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The many dimensions of algorithmic fairness in educational applications

Anastassia Loukina, Nitin Madnani, Klaus Zechner
Educational Testing Service
Princeton, NJ, USA

aloukina, nmadnani, kzechner@ets.org

Abstract

The issues of algorithmic fairness and bias have
recently featured prominently in many publica-
tions highlighting the fact that training the algo-
rithms for maximum performance may often re-
sult in predictions that are biased against vari-
ous groups. Educational applications based on
NLP and speech processing technologies often
combine multiple complex machine learning algo-
rithms and are thus vulnerable to the same sources
of bias as other machine learning systems. Yet
such systems can have high impact on people’s
lives especially when deployed as part of high-
stakes tests. In this paper we discuss different defi-
nitions of fairness and possible ways to apply them
to educational applications. We then use simulated
and real data to consider how test-takers’ native
language backgrounds can affect their automated
scores on an English language proficiency assess-
ment. We illustrate that total fairness may not be
achievable and that different definitions of fairness
may require different solutions.

1 Introduction

The issues of algorithmic fairness and bias have
recently featured prominently in many publica-
tions highlighting the fact that training the algo-
rithms for maximum performance may often re-
sult in predictions that are biased against various
groups (Kamiran and Calders, 2009; Kamishima
etal.,2012; Luong et al., 2011; Zemel et al., 2013;
Feldman et al., 2015; Friedler et al., 2016). Like
any algorithm, NLP systems are not immune to
such bias (Hovy and Spruit, 2016; Caliskan et al.,
2017). These days it is hardly necessary to justify
the importance of ensuring algorithmic fairness,
especially in applications that can have a substan-
tial impact on users’ lives.

1

Automated test scoring is one such application,
and the educational measurement community has
been concerned with the fairness of automated
scoring since long before this topic gained wide
popularity. There exist a variety of standard mea-
sures generally recommended for evaluating fair-
ness of the automated scoring systems (Clauser
etal., 2002; Williamson et al., 2012; Ramineni and
Williamson, 2013) as well as open-source tools for
computing such measures (Madnani et al., 2017).

In this paper we use the data from an operational
spoken language proficiency assessment and an
automated speech scoring engine to show that the
application of these measures may sometimes lead
to seemingly contradictory results. We apply the
insight from the machine learning community that
there are different ways to formally define algo-
rithmic fairness, and propose a framework which
leverages work from both educational measure-
ment and machine learning to formalize these def-
initions in the context of automated scoring.

2 Fairness in educational applications
and beyond

2.1 Fairness metrics for automated scoring

Fairness research has a long tradition in educa-
tional measurement where “fairness” has been de-
fined with reference to “construct”. A construct
is defined as a set of related knowledge, skills,
and other abilities that a test is designed to mea-
sure (Zieky, 2016). A fair test is one where dif-
ferences in test scores between the test-takers are
due only to differences in skills which are part
of the construct. Any consistent differences in
scores between different non-random groups of
test-takers that result from other factors not im-
mediately related to the construct (i.e., “construct-
irrelevant”) may indicate that the test is unfair
(Xi, 2010; Zieky, 2016). Notably such “construct-
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irrelevant” factors include not only protected at-
tributes often considered in studies on algorithmic
bias but also other factors that can affect prede-
fined groups of test-takers, such as screen resolu-
tion on the computers used to administer an as-
sessment (Bridgeman et al., 2001). It follows that
a fair automated scoring system should not intro-
duce additional construct-irrelevant group-related
variance or disadvantage any group of test-takers
in comparison to human scores (Penfield, 2016).

Several standard measures have been used to
evaluate the fairness of the automated scoring sys-
tems across different groups, for example speak-
ers of different languages or test-takers with dis-
abilities (Burstein and Chodorow, 1999; Bridge-
man et al., 2012; Wang and von Davier, 2014;
Wang et al., 2016; An et al., 2016; Loukina and
Buzick, 2017). The two most common analy-
ses are standardized mean score differences and
overall model performance for different groups
with human scores (predictive ability) (Ramineni
and Williamson, 2013; Williamson et al., 2012).
More recently other measures have been used such
as differential feature functioning (Zhang et al.,
2017) to analyze the performance of individual
features or variance in mean model residual across
groups (Yao et al., 2019). The approach taken
in many previous studies on the fairness of auto-
mated scores has been that substantial between-
groups differences in human and automated scores
in any of the measures indicate that the system
might not be fair.

2.2 Algorithmic fairness

There are two key conclusions that emerged from
general research on algorithmic fairness that are
most relevant for this paper. First, there are many
different ways to formally define algorithmic fair-
ness. Second, it may be impossible to achieve fair-
ness according to each and every one of these defi-
nitions at the same time (Friedler et al., 2016; Berk
etal., 2018).

In their review of algorithmic bias in the con-
text of criminal justice risk assessment, Berk et al.
(2018) offer five definitions of fairness: (1) Over-
all accuracy equality: overall classification accu-
racy is the same for all groups; (2) Statistical par-
ity: the marginal distribution of predicted classes
is the same for all groups; (3) Conditional proce-
dure accuracy equality: the prediction is equally
accurate for all groups when conditioned on a

known outcome; (4) Conditional use accuracy
equality: the prediction is equally accurate for all
groups when conditioned on a predicted outcome;
(5) Treatment equality: the ratio of false negatives
and false positives is the same for both groups. To-
tal fairness is achieved when all five definitions are
met. As Berk et al. (2018) show, in practice to-
tal fairness cannot be achieved, except for trivial
cases.

3 Data

The analyses in this paper are based on actual re-
sponses collected during a large-scale assessment
of English language speaking proficiency. For this
assessment all test-takers answered 6 questions
that elicited spontaneous speech. Depending on
the question, the speakers were given 45 seconds
or 1 minute to record their responses.

We will focus on whether automated scoring
might disadvantage test-takers depending on their
native language (L1), a common concern in au-
tomated scoring contexts. Learners with differ-
ent L1 might have different linguistic profile and
it has been shown that it is possible to identify
learner L1 from their written or spoken response
(Malmasi et al., 2017). Therefore there is a danger
that the scoring engine might inadvertently assign
different scores to speakers of different L1 even
when there is no difference in English proficiency,
the actual construct measured by the test. In other
words the system would introduce group-related
construct-irrelevant differences.

In an actual operational scenario there are many
additional factors that can introduce bias to the
performance of an automated scoring system:
some L1s might be over- or under-represented in
the data used for model training and evaluation;
sometimes different versions of the test are admin-
istered in different countries for security reasons,
introducing further scope for conflation between
native language and prompt.

For this study we constructed a corpus of re-
sponses designed to control for these factors. Us-
ing the information about the native language re-
ported by test-takers when taking the test, we
selected responses from native speakers of the
6 most frequently languages among the test-
taker population': Chinese (CHI), Korean (KOR),
Japanese (JPN), Spanish (SPA), Arabic (ARA) and

"The metadata does not differentiate between different
linguistic varieties.



German (GER). All test-takers responded to one of
the two versions of the test that were administered
across all these regions.

We then created a corpus with uniform distri-
bution of native languages by randomly sampling
a similar number of test-takers for each version
of the test. The final corpus included 26,710 re-
sponses from 4,452 test-takers (742 for each lan-
guage, about 370 test-takers per version). The
corpus was split into a training set (75%) and a
test set (25%), with 19,942 responses from 3,324
test-takers (554 from each group) allocated to the
former, and the remaining 6,768 responses from
1,128 test-takers (188 from each group) allocated
to the latter.

All responses had been scored by trained human
raters on a scale from 1-4. The raters assigned
a single holistic score to each response using a
scoring rubric that covered different aspects of lan-
guage proficiency including delivery, language use
and content. Most responses were scored by a sin-
gle rater. About 6% of responses were double-
scored. Human-human agreement for responses in
the test set is Pearson’s 7 = 0.66. The scoring pro-
cess was set up following best practices in order to
minimize any possible bias (Wang and von Davier,
2014; Penfield, 2016). Multiple raters took part in
this process and in no instance did a given rater
score multiple responses from the same test-taker.
All raters were monitored throughout the process
using both exemplar responses with known scores
and random back-scoring. Despite all these mea-
sures, there is still some possibility that the human
scores contained bias which would then be learnt
by the model. For the sake of simplicity, however,
in this paper we will ignore such a possibility and
treat the human scores as a gold standard measure.

3.1 Simulated models

When looking at algorithmic fairness, it is often
helpful to look at extreme simulated cases. In all
four models discussed in this section, the ‘system’
scores were produced by training a linear regres-
sion on the training set and using the regression
parameters to generate predictions for the test set.
All evaluations were done on the test set. The
models were trained using the human score as the
dependent variable and four different types of fea-
tures described below.

Random model: The RANDOM model was
based on a single feature: a random sample drawn

from a normal distribution with mean and stan-
dard deviation equal to those of human scores on
the training set. This feature by definition is blind
to a test-taker’s L1 and any properties of their re-
sponse. This model is not valid as it does not
differentiate test-takers on any construct-relevant
dimension but it is not expected to consistently
differentiate based on any construct-irrelevant fac-
tors. To further make sure that no bias is intro-
duced by chance, we repeated the whole procedure
from feature generation to analysis 10 times with
different random states. All reported results are
average values of the corresponding metrics across
these 10 repetitions. As expected, the model failed
to predict human scores on the test set with no cor-
relation between the predicted and observed scores
(average r =-0.004)

A perfect model: The PERFECT model also
contained a single feature, but this time the feature
was equal to the human score with the addition of
random noise. Random noise was also sampled
from a normal distribution with mean =0 and o =
0.2. Like the RANDOM model, this procedure was
applied to the whole data set without using any in-
formation about a test-taker’s L1 or any properties
of their response beyond the human score. We ex-
pect this model to be fair because it distinguishes
test-takers primarily based on their human scores
which are implicitly taken as proxies for language
proficiency. As in case of the RANDOM model, we
repeated the whole procedure 10 times to ensure
no bias had been introduced accidentally during
random sampling. Unsurprisingly, these models
achieved an almost perfect performance on the test
set with average r = 0.97.

An almost perfect model: The
~PERFECT model was identical to the PER-
FECT model, except that the random noise added
to the human score when generating the “feature”
was sampled from a normal distribution with o
= 0.5, that is the model was less accurate. Like
the PERFECT model, this model also distinguishes
test-takers primarily based on their language pro-
ficiency. This model achieved a good performance
on the test set with average r = 0.83.

Metadata-based model: While RANDOM and
PERFECT models were designed to be blind to any
L1-effects, the META model only relied on demo-
graphic information. It included two features: the
native country of the test-taker and the country
where they took the test. While this model did



not directly make use of L1, it used two closely
related features (in our data, L1 was closely re-
lated to the native country and test country). The
model achieved a moderate performance of r =
0.44. Since this model differentiates test-takers
based on their geographic location and not on their
language proficiency, we expect that this model
should not be deemed fair.

4 Fairness evaluations

4.1 Standardized mean differences

We first computed standardized mean difference
(SMD) a standard measure used to evaluate the
fairness of automated scoring engines (Williamson
et al., 2012). To do so, both human and system
scores were converted to z-scores using their re-
spective means and standard deviations. SMD for
each group is the average difference between such
standardized human and system scores within this
group (System score - human score). Absolute
values above 0.1 are considered an issue of con-
cern and require further evaluation (Williamson
et al., 2012).

RANDOM PERFECT ~PERFECT META
ARA | 0.02 -0.00 0.00 0.14
CHI | 0.22 0.01 0.03 -0.40
GER | -0.78 -0.02 -0.13 0.93
JPN | 0.63 0.02 0.11 -0.70
KOR | 0.17 0.00 0.03 -0.30
SPA | -0.20 -0.01 -0.02 0.27

Table 1: Standardized mean difference (system-
human) for 6 languages in our corpus for scores gen-
erated by different models. Absolute values above 0.1
threshold are highlighted in bold

Table 1 shows SMDs for the four models. As we
predicted, the speakers of all languages would be
disadvantaged by using the META model. Yet sur-
prisingly, even in the case of the ~PERFECT model
two of the languages, GER and JPN, show absolute
SMDs slightly above the recommended 0.1 thresh-
old. In other words, the evaluation suggests that
speakers of these two languages are not treated
fairly by the model: GER speakers are underscored
while JPN speakers are over-scored.

Yet we know that the ~PERFECT model by de-
sign is blind to test-taker’s L1. Why then do we
see relatively large SMDs? The reason is the un-
usual score distribution for these two groups of
test-takers and consequently the large difference
in their mean scores. As shown in Table 2, the
scores are not distributed uniformly: the propor-

1 2 3 4 | Mean
ARA | 0.05 0.29 051 0.14 2.74
CHI 0.03 037 055 0.04 2.60
GER | 0.00 0.05 054 041 3.35
JPN 0.11 052 034 0.02 2.29
KOR | 0.05 036 049 0.10 2.63
SpA | 0.02 0.23 058 0.17 2.92

Table 2: Proportion of responses assigned each of the
four possible human scores for test-takers with each L1
and mean human score for each group

tion of ‘2’ and ‘3’ is much higher (80% of all
scores) than the proportion of ‘1’ and ‘4’. Fur-
thermore, proficiency levels as measured by hu-
man scores vary greatly across the 6 groups in our
study: GER speakers have a very high proportion
of score 4 responses (40.9%) and a mean score of
3.35, while JPN speakers have a high number of
responses scored as ‘1’ or ‘2’ (63%) and a mean
score of 2.286. The very uneven score distribu-
tion in the training set, in combination with the
noise we introduced to the ‘feature’, resulted in
greater prediction error at the edges of the scale:
mean standardized score differences is 0.35 for re-
sponses scored 1 and -0.29 for responses scored 4
vs. 0.17 for responses scored 2 and -0.05 for re-
sponses scored 3. This in combination with the
unusual score distribution lead to higher absolute
SMDs for GER and JPN speakers.

To confirm that the observed differences are due
to score distribution and are not an artefact of the
model-training process, we sampled from the test
set a subset of 2,700 responses (450 responses per
group) with identical (but not uniform) distribu-
tions of human scores in each group: the sample
sizes for each score level were determined by the
maximum number of responses available for this
score level from all L1s. As a result, 80% in this
sample received a score of ‘3’, 13% received a
score of ‘2’, 5% received a score of ‘4’ and 1%
received a score of ‘1’. The mean human score
for all subgroups was 2.9. We then recomputed
SMDs using only this subset. While SMDs for the
META model remained high, the absolute SMDs
for the other three models were all below 0.02.

4.2 Measuring different dimensions of
fairness

In this section we propose a set of measures that
capture different definitions of fairness. Note that
not all definitions of fairness considered in Berk
et al. (2018) are applicable to automated scoring



in assessment: thus we do not expect statistical
parity that is the same marginal score distribution
for all groups. The unequal distribution of social,
economic, and educational resources means that
some differences in performance across groups are
to be expected (AERA, 1999).

The three definitions that we will consider in
this paper are: (1) Overall score accuracy; (2)
Overall score difference; (3) Conditional score dif-
ference.”

The overall score accuracy (OSA) measures
whether automated scores are equally accurate for
each group by looking at differences in squared er-
ror (S — H)? (where H is the human score for a
given response and S is the system score). This
measure is essentially the same as predictive ac-
curacy for different groups considered in previ-
ous studies on automated scoring (Ramineni and
Williamson, 2013; Yao et al., 2019). To get a
numeric estimate we fit a linear regression with
squared error as a dependent variable and test-
taker L1 as an independent variable, used the R?
from this model as a measure of model fairness:
larger R? indicates high impact of L1 on score ac-
curacy.’

The overall score difference (0SD) considers
whether automated scores are consistently differ-
ent from human scores for members of a certain
group. Since we are interested in the sign of dif-
ference we are using actual error S — H for each
response rather than squared error. This measure
is generally similar to what is evaluated by SMDs
and similar in spirit to the ‘Treatment equality’ in
Berk et al. (2018). To get a numeric estimate we fit
a linear regression with error as a dependent vari-
able and test-taker L1 as an independent variable,
and used the R? from this model as a measure of
model fairness: larger R? values indicate high im-
pact of L1 on score differences.

The conditional score difference (CSD) shows
whether automated scoring engines assign differ-
ent scores to speakers from different groups de-
spite their having the same language proficiency.

2For the sake of simplicity we will not consider the fifth
definition of fairness: conditional use equality, that is do the
same automated scores assigned to different group members
correspond to the same proficiency level? This is another im-
portant dimension of fairness that affects score use and inter-
pretation and we will return to it in future work.

3We treat all responses as independent since mixed linear
model analysis showed no clustering by speaker in our data.
This assumption may not hold for all data sets in which case
mixed models might be necessary.

