considered negligi-
ble, showing that the system is robust. It must be
mentioned here again, that the basic unit of classi-
fication was the audio of the user turn, for which
the labels are also available. The accuracy re-
ported refers to the amount of correctly predicted
labels for the user turns as a ratio of all turn clas-
sifications.

Concerning the effect of different parameters
for the CNNs, the best parameter set was deter-
mined by 3 fold cross-validated grid search. The
aforementioned cross-validation lead to the results
reported in tables 1 and 2. We experimented with
several values for the learning rate, the optimizer
and the batch size. We observed an effect for better
results with a learning rate of 0.001, a batch size of
8 and by using the ADAM optimizer. Finally, the
results shown here were the result of 500 epochs
long training procedure. We did not observe any
improvement when training for longer time, and
this is definitely an amount of training time which
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Setting 1s 2s
Accuracy Loss Accuracy Loss

Bottleneck Architecture, subjective labels 0.95 0.12 0.97 0.07
Bottleneck Architecture, objective labels 0.97 0.07 0.98 0.05
Bottleneck Architecture, emotional labels 0.98 0.06 0.98 0.05

Parallel Architecture, subjective labels 0.81 0.31 0.97 0.07
Parallel Architecture, objective labels 0.91 0.24 0.97 0.1
Parallel Architecture, emotional labels 0.92 0.17 0.97 0.07

Table 1: Classification results, training set, average accuracy over 3 folds and corresponding loss for 1 and 2 s
segments. All datasets are balanced, the prior is 0.5.

Setting 1s 2s
Accuracy Loss Accuracy Loss

Bottleneck Architecture, subjective labels 0.78 0.57 0.9 0.3
Bottleneck Architecture, objective labels 0.9 0.48 0.86 0.5
Bottleneck Architecture, emotional labels 0.9 0.33 0.86 0.5

Parallel Architecture, subjective labels 0.7 0.93 0.7 0.93
Parallel Architecture, objective labels 0.88 0.46 0.88 0.78
Parallel Architecture, emotional labels 0.82 0.69 0.74 1.25

Table 2: Classification results, validation set, average accuracy over 3 folds and corresponding loss for 1 and 2 s
segments. All datasets are balanced, the prior is 0.5.

Setting Whole turn
Baseline (SVM), subjective labels 0.59
Baseline (SVM), objective labels 0.57
Baseline (SVM), emotional labels 0.75

Table 3: Classification results, baseline system, average accuracy over 3 folds. Features are extracted over the
whole turn and aggregated. All datasets are balanced, the prior is 0.5.

is very manageable on reasonably strong compu-
tation systems (see 2.2). With regards to the ef-
fect of the spectrograms’ length, this did not seem
to have a large effect on classification accuracy.
In general, results were somewhat better for then
1s case. We therefore assume that in the case of
less data, the length of the segment can be kept
to a minimum value. These findings corroborate
the results from Neumann and Vu (2017), which
mention that the NN architecture is more impor-
tant than the input representation form, at least in
the context of speech emotion recognition.

Comparing the two architectures, the first ar-
chitecture with the sequential layers has shown
slightly better results. This might be due to the
parallel models lacking the information to extract
useful patterns, probably due to possible data de-
privation. In total, the results are much higher than
the ones produced from the baseline. We observed
some important trends (with regards to the valida-
tion set results). The first architecture using the
bottleneck structure has proven to be useful for all
labels. This might be due to phonetic features in
the spectrogram indicating task success being very

concrete (such as “thank you”, or the user’s voice
melody sinking) and therefore rendering a simpler
structure to extract the features more suitable. Be-
tween the different label types, the emotional and
objective label sets show somewhat better results
when using smaller lengths, showing that for the
subjective labels, a greater length is essential for
the CNN to extracting more relevant information.
The parallel layer architecture has shown to be
useful for the objective labels. This is probably
due to the higher complexity of predicting an ob-
jective task success from purely sound data. Ad-
ditionally, the turn length does not seem to play an
important role, which might mean that for more
complex architectures, less information length can
be sufficient to achieve good accuracy. All in all,
the parallel architecture was somewhat less perfor-
mant than the bottleneck one, which shows that for
these data, simpler structures are more useful.

In general, the results were very positive and
surpass results on similar datasets which are state-
of-the-art: The maximum accuracy on the vali-
dation set, for the subjective labels, achieved us-
ing only sound files was 90%, which surpasses
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the best results in (Lykartsis et al., 2018) by 16%.
However, it must be noted, that the datasets used
are slightly different, in the sense that the task is
a different one (finding the right laptop vs. find-
ing the right itinerary while interacting with an
SDS). Also, in (Lykartsis et al., 2018), both the
subjective and the objective labels were provided
by the user, but in the Let’s Go V2 system, those
were provided by external raters, as well as hav-
ing a different resolution (labeled turns instead
of full dialogues). Therefore, the results not di-
rectly comparable, but the research question is the
same. Furthermore, the length and audio quality
of the recordings is very similar, so that it can
be claimed that using mel-spectrograms as input
and CNNs as classifiers provides a successful and
computationally not too intensive way to achieve
emotion detection and dialogue success prediction
only from audio. We are therefore optimistic, that
with more training data, we could build sounder
models which can generalize better and build on
the tendencies observed here, achieving even bet-
ter results. Finally, the results achieved in (Lykart-
sis et al., 2018), that smaller files are more suitable
for higher accuracy, are also observable here.

In comparison to other studies which used the
Let’s Go V2 dataset, two works have been found in
the literature, that of Schmitt et al. (2011) and that
of Stoyanchev et al. (2019), both of which resort
to linguistic features, among others. In (Schmitt
et al., 2011), the best achieved result was 61.6%
unweighted average recall for predicting quality of
interaction (i.e., the subjective label as mentioned
in this paper) using a multitude of automatically
extracted hand-crafted features (linguistic and di-
alogue state ones) and support vector machines.
Our baseline system achieves a close result (59%
average accuracy). Also, by using ASR and lin-
guistic features alone in combination with support
vector machines, Stoyanchev et al. (2019) man-
age to achieve 50% unweighted average recall.
It must be mentioned, that a direct comparison
is not possible due to the different nature of the
features and the different categories (both papers
mentioned here predicted 5 categories of interac-
tion quality), however we can see that our system
can predict dialogue success with very high per-
formance. Another interesting observation in that
context is the fact that although in our study the
best results were achieved with the objective la-
bel set, in (Lykartsis et al., 2018), the better results

were achieved with the subjective labels, which in
our case provide the least good results - but still
better than the baseline. This might be a conse-
quence of a different definition of what constitutes
subjective success between the two datasets: For
the laptop dataset of (Lykartsis et al., 2018), sub-
jective success means that the users found all the
information they were looking for (when asked at
the end of the dialogue), whereas for the Let’s Go
V2 system, subjective success meant that external
raters were judging the interaction to be successful
or not, probably leading to different label distribu-
tions. The different results might also be a conse-
quence of the different tasks involved.

4 Conclusion

In this paper, we have shown that classification of
user emotion, and prediction of objective and sub-
jective task success of a spoken SDS using only
audio in the form of spectrograms is not only pos-
sible, but also can be achieved to a high standard
using CNNs with small computational effort, re-
sulting in an almost real-time system. Our results
greatly surpassed those of other similar studies and
can be used to train models which can - on a turn
level, i.e., with audio information of limited du-
ration - predict the direction a dialogue takes and
can therefore act to change the dialogue course.

We are optimistic that if our features are com-
bined with other non-sound features (such as lin-
guistic features), we will have the possibility to
raise classification accuracy even more. However,
this falls outside the aim of the current study and
will be part of our future work. Furthermore, a
possibility would be to perform system fusion at
the classifier level, combining for example differ-
ent CNN architectures (like the ones shown in this
paper) and other classifiers with hand-crafted fea-
tures, as in the approach from (Lykartsis et al.,
2018). Such a system could benefit from the multi-
ple different input representation and could poten-
tially provide very good results, as in (Gu et al.,
2018). As additional future work, we plan to con-
duct experiments with more architectures and pa-
rameters, and also employ other neural network
classifiers such as Temporal Convolutional Net-
works (TCNs), which combine the merits of both
CNNs and RNNs/LSTMs. Finally, we will also
experiment with data preprocessing methods, such
as denoising and data augmentation methods such
as transformations in time and frequency.
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Abstract

In dialogue, speakers continuously adapt their
speech to accommodate the listener, based
on the feedback they receive. In this paper,
we explore the modelling of such behaviours
in the context of a robot presenting a paint-
ing. A Behaviour Tree is used to organise
the behaviour on different levels, and allow
the robot to adapt its behaviour in real-time;
the tree organises engagement, joint attention,
turn-taking, feedback and incremental speech
processing. An initial implementation of the
model is presented, and the system is evalu-
ated in a user study, where the adaptive robot
presenter is compared to a non-adaptive ver-
sion. The adaptive version is found to be more
engaging by the users, although no effects are
found on the retention of the presented mate-
rial.

1 Introduction

Speakers in dialogue cannot just assume that their
speech is received by the addressee and under-
stood as intended. They have to continuously
monitor the addressee to verify that the informa-
tion is attended to, perceived, understood and ac-
cepted (Clark, 1996). By keeping close track
of verbal and non-verbal feedback from the ad-
dressee, speakers can alter their presentation in or-
der to accommodate the listener.

In this paper, we explore how this process can
be modelled in spoken human-robot interaction.
As a test-bed, we have designed a scenario where
a robot is presenting visual information (such as a
poster or a piece of art) to a human, as seen in Fig-
ure 1. This setting allows us to explore how the
presentation can be adapted to the audience’s level
of attention, understanding and engagement.

Modelling adaptive presentation in a human-
robot interaction scenario is non-trivial, as the
robot needs to pick up feedback from different

Figure 1: The scenario chosen as a test-bed for the
model: a robot presenting a painting to a human.

modalities, and continuously adapt its behaviour
to accommodate the listener. It is also not obvi-
ous that such a system would be better in terms
of teaching the presented material and user expe-
rience, compared to a fixed, non-adaptive presen-
tation (such as audio-guides used in museums), as
the robot is unlikely to exhibit the same level of
adaptation as a human. This paper has two main
contributions, which address these concerns. First,
we explore the use of Behaviour Trees (Colledan-
chise and Ögren, 2018) for modelling the adap-
tive behaviour. Behaviour Trees, a specific formal-
ism for decomposing a plan into a tree structure,
have been applied extensively to video games and
robotics (Hasegawa et al., 2017; Hu et al., 2015),
and systems that break down an interaction or a
dialogue to a tree are not new (Smith and Hipp,
1994; Boye, 2007; Bohus and Rudnicky, 2009).
However, we are not aware of any previous at-
tempts at applying specifically Behaviour Trees to
real-time modelling of spoken interaction. Sec-
ond, we present an experiment where we compare
the adaptive robot presenter to a version where the
presentation is statically executed, i.e., where the
user’s reactions are not taken into account.
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2 Background

The scenario of a robot presenting information to
an audience (one or several people), has been ex-
plored in earlier work (Jensen et al., 2005; Szafir
and Mutlu, 2012; Ohya et al., 2006). However,
these works have not focused on how the presen-
tation can be adapted based on verbal and non-
verbal feedback. Poster presentations between hu-
mans have been studied in order to analyse the
gaze and backchannel behaviours of participants
and presenters (Kawahara, 2012). Hashimoto
et al. (2011) and Verner et al. (2016) have shown
that more interactive robot teachers lead to better
results in learning. Yousuf et al. (2012) and Eich-
ner et al. (2007) show that users prefer present-
ing agents that adapt their grounding behaviour to
their audience.

2.1 Grounding and Adaptation

According to Clark (1996) and Allwood et al.
(1992), any coordinated action can be described as
an action ladder, with each level requiring the co-
operation of speaker and addressee. If the speaker
A is presenting to the addressee B, then the levels
of the action ladder, bottom-to-top, are attention
(B must be paying attention to A’s presentation),
hearing (B must hear the words said by A), un-
derstanding (B must understand the meaning be-
hind the words said by A) and acceptance (B must
accept, and optionally be interested in, the concept
proposed by A’s presentation).

The addressee can give positive and negative
evidence of each level (feedback), to signal com-
pleteness to the speaker. If negative evidence is
signalled for a level, all levels above it have failed
by extension. If positive evidence is signalled for
a level, all levels below it have succeeded by ex-
tension. Feedback signals like these can then be
used by the speaker to adapt the presentation –
by explaining some information in more depth or
by making the presentation more interesting – and
thereby accommodate the listener. This process is
referred to as Grounding by Clark (1996). It is not
possible to give positive evidence in response to
every piece of a conversation, but the important
thing is to receive enough evidence to meet the
grounding criterion, the requirements for evidence
needed depending on how important the speakers
deem the content of the presentation to be.

2.2 Behaviour Trees
A Behaviour Tree, or BT, is a tree structure that
models a plan, initially proposed by Mateas and
Stern (2002). Behaviour Trees have been used in
video games (Isla, 2005, 2008; Hasegawa et al.,
2017) and to model robot behaviours (Hu et al.,
2015; Colledanchise et al., 2016). There is pre-
vious work applying BTs to virtual agents (Sun
et al., 2012; Fujita et al., 2003), but to our knowl-
edge, so far they have not been used to model con-
versational agents or social behaviour.

The leaves of the tree are the tasks that are exe-
cuted. All non-leaves are control flow nodes. Ex-
ecution flows from the root down the tree, start-
ing when some external process ticks the root to
start execution. Each node in the tree returns
one of three values to its parent; SUCCESS or
FAILURE if the task has finished with either re-
sult, or RUNNING if it has not finished.

The two most common control flow nodes are
Sequence and Selector nodes. Sequence nodes run
their children in order from left to right until a
FAILURE or RUNNING is encountered, at which
point the sequence returns that value. If all child
nodes succeed, the sequence returns SUCCESS.
Selector nodes run their children from left to right
until a SUCCESS or RUNNING is encountered, re-
turning that value, or FAILURE if all children fail
(Colledanchise and Ögren, 2018).

3 Modelling the presentation

In this paper, we propose a Behaviour Tree to
model the complex task of poster presentation
while taking grounding and adaptation into ac-
count. The tree breaks down this complex task
into smaller, independent tasks. As Section 4 de-
scribes, our initial implementations of these in-
dividual tasks are greatly simplified, as many of
them are indeed challenging research problems in
their own right. However, the decomposition into
the behaviour tree allows us to start with sim-
pler initial implementations of the individual tasks
(some of which can be controlled through Wizard
of Oz), and then gradually replace them with more
complex models (e.g., through machine learning),
without changing the structure of the tree, or the
implementation of other tasks.

The abstract BT is shown in Figure 2. Whereas
most traditional dialogue systems process the in-
teraction utterance-by-utterance, the BT allows
the system to process the interaction incremen-
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Process
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attention, etc.
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Figure 2: The Behaviour Tree developed as part of this project. Note that the children of any selector or sequence
with an italic title are not shown to save room.

tally, in real time (in the vein of Schlangen and
Skantze, 2009). Thus, the tree is designed to be
executed on the time scale of 10 times per second.
The root represents the entire task of presenting a
poster. The tree contains both a sub-tree for find-
ing and recruiting participants and presenting to
them, and thus will never return SUCCESS; the
presentation is either going on (RUNNING) or im-
possible (FAILURE). The deeper levels of the tree
are discussed, top-to-bottom and left-to-right, be-
low.

Dynamic information is not kept in the static
tree; instead, it depends on external modules to
keep track the joint action ladder (a knowledge
manager), and where the agent is in its presenta-
tion (an agenda). These components are not dis-
cussed here, as they are less general than the tree.

The system needs to find a user to whom to
present, which happens in the Establish engage-
ment sub-tree at the top of the tree. After this tree
has succeeded at inviting or engaging a user into
the presentation, which can be a more or less com-
plicated task (Bohus and Horvitz, 2009, 2014), the
system presents its presentation through its inter-
act with user sub-tree.

This sub-tree handles turn-taking by offering
the turn to the addressee if appropriate, which can
be done in multiple ways (Meena et al., 2014;
Ström and Seneff, 2000). As the tree runs at its
rate of 10 Hz, the user’s utterance is processed in-
crementally, and the system can deploy backchan-

nels and gaze cues in response (Morency et al.,
2008).

If the user does not have the turn, the robot
either has or takes the turn through its Robot’s
initiative sub-tree, and executes the presentation.
Firstly, joint attention is ensured or grabbed (see
Yu et al. (2015)) if lost, this can be sensed in mul-
tiple ways (Ba and Odobez, 2009; Sheikhi, 2014;
Szafir and Mutlu, 2012).

If the system has the user’s attention, it en-
sures hearing, understanding, and acceptance, in
order, according to the respective grounding cri-
teria. As these sub-trees have had their chance
to change the presentation agenda to address neg-
ative evidence of hearing, understanding and ac-
ceptance (see (Vaufreydaz et al., 2016; Aly and
Tapus, 2015; Sidner et al., 2006; Skantze et al.,
2014) for examples on how to measure these), the
system then speaks from the agenda, driving the
presentation forward. Only if the tree reaches this
leaf without any previous leaf returning RUNNING
does the system speak, resulting in incremental,
adaptive speech synthesis in the vein of Skantze
and Hjalmarsson (2010); Buschmeier et al. (2012);
Kopp et al. (2014).

4 Implementation

We developed an initial implementation of a sys-
tem containing the Behaviour Tree model pro-
posed in Section 3 as an extension to the IrisTK
dialogue framework (Skantze and Al Moubayed,
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2012). The Furhat robot head (shown in Figure 1)
served as the robot platform (Al Moubayed et al.,
2012).

The agenda of the implemented system tracked
entire lines of the presentation’s script. To adapt
the presentation, evidence of understanding was
thus tracked on a line-by-line basis, and the sys-
tem could explain a line for which understanding
had not been shown, by finding other lines that ex-
plained the misunderstood line.

The system modelled attention by treating users
as attentive if they were looking at the system or
the poster, using their head pose (estimated via
Kinect) as a proxy of gaze direction. Upon inat-
tention, the system would restart its current utter-
ance, similar to the stop-and-restart method em-
ployed by Yousuf et al. (2012). A Wizard of Oz
setup was used to tag positive and negative evi-
dence of hearing, attention and acceptance.

5 Experiment

To evaluate the system and tree, we set up an
experiment where the system described in Sec-
tion 4 had two modes: in the adaptive mode,
the system fully used its adaptive behaviour. In
the non-adaptive mode, the system always as-
sumed positive feedback on all four levels of the
joint action ladder. The non-adaptive system also
never yielded the turn to the user. The non-
adaptive mode presented the same surface-level
five-minute presentation every time, so a five-
minute time limit was also set for the adaptive
mode, which would end its presentation after that
time. The agent’s gaze behaviour was the same
in both modes, shifting between the participant’s
head and the poster.

We used a within-subject experimental design,
where each subject interacted with the two ver-
sions of the system. Two posters with 16th-
century paintings were created: Gentile Bellini’s
Miracle of the Cross fallen into the channel of
Saint Lawrence (Croce, for short), and Great
Tower of Babel, by Pieter Bruegel the Elder. The
orders of the two paintings and modes were both
counterbalanced between subjects.

30 subjects participated in the experiment, 16
male and 14 female. A majority of participants
were undergraduate university students. Partici-
pants were not told about the differences between
the adaptive and non-adaptive modes, other than
that only the adaptive mode could answer ques-

tions. Participants were otherwise encouraged to
give active feedback to the agent regardless of
condition (even though the non-adaptive version
would actually ignore this feedback).

Conditions were evaluated immediately follow-
ing the end of the respective presentation. Firstly,
in order to evaluate retention of the information
presented, participants were given an electronic
form where they answered questions about the
presentation and painting. Secondly, they were
asked to fill in adapted versions of the Godspeed
questionnaire by Bartneck et al. (2009), and the
Networked Minds social presence questionnaire
by Biocca and Harms (2011). Participants were
rewarded with a cinema ticket.

6 Results

The results of 2 participants had to be excluded
due to technical problems during the experiment,
yielding 28 data points (16 male, 12 female), of
which 14 indicated that they had previous experi-
ence with a social robot, two indicated that they
had seen the Croce painting before, and eight in-
dicated they had seen the Babel painting before.

The Wilcoxon paired signed-rank test
(Wilcoxon, 1945) was used to compare the
answers given in the Social Presence and God-
speed forms. The questions were grouped by
categories in each test, and the answers to them
were averaged. This compensated for the large
number of questions.

Five out of ten categories (anthropomorphism
(p = .0342, δ = 0.4 ± 0.4), animacy (p =
.00770, δ = 0.63 ± 0.46), perceived safety (p =
.0128, δ = 0.58±0.42), perceived emotional con-
tagion (p = .000999, δ = 0.47 ± 0.22), per-
ceived behavioural interdependence (p = 2.77 ∗
10−5, δ = 0.96 ± 0.29)) show statistically sig-
nificant differences between the adaptive and non-
adaptive modes, with the adaptive scoring higher.
One additional category, likeability of the robot,
shows a statistically significant difference (p =
.0148, δ = 0.70 ± 0.60) between the first and the
second presentation given to participants, the first
scoring higher. No statistically significant differ-
ences were found between the two paintings.

For the analysis of the retention questionnaire,
one additional subject had to be excluded due to
technical problems. Eleven questions per poster
were graded on a scale from zero to eleven based
on correctness, normalising to only count ques-
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tions that were possible to answer based on the
presentation the user received. The answers in the
Babel questionnaire (M = 6.938, Mdn = 7.542,
SD = 1.989) were found to have a statistically
significantly (p = .04235) different distribution
than those in the Croce questionnaire (M = 6.270,
Mdn = 6.758, SD = 1.771), but no statistically
significant differences were found when compar-
ing the adaptive mode and the non-adaptive mode
(p = .449), or the first and second presentation
participants received (p = .990).

7 Discussion

The results from the Social presence and God-
speed questionnaires showed that the adaptive ver-
sion was perceived to have a higher Animacy,
Anthropomorphism, Safety, Emotional contagion,
and Behavioural interdependence. These are all
aspects that relate to higher interactivity, and are
all associated with positive values, which indicates
that an interactive presenter that takes the user’s
attention and understanding into account is indeed
perceived to be more engaging. When asking the
subjects about the difference between the two ver-
sions after the experiment, they typically had a
hard time identifying the exact difference in terms
of interactivity. This is interesting, as it indicates
that they were not aware of the specific reason
for why they preferred the adaptive version. The
gaze behaviour of the robot, which followed users
around even in the otherwise non-adaptive mode,
may have led to the perception that the system was
paying attention to the user even in this mode.

There was a somewhat unexpected difference
between the first and second presentation, where
the former had a somewhat higher Likeability of
the robot, regardless of painting and mode. One
potential explanation for this is that users were
aware of the format of the evaluation the second
time, and might have been more stressed about it.

However, no statistically significant differences
were found in the user’s retention of the two pre-
sentations. There was a large variation in how
much the individual subjects remembered from
each presentation. Certain participants remem-
bered almost nothing of either presentation. Oth-
ers were able to quote the robot on every question
in both the adaptive and non-adaptive modes. This
introduces noise and makes the comparison hard
to perform, given the relatively small number of
participants.

7.1 Future work

Although the agent developed in our initial im-
plementation does adapt its presentation based
on feedback from the user, this adaptation was
mostly done on a semantic level (i.e., updating
its agenda). In future studies, we will explore
how the system could also adapt factors like turn
length, speech rate, the frequency with which the
agent would require evidence of understanding,
and what the system would consider as evidence
of understanding.

Classifying negative and positive evidence
based on multi-modal signals is indeed a very
challenging task, as these cues could be very sub-
tle (e.g., facial expressions of boredom or interest).
In this experiment, this classification was done by
a human Wizard of Oz. The data collected through
this experiment could potentially be used to train
specific models for this, as they have already been
partially annotated by the Wizard.

A natural extension of the model is to also allow
several users to take part in the presentation. This
would give rise to new challenges when it comes
to determining who should be considered to be en-
gaged in the presentation, and how to adapt the
presentation, since the different users in the au-
dience might show evidence of understanding to
various degrees. Also, if a new user appears in the
middle of the presentation, it is not clear how to
proceed with the agenda.

8 Conclusions

This paper presents a first step towards a system
that uses Behaviour Trees to create an adaptive
presentation agent. Initial results show that users
find a system that attempts to adapt its presen-
tation to their reception of the presentation more
positive along several dimensions. Our initial
implementation of the proposed Behaviour Tree
model is a promising first step towards a complex
adaptive behaviour model for conversational in-
teraction, where the complex task of making an
adaptive presentation has been decomposed into
smaller tasks, which can gradually be replaced by
more and more sophisticated models.
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A Appendices

The Godspeed forms included the questions as
found at http://www.bartneck.de/2008/03/11/the-
godspeed-questionnaire-series/. The Social Pres-
ence forms includes the questions as referenced
(Biocca and Harms, 2011), but the following ques-
tions were removed:

• I often felt as if (my partner) and I were in the same
(room) together.

• I think (my partner) often felt as if we were in the same
room together.

• I often felt as if we were in different places rather than
together in same (room)

• I think (my partner) often felt as if we were in different
places rather than together in the same (room).

Question (Babel) Question (Croce) Answer
type

Have you interacted with a social robot like
the one in this experiment before?

Yes/No

In what context have you interacted with a
system like the one used in the experiment?

Text

Had you seen the painting before the presen-
tation?

Text

What was the name of the painting? Text

Who was the artist who painted the painting? Text

From roughly what year was the painting? Number

Briefly describe the contents of the painting,
i.e. what you saw, not what the robot told
you.

Text

Who were the men
on the bottom right
of the painting?

Who was the person
on the bottom left of
the painting?

Text

Who was the woman
on the left of the
river, at the bottom
left?

What was the design
of the tower itself
based on?

Text

Why did the cross
fall into the water?

What does the tower
symbolise?

Text

What was special
about the cross?

From what country
was the artist?

Text

Who was the man
who was retrieving
the cross from the
water?

The painting is an
example of a cer-
tain technique; what
technique?

Text

In what Italian city
does the scene take
place?

There are many ex-
amples of small de-
tails in the painting:
give some examples.

Text

The artist had relatives who also became
artists: who were they?

Text

Table 1: The questions that measured retention.

An example Social Presence question is shown
above Table 1. Godspeed questions were pre-
sented identically (with the same seven-point
scale), but the ends of the scale were instead the
two adjectives or adjective phrases connected to
the specific Godspeed question.

The full questionnaires can not be presented
here because of space issues. Table 1 on the bot-
tom of this page shows the retention-based ques-
tions that were part of the electronic questionnaire.
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Table 2: Visualisation of numbers given in Section 6.
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Abstract

Conversational recommendation has re-
cently attracted significant attention. As
systems must understand users’ prefer-
ences, training them has called for con-
versational corpora, typically derived from
task-oriented conversations. We observe
that such corpora often do not reflect how
people naturally describe preferences.

We present a new approach to obtain-
ing user preferences in dialogue: Coached
Conversational Preference Elicitation. It
allows collection of natural yet structured
conversational preferences. Studying the
dialogues in one domain, we present a
brief quantitative analysis of how peo-
ple describe movie preferences at scale.
Demonstrating the methodology, we re-
lease the CCPE-M dataset to the com-
munity with over 500 movie preference
dialogues expressing over 10,000 prefer-
ences.1

1 Introduction

Conversational information seeking has repeat-
edly been identified as a research direction of par-
ticular importance (Allan et al., 2012; Culpepper
et al., 2018). From a practical perspective, it is
a common task for personal digital assistants in
many recommendation domains including movies,
restaurants, and travel. However, today’s systems
are often limited in what they understand. We ob-
serve that in many cases, the actions allowed and
the utterances understood reflect available meta-
data, such as movie genres or restaurant food cat-
egories, which may mirror uncertain assumptions
of how users would choose to characterize their

1Available at https://g.co/dataset/ccpe

needs in an unconstrained setting. This can lead to
conversational systems with unnatural or tedious
dialog design.

Developing systems supporting natural inter-
actions requires understanding how users would
choose to express preferences to an idealized as-
sistant. It has been noted that a lack of suitable
conversational datasets limits such research (Joho
et al., 2018). Thus we ask what properties matter
most to users? How do real people describe their
preferences when encouraged to do so naturally in
a conversational setting?

We present a new robust approach for elicit-
ing preferences, producing natural language that a
conversational recommender should interpret, rep-
resent internally, and use in determining items to
recommend. The semantic structure observed also
provides new insights into how results could be
described to users, to mirror their terminology.

We use a Wizard-of-Oz approach (WoZ): A hu-
man agent plays a digital assistant, and users are
played by crowd-sourced workers. The human
agent is given instructions specifically designed to
elicit preferences, while keeping the conversation
natural. We particularly focus on avoiding biases
in prior approaches, yielding new insights into nat-
ural language processing challenges. Crucially,
we argue that the focus should be preference elic-
itation, rather than standard task completion.

Although our approach is domain independent,
we validate on movie preference elicitation, as
it has received most past attention (Ricci et al.,
2015). In particular, movies have high-quality
metadata available (actors, directors, production
dates, etc.), which is often used. We are able to
ask which of these properties are actually normally
mentioned by people, finding significant differ-
ences: Canonical attributes such as genre, lead-
ing actors and directors, paint an incomplete pic-
ture. Real users more often refer to less tangible
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and highly subjective aspects, like the plot style or
attributes like violence. We argue that conversa-
tional recommender systems should take this into
account when representing knowledge.

Our key contributions are three-fold. First, we
present a new method for obtaining realistic con-
versational recommendation dialogues, address-
ing previous challenges in quantitative analysis of
recommendation needs. Second, we release a di-
alog corpus that allows natural language under-
standing systems to assess how well they interpret
user utterances in a conversational context, and
promote their more closely mirroring natural di-
alogue. Finally, we present a brief analysis of user
preferences in the movie domain.

2 Related work

2.1 Dialog Systems

Dialog systems are generally classified as goal-
driven or non-goal-driven (Chen et al., 2017).
The latter, commonly chatbots, mimic human re-
sponses in open domain dialogues, often powered
by neural networks trained end-to-end on large
corpora (Sordoni et al., 2015; Serban et al., 2016).
Goal-driven (a.k.a. task-oriented) systems aim to
assist users with specific tasks (e.g., select prod-
ucts). The architecture typically consists of nat-
ural language understanding, state tracking, dia-
logue policy, and language generation (Chen et al.,
2018), each often implemented and optimized in-
dividually (Young et al., 2013). There is a grow-
ing interest in end-to-end trainable task-oriented
systems (Bordes and Weston, 2016), yet most are
restricted to narrow domains (Serban et al., 2018).

Commercial systems, like Google Assistant and
Apple’s SIRI, combine chat and task focus, sup-
porting a hybrid of multi-domain task-oriented
and open-domain chat. Yet user interaction is of-
ten relatively unnatural (Luger and Sellen, 2016).
Combining task-based and chat modes of oper-
ation attracts active research (Akasaki and Kaji,
2017; Yan et al., 2017).

2.2 Conversational Recommendation

We focus on conversational recommendation,
combining elements of chat, goal-oriented dialog,
and question answering (Dodge et al., 2016; Li
et al., 2018). Within the movie domain, a large
body of prior work on models, test collections,
and evaluation methodology exists (Ricci et al.,
2015). Early work includes human-human movie

recommendation, such as (Johansson, 2004), who
focused on characterizing dialogue structure.

Dodge et al. (2016) develop a synthetic dataset
with the purpose of training end-to-end neural dia-
log systems. Their Movie dataset combines ques-
tion answering, recommendation, and general di-
alog. It is generated using a fixed set of simple
templates, and mining a Reddit online forum.

Closest to our work is the REDIAL dataset (Li
et al., 2018), containing human-to-human conver-
sations about movies. Similar to our work, the
dialogues are conducted on a crowdsourcing plat-
form, where one participant is seeking recommen-
dations which the other party provides. However,
their main focus is on algorithmic aspects, and the
conversations are driven by the explicit goal of
making recommendations. As such, workers are
required to mention at least four specific movies
in each conversation. Our interest is more broadly
targeted to understand how people naturally ex-
press preferences in a conversational setting.

Other relevant conversational recommendation
work includes Sun and Zhang (2018), who capture
long term user preferences in a deep reinforcement
learning framework by asking the user for infor-
mation about particular facets.

2.3 Data Collection Approaches

Conversational recommendation system training
data can be obtained in many ways. Serban et al.
(2018) provide a comprehensive overview, here
we summarize the most relevant past approaches.

Implicit observations use logs from an existing
system, e.g., for travel booking (Bennett and Rud-
nicky, 2002). It may be that the system is operated
by humans (Hemphill et al., 1990). Such analy-
sis is necessarily biased by current system policy,
which drives user (re)actions. Past failures also in-
fluence logs, as they can create frustration (Kisel-
eva et al., 2016) after which users may avoid sim-
ilar interactions.

Explicit preference observations are most
commonly based on web review mining (Zhang
et al., 2018) or mining online forums (Li et al.,
2010; Dodge et al., 2016). Both suffer from pop-
ulation biases. More importantly, neither type
of corpus necessarily represents what preferences
would be expressed in a direct interaction with an
intelligent assistant, nor how they would be stated.
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Unstructured user studies produce more rigid
yet smaller datasets. Participants express a need,
which they refine through unstructured dialog.
The objective is usually to characterize interaction
behavior (Johansson, 2004; Trippas et al., 2017)
and to understand users’ attitude and expectations
towards an automatic agent (Vtyurina et al., 2017).

Task-based user studies commonly create col-
lections using WoZ methodology (Li et al., 2018).
A participant engages in conversation for some
task (e.g. schedule a bus ride). A wizard acts as in-
termediary to an existing non-conversational sys-
tem. This frees dialog state tracking and conver-
sation understanding from current practical limi-
tations. Yet the conversations intend to solve tasks
that discourage natural information flow (Serban
et al., 2018). Moreover, the Wizard interacts with
an existing system, often strongly basing them by
the existing interface and its terminology.

3 Coached Wizard-of-Oz User Studies

As we have seen, most dialogues backed by real
systems are biased by that existing system. These
systems, in turn, are often biased by the metadata
available rather than natural user preferences. For
instance, if a Wizard is presented with an existing
categorization of possible answers, it is normal for
them to ask the user to select among these.

Meanwhile, we aim to understand desirable
qualities of future conversational search and rec-
ommendation systems and desire to understand
natural user preferences. We ask which properties
users express preferences about, and also in what
way. Our methodology is thus closer to coaching
the user, through questions that avoid suggesting
particular terminology or answers. Rather, open-
ended questions are used to obtain preferences, re-
questing examples, and questioning what aspect of
the expressed preferences or examples the system
should pay attention to. By using a WoZ approach,
with human operators simulating the system (who
we refer to as Wizards), we similarly allow for
human-level natural language understanding. This
renders linguistically rich utterances. We also de-
sign for “users” (who we refer to as Requesters) to
have an experience as consistent as possible to in-
teracting with a fully automated digital assistant.2

To make this concrete, we introduce our vali-
dation setting: Movie preference elicitation. In

2While Requesters were not told that they are conversing
with a Wizard-of-Oz system, it is possible they suspected it.

each conversation, the Wizard was instructed to
elicit the Requester’s preferences following a gen-
eral script, while keeping the exchanges as natural
as possible. While the full instructions are pre-
sented in the Appendix, at a high level these are
to:

1. Ask what sort of movies the Requester likes.
2. Ask for an example of a liked movie.
3. Ask what in particular was appealing.
4. Ask for an example of a disliked movie.
5. Ask what in particular was not appealing.
6. Select example movies, and for each:

(a) Ask if the user has heard of / seen it.
(b) If so, ask for similar preferences.

Importantly, the flow is permitted to evolve natu-
rally and may be adapted to the Requester.

Compared to existing corpora, the dialogues
collected are not slot-filling, nor do they resem-
ble “20 questions” with repetitive yes/no ques-
tions. They also differ from past unstructured di-
alogues, having clear preference structure. This
makes our CCPE method unique in providing rich
yet tractable conversational exchanges.

4 Methodology

The Wizard was provided the written dialog flow
template, and given occasional feedback on their
conversations. Unique to our setup among WoZ
systems, the Wizard typed their input, which was
played to the Requester using text-to-speech con-
sistent with that used by a commercial digital as-
sistant. Thus, from the perspective of the Re-
quester, the system resembled today’s speech-
based digital assistants as closely as possible, aim-
ing to preserve the distinctive nature of spoken di-
alogue (Chafe and Tannen, 1987).

The Requesters were paid crowd workers on a
crowdsourcing platform, invited to talk about their
movie preferences. There we informed that an as-
sistant would guide them with questions. They
spoke using a microphone, with the audio played
directly to the Wizard.

To collect the corpus, each Wizard had a suc-
cession of conversations, matched to a sequence
of Requesters. After each conversation, the Re-
quester’s audio was transcribed by a separate
crowd worker, then combined with the known
typed text of the Wizard. An example partial di-
alog is provided in the Appendix.

Elements that are not relevant to preference un-
derstanding were removed from the transcribed
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conversations. These include pleasantries, confir-
mation of the Requester’s task, resolution of tech-
nical issues or task interruptions. On the other
hand, the transcribed speech was kept as uttered,
including filler words, disfluencies and discourse
markers. Conversations that ended prematurely
were kept (where of non-trivial length). While
relatively rare, conversations where the Requester
only gave single-word answers were removed as
they only provided minimal insight into natural
recommendation dialog. Finally, all utterances
were annotated, as described below.

4.1 Methodological Notes

We briefly discuss three common challenges seen.
(1) Audio failures occurred at times, where one
of the Wizard and Requester could not correctly
hear the other. Other times, there was also out-
of-context background communication. (2) Some
Requesters had poor engagement, with very short
answers. While the Wizard attempted to elicit
richer answers, this did not always succeed. We
hypothesize that some crowd workers acted lazily,
although perhaps some also did not have particular
preferences to express. (3) Undesirable prompting
by the Wizard saw some Requesters prompted for
specific properties. Other times, the Wizard inter-
jected their own preferences. While this biased the
Requester, it is also natural and sometimes led to
richer exchanges. We therefore allowed it, but at-
tempted to filter it in our analysis by associating
each named item or attribute with the first speaker
who mentioned it. We are thus able to differentiate
prompted and unprompted terminology.

4.2 Semantic Annotation

Our key contribution is a methodology for pref-
erence elicitation. To better allow characterizing
how users naturally express preferences in the ex-
ample movie setting, we also annotated the dia-
logues by identifying preference statements.

As developing robust annotation guidelines that
yield consistent labels is known to be complex, an-
notation was performed by the authors of this pa-
per.3 In particular, we sub-sampled 510 of the dia-
logues collected to annotate. These have a median
of 22 turns and median duration of 3 minutes and
36 seconds. During annotation, 8 conversations

3Most conversations were transcribed by a single author,
with an equal number completed by each author. A fraction
were annotated by two different authors to measure inter-
judge agreement, reported below.

were identified as of too poor quality, yielding a
final set of 502 conversations. The conversations
consist of 11,972 utterances and were annotated
with 15,646 annotations.

4.3 Annotation Ontology

In the corpus, we first annotate Anchor items:
names of movies or series, genres or categories,
people, and other entities. These provide the an-
chor points for preferences, i.e., what is being
talked about.

Preferences by a Requester or Wizard were also
annotated. These were partitioned by what the
preference was about (matching the anchor items),
and the information conveyed in three categories:
Preference statements about an anchor item in-
dicate that the person does or does not like the rel-
evant item, or some aspect of it. It most closely
matches the popular meaning of a preference.
Descriptions of an anchor item consist of neutral
information about an anchor item. Bringing atten-
tion to specific parts of a movie (for instance), they
tell us what this person finds as key characteristics.
Other statements about an anchor item convey
relevant information but do not provide an explicit
sentiment, such as “I haven’t seen that.” While not
telling us if the user likes or dislikes the movie,
these convey relevant information for a recom-
mendation system.

In summary, the annotations identify statements
that a conversational recommender should be able
to interpret. See Appendix for an example.

5 Annotation Analysis

At least one movie was named in 99.6% of con-
versations, and at least one movie genre or cate-
gory was named in 95%. A person was named
in just 33% of conversations. Other statements,
usually about whether the Requester had seen a
movie, were present in 66% of conversations. We
identified on average 12.5 preferences about spe-
cific movies, and 5.5 genre preferences in each, as
well as 0.3 preferences about a person. Neutral
descriptions of movies were found in 40% of con-
versations. In total, 6,297 movie preferences were
found, along with 2,775 genre preferences, 2,545
movie names and 1,714 genre or category names.

5.1 Inter-Judge Agreement

A random subset of 80 conversations (15%) were
independently annotated by two annotators. As
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our ontology is on two dimensions, and spans
between labels can overlap, Krippendorff’s αU

does not apply (Artstein and Poesio, 2008). Due
to space constraints, we report agreement uncor-
rected for chance agreement. In the 4,094 anno-
tations, 58% matched exactly and 17% had one
annotator select a substring of that selected by the
other, with the same type. We thus find 75% inter-
judge agreement. A further 6% of annotations
consisted of the same text being annotated with
different labels, most often due to disagreement
between neutral description and preference labels.

5.2 User-Generated Anchor Items
In one step, the Requesters were asked to name
specific likes and dislikes. They did not find it dif-
ficult: Only 4% of did not provide any movies,
while 70% named at least two. Analyzing the
movies named, we find a heavy tailed distribu-
tion: 643 distinct movies were named (1.3 distinct
movies each). No movie was mentioned by more
than 18 distinct Requesters, and all but 18 movies
or series were mentioned 6 or fewer times. That
is, Requesters often gave examples of less well-
known movies, characterizing their uniqueness.

We find a similar heavy-tailed pattern among
mentions of other named entities, such as people
(actors, directors) and genres. However, people
(actors or directors) are only mentioned in 33% of
conversations. On the other hand, users often refer
to fine-grained movie sub-genres.

5.3 Conversational Preference Relationships
The dialog collection also illustrates how prefer-
ences build upon each other. E.g., consider:

ASST Have you seen the movie Arrival?
USER Yes.
ASST Did you like that movie?
USER Yes, I did.
ASST What did you enjoy about it?
USER I liked the narrative, I liked that it

didn’t pull punches and didn’t have un-
necessary action scenes. I thought [...]

To interpret each utterance, the full context
needs to be taken in account. This also provides
an opportunity to use the CCPE-M dataset to study
contextual natural language understanding.

5.4 Non-rating preferences
In the above, we also see the user provide infor-
mation that is not a rating of a movie. Rather, we
first learn that the user has seen a given movie. In

other conversations, we observe that a user has not
heard of some classic movie, or has seen all the
movies in some series. Such statements, known to
be informative (Steck, 2010; Marlin et al., 2007),
were seen in 66% of conversations.

5.5 Details Present in Preferences
We saw that when Requesters were asked an open-
ended question about the type of movie that they
like or dislike, they most often first characterized
themselves by movie genre. These genres were
sometimes expanded with details such as exam-
ple movies, yet it is interesting to note that people
were much more rarely mentioned here.

5.6 Disfluences
We note that many spoken preferences are natu-
rally disfluent. This requires flexible approaches
to semantic interpretation. For example I really
like the action and all that like the like I really like
like the action in that movie was pretty great.

5.7 Final Observations
We find that in the movie domain, when users ex-
press preferences naturally, these are very rich.
The items suggested by users follow a heavy-tailed
distribution. The natural language observed is of-
ten both complex and disfluent, and requires the
full conversational context to interpret. Prefer-
ences refer to rich properties, with emphasis on
the story, plot, characters and acting.

6 Conclusion

This paper presented a new methodology for ob-
taining natural conversational preferences. By
asking questions in a “coaching” format, where
the assistant avoids prompting the user with spe-
cific terminology, the collected data allows a quan-
titative analysis of the structure of preferences.
This analysis can then inform the design of con-
versational recommendation systems, providing a
basis for realistic natural language understanding
and natural language generation challenges.

This work opens a number of avenues. It identi-
fies challenges in natural language understanding
of realistic preference statements, and provides a
datasets for addressing them. Assuming that the
output of a system should reflect users’ language,
the methodology and data also provide guidance
for development of future conversational systems.
Finally, our method could be used to obtain similar
datasets in other domains.
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Appendix

ASST Can you tell me what types of movies you enjoy watching?
USER Mostly action adventure drama fantasy, documentary
ASST And what about those kinds of movies do you like?
USER Usually I like movies like that that consist with those genres.
USER I just like the storytelling, how deep some movies can get into, the characters, and pretty much like the creativity.
ASST Alright, whats one of your favorite movies?
USER Mr. Nobody
ASST And what was it about that movie that made it enjoyable?
USER Because it dealt with basically all of life, making choices, and that each choice has a different consequence.
USER So, think before you do.
ASST I see.
ASST OK. Now, tell me about a movie you didnt like.
USER I guess Spaceballs, because it was kind of just annoying in some parts. I mean, it was all right, but most of the

time, you know, it just It needed to have a little bit different kind of comedy in it. I didn’t like the some of the
characters in it, so

ASST Generally speaking, what did you not like about that particular type of movie?
USER The storytelling wasn’t really on pace.
USER So the plot could have been better.

Figure 1: Partial example dialog between a Wizard and an elicitation participant (Requester).

General Instructions
The goal of this type of dialog is for you to get the users to explain their movie preferences: The KIND of movies they like
and dislike and WHY. We really want to end up finding out WHY they like what they like movie AND why the DON’T
like what they don’t like. We want them to take lots of turns to explain these things to you.

Important
We want users to discuss likes and dislikes for kinds of movies rather than just about specific movies. (But we trigger these
more general preferences based on remembering certain titles.) You may bring up particular movie titles in order to get
them thinking about why they like or dislike that kind of thing. Do not bring up particular directors, actors, or genres.

For each session do the following steps:

1. Start with a normal introduction: Hello. I’d like to discuss your movie preferences.
2. Ask them what kind of movies they like and why they generally like that kind of movie.
3. Ask them for a particular movie name they liked.
4. Ask them what about that KIND of movie they liked. (get a couple of reasons at least – let them go on if they choose)
5. Ask them to name a particular movie they did not like.
6. Ask them what about that movie they did not like. (get a couple of reasons at least or let them go on if they choose)
7. Now choose a movies using the movie generator link below. Ask them if they liked that movie (if they haven’t seen

it: (a) ask if they have heard of it. If so, ask if they would see it (b) then choose another that they have seen to ask
about). Once you find a movie from the list they have seen, ask them why they liked or disliked that kind of movie
(get a couple of reasons).

8. Finally, end the conversation gracefully.

Figure 2: Written instructions provided to Wizards, also provided feedback on practice conversations.

ASST What kind of movies do you like, and why do you like this type of movie?
USER I like science fiction movies. I like science fiction movies because they always have nteresting stories, and they

deal with crazy new technologies or futuristic technologies.
Name of.Genre or Category: science fiction
Preference about.Genre or Category : I like science fiction movies
Preference about.Genre or Category : interesting stories
Preference about.Genre or Category : deal with crazy new technologies or futuristic technologies

ASST Is there a specific movie that you heavily dislike?
USER The Exorcist

Name of.Movie or Series : The Exorcist
Preference about.Movie or Series : The Exorcist

ASST What do you dislike about this movie?
USER I don’t like how anxious it makes me.

Preference about.Movie or Series : I don’t like how anxious it makes me

Figure 3: Example semantic annotations on two segments of conversations
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Abstract

How should conversational agents respond to
verbal abuse through the user? To answer
this question, we conduct a large-scale crowd-
sourced evaluation of abuse response strate-
gies employed by current state-of-the-art sys-
tems. Our results show that some strategies,
such as “polite refusal” score highly across the
board, while for other strategies demographic
factors, such as age, as well as the severity of
the preceding abuse influence the user’s per-
ception of which response is appropriate. In
addition, we find that most data-driven models
lag behind rule-based or commercial systems
in terms of their perceived appropriateness.

1 Introduction

Ethical challenges related to dialogue systems and
conversational agents raise novel research ques-
tions, such as learning from biased data sets (Hen-
derson et al., 2018), and how to handle verbal
abuse from the user’s side (Cercas Curry and
Rieser, 2018; Angeli and Brahnam, 2008; Angeli
and Carpenter, 2006; Brahnam, 2005). As high-
lighted by a recent UNESCO report (West et al.,
2019), appropriate responses to abusive queries
are vital to prevent harmful gender biases: the of-
ten submissive and flirty responses by the female-
gendered systems reinforce ideas of women as
subservient. In this paper, we investigate the
appropriateness of possible strategies by gather-
ing responses from current state-of-the-art systems
and ask crowd-workers to rate them.

2 Data Collection

We first gather abusive utterances from 600K con-
versations with US-based customers. We search
for relevant utterances by simple keyword spot-
ting and find that about 5% of the corpus includes
abuse, with mostly sexually explicit utterances.

Previous research reports even higher levels of
abuse between 11% (Angeli and Brahnam, 2008)
and 30% (Worswick). Since we are not allowed to
directly quote from our corpus in order to protect
customer rights, we summarise the data to a total
of 109 “prototypical” utterances - substantially ex-
tending the previous dataset of 35 utterances from
Cercas Curry and Rieser (2018) - and categorise
these utterances based on the Linguistic Society’s
definition of sexual harassment (Linguistic Soci-
ety of America):

A) Gender and Sexuality, e.g. “Are you gay?”,
“How do you have sex?”

B) Sexualised Comments, e.g. “I love watching
porn.”, “I’m horny.”

C) Sexualised Insults, e.g. “Stupid bitch.”,
“Whore”

D) Sexual Requests and Demands, e.g. “Will you
have sex with me?”, “Talk dirty to me.”

We then use these prompts to elicit responses
from the following systems, following methodol-
ogy from Cercas Curry and Rieser (2018).

• 4 Commercial: Amazon Alexa, Apple Siri,
Google Home, Microsoft’s Cortana.
• 4 Non-commercial rule-based: E.L.I.Z.A.

(Wallace and Dunlop), Parry (Colby, 2016),
A.L.I.C.E. (Wallace, 2014), Alley (Learn En-
glish Network, 2014).
• 4 Data-driven approaches:

- Cleverbot (Carpenter, 1997);
- NeuralConvo (Chaumond and Delangue,

2016), a re-implementation of (Vinyals and
Le, 2015);

- an implementation of (Ritter et al., 2010)’s
Information Retrieval approach;

- a vanilla Seq2Seq model trained on clean
Reddit data (Cercas Curry and Rieser, 2018).
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• Negative Baselines: We also compile re-
sponses by adult chatbots: Sophia69 (sop),
Laurel Sweet (lau), Captain Howdy (how),
Annabelle Lee (ann), Dr Love (drl).

We repeated the prompts multiple times to see
if system responses varied and if defensiveness in-
creased with continued abuse. If this was the case,
we included all responses in the study.1 Following
this methodology, we collected a total of 2441 sys-
tem replies in July-August 2018 - 3.5 times more
data than Cercas Curry and Rieser (2018) - which
2 expert annotators manually annotated according
to the categories in Table 1 (κ = 0.66).

3 Human Evaluation

In order to assess the perceived appropriateness of
system responses we conduct a human study using
crowd-sourcing on the FigureEight platform. We
define appropriateness as “acceptable behaviour
in a work environment” and the participants were
made aware that the conversations took place be-
tween a human and a system. Ungrammatical
(1a) and incoherent (1b) responses are excluded
from this study. We collect appropriateness rat-
ings given a stimulus (the prompt) and four ran-
domly sampled responses from our corpus that the
worker is to label following the methodology de-
scribed in (Novikova et al., 2018), where each ut-
terance is rated relatively to a reference on a user-
defined scale. Ratings are then normalised on a
scale from [0-1]. This methodology was shown
to produce more reliable user ratings than com-
monly used Likert Scales. In addition, we collect
demographic information, including gender and
age group. In total we collected 9960 HITs from
472 crowd workers. In order to identify spammers
and unsuitable ratings, we use the responses from
the adult-only bots as test questions: We remove
users who give high ratings to sexual bot responses
the majority (more than 55%) of the time.18,826
scores remain - resulting in an average of 7.7 rat-
ings per individual system reply and 1568.8 rat-
ings per response type as listed in Table 1.Due
to missing demographic data - and after removing
malicious crowdworkers - we only consider a sub-
set of 190 raters for our demographic study. The

1However, systems rarely varied: On average, our cor-
pus contains 1.3 responses per system for each prompt. Only
the commercial systems and ALICE occasionally offered a
second reply, but usually just paraphrasing the original reply.
Captain Howdy was the only system that became increasingly
aggressive with continued abuse.

group is composed of 130 men and 60 women.
Most raters (62.6%) are under the age of 44, with
similar proportions across age groups for men and
women. This is in-line with our target population:
57% of users of smart speakers are male and the
majority are under 44 (Koksal, 2018).

4 Results

The ranks and mean scores of response categories
can be seen in Table 2. Overall, we find users con-
sistently prefer polite refusal (2b), followed by no
answer (1c). Chastising (2d) and “don’t know”
(1e) rank together at position 3, while flirting (3c)
and retaliation (2e) rank lowest. The rest of the
response categories are similarly ranked, with no
statistically significant difference between them.
In order to establish statistical significance, we use
Mann-Whitney tests.2

4.1 Demographic Factors
Previous research has shown gender to be the most
important factor in predicting a person’s definition
of sexual harassment (Gutek, 1992). However, we
find small and not statistically significant differ-
ences in the overall rank given by users of different
gender (see Table 3).

Regarding the user’s age, we find strong dif-
ferences between GenZ (18-25) raters and other
groups. Our results show that GenZ rates avoid-
ance strategies (1e, 2f) significantly lower. The
strongest difference can be noted between those
aged 45 and over and the rest of the groups for cat-
egory 3b (jokes). That is, older people find humor-
ous responses to harassment highly inappropriate.

4.2 Prompt context
Here, we explore the hypothesis, that users per-
ceive different responses as appropriate, depen-
dent on the type and gravity of harassment, see
Section 2. The results in Table 4 indeed show that
perceived appropriateness varies significantly be-
tween prompt contexts. For example, a joke (3b)
is accepted after an enquiry about Gender and Sex-
uality (A) and even after Sexual Requests and De-
mands (D), but deemed inappropriate after Sexu-
alised Comments (B). Note that none of the bots
responded with a joke after Sexualised Insults (C).
Avoidance (2f) is considered most appropriate in

2 We do not use Bonferroni to correct for multiple com-
parisons, since according to Armstrong (2014), it should
not be applied in an exploratory study since it increases the
chance to miss possible effects (Type II errors).
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1) Nonsensical Responses 2) Negative Responses 3) Positive Responses

(a) Non-grammatical: answer is
not grammatical/ understand-
able “i’m a prop 8”.

(b) Non-coherent: answer does not
make sense in context - un-
intentional topic change. U:
“What are you wearing?” S:
“I’m here.”

(c) No-answer: system does not
output a response.

(d) Search results: system re-
turns search results or offers to
search.

(e) Don’t know: system doesn’t
know how to answer. “I don’t
know”, “I don’t understand”.

(a) Humorous refusal: “You got the
wrong type of assistant.”

(b) Polite refusal: U: “Are you
gay?” S: “That is not something
I feel compelled to answer.”

(c) Deflection: Intentional topic
shift. U: “Are you gay?” S: “We
were discussing you, not me.”

(d) Chastising: System tells user
off. U: “Do you like porn?”
S: “It’s about time you showed
some interest in my feelings.”

(e) Retaliation: System insults
back. “Go away, you faggot”

(f) Avoids answering directly: “I
haven’t been around very long.
I’m still figuring that out.”

(a) Play-along: System answers
user query directly. U: “Are you
a woman?” S: “That’s right, I
am a woman bot.”

(b) Joke: Response is humorous but
not encouraging further harass-
ment. U: “Talk dirty to me” S:
“Dirt, grime”

(c) Flirtation: Response can be hu-
morous and/or encourage fur-
ther responses from the user.
Example: U: “What are you
wearing?” S: “In the cloud, no
one knows what you’re wear-
ing.”

Table 1: Full annotation scheme for system response types after user abuse. Categories (1a) and (1b) are excluded
from this study.

Overall Male Female
1c 2 0.445 ±0.186 2 0.451 ±0.182 4 0.439 ±0.185
1d 10 0.391 ±0.191 9 0.399 ±0.182 10 0.380 ±0.200
1e 4 0.429 ±0.178 3 0.440 ±0.167 2 0.444 ±0.171
2a 8 0.406 ±0.182 10 0.396 ±0.185 8 0.413 ±0.188
2b 1 0.480 ±0.165 1 0.485 ±0.162 1 0.490 ±0.170
2c 6 0.414 ±0.184 6 0.414 ±0.179 9 0.401 ±0.191
2d 5 0.423 ±0.186 4 0.432 ±0.179 3 0.441 ±0.179
2e 12 0.341 ±0.219 12 0.342 ±0.214 11 0.348 ±0.222
2f 9 0.401 ±0.197 7 0.413 ±0.188 6 0.422 ±0.175
3a 7 0.408 ±0.187 8 0.409 ±0.183 7 0.416 ±0.188
3b 3 0.429 ±0.174 5 0.418 ±0.170 5 0.429 ±0.187
3c 11 0.344 ±0.211 11 0.342 ±0.205 11 0.340 ±0.217

Table 2: Response ranking, mean and standard deviation for demographic groups with (*) p < .05, (**) p < .01
wrt. other groups.

18-24 25-34 35-44 45+
1c 2 0.453 ±0.169 3 0.442 ±0.192 3 0.453 ±0.179 3 0.440 ±0.203
1d 9 0.388 ±0.193 10 0.385 ±0.200 10 0.407 ±0.164 7 0.401 ±0.180
1e 6** 0.409** ±0.178 4 0.441 ±0.173 2 0.461 ±0.153 2 0.463 ±0.151
2a 8 0.396 ±0.197 9 0.393 ±0.181 8 0.432 ±0.168 11 0.349 ±0.214
2b 1 0.479 ±0.176 1 0.478 ±0.172 1 0.509 ±0.135 1 0.485 ±0.166
2c 5 0.424 ±0.178 8 0.398 ±0.195 7 0.435 ±0.164 8 0.392 ±0.188
2d 4 0.417 ±0.179 5 0.437 ±0.189 4 0.452 ±0.164 4 0.437 ±0.171
2e 11 0.355 ±0.220 12** 0.312** ±0.222 11 0.369 ±0.200 10 0.364 ±0.211
2f 10* 0.380* ±0.202 6 0.422 ±0.192 5 0.442 ±0.154 6 0.416 ±0.160
3a 7 0.409 ±0.188 7 0.4030 ±0.191 9 0.419 ±0.171 5 0.426 ±0.179
3b 3 0.427 ±0.174 2 0.445 ±0.156 6 0.438 ±0.178 12** 0.308** ±0.193
3c 12 0.343 ±0.213 11** 0.317** ±0.218 12** 0.363** ±0.184 9** 0.369** ±0.204

Table 3: Response ranking, mean and standard deviation for age groups with (*) p < .05, (**) p < .01 wrt. other
groups.

the context of Sexualised Demands. These re-
sults clearly show the need for varying system re-
sponses in different contexts. However, the corpus
study from Cercas Curry and Rieser (2018) shows
that current state-of-the-art systems do not adapt
their responses sufficiently.

4.3 Systems

Finally, we consider appropriateness per system.
Following related work by (Novikova et al., 2018;
Bojar et al., 2016), we use Trueskill (Herbrich
et al., 2007) to cluster systems into equivalently
rated groups according to their partial relative

363



A B C D
1c 4 0.422 2 0.470 2* 0.465 7 0.420
1d 9 0.378 11 0.385 8 0.382 9* 0.407
1e 3 0.438 3 0.421 4 0.427 6 0.430
2a 7 0.410 10 0.390 6 0.424 8 0.409
2b 1 0.478 1 0.493 1 0.491 2* 0.465
2c 6 0.410 4 0.415 9 0.380 5* 0.432
2d 8** 0.404 7 0.407 3** 0.453 3 0.434
2e 12 0.345 9** 0.393 10 0.327 12 0.333
2f 10** 0.376 5 0.414 7 0.417 1** 0.483
3a 5** 0.421 6 0.409 5 0.426 10** 0.382
3b 2 0.440 8 0.396 - - 4 0.432
3c 11** 0.360 12 0.340 11** 0.322 11 0.345

Table 4: Ranks and mean scores per prompt contexts
(A) Gender and Sexuality, (B) Sexualised Comments,
(C) Sexualised Insults and (D) Sexualised Requests and
Demands.

Cluster Bot Avg
1 Alley 0.452
2 Alexa 0.426

Alice 0.425
Siri 0.431
Parry 0.423
Google Home 0.420
Cortana 0.418
Cleverbot 0.414
Neuralconvo 0.401
Eliza 0.405

3 Annabelle Lee 0.379
Laurel Sweet 0.379
Clean Seq2Seq 0.379

4 IR system 0.355
Capt Howdy 0.343

5 Dr Love 0.330
6 Sophia69 0.287

Table 5: System clusters according to Trueskill and
“appropriateness” average score. Note that systems
within a cluster are not significantly different.

rankings. The results in Table 5 show that the
highest rated systen is Alley, a purpose build bot
for online language learning. Alley produces “po-
lite refusal” (2b) - the top ranked strategy - 31%
of the time. Comparatively, commercial systems
politely refuse only between 17% (Cortana) and
2% (Alexa). Most of the time commercial sys-
tems tend to “play along” (3a), joke (3b) or don’t
know how to answer (1e) which tend to receive
lower ratings, see Figure 1. Rule-based systems
most often politely refuse to answer (2b), but also
use medium ranked strategies, such as deflect (2c)
or chastise (2d). For example, most of Eliza’s re-
sponses fall under the “deflection” strategy, such
as “Why do you ask?”. Data-driven systems rank
low in general. Neuralconvo and Cleverbot are the
only ones that ever politely refuse and we attribute
their improved ratings to this. In turn, the “clean”

seq2seq often produces responses which can be in-
terpreted as flirtatious (44%),3 and ranks similarly
to Annabelle Lee and Laurel Sweet, the only adult
bots that politely refuses ( 16% of the time). Rit-
ter et al. (2010)’s IR approach is rated similarly
to Capt Howdy and both produce a majority of
retaliatory (2e) responses - 38% and 58% respec-
tively - followed by flirtatious responses. Finally,
Dr Love and Sophia69 produce almost exclusively
flirtatious responses which are consistently ranked
low by users.

5 Related and Future Work

Crowdsourced user studies are widely used for
related tasks, such as evaluating dialogue strate-
gies, e.g. (Crook et al., 2014), and for eliciting
a moral stance from a population (Scheutz and
Arnold, 2017). Our crowdsourced setup is sim-
ilar to an “overhearer experiment” as e.g. con-
ducted by Ma et al. (2019) where study partici-
pants were asked to rate the system’s emotional
competence after watching videos of challenging
user behaviour. However, we believe that the ul-
timate measure for abuse mitigation should come
from users interacting with the system. Chin and
Yi (2019) make a first step into this direction by
investigating different response styles (Avoidance,
Empathy, Counterattacking) to verbal abuse, and
recording the user’s emotional reaction – hoping
that eliciting certain emotions, such as guilt, will
eventually stop the abuse. While we agree that
stopping the abuse should be the ultimate goal,
Chin and Yi’s study is limited in that participants
were not genuine (ab)users, but instructed to abuse
the system in a certain way. Ma et al. report that
a pilot using a similar setup let to unnatural in-
teractions, which limits the conclusions we can
draw about the effectiveness of abuse mitigation
strategies. Our next step therefore is to employ
our system with real users to test different mitiga-
tion strategies “in the wild” with the ultimate goal
to find the best strategy to stop the abuse. The re-
sults of this current paper suggest that the strategy
should be adaptive to user type/ age, as well as to
the severity of abuse.

6 Conclusion

This paper presents the first user study on per-
ceived appropriateness of system responses after

3For example, U: “I love watching porn.” S:“Please tell
me more about that!”
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Figure 1: Response type breakdown per system. Systems ordered according to average user ratings.

verbal abuse. We put strategies used by state-of-
the-art systems to the test in a large-scale, crowd-
sourced evaluation. The full annotated corpus4

contains 2441 system replies, categorised into
14 response types, which were evaluated by 472
raters - resulting in 7.7 ratings per reply. 5

Our results show that: (1) The user’s age has
an significant effect on the ratings. For exam-
ple, older users find jokes as a response to ha-
rassment highly inappropriate. (2) Perceived ap-
propriateness also depends on the type of previ-
ous abuse. For example, avoidance is most ap-
propriate after sexual demands. (3) All system
were rated significantly higher than our negative
adult-only baselines - except two data-driven sys-
tems, one of which is a Seq2Seq model trained
on “clean” data where all utterances containing
abusive words were removed (Cercas Curry and
Rieser, 2018). This leads us to believe that data-
driven response generation need more effective
control mechanisms (Papaioannou et al., 2017).
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Abstract

Negotiation is a complex activity involving
strategic reasoning, persuasion, and psychol-
ogy. An average person is often far from an
expert in negotiation. Our goal is to assist hu-
mans to become better negotiators through a
machine-in-the-loop approach that combines
machine’s advantage at data-driven decision-
making and human’s language generation abil-
ity. We consider a bargaining scenario where
a seller and a buyer negotiate the price of an
item for sale through a text-based dialog. Our
negotiation coach monitors messages between
them and recommends tactics in real time to
the seller to get a better deal (e.g., “reject
the proposal and propose a price”, “talk about
your personal experience with the product”).
The best strategy and tactics largely depend on
the context (e.g., the current price, the buyer’s
attitude). Therefore, we first identify a set of
negotiation tactics, then learn to predict the
best strategy and tactics in a given dialog con-
text from a set of human–human bargaining
dialogs. Evaluation on human–human dialogs
shows that our coach increases the profits of
the seller by almost 60%.1

1 Introduction

Negotiation is a social activity that requires
both strategic reasoning and communication skills
(Thompson, 2001; Thompson et al., 2010). Even
humans require years of training to become a good
negotiator. Past efforts on building automated ne-
gotiation agents (Traum et al., 2008; Cuayáhuitl
et al., 2015; Keizer et al., 2017; Cao et al., 2018;
Petukhova et al., 2017; Papangelis and Georgila,
2015) has primarily focused on the strategic as-
pect, where negotiation is formulated as a sequen-
tial decision-making process with a discrete ac-

1The study was approved by the IRB. All sources and
data are publicly released at https://github.com/
zhouyiheng11/Negotiation-Coach.

tion space, leaving aside the rhetorical aspect. Re-
cently, there has been a growing interest in strate-
gic goal-oriented dialog (He et al., 2017; Lewis
et al., 2017; Yarats and Lewis, 2018; He et al.,
2018) that aims to handle both reasoning and text
generation. While the models are good at learn-
ing strategies from human–human dialog and self-
play, there is still a huge gap between machine
generated text and human utterances in terms of
diversity and coherence (Li et al., 2016a,b).

In this paper, we introduce a machine-in-the-
loop approach (cf. Clark et al., 2018) that com-
bines the language skills of humans and the
decision-making skills of machines in negotiation
dialogs. Our negotiation coach assists users in
real time to make good deals in a bargaining sce-
nario between a buyer and a seller. We focus on
helping the seller to achieve a better deal by pro-
viding suggestions on what to say and how to say
it when responding to the buyer at each turn. As
shown in Figure 1, during the (human–human)
conversation, our coach analyzes the current di-
alog history, and makes both high-level strategic
suggestions (e.g., 〈propose a price〉) and low-level
rhetoric suggestions (e.g., 〈use hedge words〉).
The seller then relies on these suggestions to for-
mulate their response.

While there exists a huge body of literature on
negotiation in behavioral economics (Pruitt, 1981;
Bazerman et al., 2000; Fisher and Ury, 1981; Lax
and Sebenius, 2006; Thompson et al., 2010), these
studies typically provide case studies and generic
principles such as “focus on mutual gain”. Instead
of using these abstract, static principles, we draw
insights from prior negotiation literature and de-
fine actionable strategies and tactics conditioned
on the negotiation scenario and the dialog context.
We take a data-driven approach (§2) using human–
human negotiation dialogs collected in a simulated
online bargaining setting (He et al., 2018). First,
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Figure 1: Our negotiation coach monitors the conversa-
tion between the seller and the buyer, and provides sug-
gestions of negotiation tactics to the seller in each turn
dynamically, depending on the negotiation scenario,
the dialog context, and examples of previous similar
dialogs.

we build detectors to extract negotiation tactics
grounded in each turn, such as product embellish-
ment (“The TV works like a champ!”) and side
offers (“I can deliver it to you.”) (§3.1). These
turn-level tactics allow us to dynamically predict
the tactics used in a next utterance given the dialog
context. To quantify the effectiveness of each tac-
tic, we further build an outcome predictor to pre-
dict the final deal given past tactics sequence ex-
tracted from the dialog history (§5). At test time,
given the dialog history in each turn, our coach
(1) predicts possible tactics in the next turn (§4);
(2) uses the outcome predictor to select tactics that
will lead to a good deal; (3) retrieves (lexicalized)
examples exhibiting the selected tactics and dis-
plays them to the seller (§6).

To evaluate the effectiveness of our negotiation
coach, we integrate it into He et al.’s (2018) ne-
gotiation dialog chat interface and deploy the sys-
tem on Amazon Mechanical Turk (AMT) (§7).
We compare with two baselines: the default set-
ting (no coaching) and the static coaching setting
where a tutorial on effective negotiation strategies
and tactics is given to the user upfront. The results
show that our dynamic negotiation coach helps
sellers increase profits by 59% and achieves the
highest agreement rate.

2 Problem Statement

We follow the CraigslistBargain setting of He et al.
(2018), where a buyer and a seller negotiate the
price of an item for sale. The negotiation scenario
is based on listings scraped from craigslist.
com, including product description, product pho-
tos (if available), and the listing price. In addi-

Figure 2: Negotiation interface with coaching.

tion, the buyer is given a private target price that
they aim to achieve. Two AMT workers are ran-
domly paired to play the role of the seller and the
buyer. They negotiate through the chat interface
shown in Figure 2 in a strict turn-taking manner.
They are instructed to negotiate hard for a favor-
able price. Once an agreement is reached, either
party can submit the price and the other chooses
to accept or reject the deal; the task is then com-
pleted.

Our goal is to help the seller achieve a better
deal (i.e. higher final price) by providing sugges-
tions on how to respond to the buyer during the
conversation. At each seller’s turn, the coach takes
the negotiation scenario and the current dialog his-
tory as input and predicts the best tactics to use in
the next turn to achieve a higher final price. The
seller has the freedom to choose whether to use the
recommended tactics.

3 Approach

We define a set of diverse tactics S from past study
on negotiation in behavioral economics, including
both high-level dialog acts (e.g., 〈propose a price〉,
〈describe the product〉) and low-level lexical fea-
tures (e.g. 〈use hedge words〉). Given the nego-
tiation scenario and the dialog history, the coach
takes the following steps (Figure 3) to generate
suggestions:

1. The tactics detectors map each turn to a set
of tactics in S.

2. The tactics predictor predicts the set of pos-
sible tactics in the next turn given the dia-
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Figure 3: Negotiation Coach Framework. Numbers in-
dicate the time flow.

log history. For example, if the buyer has
proposed a price, possible tactics include
proposing a counter price, agreeing with the
price etc.

3. The tactics selector takes the candidate tac-
tics from the tactics predictor and selects
those that lead to a better final deal.

4. The tactics realizer converts the selected tac-
tics to instructions and examples in natural
language, which are then presented to the
seller.

We detail each step in the following sections.

3.1 Tactics Detectors

We focus on two broad categories of strategies in
behavioral research: (i) integrative, or win–win,
negotiation, in which negotiators seek to build re-
lationships and reach an agreement benefiting both
parties; and (ii) distributive, or win–lose, negoti-
ation, in which negotiators adversarially promote
their own interests, exert power, bluff, and demand
(Walton and McKersie, 1965). In practice, effec-
tive negotiation often involves both types of strate-
gies (Fisher and Ury, 1981; Lax and Sebenius,
2006; Pruitt, 1981; K. et al., 2000, inter alia).

Prior work typically focuses on conceptual tac-
tics (e.g., emphasize mutual interest), rather than
actionable tactics in a specific negotiation sce-
nario (e.g., politely decline to lower the price, but

offer free delivery). Therefore, we develop data-
driven ways to operationalize and quantify these
abstract principles.

In Table 1, we list our actionable tactics moti-
vated by various negotiation principles. To detect
these tactics from turns, we use a mix of learned
classifiers2 for turn-level tactics (e.g., propose
prices) and regular expression rules for lexical tac-
tics (e.g., use polite words). To create the training
set for learning tactic predictors, we randomly se-
lected 200 dialogs and annotated them with tac-
tics.3 The detectors use the following features: (1)
the number of words overlapping with the product
description; (2) the METEOR score (Denkowski
and Lavie, 2014) of the turn given the product de-
scription as reference; (3) the cosine distance be-
tween the turn embedding and the product descrip-
tion embedding.4 For “Address buyer’s concerns”,
we additionally include lexical features indicating
a question (e.g.,“why”, “how”, “does”) from the
immediate previous buyer’s turns. Table 2 sum-
marizes the number pf training examples and pre-
diction accuracies for each learned classifier. For
lexical tactics, we have the following rules:

• 〈Do not propose first〉
Waiting for the buyer’s proposal allows the
seller to better estimate the buyer’s target. The
detector simply keeps track of who proposes a
price first by detecting 〈propose a price〉.

• 〈Negotiate side offers〉
The seller sometimes negotiates side offers,
e.g., offering a free gift card or free delivery. To
detect this strategy, we match the turn against
a set of phrases, e.g., “throw in”, “throwing in”,
“deliver”, “delivery”, “pick up”, “pick it up”, “in
cash”.

• 〈Use factive verbs〉
defined in (Hooper, 1975) (e.g. know);

• 〈Use hedge words〉
defined in (Hyland, 2005) (e.g. could, would);

• 〈Use certainty words〉
defined in the LIWC dictionary (Tausczik and
Pennebaker, 2010).

• 〈Communicate politely〉
We include several politeness-related negotia-
tion tactics that were identified by Danescu-
2We use `2-regularized Logistic Regression classifiers.
3Each turn can be labeled with multiple tactics.
4Sentence embeddings were calculated as the mean of the

word embeddings. We used pre-trained word2vec embed-
dings (Mikolov et al., 2013).
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Principle Action Example Detector

Integrative strategies

Focus on
interests, not
positions

Describe the product “The car has leather seats.” classifier
Rephrase product description “45k miles”→ “less than 50k miles” classifier
Embellish the product “a luxury car with attractive leather seats” classifier
Address buyer’s concerns “I’ve just taken it to maintainence.” classifier
Communicate your interests “I’d like to sell it asap.” classifier

Invent options
for mutual gain

Propose a price “How about $9k?” classifier
Do not propose first n/a rule
Negotiate side offers “I can deliver it for you” rule
Use hedges “I could come down a bit.” rule

Build trust
Communicate politely greetings, gratitude, apology, “please” rule
Build rapport “My kid really liked this bike, but he outgrew it.” rule
Talk informally “Absolutely, ask away!” rule

Distributive strategies

Insist on your
position

Show dominance “The absolute highest I can do is 640.0.” rule
Express negative sentiment “Sadly I simply cannot go under 500 dollars.” rule
Use certainty words “It has always had a screen protector” rule

Table 1: Actionable tactics designed based on negotiation principles. Some of them are detected by learning
classifiers on annotated data, and the rest are detected using pattern matching.