This is similar to conditional procedure equality in
Berk et al. (2018). In educational measurement, a
similar approach has been applied to feature anal-
ysis and is known as “differential feature function-
ing” (Zhang et al., 2017). Using human scores as
a proxy for language proficiency, we can estimate
this metric by fitting a linear regression with er-
ror S — H as a dependent variable, and both test-
taker L1 and human score as independent vari-
ables. To evaluate the impact of L1 beyond human
scores, we first fit the model with human scores
only and then compared the difference in R? val-
ues between the two models. We use analysis of
variance to establish whether the difference is sig-
nificant. As with overall score difference, larger
R? values indicate higher impact of L1 on auto-

matic scores®.
Actual Equal
OSA OSD CSD | OSA OSD CSD
RANDOM 020 .189 ns ns ns ns
PERFECT ns .012 ns ns ns ns
~PERFECT | .003 .058 ns ns ns ns
META 011 .002 .207 | .050 .352 .354

Table 3: Adjusted R? showing the percentage of vari-
ance in scoring error attributed to L1 for different mod-
els and score distributions (equal and actual score dis-
tribution). Larger values correspond to the greater im-
pact of L1 on scoring error. Cells marked ‘ns’ mean
that the effect of L1 was not significant at a=0.01. See
section 4.2 for further explanation.

4.3 Evaluation on simulated models

Table 3 shows the results of these evaluations for
the four models considered in this section. Since
based on the results in previous section we expect
the overall difference to be dependent on score dis-
tribution, we conducted all analyses twice: once
using the whole test set (“‘actual score distribu-
tion”) and once using the subset with identical
score distribution across all groups described in
4.1.

As expected, Table 3 shows a striking differ-
ence in results between the two samples. When
the score distribution is held constant across the
groups, we see the results we expect from the de-
sign of the model: L1 was observed to have a sig-
nificant effect on only the META model. For all

“The code used to compute these met-
rics is  open-sourced as part of RSMTool:
https://github.com/Educational TestingService/rsmtool
(Madnani et al., 2017)
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Figure 1: Average system score conditioned on human score for different models and native languages

other models, there was no significant impact of
L1 on scores.

A different picture emerges when we consider
results on the actual score distribution. As we
already observed for SMDs, we saw a signifi-
cant impact of L1 on the OSD. It was particu-
larly large for the RANDOM and ~PERFECT mod-
els, but we also saw a consistent, albeit small, ef-
fect for the PERFECT model. In addition, there
was a difference in OSA for both RANDOM and
~PERFECT models. As expected, no CSD was ob-
served for any of the models other than META. We
will return to this finding in the discussion.

5 Application to automated speech
scoring

5.1 Automated scoring engine

We will now now apply these evaluations to the ac-
tual scores produced by an automated speech scor-
ing engine similar to the one described in Chen
et al. (2018). The ASR system was trained using
the Kaldi toolkit (Povey et al., 2011) on a propri-
etary corpus consisting of 800 hours of non-native
speech from 8,700 speakers of more than 100 na-
tive languages. There was no overlap of speakers
or questions between the ASR training corpus and
the corpus used in this paper. We did not addition-
ally adapt the ASR to the speakers or responses in
this study.

For each response, we extracted 77 non-sparse
continuous features which covered two of the three
aspects of language proficiency considered by the
human raters: delivery (i.e., prosody, pronuncia-
tion, fluency) and language use (i.e., grammar, vo-
cabulary). The correlation between different fea-
tures and human scores varied between 7=0.05 and
r=0.63. For this study we did not use any features

that cover the content of the response.

5.2 Scoring models

Baseline model: As a baseline (BASE) we used a
model which included all 77 features. The model
was fitted using Ridge regression available via
RSMTool, an open-source tool for training auto-
mated scoring models (Madnani et al., 2017). The
model coefficients were estimated using all re-
sponses in the training set with human score as
the dependent variable and features as indepen-
dent variables. The model parameters were used
to generate predictions on the test set. The corre-
lation between automated and human scores was r
=0.71.

L1-specific model: We also trained a separate
L1 model for each native language using only re-
sponses from test-takers from this group and the
same general procedure as for the BASE model
and then pooled together predictions from these
six models for evaluation. The overall correlation
for all pooled predictions was r = 0.72, similar to
the BASE model. We expect that this model might
reduce the score error for each L1 but will likely
increase CSD as it makes use of speaker L1 in the
scoring process.

Model with “fairer” feature subset: Some of
the features in our model showed greater differen-
tial feature performance; in other words, feature
values differed across groups even for the same
score level. This, in turn, could result in differ-
ent scores for different groups. To identify such
features, we repeated the same analysis as used to
compute conditional procedure accuracy but using
each feature as a dependent variable. The amount
of variance attributed to native language for dif-
ferent features varied between <0.1% and 11%
with median at 3.4%. We used 3% as a thresh-



old and excluded features where more than 3% of
feature variance could be attributed to native lan-
guage. This left us with 34 out of 77 features.
These analyses were done using the training set.
We then used this subset of 34 features to re-fit the
Ridge regression to the training set and to generate
predictions for the test set. This FAIR(ER) model
achieved r = 0.67, a small loss in performance
considering that we removed more than half of
all features. This model was optimized to reduce
CSD but it might do so at the cost of other mea-
sures.

5.3 Model fairness

The fairness evaluations for these three models are
summarized in Table 4. For the BASE model, test-
taker L1 explained 1.7% of variance in OSD and
6.2% of variance in CSD. There also was a small
difference in OSA. In other words, these evalua-
tions pointed towards a small but significant bias
in model performance.

Actual Equal

OSA OSD CSD | OSA OSD CSD
BASE 002 .017 .062 | .008 .112 .112
L1 .003 ns 135 | 014 222 223
FAIR(ER) | .004 .045 .030 | .004 .054 .055

Table 4: Adjusted R? showing percentage of variance
in scoring error attributed to L1 for different models
and score distributions. See caption to Table 3 and sec-
tion 4.2 for further explanation

To further understand the nature of these differ-
ences, we can look at the estimates for each group
produced by the model in Table 5. For estimates
computed on the actual score distribution we see
that not only the size but also the direction of dif-
ferences differs depending on whether we look at
the overall or conditional difference. Thus, for
example, the overall difference for GER speakers
suggests lower overall automated scores relative to
human scores than for the reference group (SPA),
while the conditional difference implies that the
automated scores are higher relative to human rat-
ings than for the reference group when speaker
language proficiency is held constant.

Since we already saw that overall differences
may be affected by the score distributions, Table
5 also shows the estimates for the model fitted
to the subset of responses where the score dis-
tribution is held constant across all groups. In
this case, OSA and OSD estimates are identi-
cal and show that given the same level of profi-

ciency the model in fact assigns higher scores to
GER speakers relative to human scores and lower
scores to JPN speakers relative to human scores. In
other words, in the actual data this difference for
GER speakers is compensated by the score distri-
bution effects. Conditional score differences for
the three models are illustrated in Figure 2. For
comparison, Figure 1 shows the same plots for
simulated models.

Actual Equal
OSA OSD CSD OSA OSD CSD
ARA | ns 0.06 ns ns ns ns
CHI | ns 0.09  -0.10 | ns -0.12  -0.12
GER | ns -0.11 0.16 | 0.06 020 0.20
JPN ns ns -0.33 | 0.08 -0.31 -0.31
KOR | ns 0.06 -0.11 | ns -0.10  -0.10

Table 5: Model estimates for 6 languages in our corpus
for scores generated by the BASE model. SPA is used as
a reference category.

For the other two models the evaluations
in Table 4 are consistent with our predictions:
FAIR(ER) model has the lowest CSD (0.03) while
for the L1 model CcSD more than doubled and
reached 0.135. At the same time OSD shows the
reverse pattern with the L1 model outperforming
both BASE and FAIR(ER) model. All three mod-
els show small but significant OSA.

Finally, we compared these results with the
standardized mean differences in Table 6. As in
the case of simulated models, SMDs allowed us
to reach the same general conclusion: L1 model
is the least fair and FAIR(ER) model is proba-
bly the most fair of the three models. Yet in
this case SMDs also obscure the fact that both
BASE and FAIR(ER) model might be over-scoring
GER speakers: in fact the SMDs for the two mod-
els have the opposite sign.

BASE  FAIR(ER) L1
ARA | 0.07 0.08 -0.01
CHI 0.04 0.10 -0.13
GER | 0.08 -0.07 0.35
JPN -0.26 -0.18 -0.24
KOR | 0.00 0.05 -0.11
SPA 0.06 0.02 0.11

Table 6: Standardized mean difference for 6 languages
in our corpus for scores generated by different models.
Absolute values above the 0.1 threshold are highlighted
in bold
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Figure 2: Average system score conditioned on human score for different models and native languages

6 Discussion

In this paper we considered three definitions of
fairness in the context of automated scoring: (1)
Overall score accuracy - are automated scores
equally accurate for all groups of interest? (2)
Overall score difference - are automated scores
consistently higher or lower than human scores
for members of different groups? (3) Conditional
score difference - are automated scores consis-
tently higher or lower for members of different
groups despite them having the same language
proficiency? These three metrics capture different
dimensions of fairness and answer different ques-
tions.

Ideally, automated scores should be fair along
all of these dimensions and as we showed it is
possible if the automated scores are a perfect pre-
diction of human scores (error = 0 for all scores)
or if the human score distributions are the same
across all groups. Yet in practice, achieving
such total fairness may not be possible. Thus,
even scores from the PERFECT model (r=0.97)
failed to achieve overall score difference equal-
ity. The scores from the ~PERFECT model, with
slightly less accurate automated scores than the
PERFECT model, failed to achieve both overall
score accuracy equality and overall score differ-
ence equality when evaluated on the data with ac-
tual score distribution.

Notably when the score distributions differ
across groups, the three different dimensions of
fairness are not necessarily aligned with each
other. Thus the META model based on metadata
only was better than the PERFECT model in terms
of the overall score difference equality: there was
almost no variation between the groups. Yet as
expected, it failed the conditional score difference

equality test since the scores were assigned based
on test-taker geographic location rather than lan-
guage proficiency.

Similarly for actual models, the model trained
separately for each native language is most fair in
terms of overall score differences since the predic-
tions for each group are centered around the group
mean. Yet this model is the worst of the three we
considered in terms of conditional score difference
which is unsurprising given that test-taker native
language is considered when assigning the score.

None of these definitions of fairness is in prin-
ciple more important than another. Overall score
accuracy equality might be more desirable if a sys-
tem is deployed independently in many countries
and the scores are never compared across coun-
tries. At the same time a system that achieves high
overall score accuracy equality but fails to achieve
conditional score difference equality would not be
acceptable in a high-stakes international assess-
ment context.

In automated scoring model fairness issues have
often been interpreted as emerging from particular
linguistic patterns exhibited by a group in ques-
tion or implicit use of group membership in scor-
ing procedure. As we have shown throughout this
paper, not all measures of fairness are good indica-
tors of such group awareness. Thus overall score
accuracy was in fact higher for the META model
than for the RANDOM model. It also did not differ-
entiate between generic and L1-specific models.
It is also not the case that group unaware models
will be more fair across all dimensions: the RAN-
DOM model was blind to group membership and
yet it was not deemed totally fair. And indeed a
system that assigns a random score would clearly
disadvantage a very proficient speaker but might
be advantageous for a low proficiency speaker. If



proficiency is aligned with group membership, this
can mean that the model favors certain groups over
others.

Finally, the distinction between different as-
pects of fairness is crucial for fine-tuning the auto-
mated scoring models, especially the ones that do
not lend themselves easily to interpretation. Thus
for example the model optimized to minimize the
overall score differences might in fact learn to
“hold the thumb on the scale” by indirectly us-
ing group membership as was the case with our
L1 model. On the other hand, the model opti-
mized for minimal conditional score differences
may not be equally accurate for all groups. Un-
like SMDs, that conflate different aspects of fair-
ness into the same dimension, different measures
discussed in this paper provide different informa-
tion that helps better understand subgroup differ-
ences in the performance of an automated scor-
ing engines. Thus for example in a hypothetical
scenario where the ~PERFECT model is deployed
for scoring, SMDs rightly point out that German
speakers as a group would see a reduction in their
scores: the mean score for this group would de-
crease from 3.35 to 3.16. This could be a problem
if old and new scores are ever compared at indi-
vidual or group levels. Yet it would be counter-
productive to search for solutions by looking for
idiosyncrasies in the way the scoring engine han-
dles the responses from German speakers. To re-
solve this problem the engine developers would
need to focus on generally improving model per-
formance, especially at scale edges.

7 Conclusion

We considered different definitions of fairness
of an automated scoring system and argued that
achieving all of them simultaneously may not be
possible as long as the automated scores are not
in perfect agreement with human scores and the
score distributions vary across groups. In this pa-
per we considered human scores to be the true
‘gold standard’ measure of language proficiency.
Yet in most practical applications human scores
are likely to contain a certain amount of error and
possibly even bias which brings additional com-
plexity to fairness evaluations. At the same time,
at least in some contexts, automated scoring can
improve overall score reliability and consistency
which benefits all takers. Ultimately, both the
magnitude and the nature of the impact of auto-

mated scores on score differences between groups
needs to be weighed against other benefits of us-
ing automated scoring in a particular educational
application and the consequences for the final user.
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Abstract

Predicting the construct-relevant difficulty of
Multiple-Choice Questions (MCQs) has the
potential to reduce cost while maintaining the
quality of high-stakes exams. In this paper,
we propose a method for estimating the dif-
ficulty of MCQs from a high-stakes medical
exam, where all questions were deliberately
written to a common reading level. To accom-
plish this, we extract a large number of linguis-
tic features and embedding types, as well as
features quantifying the difficulty of the items
for an automatic question-answering system.
The results show that the proposed approach
outperforms various baselines with a statisti-
cally significant difference. Best results were
achieved when using the full feature set, where
embeddings had the highest predictive power,
followed by linguistic features. An ablation
study of the various types of linguistic features
suggested that information from all levels of
linguistic processing contributes to predicting
item difficulty, with features related to seman-
tic ambiguity and the psycholinguistic proper-
ties of words having a slightly higher impor-
tance. Owing to its generic nature, the pre-
sented approach has the potential to generalize
over other exams containing MCQs.

1 Introduction

For many years, approaches from Natural Lan-
guage Processing (NLP) have been applied to esti-
mating reading difficulty, but relatively fewer at-
tempts have been made to measure conceptual
difficulty or question difficulty beyond linguistic
complexity. In addition to expanding the hori-
zons of NLP research, estimating the construct-
relevant difficulty of test questions has a high prac-
tical value because ensuring that exam questions
are appropriately difficult is both one of the most
important and one of the most costly tasks within
the testing industry. For example, test questions
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that are too easy or too difficult are less able to
distinguish between different levels of examinee
ability (or between examinee ability and a defined
cut-score of some kind — e.g., pass/fail). This is es-
pecially important when scores are used to make
consequential decisions such as those for licen-
sure, certification, college admission, and other
high-stakes applications'. To address these issues,
we propose a method for predicting the difficulty
of multiple choice questions (MCQs) from a high-
stakes medical licensure exam, where questions
of varying difficulty may not necessarily vary in
terms of reading levels.

Owing to the criticality of obtaining difficulty
estimates for items (exam questions) prior to their
use for scoring, current best practices require
newly-developed items to be pretested. Pretest-
ing typically involves administering new items to
a representative sample of examinees (usually be-
tween a few hundred and a few thousand), and
then using their responses to estimate various sta-
tistical characteristics. Ideally, pretest data are
collected by embedding new items within a stan-
dard live exam, although sometimes special data
collection efforts may also be needed. Based on
the responses, items that are answered correctly
by a proportion of examinees below or above cer-
tain thresholds (i.e. items that are too easy or too
difficult for almost all examinees) are discarded.
While necessary, this procedure has a high finan-
cial and administrative cost, in addition to the time
required to obtain the data from a sufficiently large
sample of examinees.

Here, we propose an approach for estimating
the difficulty of expert-level MCQs, where the

"Examples of well-known high-stakes exams include
the TOEFL (Test of English as a Foreign Language)
(https://www.ets.org/toefl), the SAT (Scholastic Assessment
Test) (https://collegereadiness.collegeboard.org/sat), and the
USMLE (United States Medical Licensing Examination)
(https://www.usmle.org/).

Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 11-20
Florence, Italy, August 2, 2019. (©2019 Association for Computational Linguistics



A 55-year-old woman with small cell carcinoma of the lung is admitted to the hospital to undergo
chemotherapy. Six days after treatment is started, she develops a temperature of 38C (100.4F).
Physical examination shows no other abnormalities. Laboratory studies show a leukocyte count of
100/mm3 (5% segmented neutrophils and 95% lymphocytes).

Which of the following is the most appropriate pharmacotherapy to increase this patient’s

leukocyte count?

(A) Darbepoetin

(B) Dexamethasone
(C) Filgrastim

(D) Interferon alfa

(E) Interleukin-2 (IL-2)
(F) Leucovorin

Table 1: An example of a practice item

gold standard of item difficulty is defined through
large-scale pretesting and is based on the re-
sponses of hundreds of highly-motivated exami-
nees. Being able to automatically predict item dif-
ficulty from item text has the potential to save sig-
nificant resources by eliminating or reducing the
need to pretest the items. These savings are of
even greater importance in the context of some au-
tomatic item generation strategies, which can pro-
duce tens of thousands of items with no feasible
way to pretest them or identify which items are
most likely to succeed. Furthermore, understand-
ing what makes an item difficult other than manip-
ulating its reading difficulty has the potential to aid
the item-writing process and improve the quality
of the exam. Last but not least, automatic diffi-
culty prediction is relevant to automatic item gen-
eration as an evaluation measure of the quality of
the produced output.