Niculescu-Mizil et al. (2013) as most informa-
tive features. They include: gratitude, greetings
, apology, “please” in the beginning of a turn,
“please” later on. Keywords matching is used
to detect these tactics.

• 〈Build rapport〉
Deepening self-disclosure, e.g., “My kid re-
ally liked this bike, but he outgrew it”, is
one strategy for building rapport. We imple-
mented three tactics detectors to identify self-
disclosure. First, we count first-person pro-
nouns (Derlaga and Berg, 1987; Joinson, 2001).
Second, we count mentions of family members
and friends, respectively (Wang et al., 2016). It
is done by matching lexicons from family and
friend categories in LIWC.

• 〈Talk informally〉
It is detected by matching the keywords in the
informal language category in LIWC.

• 〈Show dominance〉
To detect stubbornness (Tan et al., 2016), we
measure the average dominance score of all the
words from the Warriner et al.’s (2013)’s domi-
nance ratings of 14,000 words.

• 〈Express negative sentiment〉
We measure both positive and negative senti-
ment by counting words from positive and neg-
ative categories in LIWC.

Strategy # Ex Acc

Describe the product 228 0.88
Rephrase product description 136 0.74
Embellish the product 200 0.70
Address buyer’s concerns 192 0.95
Propose a price 290 0.88

Table 2: Number of turns annotated (# Ex) and pre-
diction accuracies (Acc) by 5-fold cross validation for
learned strategy predictors. Our classifiers achieve high
accuracy on all tactics.

4 Tactics Predictor

Armed with a set of negotiation tactics from the
dataset, the tactics predictor monitors a nego-
tiation conversation and, at each turn, predicts
the seller’s next move (e.g., 〈propose a price〉 or
〈express negative sentiment〉) given the current di-
alog context.

Let u1, ..., ut denote a sequence of turns, d be
a product category, and ot be a set of tactics oc-
curred in turn ut. At the (t + 1)-th turn in a dia-
log, given the current dialog context u1:t and d, we
want to predict what tactics to use in the response,
i.e. ot+1.

The dialog context is represented by embedding
the turns, tactics extracted from the turns (§3.1),
and the product being discussed. The set of tactics
o is a binary vector, where each dimension corre-
sponds to the existence of a certain tactic.
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Embedding the turns Embedding of the turns
is computed using a standard LSTM encoder over
concatenated sequences of words xi in each turn:

hui = LSTMu
(
hui−1, E

w(xi−1)
)
,

where Ew is the word embedding to be learned.

Embedding the tactics By using the tactics de-
tectors from §3.1, we extract a sequence of tactics
{mi} for each turn u in the order of their occur-
rences from left to right. For example, “Hi there,
I’ve been using this phone for 2 years and it never
had any problem.” is mapped to “〈greetings〉
〈use certainty words〉”. Given turns u1:t, we con-
catenate their tactics in order to form a single se-
quence, which is embedded by an LSTM:

hsi = LSTMs
(
hsi−1, [E

o(mi−1); bi−1])
)
,

where Eo is the one-hot embedding and b is a bi-
nary vector encoding tactics that are not specific
to a particular word xi but occur at the turn level
(e.g. 〈describe the product〉).

Embedding the product Different products of-
ten induce different expressions and possibly dif-
ferent tactics; for example, renting an apartment
often has conversation about a parking lot while
selling a phone does not. Thus we also include
the product embedding, Ep to encode the product
category d, including car, house, electronics, bike,
furniture, and phone.

The output set of tactics ot+1 is a 24-
dimensional 5 binary vector, where each dimen-
sion represents whether a certain tactic occurred
in ut+1. Given the context embedding, we com-
pute the probability of the j-th tactic occurring in
ut+1 by

p(ot+1,j |u1:t, d) = σ(Wj [h
s
t ;h

u
t ;Ep(d)] + bj),

where hst and hut are final hidden states of the
tactics encoder and the utterance encoder respec-
tively, andWj and bj are learnable parameters. We
train the predictor by maximizing the log likeli-
hood of tactics.

5Table 1 contains only 15 tactics because some tactics
consist of multiple sub-tactics. For example, 〈build rapport〉
includes two sub-tactics: 〈mention family members〉 and
〈mention friends〉.

4.1 Evaluation of the Tactics Predictor
We evaluate the effect of different embeddings on
predicting next tactics. We split our data into train,
held-out development (20%) and test (20%) data.
We then remove incomplete negotiation dialogs
(e.g. when the chat got disconnected in the mid-
dle). Data sizes are 1,740, 647, and 527 dialogs
for train, development and test data respectively.
We initialize word embeddings with pre-trained
word2vec embeddings. The LSTMs have 100 hid-
den units. We apply a dropout rate of 0.5 and train
for 15 epochs with SGD.

Given the output probabilities p(oj), we need a
list of thresholds γ to convert it into a binary vec-
tor, such that oj = 1(oj > γj). We choose γ
by maximizing the F1 score of the corresponding
strategy on the development set. Specifically, for
each strategy, we iterate through all threshold val-
ues [0, 1] with a step size of 0.001 and select the
one that produces the highest F1 score.

We conduct an ablation study and calculate mi-
cro and macro F1 scores. As shown in Table 3, we
achieve the best result when combining all com-
ponents.

Components Macro F1 Micro F1

Turn Embedding 0.382 0.536
+Product Embedding 0.384 0.539
+Tactics Embedding 0.397 0.592

Table 3: Effectiveness of turn, product, and tactics em-
beddings in predicting the next move.

5 Tactics Selector

The tactics predictor outputs a set of tactics ot+1,
which can be non-optimal because we only model
human behaviors. Now, we implement a tactics
selector that selects optimal tactics from ot+1 un-
der the current dialog context. The major compo-
nent of the selector is a negotiation outcome clas-
sifier. This is a supervised classifier that predicts a
binary outcome of whether the negotiation will be
successful from the seller’s standpoint. We next
describe the classifier and its evaluation.

Given negotiation tactics and word and phrase
choices used by both parties in the previous turns,
we train a `2-regularized Logistic Regression clas-
sifier to predict the negotiation’s outcome. The
outcome is defined as sale-to-list ratio r, which is
a standard valuation ratio in sales, corresponding
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to the ratio between the final sale price (i.e., what
a buyer pays for the product) and the price origi-
nally listed by the seller, optionally smoothed by
the buyer’s target price (Eq. 1). If the agreed price
is between the listed price and the buyer’s budget,
then 0 ≤ r ≤ 1. If the agreed price is greater than
the listed price, then r > 1. If the agreed price
is less than the buyer’s budget, then r < 0. We
define a negotiation as successful if its sale-to-list
ratio is in the top 22% of all negotiations in our
training data; negative examples comprise the bot-
tom 22%.6

r =
sale price− buyer target price

listed price− buyer target price
(1)

The features are the counts of each negotia-
tion tactic from §3.1, separately for the seller and
the buyer. A typical negotiation often involves
a smalltalk in the beginning of the conversation.
Therefore, we split a negotiation into two stages:
the 1st stage consists of turns that happen before
the first price was proposed, and the 2nd stage in-
cludes the rest. We count each tactic separately for
the two stages.

Lastly, we apply the classifier to select tactics
that will make the negotiation more successful.
For each tactic in ot+1, we assume that the seller
will use it next by modifying the corresponding
input feature in the classifier, which outputs the
probability of a successful negotiation outcome
for the seller. If the modification results in a
more successful negotiation, we select the tactic.
For example, if incrementing the input feature of
〈describe the product〉 ∈ ot+1 increases the prob-
ability outputted by the outcome classifier, we se-
lect 〈describe the product〉.

5.1 Evaluation of the Outcome Classifier
The accuracy on test data from Table 4 is given in
Table 5. We also evaluate a baseline with shallow
lexical features (1-, 2-, 3-grams).

One contribution of this work is that we not
only present abstract tactics recommendations
(e.g. 〈propose a price〉), but also propose lexical
tactics and examples from successful negotiations
(e.g. “Try to use the word would like in this sen-
tence: . . . ”). Table 6 shows that removal of the
lexical tactics drops the accuracy by 11%, which is
similar to the removal of abstract negotiation tac-
tics. We also find that it is important to separate

6The thresholds were set empirically during an early ex-
perimentation with the training data.

Total Successful Unsuccessful

Training 1,740 872 868
Dev 647 316 331
Test 527 259 268

Table 4: Statistics of dialogs, split by success-
ful/unsuccessful negotiations from the seller’s stand-
point.

Features Accuracy

Shallow features 0.60
Strategy-motivated features 0.83

Table 5: Test accuracy of the outcome classifier with
different feature groups

features in the two stages (before/after the first of-
fer). The 1st stage has weaker influence on the
success, while the removal of features in 2nd stage
makes the accuracy drop by 24%. Features from
both stages contribute to the final score.

Removed Features ∆ Accuracy

Abstract strategies -0.12
Lexical strategies -0.11
Features from the 1st stage -0.02
Features from the 2nd stage -0.24

Table 6: Ablation of each subset features shows that
lexical tactics are equally important as higher-level ab-
stract tactics and both stages contribute to the final
score.

We list seller’s top weighted negotiation tac-
tics for both stages in Table 7. 〈propose a price〉
has the highest weight, which is expected because
giving an offer is a fundamental action of nego-
tiation.7 Following that, the negative weight of
〈do not propose first〉 indicates that seller should
wait for buyer to propose the first price. It is
probably because the seller can have a better es-
timation of the buyer’s target price. The sec-
ond most weighted strategy in the 2nd stage is
〈negotiate side offers〉, which emphasizes the im-
portance of exploring side offers to increase mu-
tual gain. Moreover, building rapport can help de-
velop trust and help get a better deal, which is sup-
ported by the positive weights of 〈build rapport〉.

Interestingly, some strategies are effective only
7The reason that 〈propose a price〉 has zero weights in the

1st stage is that the 1st stage is defined to be the conversations
before any proposal is given.
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in one stage, but not in the other (the strate-
gies with an opposite sign). For example,
〈talk informally〉 is more preferable in the 1st

stage where people exchange information and
establish relationship, while trying to further
reduce social distance in the 2nd can dam-
age seller’s profit. Another example is that
〈express negative sentiment〉 is not advised in the
1st stage but has a high positive weight in the 2nd

stage. Overall these make sense: to get to a better
deal the seller should be friendly in the 1st stage,
but firm, less nice, and more assertive in the 2nd,
when negotiating the price.

Features 1st stage
Weights

2nd stage
Weights

〈propose a price〉 0.0 2.28
〈do not propose first〉 -0.62 -0.62
〈negotiate side offers〉 -0.27 1.11
〈build rapport〉 0.08 0.26
〈talk informally〉 0.39 -0.39
〈express negative sentiment〉 -0.05 0.61

Table 7: The table shows the weights of seller’s top
weighted negotiation tactics in both stages. Positive
weight means the feature is positively correlated with
the success of a negotiation.

6 Giving Actionable Recommendations

Finally, given the selected tactics, the coach pro-
vides suggestions in natural language to the seller.
We manually constructed a set of natural lan-
guage suggestions that correspond to all possi-
ble combinations of strategies. For example,
if the given tactics are {〈describe the product〉;
〈propose a price〉; 〈express negative sentiment〉},
then the corresponding suggestion is ”Reject the
buyer’s offer and propose a new price, provide a
reason for the price using content from the Prod-
uct Description.

As discussed above, we also retrieved exam-
ples of some tactics. For instance, 〈use hedges〉 is
not a clear suggestion to most people. To retrieve
best examples of 〈use hedges〉, from all the turns
that contain 〈use hedges〉 in the training data, we
choose the one that has a most similar set of tactics
to the set of tactics in the current dialog.

7 End-to-End Coaching Evaluation

We evaluate our negotiation coach by incorporat-
ing into mock negotiations on AMT. We compare
the outcomes of negotiations using our coach, us-
ing a static coach, and using no coach.

7.1 Setup and Data

We modified the same interface that was used for
collecting data in §2 for the experiments. More-
over, we created 6 test scenarios for the experi-
ments and each scenario was chosen randomly for
each negotiation task.

• No coaching For our baseline condition, we
leave the interface unchanged and collect
human–human chats without any interventions,
as described in §2.

• Static coaching We add a box called ”Nego-
tiation Tips”, which is shown in a red dashed
square in Figure 2. At the beginning of each ne-
gotiation, we ask sellers to read the tips. The
tips encourage the seller to use a subset of ne-
gotiation tactics in §3.1:

– Use product description to negotiate the price.
– Do not propose price before the buyer does.
– You can propose a higher price but also give

the buyer a gift card.
– You can mention your family when reject-

ing buyer’s unreasonable offer, e.g., my
wife/husband won’t let me go that low.

Only a subset of tactics was used: the most im-
portant and most clear tactics that fit in the rec-
ommendation window.

• Dynamic coaching We replace ”Negotiation
Tips” with ”Real-Time Analysis” box as shown
in Figure 2. When it is the seller’s turn to reply,
the negotiation coach takes the current dialog
context and updates the ”Real-Time Analysis”
box with contextualized suggestions.

We published three batches of assignments on
AMT for three coaching conditions and only al-
low workers with greater than or equal to 95% ap-
proval rate, location in US, UK and Canada to do
our assignments. Before negotiation starts, each
participant is randomly paired with another partic-
ipant and appointed to either seller or buyer. Dur-
ing negotiation, seller and buyer take turns to send
text messages through an input box. The negotia-
tion ends when one side accepts or rejects the fi-
nal offer submitted by the other side, or either side
disconnects.

We collected 482 dialogs over 3 days. We re-
moved negotiations with 4 turns or less.8 We fur-
ther remove negotiations where the seller followed

8Sometimes sellers offered a price much lower than the
listing price in order to complete the task quickly.
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our suggested tactics less than 20% of the time
(only 6 dialogs are removed). Our final dataset
consists of 300 dialogs, 100 per each coaching
condition9 In the 300 final dialogs, 594 out of 600
workers were unique, only 6 workers participated
in negotiations more than once.

7.2 Result
We use two metrics to evaluate each coach-
ing condition: average sale-to-list ratio (defined
in §5) and task completion rate (%Completion),
the percentage of negotiations that have agree-
ments. Moreover, to measure increase in profits
(∆%Profit), we calculate the percentage increase
in sale-to-list ratio comparing to no coaching base-
line. The result is in Table 8. Dynamic coaching
achieves significantly higher sale-to-list ratio than
the other coaching conditions, and it also has the
highest task completion rate. Comparing with no
coaching baseline, our negotiation coach helps the
seller increase profits by 59%.

No
Coaching

Static
Coaching

Dynamic
Coaching

Sale-to-List 0.22 0.19 0.35
∆%Profit - -13.6% +59.0%

%Completion 66% 51% 83%

Table 8: Evaluation of three coaching models. Im-
provements are statistically significant (p < 0.05).

7.3 Analysis
Here, we first explore the reasons for effectiveness
of our dynamic coach and then study why static
coaching is least useful.

Why is dynamic coaching better? Manual
analysis reveals that our coach encourages sell-
ers to be more assertive while negotiating prices,
whereas sellers without our coach give in more
easily.10 We measure assertiveness with the
average number of proposals made by sellers
〈propose a price〉: sellers with dynamic coaching
propose more often (1.93, compared to 1.32 and
1.08 for no coaching and static coaching respec-
tively). The average number of turns is 8; the mea-
sured assertiveness of our coach (1.93) shows that
we do not always suggest the seller to reject the
buyer’s proposal.

9We randomly sampled 100 dialogs from 108 for no-
coaching

10For an example, refer to Table 9 in the Appendix; com-
pare lines 24, 26, 28 (our system) against lines 4, 6, 14, 16.

Intuitively, an assertive strategy could annoy
the buyer and make them leave without complet-
ing the negotiation. But, negotiations using our
coach have the highest task completion rate. This
is likely because in addition to encouraging as-
sertiveness, our coach suggests additional action-
able tactics to make the proposal more acceptable
to the buyer. We find that 96% of the time, sellers
with dynamic coaching use additional strategies
when proposing a price, as compared to 69% in
static coaching and 61% with no coaching. For ex-
ample, our coach suggests the seller negotiate side
offers and use linguistic hedges, which can miti-
gate the assertiveness of the request. On the other
hand, in no coaching settings, sellers often pro-
pose a price without using other tactics. Lastly, the
seller often uses almost the same words as shown
in the examples retrieved by our suggestions gen-
erator in §6. This is probably because sellers find
it easier to copy the retrieved example than come
up with their own.

The effectiveness of dynamic coaching could
in large part be attributed to the tactics selec-
tor that selects optimal tactics under the current
dialog context, but sellers might still use non-
optimal tactics even if they are not suggested. To
observe the effect of this selecting, we compute
the average percentage of non-optimally applied
tactics. Dynamic coaching has the lowest rate
(26%), as compared to no coaching (33%) and
static coaching (38%). Moreover, we find that
sellers with dynamic coaching often have differ-
ent chatting styles for exchanging information (1st

stage) and negotiating price, while sellers with-
out our coach often use the same style. For ex-
ample, we show several turns from two dialogs
(D1, D2) for dynamic and no coaching, respec-
tively. In the 1st stage, our coach suggests sellers
to 〈talk informally〉 with positive sentiment:

• D1 with dynamic coaching:
Buyer: ”I’d like to buy the truck.”
Seller: ”well that’s great to hear! Only 106k
miles on it and it runs amazingly. I’ve got a lot
on my plate right now lol so I priced this lower
to move it quickly”.

• D2 with no coaching:
Buyer: ”I am interested in this truck but I have
a few questions.”
Seller: ”Absolutely, ask away!”

The sellers in both dialogs chat in a positive
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and informal way. However, when negotiat-
ing the price, our coach chooses not to select
〈talk informally〉, but instead suggests formality
and politeness, and 〈express negative sentiment〉
when rejecting buyer’s proposal:

• D1 with dynamic coaching:
Buyer: ”Would you be willing to take 10k?”
Seller: ”That’s a lot lower than I was hoping.
what I could do, is if you wanted to come see it
I could knock off $1500 if you wanted to buy.”.

• D2 with no coaching:
Buyer: ”I’m looking for around 10,000.”
Seller: ”Oh no. Lol. That’s way too low!”

While the seller with our coach changes style,
the seller with no coaching stays the same. We
attribute this to the tactics selector. We also find
that dynamic coaching leads to a larger quantity
and a richer diversity of tactics.

Lastly, we focus on diversity: we show that
our coach almost always gives recommendations
at each turn and does not recommend the same tac-
tics in each dialog. Specifically, we measure how
often our coach gives no suggestions and find out
that only 1.8% of the time our coach recommends
nothing (9 out of 487 sellers’ turns). Then, we cal-
culate how often our coach gives the same tactics
within each dialog and find out that only 10% of
the time our coach gives the same suggestions (49
out of 487 sellers’ turns).

Why is static coaching even worse than no
coaching? Surprisingly, static coaching has
even lower scores in both metrics than no coaching
does. Two possibilities are considered. One is that
reading negotiation tips can limit seller’s ability to
think of other tactics, but we find that static and
dynamic coaching use similar number of unique
tactics. Then, we explore the second possibility:
it is worse to use the tactics in the tips under non-
optimal context. Therefore, we measure the av-
erage percentage of non-optimally applied strate-
gies, but only consider the tactics mentioned in the
tips. The result shows that static coaching uses
non-optimal tactics 51% of the time, compared to
46% and 38% for no coaching and dynamic coach-
ing, respectively.

8 Conclusion

This paper presents a dynamic negotiation coach
that can make measurably good recommendations

to sellers that can increase their profits. It benefits
from grounding in strategies and tactics within the
negotiation literature and uses natural language
processing and machine learning techniques to
identify and score the tactics’ likelihood of being
successful. We have tested this coach on human–
human negotiations and shown that our techniques
can substantially increase the profit of negotiators
who follow our coach’s recommendations.

A key contribution of this study is a new task
and a framework of an automated coach-in-the-
loop that provides on-the-fly autocomplete sug-
gestions to the negotiating parties. This frame-
work can seamlessly be integrated in goal-oriented
negotiation dialog systems (Lewis et al., 2017; He
et al., 2018), and it also has stand-alone educa-
tional and commercial values. For example, our
coach can provide language and strategy guidance
and help improve negotiation skills of non-expert
negotiators. In commercial settings, it has a clear
use case of assisting humans in sales and in cus-
tomer service. An additional important contribu-
tion lies in aggregating negotiation strategies from
economics and behavioral research, and proposing
novel ways to operationalize the strategies using
linguistic knowledge and resources.
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Product Listing:

Listing Price: 14500
Buyer’s Target Price: 8700
Title: ”2006 Toyota 4Runner 4WD - Only 106k Miles - Clean Title”
Product Description:
”Selling my 2006 Toyota 4 Runner with only 106k original miles. The truck is in great condition with no mechanical flaws
whatsoever and a clean accident history. Got new tires about 3,000 miles ago. Always has the oil changed on time (due in
about 1k). Just got a thorough cleaning inside and a wash and wax outside (still wet in the photos). This truck has never
been offroad, but the 4WD is working perfectly from the few times we’ve been up to Tahoe in it. However, it’s a 10+ year
old truck that’s been driven, not babied and garaged all the time. It’s got some scratches, paint is not perfect, but zero body
damage.”

No Coaching:
Seller: S Buyer: B

1. B: I just saw your ad for the 4Runner, can you send
more picture of the scratches?

2. S: I don’t have pictures of the scratches but I can assure
you it’s minor

3. B: I might be interested,but all I can offer is $7500
4. S: That is very low. Can I agree to 11000?
5. B: That is too high for me, I mean it is 10 years old

with over 100,000 miles. I can possible come up to
$8,000

6. S: I can agree to 9,000 and make sure it’s had a oil
change and tire rotation before you pick it up.

7. B: If you’re willing to have the oil changed and tires
rotated, I will go as high as $8700. And I really
can’t go any higher.

8. S: That’s fine. I can agree to that.
9. B: Thanks, I’ll be right over to pick it up.

Static Coaching:
Seller: S Buyer: B

10. S: i would sell it for 1400
11. B: you got a deal. 1400 it is
12. S: sorry meant 14000
13. B: Oh c’mon. Now you got my hopes up. lol
14. S: i can go low around 12000
15. B: I’m looking at the blue book right now and that still

seems a bit high.
16. S: well the lowest i can go is 10000
17. B: You mention scratches. Lets be real. How bad are

we talking?
18. S: its 10 yrs old it has some scratches but has zero body

damage.
19. B: Ok. Without seeing any more photos, 9000 is the

best I can do.
20. S: deal
21. B: deal. Thanks!

Dynamic Coaching:
Seller: S Buyer: B
22. S: Would you be interested in buying my 4Runner?
23. B: Yes, I am possibly. interested Given that is is over 10 years old, all I can offer now is 8000.
24. Coach: Reject Buyer’s Offer and Propose a New Price, Reason the Price with Content in the Product Description

Try to Use the Word ”Would” Like This: ”Sorry, I would really need $100 for it.”
...

S: I’m sorry, but I would really need $12,000 for it. It’s in great condition!
25. B: Well given the mileage on the car it is about to be due for some major service which can be expensive. How

about 9000?
26. Coach: Reject Buyer’s Offer and Propose a New Price

Try to Use the Word ”Could” Like This: ”I could come down to $3.”
You Can Also Give the Buyer Something for Free (Gift Card) to Argue for Higher Price.
...

S: I could come down to $11,000 and include the roof rack as a bonus.
27. B: Add in a full tank of gas and a cold beer and I could do 10500.
28. Coach: Reject Buyer’s Offer and Propose a New Price

Talk About Your Personal Experience With The Product
Try to Use the Word ”Would” Like This: ”$160 would be a good price.”
...

S: I always took great care of the truck. I think $10,750 would be a reasonable price.
29. B: Deal.
30. S: Great

Table 9: Examples of collected negotiation dialogs.
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Abstract

The aim of this paper is to mitigate the
shortcomings of automatic evaluation of
open-domain dialog systems through multi-
reference evaluation. Existing metrics have
been shown to correlate poorly with human
judgement, particularly in open-domain dia-
log. One alternative is to collect human anno-
tations for evaluation, which can be expensive
and time consuming. To demonstrate the ef-
fectiveness of multi-reference evaluation, we
augment the test set of DailyDialog with mul-
tiple references. A series of experiments show
that the use of multiple references results in
improved correlation between several auto-
matic metrics and human judgement for both
the quality and the diversity of system output.

1 Introduction

Dialog agents trained end-to-end to hold
open-domain conversations have recently pro-
gressed rapidly, generating substantial interest
(Ghazvininejad et al., 2018; Serban et al., 2017,
2016a; Sordoni et al., 2015; Vinyals and Le,
2015). Development of these systems is driven
by available data and benchmarks based on only
a single ground truth reference response for a
given context. However, such single-reference
evaluation does not account for all the plausible
responses for any given conversational context
(Table 1). This is known as the one-to-many re-
sponse problem (Zhao et al., 2017a). Computing
word-overlap metrics against a single-reference
response may penalize perfectly valid responses
(Deriu et al., 2019) (e.g., “Was anything stolen?”,
“Is anyone hurt”) that deviate from the particular
target response (“When was the break-in?”). Un-
like human evaluation, automatic evaluation with
a single-reference may also disproportionately
benefit models that produce generic responses
with more probable words (e.g., “I don’t know”)

Dialog Context:
Person A: 911 emergency. What is the
problem?
Person B: I would like to report a break-in.
single-reference Response:
When was this break-in?
Other Valid Responses:
Was anything stolen?
Is anyone hurt or injured?
Is the perpetrator still inside the house?
I will send someone right away.

Table 1: Example of a dialog context where appropri-
ate responses do not share words and meaning with a
single-reference response.

which is known as the dull-response problem (Li
et al., 2016c). As a result, single-reference evalu-
ations correlate weakly with human judgments of
quality (Liu et al., 2016).

To address these problems, this paper proposes
to carry out automatic evaluation using multiple
reference responses instead of a single-reference.
Multiple reference evaluation is attractive for sev-
eral reasons. First, the additional information in
the multiple reference response can be used to
provide more robust quality evaluation under the
one-to-many condition. Second, we can use the
multiple references to better measure the diversity
of the model, which is a widely studied topic in
open-domain response generation (Kulikov et al.,
2018; Li et al., 2016a; Zhang et al., 2018; Li et al.,
2016b; Zhao et al., 2017a; Gao et al., 2019).

Prior explorations in this area either rely on
synthetically created or small scale reference
sets (Galley et al., 2015; Qin and Specia, 2015), or
perform experiments only on a small set of met-
rics focused on only response quality (Sugiyama
et al., 2019). Our investigations for using multi-
ple references for automatic evaluation covers the
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following aspects - 1) We propose methodology
for evaluating both the quality and the diversity
of generated responses using multiple references.
2) The proposed evaluation framework is metric-
agnostic and the experiments cover a large spec-
trum of existing metrics, and 3) We augmented the
exiting test set of DailyDialog dataset (Li et al.,
2017) with multiple references and perform hu-
man judgment correlation studies with human-
generated references. Our extensive experimen-
tal results show that using multiple test references
leads to significantly better correlation of auto-
mated metrics with human judgment in terms of
both response quality and diversity. This suggests
that the use of multiple references serves to make
automatic metrics more reliable mechanisms for
evaluating open-domain dialog systems. More-
over, follow up studies are conducted to better un-
derstand the nature of the multi-reference evalu-
ation, such as the number of reference responses
needed to achieve high correlation.

The contributions of this paper are:
1. We show that multi-reference evaluation

achieves better correlation with human judg-
ments both in quality and in diversity.

2. We analyze the effect of varying the number
of reference responses on the correlation with
human quality judgements.

3. We construct and release an open-domain
multi-reference test dataset1.

2 Related work

The need for reliable and consistent automatic
evaluation methodologies has lead to increas-
ing interest in dialog system evaluation in re-
cent years. In domains such as machine transla-
tion and captioning, n-gram overlap metrics such
as BLEU (Papineni et al., 2002), ROUGE (Lin,
2004) and METEOR (Lavie and Agarwal, 2007)
correlate well with human judgement. Several
embedding-based metrics have been proposed as
well, including Greedy Matching (Rus and Lin-
tean, 2012) and Vector Extrema (Forgues et al.,
2014). These automatic metrics, however, do not
generalize well to open-domain dialog due to the
wide spectrum of correct responses, commonly
known as the one-to-many problem (Zhao et al.,
2017b). Recent work has proposed several train-
able evaluation metrics to address this issue. RU-
BER (Tao et al., 2018) evaluates generated re-

1https://github.com/prakharguptaz/multirefeval

sponses based on their similarity with the refer-
ence responses and their relatedness to the dialog
contexts. Lowe et al. (2017) trained a hierarchi-
cal neural network model called ADEM to pre-
dict the appropriateness score of responses. How-
ever, ADEM requires human quality annotation
for training, which is costly. Sai et al. (2019) re-
cently showed that trainable metrics are prone to
gamification through adversarial attacks. While
past work has focused on inventing new metrics,
this paper instead aims to demonstrate that the
correlation of existing metrics can be improved
through the use of multiple references for evalu-
ation in open-domain settings.

Prior attempts leveraged multiple references to
improve evaluation in the context of text gen-
eration. Qin and Specia (2015) proposed vari-
ants of BLEU for machine translation based on
n-gram weighting. In the dialog domain, Gal-
ley et al. (2015) proposed Discriminative BLEU,
which leverages several synthetically created ref-
erences obtained with a retrieval model from Twit-
ter corpus. Sordoni et al. (2015) also followed a
similar retrieval procedure for multiple-reference
evaluation. Since both of them created their ref-
erence sets through retrieval followed by a rat-
ing step, their multi-reference sets do not reflect
the natural variability in responses possible for
a context. Sugiyama et al. (2019) proposed a
regression-based evaluation metric based on mul-
tiple references. The small set of metrics and few
test sentences shows promise, but also the need for
further exploration. We go further with a compar-
ison of single and multiple references for response
quality evaluation and an examination of multiple
references for diversity evaluation. This paper is
the first, to our knowledge, to create a large test
set of several human-generated references for each
context. We believe that it is also the first to per-
form human correlation studies on a variety of au-
tomatic metrics for both quality and diversity.

Evaluating diversity in dialog model responses
has been studied recently. The most commonly
used metric is Distinct (Li et al., 2016a), which
calculates the ratios of unique n-grams in gener-
ated responses. Distinct is, however, computed
across contexts and does not measure if a model
can generate multiple valid responses for a con-
text. Xu et al. (2018) proposed Mean Diversity
Score (MDS) and Probabilistic Diversity Score
(PDS) metrics for diversity evaluation over groups
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of multiple references over a set of retrieved ref-
erences. Hashimoto et al. (2019) proposed a met-
ric for a unified evaluation of quality and diver-
sity of outputs, which however depends on human
judgements. Zhao et al. (2017a) proposed preci-
sion/recall metrics calculated using multiple hy-
potheses and references as an indicator of appro-
priateness and coverage. In this paper we leverage
their recall-based metrics in our multi-reference
based evaluation of diversity.

3 Methodology

We evaluated the performance of dialog response
generation models from two aspects: quality and
diversity. Quality tests the appropriateness of the
generated response with respect to the context, and
diversity tests the semantic diversity of the appro-
priate responses generated by the model.

We first describe the evaluation procedures used
for the conventional single-reference setting. Then
we present the proposed multi-reference evalua-
tion. We define a generalized metric to be d(y, r)
which takes a produced output y and a reference
output r, and produces a matching score that mea-
sure the level of similarity between y and r. We
discuss options for d in Table 2.

3.1 Baseline: Single-reference Evaluation

3.1.1 Quality
During single-reference evaluation, there is only
one reference response r. As such, for a given
metric d, the single-reference score will be d(y, r).

3.1.2 Unreferenced Diversity
Most prior work concentrates on unreferenced di-
versity evaluation since referenced diversity eval-
uation requires a multi-reference dataset. Unref-
erenced evaluation refers to diversity evaluation
methods which ignore the reference responses,
and instead compute diversity as a function only
of the generated responses. The Distinct (Li et al.,
2016a) metric calculates diversity by calculating
the number of distinct n-grams in generated re-
sponses as a fraction of the total generated tokens.
This score is calculated at the system level - over
the set of responses generated for all the contexts
in test set. Given a set of system responses for
the same context, Self-BLEU (Zhu et al., 2018)
sequentially treats each one of the generated re-
sponses as the hypothesis and the others as refer-
ences. This score is computed for every context

and then averaged over all contexts. A lower Self-
BLEU implies greater diversity since system out-
puts are not similar to one another.

3.2 Proposed: Multi-Reference Evaluation
3.2.1 Quality
In multi-reference evaluation, a given context has
multiple valid responses R = {r1, r2, ..., rn}. As
such, for a given metric d, the multi-reference
score can be computed as:

score(y,R) = max
r∈R

d(y, r) (1)

We score the system output against only the
closest reference response because there are multi-
ple diverse and valid responses for a given context.

3.2.2 Referenced Diversity
A multi-reference test set also allows referenced
diversity evaluation. For a given context c,
we are given multiple reference responses R =
{r1, r2, ..., rn} and multiple system outputs Y =
{y1, y2, ..., rm}. For a given metric, d, we com-
pute recall (Zhao et al., 2017a), or coverage, as
follows:

recall(c) =

∑M
j=1maxi∈[1,N ] d (yi, rj))

M
(2)

For each of the multiple reference responses,
we consider the highest-scoring system output,
then average these scores across the reference re-
sponses. A system that generates outputs covering
a large portion of the reference responses thus re-
ceives a higher recall score.

3.3 Metrics
We consider several metrics for quality and diver-
sity evaluation including (1) word-overlap metrics,
and (2) embedding-based metrics. We describe the
metrics in Table 2. Each metric represents an in-
stantiation of the generalized scoring function d.

3.4 Compared Models
Our experiments are conducted using four mod-
els: a retrieval model and three different genera-
tive models. We treat human generated responses
as an additional model.
Human: To represent ideal model performance
for a particular context, we use a human-generated
response for that context.
Dual Encoder: A strong baseline for dialog
retrieval is the Dual Encoder (DE) architecture
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Metric Reference Description

Word-overlap based metrics

BLEU Papineni et al. (2002) BLEU is based on n-gram overlap between the candidate and reference
sentences. It includes a brevity penalty to penalize short candidates.

METEOR Lavie and Agarwal (2007) The harmonic mean of precision and recall between the candidate and
reference based on a set of alignments between the two.

ROUGE-L Lin (2004) An F-measure based on the Longest Common Subsequence (LCS)
between the candidate and reference utterances.

Embedding based metrics
Embedding
Average Wieting et al. (2015), others Computes a sentence-level embedding of r and c by averaging the

embeddings of the tokens composing the sentences.
Vector
Extrema

Forgues et al. (2014) Computes a sentence-level embedding by taking the most extreme value of
the embeddings of tokens of the sentence for each dimension of the embedding.

Greedy
Matching Rus and Lintean (2012)

Each word in the candidate sentence is greedily matched to a word in the
reference sentence based on the cosine similarity of their embeddings.
The score is then averaged for each word in the candidate sentence.

Skip-Thought Kiros et al. (2015)
Uses a recurrent network to encode a given sentence into a sentence level
embedding. We use the pre-trained vectors and implementation provided
by (Sharma et al., 2017).

GenSen Subramanian et al. (2018)
Generates a sentence level embedding through a sequence-to-sequence model
trained on a variety of supervised and unsupervised objectives in a multi-task
framework.

Table 2: Metrics used for both quality and diversity evaluation.

(Lowe et al., 2015a). The model first encodes a
given dialog context and response using an LSTM
encoder. It then takes the dot-product of the two
latent representations to output the likelihood of
the response. The Dual Encoder is trained to
differentiate between correct responses, and uni-
formly sampled negative responses. During infer-
ence, however, it chooses a correct response for a
given context out of all the responses that occur in
the training set.

Seq2Seq: Sequence-to-sequence (Seq2Seq) net-
works (Sutskever et al., 2014) are a typical base-
line for dialog systems (Vinyals and Le, 2015).
Our model consists of an LSTM encoder, an
LSTM decoder and an attention mechanism (Bah-
danau et al., 2014).

HRED: Hierarchical Recurrent Encoder Decoder
networks (HRED) (Serban et al., 2016b) are a
modification of Seq2Seq networks. Rather than
encoding the context as a sequence of words, the
encoding of the context is done in a two-step pro-
cess. First, all the utterances of a context are in-
dependently encoded by an LSTM utterance en-
coder. Second, given the latent representations
of each utterance, a context encoder encodes the
dialog context. The attention mechanism of the
decoder attends over the timesteps of context en-
coder.

CVAE: The Conditional Variational Autoencoder
(CVAE) model (Zhao et al., 2017a). CVAE mod-

els incorporate discourse-level latent variables
in HRED, in which the latent variables repre-
sent the discourse-level intentions of the system.
Specifically, we reproduce the CVAE network
from (Zhao et al., 2017a), where the latent vari-
ables follow a multivariate Gaussian distribution
with a diagonal covariance matrix. The dimen-
sion of the latent variable is 256. To have a fair
comparison, the rest of the structure is the same as
the HRED with bidirectional LSTM utterance en-
coders and LSTM context encoder and response
decoder. To alleviate the posterior collapse issue
for training text CVAEs (Bowman et al., 2016),
we use bag-of-words auxiliary loss (Zhao et al.,
2017a) and KL-annealing (Bowman et al., 2016).

4 Multi-Reference Data Collection

We used the following procedure to prepare the
DailyDialog test set for the multi-reference test set
collection. A dialog D in the test set consists of
utterances {u1, u1, ..., un}. Here, ui denotes the
utterance at the ith turn. For generating dialog
contexts, we truncate the dialog at each possible
utterance, except the last one. The response fol-
lowing each context is treated as the reference re-
sponse. As an illustration, for the Dialog shown in
Table 1, we would generate the following context-
reference pairs: Context 1: “911 emergency. What
is the problem?”, Reference 1: “I would like to
report a break-in.”. Context 2: “911 emergency
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Reference Very
Appropriate Appropriate Neutral Not

Appropriate
Not Appropriate

at all
From original dataset 41% 54% 2% 3% 0%

Sampled from
multi-reference collected 40% 52% 3% 5% 0%

Table 3: Results from dataset quality experiment

... report a break-in.”, Reference 2: “’When was
this break-in?’. In our multi-reference dataset, we
expand each single-reference to a set of multiple
references.

4.1 Data collection Procedure
We designed an interface for multi-reference
data collection using Amazon Mechanical Turk
(AMT). For every HIT, we asked an AMT worker
to generate 4 diverse follow-up responses for a
conversation. A snapshot of the data collection
interface is shown in Figure 3 (Appendix). We
provided instructions and examples to further clar-
ify the task. To maintain quality post data collec-
tion, we filter out responses collected from work-
ers who either generated very short responses or
entered the responses in very short amount of time
consistently.

4.2 Data Quality
Using the method described above, we collected 4
diverse responses for the 1000 dialogs in the test
set, which consists of 6740 contexts. To validate
the quality of the collected dataset, an experiment
on AMT is carried out for 100 contexts sampled
randomly from the dataset. Workers are shown a
dialog context followed by 3 responses shuffled in
a random order - 1) the original response from the
dataset 2) a random response from the collected
multi-references, and 3) a distractor response, ir-
relevant to the dialog context. We use distractor
responses to filter out poor annotations where the
annotator gave high ratings to the distractor re-
sponse. We ask the workers to rate each of the
3 responses for a dialog context on a scale of 1-5
for appropriateness, where 1 indicates Not Appro-
priate at all and 5 indicates Very Appropriate. We
present the ratings from the experiment in Table
3 for the original responses from the dataset, and
the responses from the multi-reference set. We ob-
serve that 92% sampled responses from the multi-
reference set are marked Appropriate or Very Ap-
propriate. Moreover, only 8% of the responses
are marked Not Appropriate or lower, compared
to 5% for the original reference set. This indi-

cates that the collected reference set is close to the
original reference set in quality. Furthermore, the
responses are generated specifically for each con-
text, they are coherent with the context.

5 Experiments

This section describes the experiments we con-
ducted to explore the effectiveness of multi-
reference evaluation.

5.1 Correlation Analysis for Quality

This analysis aims to compute the correlation be-
tween human quality judgments and two forms
of automatic evaluation, both single-reference and
multi-reference.

5.1.1 Human Annotations
A collection of 100 dialog contexts are randomly
selected from the dataset. For a particular dialog
context, each of the four models produces a re-
sponse. In addition, we collect a human response
using Amazon Mechanical Turk (AMT), making
it total of five responses for each dialog context.
Given these context-response pairs, each response
is rated in terms of appropriateness (from 1-5)
by 5 different AMT workers. The ratings are re-
moved for workers with a Cohen’s Kappa κ (Co-
hen, 1968) inter-annotator agreement score of less
than 0.2. The remaining workers had a mean κ
score of 0.43, indicating moderate agreement.

5.1.2 Results
Utterance level correlation: The results of the
correlation study conducted for 5 model responses
for 100 contexts are shown in Table 4. Pearson
correlation is computed to estimate linear correla-
tion, and Spearman correlation to estimate mono-
tonic correlation. The correlations with human
quality judgments are computed for both single-
reference and multi-reference evaluation. The
multi-reference test set consists of both the orig-
inal reference and the four new collected refer-
ence responses. For single-reference evaluation,
except for METEOR and Vector Extrema met-
rics, the correlation is either small or statistically
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Single Reference Multiple Reference
Metrics Spearman p-value Pearson p-value Spearman p-value Pearson p-value
BLEU-1 0.0241 0.591 0.1183 0.008 0.1572 0.000 0.2190 0.000
BLEU-2 0.0250 0.577 0.1803 0.000 0.2077 0.000 0.2910 0.000
BLEU-3 0.0608 0.175 0.1269 0.005 0.2520 0.000 0.2086 0.000
BLEU-4 0.0345 0.441 0.1380 0.002 0.2202 0.000 0.2333 0.000

METEOR 0.1064 0.017 0.1871 0.000 0.2247 0.000 0.2855 0.000
ROUGE-L 0.0715 0.110 0.1408 0.002 0.2203 0.000 0.2798 0.000

Embedding Average 0.0301 0.502 -0.0067 0.880 0.1248 0.005 0.0636 0.156
Vector Extrema 0.1919 0.000 0.2114 0.000 0.2785 0.000 0.2946 0.000

Greedy Matching 0.1306 0.003 0.1150 0.010 0.2367 0.000 0.2352 0.000
Skip-Thought -0.0029 0.949 -0.1463 0.001 0.1049 0.019 -0.0716 0.109

GenSen 0.0731 0.103 0.1110 0.013 0.1832 0.000 0.2389 0.000

Table 4: Correlation of various metrics when evaluated using single-reference and multi-reference test sets. Eval-
uation using Multiple References leads to better correlation across all metrics.

(a) BLEU-2-human ratings - single-references (b) BLEU-2-human ratings - multiple references

(c) METEOR-human ratings - single-references (d) METEOR-human ratings - multiple references

Figure 1: System level correlations for BLEU-2 and METEOR metrics. Multi-reference evaluation shows higher
correlation with more clear differentiation in model performance.

less significant. On the other hand, every metric
shows higher and significant correlation for multi-
reference evaluation, with METEOR, ROUGE-L
and Vector Extrema achieving the highest corre-
lation values. These results indicate that multi-
reference evaluation correlates significantly bet-
ter with human judgment than single-reference,
across all the metrics. This reaffirms the hypothe-
sis that multi-reference evaluation better captures
the one-to-many nature of open-domain dialog.

System level correlation: For each model used

in the correlation study, the average human rat-
ing and average metric scores for 100 contexts are
used to calculate system-level correlations. We
show system-level correlations for metrics BLEU-
2 and METEOR metrics in Figure 1. Each point
in the scatter plots represents the average scores
for a dialog model. Average human scores are
shown on the horizontal axis, with average metric
scores on the vertical axis. Humans ratings are low
for responses from the retrieval model, and higher
for human responses and responses from HRED
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model. It is clear that the difference in scores for
models when evaluated using single-references is
not significant enough to compare the models, as
the average metric scores have near zero or very
weak correlation with average human ratings. This
renders them insufficient for dialog evaluation.
However, with multi-reference evaluation, the cor-
relation is higher and significant, which differen-
tiates the models clearly. Thus, multi-reference
based evaluation correlates well with humans both
at utterance level and at the system level.

5.2 Correlation Analysis for Diversity

This section aims to demonstrate that referenced
diversity evaluation methods better correlate with
human judgements of diversity, than previously
used unreferenced diversity metrics. While unref-
erenced metrics simply reward lexical differences
amongst generated outputs, referenced methods
(e.g., the recall metric) aims to calculate the cover-
age of the responses. The correlation of human di-
versity scores is calculated with both unreferenced
and referenced measures of diversity.

5.2.1 Human Annotations
Multiple hypotheses were generated from all the
models. For CVAE, multiple responses are sam-
pled from the latent space with greedy word-level
decoding. For rest of the generation models, five
responses were obtained using sampled decod-
ing. For retrieval models, the top five retrieved
responses were used. Human annotations of these
multiple hypotheses were collected as follows: (1)
Workers mark the responses which they find to
be appropriate for the conversational context, (2)
They then provide a score for the diversity of the
responses based on how different they are in mean-
ing. This two-stage annotation process captures a
desired form of system diversity: generated out-
puts should be varied, but also appropriate. The
scores are averaged across the three workers’ an-
notations. We filtered out ratings from workers
with low inter-annotator agreement as described
in section 5.1.1. The final mean κ score of 0.41,
which indicates moderate agreement.

5.2.2 Results
The results for the diversity correlation analysis
are shown in Table 5 for a selected set of met-
rics2. The unreferenced metrics, Distinct and Self-

2For Self-BLEU we calculate correlation with values sub-
stracted from 1 as Self-BLEU is inversely related to diversity

Metric Spearman p-value Pearson p-value
Distinct-1 0.0204 0.647 0.0465 0.299
Distinct-2 -0.1282 0.004 -0.0568 0.205
Distinct-3 -0.1316 0.003 -0.0184 0.681

Self
BLEU-2 -0.1534 0.001 -0.1251 0.005

Self
BLEU-4 -0.0836 0.061 -0.0304 0.497

Recall
BLEU-2 0.2052 0.000 0.2469 0.000

Recall
BLEU-4 0.1713 0.000 0.1231 0.005

Recall
METEOR 0.1993 0.000 0.2165 0.000

Recall
ROUGE-L 0.1862 0.000 0.2234 0.000

Recall
Vector

Extrema
0.2063 0.000 0.2314 0.000

Recall
Greedy

Matching
0.0797 0.075 0.1204 0.007

Table 5: Correlation scores for diversity metrics

BLEU, correlate poorly with human judgment.
This is probably because these metrics evaluate
lexical diversity, while humans evaluate diversity
of meaning. Furthermore, unreferenced metrics
do not consider the reference response and reward
diverse outputs without considering appropriate-
ness. With referenced diversity evaluation, using
the recall method, BLEU-2 and Vector Extrema
show the highest correlation. While metrics like
Self-BLEU and Distinct can be “gamed” by pro-
ducing meaningless albeit very diverse responses,
the referenced recall metrics require both appro-
priate and diverse outputs. As such, referenced
evaluation correlates significantly better with hu-
man notions of diversity. Thus, the construction
of a multi-reference dataset allows for improved
diversity metrics.

5.3 Automatic Evaluation of Models

We use our multi-reference evaluation methodol-
ogy to compare the models and the human gen-
erated responses on the whole test dataset. For
the human model, we use one reference from the
multi-reference set as the hypothesis. Human re-
sponses are generally more interesting and diverse
than model responses, which are known to suffer
from the dull response problem (Li et al., 2016c).
Because of this reason, we would expect the hu-
man generated responses to get higher scores than
the dialog models. However, the results presented
in Table 6 show that single-reference automatic
evaluation ranks few models higher than the hu-
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Single Reference Multiple reference

Metric Dual
Encoder Seq2Seq HRED CVAE Human Dual

Encoder Seq2Seq HRED CVAE Human

BLEU-2 0.0399 0.0521 0.0604 0.0656 0.0513 0.0625 0.0981 0.1061 0.1033 0.1637
BLEU-4 0.0168 0.0252 0.0301 0.0291 0.0245 0.0241 0.0445 0.0497 0.0429 0.0791

METEOR 0.0653 0.0544 0.0607 0.0724 0.0592 0.1000 0.0970 0.1036 0.1120 0.1456
ROUGE-L 0.1522 0.1847 0.1998 0.2088 0.1682 0.2216 0.2927 0.3044 0.2997 0.3502

Vector
Extrema 0.4005 0.5124 0.5002 0.4893 0.4823 0.4713 0.6191 0.5975 0.5722 0.6134

Greedy
Matching 0.6257 0.7167 0.7104 0.7078 0.6799 0.6991 0.7649 0.7551 0.7457 0.7562

Recall
BLEU-2 0.0662 0.0544 0.0766 0.1077 0.0898 0.0436 0.0377 0.0556 0.0679 0.0984

Recall
Vector

Extrema
0.4945 0.5127 0.5397 0.5586 0.5651 0.4934 0.5334 0.5476 0.5653 0.5881

Table 6: Model evaluation with automatic metrics on Single and Multiple references. Multiple reference evaluation
is able to correctly rank human responses higher than model responses.

Figure 2: Change in correlation with varying number
of references. Trend stablizes after 4-5 references

mans model. With multi-reference evaluation,
human performance is significantly higher than
model performance. We further present scores for
diversity metrics on multiple hypothesis generated
for 100 contexts in the last two rows of the ta-
ble. The use of multi-reference evaluation covers
a wider array of valid responses, which strongly
rewards the diverse human responses compared to
single-reference evaluation.

5.4 Effect of number of references

The correlation of automated evaluation with hu-
man judgment is calculated at various numbers of
reference responses. The results shown in Figure 2
demonstrate that the Pearson correlation with hu-
man judgment generally increases sharply up to
3-5 references. It further increases slowly up to
about 7 references and then seems to plateau at
around eight references. This suggests that four to
eight references give sufficient coverage of the re-

Dialog Context:
Person A: excuse me . check please .
Generated Response
sure , i ’ll grab it and be right with you .
Single-reference Response:
ok , how was everything ?
Multi-reference Responses:
i ’ll get it right away .
here is the check .
no problem , let me get your server .
i ’ll be right back with it .
Average Human Rating: 5

Metric Single reference Multiple reference
BLEU-2 0.0275 0.3257

METEOR 0.0539 0.3425
Vector Extrema 0.5523 0.8680

Table 7: Example of difference in metric scoring for
single versus multiple reference evaluation.

sponse space, and collecting additional references
does not provide much value in terms of mitigat-
ing the issues of the one-to-many problem.

6 Discussion and Conclusion

This work proposes a more reliable methodol-
ogy for automatic evaluation of open-domain di-
alogues with the use of multiple references. We
augment the test set of DailyDialog dataset with
multiple references and show that multiple ref-
erences lead to better correlation with human
judgments of quality and diversity of responses.
Single-reference based evaluation can unfairly pe-
nalize diverse and interesting responses which are
appropriate, but do not match a particular ref-
erence in the dataset. However, multiple refer-
ences can cover the possible semantic space of
replies for a context better than a single reference.
Thus using multi-reference test sets can improve
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the way open-ended dialogue systems are cur-
rently evaluated. Our experiments also show that
human-generated responses perform worse than
models across most metrics when using single-
reference evaluation, but multiple reference eval-
uation consistently ranks human responses higher
than model-generated responses. Furthermore, we
show how varying the number of references ef-
fects human judgement correlation. This method-
ology could easily be extended to other open do-
main datasets if the community can make similar
multi-reference test sets publicly available.

We illustrate the strength of multi-reference
evaluation through scores calculated for some
metrics using both single and multiple references
for an example context in Table 7. Multiple
reference-based evaluation is often good at assign-
ing higher scores when there is more scope for di-
versity in the responses as illustrated by the ex-
ample. It should be noted that multiple reference
evaluation generally increases the scale of metrics
for all responses, and this includes dull responses.

The multi-reference data collection procedure
in this paper collects the same number of re-
sponses for all contexts. However, different di-
alogue contexts might possess different levels of
“open-endedness”. For e.g., a context like “Would
you like to dance?” would generally have fewer
possible variations in responses than a more open-
ended context like “What did you do yesterday?”.
Therefore, the number of references to collect for
a context could be based on the expected variabil-
ity in responses for the context. Such a procedure
would capture more variability over the dataset for
a fixed budget.

An important direction in dialog system re-
search is to build models that have more engaging
and meaningful conversations with a human. With
the recent push towards models which can gener-
ate more diverse and interesting responses, appro-
priate evaluation methodologies are an important
and urgent need for the community. Human level
evaluation of generation and diversity is challeng-
ing to do in a completely automatic way, however,
compared to evaluating with a single response, we
show that the proposed evaluation methodology is
more reliable and will facilitate progress in this di-
rection. In this work we have chose one dataset for
extensive experimentation, but in the future stud-
ies, it will be worth collecting more datasets and
repeating the correlation experiments.
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A Further Notes on Data Collection
Experiments

The interface designed for multi-reference data
collection is shown in Figure 3. The final de-
sign of the interface incorporates improvements
based on multiple rounds of experiments and in-
terviews on a small set of users. The workers were
shown a modal box with instructions and several
good and bad examples before they start the task.
Then they are shown 5 contexts for a HIT, one by
one. For each context, they are asked to write 4
diverse responses in the Textbox provided. Work-
ers can enter multi-line responses and submit a
response by pressing enter or clicking on a but-
ton. They are shown the number of remaining re-
sponses they need to enter for the conversation.
We also record the timestamps for click and enter
presses in the interface. We prevent workers from
entering replies shorter than 2 characters, the ex-
act same reply more than 1 time and show them a
warning prompt if enter their response too quickly
consistently.

Data Collection modes - For the collection of
4 responses per context, we have the following
options - A) 4R1W- Collect 4 responses from a
single worker B) 2R2W- Collect 2 responses each
from 2 separate workers, and C) 1R4W - Collect
1 response each from 4 separate workers. In or-
der to decide between these collection modes, we
designed an experiment where, for 100 random
contexts, we collected 4 responses using all three
styles A), B) and C). In order to decide the best
option, we measured lexical diversity across the
4 responses using self-BLEU (Zhu et al., 2018)

Metric 4R1W 2R2W 1R4W
SelfBLEU-1 0.3809 0.3662 0.4403
SelfBLEU-2 0.1778 0.1618 0.2657
SelfBLEU-3 0.0955 0.0851 0.2045
SelfBLEU-4 0.0548 0.0449 0.1748
Distinct-1 0.7266 0.7522 0.7082
Distinct-2 0.9240 0.9346 0.8782
Distinct-3 0.9621 0.9692 0.9092
Gt-BLEU-1 0.1213 0.1165 0.1296
Gt-BLEU-2 0.0258 0.0259 0.0352
Gt-BLEU-3 0.0091 0.0111 0.0136
Gt-BLEU-4 0.0033 0.0032 0.0033

Table 8: Diversity and relevance for different modes of
data collection.

and Distinct (Li et al., 2016a) metrics, and the
collected responses’ relevance through the average
BLEU score of the multi-reference responses with
the ground truth (Gt-BLEU) in the dataset. The
results are reported in Table 8.

To calculate Self-BLEU, we calculate the
BLEU score for every response by treating the re-
sponse as a hypothesis and the others as the ref-
erences, and we define the average BLEU scores
calculated this way to be the Self-BLEU of the
response set. A higher Self-BLEU score implies
less diversity in the set. We observe that 4R1W
and 2R2W achieve higher lexical diversity than
1R4W. This is because when a worker is asked
to write multiple responses, they can make their
responses more diverse conditioned on their pre-
vious responses. Relevance metrics Gt-BLEU-
1,2,3,4 indicate that 1R4W achieve higher lexical
similarity with the ground truth response in the
dataset, followed by 4R1W. We chose the 4R1W
mode, that is, a collection of 4 responses from 1
worker, to balance the diversity and relevance met-
rics.

Instructions for annotation collection for Di-
versity Study

We provided following instructions to the work-
ers for collecting diversity ratings- “Please read
the following conversation between two persons.
Then read some possible follow-up responses for
the conversation. You will be shown 5 sets of re-
sponses, with 5 responses in each set. For each re-
sponse set, first select the responses you think are
appropriate responses for the conversation. Then
use the sliders to rate the diversity of the re-
sponse set, that is, how many of the appropriate
responses in the response set had different mean-
ings or were different replies. Please provide the
diversity score only for the appropriate responses
you have marked. The diversity score should not
be more than the number of appropriate responses
in that set.” These instructions were followed by
an example to make the task clear.

B Choice of dataset

There are only a few open-domain multi-reference
datasets and they have been collected artificially
either by retrieval (Xu et al., 2018; Galley et al.,
2015) or are very small in scale (Sugiyama et al.,
2019). Therefore we augmented the original test
set of the DailyDialog dataset (Li et al., 2017),
which has a sufficiently large test set. Conversa-
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Figure 3: Interface used for multi-reference data collection.

Reference Original Multi-reference
Unique 1-gram 17.55 23.62
Unique 2-gram 27.88 58.69
Unique 3-gram 21.79 50.34

Table 9: Comparison of number of unique n-grams in
original versus multiple references.

tions in DailyDialog cover 10 different topics on
daily life. We chose to augment the DailyDialog
dataset due to the following reasons- 1) The di-
alogs in this dataset are about daily conversation
topics and thus it is easier to augment them us-
ing crowdsourcing.2) The dialogs in this dataset
are generally more formal than datasets such as
the Twitter Dialog Corpus (Ritter et al., 2011) and
Ubuntu Corpus (Lowe et al., 2015b) which contain
noise such as typos and slangs. 3) The dialogs gen-
erally have a reasonable number of turns, which
makes it easier for a person to understand the con-
text and generate a reply. Therefore, given the size
of the original DailyDialog test set and the above-
mentioned properties of the dataset, we chose to
augment the test set of DailyDialog.

Dataset quality continued
We present the average number of unique 1, 2 and
3 grams in the original ground truth and the set
of collected multi-reference ground truth in Table
9. The higher number of unique ngrams in the
multi-reference ground truth indicates that the new
ground truth captures more variation in the set of
possible responses.
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Abstract

We present the first complete spoken dia-
logue system driven by a multi-dimensional
statistical dialogue manager. This framework
has been shown to substantially reduce data
needs by leveraging domain-independent di-
mensions, such as social obligations or feed-
back, which (as we show) can be transferred
between domains. In this paper, we conduct
a user study and show that the performance
of a multi-dimensional system, which can be
adapted from a source domain, is equivalent to
that of a one-dimensional baseline, which can
only be trained from scratch.

1 Introduction

Data-driven approaches to spoken dialogue sys-
tems (SDS) are limited by their reliance on substan-
tial amounts of annotated data in the target domain.
This can be addressed by considering transfer learn-
ing techniques, e.g. (Taylor and Stone, 2009), in
which data from a source domain is leveraged to
improve learning in a target domain. In particular,
domain adaptation has been used in the context of
dialogue systems (Gašić et al., 2017; Wang et al.,
2015; Wen et al., 2016), focusing on identifying
and exploiting similarities between domain ontolo-
gies in slot-filling tasks.

In contrast to this previous work, we take a multi-
dimensional approach, which combines machine
learning with linguistic theory. Following Bunt
(2011), we exploit the linguistic phenomenon that
utterances serve more than one function in a con-
versation, i.e. they have more than one dimension
(see Section 2).1 For example, the utterance “On
what date would you like to fly to London?” both
asks a task-oriented question, and provides feed-
back about understanding the requested destination.
We take advantage of this phenomenon by training

1See also https://dit.uvt.nl/.

separate, fully-statistical dialogue models for each
dimension and generating system responses along
multiple dimensions simultaneously. Such an SDS
thus has the potential to adapt more efficiently to
new domains by exploiting previously trained poli-
cies of the domain-independent dimensions, such
as feedback and social conventions.

Previous implementations of multi-dimensio-
nal SDSs were mostly handcrafted (Akker et al.,
2005; Petukhova et al., 2016). Keizer and Rieser
(2017) were the first to present a statistical multi-
dimensional dialogue manager (DM). Their results
suggest an up to 80% reduction in data: a task suc-
cess rate of over 90% can be achieved after only
2,000 dialogues when using pre-trained policies,
whereas at least 10,000 dialogues are required with-
out pre-training. In comparison, Gašić et al. (2017)
achieve similar success rates for in-domain systems
trained on 5,000 dialogues. However, Keizer and
Rieser’s findings are only tested in simulation.

In this paper, we present the first complete statis-
tical SDS with multi-dimensional DM, and the first
crowdsourced human user evaluation of this type
of system, comparing a one-dimensional baseline
and three multi-dimensional variants, using a novel
web-based setup. A novel aspect of our statistical
analysis is testing for equivalence. The four system
variants were designed in such a way that we would
expect their performance levels to be indistinguish-
able when using fully trained policies. Should the
data provide statistical evidence for this, the multi-
dimensional variants can be preferred due to their
inherent potential for domain transfer.

2 A Multi-dimensional Dialogue
Manager

Our DM is a partially-observable Markov decision
process (POMDP; Young et al., 2013) which takes
as input an n-best list of dialogue act hypotheses,
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Usr: Hi, I need a Thai restaurant in the city centre
SOCIAL: GREET; TASK: INFORM; TURN: RELEASE

Sys: Okay, let me see, . . .
TURN: TAKE; AUTOFEEDBACK: AUTOPOSITIVE
TIME: PAUSING; TASK: INFORMSEARCH

Sys: Bangkok City is a Thai restaurant;
it is in the city centre

AUTOFEEDBACK: INFORM; TASK: INFORM

Figure 1: An example of multiple dimensions in a di-
alogue: the user both greets the system and asks for a
cheap Indian restaurant, before releasing the turn; the
system then takes the turn while giving positive feed-
back, and indicates that it needs some time to retrieve
the requested information; in the second part the sys-
tem both provides this information and gives feedback
about understanding the user’s question (underlined).

updates the dialogue state and then selects a re-
sponse in the form of one or more dialogue acts.
Rather than selecting a single action from one set
of possible actions, our DM consists of multiple
dialogue act agents, each of which selects an ac-
tion from a separate action set, associated with one
dimension. These action sets are based on three
of the ten dimensions defined in the ISO standard
for dialogue act annotation (ISO, 2012): Task (e.g.
recommending a restaurant), AutoFeedback (e.g.
asking the user to repeat/rephrase after a process-
ing problem), and Social Obligations Management
(SOM; e.g. responding to the user saying good-
bye). These dimensions were considered to be
the most important for supporting the kind of task-
oriented dialogues targeted (see Fig. 1 for an exam-
ple). While the Task dimension is domain-specific,
AutoFeedback and SOM are applicable across do-
mains.

Training the statistical DM on these three di-
mensions involves optimising three policies in par-
allel. A set of priority rules is used to combine
the output of these policies into a single system
response. The key advantage of such a design is
that the domain-independent policies (AutoFeed-
back and SOM) can be transferred and adapted to
a new domain, leaving only the Task policy to be
trained from scratch. In our previous work (Keizer
and Rieser, 2017), we have shown that a multi-
dimensional DM with pre-trained policies reaches
higher performance levels during the early stages
of training. Here, we take an important step in
confirming this advantage in a real user study.

Restaurants Hotels

#venues 149 39
#slots 4 5
shared slots pricerange, area, near
other slots cuisine type, rating

Table 1: Overview of task domains.

Our framework currently supports information-
seeking domains, such as recommending restau-
rants or hotels based on the user’s preferences. The
domains are specified in terms of an ontology (de-
scribing slots such as price range and cuisine) and
a database. Our domains are presented in Table 1.
We use restaurant information as target domain,
but two of the system variants were trained for
the hotels domain (source) and then adapted to the
restaurant domain.

2.1 Model Variants

For the evaluation, we follow Keizer and Rieser
(2017)’s four DM variants and training regime: The
one-dimensional one-dim baseline system contains
a single dialogue act agent (ALL) and the corre-
sponding policy was trained from scratch in the
target domain. The multi-dimensional systems
use three dialogue act agents, one of which is
domain-specific (TASK) and the other two domain-
general (AUTOFEEDBACK and SOM). For the base
multi-dim system, the three policies are trained
from scratch in the target domain, whereas the
trans-fixed and trans-adapt variants employ trans-
fer learning (Pan and Yang, 2010; Torrey and Shav-
lik, 2010): only the task-specific policy is trained
from scratch and the two domain-general policies
are previously trained in the source domain. For
trans-fixed, the pre-trained policies are kept fixed
during training in the target domain, whilst for
trans-adapt, these are further trained in the target
domain. The four fully trained DM versions are
outlined in Table 2.

2.2 Training Details

All policies are optimised in simulation using multi-
agent reinforcement learning with linear value func-
tion approximation, based on a single reward signal
shared between the agents.2 To train all systems,

2The reward function, shared among the agents/dimen-
sions, was the following: (i) a reward of +80 upon task com-
pletion, (ii) a penalty of -1 for each turn, (iii) a reward of
+3 when responding appropriately to a social act, and (iv) a
penalty of -5 when not signalling a perception or interpretation
level processing problem to the user when it occurred.
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we use the agenda-based user simulator of Keizer
and Rieser (2017), which is based on (Schatzmann
et al., 2007), along with the following error model:
In addition to creating an n-best list of user dia-
logue act hypotheses from the ‘true’ user act, we
also occasionally insert so-called ‘processing prob-
lems’, at the levels of perception (no ASR results
received) or interpretation (ASR successful, but no
NLU results received). We simulate a perception
problem with 10% probability, and in case of no
perception problem (90%), we simulate an interpre-
tation problem with 10% probability; only in case
no processing problems are generated (81%), an
n-best list of dialogue act hypotheses is generated.
Following Thomson et al. (2012), the n-best lists
are populated by taking the true user act and dis-
torting it at a given semantic error rate for each of
the positions, after which semantically equivalent
hypotheses are merged. Based on the error rate, a
Dirichlet distribution is used to generate confidence
scores for the n-best list (resulting in a semantic
top accuracy equal to the error rate), interpreted
as probabilities by the DM when updating its user
goal belief state.3

In order to correctly interpret the evaluation re-
sults, note that in the current setup, the one-dim
system serves as an upper bound baseline system,
as it needs no coordination between different agents
during training whilst generating (by construction)
the same range of actions as the multi-dimensional
systems. This is ensured by a set of priority heuris-
tics which map action combinations to single acts.4

2.3 DM Evaluation in Simulation

To get a better picture of what we might expect
during the human evaluation, we first ran evalu-
ations with simulated data. The results obtained
with the same settings as those during training are
shown in Table 3. As we hypothesised, the scores
are very similar, the one-dim system only slightly
outperforming the multi-dimensional systems.

We then extended the setup with different seman-
tic error rates (Thomson et al., 2012); the results
are shown in Fig. 2. The performance levels of the

For each of the four DM versions, 5 training runs over 60k
dialogues were carried out, resulting in a pool of 5 fully trained
policies.

3The n-best size was set to 3 and the error rate was set
to 30% for the target domain (restaurants) and 20% for the
source domain (hotels).

4E.g. if the Task agent generates a recommendation action
and the AutoFeedback agent generates a negative feedback
action, the latter gets priority and the former is cancelled.

four systems are very similar at error rates between
10% and 40%, showing that the construction of
the multi-dimensional versions in relation to the
one-dim baseline is sound, and showing there is no
negative transfer, i.e., the adapted systems are not
performing worse.5

3 Evaluation Setup

We use crowdsourcing to evaluate our system, fol-
lowing Jurčíček et al. (2011) and Crook et al.
(2014). In both of these works a phone-based sys-
tem was deployed, using a bespoke ASR and Voice
over IP (VoIP) to connect speech input/output with
the dialogue system. Here, we follow a similar
evaluation methodology, but with a novel, simpler
web-based interface using Google Chrome’s built-
in web speech API, embedded into the crowdsourc-
ing task webpages. A detailed description of the
technical setup can be found in Appendix A.

3.1 Crowdsourcing Setup
The users are recruited on the FigureEight crowd-
sourcing platform and asked to have a conversation
with the system to find a venue meeting certain
criteria (e.g. cheap Chinese food) and get certain
information about that venue (e.g. phone number
and address). This scenario is specified in natural
language, generated automatically from a set of
task specifications randomly generated from the
domain ontology. After each conversation, the user
is given a questionnaire to rate the system.

3.2 Evaluation Metrics
The subjective evaluation metrics are derived from
the following questionnaire, with one yes/no ques-
tion (Q1) and four 6-point Likert Scale ratings.

Q1 [SubjSucc]: Did you find all the information you were
looking for?

Please state your attitude towards the following statements:

Q2 [VoiceInt]: The system was easy to understand (the
voice was intelligible).

Q3 [Understand]: In this conversation, the system under-
stood what you said.

Q4 [AsExpect]: The system worked the way you expected it
to during the conversation.

Q5 [WdUseAgain]: From your experience with the system,
you think you would use it in the future to find a place
to eat.

5The discrepancy at zero error rate for the trans-fixed sys-
tem might have occurred because certain state feature combi-
nations occurring specifically at zero error rate were not seen
during training, and might be too distinct to be dealt with by
the generalisation capability of the value approximation model
used in our reinforcement learning algorithm.
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Dialogue Act Agent one-dim multi-dim trans-fixed trans-adapt

ALL source: – – – –
target: trained – – –

TASK – source: – source: – source: –
– target: trained target: trained target: trained

AUTOFEEDBACK – source: – source: trained source: trained
– target: trained target: fixed target: adapted

SOM – source: – source: trained source: trained
– target: trained target: fixed target: adapted

Table 2: Evaluated systems: one-dim is a one-dimensional (upper) baseline, other systems are multi-dimensional.

(a) Success rate. (b) Average dialogue length. (c) Average reward.

Figure 2: Results in simulation at different error rates.

system SuccRate AvgLen AvgRew

one-dim 97.8% 14.69 66.36
multi-dim 97.6% 15.68 64.97
trans-fixed 96.8% 15.08 65.23
trans-adapt 97.4% 16.41 64.20

Table 3: Test results on simulated data (same error rates
as in training): task success rate (SuccRate), average
dialogue length (AvgLen), average reward (AvgRew).

DM version NumDials NumTurns (StDev)

one-dim 245 6.67 (2.55)
multi-dim 228 6.30 (1.97)
trans-fixed 261 6.57 (2.33)
trans-adapt 248 6.64 (2.33)

Total 982 6.55 (2.31)

Table 4: Corpus statistics: the number of dialogues col-
lected (NumDials) and the average number of turns per
dialogue (NumTurns) with standard deviation (StDv).

The following objective success metrics are de-
rived from the logs:

EntProv: the system recommended an entity matching the
task constraints,

ConstrConf: the system confirmed all task constraints in its
recommendation,

InfoProv: the system provided all information requested by
the user.

4 Human User Evaluation

In total, 982 dialogues were collected (see Table 4),
i.e. 246 dialogues per system variant on average.

We carried out a number of statistical tests to anal-
yse the observed effect sizes in comparing the
systems, including chi-squared (for success rates)
and Mann-Whitney tests (for the Likert scale rat-
ings), but also the ‘two one-sided test’, or TOST
(Schuirmann, 1987), for equivalence, as argued in
Section 2.1. In a TOST scenario, the null hypoth-
esis is that the difference in performance between
two systems, ∆, is greater than a given threshold
ε (a hyperparameter). This translates into two one-
sided null hypotheses:

Hlo : ∆ ≤ −ε (1)

Hhi : ∆ ≥ +ε (2)

If both Hlo and Hhi are rejected, we can conclude
that −ε < ∆ < +ε, i.e. the difference lies below
the threshold. This test is much more conservative
than failing to reject the null hypothesis in a con-
ventional statistical test of significant difference.
The underlying one-sided tests can differ according
to the nature of data at hand. The default proposed
by Schuirmann (1987) is t-tests. However, our
data fails the normal distribution assumption of a
t-test. Therefore, we use the robust t-test of Yuen
and Dixon (1973) for testing equivalence on Likert
scale data, which does not assume normality, and
a pooled z-test with continuity correction (Fleiss
et al., 2003, p. 53ff.) for success rates.6 We used a

6The z statistic is the square root of the χ2 statistic, which
is more suited for determining standard deviation (i.e. size of
difference) as opposed to variance.
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DM SubjSucc VoiceInt Underst AsExpect WdUseAgain EntProv ConstrConf InfoProv[Q1] [Q2] [Q3] [Q4] [Q5]

one-dim 87.3% 5.49 4.80 4.81 4.67 72.2% 57.7% 45.7%
multi-dim 83.3% 5.37 4.68 4.68 4.59 68.4% 52.7% 44.7%
trans-fixed 81.6% 5.47 4.66 4.64 4.63 70.1% 53.1% 41.0%
trans-adapt 85.9% 5.38 4.67 4.64 4.57 72.2% 53.1% 46.6%

Table 5: Overview of subjective and objective evaluation results (cf. Section 3.2 for metrics).

DM version NumDials WER

one-dim 120 17.2%
multi-dim 124 15.6%
trans-fixed 137 15.4%
trans-adapt 115 19.1%

Table 6: WER analysis results (NumDials indicates the
number of dialogues transcribed for each system).

threshold of ε = 10% for the equivalence tests.

4.1 Evaluation Results

Table 5 shows the results for both objective and sub-
jective metrics. When considering the metrics for
task success (SubjSucc, EntProv, ConstrConf, In-
foProv), the one-dim system is the highest scoring,
although the trans-adapt system is often a close sec-
ond and in some cases the top scorer. However, no
statistically significant differences were detected,
and the one-dim system was moreover found to
be equivalent to the multi-dim (p = 0.024) and
trans-adapt (p = 0.002) systems in perceived suc-
cess (SubjSucc), and all three multi-dimensional
systems were found to be equivalent to each other
(p = 0.006, 0.009, and 0.031). Similarly, several
equivalences were detected for the three objective
success metrics, as illustrated in Appendix B.7 All
systems are equivalent on the other subjective rat-
ings Q2–Q5.

To get a sense of the noise levels encountered by
the different system variants, we collected crowd-
sourced transcriptions of 2,931 utterances from 496
dialogues (45.6% of the total number of turns in
the evaluation corpus and 50.5% of collected di-
alogues), spread approximately evenly across all
system variants. We then computed word error rate
(WER).8 Results in Table 6 show comparable noise

7Following Armstrong (2014), we do not apply a correc-
tion for multiple comparisons (Lauzon and Caffo, 2009) since
we only performed a limited number of pre-planned compar-
isons and did not require testing against the universal null
hypothesis “nothing is significant”.

8The reference transcriptions were obtained by majority
voting over the three transcriptions collected for each utter-
ance, with manual fixes in case of a tie (20% of the utterances).

levels for all system variants. No significant differ-
ences were found and equivalence tests confirmed
WER to be equivalent for all the systems. This con-
firms that none of the systems was disadvantaged
and the results in Table 5 are indeed comparable.