Contributions i) We develop and test the pre-
dictive power of a large number of different types
of features (e.g. embeddings and linguistic fea-
tures), including innovative metrics that measure
the difficulty of MCQs for an automatic question-
answering system. The latter produced empirical
evidence on whether parallels exist between ques-
tion difficulty for humans and machines. ii) The
results outperform a number of baselines, show-
ing that the proposed approach measures a no-
tion of difficulty that goes beyond linguistic com-
plexity. iii) We analyze the most common errors
produced by the models, as well as the most im-
portant features, providing insight into the effects
that various item characteristics have on the suc-
cess of predicting item difficulty. iv) Owing to the
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generic nature of the features, the presented ap-
proach is potentially generalizable to other MCQ-
based exams. We make our code available’ at:
https://bit.ly/2EaTFNN.

2 Related Work

The vast majority of previous work on difficulty
prediction has been concerned with estimating
readability (Flesch, 1948; Dubay, 2004; Kintsch
and Vipond, 2014; Frangois and Miltsakaki, 2012;
McNamara et al., 2014; Yaneva et al., 2017). Vari-
ous complexity-related features have been devel-
oped in readability research (see Dubay (2004)
and Kintsch and Vipond (2014) for a review),
starting from ones utilising surface lexical fea-
tures (e.g. Flesch (1948)) to NLP-enhanced mod-
els (Francois and Miltsakaki, 2012) and features
aimed at capturing cohesion (McNamara et al.,
2014).

There have also been attempts to estimate the
difficulty of questions for humans. This has been
mostly done within the realm of language learn-
ing, where the difficulty of reading comprehension
questions is strongly related to their associated
text passages (Huang et al., 2017; Beinborn et al.,
2015; Loukina et al., 2016). Another area where
question-difficulty prediction is discussed is the
area of automatic question generation, as a form
of evaluation of the output (Alsubait et al., 2013;
Ha and Yaneva, 2018). In many cases such evalua-
tion is conducted through some form of automatic
measure of difficulty (e.g., the semantic similarity
between the question and answer options as in (Ha

The questions cannot be made available because of test
security.



and Yaneva, 2018)) rather than through extensive
evaluation with humans. Past research has also fo-
cused on estimating the difficulty of open-ended
questions in community question-answering plat-
forms (Wang et al., 2014; Liu et al., 2013); how-
ever, these questions were generic in nature and
did not require expert knowledge. Other studies
use taxonomies representing knowledge dimen-
sions and cognitive processes involved in the com-
pletion of a test task to predict the difficulty of
short-answer questions (Padd, 2017) and identify
skills required to answer school science questions
(Nadeem and Ostendorf, 2017). We build upon
previous work by implementing a large number of
complexity-related features, as well as testing var-
ious prediction models (Section 4).

While relevant in a broad sense, the above
works are not directly comparable to the current
task. Unlike community question answering, the
questions used in this study were developed by
experts and require the application of highly spe-
cialized knowledge. Reading exams, where com-
prehension difficulty is highly associated with text
complexity, are also different from our medical
MCQs, which are deliberately written to a com-
mon reading level (see Section 3). Therefore, the
models needed to capture difficulty in this context
that goes beyond linguistic complexity.

3 Data

Data comprises 12,038 MCQs from the Clinical
Knowledge component of the United States Medi-
cal Licensing Examination®. An example of a test
item is shown in Table 1. The part describing the
case is referred to as the stem, the correct answer
option is called the key and the incorrect answer
options are known as distractors. The majority of
the items in the data set used here had five or six
answer options.

Item writing All items tested medical knowl-
edge and were designed to emulate real-life sce-
narios wherein examinees must first identify the
relevant findings and then, based on these findings,
make a diagnosis or take a clinical action. Items
were written by experienced item-writers follow-
ing a set of guidelines. These guidelines stipulated
that the writers adhere to a standard structure and
avoid excessive verbosity, “window dressing” (ex-
traneous material not needed to answer the item),
“red herrings” (information designed to mislead
the test-taker), overly long or complicated stems
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or options, and grammatical cues (e.g., correct an-
swers that are longer, more specific, or more com-
plete than the other options; or the inclusion of the
same word or phrase in both the stem and the cor-
rect answer). Item writers had to ensure that the
produced items did not have flaws related to vari-
ous aspects of validity. For example, flaws related
to irrelevant difficulty include: Stems or options
are overly long or complicated, Numeric data not
stated consistently and Language or structure of
the options is not homogeneous. Flaws related to
“testwiseness” are: Grammatical cues; The cor-
rect answer is longer, more specific, or more com-
plete than the other options,; and A word or phrase
is included both in the stem and in the correct an-
swer. Finally, stylistic rules concerning preferred
usage of terms, formatting, abbreviations, conven-
tions, drug names, and alphabetization of option
sets were also enforced. The goal of standardizing
items in this manner is to produce items that vary
in difficulty and discriminating power due only
to differences in the medical content they assess.
This practice, while sensible, makes modeling dif-
ficulty very challenging.

Item administration The questions in our data
set were pretested by embedding them within live
exams. In practice, the response data collected
during pretesting is used to filter out items that
are misleading, too easy, or too difficult based
on various criteria. Only those items satisfying
these criteria are eligible for use during scoring on
subsequent test forms. The current set of items
contains pretest data administered for four stan-
dard annual cycles between 2012 and 2015. The
questions were embedded within a standard nine-
hour exam and test-takers had no way of know-
ing which items were used for scoring and which
were being pretested. Examinees were medical
students from accredited® US and Canadian med-
ical schools taking the exam for the first time as
part of a multistep examination sequence required
for medical licensure in the US.

Determining item difficulty On average, each
item was answered by 328 examinees (SD =
67.17). The difficulty of an item is defined by the
proportion of its responses that are correct, which
is commonly referred to in the educational-testing
literature as its P-value*. The P-value is calculated

3 Accredited by the Liaison Committee on Medical Edu-
cation (LCME).

“We adopt this convention here but care should be taken
not to confuse this usage with a p-value indicating statistical
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in the following way:

>t Un
N

where Pi is the p-value for item i, Un is the 0-1
score (correct-incorrect) on item i earned by exam-
inee n , and N is the total number of examinees in
the sample. As an example, a P-value of .3 means
that the item was answered correctly by 30% of
the examinees. The distribution of P-values for the
data set is presented in Figure 1.

P, =

4 Features

A number of features were modeled for P-value
prediction and can be roughly divided into three
classes. First, we extract embeddings, which have
been found to have predictive power in many dif-
ferent applications. The second class of features
included more than one hundred linguistic charac-
teristics, which account for differences in the way
the items are written. Finally, a third class of fea-
tures were based on the difficulty an item posed
to an automated question-answering system un-
der the working hypothesis that this system diffi-
culty had a positive relationship with the difficulty
an item poses to human respondents. Information
about each type of feature is presented below. Ad-
ditional details can be found in the available code.

4.1 Embeddings

We experiment with two types of embeddings:
Word2Vec (300 dimensions) (Mikolov et al.,

significance.
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2013) and ELMo (1,024 dimensions) (Peters et al.,
2018). The embeddings were generated using
approximately 22,000,000 MEDLINE abstracts,’,
which were found to outperform other versions
of the embeddings extracted from generic cor-
pora (Google News Corpus® for Word2Vec and 1B
Word (Chelba et al., 2013) for ELMo). Embed-
dings were aggregated at item level using mean
pooling, where an average item embedding is gen-
erated from the embeddings of all words.

4.2 Linguistic features

This class of features includes the following sub-
categories.

Lexical Features Previous research has found
surface lexical features to be very informative in
predicting text readability (Dubay, 2004). Lexical
features in our experiments include counts, inci-
dence scores and ratios for ContentWord, Noun,
Verb, Adjective, and Adverb; Numeral Count;
Type-Token Ratio; Average Word Length In Sylla-
bles; and Complex Word Count (> 3 syllables).

Syntactic Features: These were implemented
using information from the Stanford NLP Parser
(Manning et al., 2014) and include: Average Sen-
tence Length (words); Average Depth Of Tree;
Negation Count; Negation In Stem; Negation
In the Lead-In Question, NP Count; NP Count
With Embedding (the number of noun phrases de-
rived by counting all the noun phrases present in
an item, including embedded NPs); Average NP
Length; PP and VP Count; Proportion Passive
VPs; Agentless Passive Count; Average Number
of Words Before Main Verb; and Relative Clauses
and Conditional Clauses Count.

Semantic Ambiguity Features: This subcat-
egory concerns the semantic ambiguity of word
concepts according to WordNet (WN), as well as
medical concepts according to the UMLS (Uni-
fied Medical Language System) Meta-thesaurus
(Schuyler et al., 1993). The features include Pol-
ysemic Word Index; Average Number of Senses
of: Content Words, Nouns, Verbs, Adjectives, Ad-
verbs; Average Distance To WN Root for: Nouns,
Verbs, Nouns and Verbs; Total No Of UMLS Con-
cepts; Average No Of UMLS Concepts; and Aver-
age No Of Competing Concepts Per Term (average
number of UMLS concepts that each medical term
can refer to).

Shttps://www.nlm.nih.gov/bsd/medline.html
®https://news.google.com



Readability Formulae: Flesch Reading Ease
(Flesch, 1948); Flesch Kincaid Grade Level (Kin-
caid et al., 1975); Automated Readability Index
(ARI) (Senter and Smith, 1967); Gunning Fog in-
dex (Gunning, 1952); Coleman-Liau (Coleman,
1965); and SMOG index (McLaughlin, 1969).

Cognitively-Motivated Features: These are
calculated based on information from the MRC
Psycholinguistic Database (Coltheart, 1981),
which contains cognitive measures based on
human ratings for a total of 98,538 words. These
features include Imagability, which indicates the
ease with which a mental image of a word is
constructed; Familiarity of the word for an adult;
Concreteness; Age Of Acquisition; and finally
Meaningfulness Ratio Colorado and Meaning-
fulness Ratio Paivio. The meaningfulness rating
assigned to a word indicates the extent to which
the word is associated with other words.

Word Frequency Features: These include Av-
erage Word Frequency, as well as threshold fre-
quencies such as words not included in the most
frequent words on the BNC frequency list (Not In
First 2000/ 3000/ 4000 or 5000 Count).

Text Cohesion Features: These include counts
of All Connectives, as well as Additive, Temporal,
and Causal Connectives, and Referential Pronoun
Count.

4.3 Information Retrieval (IR) features

The working hypothesis behind this group of fea-
tures is that there is a positive correlation be-
tween the difficulty of questions for humans and
for machines. To quantify machine-difficulty, we
develop features based on information retrieval
that capture how difficult it is for an automatic
question-answering (QA) system to answer the
items correctly. This was accomplished following
the approaches to QA presented in Clark and Et-
zioni (2016).

First, we use Lucene’ with its default options to
index the abstracts of medical articles contained
in the MEDLINE?® database. Then for each test
item we build several queries, corresponding to the
stem and one answer option. We use three dif-
ferent settings: i) All words, ii) Nouns only, and
iii) Nouns, Verbs, and Adjectives (NVA). We then
get the top 5 MEDLINE documents returned by
Lucene as a result of each query and calculate the

"https://lucene.apache.org/
8https://www.nlm.nih.gov/bsd/medline.html
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r RMSE
Random Forests 0.24 | 23.15
Linear Regression 0.17 | 25.65
SVM 0.17 | 25.41
Gaussian Processes 0.2 23.87
Dense NN (3 layers) | 0.16 | 25.85

Table 2: Results for algorithm selection (validation set)

sum of the retrieval scores. These scores represent
the content of the IR features (Stem Only, Stem +
Correct Answer, and Stem + Options, where for
each of these configurations we have a different
feature for All words, Nouns only, and NVA.). The
scores reflect how difficult it is for a QA system to
choose the correct answer. Specifically, if the IR
scores of Stem + Correct Answer are much higher
than those of Stem + Options, then the QA sys-
tem is more confident in its answer choice and the
item is deemed relatively easy. This information
can then be used to predict item difficulty.

5 Experiments

In this section we present our experiments on pre-
dicting the P-value.

First, we randomly divide the full data set into
training (60%), validation (20%) and test (20%)
sets for the purpose of evaluating a number of dif-
ferent algorithms® on the validation set. This was
done using all features. The most notable results
on algorithm selection are presented in Table 2. As
can be seen from the table, the best results are ob-
tained using the Random Forests (RF) algorithm
(Breiman, 2001), which was selected for use in
subsequent experiments.

5.1 Baselines

Five baselines were computed to evaluate model
performance. The first baseline is the output of the
ZeroR algorithm, which simply assigns the mean
of the P-value variable in the training set as a pre-
diction for every instance. Each of the four re-
maining baselines was based on a common feature
known to be a strong predictor of reading diffi-
culty: Word Count, Average Sentence Length, Av-
erage Word Length in Syllables, and the Flesch
Reading Ease'® formula (Flesch, 1948). These

Parameters for the Neural Network algorithm: 3 dense
layers of size 100, activation function: RELU, loss function:
MSE, weight initialization Xavier and learning rate = 0.001.
Trained for 500 epochs with early stopping after 10 epochs
with no improvement.

"%While readability formulae are used as features in the
models and their predictive power is assessed, it is acknowl-



simple baselines allow us to assess whether the
difficulty of the items in our data set can be re-
liably predicted using heuristics such as “longer
items are more difficult” or “items using longer
words and sentences are more difficult”. The per-
formances of the baselines as single features in
an RF model (except ZeroR, which is an algo-
rithm of its own) are presented in Table 3. In
terms of Root Mean Squared Error (RMSE), the
strongest baseline was ZeroR, with Average Word
Length in Syllables producing somewhat similar
results. All other baselines performed worse than
ZeroR, showing that item length (Word Count), as
well as Average Sentence Length and especially
Flesch readability, are rather weak predictors of
item difficulty for our data. These results provide
an empirical evidence in support of the claim that
easy and difficult items do not differ in terms of
surface readability, commonly measured through
word and sentence length.

5.2 P-value Prediction

We use various combinations of the features pre-
sented in Section 4 as input to an RF model to
predict P-value. The results are presented in Ta-
ble 4. As can be seen from the table, using the
full feature set performs best and is a statisti-
cally significant improvement over the strongest
baseline (ZeroR) with an RMSE reduction of ap-
proximately one point (Training set (10-fold CV):
p = 7.684°719 with 95% Confidence Intervals
(CI) from 10,000 bootstrap replicates: -0.9170, -
0.4749. Test set: p = 2.20°"16 with 95% CI from
10,000 bootstrap replicates: -1.423, -0.952).

In terms of individual feature groups, Linguis-
tic, W2V, and ELMo achieved comparable per-
formance (RMSE =~ 22.6 for Test Set). The IR
features performed notably worse, (RMSE = 23.4
for Test set), which is also the only result that
does not outperform the ZeroR baseline (p = 0.08,
95% CI: -0.5336, 0.0401). For reference, the next
“worst” result is obtained by combining the IR and
Linguistic features (RMSE = 22.63); nevertheless,
this is a significant improvement over ZeroR (p =
5.517¢14 with 95% CI: -1.279, -0.756). Combin-
ing the Linguistic, W2V and ELMo features leads
to a slight improvement in performance over their
individual use, indicating that the signals captured

edged that the various formulae were validated on different
types of texts than the MCQs in our data. Therefore, their
performance is expected to be lower compared to applications
which use the intended types of materials.
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by the different feature groups do not overlap en-
tirely.

5.3 Error Analysis

Analysis of the 500 test-set items with largest error
residuals between predicted and actual values (the
bottom 20% of the test-set predictions) revealed
that the largest errors occur for items with very low
P-values (u =32, SD = 13.39, min = 0, max = 62).
This was expected given the skewness of the P-
value variable towards the high end of the scale.
These items (P-value < 62) account for 34.5% of
the full data. Therefore, one possible explanation
for these large errors is the fact that these items are
underrepresented as training examples.

As a follow-up study, we looked into items with
P-values under .20, which account for only 4.5%
of the full data. These items are considered to be
either highly misleading and/or very difficult, as
test-takers systematically chose incorrect answer
options and performed worse than chance (the ma-
jority of items had five or six answer options). Ex-
cluding this small percentage of items from the
training and test sets resulted in substantial im-
provements in RMSE (20.04 after excluding the
items compared to 22.45 before excluding them),
and outperformed ZeroR again a similar margin
(20.98). This result shows that the success of the
proposed approach would be higher for test sam-
ples with fewer extremely difficult or misleading
items. It is acknowledged, however, that which
items are too difficult or misleading can rarely be
known a priori.

5.4 Feature Importance

Understanding the contributions of individual fea-
ture classes from the Linguistic set is useful for in-
terpreting the models, as well as for informing fu-
ture item-writing guidelines. To address this, we
perform an ablation study where we remove one
feature class at a time from the model using all
Linguistic features.