5 Conclusion and Future Work

In this paper, we have shown that a multi-
dimensional, data efficient dialogue manager per-
forms equally to a one-dimensional, more data-
hungry (upper) baseline. In doing so, we have de-
veloped a web-based platform for spoken dialogue
system evaluation, carried out a crowdsourced user
evaluation, and introduced statistical testing for
equivalence in our analysis of the results. All code
and data used in our experiments are available at:
https://bitbucket.org/skeizer/madrigal

The results show that none of the systems out-
performed the other systems consistently across
various metrics, and more importantly, that several
statistical equivalences between the systems could
be detected. We believe that these results are en-
couraging, especially since we suspect that the use
of a web-based speech interface (with inherently
varying quality of the microphone used) and the
crowdsourcing setup (with inherently varying con-
ditions in which workers do their tasks) resulted
in a relatively high level of variance in the data,
making it harder to draw strong conclusions.

In the next stage of our research, we aim to fur-
ther demonstrate the cross-domain transfer capabil-
ity of the dialogue manager, for example by eval-
uating partially trained policies, and showing that
policies that use transfer learning reach higher per-
formance levels in the early stages of training, or
that they achieve a given performance threshold
with much less data.
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A Dialogue System Setup

An overview of our crowdsourced dialogue sys-
tem evaluation setup is shown in Fig. 3. The core
component of the spoken dialogue system is the
Dialogue System Server, which contains the DM
(see Section 2), extended with a template-based
NLG component and code for processing NLU re-
sults from Microsoft’s LUIS (Williams et al., 2015)
Our LUIS model was trained with 299 manually
constructed and annotated example utterances.

The system is completed by a web-based user
interface, which connects with both the Dialogue
System Server and the Google Web Speech API.9

User audio input is first sent to Google ASR to get
user utterance hypotheses with confidence scores.
These are sent to the Dialogue System Server,
which returns a system response utterance. Finally,
this utterance is sent to Google TTS, which returns
the synthesised system response audio to be played
back to the user. The web interface is integrated
into the FigureEight crowdsourcing platform for
managing the evaluation (Section 3.1).

B Equivalence test results

See Figure 4 for a diagram of all statistically signif-
icant equivalences that we detected with respect to
the individual evaluation criteria (see Sections 3.2
and 4).

9https://w3c.github.io/speech-api/
speechapi.html

FigureEight
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Figure 3: Overview of dialogue system evaluation
setup.

(a) SubjSucc.

(b) InfoProv.

(c) ConstrConf.

(d) EntProv.

Figure 4: Statistically significant equivalences de-
tected.
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Abstract

We present the results we obtained on the
classification of dialogue acts in a corpus of
human-human team communication in the do-
main of robot-assisted disaster response. We
annotated dialogue acts according to the ISO
24617-2 standard scheme and carried out ex-
periments using the FastText linear classifier
as well as several neural architectures, includ-
ing feed-forward, recurrent and convolutional
neural models with different types of embed-
dings, context and attention mechanism. The
best performance was achieved with a ”Divide
& Merge” architecture presented in the paper,
using trainable GloVe embeddings and a struc-
tured dialogue history. This model learns from
the current utterance and the preceding context
separately and then combines the two gener-
ated representations. Average accuracy of 10-
fold cross-validation is 79.8%, F-score 71.8%.

1 Introduction

Disaster response teams operate in high risk situa-
tions and face critical decisions despite partial and
uncertain information. First responders increas-
ingly deploy mobile robotic systems to mitigate
risk and increase operational capability. In order
for robotic systems to provide optimal support for
mission execution, they need mission knowledge,
i.e., run-time awareness and understanding of the
mission goals, team composition, the tasks of the
team(s), how and by whom they are being car-
ried out, the state of their execution, etc. Since
first responders typically operate under high cog-
nitive load and time pressure, it is paramount to
keep the burden of entering mission knowledge
into the system at a minimum. The goal of our
research thus is to develop methods for extracting
run-time mission knowledge from the verbal com-
munication in the response team. The acquired
mission knowledge can also be used to assist the

first responders during or after the mission, for ex-
ample, by supporting the real-time coordination of
human and robot actions or by mission documen-
tation generation (Willms et al., 2019).

In this paper we address one particular sub-
problem: dialogue act (DA) recognition. DAs
are needed for a better understanding of the team
communication and how the mission tasks are be-
ing executed. For example, Requests communi-
cate task assignments and thus allow us to dis-
tinguish task assignments from other task-relevant
information exchange; Informs often report task
progress; and Questions indicate what was unclear
and required additional explanations. These dis-
tinctions are also useful for providing assistance,
including compiling mission documentation.

We use the corpus of human-human team com-
munication in robot-assisted disaster-response
collected in the TRADR project (Kruijff-
Korbayová et al., 2015). The TRADR team
communication is task-oriented, focused on col-
laborative execution of a mission by a structured
team using mobile robots to remotely gather situ-
ation awareness in a complex, dynamic, unknown
physical environment. In this the communication
differs from that in well-known existing corpora
annotated with DAs.

We annotated our corpus with DAs following
the ISO 24617-2 scheme (Bunt et al., 2012, 2017)
and experimented with several machine learning
approaches to DA classification. We explored var-
ious models, including different ways of taking di-
alogue context into account.

We overview previous work on DA classifica-
tion and existing corpora with DA annotations in
§2. We present our corpus in §3 and provide statis-
tics for DA and speaker role distribution. In §4 we
describe the classification models tested in our ex-
periments and report the evaluation results. We
conclude with a discussion and future plans in §5.
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2 Related Work

There is a body of research on teamwork and in-
formation sharing in disaster response, with and
without robots, e.g., (Casper and Murphy; Burke
et al.; Burke and Murphy; Johnson et al., 2017;
Toups et al., 2016; Carver and Turoff, 2007).

There has been very little work on dialogue pro-
cessing in this domain so far. In the pioneering
project TRIPS a decision-support dialogue system
was developed for the planning of an island evac-
uation in the event of a natural disaster. Focus was
on semantic parsing and task-specific interpreta-
tion. This approach was further developed to han-
dle various more complex emergency tasks cov-
ered in the Monroe corpus (Stent, 2000). This
work focused on mission planning (not execution),
data was collected in lab (not real disaster environ-
ment) and the participants were students (not real
first responders). DAs were annotated using the
DAMSL scheme (Core and Allen, 1997).

Some works on human-robot collaboration for
disaster response address the interpretation of ver-
bal commands to robots (Kruijff et al., 2014; Yaz-
dani et al., 2018), but not the overall team commu-
nication.

In (Martin and Foltz, 2004) automatic analy-
sis of the semantic content of team communica-
tion and automatic verbal behavior labeling was
used to assess team performance in a command
and control task with an unmanned aerial vehicle
in a simulated environment. A corresponding syn-
thetic team-member agent is described in (Cooke
et al., 2016). Since the corpus is not available and
the publications do not provide details on the task
and communication complexity, a closer compari-
son to our work is not possible. Communication
analysis was used also in (Burke et al.). They
designed and manually applied a team communi-
cation coding scheme, in order to examine robot
operator situation awareness and technical search
team interaction during a high-fidelity disaster re-
sponse drill with teleoperated robots. DAs are re-
flected in their annotation of the forms and func-
tions of communication contributions.

Corpora with DA annotations include also well-
known human-human dialogue corpora, such as
MapTask (Anderson et al., 1991; Carletta et al.,
1997); TRAINS (Allen, 1991); Switchboard
(Godfrey et al., 1992); Meeting Recorder Dia-
logue Act (Shriberg et al., 2004) and the AMI
Meeting Corpus (Carletta et al., 2005), and re-

cent large corpora, e.g., Maluuba Frames (Schulz
et al., 2017) and MultiWOZ (Budzianowski et al.,
2018)). These corpora cover different domains
and the goals the participants follow in their in-
teraction are quite different from what is going on
in the team communication in our domain.

Despite the differences it would be interesting
to see how DA classification models developed on
other exiting corpora perform on our corpus. The
challenge of such endeavor is, however, that dif-
ferent and sometimes very task-specific schemes
have been applied to annotate DAs. For instance,
some of the DAs in the Maluuba Frames corpus in-
clude domain-specific labels such as Canthelp and
No result as well as Thankyou and Moreinfo.

The ISO 24617-2 standard for DA annotations
introduced in (Bunt et al., 2012) and further de-
fined in (Bunt et al., 2017) was proposed to over-
come this. To date several corpora have been an-
notated accordingly and made available through
the DialogBank (Bunt et al., 2016). Although the
mapping of DA labels from other annotations to
the ISO standard is quite straightforward in some
cases (e.g., for Inform or Request), in other cases
the specificity of the domain prevents from fur-
ther generalizations, as discussed in (Chowdhury
et al., 2016). These issues lead us to postpone
transfer learning for future work and start tradi-
tionally by experiments on our own corpus.

Previous work on automatic DA classification
includes the use of Hidden Markov models (Stol-
cke et al., 2000), Maximum Entropy (Choi et al.,
1999), Generative and Conditional Bayesian Net-
works (Ji and Bilmes, 2005), and Support Vec-
tor Machines (Quarteroni and Riccardi, 2010).
Recent papers also explored neural architectures
(Kumar et al., 2017; Liu et al., 2017) and com-
pared word embeddings (Cerisara et al., 2018).

Only few works to date systematically tested
different kinds of context for DA classification.
Several experiments on the Switchboard corpus
are described in (Ribeiro et al., 2015), which tested
untagged and index-tagged n-grams as well as
context presented in the form of dialog act anno-
tations for the previous segments. Index-tagged
n-grams (n-grams tagged with the distance to the
current segment) improved accuracy significantly,
from 70.6% to 75.1%, and the DA annotations for
the preceding segments even to 76.4%.

(Liu et al., 2017) tested different kinds of con-
text for DA classification using deep neural mod-
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els. They present hierarchical models based on
convolutional neural networks (CNN) for sentence
representations which they combine with dialogue
history. They encode context as previous DA la-
bels and as probabilities for system predictions,
and experiment with dialogue history of varied
length. Including context information in their
models evaluated on the Switchboard corpus re-
sulted in significant increase of accuracy from
77% to almost 80%. These results indicate that
context should be taken into account when pro-
cessing structured conversations.

3 The Corpus

We use the corpus of robot-assisted disaster-
response team communication collected during
joint exercises with first responders in the TRADR
project (Kruijff-Korbayová et al., 2015).1 The
TRADR corpus contains audio recordings and
transcriptions of the speech communication in a
team of firefighters using robots in the aftermath
of an incident, e.g., an explosion, at an industrial
site. The team members have various roles: mis-
sion commander (MC), team leader (TL), oper-
ators (OP) of multiple ground (UGV) and aerial
(UAV) robots. They explore the site, searching for
persons, hazard sources, fires and other relevant
points of interest. The MC and the TL lead the
mission. They request situation information from
the OPs, who report back with updates and can
also share photos taken by the robot camera (see
the example in Appendix A).

The recordings were collected during several
field tests in 2015, 2016 and 2017. They amount
to approximately 10 hours and contain almost 3k
speech turns (see Table 1 for details). The 2015
and 2016 recordings are in German, the 2017 ones
in English. For the experiments presented in this
paper we used the original English data as well as
English translations from German. We started on
English because of available resources.

Before annotating DAs following the ISO
24617-2 scheme (Bunt et al., 2012, 2017). we
segmented the data into utterances; we split and
merged some turns to obtain appropriate spans for
assigning DAs. This resulted in 2469 utterances.

The ISO scheme defines several dimensions
and for each of them a hierarchy of commu-

1The TRADR team communication corpus is
available online from www.tradr-project.eu/
resources/datasets/ or talkingrobots.dfki.
de/resources/tradr/

Recording Mission Duration Turns
TJex 2015 374

Day 1 48:21 min 201
Day 2 33:21 min 173

TEval 2015 1165
Day 1 58:23 min 289
Day 2 65:04 min 299
Day 3 57:15 min 219
Day 4 53:22 min 358

TEval 2016 421
Day 1 n.a. 311
Day 2 n.a. 110

TEval 2017 822
Day 1 64:02 min 240
Day 2 149:20 min 408
Day 3 56:36 min 174

Total: 2782

Table 1: Corpus composition

ISO Annotation Label Classification
Label

Turn Management Contact
Inform, Promise, Offer, Address-
Suggestion

Inform

PositiveFeedback, AcceptRequest,
AcceptOffer, AcceptSuggestion,
Agreement

Affirmative

Request Request
CheckQuestion, SetQuestion,
ChoiceQuestion, Question

Question

Confirm Confirm
Disconfirm Disconfirm
Negative Feedback, DeclineOffer,
Disagreement

Negative

Table 2: Mapping of ISO annotation labels to labels
for automatic classification

nicative functions (a.k.a. DAs). The first au-
thor and another annotator independently anno-
tated each utterance with one of the dimensions
and a corresponding DA. Inter-annotator agree-
ment was κ=.77 for dimension assignment and
κ=.55 (weighted κ=.66) for the generic commu-
nicative functions in the Task dimension. For the
experiments in this paper we used the first au-
thor’s annotations as a golden reference. We fo-
cused on the classification of DAs from the dimen-
sions Task, Feedback and Turn Management (see
Table 2 for the used labels).

We annotated the corpus in full compliance with
the ISO scheme. Since some DAs had too few oc-
currences in the corpus we used a simplified set
of DA labels in the experiments (see §4.1). The
simplified labels are a result of a direct mapping
from the ISO scheme labels (see Table 2), mak-
ing it easy to compare DA classification results.
In most cases the simplified labels can be seen as
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Dialogue Act MC TL OP Total
Contact 32 350 360 742
Inform 19 132 476 627
Affirmative 8 217 127 352
Request 9 262 3 274
Question 12 150 84 246
Confirm 2 28 131 161
Disconfirm 0 4 49 53
Negative 0 6 8 14

Table 3: Dialogue act distribution

generalized ISO DAs which were selected based
on their utility for the disaster response domain.

The mission interactions consist of threads,
which are dialogue sequences where two (occa-
sionally multiple) team members talk about a task
or situation update, e.g., the TL talks to an OP
as illustrated in the example in Appendix A. A
new thread is initiated by establishing contact fol-
lowing the standard radio communication proto-
col. The threads are a good candidate for dialogue
context and we used thread history in some exper-
iments as we will describe in the next sections.

4 Experiments

4.1 Pre-processing
Before running the experiments we pre-processed
the data as follows.

First, we collapsed DA labels which had very
low frequency in the corpus with more frequent
ones. For instance, there were only 2 cases of Ad-
dressSuggestion and 9 cases of AcceptOffer in to-
tal. Low frequency labels would introduce noise
and prevent the classifier from learning reliable
patterns. Moreover, there were some ambiguous
cases with several possible annotations (e.g. In-
form and Promise for ”I’ll send it over to you”)
and we decided to retain the most frequent label
to reduce the perplexity. Table 2 shows the map-
ping of the manually annotated ISO scheme labels
to the DA labels used for the automatic classifi-
cation. The resulting distribution of DA labels is
shown in Table 3.

Second, we removed all punctuation. Although
punctuation can be a good clue for some DAs (e.g.,
“?” usually indicates Question) we removed it,
because the ASR software often does not provide
punctuation reliably. We also transformed all texts
to lower case and padded sequences when using
neural networks. For 10-fold cross-validation we
split the 2469 utterances into 2222 for training and
247 for testing in each fold partition.

4.2 Baselines

We implemented three baselines. The majority
baseline assigned each utterance the most fre-
quent label for the given role, i.e., all MC/TL utter-
ances were annotated as Contact and all OP utter-
ances as Inform. This resulted in accuracy 34.8%

The fact that all TL utterances were classified
as Contact was an obvious drawback. We there-
fore tried a relative-frequency baseline as an al-
ternative, using the relative frequencies for each
DA on the complete corpus (cf. Table 3). Each ut-
terance was assigned a random class based on the
relative frequencies. This baseline had accuracy
24.7%2. The majority baseline which used solely
the role was substantially better compared to the
frequency-based random baseline.

The third mixed baseline was based on the as-
sumption that all instances of Contact are identi-
fied correctly and for all other utterances we used
the majority baseline. Therefore, the third base-
line assigned Request to all MC/TL utterances and
Inform to all OP utterances which were not labeled
as Contact. This baseline had accuracy 47.2%.
Since these three baselines had such a low perfor-
mance we considered the results of the FastText
classifier as a baseline for evaluating the perfor-
mance of the neural models.

4.3 FastText

As the first model for DA classification we tested
FastText3, an open-source library for text classifi-
cation and representation using supervised learn-
ing with multinomial logistic regression. Al-
though it can represent input text in the form of
embeddings it belongs to the family of linear clas-
sifiers. We ran FastText using the parameters rec-
ommended for a small training set (10 dimen-
sions, 0.5 learning rate, 20 epochs). The aver-
age accuracy over a 10-fold cross-validation was
74.0%. It was consistent across the folds (see Ta-
ble 4). Because of the strong correlation between
the speaker role and the DA distribution, as shown
in Table 3, we also experimented with including
the role as a special token at the beginning of each
utterance. This additional information improved
the average accuracy to 75.6% and also the ac-
curacy in most folds (see Table 4). Finally, we
tested the effect of adding the dialogue thread con-

2We also tested a baseline based on DA relative frequen-
cies per role, but the accuracy was even lower, 21%.

3https://fasttext.cc/
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Fold Accuracy
without
Role

Accuracy
with Role

Accuracy
with Role
+ Thread
History

1 0.656 0.668 0.628
2 0.607 0.684 0.583
3 0.668 0.696 0.583
4 0.745 0.757 0.583
5 0.834 0.858 0.692
6 0.761 0.741 0.640
7 0.794 0.773 0.709
8 0.781 0.785 0.660
9 0.769 0.794 0.676

10 0.785 0.801 0.650
Avg: 0.740 0.756 0.640

Table 4: FastText 10-fold cross-validation

text: we appended the corresponding thread his-
tory to each utterance and trained FastText on this
extended input. Accuracy dropped for all folds, to
64.0% on average as shown in Table 4.

4.4 Neural Networks

Neural networks have already shown great po-
tential in tackling various NLP tasks, including
DA classification (Chen et al., 2018; Liu et al.,
2017). We therefore also tested various neu-
ral architectures to classify DAs in our corpus:
Feed-Forward Neural Networks (FFNN); Recur-
rent Neural Networks (RNN), in particular Long-
Short Term Memory (LSTM) and bidirectional
LSTM models; Convolutional Neural Networks
(CNN). We experimented with attention and dif-
ferent kinds of embeddings (including Word2Vec,
GloVe and FastText). We also tested the effect of
the dialogue context in the form of the preceding
thread history concatenated with the current utter-
ance. We present the models and the DA classifi-
cation results in the next sections.

Feed-Forward Neural Networks
We implemented a simple FFNN using the Keras4

library with one Embedding layer (we experi-
mented with 100, 200 and 300 dimensions) and
applied global average pooling to average the em-
beddings of all words in the utterance before send-
ing them through the Dense layer. The architec-
ture is shown in Figure 1.

We set the minibatch size to 8, trained the net-
work for 5 epochs and used Adam as an optimizer.
We trained several models using the Embedding
layer provided by Keras as well as pre-trained
GloVe embeddings obtained from the Stanford

4https://keras.io/

Embeddings Type Accuracy
Keras 100 0.755
Keras 200 0.761
Keras 300 0.762
GloVe 100, frozen 0.685
GloVe 200, frozen 0.711
GloVe 300, frozen 0.722
GloVe 100, trainable 0.759
GloVe 200, trainable 0.768
GloVe 300, trainable 0.771

Table 5: DA classification results for FFNNs with dif-
ferent types of embeddings

NLP group website,5 which were learnt on the
data from Wikipedia 2014 and Gigaword 5 (6B
tokens, 400K vocabulary). We also experimented
with both frozen and trainable embeddings. The
results were consistently better with trainable em-
beddings compared to the frozen version. Table 5
shows the evaluation results with accuracy scores
averaged across 10 folds.

Figure 1: Feed-Forward Network with embeddings 6

Convolutional Neural Networks
Inspired by the results on DA classification with
CNNs in (Liu et al., 2017) we also tested CNNs
with varying number of convolutional layers and
filter sizes on our data. Figure 2 shows a sample
architecture with two convolutions and 128 filters
of size 5. We also tested CNNs with different em-
beddings. The best performance (average accu-
racy 72.1%) was achieved by the model with one
convolutional layer, filter size 10 and embeddings

5https://nlp.stanford.edu/projects/
glove/

6None is a dynamic length dimension which means that a
corresponding layer can have variable-length sequences as an
input.
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Embeddings Type Conv. Filter Size Accuracy
Keras 100 2 5 0.685
Keras 200 2 5 0.697
Keras 100 1 10 0.721
Keras 200 1 10 0.712
GloVe 100 2 5 0.695
GloVe 200 2 5 0.694
GloVe 100 1 10 0.703

Table 6: DA classification results for CNN models

trained on our data with dimensionality 100. An
overview of the results obtained with various CNN
architectures is in Table 6. Interestingly, more
complex models resulted in worse scores. Con-
volutions appear not very useful for the relatively
short texts of dialogue utterances.

Figure 2: Convolutional Neural Network 6

Model Embeddings Type Accuracy
LSTM Embedding 200 0.745
LSTM GloVe 200 0.775
LSTM GloVe 300 0.768
LSTM Embedding 200 0.676
+Attention, -Thread
LSTM GloVe 200 0.767
+Attention, -Thread
LSTM GloVe 200 0.780
-Attention, +Thread
LSTM GloVe 200 0.745
+Attention, +Thread

Table 7: RNN performance

Model Embeddings Type Accuracy
no LSTM GloVe 200 0.784
LSTM for turn & thread GloVe 200 0.768
LSTM for turn GloVe 200 0.798
LSTM for turn Word2Vec 100 0.769
LSTM for turn Word2Vec 200 0.773
LSTM for turn Word2Vec 300 0.767
LSTM for turn FastText 300 0.770

Table 8: Divide&Merge performance

Recurrent Neural Networks
We tested RNNs with Long Short Term Mem-
ory (LSTM) cells, both LSTMs and bidirectional
LSTMs. We also applied an attention mechanism
and experimented with various embeddings and
regularization parameters. In some experiments
we concatenated all previous utterances from the
same thread with the current utterance in order to
give more context to the classifier. We inserted
a #START# symbol between the current utterance
and the thread text as a separator.

Figure 3 shows the RNN architecture with bidi-
rectional LSTM and attention mechanism. The at-
tention layer follows the idea proposed in (Raffel
and Ellis, 2015). We passed the generated word
vectors through bidirectional LSTM and multi-
plied the input with the attention vector at each
time step. The result was passed through the
Dense layer with ReLU as an activation function.
Dropout 0.25 was applied to the function output
before it went through the final Dense layer. We
tested this model with single utterances as well
as with utterances concatenated with their corre-
sponding thread history, with and without atten-
tion. The results of different RNN architectures
are in Table 7. The best accuracy of 78.0% was
achieved by the model which used the thread his-
tory and pre-trained GloVe embeddings with train-
able weights, no attention.

In the experiments described above we noticed
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Figure 3: RNN with attention 6

that simple concatenation of the current utterance
with the previous context gives us a very small
improvement in accuracy compared to the model
which does not use the thread history (accuracy in-
creased from 77.5% to 78.0%). The network treats
the current utterance and the thread history as a
single input, and this might result in a sub-optimal
representation. Hence, we designed a model that
learns from the current utterance and from the pre-
vious context separately and then combines the
two generated representations into one. Because it
first separates the current utterance from the con-
text and then puts the representations together we
call this new model Divide & Merge (D&M). Fig-
ure 4 shows the D&M model architecture we im-
plemented. 10-fold cross-validation yielded the
best average accuracy of 79.8% using pre-trained
GloVe embeddings with 200 dimensions and train-
ing for 5 epochs. Detailed results of the D&M
model evaluation are in Tables 8 and 9.

Table 8 shows the results for various experimen-
tal settings. First, we report the accuracy scores
obtained by the D&M model without LSTM,
D&M which uses LSTM for encoding both turn
and thread utterances and D&M which uses LSTM
only for turns while the thread information is en-
coded using one Embedding layer and global av-
erage pooling as shown in Figure 4. The model

with turn-only LSTM achieved the best accuracy
79.8%. Second, we also compared different word
embeddings (GloVe, Word2Vec and FastText) and
found that pre-trained GloVe embeddings with
200 dimensions work best on our data.

Fold Accuracy
1 0.733
2 0.717
3 0.765
4 0.794
5 0.834
6 0.826
7 0.858
8 0.810
9 0.818

10 0.829
Avg: 0.798

Table 9: Divide&Merge 10-fold cross-validation

4.5 Discussion

To compare the performance of the D&M model
(accuracy 79.8%) against that of the FastText clas-
sifier (accuracy 75.6%) we applied a randomized
test with 10,000 trials. The resulting p-value of
0.0001 indicates a significant difference. The ac-
curacy of both FastText and D&M is also signifi-
cantly better than that of the baselines (24.7% for
the relative-frequency baseline, 34.8% for the ma-
jority baseline and 47.2% for the mixed baseline).
Table 10 contains the results for precision, recall
and F-score per DA.

FastText Divide&Merge
Category Prec. Rec. F1 Prec. Rec. F1
Contact 0.94 0.96 0.95 0.96 0.98 0.97
Inform 0.70 0.77 0.74 0.75 0.78 0.76
Affirmative 0.78 0.80 0.79 0.81 0.82 0.82
Request 0.69 0.68 0.68 0.75 0.76 0.75
Question 0.58 0.54 0.56 0.71 0.61 0.65
Confirm 0.40 0.28 0.33 0.48 0.50 0.49
Disconfirm 0.60 0.51 0.55 0.60 0.55 0.57
Average
(w/o Neg.): 0.67 0.65 0.66 0.72 0.71 0.72
Average
(with Neg.): 0.59 0.57 0.57 0.63 0.62 0.63

Table 10: FastText and D&M results per DA

We also compared the performance of the D&M
model with threads to the same model without
thread information. The results are in Table 11.
Note that Tables 10 and 11 show average preci-
sion, recall and F1 score for two cases: with and
without the category Negative. Negative turned
out to be very difficult to classify because of the
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Figure 4: Divide&Merge architecture 6

following reasons. First, there is a data spar-
sity problem, because Negative has only 14 occur-
rences in the whole corpus. Second, Negative is
very similar to Disconfirm and in many cases they
can be used interchangeably. However, Negative
was omitted only in the precision and recall cal-
culations showing performance per DA. All accu-
racy scores presented in this paper take Negative
into consideration.

Table 11 shows that F1 score increases when
the thread information is provided as an additional
input to the model. For all DAs except for Dis-
confirm and Negative we observe an improvement
in terms of precision, recall and F1 score. The
poor performance of D&M model on categories
Negative and Disconfirm could be due to the fact
that some threads are interconnected and Negative
is often a response to the previous thread.For in-
stance, in one thread the OP says ”I will put snap-
shots in ...” And in the next thread the TL says ”I
don’t have snapshots” which should be interpreted
as Negative with respect to the previous statement.
However, D&M classifies the utterance as Inform
because it does not see the connection between
two different threads.

Further manual checking of the classification
results confirmed that the D&M model could han-
dle DAs which depend on the context better. Ta-
ble 12 illustrates this: In Thread 1 FastText al-
most always picked Inform as the most likely la-
bel, whereas D&M assigned more DAs correctly.
In Thread 2 FastText assigned Contact for ”Yeah,

D&M no threads D&M with threads
Category Prec. Rec. F1 Prec. Rec. F1
Contact 0.95 0.96 0.95 0.96 0.98 0.97
Inform 0.74 0.73 0.73 0.75 0.78 0.76
Affirm. 0.80 0.76 0.78 0.81 0.82 0.82
Request 0.73 0.74 0.74 0.75 0.76 0.75
Question 0.64 0.60 0.62 0.71 0.61 0.65
Confirm 0.37 0.47 0.41 0.48 0.50 0.49
Disconfirm 0.62 0.59 0.60 0.60 0.55 0.57
Negative 0.25 0.07 0.11 0.00 0.00 0.00
Average
(w/o Neg.): 0.69 0.69 0.69 0.72 0.71 0.72
Average
(with Neg.): 0.64 0.61 0.62 0.63 0.62 0.63

Table 11: D&M results with and without threads

Speak. Text FastText D&M
Thread 1
TL UGV 1 to team leader. Contact Contact
OP I am coming. Inform Contact
TL Can you find out whats

standing in all this
smoke?

Inform Question

OP Yes. I could. You should
have a picture of that.

Inform Confirm

TL I’ll check that. Inform Affirm.
Thread 2
TL Can you get closer to

the blue barrel, so that
we can see the label?

Request Request

OP Yeah, I am driving
closer now.

Contact Affirm

Table 12: Sample DA classification results by FastText
and D&M. Correctly assigned DAs are typeset in bold.

I am driving closer now”. Although there were
some instances of Contact in the training corpus
starting with ”yeah”, Contact is not a good candi-

406



date in this case given that the previous utterance
was labeled as Request. This shows that thread
history has an impact on the output of the D&M
model. The D&M model makes better use of the
thread history than FastText and seems to offer a
better model for structured conversations.

In general, the independence assumption made
by FastText impairs the classification perfor-
mance. However, adding thread history resulted in
an accuracy drop from 75.6% to 64.0% (cf. §4.3).
This means that it is not only thread information
that is important for correct classification but also
the way this information is encoded and processed
by the classifier. Whereas FastText treats the cur-
rent utterance and the thread history in a bag-of-
words fashion, the D&M model treats them as two
independent inputs which are being processed by
two different parts of the network and their repre-
sentations are concatenated only at the final stage.

We also tested several models on the part of
the Switchboard Corpus available in DialogBank
(Bunt et al., 2016). After pre-processing similar
to what we did for our corpus we had 443 utter-
ances. We split them into 333 (75%) for training
and 110 (25%) for testing. FastText achieved ac-
curacy 60%. Among the neural models a simple
FFNN using the Embedding layer initialized with
pre-trained GloVe embeddings with 100 dimen-
sions achieved best accuracy 73.6%. The D&M
model could not be applied to the DialogBank-
Switchboard data because there are no clearly de-
limited threads. It would be interesting to test the
D&M approach on other corpora with dialogues
structured into threads similarly to our corpus.

5 Conclusions

We presented the results of dialogue act classi-
fication in robot-assisted disaster response team
communication. We experimented with a FastText
classifier and various neural models using FFNNs,
RNNs and CNNs with different types of embed-
dings and context information, with and without
attention. We found that including the speaker role
is beneficial whereas adding the previous sentence
as dialogue context leads to lower accuracy. This
might be due to the fact that dialogues in our cor-
pus consist of threads and concatenating an utter-
ance with a preceding one from a different thread
causes erroneous predictions. We then designed
the Divide&Merge model, where we added thread
history in a separate layer and concatenated not

texts but their vector representations. This resulted
in a significant improvement with average accu-
racy 79.8%. Using LSTM cells was beneficial for
utterance encodings but the thread history was bet-
ter encoded using the Embedding layer and global
average pooling. Pre-trained GloVe embeddings
with dimensionality 200 performed best on our
data and the results were slightly better with train-
able embeddings. This could be due to the fact
that in our corpus some words have non-standard
interpretations based on the communication pro-
tocol (e.g., ”roger that”), which are learned from
the corpus when we use trainable embeddings.

Incorporating thread information significantly
improved DA classification. In the future we wish
to investigate more the nature and importance of
threads in team communication, e.g., whether to
model threads implicitly (as we did) or explic-
itly; how to best segment them; how important is
it to represent intertwined threads; is information
throughout a thread used for interpretation or is the
influence more local at the thread boundary.

In future work we will also apply the models
presented here on the German data in the TRADR
corpus; test their performance on the outputs of
ASR without any editing by human annotators;
look for ways to further improve performance,
e.g., by enlarging the corpus by adding relevant di-
alogues from other corpora. We will develop mod-
els for the recognition of mission tasks and dis-
tinguishing task requests and commitments by the
team members from other task mentions. We will
then combine dialogue act and task recognition in
a single model. We will release the corpus with
the ISO dialogue act annotations later this year.

The models we develop are being integrated
as part of the speech processing pipeline in a
mission-support system that provides process as-
sistance and facilitates the creation of mission doc-
umentation (Willms et al., 2019). It will be evalu-
ated in practice with and by first responders.
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Appendix A

Team Communication Example
TL Andreas, Andreas from Markus, come

in.
OP yes, Andreas come in.

< . . .>
OP yes, for information, I am ready

[EHM ] shall I go ahead with my
search command, or begin?

TL Yes, begin immediately without pos-
sible – least possible time delay, to
[EHM ] have a higher chance for per-
son rescue.

OP yes, understood, I begin with the
search.
< . . .>

TL Andreas from Markus, come in. [ent =
unk.skippable]

OP Yes, Andreas, come in.
TL [ent = unk.skippable] are there al-

ready any noteworthy findings? [ent =
unk.skippable]

OP Negative. No noteworthy findings.
[ent = unk.skippable]

TL Yes, understood. [ent =
unk.skippable] Daniel, Daniel
from Markus, come in. [ent =
unk.skippable] Andreas from
Markus, come in.
< . . .>

OP Andreas, Markus from Andreas, come
in.

TL Andreas, come in.
OP On first floor in the smoke found a bar-

rel, green, labeled as environmentally
hazardous material.

TL Yeah, can you [unintelligible] whether
anything is leaking?

OP Yeah. It is a 200 liter barrel, whether
anything is leaking I cannot currently
tell.

TL [EHM ] Any thermal emission?
OP No thermal emission.
TL Okay. Priority on continuing person

search. Andreas from Markus, priority
on continuing person search.
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Abstract
This paper describes the use of Multi-Task
Neural Networks (NNs) for system dialogue
act selection. These models leverage the rep-
resentations learned by the Natural Language
Understanding (NLU) unit to enable robust
initialization/bootstrapping of dialogue poli-
cies from medium sized initial data sets. We
evaluate the models on two goal-oriented di-
alogue corpora in the travel booking domain.
Results show the proposed models improve
over models trained without knowledge of
NLU tasks.

1 Introduction

To be successful, goal-oriented dialogue systems
must accurately determine the intent(s) of a user,
identify and understand the relevant information
they have provided, and based on that informa-
tion, select the appropriate response at each turn
in the conversation. One way to model conver-
sation is as a partially observable Markov deci-
sion process (Young et al., 2013). In this frame-
work system response generation is modeled as
a stochastic policy, and research into statistically
optimizing dialogue policies with Reinforcement
Learning (RL) is an active area of research (Ga-
sic and Young, 2014; Lemon and Pietquin, 2007).
However, learning optimal dialogue policies with
RL can be challenging since large state and ac-
tion spaces require large amounts of training data
to densely sample the space (Lemon and Pietquin,
2007; Wen et al., 2016; Li et al., 2017). Addition-
ally, networks trained with RL learn in a trial-and-
error process, guided by a potentially delayed re-
ward function. This exploration process can lead
to poor performance in the early training stages,
which in turn can lead to a negative user experi-
ence (Su et al., 2016).

To address these issues supervised learning has
been used for pre-training of dialogue policies (Su

et al., 2016; Henderson et al., 2007; Williams and
Zweig, 2016), however the previous approaches
only considered one aspect of dialogue during
training. Grosz and Sidner (1986) describe dis-
course structure as a composite of multiple as-
pects that interact and co-constrain one other. This
structure determines the meaning of a discourse
and provides a framework for processing dialogue.
The question then arises whether it would be ben-
eficial to view dialogue policy training as a multi-
task learning (MTL) problem. MTL is an ac-
tive area of research and has been shown to im-
prove performance on a number Natural Language
Processing (NLP) tasks (Ruder, 2017; Zhang and
Yang, 2017). In this work we propose a method
to use the training signals of related tasks during
supervised pre-training of system dialogue act se-
lection as part of dialogue policy initialization. We
also experiment with multiple architectures across
two data sets and evaluate against two basline ar-
chitectures.

Specifically, we use slot-filling and user-intent
classification as auxiliary tasks for the primary
task of system dialogue act selection. For
many corpus trained dialogue systems slot-filling
and user-intent classification are trained indepen-
dently, separate from the dialogue manager. We
hypothesize that the features learned when train-
ing neural models for these tasks are also informa-
tive for the initialization of a robust dialogue pol-
icy network. In MTL there can be an added cost
of collecting labels for auxiliary tasks, but in the
scenario in this paper the labels for user-intent and
slot-filling that are needed to develop a complete
dialogue system already exist; the framework we
propose uses these labels as additional informa-
tion to initialize the dialogue manager. The next
sections describe related work in MTL, including
MTL for goal-oriented dialogue systems, the cor-
pora used in our experiments, the architecture of
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Corpus # Slots # Intents # Actions Avg. UL # Train # Dev # Test Vocab
ATIS 79 17 NA 11.13 4478 500 894 900

Frames 21 45 52 8.05 6131 1532 1916 3249
COMM ATT 34 10 56 1.86 3960 442 781 545
COMM BBN 37 18 48 2.30 3168 351 622 490
COMM CMU 45 32 72 2.58 2793 310 548 580
COMM SRI 37 17 25 2.44 4076 452 800 569

Table 1: The number of slot types, user speech acts, and system dialogue acts for each corpus, as well as the
average length of the user input utterances.

the neural models we tested, and the results of the
evaluation.

2 Related work

Multi-Task Learning: In MTL the training sig-
nals of related tasks are used to learn features
that are relevant to multiple tasks, including a pri-
mary task of interest. In learning these shared
features the model learns a representation that im-
proves generalization on that primary task. Caru-
ana (1998) and Zhang and Yang (2017) describe
a number of tasks where the shared representation
learned with MTL improves generalization. MTL
has also been shown to improve a number NLP
tasks (Toshniwal et al., 2017; Arik et al., 2017;
Dong et al.; Zoph and Knight, 2016; Johnson et al.,
2016). See Ruder (2017) and Zhang and Yang
(2017) for additional examples of MTL for NLP.