As shown in Table 5, the removal of individ-
ual classes does not lead to dramatic changes in
RMSE, suggesting that the predictive power of the
Linguistic model is not dependent on a particu-
lar feature type (e.g. lexical, syntactic, seman-
tic, etc). Nevertheless, removal of the Semantic
Ambiguity and the Cognitively-motivated features
led to a slightly lower performance for both cross-
validation on the training set and for the test set.
Indeed, a correlation analysis between individual



Training set (10-fold CV) Test set
r MAE | RMSE r MAE | RMSE
ZeroR -0.02 19.9 | 24.09 0 19.67 | 23.65
Word Count 0.01 | 20.13 24.5 0.05 | 19.81 | 23.87
Av. Sent. Length -0.006 | 20.76 | 2552 | 0.04 | 20.2 | 24.58
Av. Word Length 0.05 19.89 | 24.14 | 0.07 19.6 | 23.63
Flesch Reading Ease | 0.02 | 22.05 | 27.53 | -0.01 | 22.27 | 27.61

Table 3: Baseline results using 10-fold cross validation on the training set and evaluating the models on the test set
(r = correlation coefficient, MAE = Mean Absolute Error, RMSE = Root Mean Squared Error).

Training set (10-fold CV) Test set

r MAE | RMSE r MAE | RMSE
All 0.27 | 18.88 | 23.15 032 | 1853 | 2245
Linguistic 0.26 19 2322 0.29 | 18.73 | 22.62
IR 0.17 | 19.58 | 2391 0.18 | 19.28 234
w2v 0.27 | 1894 | 23.18 0.3 18.61 | 22.58
ELMo 0.27 | 1895 | 23.18 029 | 18.77 | 22.64
Ling + IR 026 | 19.04 | 2325 029 | 1875 | 22.63
Ling + ELMo 0.27 | 19.08 | 23.19 0.3 18.79 | 22.61
Ling + W2Vec 0.28 18.9 23.14 031 | 18.65 | 22.54
IR + W2V 0.27 | 1894 | 23.18 0.3 18.67 | 22.56
IR + ELMo 026 | 1895 | 23.26 031 | 1853 | 22.55
W2V + ELMo 0.28 | 18.84 | 23.13 0.32 | 18.51 225
IR+ W2V +ELMo | 027 | 1888 | 23.18 0.3 18.56 | 22.56
IR + Ling + W2V | 0.289 | 18.9 23.11 0.31 18.6 | 22.52
IR + Ling + ELMO | 0.27 19 23.2 0.327 | 18.64 | 22.48

Table 4: Results for the training (10-fold CV) and test sets for various feature combinations.

CV RMSE | Test RMSE
All Linguistic 23.22 22.62
Without Lexical 23.3 22.49
Without Syntactic 23.23 22.66
Without Sem. ambiguity 23.31 22.89
Without Readability 2322 22.59
Without Word Frequency 23.27 22.63
Without Cognitive 23.3 22.74
Without Cohesion 23.29 22.51

Table 5: Changes in RMSE after removing individual
feature classes

features and the P-value variable reveals that the
top three features with highest correlations are
Age of Acquisition (-.11), Familiarity (.1038) and
Referential Pronoun Incidence (.1035). Since the
texts are domain-specific and contain a great deal
of medical terminology, it is likely that the Age
of Acquisition and Familiarity indices reflect the
use of terms, however, further analysis is needed
to confirm this.

6 Discussion

The experiments presented in the previous sec-
tion provided empirical evidence that the difficulty
of expert-level!! multiple-choice questions can be

"Requiring expert knowledge as opposed to general
knowledge
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predicted with accuracy significantly higher than
various baselines. It was shown that simple met-
rics of complexity such as item length or aver-
age word and sentence length performed poorer
than the ZeroR baseline, indicating that the dif-
ficulty of the items could not be predicted using
surface readability measures. Best results were
achieved when combining all types of available
features (Linguistic, IR, Word2Vec, and ELMo),
which showed a statistically significant improve-
ment over the baselines. In terms of individual fea-
ture classes, the IR features performed poorly and
were outperformed by the Linguistic, Word2Vec,
and ELMo features — with the latter two being the
strongest classes of predictors. Nevertheless, the
fact that the combination of all the feature classes
performed best supports the idea that the signals
from the different feature groups did not overlap
entirely and instead complemented each other. To
understand whether the way the items were writ-
ten had an effect on difficulty prediction and to
gain insight into how item-writing could be im-
proved, we analyzed the performance of the dif-
ferent types of Linguistic features. It was shown
that the strength of the predictions were not due to
a single linguistic feature; however, the strongest
predictors were features related to semantic am-
biguity and cognitively-motivated features (espe-



cially Age of Acquisition and Familiarity). Errors
were largest for items at the lower end of the P-
value scale, potentially because these items were
underrepresented as training examples. Further
experiments are needed to corroborate this.

In terms of generalizability, the presented ap-
proach is not test-specific and can therefore be ap-
plied to other exams containing MCQs. The re-
sults are, however, highly dependent on the popu-
lation of test-takers. In fact, predicting the P-value
in our particular case was arguably more chal-
lenging than for other exams owing to the homo-
geneity of the test-taker population. The majority
of items were answered correctly by the majority
of examinees because the test-takers were highly-
able and highly-motivated medical students, who
had already passed many other competitive high-
stakes exams, including those for medical school
admission. All else being equal, the expectation
is that the performance of these models would im-
prove for exams administered to, for example, ex-
aminees from K-12, where the ability of the test-
takers has a higher variance and the distribution of
P-values is less-skewed. However, all else is not
equal and K-12 exams have substantially differ-
ent test questions, the effects of which is unknown.
Further research is needed here.

The presented approach is a first step toward
predicting item difficulty and, therefore, there are
a number of avenues for future work that could
lead to better results. One of these relates to hav-
ing separate embeddings for the stem and answer
options as opposed to item-level embeddings. An-
other interesting approach would be to divide the
items by content category (e.g. psychiatric, car-
diac, etc). Content categories are not used as fea-
tures in the current approach because there was no
practical value in learning that, say, cardiac items
are more difficult than psychiatric ones. However,
it might be worthwhile to build content-specific
models that predict item difficulty within-category
(e.g., what are the relative item difficulties within
the pool of psychiatric items). Finally, the per-
formance of the IR features could be improved
if the information is extracted from corpora that
are more relevant (such as textbooks and examinee
study materials) as opposed to medical abstracts.

The results presented in this paper have both
practical and theoretical importance. Being able to
predict the P-value of an MCQ reduces the cost of
pretesting while maintaining exam quality. From
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a theoretical perspective, assessing difficulty be-
yond readability is an exciting new frontier that
has implications for language understanding and
cognition. Last but not least, such an applica-
tion could also potentially be useful for assess-
ing the performance of question-answering sys-
tems by predicting the difficulty of the questions
for humans.

7 Conclusion

The paper presented an approach for predict-
ing the construct-relevant difficulty of multiple-
choice questions for a high-stakes medical licen-
sure exam. Three classes of feature were devel-
oped: linguistic features, embeddings (ELMo and
Word2Vec), and features quantifying the difficulty
of items for an automatic question-answering sys-
tem (IR features). A model using the full feature
set outperformed five different baselines (ZeroR,
Word Count, Average Sentence Length, Average
Word Length in Syllables, and the Flesch Read-
ing Ease formula) with a statistically significant
reduction of RMSE of approximately one point.
Embeddings had the highest predictive power, fol-
lowed by linguistic features, while the IR features
were ranked least useful. Largest errors occurred
for very difficult items, possibly due to the skew-
ness of the data distribution towards items with a
higher proportion of correct responses. Amongst
the linguistic features, all classes contributed
to predicting item difficulty, with the semantic-
ambiguity and cognitively-motivated features hav-
ing a slightly higher predictive power.

These results indicate the usefulness of NLP
for predicting the difficulty of MCQs. While
this study is an early attempt toward the goal of
automatic difficulty prediction for MCQs, it has
both theoretical and practical importance in that it
goes beyond predicting linguistic complexity and
in that it has the potential to reduce cost in the test-
ing industry. Next steps include the application of
the approach to other exam content administered
to a different population of examinees, as well as
various improvements in the methodology.
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Abstract

Testing is an important tool to monitor learn-
ing effects. However, it usually costs a large
amount of time and human labor to build an
item bank and to test large number of stu-
dents. In this paper, we propose a novel testing
strategy by combining automatic item genera-
tion (AIG) and computerized adaptive testing
(CAT) in vocabulary assessment for Chinese
L2 learners. Firstly, we generate three types
of vocabulary questions by modeling both the
vocabulary knowledge and learners’ writing
error data. After evaluation and calibration,
we construct a balanced item pool with au-
tomatically generated items, and implement
a three-parameter computerized adaptive test.
We conduct manual item evaluation and online
student tests in the experiments. The results
show that the combination of AIG and CAT
can construct test items efficiently and reduce
test cost significantly. Also, the test result of
CAT can provide valuable feedback to AIG al-
gorithms.

1 Introduction

Vocabulary is one of the most important parts of
language competence (Cook, 2016). Testing of
vocabulary knowledge is central to research on
reading and language (Brown et al., 2005). How-
ever, it usually costs a large amount of time and
human labor to build an item bank and to test large
number of students.

To enhance the testing efficiency and conve-
nience, we propose a novel testing strategy by
combining automatic item generation (AIG) and
computerized adaptive testing (CAT). Based on
this strategy, we build an online testing system to
evaluate vocabulary knowledge of Chinese second
language learners: http://test.aihanyu.
org. The pipeline of our method is illustrated in
Figure 1:
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Step 1. Generate vocabulary questions automat-
ically by modeling both the vocabulary
knowledge and learners’ writing error
data.

Step 2. Construct a balanced item pool by sam-
pling questions from different difficulty
levels, and implement an online vocabu-

lary test with these items.

Conduct student tests in which students
with different language proficiencies take
both the online AIG test and a traditional
student placement test developed by ex-
perts.

Step 3.

Step 4. Build an improved three-parameter CAT
model with these items, and estimate the

students’ abilities.

In the experiments, the student tests demon-
strate desirable results. Firstly, the scores of the
online AIG test are strongly correlated with that of
the placement test (p=0.8395). Secondly, the stu-
dent abilities estimated by our CAT model reaches
even stronger correlation with the placement test
(p=0.8715). Meanwhile, the average test length
decreases greatly by 81% (from 140 to 26).

The experiments show that our strategy can con-
struct test items efficiently and reduce test cost sig-
nificantly for both test developers and test takers.
Also, the test result of CAT can provide valuable
feedback to question generation and selection al-
gorithms.

2 Related Work

2.1 Automatic Item Generation

Automatic item generation (AIG) is a promising
approach to reduce the cost of test development.
AIG methods have been used in generating differ-
ent types of questions, such as reading comprehen-
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Vocabulary Knowledge Base

HSK Learner
Corpus

Word Selection

Stem Sentence
Selection

CTC Textbook
Corpus

Target Word
Selection

Words of .
- Words of Easily Confused .
Synonyms
< Frequency <X Word Levels (X S|m||_ar_ (X Similar Form Q( ynony! O( Words Collocations
Pronunciation
L) T
NLP NLP l
1 v
Language Resources Automatic Item Item Evaluation Computer Adaptive
Generation Testing

Expert Evaluation
CAT Components

Original
Acceptance Item Pool
Adjustable Item Selection
Acceptance

Abiblity
Estimation

Student Tests

HSK Syllabus L NLP—»] Distractor Word
and Test Papers Selection
TOCFL
Syllabus and Word
Test Papers Pronunciation

Dictionaries X
Word Collocation

t

|.|

A 4
A 4

Pl

Stopping Rules
Traditional Written
Test

CAT Simulation
Online AIG Test
Score Corrlation

IRT Estimation Score Prediction

Feedback:

Figure 1: The pipeline of our testing strategy that combines AIG and CAT.

sion (Rus et al., 2007; Mostow et al., 2017) and
vocabulary assessment (Mitkov et al., 2006, 2009;
Aldabe and Maritxalar, 2014). Due to its high ef-
ficiency and controllability, automatic item gener-
ation has been used to create solutions and ratio-

nales for Computerized Formative Testing (Gierl
and Lai, 2018).

For vocabulary testing, researchers have made a
lot of efforts in generating vocabulary questions
for ESL (English as a second language) learn-
ers (Mitkov and An Ha, 2003; Singh Bhatia et al.,
2013; Correia et al., 2010; Takuya et al., 2010).
It is well known that lexical knowledge vary a lot
among different languages. For example, Chinese
is a typical analytic language that lacks inflection.
It mainly uses function words and word order to
express grammatical information.

In the area of Chinese item generation, some
methods have been proposed to generate factual
questions and character questions (Liu et al., 2017;
Ding and Gu, 2010; Liu et al., 2018). Different
from existing work, this paper focuses on the gen-
eration of vocabulary questions, and utilizes them
in vocabulary assessment of CSL (Chinese as a
second language) learners. To enhance the test
efficiency, we also integrate these automatically
generated items into a computerized adaptive test-
ing (CAT) model.
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2.2 Computerized Adaptive Testing

With the development of language testing tech-
nologies, computerized adaptive testing (CAT) has
attracted considerable attention in language testing
area and has been successfully applied to large-
scale standardized language tests, such as GRE
and GMAT (Chang, 2015). Instead of giving all
the examinees the same fixed test, CAT selects
items that are tailored to each examinee’s abil-
ity. Compared with traditional computer based or
paper-pencil based tests, CAT can greatly shorten
the test length by 50% while maintaining good test
reliability and increasing the test security (Wainer,
2000; Weiss and Kingsbury, 1984).

However, one of the main challenges in CAT
is the item pool development which requires not
only large numbers of high-quality test items, but
also a careful calibration of these items. In this
study, we propose to construct the item pool with
automatically generated questions. It can reduce
the test cost significantly for both test developers
and test takers.

3 Automatic Generation of Vocabulary
Questions

To test the vocabulary knowledge of CSL learn-
ers, we generate three types of multiple-choice
questions which account for different dimensions



of vocabulary knowledge. The question examples
can be seen in Figure 2.

(1) Word selection: Select a word that can fill
in the blank of the sentence. It involves the
knowledge of word form, meaning and how it
is used in the context.

(2) Word pronunciation: Select a word that has an
incorrect pinyin label. It focuses on the pro-
nunciation part.

(3) Word collocation: Select a word that can col-
locate with the given word. It addresses the
syntactic behaviors and collocational knowl-
edge of words.

The generation of the vocabulary questions in-
volves two stages: (1) Build a vocabulary knowl-
edge base by extracting features from learner cor-
pus, textbook corpus, test papers and dictionaries.
(2) Generate different types of questions via stem
selection, target word selection and distractor se-
lection.

3.1 Vocabulary Knowledge Base

The knowledge base contains totally 8,400 word
entries, which are collected from the syllabuses
of two official Chinese language proficiency tests:
HSK' and TOCFL?. We build a list of attributes
for each entry in the knowledge base, and the
attribute values are automatically extracted from
large-scale language resources with multiple natu-
ral language processing (NLP) methods:

Word frequency: It is calculated from CTC?,
a text corpus for Chinese L2 learners.

Word level: The 8400 target words are scaled
to 14 difficulty levels according to their fre-
quencies in CTC, i.e. 600 words at each level.

Words of similar pronunciation: They are
extracted with the pronunciation similarity
model proposed by Hu (2013).

Words of similar form: If two words are of
equal length in Chinese characters (hanzi)
and have at least one same character, we
count them as words of similar form.

"http://www.chinesetest.cn/godownload.do
2http://www.tw.org/tocfl/
*http://www.aihanyu.org/basic_v2/index.html
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e Synonyms: They are retrieved from Yang and
Jia (2005)’s synonym dictionary.

Easily confused words: They are extracted
from leaners’ writing error, as collected and
manually labeled in HSK learner corpus®. If
word a is involved in word selection error for
at least 10 times in the learner corpus, and it
is mistakenly used as word b for over 20%
of the error cases, we identify word b as an
easily confused word of a.

Collocations: Nine types of collocations
are retrieved from the collocation knowledge
base built by Hu et al. (2016)°.

3.2 Item Generation
3.2.1 Word Selection Question

The model generate the word selection questions
via four steps: preprocessing, stem sentence se-
lection, target word selection and question gener-
ation.

Firstly, all the texts in CTC are preprocessed via
word segmentation, POS tagging and dependency
parsing with LTP-Cloud (Che et al., 2010), a Chi-
nese NLP toolkit. We obtain 2.4 million words and
154,023 dependency trees after the preprocessing.

Secondly, sentences are selected based on the
NLP preprocessing results if they can satisfy mul-
tiple conditions, including sentence length, sen-
tence independence and difficulty levels. We limit
the sentence length to 10-30 words. For inde-
pendence analysis, we target at sentences whose
meanings are context independent, i.e. a com-
plete declarative sentence which is not from a di-
alogue, and does not involve a pronoun that refers
to someone or something in the previous con-
text. We compile 3 rules based on POS tags and
dependency relations to exclude unqualified sen-
tences. For difficulty levels, we check if each word
of the sentence is in our 8400-word vocabulary
for L2 learners, and the percent of OOV (out-of-
vocabulary) words should not exceed 10%.

Thirdly, we locate candidate target words in
the stem sentences. Each candidate word should
appear only once in the sentence and have at
least three distractors in the vocabulary knowledge
base. The distractors include words of similar pro-
nunciation and form, as well as easily confused
words. If more than one candidate target words are

“http://bce.blcu.edu.cn/hsk
Shttp://cca.xingtanlu.cn/
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Figure 2: Examples of automatically generated items as they shown in the online testing application. (a) Word
Selection, (b) Word Pronunciation, (c) Word Collocation. The highlighted option is the correct answer.

retrieved, we choose the one with higher difficulty,
i.e. lower frequency. If a target word has more
than three distractors, we choose the distractors
that have the most similar difficulty levels with the
target words.

At last, the target word is removed to generate
a fill-in-blank question. Three distractors and the
target word are shuffled to construct four options.

3.2.2 Word Pronunciation Question

A target word is firstly selected if one of its char-
acters has an easily confused pronunciation deter-
mined by the pronunciation similarity model (Hu,
2013). We replace the correct pinyin with an easily
confused one, and choose three other words from
the same difficulty level that have correct pinyin
labels and the same length. The item stem is “Se-
lect the word that has an incorrect pinyin label”.

3.2.3 Word Collocation Question

For word collocation question, we firstly retrieve
the collocations of frequency > 3 and mutual in-
formation > 0 for each target word. Given a
target word and its collocation, we obtain candi-
date distractors from the vocabulary knowledge
base. To ensure there is only one correct answer in
the multiple-choice question, we replace the target
word with each candidate distractor to constitute
a new combination. If the new combination does
not appear in our collocation data, this candidate
distractor is accepted. If more than three distrac-
tors are accepted, we choose the ones that have the
most similar difficulty levels with the target word.
At last, the target word is removed and we gen-
erate the question similarly to the word selection
question.

Three types and totally 93764 test items are
successfully generated with our method, includ-
ing 75689 items for word selection, 6697 items
for word pronunciation and 11378 items for word
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collocation. After that, we sample questions for
manual evaluation. The results will be discussed
in Section 5.

4 Computerized Adaptive Testing

This paper aims at building a CAT model to eval-
uate vocabulary knowledge of CSL learners. We
use the automatically generated questions for item
calibration. The advantage is we can directly sam-
ple questions from different difficulty levels, so
as to build a balanced item bank. In this study,
item response theory (IRT) with three-parameter
is used for calibration.

4.1 Theoretical Basis

Let p;(6) be the probability of a correct response
to item ¢ from a examinee with ability 6, thus
qi(0) = 1 — p;(0) is the probability of a incorrect
response.

Let u = (uy,ug,...,up),u; € {0,1} is the re-
sponses of n items. The likelihood function L is
given by Equation 1.

L(ulf) = T pi(0)“iqi(6)' (1)
=1

Equation 2 gives the probability of a correct re-
sponse to item ¢, where a; is discrimination param-
eter, b; is difficulty parameter, and ¢; is the guess-
ing parameter.

PO =it @

Solving L/(#) = 0 can find the value of 0
that maximize the likelihood function L. To sim-
plify, we transform it to a log-likelihood function
l(u]@) = In(L(u|0)) as shown in Equation 3. The
logarithm function could convert the product of
factors to a sum of log factors, which makes it



much easier to get the derivative.

n

l(ulf) = Z(uZ Inp;(0) + (1 —u;)Ing(0)) 3)
i=1

Thus, to find the 6 that maximize L, it is equiv-
alent to solve I'(#) = 0. It can be computed by
the Newton-Raphson method: 6,11 = 6; — ll,l,(%)),
which is an iterative algorithm with termination
criterion €, tyqz S.t. A = 01— 0 < €VE > tmas-
A simplified iterative formula is given by Equa-

tion 4 (Baker, 2001).

i1 @i(ui — pi(6h))
i=1 a7 pi(0:)qi(0r)
The information function is given by Equa-

tion 5. I;(#) is the amount of information for item
1 at ability 0.

6t+1 = et + (4)

 (pi(0) — )2 4i(0)
(=) pi0)
The test information function is given by Equa-

tion 6. It is the sum of information for all items in
the test.

1;(0) = a &)

(6)

The standard error function is given by Equa-
tion 7. A higher test information 7' implies the
higher precision of estimated ability which can not
be observed directly. Thus, the smaller SF is, the
better estimation is. A threshold of SE acts as a
termination criteria in the test.

1
T1(0)

4.2 Adaptive Algorithm

There are four important components in an adap-
tive testing algorithm: the item pool, the item
selection, the ability estimation and stopping
rules (Weiss and Kingsbury, 1984).

Item Pool. The success of CAT is highly depen-
dent on the item pool with sufficient items of dif-
ferent difficulty levels. Our AIG method enables
the system to select as many items as the test needs
from different levels. Thus, a balanced item pool
can be easily sampled for calibration.

Item Selection. The item selection is to select
an item with the highest information [ at the esti-
mated ability 0. The test normally starts with an
item of medium difficulty. And items can not be
repeated during the test.

SE(6)

(7
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Ability Estimation. After each item is an-
swered, the examinee’s ability is estimated and
used by the item selection to select the next item.
The most commonly used estimation method is
maximum likelihood estimation (MLE). Maxi-
mum likelihood is asymptotically unbiased, but it
can not provide an ability estimate for a homo-
geneous set of responses (all correct or all incor-
rect) (Weiss and Kingsbury, 1984). To address this
problem, we set a bound of ability [0in, Omaz] to
enable Newton-Raphson method to convergence
to the bound. The iterative ability estimation pro-
cess is shown in Algorithm 1.

Stopping Rules. After the ability is estimated,
the standard error SE' is calculated to determine
whether a new item must be selected or the
test should be terminated. We implement three
stopping rules: the test reaches the maximum
length 7,,,4,, the ability reaches the boundary
[Omin, Omaz] for five consecutive questions when
more than 15 items are administrated, or the exam-
inee’s standard error S E falls below the threshold
s.

5 Experimental Analysis

We evaluate our method via three experiments: (1)
Evaluate the automatically generated items manu-
ally. (2) Conduct student test with both an online
AIG test and a traditional written test developed
by CSL teachers. (3) Use CAT model to estimate
the students’ abilities.

5.1 Expert Evaluation of AIG

To assess the students’ vocabulary knowledge, we
generate three types and totally 93764 test items.
After that, we randomly sample 100 items for each
type of question, resulting in 300 items in total.
These questions are used for manual evaluation.
Original Acceptance Rate (OAR) and Adjustable
Acceptance Rate (AAR) are calculated. An item
can be originally accepted if two professional CSL
teachers both agree that this item can be directly
used in a vocabulary test. And it can be an ad-
justable item if the teachers both agree that it only
needs a few simple modifications, i.e. the replace-
ment or deletion of less than 2 words.

The evaluation results are shown in Table 1. The
question generation method performs well with
the average OAR of 53% and the AAR of 81.67%.

It is noteworthy that the acceptance rate varies
a lot among three types of questions. Word pro-



Algorithm 1 Estimate(B, g, S, Nmaz, Omin, Omazs tmaz, €)

Setn =20

Set A=

SetT =[]

Set U = |]

Seté:HO

while 7 < 7,00 A SE() > s do
Setn=n+1

Finditem z st. 2 € BAx ¢ AAL(0) = max,¢ 4 Iy(é)

Add(A, )

if test taker’s answer to item x is correct then

Add(U, 1)
else
Add(U, 0)
end if
Sett =20
repeat
Sett=t+1
Set thp = é
Update 6 using Equation 4
Set A = ‘é — Omyp

until A < eVt > tmaz V 01 & [Omin, Omaz)

Set é = Inax(min(@, gmaaj)v emln)
Add(T', 0)

if n > 15 A (min(Last(7’,5)) = Omae V max(Last(T,5)) = 6pin) then

break while
end if
end while
return 0

nunciation question performs best since it focuses
only on the pinyin label, and its generation module
is very simple. The generation of word selection
questions is much more complicated. It involves
appropriate selection of sentences, target words
and distractors. Word collocation question can be
considered as a simplified version of word selec-
tion question. We further analyze the feedback of
the teachers, and find that the distractor selection
works very well, indicating that our vocabulary
knowledge base has a high quality. Meanwhile,
the stem sentence selection and target word se-
lection algorithms needs further improvement on
both difficulty control and semantic analysis.

5.2 Online AIG Test

We build an online vocabulary test with accepted
vocabulary questions of three types. Specifically,
we select 140 questions from 14 word levels, i.e.
10 questions at each level. These questions are
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manually reviewed and adjusted to ensure they can
be used in the student test. The score for each
question is one point, thus, the test score equals
the number of questions answered correctly. The
vocabulary size of each student can be estimated
with the method proposed by Beglar and Nation
(2007). Since each level has 600 words, a stu-
dent’s test score will be multiplied by 60 to get
their total receptive vocabulary size. The inter-
faces of the online testing system can be seen in
Figure 3.

155 international students of different language
proficiencies are organized to take a traditional
written test of 90 minutes and the AIG online test
of 30 minutes. The written test is a student place-
ment test including listening, reading and writing
questions constructed by professional CSL teach-
ers. And the online test only includes vocabulary
questions. These two tests are administrated on
the same day to ensure the examinees’ language



Table 1: Results of Expert Evaluation

Result  Word Selection Word Pronunciation Word Collocation  Average
OAR 19% 100% 40% 53%
AAR 65% 100% 80% 81.67%
@ smuEmE @ smuEms @ smuEmE G smREL
88 — EREEE 2 (159) 1/140 =EE (15) 140/140
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Figure 3: The online testing system on mobile devices (a) description of the test, (b) examples of test items, (c) the
first item, (d) the last item.
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Figure 4: Score Correlations. (a) Written test score and online AIG test score, p = 0.8395; (b) Written test score
and CAT estimated ability, p = 0.8715.
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proficiencies are stable.

After the tests, we compute the correlation
scores of them. As shown in Figure 4(a), the re-
sult is very inspiring that the scores are strongly
correlated with Pearson correlation coefficient of
0.8395, given we only use AIG based vocabulary
questions. Furthermore, the test time is greatly re-
duced from 90 minutes to 30 minutes. The online
AIG test promisingly indicates that:

e Vocabulary knowledge is indeed a core part
of second language proficiency, as stated in
previous works (Nation, 2001; Cook, 2016).

e AIG is an effective tool for vocabulary as-
sessment.

5.3 CAT Simulation

After the online test, we collect students’ answer
data, and estimate three parameters for each item,
including difficulty parameter b, discrimination
parameter a and guessing parameter c. The esti-
mation is based on 3PL item response theory (IRT)
and implemented with the R package [tm.

With this calibrated item pool, we implement
the adaptive algorithm illustrated in Algorithm 1.
The detailed parameter settings are as following:
6o = 0.2, s = 0.3, Nnaz = 80, [Omin, Omaz] =
[—1.5,4.5], tmaezr = 80, € = 0.0001.

We simulate the CAT based vocabulary test with
the 155 students’ answers, and output estimated
abilities when one of the stopping rules is trig-
gered.

Figure 4(b) shows that the estimated abilities
reaches an even higher correlation coefficient of
p = 0.8715 than the fixed online AIG test. Mean-
while, the average test length is only 26, which
decreases greatly by 81% compared to 140 of the
AIG test.

Figure 5 further illustrates the CAT simulation
result. Regarding the triggered stopping rules,
83% of the students end with the standard devi-
ation threshold, which indicates that our CAT al-
gorithm has a desirable estimate precision. How-
ever, there are still 13% of students end with the
lower ability boundary, and 4% of students stop
with maximum test length. These cases reflect that
our item pool needs improvement by adding more
very simple questions for low ability students and
very hard questions for high ability students. It
is an important feedback to the AIG algorithm,
especially on the difficulty control and sampling
method.
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5.4 Vocabulary Size and Score Prediction

After estimating students’ vocabulary abilities
with CAT, we train a linear regression model to
predict a student’s vocabulary size and the written
test score.

The vocabulary size vs is predicted with Equa-
tion 8.

vs = 60 x (22.37 6 + 61.43), R?> = 0.8505 (8)

It has been implemented on our online testing sys-
tem http://test.aihanyu.org. Users can
quickly estimate their vocabulary sizes after taking
a CAT test in a few minutes.

The written test score sc can be computed with
Equation 9. The result could serve as an effective
tool for student placement.

sc=14.10 0 + 49.46, R2 = 0.7594  (9)

6 Conclusions and Future Work

In this paper, we propose a novel testing strategy
by combining automatic item generation (AIG)
and computerized adaptive testing (CAT) in vo-
cabulary assessment. Experiments show that it is
a promising and highly effective path to evaluate
language proficiency. The advantages are obvious
as below:

e AIG is an effective method to construct a bal-
anced CAT item pool.

e CAT is also a good evaluation tool of AIG,
since it can provide important feedback to
AIG which is hard to be given by manual
evaluation.

e The combination of AIG and CAT can reduce
the test cost significantly.

We believe that this testing strategy can serve
as a good basis for research of language testing,
as well as various intelligent learning applications
that need students’ proficiencies for user model-
ing. In the future, we aim at enhancing the AIG al-
gorithms and exploring the generation algorithms
of more question types, as well as in more disci-
plines.
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Abstract

Computational linguistic research on the lan-
guage complexity of student writing typi-
cally involves human ratings as a gold stan-
dard. However, educational science shows that
teachers find it difficult to identify and cleanly
separate accuracy, different aspects of com-
plexity, contents, and structure. In this paper,
we therefore explore the use of computational
linguistic methods to investigate how task-
appropriate complexity and accuracy relate to
the grading of overall performance, content
performance, and language performance as as-
signed by teachers.

Based on texts written by students for the offi-
cial school-leaving state examination (Abitur),
we show that teachers successfully assign
higher language performance grades to essays
with higher task-appropriate language com-
plexity and properly separate this from content
scores. Yet, accuracy impacts teacher assess-
ment for all grading rubrics, also the content
score, overemphasizing the role of accuracy.

Our analysis is based on broad computational
linguistic modeling of German language com-
plexity and an innovative theory- and data-
driven feature aggregation method inferring
task-appropriate language complexity.

1 Introduction

Official state education standards highlight the rel-
evance of language complexity for the evalua-
tion of text readability and reading skills (CCSSO,
2010) and academic writing proficiency in stu-
dents first and second language (KMK, 2014a,b).
The highly assessment-driven U.S. public edu-
cation system has long recognized the benefits
of automating the evaluation of student learn-
ing outcomes, including very substantial research,
development, and commercial applications tar-
geting automatic essay scoring (AES, Shermis
and Burstein, 2013; Vajjala, 2018; Yannakoudakis
et al., 2018). This situation is not transferable
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to other education systems, such as the German
one, where so far there is hardly any discus-
sion of automating the assessment of learning out-
comes and no high-stakes testing industry. In the
German Abitur examination, the official school-
leaving state examination that qualifies students
for admission to university, teachers grade lan-
guage performance and content in essays without
technical assistance, using grading templates that
specify content and language expectations. In the
language arts and literacy subject-matters (Ger-
man, English, French, etc.), language performance
is a crucial component of the overall grade across
all states. Yet, unlike content, language require-
ments are only loosely specified in the education
standards, mentioning complex and diverse syn-
tax and lexis, and a coherent argumentation struc-
ture as indicators of high-quality language perfor-
mance (KMK, 2014b). The exact implementa-
tion of these language requirements is left to the
discretion of the teachers. Educational science
has questioned to which extent teachers are biased
by construct-irrelevant text characteristics while
grading. There is evidence that mechanical ac-
curacy over-proportionally influences grades and
even affects the evaluation of unrelated concepts
such as content (Cumming et al., 2002; Rezaei
and Lovorn, 2010). Differences in lexical sophis-
tication and diversity have been shown to impact
teachers’ evaluation of grammar and essay struc-
ture (Vogelin et al., 2019). This is a potentially
severe issue for the German education system.

We pick up on this issue by investigating which
role language complexity and accuracy play in
teachers’ grading of German Abitur essays. For
this, we build upon previous work on complex-
ity and accuracy in the context of the Complexity,
Accuracy, and Fluency (CAF) framework (Wolfe-
Quintero et al., 1998; Bulté and Housen, 2012)
employed in Second Language Acquisition (SLA)
research to model different types of language per-
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formance (McNamara et al., 2010; Vajjala and
Meurers, 2012; Bulté and Housen, 2014). We es-
tablish an automatically obtained measure of task-
appropriate overall language complexity. With
this, we identify texts of more and less appropri-
ate language complexity, which we then manually
assess for their accuracy. We use this to exper-
imentally examine teaching experts’ grading be-
haviour and how it is influenced by accuracy and
complexity. Our results show that while teachers
seem to successfully identify language complexity
and include it in their grading when appropriate,
they are heavily biased by accuracy even when it
is construct-irrelevant.