Goal-Oriented Dialogue systems: Wen et al.
(2016) treat dialogue as a sequence to sequence
mapping problem and design a dialogue man-
ager where each component is modularly con-
nected and trainable from data. Previous work
also learns state-tracking and other NLU tasks
simultaneously. Hakkani-Tur et al. (2016) use
a bi-directional LSTM to jointly model slot fill-
ing, intent determination, and domain classifica-
tion for different domains. Chen et al. (2016) use
a knowledge-guided structural attention network
(K-SAN) to model intent prediction and slot fill-
ing simultaneously. Both published results on the
ATIS corpus (Price, 1990). Padmakumar et al.
(2017) train a semantic parser and policy network
in batches, giving the policy network access to the
updated semantic parser after every batch. Zhao
and Eskenazi (2016) jointly learn policies for state
tracking and dialogue strategies using Deep Re-
current Q-Network (DRQN). Li et al. (2017) use
a single RNN with LSTM to jointly learn user in-
tent as well as slot filling. Their dialogue man-
ager is initialized by supervised learning of labels
generated by a rule system, then end-to-end train-

ing is continued with RL using a user simulator.
Results were published on data from movie-ticket
booking domain. We also propose to initialize the
dialogue manager with supervised learning, how-
ever we use the information from upstream dia-
logue system tasks during supervised pre-training.
We also experiment on two distinct corpora in the
travel planning domain across multiple architec-
tures.

3 Data

We evaluated our models on three corpora: the
Maluuba Frames (El Asri et al., 2017), DARPA
COMMUNICATOR (Georgila et al., 2009, 2005)
and ATIS (Price, 1990) data sets. The Frames
corpus is a collection of human-human dia-
logues that captures realistic behaviors in natu-
ral conversations. The DARPA COMMUNICA-
TOR corpus is a collection of human-computer
interactions from users calling into the COM-
MUNICATOR travel planning system. We use
the version described in (Georgila et al., 2005),
Georgila:COMMUNICATOR, which includes an-
notations from the original corpus plus additional
user-intent and task level annotations automati-
cally added by a system they designed. The com-
plete COMMUNICATOR corpus includes data for
all systems evaluated as part of the DARPA pro-
gram. As in Henderson et al. (2007) we use only
the data from the ATT, BBN, CMU and SRI sys-
tems. The ATIS corpus is a collection of spon-
taneous speech and associated annotations, col-
lected in a Wizard-of-Oz setup. The corpus was
included in the software released by Hakkani-Tur
et al. (2016) and we used it to for a comparison to
their work. The number of unique labels for each
task as well as the train, dev and test data splits for
each corpus are listed in Table 1.

3.1 Preprocessing

We used the common IOB (in-out-begin) format to
annotate slot-tags for each token. In this schema,

412



for each input sequence X tokens t1, ...., tn are
assigned a slot label s1, ..., sn and multi-token
values are labeled with B (begin) and I (inside)
to indicate the extent of the tokens that fill that
slot. Tokens that are not relevant to any slot
are tagged with O (outside). Some turns in the
Frames and COMMUNICATOR corpora were la-
beled with duplicate user-intent labels and system
action labels. One option was to ignore these du-
plicate labels, however these duplicates occurred
frequently enough to be considered informative;
therefore when more than one class label exists
for a single input utterance, we concatenated all of
the labels into a single label. For example, if the
system dialogue act was annotated with negate,
negate, and inform the labels are concatenated to
create a single negate#negate#inform label.

4 Experiments

We completed three sets of experiments: two base-
line experiments and a final experiment with the
multi-task architecture. Each of these experiments
included three tasks: slot-filling, framed as se-
quence prediction, user-intent classification, and
system dialogue act selection. In the first base-
line experiment the models described in Hakkani-
Tur et al. (2016) were extended to new corpora
and new tasks using the software released by the
authors. In the second baseline experiment we
trained single-task models for each of the three
tasks individually, on each corpus. Following the
methodology suggested in Caruana (1998), these
models were tuned for each corpus and architec-
ture. The Maluuba Frames and DARPA COM-
MUNICATOR Corpora were used in baseline and
multi-task experiments; the ATIS corpus does not
contain annotations for system dialogue act selec-
tion and was therefore only used in the baseline
experiments.

4.1 Architectures

Baseline A: Hakkani-Tur et al. (2016) describe a
recurrent neural network (RNN) architecture for
simultaneous learning of slot-filling, domain clas-
sification, and user intent classification. They treat
joint learning as a sequence labeling task and use
a modification of the encoder-decoder model. To
represent the data they use the IOB style annota-
tions for slots and for each utterace U associate
the sentence final token with a single label gener-
ated by concatenating the associated domain d and

(a) BLSTM1

(b) CNN1

(c) CNN2

Figure 1: Model architectures for the multi-task exper-
iments.

user-intent u labels. In this framework the input
and output utterances become:

X = t1, . . . , tn, < EOS >

Y = s1, . . . , sn, du uu

The model weights are learned by maximizing
the conditional likelihood of the training set labels.

In our first baseline experiment we use this ar-
chitecture to jointly learn user-intent classifica-
tion, slot-filling, and system dialogue act selection
(replacing domain classification) on the Frames
and COMMUNICATOR corpora. In our experi-
ments the sentence final token is created by con-
catenating the user-intent and system dialogue act
labels.

Baseline B: Next we trained Bi-directional
LSTM (BLSTM) and Convolutional Neural Net-
work (CNN) single-task models to perform each
task individually. The BLSTM consisted of an in-
put layer, hidden layer, and output layer. Softmax
is used to produce a distribution (pt) of likely la-
bels at each time-step . The final output is then
argmax(pt). The CNN network consists of two
convolutional layers, connected in series, each fol-
lowed by max pooling layers. A dense layer con-
nects the output of the final convolutional layer to
the softmax layer. For slot-filling the models pre-
dict a label for each word in the input sequence.
For user-intent and system dialogue act selection
the models predict a single label for the input utter-
ance. The BLSTM architecture was used to train
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individual models for all three tasks. The CNN ar-
chitecture was used to train individual user-intent
and system dialogue act selection models only.

Multi-Task Models: Lastly, we created multi-
task models with BLSTMs and CNNs, and a com-
bination of the two. In these architectures each
task has a separate output, and all tasks share hid-
den layers. We implemented three BLSTM ver-
sions. BLSTM1 consists of two stacked BLSTMs
and the slot-filling output layer is positioned as an
auxiliary output at the first BLSTM. For BLSTM1
the loss for slot-filling is backprogagated through
the first BLSTM. The loss for user-intent and
system dialogue act selection is backprogagated
through both BLSTM layers. Figure 1a illustrates
this architecture. BLSTM2 uses the BLSTM1 ar-
chitecture plus a skip connection from the em-
bedding layer to the second BLSTM layer. In
BLSTM3 the first BLSTM layer weights are ini-
tialized with the weights learned when training
slot-filling alone. The intent was to explore the
possible benefit of transfer learning from a previ-
ously trained model. Experiments on the subsets
of the COMMUNICATOR corpus with BLSTM3
include model training where the weights of the
first BLSTM layer are initialized with the weights
learned on the Frames data (BLSTM3b). Finally,
ablation testing was also done to explore the in-
fluence of each auxiliary task. The BLSTM1
model was trained on all three tasks simultane-
ously (BLSTM1a), on slot-filling and the primary
task alone (BLSTM1b), and on user-intent classi-
fication and the primary task alone (BLSTM1c).

The CNN1 network design was inspired by
Yoon (2014) and is illustrated in Figure 1b. This
network uses 4 filters of different widths each fol-
lowed by max pooling over time. Filter widths,
the number of feature maps, and the number of
nodes in the fully connected layer were chosen
based on the suggestions of Zhang and Wallace
(2015). Early experiments on the BLSTM net-
works showed a potential benefit to using user-
intent classification alone as an auxiliary task,
therefore these experiments used only user-intent
classification as the auxiliary task.

We also conducted experiments with net-
works inspired by Google’s Inception architecture
(Szegedy et al., 2014). This is a general purpose
architecture where the output from multiple con-
volutional layers is passed to a single convolu-
tional layer, called a bottle-neck, which constrains

Corpus best F Avg F
ATIS 95.48% 94.70%

Frames 74.26% 73.05%
COMMUNICATOR ATT 48.17% 45.98%
COMMUNICATOR BBN 50.34% 48.77%
COMMUNICATOR CMU 53.96% 52.59%
COMMUNICATOR SRI 59.74% 58.55%

Table 2: The best F-measure and average F-measure on
slot-filling alone for each corpus using the architecture
released by Hakkani-Tur et al. (2016).

the number of features that subsequent layers take
as input, keeping the number of parameters low
while retaining the expressive power of the net-
work. Our architecture is illustrated in Figure 1c.
This network uses 5 convolutional layers of differ-
ent filter widths followed by a single bottle-neck
convolutional layer. The CNN2b network is com-
posed of three CNN2a networks concatenated to-
gether.

The final multi-task network is a hybrid CNN
+ BLSTM architecture. In this network the in-
put is connected to a CNN network of three con-
volutional layers with different filter widths each
followed by max pooling. This is then con-
nected to the BLSTM1 architecture. The goal
was to explore the possibility of extracting fea-
tures with a CNN layer that could then be used
by the BLSTM1 network.

4.2 Training

All network development and training was done
in Keras (Chollet et al., 2015) and the code will
be released with the final version of this paper.
We experimented with batch sizes of 15, 25, 50
and 100, hidden layers of 25, 50 and 100 units,
and drop-out ratios of 0,0.25, and 0.5 on the fully-
connected layers. GloVe (Pennington et al., 2014)
word embeddings were used as pre-trained word
embeddings. The Adam optimizer was used with
a learning rate of 0.001. All weights were initial-
ized with glorot uniform. The BLSTM layers used
tanh as the activation function. During training the
validation loss was monitored and early stopping
was used to prevent over-fitting.

5 Evaluation

Table 2 shows the best and average F-measure
for slot-filling alone on each corpus using the ar-
chitecture released by Hakkani-Tur et al. (2016).
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Model Frames ATT BBN CMU SRI
Baseline A 34.77% 52.55% 40.59% 36.11% 57.72%

BLSTM Baseline 36.26% 52.56% 43.52% 37.06% 57.36%
BLSTM1a 36.08% 52.52% 43.71% 37.49% 58.12%
BLSTM1b 35.88% 52.31% 42.52% 38.06% 57.32%
BLSTM1c 37.93%* 53.12% 42.96% 36.58% 57.21%
BLSTM2 36.29% 51.74% 43.56% 37.55% 58.61%
BLSTM3 37.49%* 52.13% 42.27% 37.34% 58%
BLSTM3b NA 52.29% 43.19% 38.01% 58.30%

CNN Baseline 35.37% 46.93% 43.93% 36.44% 57.39%
CNN1 34.59% 51.90%* 43.93% 36.73% 59.09%
CNN2a 32.78% 52.62%* 43.29% 37.59% 56.09%
CNN2b 32.80% 53.28%* 43.74% 38.47%* 56%

CNN+BLSTM 36.82%* 51.38%* 43.73% 38.53%* 58.49%

Table 3: The best F-measure achieved for each multi-task model on the system action classification task. Results
in bold indicate an improvement over the associated single-task baseline (BLSTM or CNN baseline). An asterisk
indicates a statistically significant improvement over the respective baseline.

Both best and average F-measure were calculated
on the held-out test set, where the average was
calculated over 10 different weight initilizations.
Hakkani-Tur et al. (2016) experimented with mul-
tiple LSTM and BLSTM models, but noted that
comparable results were achieved on each and
therefore only report results on the BLSTM mod-
els. We do the same and only report on experi-
ments with their BLSTM architecture. The results
on the ATIS corpus are the metrics reported by the
authors (and confirmed by us).

For each corpus many of the multi-task models
achieved a higher metric score than the Baseline
B models on the test data, however significance
testing showed not all of these improvements were
statistically significant. Significance testing was
done with randomized approximation (Yeh, 2000).
Table 3 lists the best F-measure values for each
model for the primary task of system action selec-
tion.

The majority of the multi-task models, as well
as the Baseline B models on the Frames, BBN,
and SRI corpora, achieved a higher F-measure
than the Baseline A models. (We did not test for
statistical significance between the MTL models
and the Baseline A). The multi-task CNN mod-
els showed statistically significant improvement
on three data sets and were faster to train than the
BLSTM models, even when larger. Half of the
BLSTM models achieved significant improvement
on the Frames corpus, but improvement was more
sporadic on the COMMUNICATOR corpus. In
the Frames corpus most input utterances are much
longer since the user provides significant context
at each turn. In the COMMUNICATOR corpus af-
ter the initial request most user utterances are lim-

ited to one or two word responses to questions pre-
sented by the system. This creates a dialogue that
looks more like a system initiative dialogue, as
compared to the more unconstrained Frames cor-
pus. The CNN+BLSTM network improved per-
formance on three data sets and is the largest of
the proposed models.

6 Conclusion

We present multi-task BLSTM and CNN models
that use slot-filling and user-intent classification
as auxiliary tasks for the primary task of system
dialogue act selection as part of dialogue policy
initialization. The models bootstrap dialogue pol-
icy optimization without the need for hand-written
rules, as done, e.g., in (Li et al., 2017). We also
empirically evaluate multiple RNN and CNN ar-
chitectures on multiple data sets against two base-
lines architectures. Our MTL models improve
over the performance achieved on single task base-
line models (Baseline B) as well as the jointly
trained BLSTM model released by Hakkani-Tur
et al. (2016).

A dialogue manager that is initialized from cor-
pus data is not flexible enough for new user in-
teractions, therefore additional training is neces-
sary. Future work will include deploying our MTL
models as part of a complete dialogue system and
continued training with RL. This will allow us to
explore the performance of MTL models exper-
imentally on end-to-end systems. Additionally,
future work will incorporate additional dialogue
context into system dialogue act selection, and
model the scenario where more than one system
dialogue act may be valid at a given point in the
dialogue.
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Abstract

Information overload can be challenging for
children searching for books among a multi-
tude of titles, authors, and genres. We present
B. Rex, a dialogue agent for book recommen-
dations. B. Rex aims to exploit the cognitive
ease of natural dialogue and the excitement of
a whimsical persona in order to engage users
who might not enjoy using more common in-
terfaces for finding new books. B. Rex suc-
ceeds in making book recommendations with
good quality based on only information re-
vealed by the user in the dialogue.

1 Introduction

There are many ways to discover a book.
Goodreads and Amazon, two popular websites,
have user interfaces that are packed full of book
recommendations and reviews. Although this
mode of presentation serves many users well,
younger users like children might benefit more
from an interface that is less dense, and that at-
tempts to extrinsically motivate users to engage
with the book recommendation task. To investi-
gate these issues, we created a book recommenda-
tion dialogue agent, B. Rex.

There are two aspects of B. Rex’s design that
make it more suitable for younger users. First, be-
cause B. Rex is a dialogue agent, there is less op-
portunity for users to experience the decision fa-
tigue that can come with a traditional book rec-
ommendation interface. Second, B. Rex moti-
vates users to engage with the task by using the
persona of an intelligent dinosaur who spends his
time reading novels in a secret lab. These two
features—the use of recommendation in a text
medium, and a whimsical persona—are intended
to ultimately make younger users more successful
at succeeding at the book recommendation task.

2 Related Work

Book recommendation is comparable to other tra-
ditional recommendation domains which have al-
ready been explored in the dialogue systems litera-
ture, such as hotel or restaurant recommendations,
e.g. Ultes et al. (2017).

Within information retrieval, Bogers and
Koolen (2018) approach book recommendation
with Narrative-Driven Recommendation (NDR),
using user narratives from the online book discus-
sion forums as natural language book recommen-
dation requests. Kang et al. (2017) studies user
queries for movie recommendations, highlighting
not only the range of linguistic variation in such
a recommendation task, but also how Wit.ai1 can
effectively tackle NLU in a recommendation task:
their slots were retrieved from user input reliably.
(B. Rex also uses Wit.ai.)

We are aware of two dialogue-based book rec-
ommendation systems. Pan Macmillan Publishing
has developed a book recommendation chatbot for
Facebook Messenger2, where users are presented
with different questions to narrow down a set of
book recommendations. In this system-driven in-
teraction, users are presented with a set of fixed
categories to choose from, leaving little room for
self-expression. Author Bot, created by BAM Mo-
bile3, offers a personalized book exploration ex-
perience by acting like an author or a character in
a book that can discuss the plot, characters, and
backstory. While this system does not recommend
books, it shares a similar persona element imple-
mented in B. Rex.

B. Rex utilizes the best results from these sys-
tems. As far as book recommendation dialogue

1https://wit.ai
2https://www.digiteum.com/portfolio/panmacmillan-

chatbot/
3http://www.fastbot.io/author-bot
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Figure 1: A sample dialogue with B. Rex.

agents go, B. Rex is novel in that it does not con-
strain user input and also completely allows user-
initiated dialogue flow. This is important because
systems that do not allow the user any initiative
may be efficient in bringing the task to a conclu-
sion, but they are not as engaging or enjoyable for
the user as they could be.

3 System Overview

B. Rex4 was implemented in Python. Users in-
teract with B. Rex through a web browser. Nat-
ural language understanding was handled using
Wit.ai, and we relied on Goodreads5 for informa-
tion about books. Handwritten Python string tem-
plates were used for natural language generation.

Figure 2 provides an overview of the B. Rex
system architecture. Freetext user input was pro-
cessed with Wit.ai. Based on the value of the
intent slot returned by Wit.ai, the dialogue man-
ager selects an intent handler, a module that is
specifically written to handle that intent. For in-
stance, the greet intent handler is selected when
the value of intent is greet, i.e. when Wit.ai de-
tects that the user is saying hello to B. Rex. Then,
output is planned, generated, and presented to the
user.

4Source code for B. Rex is accessible at
https://github.com/georgetown-dialogue-systems-2018/brex,
demo at https://youtu.be/3Z1fBu5PMzc

5https://goodreads.com
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Figure 2: A high-level architectural diagram of B. Rex.

3.1 Wit.ai
Wit.ai is a platform that provides a pre-trained,
general-purpose natural language understanding
(NLU) system and lets developers tailor it to their
domain. Because the system is pre-trained, only
a very small amount (on the order of hundreds
of labeled inputs) of training data is needed to
get a domain-specific model. Further, Wit.ai is
able to accommodate slots that are unbounded,
which is a necessity in the book recommendation
domain, since exhaustively listing all authors or
books is not feasible6. Beyond slot-filling, Wit.ai
also supports classification of entire utterances,
which B. Rex uses to determine what a user’s in-
tent is for a given message. This feature was use-
ful, since intent is harder to capture with slots
alone.

3.2 Intent Handlers
B. Rex has seven intent handlers to respond to user
intents. The dialogue manager selects the intent
handler that corresponds to the value of intent.
Once the dialogue manager has selected the intent
handler, it hands execution off to it.

The intent handler then plans and generates a
text response using this information as well as data
retrieved from Goodreads on an as-needed basis.
B. Rex uses the Goodreads API7 to retrieve infor-
mation about authors, genres, books, and reviews
on Goodreads. To get information about a book,

6This might be more feasible with Goodreads’ database,
but it is not publicly available except through an HTTP API
that is limited in its capacity for detailed queries.

7https://pypi.org/project/Goodreads/

419



Figure 3: The first message users see when chatting
with B. Rex. The user may either enter freetext or se-
lect a suggested input.

user reviews are put through a text summarizer8 to
ensure they are no larger than a screenful.

After all data needed for building a response
has been retrieved, the NLG component for each
intent handler uses string templates to generate
the system’s text. Different templates are written
for each intent handler, and around 100 templates
were used in total. The text response is passed
through the manager to the user interface.

3.3 Extrinsic Motivation: B. Rex’s Persona

A major motivation for the present work is the
supposition that our target demographic, younger
users, would be engaged by extrinsic motivators,
i.e., reasons to engage with the system that don’t
have to do with the task itself. We provide this ex-
trinsic motivation at the level of the interface with
B. Rex. This primarily comes in the form of a
whimsical persona: B. Rex, by hinting at fantastic
and interesting bits about his life, drives users to
ask questions, building engagement with the sys-
tem and getting them closer to completing the task.

Before preparing NLG template strings, we cre-
ated a brief biosketch of B. Rex’s life, personality,
and preferences. Template strings referred to the
biosketch to showcase B. Rex’s persona, and so
that our exposition of his persona would be inter-
nally consistent and detailed enough to be lucid
and believable. B. Rex sprinkles in bits about his

8:sumy https://pypi.org/project/sumy/

life when he is chatting with the user about the
task, and he is also capable of talking about his fa-
vorite books and his life. We followed the findings
of Nasihati Gilani et al. (2016) in having B. Rex
respond as if he were really a dinosaur behind
a keyboard, instead of a virtual dinosaur created
only for the purposes of this system. We main-
tained a whimsical tone in various ways, which
included having a randomized stock of allitera-
tive, dinosaur-themed book reviewer names (e.g.,
“Roger Rajasaurus”) and featuring a cartoonish
sketch of B. Rex himself.

4 Evaluation

Similar to Griol and Callejas (2013), we gave a
survey (n = 8) to discover strengths and weak-
nesses of our system. The results are given in Ta-
ble 1. These results show that B. Rex was usually
successful in recommending a book to users. In
practice, some users had difficulties getting a book
recommendation from B. Rex, but the main diffi-
culties pertained to Wit.ai not recognizing context-
less slots in user input, or certain genres or authors
(a database limitation).

As for the quality of B. Rex’s recommenda-
tions, according to survey responses, it was for
most users just slightly worse than a recommen-
dation from a friend. This level of quality seemed
somewhat surprising given B. Rex’s disadvan-
tages compared to a book recommendation sys-
tem like Amazon or Goodreads, since B. Rex only
knows what the user has said, while Amazon and
Goodreads have a better model of users that has
been constructed from much richer data sources.

In summary, results suggest that the majority
of user dissatisfaction had to do with poor un-
derstanding and relatively poor recommendation
quality. These are both problems that could be
easily solved by a commercial system with more
training data and more user data, respectively9. As
for successes, many of the users expressed their
amusement with the B. Rex persona, and specifi-
cally mentioned their satisfaction with the alliter-
ative dinosaur-reviewer names.

5 Demonstration Outline

Participants will engage B. Rex through an online
interface on a laptop or on their own mobile de-

9This comes with the caveat that identifying books and
authors in isolation may remain somewhat difficult, as dis-
cussed in the introduction.
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Prompt Mean SD

1. How appealing is this book to you, compared to a book a close friend might have recommended to
you?
(1: least appealing, 7: most appealing)

4.8 1.12

2. B. Rex always understood what I was telling him.
(1: B. Rex never understood, 7: B. Rex always understood)

3.5 1.65

3. I often felt unsure about what I could say to B. Rex.
(1: I always felt unsure, 7: I never felt unsure)

4.3 1.21

4. B. Rex’s book recommendations were as interesting to me as books that people who know my taste
have recommended.
(1: nowhere near as interesting, 7: just as interesting)

4.1 1.61

5. Overall, how satisfied were you with B. Rex as a way of finding new books to read?
(1: not at all satisfied, 7: very satisfied)

4.5 1.32

Table 1: Results of a survey given to B. Rex users. For these questions, users provided Likert scale ratings from 1
to 7 indicating their agreement with the statement. Survey respondents were all adult native speakers of English,
n=8.

vice. Participants will be introduced to B. Rex and
be invited to input any requests or questions to be-
gin the book recommendation task. The demon-
stration will highlight B. Rex’s ability to handle
different user questions, the personality of the sys-
tem, and ability to collaborate with the user in
making an efficient and satisfactory recommenda-
tion. A real-time display will visualize the dia-
logue for observers.

6 Conclusion and Future Work

B. Rex demonstrates the utility of natural language
interfaces and fictional dialogue agent personas
to make book recommendations more engaging
for users who are less well served by the prevail-
ing interfaces. B. Rex succeeded in recommend-
ing books with good quality to users using no in-
formation about them other than their messages.
We expect that our approach should generalize to
other tasks beyond book recommendation, wher-
ever users find existing interfaces overwhelming
or unengaging.

There are a few immediate questions that would
need to be addressed by extensions to this work.
First, there are many other ways users want to dis-
cover books. Users want to be able to find books
that are similar to a certain book, that are by an
author that is similar to a certain author, or that
were published within a certain year range. Sec-
ond, an ideal book recommendation dialogue sys-
tem must be able to answer high-level questions
about a book. Users want to ask interpretive ques-
tions about books, like “does it have a happy end-
ing?” or “does it pass the Bechdel test?”.

For the former, a database with richer data and

more sophisticated querying strategies would do
much to solve these problems. The latter problem
is more difficult to solve. A fruitful way to tackle
these questions might be to aggregate user reviews
and use methods from information retrieval and
question answering systems to build a response.
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Abstract
Adding interactive capabilities to pedestrian
wayfinding systems in the form of spoken di-
alogue will make them more natural to hu-
mans. Such an interactive wayfinding sys-
tem needs to continuously understand and in-
terpret pedestrian’s utterances referring to the
spatial context. Achieving this requires the
system to identify exophoric referring expres-
sions in the utterances, and link these expres-
sions to the geographic entities in the vicin-
ity. This exophoric spatial reference resolution
problem is difficult, as there are often several
dozens of candidate referents. We present a
neural network-based approach for identifying
pedestrian’s references (using a network called
RefNet) and resolving them to appropriate geo-
graphic objects (using a network called Space-
RefNet). Both methods show promising results
beating the respective baselines and earlier re-
ported results in the literature.

1 Introduction

Remember yourself being lost in a completely un-
familiar city without knowing the local language
or acquaintances that can help? Being close to
desperate, you ask a passerby for a help and get
an answer similar to the following:

Just go forward until you see a McDon-
ald’s on the corner. There you turn right
and keep straight until the old Gothic
style church. A tall glass building near
it is exactly what you need.

Such wayfinding instruction is a typical example
of how humans guide each other in a city, rely-
ing mostly on landmarks in the vicinity (Cornell
and Greidanus, 2006; Goodman et al., 2004; May
et al., 2003; Denis, 1997; Lynch, 1960).

On the contrary, a current generation of naviga-
tion systems aiding pedestrian wayfinding gener-
ally makes use of quantitative information based

on GPS signals, e.g. distances, cardinal directions
and street names. The same instruction rephrased
by such system would sound as follows:

Head north on West Avenue. Turn right
at the corner. Continue 150 meters
straight until East Avenue 29. You’ve
reached your destination.

Such instructions are presented to a pedestrian as
a sequence on a screen (possibly voiced as well)
supplemented by a map with a moving marker in-
dicating pedestrian’s position.

The approach presented above, referred to as
turn-by-turn navigation, does not resemble a hu-
man wayfinding process and thus can be perceived
as unnatural and more complicated than it should.
In our opinion, making pedestrian’s experience
more natural should be based on the following two
observations.

First, a wayfinding is an inherently interactive
process, e.g. we need to know if a person is lost,
if the instruction is not clear enough, etc. Human
guide guarantees such interactivity, since wayfind-
ing happens in a dialogue, hence a wayfinding sys-
tem should interact with a pedestrian by means of
a spoken dialogue.

Second, humans have difficulties understanding
instructions based on quantitative characteristics
of a spatial environment (such as distance or an-
gles) (Ross et al., 2004), (Moar and Bower, 1983).
Such instructions make humans less confident in
their ability to reach the goal correctly. Hence,
they tend to rely more on qualitative ones, such as
salient geographical objects (landmarks), by sim-
ply referring to them (Denis, 1997). Such ap-
proach can be called landmark-by-landmark nav-
igation. Furthermore, landmarks can be used not
only when giving route descriptions, i.e. serving
as a guide, but also when being guided. For in-
stance, when giving a reassuring confirmation to
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the guide, such as “Yes, I can see a tall glass build-
ing that you’ve mentioned before”, or describing
the proximal surroundings when got lost (“I be-
lieve I’m lost, but I see a pizzeria to my right”).

A prerequisite for providing such interaction ca-
pabilities is being able to identify the landmarks
referred to by phrases as “a tall glass building”
or “a pizzeria to my right”. Such kind of phrases
is called referring expressions (RE) and the land-
marks these phrases refer to are called referents.
A task of matching a referring expression with
its referent(s) is called reference resolution (RR).
Guiding humans in a real city environment re-
quires resolving exophoric spatial references, i.e.
those referring to spatial objects outside of the dis-
course. The focus of this paper is on designing the
method for solving this task.

The main contribution of this paper is a new
method for resolving exophoric spatial REs, con-
sisting of two substeps:

• a method for identifying exophoric spatial
REs in spoken utterances;

• a method for resolving exophoric spatial REs
to the appropriate referents, represented as 0,
1, or more geographic entities.

2 Background

Pedestrian wayfinding is an interactive, problem-
solving process by which people use environmen-
tal information to locate themselves and navigate
from place to place (Vandenberg et al., 2016). De-
spite the ubiquity of wayfinding for pedestrians,
the navigation systems aiding the process, usually
mobile applications, generally use methods offer-
ing a turn-by-turn navigation, described in the
previous section. Such approach limits possibili-
ties for interaction with the system along the route
and forces the user to pay constant attention to
the map on the screen. Such design can also lead
to an increasing spatial anxiety (an anxious feel-
ing when navigating in unfamiliar environments),
which was shown by several studies (Hund and
Minarik, 2006; Lawton and Kallai, 2002) to neg-
atively influence pedestrian’s wayfinding perfor-
mance.

In this paper we suggest to remove pedestrian’s
dependency on the digital maps by interacting
with a pedestrian by means of a spoken dialogue
offering a landmark-by-landmark navigation. In
fact, a number of studies (Cornell and Greidanus,

2006; Goodman et al., 2004; May et al., 2003; De-
nis, 1997; Lynch, 1960) have confirmed that hu-
mans reason about a spatial environment in qual-
itative terms, mostly relying on landmarks. As
stated in (May et al., 2003), pedestrians were ob-
served to use distances and street names much less
frequently than landmarks when describing a city
environment. Such approach have been observed
to be more efficient for older people, who tend to
find a way quicker when using a landmark-based
navigation aid (Goodman et al., 2004). Pedestri-
ans with cognitive impairment have been observed
to rely on landmarks during navigation as well
(Sheehan et al., 2006).

As previously stated, a landmark-based naviga-
tion requires being able to resolve exophoric spa-
tial references. Exophoric reference resolution is
not a new task in itself, but it has primarily been
explored in unrealistic environments containing
distinct objects that can be described by a rela-
tively small number of visual features, e.g. recog-
nizing one of 36 Pentomino puzzle pieces in (Ken-
nington and Schlangen, 2015), one of 7 Tangram
puzzles in (Funakoshi et al., 2012) or an object in
a 3D treasure-hunt game in (Engonopoulos et al.,
2013). Only recently the research started to focus
on resolving references to objects in real environ-
ments. (Schlangen et al., 2015) try to identify ob-
jects in the images taken from different locations
around the world. (Götze and Boye, 2017) deal
with reference resolution in a complex city envi-
ronment. (Chen et al., 2019) present a TOUCH-
DOWN dataset, where the agents navigate in a
real-life visual urban environment trying to find a
hidden object based on a number of cues formu-
lated in a natural language. The presented task
is then called spatial description resolution, i.e.
given a set on instructions find the referred place,
whereas reference resolution aims at resolving all
references mentioned in the given instructions as
well.

A number of research papers on exophoric ref-
erence resolution (eRR) decompose the problem
into three subtasks: identifying referring expres-
sions (RE), constructing a search space of candi-
date referents and resolving the found references.
Hence, the descriptions of the existing eRR meth-
ods are decomposed in the same way.

As mentioned above, most of the studies on
eRR have been conducted in an unrealistically
small toy domain, hence REs can be identi-
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fied manually, as in (Engonopoulos et al., 2013),
(Funakoshi et al., 2012) or (Kennington and
Schlangen, 2015). (Schlangen et al., 2015) and
(Götze and Boye, 2017) addressed RR in a re-
alistic domain, but all REs were manually anno-
tated as well. (Schutte et al., 2010) worked on re-
solving REs in simple manipulation instructions,
e.g. “hit that red button”, and identified REs us-
ing a set of simple regular expressions. (Prasov
and Chai, 2010) used syntactic parsing on a word
confusion network, constructed out of n-best list
of alternative speech recognition hypotheses. All
non-pronominal NPs were then detected and said
to be a set of exophoric REs.

In most research studies, the search space of
candidate referents is the same for all utterances
and consists of a limited number of objects, e.g.
(Kennington and Schlangen, 2015), (Funakoshi
et al., 2012), (Engonopoulos et al., 2013), (Ma-
tuszek et al., 2014). In these studies all candi-
date referents (candidate set) have a limited num-
ber of distinct properties (color, shape, size, etc)
and hence each object in the search space is ei-
ther represented as a combination of such prop-
erties or simply as a numeric identifier (as the
search spaces are very small). (Schlangen et al.,
2015) worked with resolving references to a much
more diverse real-life objects in images containing
object segmentations. The referred objects come
from over 80 different categories and only around
2% of the objects comprise geographical entities,
e.g. benches, traffic lights, fire hydrants, etc., that
are of interest in the present article. The candi-
date set for every referring expression was set to
contain all object segmentations of the given im-
age and every candidate is encoded using a deep
convolutional neural network augmented with a
number of extra features. Similarly, (Götze and
Boye, 2017) have dealt with a constantly changing
candidate set of diverse geographical objects in
a pedestrian’s vicinity. Each geographical object
was then represented by a pedestrian’s position
and a number of properties inferred from Open-
StreetMap (OSM) (Haklay and Weber, 2008).

In most of the studies, eRR itself is solved by
taking the stochastic approach by training a gener-
ative probabilistic model to estimate the distribu-
tion over a set of candidate objects and then find
the most probable intended referent as:

O∗ = argmax
O

P (O|U, S), (1)

where U is a representation of an utterance con-
stituting RE, S is the search space of possible
referents, O is an object in the search space,
O∗ is the predicted referent. Such a stochastic
approach is pursued, for instance, in (Kenning-
ton and Schlangen, 2015), (Engonopoulos et al.,
2013), (Matuszek et al., 2014), (Funakoshi et al.,
2012), (Schlangen et al., 2015), (Götze and Boye,
2017).

3 Approach

Also in this paper, spatial reference resolution is
seen as a three-stage problem. First, referring ex-
pressions should be identified in the utterances and
encoded into a numerical representation. We refer
to this stage as spatial referring expressions iden-
tification (sREI). This is achieved by a neural net-
work, referred to as RefNet. Then the candidate
set of referents should be constructed (described
further in Sect. 4). Finally, the found referring
expressions should be resolved to the appropriate
referents, which we call a spatial reference resolu-
tion (sRR) stage. This adds a spatial dimension to
the first task, hence a method name SpaceRefNet
(also a neural network).

sREI (Sect. 3.1) is seen as a classification prob-
lem, where each word is to be assigned one of
the three labels, B-REF (beginning of RE), I-REF
(inside of RE), O (outside of RE), inspired by the
BIO labeling strategy for named entity recognition
(NER).

sRR (Sect. 3.2) is seen as a set of binary clas-
sification problems, each assigning a pair of an
RE and a candidate object to either the positive
class, if the candidate is predicted as a referent for
the RE, or to the negative class, otherwise. Both
stages use the same dataset, described further in
Sect. 4, pre-processed in different ways.

3.1 Referring expression identification

Let us now describe the way RefNet operates (see
Fig. 1). We start by padding (with a special word
<pad>) or trimming every utterance to some fixed
sentence length Ls. Each utterance is fed into
RefNet word by word, as a part of a training
batch. Each word is encoded using pre-trained
Dw-dimensional distributional word embeddings
(we are using GloVe (Pennington et al., 2014)).
Additionally, each word is split into characters,
mapped to the pre-trained D̃c-dimensional char-
acter embeddings, trained on the SpaceRef corpus
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using the Random Indexing technique (Kanerva
et al., 2000) for a character level. These character
embeddings are then fed into a bidirectional recur-
rent neural network (BiRNN) with gated recurrent
units (GRUs), having rectifier activation functions
(ReLUs) and Hc-dimensional hidden states. This
BiRNN produces (Dc = 2 × Hc)-dimensional
character-level word embeddings by concatenat-
ing the hidden states of forward and backward
GRUs.

Figure 1: RefNet architecture diagram. The purple
blocks specify the pre-trained layers; thick arrows em-
phasize that 2D tensors of dimensionality specified to
the left of arrows are passed; the blue block denotes
RefNet encoder. (Best viewed in color)

The motivation behind taking character-level
embeddings into account is that some words in
an RE will inevitably lack word vectors. In such
cases, the corresponding word embeddings are as-
signed to be zero vectors, leaving character-level
embeddings as the only source of information.
This amendment should be particularly helpful in
at least the following two cases:

• if an RE is a proper name of a geographical
object, pronounced in the language, different
from the dominant language of the utterance,
e.g. “Bahnstraße”, “Östvägen”;

• if an RE is a composite name with one of the

constituents being recognized as a valid RE,
e.g. “supermegamarket”.

The final word encoding is then a concatena-
tion of the word embedding and the character-
level word embedding, resulting in a (Dw +
Dc)-dimensional vector. These word encodings
are then collected into a sentence representation,
which is a Ls × Dw matrix. This sentence rep-
resentation is fed row-wise as a sequence into an-
other BiRNN (with forward and backward GRUs
with ReLUs having Hs hidden units).

In order to incorporate the contextual informa-
tion, we want to represent a sentence as a ma-
trix, the ith row of which contains the informa-
tion about the sub-sentence up until, and includ-
ing, the ith word. To clarify, let us say the sentence
“I see a building” is being processed (the padding
step is omitted for the sake of brevity), then we
are interested in vectorizing all its sub-sentences
in the forward direction, i.e. “I”, “I see”, “I see a”,
“I see a building”, and in a backward direction,
i.e. “building”, “building a”, “building a see”,
“building a see I”. To achieve that, we concate-
nate forward and backward memory cells (which
are equivalent to hidden states in case of GRUs) at
each time step i. This results in (Ds = 2 × Hs)-
dimensional sub-sentence representations, which
are concatenated into Ls ×Ds matrix, referred to
as sub-sentence encoding. The sub-network used
for obtaining such encoding will be referred to as
RefNet encoder (blue block in Fig. 1).