Our work innovates in exploiting computational
linguistic methods to address questions of broader
relevance from the domain of educational science
by using sophisticated language complexity mod-
eling. This is the first computational linguistic
analysis of German Abitur essays and their hu-
man grading, illustrating the potential of cross-
disciplinary work bringing together computational
linguistics and empirical educational science. The
novel approach presented for the assessment of
appropriate overall language complexity also pro-
vides valuable insights into the task- or text type-
dependence of complexity features. This is of di-
rect relevance for the current discussion of task-
effects in CAF research (Alexopoulou et al., 2017;
Yoon, 2017).

The article is structured as follows: We briefly
review related work on complexity assessment
and insights from educational science into human
grading behavior. We then present our data set and
how we automatically extract language complex-
ity measures. Section 5 elaborates on the construc-
tion of appropriate overall language complexity
including a qualitative analysis of task-wise dif-
ferences between document vectors. Section 6 re-
ports our experiment on teacher grading behavior.
We close in Section 7 with an outlook.

2 Related Work

Language complexity, commonly defined as “[t]he
extent to which the language produced in perform-
ing a task is elaborate and varied” (Ellis, 2003,
p- 340), has been studied extensively in the context
of second language development and proficiency
and text readability in particular with regard to
the English language (Vajjala and Meurers, 2012;
Guo et al., 2013; Bulté and Housen, 2014; Chen
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and Meurers, 2019). Complexity has also been in-
vestigated in relation to (academic) writing profi-
ciency of native speakers (Crossley et al., 2011;
McNamara et al., 2010). Research on languages
other than English, remains rather limited, with
some work on German, Russian, Swedish, Italian,
and French (Weiss and Meurers, 2018; Reynolds,
2016; Pilan et al., 2015; Dell’Orletta et al., 2014,
Frangois and Fairon, 2012).

Recently, research has increasingly focused on
the influence of task effects on language complex-
ity in writing quality and language proficiency as-
sessment, both in terms of their influence on CAF
development in the context of the two main frame-
works (Robinson, 2001; Skehan, 1996) as well as
its implications for AES systems and other forms
of language proficiency modeling (Yannakoudakis
et al., 2018; Dell’Orletta et al., 2014). Alex-
opoulou et al. (2017) show that task complexity
and task type strongly affect English as a Foreign
Language (EFL) essay writing complexity. Topic
and text type, too, have been found to impact CAF
constructs in EFL writing and in particular lan-
guage complexity (Yoon and Polio, 2016; Yoon,
2017; Yang et al., 2015). Vajjala (2018) demon-
strates task effects across EFL corpora to the ex-
tent that text length strongly impacts essay quality
negatively on one and positively on the other data
set. Her results further corroborate the importance
of accuracy for essay quality across data sets. Ac-
curacy has overall received considerably less at-
tention in SLA research than complexity (Larsen-
Freeman, 2006; Yoon and Polio, 2016).

An orthogonal strand of research investigates
the quality of human judgments of writing qual-
ity and how complexity and accuracy impact them.
It has been demonstrated that teachers are bi-
ased by accuracy and in particular spelling even
when it is irrelevant for the construct under evalu-
ation such as content quality (Rezaei and Lovorn,
2010; Cumming et al., 2002; Scannell and Mar-
shall, 1966). Other studies showed that charac-
teristics such as syntactic complexity, text length,
and lexical sophistication impact inter-rater agree-
ment (Lim, 2019; Wind et al., 2017; Wolfe et al.,
2016). Vogelin et al. (2019) experimentally ma-
nipulate the lexical diversity and sophistication of
EFL learners’ argumentative essays and let Swiss
English teachers rate them for their overall qual-
ity, grammar, and essay frame. Their findings
show that when the lexical diversity and sophis-



tication of an essay was manually reduced, it re-
ceived lower grades not only for its overall quality
but also for grammar and the essay’s frame, i.e.,
the structured presentation of the writing objective
through introduction and conclusion.

3 The Abitur Data

We analyzed 344 essays that were written dur-
ing the German literature and language examina-
tion of the German Abitur in 2017. The essays
were elicited across German states and collected
and digitized by the Institute for Educational Qual-
ity Improvement (IQB).! For each essay, the final
overall grade that was assigned to it in the Abitur
serves as meta information. All essays respond
to one of four task prompts.> Two tasks require
the interpretation of literature (IL): IL-1 and IL-2.
The other two elicit material-based argumentative
(MA) essays based on several additional materials
provided with the task: MA-1 and MA-2.3

Topic and task differences may substantially
impact the linguistic characteristics of the result-
ing language (Alexopoulou et al., 2017; Yoon and
Polio, 2016). For our data, this is even more the
case given that MA task prompts include a rec-
ommended essay length (around 1,000 for one,
around 800 words for the other), but IL task
prompts do not. The effect this has on the relation-
ship between text length and overall essay grade is
shown in Figure 1. Texts elicited by MA tasks are
overall shorter than answers to IL tasks and exhibit
a lesser variation in length. While for IL tasks we
observe a weak linear correlation between overall
grade and text length, clear deviations from the ex-
pected text length seem to have a negative impact
on the overall grade for MA tasks. To address this
issue, we split our data for the following analyses
in four data sets, one per task prompt. The data
sets are henceforth referred to by the id of the re-
spective task prompt (IL-1, IL-2, MA-1, MA-2).

4 Automatic Complexity Assessment

Our system automatically extracts 320 measures
of language complexity covering a broad range
of linguistic features. We include features from

"The IQB is an academic institute that monitors if schools
across Germany states adhere to the educational standards set
by the Standing Conference of the Ministers of Education and
Cultural Affairs of the States in Germany.

“Figure 4 in the Appendix shows the distribution of doc-
uments and grades across task prompts.

3Table 6 in the Appendix describes the task prompts.
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Figure 1: Text length across overall grades split by task
prompts. The vertical line marks the mean length.

two main research strands on text complexity in
our system: measures of the linguistic system and
psycho-linguistic measures of language use and
cognitive processing. An overview of all features
can be found in Table 1.

Our procedure is based on our implementation
of a broad range of complexity features for Ger-
man which we have successfully used for the as-
sessment of German readability of media captions
for adults and children (Weiss and Meurers, 2018),
German L2 proficiency (Weiss, 2017; Weiss and
Meurers, in press), and German L1 writing devel-
opment (Weiss and Meurers, 2019). However, for
the research presented here, we altered the seg-
menter for sentences and tokens. Due to the spe-
cific abbreviations for line and page references
systematically used in our data, we found that a
rule-based segmenter combined with a customized
list of abbreviations typical for German Abitur es-
says outperformed the segmentation by OpenNLP
(Bohnet and Nivre, 2012).*

As mentioned earlier, language complexity is
an important component of the German curricu-
Ium for German arts and literacy (KMK, 2014b).
While it lacks a full operationalization of language
complexity, it names some examples of language
complexification strategies that students’ writings
should exhibit. Based on this, we identified a set of
75 complexity features, which implement the lan-

“We used the segmenter by Stefanie Dipper available at
https://www.linguistics.ruhr-uni-bochum.
de/~dipper/resources/tokenizer.html



Feature Set Description

Lexical complexity

e.g., type token ratio

Discourse complexity
Phrasal complexity
Clausal complexity

Morphological complexity

measures lexical density, variation, sophistication, and relatedness;

measures use of cohesive devices; e.g., connectives per sentence
measures phrase modification; e.g., NP modifiers per NP
measures clausal elaboration; e.g., subordinate clauses per sentence

measures inflection, derivation, and composition;

e.g., average compound depth per compound noun

Language Use

measures word frequencies based on frequency data bases;

e.g., mean word frequency in SUBTLEX-DE (Brysbaert et al., 2011)

Language Processing

measures cognitive load during human sentence processing, mostly

based on Dependency Locality Theory (Gibson, 2000)
e.g., average total integration cost at the finite verb

Table 1: Overview over the feature sets used to capture language complexity

guage requirements that were pre-defined for our
data. These may be grouped into three categories:

Argumentation Structure Texts should be
structured coherently, clearly, be compelling and
provide clear guidance for the reader. The author’s
reasoning should be made explicit. Both, the text’s
general structure as well as the language used
should facilitate this (KMK, 2014b, p. 17). We op-
erationalized these aspects by measuring various
uses of connectives and the local and global co-
occurrence of arguments, nouns, and word stems.

Lexical Complexity Texts should be lexically
elaborate and varied. Stylistically, vocabulary
choice should adhere to a task-appropriate written
register (KMK, 2014b, e.g., pp. 42, 52). We cover
this by including a range of measures of lexical
diversity and density.

Syntactic Complexity Texts should be syntacti-
cally elaborate and varied and include connected
and subordinated clauses to reflect a coherent
structure. Stylistically, they should adhere to a
task-appropriate written register. Students should
also make appropriate use of tenses (KMK, 2014b,
e.g., pp- 42, 52). To measure syntactic complexity,
we include sentence length and several clause to
sentence ratios, e.g., complex t-units per sentence
and relative clauses per sentence.

Due to the repeatedly named focus on stylisti-
cally and norm-appropriate writing (KMK, 2014b,
p. 16f), we also include prominent measures of
German academic language which constitutes the
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appropriate written register for all four tasks repre-
sented in our data. There is a broad consensus that
in particular complex noun phrases are a promi-
nent feature of academic language (Hennig and
Niemann, 2013; Morek and Heller, 2012; Schlep-
pengrell, 2001), thus we include a series of mea-
sures of noun phrase elaboration and the variabil-
ity of noun complexity. Another prominent aspect
of academic language is deagentivization (Hennig
and Niemann, 2013; Snow and Uccelli, 2009; Bai-
ley, 2007), which entails passivization, verb mod-
ification and verb cluster. Hence, we specifically
include measures of verb complexity and the vari-
ation of verb clusters as well as the coverage of
deagentivization patterns in general. Finally, we
include measures of tense usage to cover the spe-
cific request for appropriate tense usage across text
types. Note that while across tasks the notions of
what constitutes appropriate tense use may differ,
within tasks these are fixed, e.g., favoring the use
of past tense over present tense or vice versa.’

5 Complexity-Based Essay Selection

In order to evaluate how language complexity im-
pacts grading behavior, we first needed to iden-
tify texts of high and low language complexity
for our experiment (Section 6). For this, we fol-
lowed a two-step approach: First, we transformed
each student essay into a vector representation
of relevant features of language complexity (Sec-
tion 5.1). Then, we ranked them with regard to

>The complete list of theoretically motivated features may
be found in Table 7 in the Appendix.
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Figure 2: Task-wise transformation of essays to lan-
guage complexity vector representations.

their similarity to an artificial ideal vector and se-
lected for each task two essays of high and two of
low language complexity (Section 5.2).

5.1 Building Complexity Vectors

Figure 2 outlines the procedure used to build lan-
guage complexity vectors tailored towards the in-
dividual task prompts. We extracted the 320 mea-
sures of language complexity from the Abitur data
as discussed in Section 4. We then removed all
outliers that deviated more than two standard de-
viations from the mean and calculated the z-score
of each feature. Based on this, we identified which
of the dimensions of linguistic complexity that we
measured are relevant for a given task.

We defined relevance in terms of correlation
with the overall grade an essay received. These
grades represent teachers’ judgments of essay
quality under consideration of language perfor-
mance in a high stakes testing situation. We used
a hybrid approach combining theory-driven and
data-driven feature selection. First, we calculated
the Pearson correlation between the z-scores of
75 theoretically relevant features and the overall
grade each essay had received in the Abitur ex-
amination. We did so separately for each data
set. Features with a significant (p < .05) abso-
lute correlation of » > .2 were included in the
complexity vector if they did not correlate more
than = .8 with another feature in the vector. For
highly correlated features, we only kept the feature
most highly correlated with the overall grade.

We augmented this feature selection with the re-
maining features of linguistic complexity in our
document vector that had a significant (p < .05)
absolute Pearson correlation with the overall grade
of r > .3. Features were required to correlate
less than » = .8 with other features selected for
the complexity vector. For highly inter-correlated
features, the feature with the highest correlation
with the overall grade or the theoretically moti-
vated feature was favored. This lead to complexity
vectors of size 33 for IL-1, 45 for IL-2, and 13 for
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5.2 Ranking by Similarity to Ideal Vector

We selected essays for our experiment using the
similarity of complexity vectors to a reference vec-
tor representing the artificial ideal use of each
complexity feature as illustrated in Figure 3. We
assigned the values 1 for feature dimensions with a
positive correlation with the original overall grade
and O for those with a negative correlation with
the original overall grade. Conceptually, this rep-
resents the ideal language complexity for a given
task: Features that are associated with low perfor-
mance are not present and features associated with
high performance are maximally represented.

For each feature in the complexity vector, we
replaced the previously introduced z-scores with a
min-max normalization to enforce a scale from 0
to 1. We calculated the similarity between each es-
say and the reference vector using Manhattan dis-
tance and ranked all essays based on their distance
to the artificial ideal document vector.

Based on this ranking, we chose four essays per
task which were comparable with each other in
terms of their text length: two from the top of our
ranking, i.e. closer to the ideal vector, and two
from the bottom of our ranking, i.e. more distant
to the ideal vector. We limited our choice to essays
that had received a medium overall grade between
7 and 9 points in the German grading system for
the final three years of German high school. This
corresponds to essays with a point percentage be-
tween 55% and 69% (KMK, 2018, p. 22).8 This
restriction ensures on the one hand that essays are
comparable in terms of their overall and content
performance. On the other hand, it prevents ceil-
ing and floor effects in teachers’ grades.

®The final feature selection for all four vector represen-
tations and the correlation of all features with the original
overall grade may be found in Table 8 in the Appendix.

"Table 9 in the Appendix shows for each task how many
features were selected using the theory-driven and the data-
driven selection step.

8An overview relating this system to percentage points
may be found in Table 10 in the Appendix.



We labeled the resulting eight texts close to the
ideal vector as essays with more appropriate lan-
guage complexity (+ALC) and the eight texts rel-
atively distant from the ideal vector as essays with
less appropriate language complexity (-ALC).

5.3 Task-Wise Vector Differences

Comparing the features that were selected for the
vector representations across tasks reveals some
interesting structures which are relevant for the
ongoing discussion of task effects on language
performance. Overall, 75 unique features are in-
cluded across all vectors. Table 2 shows a se-
lection of 10 features chosen to illustrate patterns
across vectors.’

Nearly a quarter of features (18 of 75) re-occurs
in at least three of the four vectors. We take this
as an indication of generalizable characteristics of
language performance. This group is predomi-
nantly comprised of features of lexical sophisti-
cation in form of lexical diversity and verb vari-
ation (6/18), clausal elaboration in form of words,
clauses, dependent clauses, and dependent clauses
with conjunctions per sentence as well as the over-
all use of connectives (6/18), and nominal writ-
ing style in form of post-nominal modifiers, geni-
tives, and nominalization strategies (4/18), all of
which are positively correlated with the overall
grade. These groups are represented in Table 2 by
MTLD, dependent clauses per sentence, and the
percentage of derived nouns. Taken together, they
represent important markers of German academic
language (Hennig and Niemann, 2013; Morek and
Heller, 2012). Lexical sophistication has also re-
peatedly been observed as an important indicator
of English first and second language writing per-
formance (Guo et al., 2013; Crossley et al., 2011).
Evidence that the relevance of these features for
writing performance persists across task contexts
is highly relevant as it provides empirical under-
pinning to the mostly theoretical concept of Ger-
man academic language.

Aside from this general overlap across task
prompts, we observe considerable similarities be-
tween both IL task prompts indicating that the fea-
tures represent a coherent subgroup of appropri-
ate linguistic complexity for interpretative writ-
ing rather than idiosyncratic properties of the spe-
cific task prompts. Of 26 features that are rel-

The selection was taken from the aforementioned full ta-
ble displaying all 75 features relevant for the vector represen-
tations in Table 8 in the Appendix.
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evant across two tasks, 21 are shared between
the IL tasks. This is a remarkable overlap given
the respective vector sizes. Characteristic for IL
tasks are especially features of phrasal modifi-
cation (9/21), predominantly but not exclusively
with regard to noun phrase modification, and
clausal elaboration resulting in higher cognitive
load in form of integration cost and dependency
lengths (5/21). All of these are positively cor-
related with the overall grade. The two groups
are represented in Table 2 by the percentage of
complex noun phrases and the average total in-
tegration cost. Several of the features not shared
across both IL tasks relate to different realizations
of clausal elaboration: while for IL-2 several sub-
types of subordination are relevant, such as in-
terrogative clauses, conjunctional clauses, clauses
without conjunction, various types of connectives,
for IL-1 only relative clauses occur as specific type
of clausal elaboration. Table 2 displays this con-
trast for relative clauses, dependent clauses with-
out conjunction, and conjunctional clauses per
sentence. Material-based argumentation does not
exhibit such a pattern which may be due to the
fact that both MA prompts request different text
types, once a commentary (MA-2) and once an
essay (MA-1), while both IL tasks share not only
a task objective (interpretation) but also the same
text type (essay).

6 Experiment

6.1 Set-Up

We recruited 33 teachers (14 female, 19 male)
from different schools across German states.'?
Their teaching experience ranges from 5 to 38
years (u = 19.9; SD = 9.1). All of them have
participated in grading German subject-matter
Abitur tasks at least twice, most of them more
than eight times. We asked them to grade es-
says for their language, content, and overall per-
formance using the grading scale used for the Ger-
man Abitur ranging from O to 15 points. Teachers
were provided with a grading template for each
task prompt, which is a standard feature in the Ger-
man Abitur. The template states the expectations
of students’ answers with regard to content and
language. Each teacher received 8 texts from over-

1%We recruited 32 teachers plus one replacement teacher to
cover an anticipated drop-out. Since all teachers completed
the study, eight texts were graded by an additional teacher
(i.e. 17 instead of 16 teachers).



Feature IL-1  IL-2 MA-1 MA-2
MTLD 2014 4358 2876 .3361
Dependent clauses per sentence 3040 2528 2046 -.0380
Derived nouns per noun phrase 2394 4751 1604 3301
Average total integration cost at finite verb  .4093 4909 0708  .0308
Complex noun phrases per noun phrase 4177 3186 1316 -.0353
Relative clauses per sentence 3027 1814 1381 -.0077
Dep. clauses w/o conjunction per sentence .1414 .2460 .0744  .0058
Conjunctional clauses per sentence 16322433 0744 -.0285

Table 2: Selection of features in the complexity vectors and their correlation with the original overall grade. Gray
font marks uncorrelated features. Italics mark correlated but redundant features.

all 2 tasks: 4 +ALC and 4 -ALC texts. Each text
was graded by 16 teachers independently. Teach-
ers did not know the original grades that their
texts had received, neither were they aware of the
ranking-based selection. This grading situation
was maximally familiar to our subjects, because
it mimics teachers’ real-life experience for essay
grading in the context of German Abitur.

For each of the three grades (overall, con-
tent, and language performance), we built a lin-
ear mixed regression model fitted by REML. The
respective grade served as response variable and
we included task prompt as random effect. Each
model had two predictor variables: +ALC and
error rate. We included error rate (in form of z-
scores) as a predictor, because accuracy is an im-
portant criterion for the evaluation of students’
language performance and thus overall perfor-
mance in the German Abitur and to investigate its
influence on teachers’ grading. We manually ex-
tracted spelling mistakes, punctuation errors, and
grammatical errors from each essay and aggre-
gated them into one overall error score by dividing
the total number of errors by the number of words.

6.2 Results

Tables 3, 4, and 5 show the respective model fits
for each grade. For all three models, the residuals
were homoscedasticly distributed around a zero
mean. Table 3 shows that +ALC affects language
performance grades by raising it about 1.37 points
(£ 0.37 SE) for essays with more appropriate lin-
guistic complexity. Error rate, too, clearly affects
the grade, lowering it about -1.99 points (+ 0.21
SE). The model overall explains 37.5% of the vari-
ance, 29.3% of which are attributed to both error
rate and =ALC. Although error rate is the stronger
of the two predictors, =ALC does significantly
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improve the model fit (x? = 1277.7,p < 0.001).
The random intercept for the four tasks accounts
for 1.0% of the variance (1.0 SD). The residuals
account for 7.6% of the variance (2.8 SD).

Table 4 shows the fit for the content grades the
teachers assigned. We do not see evidence that the
content grade is affected by +ALC in our ratings.
Error rate, however, influences the grade nega-
tively, lowering it about -1.265 points (+ 0.227
SE). The model overall explains 29.1% of the vari-
ance. 11.9% are attributed to error rate and +=ALC
but complexity does not make a significant con-
tribution to the overall model fit. The random
intercept for the four tasks accounts for 2.1% of
the variance (£1.4 SD). The residuals account for
8.8% of the variance (+2.9 SD). In order to rule
out that this influence of error rate on the content
grade is caused by certain errors obstructing un-
derstanding, we refitted the content grade model
with each of the individual error types instead of
overall error rate. We find that all three error types
impact content grade. Spelling significantly low-
ersit (t = —4.651, p = 0.000) about -1.197 points
(£ 0.257 SE). Punctuation significantly lowers it
t = —-3.078,p 0.002) about -0.597 points
(£ 0.194 SE). Grammar significantly lowers it
(t = —7.836,p = 0.000) about -1.560 points (+
0.199 SE).

Table 5 shows the fit for the overall grades
assigned by the teachers. The overall grade is
marginally affected by +ALC . The overall grade
is about 0.703 points higher (£ 0.359 SE) for text
with more appropriate linguistic complexity. As
for the other grades, error rate strongly influences
the overall rating lowering it about -1.518 points
(4 0.208 SE). The model overall explains 31.1%
of the variance. Of this, 17.3% are attributed to



Estimate SE t-value p-value
(Inter.) 6.989 0.561 12468 < 0.001
+ALC 1.374 0368 3.732 < 0.001
Error -1.992 0.211 -9.459 < 0.001

Table 3: Estimates for language performance grade.

Estimate SE t-value p-value
(Inter.) 6.138 0.772  7.948 0.003
Error -1.265 0.227 -5.586 < 0.001
+ALC 0.614 0393 1.562 0.120

Table 4: Estimates for content grade.

Estimate SE t-value p-value
(Inter.) 6.460 0.696  9.278 0.002
+ALC 0.703 0359 1.962 0.051
Error -1.518 0.208 -7.316 < 0.001

Table 5: Estimates for re-assigned overall grade.

+ALC and error rate. Again, error rate is the
stronger predictor and =ALC does not make a sig-
nificant contribution to the overall model fit. The
random intercept for the four task accounts for
1.7% of the variance (£1.3 SD). The residuals ac-
count for 7.3% of the variance (+2.7 SD).

6.3 Discussion

Our results show that the language performance
grades based on criteria stated in the grading tem-
plate reflect differences between essays exhibiting
more and less appropriate language complexity
(£ALC). This result is not trivial, because previ-
ous research suggests that the assessment of quan-
titative aspects of text complexity is not a key com-
petence of teachers (CCSSO, 2010). We do not
find evidence that teachers are unduly influenced
by differences in language complexity when as-
signing content grades. This is an encouraging
finding in light of Vogelin et al. (2019)’s study on
the effect of differences in lexical complexity on
construct-unrelated grades. Our study differs in
several aspects from their set-up: We asked expe-
rienced teachers rather than pre-service teachers,
and we used the set-up of the Abitur they are fa-
miliar with. We provided them with texts that dif-
fered not only in terms of their lexical complex-
ity (although these dimensions are represented in
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each of the document vector representations) but
rather across various linguistic domains. While
they altered texts experimentally, we used essays
that are ecologically valid. We find that teachers
include language complexity to a limited extent in
the overall grades they assign. This is in line with
the grading template stating that language perfor-
mance should account for 30% of the overall per-
formance.

As for accuracy, our results clearly show that all
three grades are heavily influenced by error rate.
For the language performance grade, this is mo-
tivated insofar as correctness is one of the crite-
ria named in the corresponding grading template.
Similarly, accuracy may be reflected in the overall
grade as it is part of the overall evaluation. How-
ever, its weighting in both models is dispropor-
tionate. For content grading, accuracy is concep-
tually irrelevant, which is also stated in the grading
template. Yet, teachers are clearly biased against
essays with higher error rates, which is in line with
previous research findings (Rezaei and Lovorn,
2010; Cumming et al., 2002). All three individ-
ual error types (punctuation, spelling, and gram-
mar) show the same kind of influence on the con-
tent grade as the overall error rate. This demon-
strates that the effect is not restricted to error types
that may impede understanding, such as grammar
errors. All error types affect content grading. Es-
says with a lower overall error rate receive higher
content grades. This strong bias for a construct-
irrelevant characteristic that is already included in
another grading component, namely language per-
formance, is highly problematic. Note, however,
that we cannot rule out the possibility that students
with better spelling in fact coincidentally also pro-
duce texts with better content. This is one of the
limitations of our research design, which focuses
on ecological validity. We will address this issue
in a follow-up study, in which we will include cor-
rected versions of the texts studied here. This way,
we can keep essay content fixed while varying er-
ror rate. Overall our results indicate that although
teachers can successfully capture different dimen-
sions of language performance, such as complex-
ity, accuracy, and content, they fail to modularize
them clearly into separate grades.

7 Outlook

We addressed the question to which extent Ger-
man teachers are able to identify differences in



appropriate language complexity across tasks and
how complexity and accuracy bias grading when
they are construct-relevant or -irrelevant. For
this, we proposed a novel similarity-based ap-
proach for the identification of task-appropriate
language complexity in student essays. This also
yielded some interesting insights in task differ-
ences between writing objectives and task prompts
confirming common but so far empirically not
sufficiently validated assumptions about German
academic language. While our results indicate
that teachers successfully identify and modular-
ize the concept of language complexity, we show
a clear bias for higher language accuracy across
all grades. Teachers not only consider accuracy
over-proportionally for the grading of language
performance, it also influences their assessment of
construct-irrelevant aspects such as content. This
is in line with previous research findings (Rezaei
and Lovorn, 2010; Cumming et al., 2002).

We see our work as a first step towards the
analysis of the grading behaviour in the German
education system using computational linguistic
methods. In future work, we plan to build on this
by exploring the grading behavior of teachers in
greater depth, clustering teachers in terms of their
characteristics and grading behavior. In particu-
lar, there is evidence that teachers’ personal evalu-
ation of the complexity of a text impacts their per-
ception and, consequently, their grading of its lan-
guage quality. We will explore this in a follow-up
study. We will also follow-up on the question to
which extent better accuracy and content quality
coincide in ecologically valid texts by studying the
link between content grades and writing accuracy
in a more controlled setting with experimentally
manipulated texts with corrected errors.
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Figure 4: Original overall grades split by task prompt.

Task  Text Type Description

IL-1 Interpretation  Interpret poem A written in the 1950s and compare it with poem B written
of literature in the 1980s.

IL-2  Interpretation  Interpret the given excerpt from novel A. Focus on the conflicts with
of literature which the protagonist struggles.

MA-1 Material-based Write a newspaper essay on the influence social media has on our
argumentation communication. Use around 1,000 words. Include the following materials
in your argumentation: 6 essays, 1 poem, 1 statistic.
MA-2 Material-based Write a newspaper commentary on the influence of dialects and sociolects
argumentation  on success in society. Use around 800 words. Include the following
materials in your argumentation: 4 essays, 1 interview, 2 graphics.

Table 6: Overview of the four task prompts used to elicit the Abitur data.

Domain Feature

Argumentation structure Number of Paragraphs
Adversative and concessive connectives (Breindl) per sentence
Additive connectives (Breindl) per sentence
Adversative connectives (Breindl) per sentence
All connectives (Breindl) per sentence
All multi word connectives (Breindl) per sentence
All single word connectives (Breindl) per sentence
Causal connectives (Breindl) per sentence
Concessive connectives (Breindl) per sentence
Other connectives (Breindl) per sentence
Temporal connectives (Breindl) per sentence
Adversative and concessive connectives (Eisenberg) per sentence
Additive connectives (Eisenberg) per sentence,
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Adversative connectives (Eisenberg) per sentence
All connectives (Eisenberg) per sentence
All multi word connectives (Eisenberg) per sentence
All single word connectives (Eisenberg) per sentence
Causal connectives (Eisenberg) per sentence
Concessive connectives (Eisenberg) per sentence
Other connectives (Eisenberg) per sentence
Temporal connectives (Eisenberg) per sentence
Global argument overlap per sentence
Global content overlap per sentence
Global noun overlap per sentence
Global stem overlap per sentence
Local argument overlap per sentence
Local content overlap per sentence
Local noun overlap per sentence
Local stem overlap per sentence
Lexical complexity HDD
MTLD
TTR
Bilogarithmic TTR
Corrected TTR
Root TTR
Uber index
Yule’s K
Adjectives and adverbs per lexical word
Adjectives per lexical word
Adverbs per lexical word
Corrected lexical verb type per lexical per token
haben instanced per verb
Lexical types per lexical token
Lexical types per token
Lexical verb type per lexical token
Lexical verb type per lexical verb token
Lexical verb per token
Nouns per lexical verb
Lexical verbs per word
Nouns per lexical word
Nouns per word
sein instances per verb
Squared lexical verb types per lexical verb
Verbs per noun
Syntactic complexity Clauses per sentence
Conjunctional clauses per sentence
Dependent clauses per sentence
Relative clauses per sentence
Dependent clauses with conjunction per sentence
Dependent clauses without conjunction per sentence
Interrogative clauses per sentence
Words per sentence
Complex t-units per sentence
Complex nominals per sentence
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Postnominal modifiers per noun phrase
Prenominal modifiers per noun phrase
Noun phrase modifiers per noun phrase
Coverage of noun phrase modifier types
Verb modifiers per verb phrase
Coverage of verb modifier types
Coverage of verb cluster sizes
Coverage of verb cluster types
Standard deviation of verb cluster sizes
Mean verb cluster size

Coverage of Periphrastic tenses
Coverage of tenses

Coverage of deagentivization patterns

Table 7: List of all complexity features that are theoretically motivated by the German curriculum (KMK, 2014b).

Feature IL-1 IL-2 MA-1 MA-2
MTLD 2014 4358 2876  .3361
Root type token ratio 3140 3361 3355 2179
Corrected lexical verb types per lexical verb 2338 3103 2105  .2294
Squared lexical verb types per lexical verb 2588 3022 (1998 2458
Lexical verb types per lexical verb 0587 2257 2291 2446
Uber Index 15302412 3131 .2281
Lexical word types found in dlexDB -3367 -4004 -.1795 -.2597
Lexical word types not found in KCT 3901 4959 2770 1495
Clauses per sentence 2198 4681 2304 -.0623
Dep. clauses per sentence 3040 2528 2046 -.0380
Dep. clauses with conjunction per sentence 3055 2013 2029 -.0484
Words per sentence 3546 4698 2197 -.0403
Additive conn. per sentence (Breindl) 2974 2319 2073 1500
1-word conn. per sentence (Breindl) 2131 2855 .2044 0745
Genitive case per noun phrase 2853 4689 1869  .2044
-ung nominalizations per word 2080 4286 1122 .2339
Derived nouns per noun phrase 2394 4751 1604 .3301
Postnominal modifiers per noun phrase 3064 4510 2031 1113
Probability(other— other) per sentence 1194 .2077 1152 3054
Probability(object—object) per sentence - 1419 -4929 0545 -.2068
Global noun overlap per sentence 2686 .3072 1066 -.1590
Local content overlap per sentence -1359  -2527 -.1725 -3631
Global stem overlap per sentence 2587 4042 -.1162  -.0647
Temporal conn. per sentence (Breindl) 2769  -.0185 .2206  .0408
Causal conn. per sentence (Eisenberg) 3096 3876 .0485  .0761
1-word conn. per sentence (Eisenberg) 2733 .5241 1068 .0275
Maximal total integration cost at finite verb (C) 2739 5062 -.0398 0514
Average total integration cost at finite verb 4093 4909  .0708  .0308
Syll. between non-adjacent 1. argument & VFIN ~ .3158 .2757 .0210 .0815
Syllables in middle field per MF 4244 4286 .0351  .1092
Longest dependency in words 3929 .3207 0146 1740
Prenominal modifiers per noun phrase 2442 5263 .0229 1039
Possessive noun modifiers per NP 2378 4167 1802 -.0308
Complex noun phrases per noun phrase 4177 3186 1316 -.0353
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Noun modifiers per noun phrase 3357 2045 0689 .0648

NP deps. per NP with dependents 2855 4180 1321  -.0798
Complex noun phrases per sentence 4177 3186 1316 -.0353
Verb modifiers per verb phrase 3565 4219 1761 0375
Prepositional verb modifier per sentence 2184 4347 0658 -.1204
Coordinated phrases per sentence 3413 3299 0465  .1603
Average log type frequency in Google Books 00 -.4396 -.4289 -.1903 -.0994
Accusative case per noun phrase -3169  -.2909 -.0131  .0996
Lexical types per token 2413 1043 0050  .2446
Verbs per noun -2213  -3284  -.1294  -1475
Nouns per lexical word -2667 1709 1916 .2415
Temporal conn. per sentence (Eisenberg) 2225 2244 1665 -2012
Determiners per noun phrase -3139 3066 -.0006  .0023
Lexical verb types per lexical word -3142  -.0391 1019  .0736
Yule’s K - 1144 -2352 -.1663 -.0534
Lexical verbs per token -2667 -.1414  -.1022  -.0588
Adverbs per lexical word -.0281 -.2781 -.0311 -.0401
Adjectives per lexical word 1259 0 .3089 1534 .0970
Dative case per noun phrase -1291 1071 -.0440 -.3914
Third person markings per VFIN -.0097  -4361 -.1556 -.0727
-ist nominalizations per word 0128 4197 -.1266 .0122
Local argument overlap per sentence 0547 -.1601 -.0256 -.2787
Local noun overlap per sentence -.0007  -.0650 -.1356 -.2188
Causal conn. per sentence (Breindl) 1512 .0658 2936 -.0194
Concessive conn. per sentence (Eisenberg) .0984 2497 .0855 .0136
Other conn. per sentence (Breindl) 1757 2458 -.0343  .0181
Connectives per sentence (Eisenberg) 1989 3342 -.0400 .0386
Relative clauses per sentence 3027 1814 1381  -.0077
Dep. clauses w/o conjunction per sentence 1414 2460  .0744  .0058
Conjunctional clauses per sentence 16322433 .0744  -.0285
Interrogative clauses per sentence 0982 4078  .0506 -.0574
Auxiliary verb cluster per verb cluster 0460 .0569 -.0375 -.3221
haben instances per word - 1818 -.2031 .-0251 -.1989
Coverage of verb cluster sizes 1617 -.2824  -.1325  -.0088
Non-modal VP deps. per verb with dependents 3219 1250 .1804 (1116
Coverage of verb modifier types 0758 2216 .1706  .0119
Coverage of deagentivization patterns .0763  .0227  .2020 -.0097
Passives per sentence 1879 4329 -1692  -.0660
Average lemma frequency in dlexDB -4126  -.1037 -.1461  .0255
Average log lemma frequency in dlexDB -3890 -.1767  .0589  .0042
Hyponyms per type in GermaNet -3018 -.0741 -.1354 -.0926

Table 8: Features used in at least one of the four complexity document vectors and their correlation with the
original overall grade across tasks. Gray font marks uncorrelated features. Italics mark relevant features that were
excluded from the respective vector due to redundancy.
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Task  Theory-Driven Data-Driven Total

IL-1 20 13 33
IL-2 32 13 45
MA-1 13 0 13
MA-2 9 4 13

Table 9: Contribution of theory- and data-driven feature selection to each language complexity vector.