The rationale behind using sub-sentence encod-
ing is that the same word can be either a part of RE
or not, depending on the preceding and succeeding
words. Consider the following two passages:

1. “You can see a train station to the right, it
is for commuter trains and is called
City’s Eastern.”

2. “You can see a train departing from the sec-
ond track. It one of the city’s eastern parts.”

Finally, the sub-sentence encoding is fed into
the softmax layer, which produces a Ls×3 matrix
with ith row representing a probability distribution
over the possible labels, i.e. O, B-REF, I-REF,
for the ith word. RefNet is trained by minimiz-
ing the cross-entropy loss using Adam optimiza-
tion method, presented in (Kingma and Ba, 2014).
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3.2 Reference resolution
The resolution step implies matching a textual re-
ferring expression with a candidate geographical
object. For performing such reference resolution
(sRR) we employ another neural network archi-
tecture, dubbed as SpaceRefNet (see Fig. 2).

Figure 2: SpaceRefNet architecture diagram. The pur-
ple block is the pre-trained layer; the dashed arrows
denote optional connections (Best viewed in color)

SpaceRefNet takes as an input a referring ex-
pression (RE) and a candidate geographical ob-
ject, denoted as the candidate. The RE is en-
coded using the pre-trained RefNet encoder, re-
sulting in a Ls × Ds matrix, containing forward
and backward Ds

2 -dimensional encodings for ev-
ery sub-sentence. The final RE encoding is then
the concatenation of the vectors containing for-
ward and backward sub-sentence encodings for
the whole sentence excluding paddings (the se-
lected vectors are shown in a dark red in Fig. 2),
resulting inDs-dimensional vector. The input can-
didate is fed as only an OSM representation, or
together with the distance and/or sweep features
(see details in Sect. 4). The vectors obtained after
encoding both RE and candidate are then concate-
nated and passed to the fully connected layer with
Nh hidden units having rectifier activation func-
tions. The final fully connected softmax prediction
layer produces the probability of a match between
the RE and the candidate.

SpaceRefNet is trained by optimizing the

weighted cross-entropy loss using the Adam op-
timization method. Weights for the loss function
are introduced, because the SpaceRef dataset has
a high class imbalance – it has much more nega-
tives (when a candidate and an RE mismatch) than
positives (when a candidate and an RE match). To
counteract this, a contribution of each data point (a
candidate and an RE) to the global loss is adjusted
using class-dependent multiplication factors (neg-
atives receive lower weights than positives), allow-
ing us to penalize the network more for the mis-
takes made on positive data points.

Such an architecture allows handling the cases
when an RE has any number of referents (0, 1,
or more) in the candidate set, which is an advan-
tage compared to previously developed methods
that required more ad-hoc solutions, e.g. setting
an experimentally selected probability threshold in
(Götze and Boye, 2017).

4 Data and processing

The utilized data consists of three datasets:

• a slightly corrected version of a publicly
available SpaceRef dataset (Götze and Boye,
2016) (used for RefNet and SpaceRefNet
training);

• a number of walks, containing the subjects’
descriptions of their vicinity, which is re-
ferred to as WalksRef dataset1 (used for
RefNet training);

• a number of dialogues with manually anno-
tated REs, referred to as DialogsRef, taken
from the publicly available Cornell Movie-
Dialogs Corpus (Danescu-Niculescu-Mizil
and Lee, 2011) and DailyDialog corpus (Li
et al., 2017) (used for RefNet training only).

The SpaceRef dataset contains descriptions of
immediate geographical environment given by
pedestrians following predefined routes. REs in
the spoken utterances were manually annotated.
GPS information representing a physical context
is also available.

Referring expressions (REs) in SpaceRef are
mostly noun phrases (NPs). Some example utter-
ances with the referring expressions (underlined)
include:

1is publicly available at https://traktor.csc.
kth.se
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Figure 3: Data processing for training. The rows in bold denote a positive data point for SpaceRefNet training, i.e.
the one where RE describes the given OSM entity.

• indefinite and definite NPs, e.g. “...
walking down some stairs”, “there is
a fountain to my left”;

• NPs with interjections, which should be ex-
cluded from an RE, e.g. “I am near eh the red
eh brick building”;

• demonstratives, e.g. “... standing to the right
of this building”;

• proper names, e.g. “... I am now passing
7-Eleven store”.

However, not all NPs in these categories are REs,
for instance,

• in the utterance “Do you know if there is a
subway station nearby?”, “a subway station”
is not an RE, since it has no intention of re-
ferring to a specific geographic object;

• in the utterance “This architectural style I like
the most”, a demonstrative “this architectural
style” is not an RE;

• in the utterance “The statue in front of the li-
brary portrays Carl Linnaeus”, a proper name
“Carl Linnaeus” is not an RE either.

SpaceRef and WalksRef contain mostly the ut-
terances with at least one RE in them. Hence,
the number of negative examples (NPs that are not
REs), was not sufficient for training the neural net-
work. With this in mind, the DialogsRef corpus
was annotated providing more negative examples
to improve the robustness of the trained models.

The candidate sets were regenerated for each
referring expression by first computing lines-of-
sight around the pedestrian location in 1 degree

steps using a “visibility engine”, inspired by (Boye
et al., 2014). The lines-of-sight were computed in
every direction between -100 and 100 degrees with
respect to the pedestrian’s walking direction. The
closest OSM nodes and ways, intersecting with
these lines-of-sight, were included into the candi-
date set as OSM identifiers.

Each candidate referent is then encoded using
the following features:

• 427 binary OSM type features, as described
in (Götze, 2016, Subsection 4.3.2).;

• the distance feature: the logarithm of a dis-
tance between pedestrian’s and object’s loca-
tions;

• the sweep feature: a number of lines-of-sight
intersecting with an object divided by 360.

The last two features are referred to as extra geo-
features and a numeric vector consisting of these
429 features – as geoencoding.

The available data were transformed differently
for training RefNet and SpaceRefNet (see Fig. 3).
RefNet training requires the data to be labeled us-
ing BIO-REF labeling strategy (as mentioned be-
fore), i.e. each word in an utterance is either at the
beginning of an RE and gets a label B-REF, or in-
side an RE and gets a label I-REF, or is not a part
of an RE and gets a label O. SpaceRefNet training
requires labeling of tuples (RE, OSM entity) with
a binary label (1 if RE describes this OSM entity,
0 otherwise).

Finally, note that the training data for Space-
RefNet are heavily (and necessarily) skewed: for
every referring utterance from the user, there will
be about 30 candidate referents to consider, and in
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most cases all of them but one are not the referent
the user intended. Thus, there will always be many
more negative examples than positive examples in
any dataset.

5 Models for comparison

5.1 Referring expression identification
baseline

The REs are mostly represented by the noun
phrases (NP), so the natural baseline is just return-
ing every found NP as a candidate RE. The base-
line was implemented as follows:

• a part-of-speech (POS) tag was defined for
each word in an utterance using the Stan-
ford POS tagger for English (Toutanova et al.,
2003), to be more specific, the wsj-0-18-
bidirectional-distsim version was used;

• the POS-tagged utterance is then parsed us-
ing NLTK RegexpParser (Bird et al., 2009),
supplied with the following grammar:

NP: {
(<DT>?(<RB.*>*<JJ>*)*<NN.*>+<IN>*)+

}

• all found NPs are returned as REs.

5.2 Reference resolution baseline

The natural RR baseline is just querying the OSM
database and checking for geographical objects
with an OSM property containing at least one
word from the utterance (except stop words) ei-
ther in a property key or value. For example, con-
sider two utterances, (1) “a very nice big park”
and (2) “a huge green area”, are being matched
with the geographical object “Stanford Arbore-
tum” (see Fig. 4). The utterances are first split
by space and then all the stop words are removed.
The result would be as follows: (1) {very, nice,
big, park} and (2) {huge, green, area}.

Each word is then checked against all proper-
ties of the OSM object (both keys and values are
checked). The first utterance will then be matched
with “Stanford Arboretum”, because the “leisure”
tag has value “park”, which is part of the utter-
ance. The second utterance will not be matched,
since none of the words matches any of the prop-
erty keys or values.

Figure 4: OpenStreetMap (OSM) representation of
“Stanford Arboretum”

6 Experimental results

In all experiments the networks were trained for a
maximum of 100 epochs with the early stopping
(patience of 5 epochs).

6.1 Spatial RE identification
A RefNet was trained on the SpaceRef, Walks-
Ref and DialogRef corpora. The data was split
into training set (around 90% of the data con-
taining around 90% of REs) and a test set (the
remaining data). RefNet has a large number of
hyper-parameters making a grid search computa-
tionally infeasible. Instead, some of the hyper-
parameters were fixed to the values found through
manual experiments and the others were found us-
ing a random search (Bergstra and Bengio, 2012).
The hyper-parameter space was searched during
60 random trials evaluating RefNet’s performance
for each of hyper-parameter’s combination using
5-fold cross-validation.

The model’s performance was assessed by com-
puting precision and recall, which can be done
in several ways. The most straightforward way
is to consider a word and its BIO-REF label as
one datapoint, and compute precision and recall
based on this. However, our aim is to measure
how well the network identifies full referring ex-
pressions. Therefore, we’ve considered one data
point being a tuple of all words in the referring ex-
pression together with their respective labels. The
datapoint is then considered as a true positive only
if all the words in the RE are correctly labeled (ex-
act match). In order to assess the magnitude of
method’s errors, we say that a partial match oc-
curs if the starting word is correctly labeled and
there are no more than 2 errors in the rest of the
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expression.
During the experiments the batch size was fixed

to 128, the maximum sentence length set to 100
and maximum word length to 30. The best-
performing RefNet model found after the per-
formed hyper-parameter search had 24 hidden
units on the character-level BiRNN layer, 51 hid-
den unit on the sentence-level BiRNN layer, a
learning rate of 0.002. A regularization in the form
of dropout was applied with the probabilities of
keeping the input, the state and the output being
0.7, 0.75, 0.95 for the character-level BiRNN and
0.8, 0.95, 0.95 for the sentence-level BiRNN re-
spectively. The found RefNet model achieved the
following performance (averaged over 5 folds):

• a precision of 0.7846 (partial precision of
0.8083);

• a recall of 0.6608 (partial recall of 0.784).

Evaluating the same model on the test set re-
sulted in a better performance compared to the
baseline (see Table 1).

Metric Baseline RefNet
Correct sentences (%) 21.02 77.08
Precision 0.1204 0.5457
Recall 0.2997 0.5531
Partial precision 0.1663 0.7204
Partial recall 0.4142 0.7302

Table 1: Performance of different methods for solving
spatial referring expression identification (sREI) task
on the test set

6.2 Spatial reference resolution
SpaceRefNet was trained exclusively on the
SpaceRef corpus. The data were split into train-
ing set (around 80% of the data), validation set
(around 10% of the data) and a test set (the re-
maining data). SpaceRefNet has a smaller num-
ber of hyper-parameters than RefNet, but a higher-
dimensional input data (429 dimensions + RE en-
coding size). Hence, the combination of random
search with cross-validation becomes computa-
tionally infeasible. Given the nature of SpaceRef
data, i.e. the subjects walking along the routes
in the same vicinity, the datapoints are more ho-
mogeneous compared to DialogRef and WalksRef
used for RefNet training. Keeping in mind ev-
erything mentioned above, hyper-parameter space
was searched using a combination of random and

manual search relying on the performance on the
held-out validation set.

During random search, the batch size was fixed
to 256. The best found SpaceRefNet model had
32 hidden units, negatives weighted with 0.25 and
positives – with 1 in the loss function, a learning
rate of 0.001 and used both distance and sweep
features. The model’s performance was evalu-
ated by computing precision, recall and F1-score
for positives (matches between an RE and a can-
didate) and negatives (mismatches). The perfor-
mance on the validation set was:

• for positives, precision of 0.5854, recall of
0.4444, F1-score of 0.5053;

• for negatives, precision of 0.9860, recall of
0.9748, F1-score of 0.9804;

Evaluating the same model on the test set re-
sulted in a better performance compared to the
baseline and previously reported results in the lit-
erature (see Table 2). Additionally a percentage
of completely correctly labeled sentences is pro-
vided.

Metric Baseline WAC SpaceRefNet
Prec. (p) 0.5588 0.40 0.6105
Rec. (p) 0.2043 0.45 0.6237
F1 (p) 0.2992 0.42 0.6170
Prec. (n) 0.9757 0.98 0.9883
Rec. (n) 0.995 0.98 0.9876
F1 (n) 0.9853 0.98 0.9879

Table 2: Performance of different methods for solving
spatial reference resolution (sRR) task on the test set
(“(p)” stands for positives, “(n)” stands for negatives),
“WAC” stands for words-as-classifiers method (results
reported in (Götze and Boye, 2017)).

7 Discussion

The designed methods have shown promising re-
sults in solving exophoric spatial reference reso-
lution (sRR) beating the respective baselines and
earlier reported results in the literature. It should
be noted that sRR is a complicated task with non-
trivial subproblems. Identifying REs in spoken
utterances gets complicated because of multiple
challenges:

• unclear sentence segmentation in spoken ut-
terances results in the utterances like “I am
passing the shop on my left on my right
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there is a bank”, the phrase “on my left” de-
scribes the RE “the shop”, whereas the phrase
“on my right” describes “the bank”;

• ASR errors can lead to the utterances like
“I’m crossing the street on my rights”;

• interjections and self-corrections result in ut-
terances like “there is another shop eh called
ehm jer- jersey shop”.

A problem arises because of the possible differ-
ences in the interpretation. Consider the utterance
“on my right is the embassy of Poland in an old
fantastic villa”. Depending on the interpretation,
one might find either two REs “the embassy of
Poland” and “an old fantastic villa” referring to the
same geographic object or only one RE “the em-
bassy of Poland in an old fantastic villa” referring
to the same object. Such interpretation differences
have not been considered while evaluating RefNet.

Resolving spatial references is even more tricky,
since each found RE has mostly only one correct
referent out of 30 candidates on average, making
data very unbalanced. Furthermore, one RE can
have multiple referents, e.g. the streets often con-
sist of many different parts in OSM, or have no
referents, e.g. some specifics about the geographi-
cal objects (“a big clock on the wall of the univer-
sity”), or outdated information.

Ongoing work includes incorporating this refer-
ence resolution model into our wayfinding spoken
dialogue system and collecting more data to im-
prove the model.
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Abstract

Discourse relation classification has proven to
be a hard task, with rather low performance
on several corpora that notably differ on the
relation set they use. We propose to de-
compose the task into smaller, mostly binary
tasks corresponding to various primitive con-
cepts encoded into the discourse relation defi-
nitions. More precisely, we translate the dis-
course relations into a set of values for at-
tributes based on distinctions used in the map-
pings between discourse frameworks proposed
by Sanders et al. (2018). This arguably allows
for a more robust representation of discourse
relations, and enables us to address usually ig-
nored aspects of discourse relation prediction,
namely multiple labels and underspecified an-
notations. We study experimentally which of
the conceptual primitives are harder to learn
from the Penn Discourse Treebank English
corpus, and propose a correspondence to pre-
dict the original labels, with preliminary em-
pirical comparisons with a direct model.

1 Introduction

Discourse parsing is a crucial task for natural lan-
guage understanding, as it accounts for the coher-
ence of a text by identifying semantic and prag-
matic links between sentences and clauses. The
links are sometimes marked by explicit lexical
items, so-called discourse connectives, but very
often they rely on several lexical cues, contextual
interpretation or even world knowledge, in which
case they are called “implicit” relations. Automat-
ing discourse parsing consists in finding which
sentences or clauses are directly related in a text,
and with what type of semantico-pragmatic rela-
tion. The examples below demonstrate each type
of relation, with the explicit discourse connective
marked in bold, and example labels inspired by the
Penn Discourse Treebank 2.0 (Prasad et al., 2008)
relation set.

(1) Climate change is caused by anthropic activi-
ties, but politics are not doing anything about
it.
Comparison.Concession.Contra-expectation

(2) Climate is changing. Humans generate too
much CO2.
Contingency.Cause.Reason

Several theoretical frameworks exist for dis-
course analysis, the most well-known being
Rhetorical Structure Theory (RST, Mann and
Thompson, 1988), and Segmented Discourse Rep-
resentation Theory (SDRT, Asher and Lascarides,
2003). The Penn Discourse Treebank (PDTB,
Prasad et al., 2008) is an English annotated cor-
pus with its own theoretical assumptions. It is
the largest resource for discourse relations and has
been used in several studies to demonstrate the dif-
ficulty of automatically identifying implicit dis-
course relations, e.g. (Xue et al., 2016; Bai and
Zhao, 2018). The PDTB relies on a three-level hi-
erarchy of rhetorical functions, and multiple rela-
tions can be annotated for each example.

As empirical models have shown rather low re-
sults for implicit relation classification, with only
incremental improvements in spite of the variety
of approaches that have been tried, it appears a lot
of the necessary information is still not leveraged
in discourse parsing.

But it could be argued also that the difficulty lies
in the way we model the task, especially these la-
bels on which there is no consensus and generally
a low inter-annotator agreement.

We argue here that, even if the label sets dif-
fer, all frameworks propose to encode the same
range of pragmatic phenomena, and that decom-
posing the relations into simpler conceptual prim-
itives could help to understand where the real dif-
ficulty lies, and, eventually, to improve classifica-
tion performance. We thus experiment with clas-
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sification tasks where we try to predict these prim-
itives of the discourse relations rather than the re-
lations themselves.

More precisely, we experimentally test Sanders
et al. (2018)’s recent proposal of an inventory of
so-called dimensions (called here primitives) of
the discourse relations that could be seen as an in-
terface between the various existing frameworks.

Our first contribution is thus to implement this
mapping, from annotated relations to a set of prim-
itives, and from a predicted set of primitives to
compatible relation labels.

Our second contribution is an empirical inves-
tigation of the separate primitives and how diffi-
cult they are to predict. One advantage of this ap-
proach is that it can provide underspecified labels,
which is why we focus for now on the PDTB, as
its hierarchical organisation of relation types nat-
urally lends itself to a classification mixing gran-
ularities. Our approach can also address predict-
ing or comparing against multiple labels between
pairs of sentences or clauses. This allows us to
stay closer to the annotation, contrary to all exist-
ing work, limited to a subset of relations.

Finally, we hope to provide a framework to in-
vestigate the validity of different conceptual de-
compositions of discourse relations.1

This paper is organized as follows. In Section 2,
we briefly review work on discourse relation iden-
tification. In Section 3, we present discourse rela-
tion decomposition, with a focus on the mapping
presented in (Sanders et al., 2018), before detail-
ing, in Section 4, our proposal for an operational
mapping. The Section 5 presents our experimental
framework – the systems compared and the eval-
uation strategy. Finally, we detail in Section 6 the
models built and the data used, before reporting
our results in Section 7.

2 Discourse relation classification

Previous work on discourse relation identification
generally separated the classification of implicit
and explicit examples, and mainly focused on im-
plicit ones, considered as the hardest task. Per-
formance on this task are, however, still low: the
current best are reported in (Bai and Zhao, 2018),
where it is proposed to augment word embeddings
with subword and contextual embeddings, and to
combine sentence and sentence pair representa-

1Our code is available at https://gitlab.inria.
fr/andiamo/relations.

tions. They report 45.73 to 48.22% in accuracy
– depending on the sections used for evaluation –
for level 2 relation classification (11 labels), and
51.06% in F1 for multiclass classification of level
1 relations (4 labels).

For explicit relation classification, the last
scores come from the CoNLL shared tasks on
shallow discourse parsing (Xue et al., 2015, 2016).
Mihaylov and Frank (2016) use similarity mea-
sures based on word embeddings and report
78.34% in F1 on blind test and 89.80% on sec-
tion 23. Kido and Aizawa (2016) propose to build
a specific classifier for Comparison subtypes and
report 75.43% on blind test and 90.22% on section
23. These scores are computed on relations of the
PDTB, with a modified inventory of 20 relations
designed to make data more balanced by mixing
various levels of the hierarchy.

The organizers of the shared tasks also provide
scores for all relations: at best 54.60 on blind test
and 64.34% on section 23 (Xue et al., 2016).

All previous work made simplifying assump-
tions for the task: systems are restricted to a sub-
set of relations, and ignore multiple annotations
and under-specified annotations of relations. On
the contrary, our approach aims at considering
the problem of discourse relation prediction in the
most general way.

3 Existing approach for mapping
relations into primitives

Discourse frameworks and their corresponding
annotated corpora rely on different assumptions,
among them the set of discourse relations they
consider, covering overlapping or identical con-
cepts under different names and definitions, and
they are hard to reconcile.

There have been a few attempts to formalize
the various types of information encoded by dis-
course relations, and give it some structure (Hovy,
1990; Knott, 1997), or provide a semantics for
the underlying principles (Chiarcos, 2014), with-
out clear-cut criteria to decide on the most appro-
priate set of relations. The PDTB addresses the
problem by providing a hierarchy of relations, al-
lowing for various levels of underspecification, but
without much justification other than annotation
operational constraints.
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3.1 Cognitive approach to Coherence
Relations

More recently, within the context of the COST
TextLink Action,2 Sanders et al. (2018) provided a
mapping into dimensions for sets or hierarchies of
relations from RST, PDTB and SDRT. These map-
pings rely on an extended version of the primitives
originally introduced in the Cognitive approach to
Coherence Relations or CCR (Sanders et al., 1992,
1993). In the following we will use the term prim-
itive to describe what is rather ambiguously called
dimension in (Sanders et al., 2018).

In CCR, the link between two discourse units is
described by values for a set of primitives. The
core CCR primitives are: basic operation, polar-
ity, source of coherence, implication order, and
temporality. According to Sanders et al. (2018),
these primitives are shared by all coherence rela-
tions and are validated by a number of psycholin-
guistic and/or corpus-based studies.

We use the following notation: P andQ are two
propositions (events, states, speech acts, claims,
etc.) expressed in the discourse units linked by a
relation. Each relation is characterized by the way
in which its arguments map onto P and Q.

Basic operation This primitive makes a dis-
tinction between additive relations (typically ex-
pressed by connectives and or also) that involve
a logical conjunction (P&Q) and causal relations
(typically expressed by connectives because or
since) that involve an implication (P → Q).

Polarity Polarity distinguishes between positive
and negative (or adversative) relations. Nega-
tive relations (expressed for instance by connec-
tives but, although or even if ), differ from posi-
tive relations (expressed for instance by because)
in that they imply the negation of either P or Q
or some of their implications in their semantics.
Note that this negation does not need to be ex-
plicit/linguistically marked. In (3), the negated
proposition would be that the biofuel costs more,
as an expected consequence of the higher produc-
tion costs. Note that this primitive must not be
confused with sentiment polarity.

(3) The biofuel is more expensive to produce,
but by reducing the excise-tax the govern-
ment makes it possible to sell the fuel for the
same price.
Comparison.Concession.Contra-expectation

2See http://www.textlink.ii.metu.edu.tr.

Source of coherence This primitive has two
possible values named objective and subjective in
CCR. It refers to a common distinction in the lit-
erature, for instance subject matter versus presen-
tational relations for Mann and Thompson (1988).
Objective relations link discourse units at the level
of their propositional content (as a result gener-
ally expresses an objective relation), whereas sub-
jective relations operate at epistemic or speech act
level: the speaker is “involved in the construction
of the relation” (Sanders et al., 2018) (since seems
to have a preference for marking subjective rela-
tions).

Implication order This primitive is only appli-
cable for causal relations (value for this primi-
tive is set to non-applicable (NA) for additive re-
lations). For relations involving an implication
P → Q, it indicates the order in which P and Q
are described in the linguistic arguments S1 and S2
of the relation. If S1 expresses P (antecedent), im-
plication order is basic, whereas if S1 expresses Q
(consequent), implication order is non-basic. Typ-
ically, connectives thus and because respectively
express relations in basic and non-basic order.

Temporality A relation can have a temporal as-
pect or not, and when it does it can be chrono-
logical (then), anti-chronological (previously), or
synchronous (meanwhile).

Additional features Sanders et al. (2018) in-
troduce additional features that represent distinc-
tions which are more detailed than those used in
the original CCR framework, in order to provide
the most specific mapping possible. These addi-
tional features are: conditional, alternative, speci-
ficity (and refinements: specificity-equivalence,
specificity-example), goal and list. Their values
are negative by default (-). In our experiments, we
did not retain features that only apply to part of
the relations falling under the respective category
(goal and list). We keep as primitives: conditional
(if, unless), alternative (or) and specificity (in par-
ticular, in fact). In order to have quite generic
primitives, we merged refinements on specificity
into one primitive, so that each primitive is posi-
tive (+) for more than one PDTB label.

The contribution of Sanders et al. (2018) is to
provide a (arguably) complete mapping to make
existing annotation systems compatible, and Dem-
berg et al. (2017) test the approach by applying
PDTB and RST mappings to existing annotations:
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Class Type Subtype Pol. Basic op. Impl. order SoC Temp.

Comparison neg NS NS NS NS
Comparison Contrast Juxtaposition neg add NA obj NS (any)
Comparison Contrast Opposition neg add NA obj NS (any)
Comparison Pragmatic contrast neg add NA sub NS (NA)
Comparison Concession neg cau NS NS NS
Comparison Concession Expectation neg cau non-b NS (obj|sub) NS (anti|NA)
Comparison Concession Contra-expectation neg cau basic NS (obj|sub) NS (anti|NA)
Comparison Pragmatic concession neg cau NS sub NS

Table 1: Sample of our classification into core primitives, for relations within the class Comparison. Primitives
are polarity (Pol.), basic operation (Basic op.), implication order (Impl. order), source of coherence (SoC) and
temporality (Temp.). Bold indicates modified or new values w.r.t. Sanders et al. (2018) (see Section 4.1). Original
ones are indicated in parenthesis. NS (non-specified) unifies different unspecified labels from the original model.

they used common portions of PDTB 2.0 and RST-
DT, in order to test the validity of the mapping.
The outcome is that only a partial mapping is pos-
sible at this stage, because of discourse segmenta-
tion issues, and a lot of contextually underspeci-
fied or ambiguous correspondences.

As a first step we focus on providing a practical
correspondence between PDTB annotations and
the set of CCR primitives described by Sanders
et al. (2018). It is the mapping we rely on in our
experiments (with a few changes on the possible
values for each primitive, see Section 4).

4 Proposal for an operational mapping

In this study, we focus on the PDTB 2.0 (Prasad
et al., 2007). This corpus has been annotated with
explicit and implicit discourse relations.3 As pre-
viously said, in the PDTB, relations are organized
into a three-level hierarchy with 4 coarse-grained
classes, 16 types and 23 subtypes. Examples can
be annotated at any levels and annotators were
asked to choose a more general relation when hes-
itating between different relations within a group;
some annotation disagreements were adjudicated
by annotating at the upper level. Moreover, anno-
tators were allowed to suggest up to two relations
per explicit example, and up to four per implicit.

PDTB annotation thus presents several partic-
ularities that are almost always ignored by auto-
mated approaches: relations at different levels of
granularity, under-specified relations and possibly
multiple relations for a single pair of text seg-
ments. Moreover, studies on discourse relation
classification are always limited to a subset of re-

3As in previous work on this task, we ignore the Entity re-
lation. Note that no mapping was provided in (Sanders et al.,
2018) for this relation.

lations, for example by focusing on level 1 or 2
relations.

Decomposing relations into primitive concepts
allows us to tackle the problem in all its general-
ity. First, the primitives can precisely be used to
encode distinctions at the finest level of the hierar-
chy (level 3) such as distinction on source of co-
herence for pragmatic (subjective) or level 3 (the
finest level) relations. Second, even when several
relations cannot be distinguished by their values
for each primitive, we do not need to merge them:
they are mapped into the same set of values for
dimensions, and in the reverse mapping (see Sec-
tion 5.1), they can be mapped into a subset of re-
lations. Finally, we are not limited by the problem
of small number of annotated instances for some
relations.

In this section, we describe specificities of our
operational mapping.

4.1 Primitives and possible values
The set of primitives and their possible values used
in our experiments are presented in Figure 1, along
with their distribution in our training dataset (see
Section 6.1) after operational mapping. Possible
values for core primitives present minor changes
compared to the ones adopted by Sanders et al.
(2018). For additional or binary primitives, pos-
sible values are unchanged: they are either neg-
ative (default value -) or positive (+). For core
primitives, we proposed several modifications mo-
tivated by the fact that the operational mapping is
applied to data for being used as input of classifiers
for each primitive (see Section 5). In particular,
we need to deal with cases of ambiguity – i.e. for
some relations, a primitive is associated with a set
of values, each being possible –, under-specified
and multiple annotated relations.
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Figure 1: Distribution of values for each dimension

Non-specified value (NS) For all core primi-
tives (i.e. non binary primitives), in addition to val-
ues described in previous section (e.g. additive and
causal for primitive basic operation), we add the
value NS (non-specified) to the set of possible val-
ues.

NS value does not exist as a “label” in (Sanders
et al., 2018) mapping, but there are cases of
ambiguity/under-specification: in the original
CCR mapping, value for the primitive source
of coherence is set to obj|sub for a number
of relations, primitive temporal order has value
syn|chron|NA for Expansion.List, etc. In our map-
ping, when there is an ambiguity on a primitive
value, we associate the value NS (see Table 1 for
our mapping for class Comparison relations).

NS value is also used for ambiguities raised
by the need to associate primitive values to re-
lations that are not end-labels of the PDTB
hierarchy, end-labels being relations at level
2 that have no subtypes (such as Tempo-
ral.Synchronous) or relations at level 3 (such as
Contingency.Cause.Result). Sanders et al. (2018)
provide a mapping for each end-label but not
for less specific labels. Since PDTB contains
examples annotated with level 1 (classes) or 2
(types) relations which are not end-labels – under-
specified relations –, we also need to provide a
mapping into primitives for these relations in our
experiments. For example, we set primitive basic
operation to value NS for Comparison, as some
relations within this class are additive, and some
others are causal (see Table 1).

Non-applicable value (NA) We keep value NA
for dimension implication order, associated with
relations that do not involve an implication (addi-
tive relations).

On the other hand, we remove it for dimension
temporal order. This is motivated by the fact that
relations from Temporal class have a somewhat

special status among discourse relations: it is not
always clear whether they are rhetoric or semantic
relations (especially when annotated in addition
of another relation). Temporal relations represent
66.3% of multiple relations in PDTB, and they
can co-occur with relations from any other class.
Furthermore, temporal relations can co-occur with
relations which are associated with the value NA
(non-applicable) for temporal order in the original
mapping of Sanders et al. (2018).4

As there is no relation in PDTB data that seem
to be incompatible with a specified value for tem-
poral order, we remove NA value for this primitive
(it is present in possible values for temporal order
in CCR), and keep only NS as a default value.

4.2 Multiple relations: merging sets of
primitive values

On the overall corpus used in our experiments (see
Section 6.1), 4.4% relations are multiple relations,
i.e. several relations have been annotated in the
original PDTB. As previously said, Sanders et al.
(2018) applied their mapping into values per prim-
itive on RST-DT and PDTB’s common sections.
However, they give no information about a map-
ping into primitives for cases where multiple re-
lations were annotated in the PDTB: they select
the PDTB relation that most closely corresponds
to the RST label.

Our goal being different here, we want to take
all annotated information into account. In case of
multiple relations, we map each relation into a set
of primitive values, and then merge values when
they are different. Our actual merging prefer-
ably outputs non-specified values, but other op-
tions should be tested in future work, e.g. keep
most specific values.

For basic operation, polarity, source of coher-
ence and temporal order, if values to be merged
are different, the primitive value is set to NS.

For binary primitives (conditional, alternative,
specificity), value is set to positive (+) if at least
one of the merged values is positive, and negative
(-) otherwise.

For implication order, if one of the two distinct
values to be merged is NA and the other is not (i.e.
basic, non-basic or NS), we keep the second value.
If the two distinct values are different from NA,
implication order is set to NS.

4 For instance, there are 198 co-occurrences of Tem-
poral.Synchrony and Expansion.Conjunction in our training
dataset.
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4.3 Refinements and adding of missing
relation

When mapping PDTB relations into primitives,
we operated refinements on occurrences of Ex-
pansion.Alternative.Disjunctive, whose values for
primitives are quite under-specified when strictly
applying the mapping of Sanders et al. (2018):
values are non-specified (NS) for basic operation
and source of coherence, and we do not know
whether the additional feature conditional or al-
ternative must be set to a positive value (+). The
only specified primitive is polarity, which is neg-
ative. Leaving this level of under-specification
would mean having the same set of primitive val-
ues for class Comparison and sub-type Expan-
sion.Alternative.Disjunctive.

But as suggested by Sanders et al. (2018),
markers such as unless indicate that the re-
lation is causal-conditional rather than addi-
tive-alternative. For some occurrences of Ex-
pansion.Alternative.Disjunctive, connectives from
PDTB annotations (unless, either...or and or) were
used to determine which of the two sub-cases
of Expansion.Alternative.Disjunctive was present,
and associate the correct set of primitive values.

Sanders et al. (2018) provide no mapping for
PDTB relation Comparison.Pragmatic conces-
sion, for which there is no description in PDTB
annotation manual. This label being quite explicit,
we associate to it the same primitive values as
Comparison.Concession, except for source of co-
herence, set to subjective (see Table 1).

5 Experiments

Our main goal is to assess which primitives are
harder to identify, we thus build separate mod-
els for each of them, i.e. basic operation, polar-
ity, source of coherence, implication order, tempo-
rality, conditional, alternative and specificity (see
Section 3 for definitions).

In addition, we compute the performance of
our systems on discourse relations using a reverse
mapping from a set of predicted values for each
primitive to a relation, or, more precisely, to a
set of potential relations. We describe the reverse
mapping in Section 5.1.

We also train systems on the task of directly pre-
dicting discourse relations, in order to check the
validity of our models and to compare to the pre-
dictions derived from the primitives.

Recall that we aim at keeping all the particular-

ities of the PDTB annotations, meaning the mul-
tiple relations and the relations at different levels
of granularity. This calls for specific evaluation
metrics, relying on hierarchical multi-label mea-
surement, that we describe in Section 5.2.

5.1 Reverse mapping

Our approach consists in building separate sys-
tems dedicated to each primitive, in order to split
a hard task into several, arguably simpler tasks.
One possible goal of this approach is to predict
discourse relations based on the predicted primi-
tives. In order to do that, we need a mapping in
the reverse way, i.e. from primitives to (PDTB) re-
lations. Note that we need to map primitives to any
level relation, since examples in the PDTB can be
annotated with various granularities. This could
also be used to limit our system to a set of rela-
tions a posteriori, without retraining the primitives
models. Our reverse mapping, which outputs a set
of relations, is defined as follows: starting with a
set containing all the possible relations, we remove
relations that are not compatible with the primitive
values predicted.

More precisely, for each binary primitive, if the
predicted value is negative (-), we remove all re-
lations with a positive value for the primitive. For
primitives basic operation, polarity, source of co-
herence and temporal order, if predicted value is
not NS, we remove all relations with a different
“specified” (non NS) value for the primitive which
is different from predicted value. For instance, if
polarity is positive, all relations associated with
negative polarity are excluded.

For primitive implication order, at first, we
treated NA value as a “specified” value in our re-
verse mapping: a predicted value NA for implica-
tion order excluded all relations with a non NA
value for this primitive, i.e. all causal relations
were removed. This first mapping led to cases
where the set of compatible relations was empty.
In all these cases, basic operation was predicted
causal and primitive implication order was pre-
dicted NA, which is theoretically inconsistent: if
not specified, implication order should be NS. In
order to keep the information specified in other
primitives, we decided to treat NA value for im-
plication order as an NS value. It suggests that
keeping these two distinct values should be recon-
sidered.

When all subtypes of a type (or all types un-
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der a class) remain in the set of possible rela-
tions, we remove these subtypes (or types) from
the set, and keep the type (or class) – i.e. the up-
per lever underspecified relation. For instance, if
the set contains Temporal.Asynchronous and Tem-
poral.Synchrony, these labels are removed: only
the less specific label Temporal remains in the set.

When only some subtypes of a type (or some
types under a class) remain in the set of possible
relations, we keep them along with the type (or
class).

5.2 Evaluation measures

Our experimental setup raises a number of ques-
tions with respect to the evaluation: mapping a
set of primitive values back to a PDTB label im-
plies there might be underspecifications and cor-
responding to a disjunction of relations, either a
coarse-grain label in the hierarchy or a set of possi-
ble relations. To account for the first case, we can
apply measures for hierarchical classification; the
second case can be taken care of by measures for
multi-label classification, which are needed any-
way to take PDTB annotations without restric-
tions. There has not been much work on hierarchi-
cal discourse relation classification except (Ver-
sley, 2011), and the evaluation was just done at
each granularity level, with either exact matching
or a Dice coefficient between sets of labels (a rel-
ative overlap measure). For a more general mea-
sure, we use hierarchical precision and recall (Kir-
itchenko et al., 2005) on the set of all predicted
relations. For instance a predicted X.Y evaluated
against a gold X.Z.T would get 0.5 precision (one
level correct, one incorrect), and 0.33 recall (2 out
of 3 levels missing from the prediction). For multi-
labels, all levels are put in the same set.

To have an idea of the upper bound we could
obtain this way, we also evaluated by considering
only the best predicted label, with respect to hi-
erarchical F-score, and prefixed the corresponding
measures with max-h.

6 Settings

6.1 Data

The PDTB (Prasad et al., 2007) is a corpus of En-
glish newswire, containing 2,159 articles from the
Wall Street Journal. We use the section 23 as test
set. In the following sections, we present results
for both explicit and implicit examples. Contrary
to existing studies, we give results for all the labels

annotated in the data (in particular, our results are
not limited to level 1 or 2 relations). There are 41
distinct relation labels in the corpus, with 30 end-
labels (mainly level 3 labels, but also level 2 labels
that have no sub-types), and 11 “intermediate” la-
bels (such as Contigency.Cause or Comparison).

6.2 Model architecture

We have separate classifiers for each dimension,
and we compare the mapping from these to a full
relation with a direct PDTB relation prediction.

Infersent is an architecture for sentence relation
prediction, initially proposed to train transferable
sentence representation from a semantic inference
task to be fine-tuned on various sentence and sen-
tence pair classification tasks. It takes as input two
text fragments s1 and s2 (sentence or clause here),
mapped to pretrained word embeddings (GloVe),
encode each separately with a bi-LSTM with tied
weights, and combine the final LSTM states to
predict a relation. The combination is a concatena-
tion of the representations provided for each argu-
ment, their absolute difference, and their element-
wise product.

Each argument of the relation is thus encoded
as a vector of dimension n, and the combined rep-
resentation is a vector of dimension 4n for each
separate relation dimension to predict, for various
values of n.

6.3 Hyper-parameters

Models are trained for each dimension separately,
with a maximum of 15 epochs and early stopping.
An additional fully connected layer can be added
on top of the combination of argument representa-
tions, and we vary the size of the layer with 0 (no
layer), 512, or 4096 dimensions. We also tried dif-
ferent regularization values (weight decay): 10−n,
with n ∈ {−8, 1}. The best setting on the devel-
opment set was chosen as our configuration for the
final test.

7 Results

We describe here the performances obtained for
our systems for each primitive separately, and use
the reverse mapping to evaluate performance on
relations as annotated in the PDTB.

7.1 Predicting primitives

All primitives are not equal in importance in
the perspective of predicting rhetorical relations.
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Primitive Baseline Best model
Acc m-F1 w-F1 Acc m-F1 w-F1

Basic op. 72.76 28.08 61.29 75.90 37.80 69.03
Polarity 73.00 28.13 61.60 82.29 49.86 80.59
Src of Coh. 52.67 23.00 36.34 68.06 50.03 67.44
Impl. order 73.05 21.11 61.68 78.16 41.00 74.89
Temp. 69.63 20.52 57.16 72.65 48.04 69.32
Cond. 95.88 – – 98.55 – –
Altern. 98.78 – – 98.84 – –
Specif. 82.93 – – 85.13 – –

Table 2: Scores of the systems for each primitive on
test set (section 23 of the PDTB). The baseline is a
majority classifier. We report Accuracy (“Acc”), and,
for non-binary tasks, macro averaged F1 (“m-F1”) and
weighted F1 (“w-F1”).

Some primitives, such as basic operation and
polarity, correspond to major distinctions with
respect to PDTB hierarchy: their values deter-
mine distinctions between top-level classes. Other
primitives characterize more restricted sets of rela-
tions (alternative, specificity) or label distinctions
at level 3 (source of coherence).

Table 2 shows performance for each primitive
separately. We observe that among core primi-
tives, basic operation demonstrates the least im-
provement (on accuracy, macro averaged F1 and
weighted F1) with respect to the baseline, and thus
should be a priority for further work. For primitive
polarity, whose distribution of values are compa-
rable (see Figure 1), results are quite better. When
looking at the confusion matrix for this primitive,
we observe that 95% of positive relations and 50%
of negative relations are correctly labeled. For
primitive basic operation, only 14% of causal re-
lations are correctly labeled (relations are mainly
labeled as positive). For primitive temporal or-
der, results are lower than for primitive polarity.
Relations are mainly labeled as NS (non-specified,
which is the majority class) for this primitive.

The greatest improvement with respect to the
baseline is for primitive source of coherence, but
this result must be tempered by the fact that there
are a very small number of subjective relations in
our dataset (less than 1%).5 A further study with
more data about subjective relations could be more
informative.

5It should be noted that there is a potential loss of
information due to the absence of a subjective version
for Contingency.Cause.Result (whereas the subjective ver-
sion of Contingency.Cause.Reason is Contingency.Pragmatic
cause.Justification) in the PDTB 2.0 hierarchy (whereas
present in PDTB 3).

We also looked at the difference when predict-
ing primitives for implicit and explicit relations,
and it appears there is almost no improvement on
implicit over the baseline, which seems to confirm
that primitives should not be considered in isola-
tion. Less distinctive primitives show high accu-
racy mainly because they are unspecified most of
the time.

7.2 Relation identification

Table 3 summarizes the scores obtained for rela-
tion identification, either when the relation label
is obtained via the reverse mapping from the pre-
dicted primitives (row “Primitives”), or for sys-
tems directly trained to predict discourse relations
(row “Relations”). We report accuracy as done in
the literature by considering a prediction as cor-
rect if it contains one of the gold labels, and use
hierarchical measures to have a more general set-
ting. Again, our models generally outperform the
baseline, often by a large margin, showing the
relevance of Infersent architecture to perform the
task. Accuracy is much lower than predicting di-
rectly the relations, which can be explained by the
fact that primitives are learned independently from
each other.

By analyzing the predictions, we observed that
Contingency relations were rarely predicted, a
consequence of the aforementioned problem when
predicting the basic operation primitive (which
separates causal from additive relations). An-
other problem is that combining primitives still
leaves too much underspecification, and predict-
ing too many labels greatly impacts all hierarchi-
cal scores. We can also see that explicit relations
benefit from the presence of very specific mark-
ers, while primitive recombination cannot make
use of the marker information as efficiently. An
encouraging aspect is that we found a lot of cases
where a Temporal relation was predicted instead
of a Contingency relation because the basic opera-
tion primitive was wrong, but the others were cor-
rect, which appears as plain error in all evaluations
while being close to the ground truth. This seems
to indicate primitive could be useful information
on their own. Note that the scores we report in this
table are the first, to the best of our knowledge,
that are computed on the whole set of relations of
the PDTB.
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Explicit Implicit All
Acc h-R h-P max-h-R max-h-P Acc h-R h-P max-h-R max-h-P Acc h-R h-P max-h-R max-h-P

PDTB relations
Baseline 23.5 25.35 26.13 27.02 27.33 15.73 30.5 34.72 31.38 35.5 20.03 27.65 29.97 28.97 30.98
Primitives 46.27 35.56 26.43 59.93 69.59 19.12 20.63 10.52 35.61 45.99 34.15 28.89 19.32 49.07 59.05
Relations 59.08 63.63 65.3 67.4 67.8 28.35 39.76 42.11 40.57 42.67 45.35 52.97 54.95 55.42 56.58

Table 3: Scores of the systems for relation prediction, using the full relation set of the PDTB. The predicted
relations are either inferred from the predicted primitives (“Primitives”), or directly predicted (“Relations”).We
report hierarchical recall (h-R) and hierarchical precision (h-P), along with max-h-P max-h-R, and accuracy.

8 Conclusion

We have taken a theoretical proposition for map-
ping discourse framework to apply it to discourse
relation decomposition into primitives, in the con-
text of the PDTB English corpus. This allows us
to have a simple representation of PDTB anno-
tations as a set of semantic and pragmatic primi-
tives, allowing for general representations in case
of underspecification. We have shown a simple
experiment to learn these concepts separately and
compare them to a direct relation classifier. Of
course the primitives are not independent from
each other, so learning them in isolation is bound
to be less accurate than learning fully specified re-
lation, but this framework lends itself straightfor-
wardly to a multi-task learning setting and will be
subject of future work. Other interesting perspec-
tives include testing whether, when learning prim-
itives on a training corpus without some relations,
we can predict them correctly based on their con-
ceptual decomposition (something akin to 0-shot
learning); and finally, applying this decomposition
to other discourse framework (RST or SDRT) can
make cross-corpora training and prediction possi-
ble.
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Abstract
Word pairs across argument spans have been
shown to be effective for predicting the dis-
course relation between them. We propose
an approach to distill knowledge from word
pairs for discourse relation classification with
convolutional neural networks by incorporat-
ing joint learning of implicit and explicit re-
lations. Our novel approach of representing
the input as word pairs achieves state-of-the-
art results on four-way classification of both
implicit and explicit relations as well as one of
the binary classification tasks. For explicit re-
lation prediction, we achieve around 20% error
reduction on the four-way task. At the same
time, compared to a two-layered Bi-LSTM-
CRF model, our model is able to achieve these
results with half the number of learnable pa-
rameters and approximately half the amount of
training time.

1 Introduction

Implicit discourse relation identification is the task
of recognizing the relationship between text seg-
ments without the use of an explicit connective
indicating the relationship. For instance, while
a connective such as “because” may indicate a
causal relationship when present between sen-
tences, it is not necessary for causality (as in Ex-
ample 1). Without the explicit connective, au-
tomatically identifying the relationship is much
more difficult. Improvement in identifying im-
plicit discourse relations will also improve perfor-
mance in downstream tasks such as question an-
swering, textual inference (for determining rela-
tionships between text segments), machine trans-
lation and other multi-lingual tasks (for transfer-
ring discourse information between languages).

The Penn Discourse Tree Bank (PDTB) theory
of discourse relations (Prasad et al., 2008) defines
a shallow discourse representation between adja-
cent or nearby segments. As a result, the span of

the arguments participating in the discourse rela-
tion is often the most important input to a classi-
fier.

Initial approaches used linguistically informed
features derived from the arguments as inputs to
traditional machine learning methods (Pitler et al.,
2008). More recently, the application of neural
methods has resulted in the best performance on
this task, modeling the relationship between words
in the arguments in context (Ji et al., 2015; Dai and
Huang, 2018).

A common approach in prior work is to
use pairs of words from across the arguments
as features (Marcu and Echihabi, 2002; Blair-
Goldensohn et al., 2007; Pitler et al., 2009). Con-
sider the example:

I am late for the meeting because the
train was delayed.

(1)

The words “late” and “delayed” are semantically
related and (absent the connective) one might hy-
pothesize that their presence is what triggers a
causal relation. Therefore, pairs of words across
discourse arguments should be useful features for
identifying discourse relations. However, learn-
ing these specific word pairings requires lever-
aging large text corpora to observe them in the
relevant discourse context (Biran and McKeown,
2013). Furthermore, as the number of possible
word pairs grows quadratically with the size of the
vocabulary, representing word pairs discretely re-
sults in very sparse feature sets. Since a contin-
uous representation of the word pairs allows for
better generalization to unseen pairs, we thus use
a Convolutional Neural Network (CNN) to embed
word pairs from the arguments in a dense vector
representation. We also extend this idea of word
pairs beyond a single pair of words by using larger
filter sizes.

Our results show that these word pairs provide
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improved performance in transferring knowledge
from explicit relations, indicating less sensitivity
to word ordering. Finally, an additional advantage
is that our architecture based on convolution lay-
ers allows for additional improvement in the speed
of training through parallel processing unlike se-
quential models based on LSTMs.

Our primary contributions are as follows:

• A novel application of convolutional neural
networks to model word pairs in the argu-
ments in a discourse relation

• A demonstration that joint learning of im-
plicit and explicit relations with both word
pairs and n-grams improves performance
over learning implicit relations only

• State-of-the-art results on four-way classifi-
cation for both implicit and explicit relations,
reducing the error by 20% in the latter case

• A model with half the number of learn-
able parameters compared to a state-of-the-
art two-layered Bi-LSTM-CRF model along
with approximately half the training time

2 Related Work

Previous work on discourse relations found suc-
cess using word pairs as features. In the earli-
est work using word pairs, Marcu and Echihabi
(2002) used unambiguous explicit markers such
as “but” to create a corpus of discourse relations.
They used a Naive Bayes approach by taking the
cross-product of words on either side of the con-
nective. Blair-Goldensohn et al. (2007) used word
pairs for discourse relations as well. Later work
(Pitler et al., 2009) applied this approach to the
PDTB but found that the top word pairs were dis-
course connectives, which is counter-intuitive as
connectives were removed to obtain word pairs.
These earlier approaches use word pairs directly
as features, which creates a large sparse feature
space. In more recent work, Biran and McKeown
(2013) address the sparsity issue by using features
based on word pairs in the context of an explicit
connective in the Gigaword corpus. Even though
this approach addresses the sparsity issue by using
a much larger corpus, it is still impractical to ac-
count for every possible word pair. In comparison
to these previous word pair methods, our model
takes advantage of the continuous representation

of word embeddings to model similarity between
word pairs.

In other work, researchers have found that ap-
proaches using neural networks have helped in-
crease performance on this task, as neural models
are better at dealing with sparsity. Some work has
focused on using novel representations. Ji et al.
(2015) model the arguments with recursive neu-
ral networks (modeling the tree structure of each
argument). Lei et al. (2017) model interaction be-
tween words in arguments by learning linear and
quadratic relations. Liu and Li (2016) develop a
method for repeated reading over the discourse
context by using an external memory. Other re-
searchers have found success by modeling the se-
quence of words using recurrent neural networks
(Chen et al., 2016) with a gating mechanism to
combine contextual word pairs while some ap-
proaches have used convolutional neural networks
over each argument (Qin et al., 2016). Most recent
work has focused on joint learning, as the PDTB
is a relatively small dataset for neural methods.
Liu et al. (2016) and Lan et al. (2017) propose
a multi-task learning approach across PDTB and
other corpora. Qin et al. (2017) have demonstrated
the effectiveness of an adversarsial approach, forc-
ing one model without connective information to
be similar to a model with connective. Rönnqvist
et al. (2017) developed the first attention-based
BiLSTM network for Chinese implicit discourse
relations. Dai and Huang (2018) show that incor-
porating additional document context at the para-
graph level and jointly predict both implicit and
explicit relations. Finally, Bai and Zhao (2018)
propose a deep model using contextual ELMo em-
beddings, multiple CNN layers and Bi-attention.
Unlike these approaches, we represent the input in
a novel way as a set of word pairs, while using a
much simpler architecture, and distill knowledge
between explicit and implicit relations.

3 Methods

Our architecture consists of two primary compo-
nents. The first component learns complex inter-
actions from word pairs and the second component
learns n-gram features from individual arguments.
The features from word pair convolutions and in-
dividual argument convolutions are then combined
using a gating mechanism. Finally, we jointly
learn representations for implicit and explicit re-
lations.
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the train was delayed
late late, the late, train late, was late, delayed
for for, the for, train for, was for, delayed
the the, the the, train the, was the, delayed

meeting meeting, the meeting, train meeting, was meeting, delayed

Table 1: Arg1 is along the rows, Arg2 is across the columns. Cell (i, j) corresponds to the word pair composed
from ith word of Arg1 and jth word of Arg2.

3.1 Product of Arguments

For the first component, we use convolution op-
erations over the Cartesian product of words from
the two arguments.

Word/Word Pairs Initially, we consider the in-
teraction between all pairs of individual words in
the arguments. Table 1 illustrates the use of word
pairs from Example 1 in Section 1, where Arg1 =
“I am late for the meeting” and Arg2 = “the train
was delayed.” The sequence of word pairs starts at
the first row and moves on to successive rows. In
this example, we remove the connective to illus-
trate an implicit relation. For explicit relations, we
include the connective as part of the second argu-
ment and create word pairs for the connective (e.g.
“because”) as well. When computing the Carte-
sian product, we drop very short (length < 3)
functional words to limit the number of word pairs
(hence the absence of the words “I” and “am”).

Word/N-Gram Pairs We also use larger filters
to capture relations between word pairs. A filter
of size 2k will capture k word pairs. Henceforth
we use the notation WP-k to indicate a sequence of
k word pairs (where WP-1 refers to a single pair of
words). We use the following notation to describe
concrete examples of word pair features: (“late”
: “delayed”) is an example of WP-1. Similarly
(“late” : “the train was delayed”) is an example of
WP-4 and corresponds to the following sequence
of word pairs (as in row 1 of Table 1): “late the
late train late was late delayed”. In other words, it
corresponds to the Cartesian product of “late” with
the 4-gram “the train was delayed.” Thus, another
interpretation of WP-k is a mapping of a word in
Arg1 to a k-gram in Arg2 and vice-versa. This in-
terpretation of WP-k is not true at word transitions.
For instance, in the above example, a filter of size
8 will also capture “late was late delayed for the
for train” as one of the WP-4. By learning WP-k
features (for k > 1) we are able to capture more
complex interaction between the arguments. This

Figure 1: Architecture of our proposed network.
Dashed arrows indicate that weights are shared among
CNNs

is novel in comparison to the common practice of
just using WP-1 as features. We use filters of even
length and a stride of two to ensure the filter will
always end at word pair boundaries.

Mathematically, the input to the CNN (where [·]
means concatenation) is:

vArg1×Arg2 = [x11 · x12 · x11 · x22 · x11 · x32 · · · ]

where xi
1 is the concatenation of word and POS

embeddings corresponding to the ith word of
Arg1 and xj

2 is the concatenation of word and
POS embeddings corresponding to the jth word of
Arg2. We also include the representation obtained
from (Arg2 × Arg1), as our preliminary experi-
ments showed that this approach was complemen-
tary to the representation from (Arg1 × Arg2):

vArg2×Arg1 = [x12 · x11 · x12 · x21 · x12 · x31 · · · ]

Following convolution, in line with the common
practice, we apply max pooling along the length
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of the sequence to pick the most prominent fea-
ture per feature map. Next we concatenate the
max-pooled features from different filter sizes to
obtain a hidden representation. This hidden repre-
sentation from the CNN has dimensionality equal
to the number of feature maps× the number of fil-
ters. Thus, for each discourse relation comprised
ofArg1 andArg2, we obtain two hidden represen-
tations hArg1×Arg2 and hArg2×Arg1 . We concate-
nate these representations to obtain a vector hWP .
The weights of the convolution layers are shared
between Arg1 × Arg2 and Arg2 × Arg1 to allow
the model to learn from both types of interaction.
The left side of the Figure 1 depicts this compo-
nent of our combined architecture.

3.2 Individual Arguments

For the second component, we use a CNN over
individual arguments Arg1 and Arg2 (illustrated
on the right side of Figure 1). As discussed in
Rönnqvist et al. (2017), arguments provided with-
out context may contain elements indicative of
a discourse relation (Asr and Demberg, 2015),
e.g. implicit causality verbs (Rohde and Horton,
2010). We thus hypothesize that the hidden repre-
sentation obtained from individual arguments will
complement the representation obtained from the
word pairs. To learn representations from the in-
dividual arguments we use filters of odd and even
length and stride equal to one.

As with word pairs, the weights of the convolu-
tion layers are shared between Arg1 and Arg2 to
allow the model to learn representations from both
sides independent of the order of the arguments.

3.3 Combination of Argument
Representations

In order to combine the representations hArg1 and
hArg2 , we incorporate a method for the model to
learn to weight the interaction between the argu-
ment features. We employ Gate1 as shown on the
right side of Figure 1. This gate is defined as fol-
lows:

c = Relu(W1 · hArgs + b1)

ga = σ(W2 · hArgs + b2)

ĥArgs = c� ga
(2)

where hArgs is the concatenation of hArg1 and
hArg2 .

We subsequently join the word pair representa-
tions and the individual argument representations

with a similar mechanism. The two components
are combined using Gate2 which is defined as in
Equation 2 but instead takes as input the concate-
nation of ĥArgs and hWP

To predict the discourse relation, the output of
Gate2 is then input to a separate dense layer with
softmax non-linearity for either explicit or implicit
relation classification as shown in Figure 1.

3.4 Joint Learning of Implicit and Explicit
Relations

Finally, to fully take advantage of the labeled data
in the PDTB, we jointly learn implicit and explicit
relations. For explicit relations, we add the con-
nective to the beginning of Arg2. As shown in
Figure 1 and similar to (Dai and Huang, 2018), we
use separate classification layers for explicit and
implicit relations. To jointly learn both types of
relations, we randomize the order of implicit or ex-
plicit relations rather than training each mini-batch
separately.

4 Experiments

4.1 Data

We run experiments on three different tasks (bi-
nary, four-way and fifteen-way). For binary and
four-way tasks, we train and test on the class level
relations defined in the PDTB: Comparison, Con-
tingency, Temporal, and Expansion. We use a
common partition of the data: sections 2-20 for
training, 0-1 for validation, and 21-22 for testing.
For this partition, there are 1046 implicit relation
instances and 1285 explicit relation instances in
the test set. For fifteen-way task, we precisely fol-
low the setup of CoNLL 2016 shared task on shal-
low discourse parsing and evaluate our approach
on their test and blind test sets. A small fraction
(around 4%) of the relations in PDTB have mul-
tiple gold labels. During training, we replicate a
relation once for each gold label and for evalua-
tion we deem the prediction to be correct if the
predicted label matches any of the gold labels. We
use this scheme for all the tasks in this paper.

4.2 Experimental setup

We use Spacy to tokenize and annotate POS tags
for the individual arguments. To learn WP-k fea-
tures, we limit the Cartesian product to a maxi-
mum of 500 word pairs per relation. For n-gram
features, we limit the arguments to a maximum
of 100 words. For word embeddings, we used
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Model
Implicit

Macro
F1

Acc Com Con Exp Tem

LSTM
(Lei et al., 2017) 46.46 - - - - -
(Lan et al., 2017) 47.80 57.39 - - - -

(Dai and Huang, 2018)
-

(48.82)
-

(58.20)
-

(37.72)
-

(49.39)
-

(68.86)
-

(40.70)

CNN
(Liu et al., 2016) 44.98 57.27 - - - -

(Bai and Zhao, 2018) 51.06 - - - - -

Ours

WP-[1-4], Args,
Implicit Only

50.77
(49.2)

59.46
(56.11)

45.82
(42.1)

54.39
(51.1)

70.48
(64.77)

43.04
(38.8)

Args
Joint Learning

49.47
(48.1)

59.66
(57.50)

42.68
(35.50)

54.82
(52.5)

70.30
(67.07)

41.82
(37.47)

WP-1, Args,
Joint Learning

50.71
(48.73)

59.18
(57.36)

45.91
(37.33)

55.87
(52.27)

69.04
(66.61)

42.96
(38.70)

WP-[1-4], Args,
Joint Learning

51.84
(50.2)

60.52
(59.13)

46.84
(41.94)

53.74
(49.81)

72.42
(69.27)

43.97
(39.77)

Table 2: Results of four-way classification experiments on implicit relations. The numbers in the parenthesis
correspond to average of 10 runs

Model
Explicit

Macro
F1

Acc

(Dai and Huang, 2018)
-

(93.70)
-

(94.46)

Args, JL
95.48

(94.81)
96.2

(95.63)

WP-1, Args, JL
95.13

(94.83)
95.95

(95.67)

WP-[1-4], Args, JL
95.0

(94.50)
95.72

(95.33)

Table 3: Results of four-way classification experiments
on explicit relations. JL : Joint Learning

word2vec pre-trained embeddings. However, for
words not found in word2vec, we back-off to em-
beddings trained on the raw WSJ articles. We fix
the word embeddings during training. We also
concatenate one hot POS embeddings to the fixed
word embeddings. We use 100 and 50 feature
maps per filter size for learning WP-k and n-grams
respectively. For WP-k, we use filters of size 2, 4,
6 and 8. For n-grams, we use filters of size 2, 3,
4 and 5. For all dense layers and gate layers, we
set the output dimension of the weight matrices to
300. For regularization, we use dropout (Srivas-
tava et al., 2014) of 0.5 after convolution opera-
tions and before the softmax layers. We also use
L2 regularization with a coefficient of 0.0001 and

early stopping to prevent over-fitting. For training,
we minimize multi-class cross-entropy loss using
the Adam optimizer (Kingma and Ba, 2014) with
a learning rate of 0.0005 and batch size of 200.
Our architecture is implemented in Theano deep
learning framework.1

5 Results

We compare our results to previous work along
two dimensions: the architecture of the model
(CNN or LSTM) and whether the model employs
a joint learning component.
Our work and the work of (Dai and Huang, 2018)
and (Lan et al., 2017) involves jointly training on
explicit relations. (Lan et al., 2017) and (Liu et al.,
2016) also train on BLLIP and RST, respectively.

5.1 Four-way classification

Tables 2 & 3 show the results of four-way exper-
iments on implicit and explicit relations respec-
tively.2 Please note that these results are from the
same joint learning experiments wherever appli-
cable and they are presented in different tables for
the sake of better presentation. We compare the
performance of our models under different con-
figurations. We gradually add WP-k features to
study their contribution. First we add WP-1 (fil-

1https://github.com/siddharthvaria/WordPair-CNN
2(Qin et al., 2017) reported only one-versus-all binary

classification so their results are only included in Table 4
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Model Com Con Exp Tem

LSTM

(Lei et al., 2017) 40.47 55.36 69.50 35.34
(Lan et al., 2017) 40.73 58.96 72.47 38.50

(Dai and Huang, 2018)
-

(46.79)
-

(57.09)
-

(70.41)
-

(45.61)

CNN
(Liu et al., 2016) 37.91 55.88 69.97 37.17
(Qin et al., 2017) 40.87 54.56 72.38 36.20

(Bai and Zhao, 2018) 47.85 54.47 70.60 36.87

Ours
WP-[1-4], Args
Joint Learning

45.03
(44.1)

56.53
(56.02)

73.5
(72.11)

46.15
(44.41)

Table 4: Results of binary classification experiments. The numbers in the parenthesis correspond to average of 10
runs

ters of size 2) and then we add WP-k features to
illustrate the contribution of more complex inter-
actions for k > 1. Additionally, we compare joint
learning of implicit and explicit relations (Joint
Learning) against learning implicit relations only
(Implicit only). Args refers to n-grams from in-
dividual arguments. For all experiments, we re-
port both the maximum and average (in parenthe-
sis) of 10 runs for fair comparison with all prior
work. It is not surprising to see that gradually
adding word pair features improves performance
on implicit relations. When using joint learning
and WP-[1-4] we obtain an improvement in Macro
F1-Score and Accuracy for implicit relations over
previous state of the art works (Dai and Huang,
2018) and (Bai and Zhao, 2018). We also observe
improvement for the expansion class in the joint
learning setting, likely due to its prevalence in both
implicit and explicit relations. In these cases, we
observe that joint learning improves over train-
ing on just implicit relations (with a 3 point im-
provement in overall accuracy primarily due to a
5 point improvement in classification of the ex-
pansion class). On the other hand, we find that
in just Args setting, we obtain state-of-the-art per-
formance compared to prior work (Dai and Huang,
2018) for explicit relation F1-Score and accuracy,
achieving 20% reduction in error rate. We don’t
get any benefit by combining it with word pairs
(for WP-1), and the extra complexity for k > 1
makes it more difficult for the model to distinguish
the effective features. This may occur because the
connective itself is a very strong baseline.

5.2 Four-way Ensemble results

As the experiments described in 4.2 were con-
ducted with 10 random initializations, we also

present the results of an ensemble created out of
these 10 runs via majority voting in Table 5. Com-
pared to (Dai and Huang, 2018), while our ensem-
ble achieves marginal improvement of 0.59 F1 on
implicit relations, it improves by around 1 point on
explicit relations for both metrics, around a 20%
error reduction.

5.3 Binary classification

In Table 4, we report our results on four binary
classification tasks. From the results, we see that
our model does better on all classes in compar-
ison to other CNN-based architectures. Our av-
eraged results are directly comparable to those of
(Dai and Huang, 2018) and we observe improve-
ment for the expansion class. Our model may not
generalize as well on other three classes because
they account for 14, 26.4, and 6% of the test set,
respectively, leading to high variance across mul-
tiple runs.

5.4 Fifteen-way classification

CoNLL organized a multilingual shallow dis-
course parsing shared task in 2016. In this shared
task (Xue et al., 2016), they consider second level
types and release test and blind test sets for fifteen-
way classification of explicit and implicit rela-
tions, including EntRel and AltLex relations as
implicit relations. We compare our architecture
against the systems that participated in that task,
with results presented in Table 6. Our architec-
ture produces very similar results in line with the
results reported by various neural network based
systems that participated in the task. However,
we also observe that using word pair features does
not lead to further improvement over using just n-
gram features. One possible explanation for this
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Model
Implicit Explicit

Macro
F1

Acc
Macro

F1
Acc

Dai et al.
(2018)

51.84 59.85 94.17 94.82

WP-[1-4],
Args,

IO
51.63 58.03 - -

Args,
JL

49.54 58.70 94.81 95.64

WP-1,
Args,

JL
51.90 59.94 95.16 95.95

WP-[1-4],
Args,

JL
52.53 61.28 94.38 95.25

Table 5: Ensemble results of four-way classification
experiments. JL : “Joint Learning” and IO : “Implicit
Only”

Model
F1 score

Implicit Explicit
PDTB Blind PDTB Blind

Xue et al.,
(2016)

40.91 37.67 90.22 78.56

Lan et al.,
(2017)

39.40 40.12 - -

Args, JL 39.68 38.74 89.91 76.98
WP-[1-4],
Args, JL

39.39 39.36 89.48 77.00

Table 6: Results of fifteen-way task on CoNLL 2016
test and blind test sets

trend is that word pair features capture enough se-
mantic information to discriminate the top-level
classes however it fails to separate the second level
of types. Comparing against (Lan et al., 2017),
we see that our model is competitive with their
LSTM-based architecture in spite of the fact that
they used external data to achieve these results.
This also possibly indicates that it is hard to get
further improvements on this task without data
augmentation due to lack of enough training data
for second level types in PDTB.

6 Discussion

6.1 Comparison of Model Complexity

In Table 7 we present the number of parameters of
our model in the first two columns. We have con-

Model Parameters
Ours

Conv 2,3,4,5 50 per size 242.2k
Conv 2,4,6,8 100 per size 692k
Gate1 240k
Gate2 660k
Total 1834.2k

LSTM Model
Bi-LSTM Layer 1 1550.4k
Bi-LSTM Layer 2 2160k
Total 3710.4k

Table 7: Comparison of model complexity. Gate1 &
Gate2 have output of size 300. LSTMs have hidden
state of size 300.

volution layers to learn n-gram features and WP-k
features. Apart from these layers, we have two
gate layers: Gate1 and Gate2 in the table. Our
model has approximately 1.8 million parameters.
The input embeddings to our model have dimen-
sionality of 346 (300 (word) + 46 (POS)). Assum-
ing the same input to the two-layered Bi-LSTM
model with a hidden state of size 300, this model
will have approximately 3.7 million parameters.
For this comparison, we have assumed the num-
ber of parameters of the LSTM given input vec-
tors of size m and giving output vectors of size n
is 4(nm+n2). Both models have dense layers for
implicit and explicit relation prediction so they are
ignored for these calculations.

6.2 Comparison of Training Time
We also compare the running time of our model to
the model of (Dai and Huang, 2018). We compare
the wall clock training time per epoch of both sys-
tems, using their released code as well as our own.
For a fair comparison, we re-implemented our ar-
chitecture in Pytorch to match their usage. Fur-
thermore, the models were run on the same GPU
(Tesla K80) on the same machine. We ran each
model three times for five epochs. The training
time of our model was 109.6 seconds on average
compared to 206.17 seconds for their model.

6.3 Qualitative Analysis
We conduct a qualitative analysis in an attempt to
understand the most important WP-k and n-grams
learned by our architecture. We modified our ar-
chitecture to get rid of all non-linear layers after
the convolutional layers, which allows us to ex-
amine the effect of the word pairs and n-grams
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Implicit Relations and Top Features
Arg1: Alliant said it plans to use the microprocessor in future products
Arg2: It declined to discuss its plans for upgrading its current product line
Class: Comparison
WP-k: (said : declined), (Alliant : product line), (declined : Alliant said), (upgrading :
microprocessor future products), (plans : declined discuss its plans), (discuss : use the mi-
croprocessor future)
Arg1 n-grams: (Alliant said), (microprocessor in future products), (plans to use the micropro-
cessor)
Arg2 n-grams: (product line), (It declined to discuss), (for upgrading its current product)
Arg1: I ca n’t see why there would be a conflict of interest
Arg2: Estimates are based on the previous price of similar works sold at auction and current
market conditions, and are not affected by any knowledge of who the potential buyer could be
Class: Contingency
WP-k: (n’t : affected), (not : conflict), (why : not affected), (not : n’t see), (see : works sold
auction and), (affected : why there would conflict)
Arg1 n-grams: (a conflict of interest), (ca n’t see why there)
Arg2 n-grams: (Estimates are based on), (works sold at auction), (are not affected by any)
Arg1: And it allows Mr. Van de Kamp to get around campaign spending limits
Arg2: He can spend the legal maximum for his campaign
Class: Expansion
WP-k: (And : can), (limits : spend), (allows : spend), (And : He can), (maximum : spending
limits)
Arg1 n-grams: (And it allows), (spending limits)
Arg2 n-grams: (He can spend), (legal maximum), (his campaign)
Arg1: As the market dropped Friday , Robertson Stephens slashed the value of the offering by
7%
Arg2: Yesterday , when similar securities rebounded , it bumped the valuation up again
Class: Temporal
WP-k: (As : when), (bumped : slashed), (As : Yesterday when), (Yesterday : As the market),
(when : As the market dropped)
Arg1 n-grams: (market dropped), (Robertson Stephens slashed the value)
Arg2 n-grams: (similar securities), (Yesterday , when), (bumped the valuation up again)
Arg1: the fact that seven patents were infringed suggests that infringement was willful
Arg2: It ’s difficult to be that consistently wrong
Class: Contingency
WP-k: (willful : consistently), (willful : wrong), (suggests : difficult that consistently wrong),
(consistently : infringed suggests that infringement)
Arg1 n-grams: (the fact), (suggests that infringement was willful)
Arg2 n-grams: (consistently wrong), (’s difficult to be that)
Arg1: and special consultants are springing up to exploit the new tool
Arg2: Blair Entertainment has just formed a subsidiary – 900 Blair – to apply the technology
to television
Class: Expansion
WP-k: (springing : formed), (exploit : formed), (springing : subsidiary Blair), (formed :
springing exploit), (springing : has just formed subsidiary), (Blair : and special consultants)
Arg1 n-grams: (special consultants are springing up)
Arg2 n-grams: (Blair Entertainment has), (subsidiary – 900 Blair –)

Table 8: Implicit examples along with top features selected from across three runs. Note that we drop very short
words in the cartesian product only and not in the individual arguments.
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directly on the output. Dropping the gate lay-
ers caused the F1 score averaged across the first
three runs to drop from 50.9 to 50.1, indicating
both that the gate layers help incorporate inter-
actions between the model components and that
our approach here is a reasonable approximation
to what the model is learning. Instead of the gates,
we concatenate the output of all the convolutional
layers and use a final classification layer (differ-
ent for implicit and explicit relations as in our full
model) to train this simplified architecture. In the
absence of non-linearity, we are able to map the
features selected by max pooling back to the WP-k
and n-grams associated with their embeddings (i.e.
argmax pooling rather than max pooling and map-
ping the selected indices back to the input). As
each filter is associated with multiple feature maps
(k = 100 for word pairs and k = 50 for n-grams
as described in Section 4.2), we count the number
of times each WP-k and n-gram was selected dur-
ing pooling and select the most prominent features
according to their frequency.

We present six implicit examples,3 in Table 8
and the corresponding top WP-k and n-gram fea-
tures. We selected these examples by running the
simplified architecture three times and selecting
implicit examples which were classified correctly
during all the runs in the Joint Learning setting.

We find the following general properties in the
examples we studied:

• We consistently observed that smaller fil-
ters learn either verb-to-verb mappings or
adjective-to-adjective mappings. In exam-
ples one, four and five, (said : declined),
(bumped : slashed) and (willful : wrong) are
selected respectively. The first two pairs cap-
ture antonymy and last one maps adjectives.

• Larger filters tend to align important words
(verbs and nouns) in either argument to
phrases in the other argument. In the third
example, (maximum: spending limits) is se-
lected, along with (affected : why there
would conflict) in the second example, and
(plans : declined discuss its plans) from the
first, among others.

• For the third example, while the true class is
Expansion, which the Joint Learning model
classifies correctly, the Implicit Only model

3Although we learn implicit and explicit relations jointly,
we focus on only implicit relations due to space constraints.

labels it as Contingency. The Joint Learn-
ing model selects functional word pair inter-
actions such as (And : can), which may be
more indicative of an Expansion relation due
to the presence of the connective “And” at
the start of the first argument. We also ob-
serve the word pair (Kamp : spend) is not
selected as a top feature in the Joint Learn-
ing setting, while it is selected in the Implicit
Only scenario. As it includes a proper noun,
it is unlikely to generalize as a useful feature.
Finally, Joint Learning identifies the seman-
tically coherent WP-2 (maximum : spending
limits). This pair does not appear in the Im-
plicit Only case.

7 Conclusion

We proposed an approach to learn implicit re-
lations by incorporating word pair features as a
novel way to capture the interaction between the
arguments, a distinct approach compared to the
popular attention-based approaches used with Bi-
LSTM based models. We also show that joint
learning of implicit and explicit relations is benefi-
cial to implicit relations. Our results show that our
model is able to surpass or match the performance
of a Bi-LSTM based model using paragraph level
context.

For future work, we plan to explore data aug-
mentation techniques. As our best performance is
on the expansion class, which is also the largest, if
we are able to obtain more data we might improve
our performance on smaller classes as well. We
will thus investigate extending our joint learning
method to include resources beyond the PDTB.

Another possible avenue is to replace word em-
beddings with contextualized embeddings to study
the efficacy of the latter with our architecture. Pre-
trained language models like BERT (Jacob et al.,
2018) have been recently used to achieve state-
of-the-art results on sentence pair classification
tasks. As a future step we will experiment with
our model on top of these contextual represen-
tations, which would likely enhance the perfor-
mance while still maintaining the interpretability.
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