Grade Points  Percentage
excellent + 15 100-95
excellent 14 94-90
excellent - 13 89-85
good + 12 84-80
good 11 79-75
good - 10 74-70
satisfying + 9 69-65
satisfying 8 64-60
satisfying - 7 59-55
sufficient + 6 54-50
sufficient 5 49-45
sufficient - 4 44-40
insufficient + 3 39-33
insufficient 2 32-27
insufficient - 1 26-20
failed 0 19-0

Table 10: German Abitur Grading System (KMK, 2018, p. 22).
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Abstract

We present a model for automatic scoring
of coherence based on comparing the rhetor-
ical structure (RS) of college student sum-
maries in L2 (English) against expert sum-
maries. Coherence is conceptualised as a con-
struct consisting of a rhetorical relation and its
arguments. Comparison with expert-assigned
scores shows that RS scores correlate with
both cohesion and coherence. Furthermore,
RS scores improve the accuracy of a regression
model for cohesion score prediction.

1 Introduction

Assessment of text quality may benefit from auto-
matic scoring as it is cognitively demanding and
often requires much expertise (Rahimi et al., 2017),
especially in college-level expository writing. One
of the key aspects of text quality is writing co-
herence (Crossley and McNamara, 2010) which
reflects students’ ability to connect ideas in their
mind and to convey the same message in essays or
summaries (Halliday and Hasan, 2014).

Existing approaches to text quality predomi-
nantly focus on surface measures for assessment
(e.g., number of cohesive devices), which some-
times have little relation either to human judgment,
e.g., text length (Mintz et al., 2014), or to text-
specific meaning (Rahimi et al., 2017). However,
automatic scoring of coherence should ideally pro-
vide clear and reliable feedback (Burstein et al.,
2013) based on features with cognitive validity,
e.g., (Loukina et al., 2015).

One way to meet such requirements is to define
coherence as the identification of relations between
the text’s ideas (Rapp et al., 2007). Such a defini-
tion may best be analysed in summaries in which
the key ideas of the source text are integrated into
a rhetorical structure (RS).

In cognitive terms, writing summaries is an exer-
cise in reading-for-understanding (RU) (Sabatini

tagejev@efzg.hr,
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et al., 2013) and gist reasoning (Chapman and Mu-
dar, 2013). The result of such processes is the
macrostructure of the source text constructed in
the reader’s mind (Louwerse and Graesser, 2005),
which consists of concepts and propositions, their
mutual relations (Sanders and Noordman, 2000),
and relations with prior knowledge. Coherent sum-
maries should express the intention of the source
text (Hobbs, 1993) using linguistic devices (cohe-
sion), which makes summarisation also a reading-
to-write (RW) task (Delaney, 2008). Moreover,
summaries have a distinctive feature for annotation:
a largely shared knowledge base, i.e., the source
text(s) known both to the writer and to the rater(s),
which assists raters in their judgment and helps
develop a reliable text-specific scoring tool.

In this paper we present a model for automatic
scoring of summaries based on analysing a rhetori-
cal structure of a student’s summary compared to
that of reference summaries. Our starting point is
coherence conceptualized as a construct consist-
ing of three elements: a rhetorical relation and its
two arguments. We posit that expository text has
a rhetorical structure (RS) consisting of a series
of text-specific rhetorical segments, the majority
of which will be conveyed in a coherent summary
if full text-level comprehension is achieved. The
model uses a discourse parser to extract rhetorical
structures of summaries, and then compares simi-
larity of these structures. We show that the scores
produced by the model correlate with the expert-
assigned cohesion and coherence scores as well as
with surface indices of cohesion. We also show that
the model-produced scores can be used to improve
cohesion score prediction.

2 Related Work

Automatic assessment of text quality can include
content, language accuracy, sophistication and style

Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 4651
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as well as sometimes overlapping features such as
topic similarity, focus, coherence, cohesion, read-
ability, or text organisation and development, e.g.,
(Pitler et al., 2010; Yannakoudakis and Briscoe,
2012; Guo et al., 2013; Rahimi et al., 2015; Gao
etal., 2018). Coherence is a broad concept assessed
by different automatic tools, e.g., (Higgins et al.,
2004; Yannakoudakis and Briscoe, 2012; Burstein
etal., 2013). Scoring measures may include surface
features such as word or text length or the number
of pronouns and connectives, e.g., (Yannakoudakis
and Briscoe, 2012; MacArthur et al., 2018), which
may also be contextualised, e.g., (Pitler et al., 2010).
Source overlaps may also be used in scoring such as
overlapping n-grams in summaries (Madnani et al.,
2013), and semantic similarity (e.g,. LSA) may
provide information on relatedness between words,
e.g., lexical chaining (Somasundaran et al., 2014),
sentences (Foltz et al., 1998; Higgins et al., 2004;
Higgins and Burstein, 2007), or larger text sections
(Crossley and McNamara, 2010). Both types of fea-
tures (surface and LSA) are encompassed by Coh-
Metrix (Graesser et al., 2004; McNamara et al.,
2014), a comprehensive computational tool using a
range of measures to grasp cognitive aspects of text
analysis. Moreover, inter-sentential coherence can
be measured using syntax-based entity grids (Barzi-
lay and Lapata, 2008), for example, to distinguish
between high- and low-coherence essays (Burstein
etal., 2010), or analysing discourse relations (Pitler
and Nenkova, 2008; Skoufaki, 2009).

In order to improve the predictive value of auto-
matic assessment, scoring measures are often com-
bined. For example, Pitler and Nenkova (2008) use
entity grids, syntactic features, discourse relations
(Prasad et al., 2008), vocabulary, and length fea-
tures. Yannakoudakis and Briscoe (2012) examine
different measures and find that semantic similar-
ity is the best addition to lexical and grammati-
cal features. Somasundaran et al. (2014) combine
lexical chains, grammar, word usage, mechanics,
and RST discourse relations (Mann and Thomp-
son, 1988) in L1 and L2 texts, while Higgins et al.
(2004) use semantic similarity together with dis-
course structure to measure relatedness to the essay
question and between discourse segments. More
recently, Sladoljev-Agejev and Snajder (2017) com-
bine reference-based and linguistic features (e.g.,
Coh-Metrix, BLEU, ROUGE) to predict coherence
and cohesion in college student summaries in L2.

The coherence assessment model presented here
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relies on summaries as a RU/RW task which con-
sists of detecting and conveying the RS of the
source text. Similar to Higgins et al. (2004), we
use semantic similarity and rhetorical structure
to assess coherence of student summaries against
summaries written by experts. While Higgins et
al. measured the coherence of functional discourse
segments (e.g., thesis, conclusion) via semantic
similarity between their respective sentences, in
our study coherence is measured via similarity be-
tween rhethorical structures. Our intuition relies
on the establishment of source macrostructure as a
coherence-building exercise during reading. Such
an approach appears to be cognitively valid and
may ensure meaningful feedback both in terms of
comprehension and writing skills development or
assessment. Our model is constrained by the source
content, so we also compare its performance to
cohesion features provided by Coh-Metrix in (Sla-
doljev-Agejev and Snajder, 2017) to assess generic
RW skills.

3 Summary Scoring Model

The summary scoring model works by comparing
the RS of a student summary against the rhetori-
cal structures of one or more reference summaries.
The model produces a score that indicates to what
extent the two structures overlap.

Discourse parsing. To extract the rhetorical rela-
tions and their arguments, we use the PDTB-style
parser of Lin et al. (2014), a state-of-the-art, end-to-
end parser which labels instances of both implicit
and explicit relations as well as their argument
spans. The PDTB relation labels are organized
in a three-level hierarchy of “sense tags” (Prasad
et al., 2008). The parser recognizes the first two
levels: relation Category (e.g., Comparison) and
Type (e.g., Contrast). The end-to-end performance
of the parser, measured as F1-score under partial
argument matching, is 48%. The output of this
step is, for each summary S, a set of rhetorical
relations {r;};, where r; = (l;,a},a?) is a rela-
tion of class/type label /;, while ail and a? are text
segments corresponding to its arguments.

Comparing rhetorical structures. When com-
paring the similarity of summaries’ rhetorical struc-
tures, we want the model to assign high scores to
pairs of summaries that have many rhetorical re-
lations in common. Of course, we cannot expect
the arguments of rhetorical relations to be literally



the same, but, if two relations of the same label
are to be considered equivalent, their correspond-
ing arguments should be highly semantically sim-
ilar. We formalize this intuition by defining the
weight w;; between a pair of rhetorical relations
ri = (L, Jand r; = (lj,ajl-,a2~) as:

J
wij:{

where s(+, -) is the semantic similarity between two
text segments. In line with much of recent work,
we rely on additive compositionality of word em-
beddings, and compute the semantic similarity as
the cosine similarity between averaged word em-
beddings of the two segments. We use the 300-
dimensional skip-gram word embeddings built on
the Google-News corpus (Mikolov et al., 2013).!
To compute the overlap score between a pair of
summaries S7 and So, each consisting of a set of
rhetorical relations, we use the maximum bipartite
graph matching algorithm (Kuhn, 1955). The graph
edges represent pairs of relations (r;, r;), r; € S,
r; € S9, weighted by Wi Let ng = |Sl‘ and
ny = |S2| be the number of rhetorical relations
in 57 and S, respectively, and m the maximum
matching score between S and S5. We define the
precision (P) and recall (R) of the match as:

1 .2

2 (s(ai, aj

0

)+S(a?,a§

) ifl =1,
otherwise.
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The intuition is that precision is maximized if all
relations from S; are perfectly matched to some
relations from S2, and conversely for recall. The
F1-score is the harmonic mean of P and R. Finally,
we compute the F1-score of a student’s summary S
as the mean of pairwise F1-scores between S and
both reference summaries.

4 Evaluation

Dataset. For model evaluation, we adopt the
dataset of (Sladoljev-Agejev and Snajder, 2017).
The dataset consists of a total of 225 text-present
summaries (c. 300 words) of two articles written by
114 first-year business undergraduates in English
as L2 (mostly upper intermediate and advanced).
Both articles (c. 900 words each) were taken from
The Economist, a business magazine. Two expert

'https://code.google.com/archive/p/word2vec/
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raters used a 4-point analytic scale (grades 0-3) to
assess the summaries in terms of coherence (RU)
and cohesion (RW). The scales were quantified
by defining the number of coherence and cohe-
sion breaks. Descriptors for each grade included
expressions such as “meaningfully related ideas”
and “logical sequencing” (for coherence) and “lin-
guistically connected text segments” (for cohesion).
Inter-rater reliability (weighted kappas) was 0.69
for coherence and 0.83 for cohesion. The raters
discussed and agreed on all the grades although
reliability was adequate. As expected, we observe
a strong correlation between coherence and cohe-
sion scores (Spearman correlation coefficient of
0.64). All the summaries were checked for spelling
and basic grammar. For the two articles from The
Economist, two experts with considerable experi-
ence with business texts in English wrote 300-word
summaries following the same instruction as the
students.

Comparison with expert-assigned scores. To
assess the validity of the summary scoring model,
we measure the correlations of P, R, and F1 scores
produced by the model against expert-provided
coherence and cohesion scores, considering both
Class and Type levels of PDTB relations. Table 1
shows the results. We can make several observa-
tions. First, while all the scores correlate posi-
tively with both cohesion and coherence, correla-
tion for coherence is consistently lower, possibly
due to the role of the raters’ prior knowledge, which
is unavailable to the model (also note that inter-
annotator agreement is lower for coherence than
for cohesion). Second, correlation for Type level
is consistently lower than for Class level, which
can probably be traced to the PDTB parser being
less accurate on Type-level relations. Lastly, we
note that the highest correlation with both cohe-
sion and coherence is achieved with the F1-score
of the Class level model. These results suggest that
the proposed summary scoring model is at least
partially successful in modeling both cohesion and
coherence — and this in spite of the unavoidable
errors of the PDTB parser and errors in similarity
computations.

Comparison with Coh-Metrix indices. As
mentioned in the introduction, a number of studies
have used Coh-Metrix cohesion indices as predic-
tors of both cohesion and coherence. In partic-
ular, Sladoljev-Agejev and Snajder (2017) found



Class Level Type Level
P@C R@C Fl@C P@T R@T Fl@T
Chs 0.218 0320 0444 0.207 0.295 0.426
Chr 0.105 0297 0381 0.071 0.257 0.337

Table 1: Spearman correlation coefficients between
expert-assigned cohesion (Chs) and coherence (Chr)
scores and model-produced scores (P, R, and F1) for
Class and Type levels of PDTB connectives. The high-
est correlations for cohesion and correlation are shown
in boldface. All correlations except those shown in ital-
ics are statistically significant (p<0.05).

Expert scores Model scores

Coh-Metrix index Chs Chr Fl1@C Fl1@T
CNCAdd 0.375 0.229 0.545 0.495
CNCLogic 0.453 0.330 0.492 0.409
CNCAll 0.408 0.289 0.477 0.421
CRFAOa 0.430 0.405 0.342 0.320
CRFCWOa 0.416 0.364 0.278 0.278

Table 2: Spearman correlation coefficients between
Coh-Metrix indices (connectives — CNC, referential co-
hesion — CRF) and expert-assigned cohesion (Chs) and
coherence (Chr) scores as well as model-produced F1
scores at Class level (F1@C) and Type level (F1@T)
of PDTB connectives. The highest correlations in each
column are shown in boldface. All correlations are sta-
tistically significant (p<0.05).

modest correlation between expert-assigned coher-
ence/cohesion and indices for connectives (addi-
tive connectives — CNCAdd, logical connectives —
CNClLogic, and all connectives — CNCAII) and ref-
erential cohesion indices (mean of noun/pronoun
overlaps between two sentences — CRFAOa, and
content word overlap — CRFCWOA). It is there-
fore interesting to investigate to what extent these
surface-level predictors correlate with the scores
of our model. Table 2 gives Spearman correla-
tion coefficients between the Coh-Metrix indices
and expert-provided scores as well as the Class-
and Type-level F1-scores of the model. The Coh-
Metrix indices correlate positively with both the
expert-assigned scores and the scores of our model.
However, while CNCLogic and CRFOAo indices
mostly correlate with the expert-assigned cohesion
and coherence scores, respectively, the scores of
our model mostly correlate with the CNCAdd in-
dex.

Supervised scoring. Following Sladoljev-Age-
jev and Snajder (2017), we frame the automated
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Model / Features Chs Chr
Baseline 0.369 0.361
Ridge / CM 0.489 0.409
Ridge/RS 0.476*  0.419
Ridge/ CM+RS 0.511* 0414

Table 3: Accuracy of cohesion (Chs) and coherence
(Chr) scores predictions for the baseline and ridge
regression models with Coh-Metrix (CM), rhetorical
structure (RS), and combined (CM+RS) feature sets.
The best results are shown in bold. The “*” indicates a
statistically significant difference to baseline (p<0.05,
Wilcoxon signed-rank test). The differences between
regression models with the CM feature set and models
with RS and CM+RS feature sets are not statistically
significant.

scoring as a multivariate regression task and use
two regression models, one for cohesion and the
other for coherence, each trained to predict the
expert-assigned score on a 0-3 scale. We use an
L2-regularized linear regression model (ridge re-
gression)2 and consider three sets of features: (1)
five Coh-Metrix CNC and CRF indices (“CM”),
(2) the Fl1-scores of the summary scoring model
computed at Class and Type levels (“RS”), and (3)
a combination of the two (“CM+RS”). We evaluate
the models using a nested 10x5 cross-validation:
the models’ performance is measured in terms of
accuracy averaged over the five outer folds, after
rounding the predictions to closest integers and lim-
iting the scores to the 0-3 range. All the features
are z-scored on the train set, and the same trans-
formation is applied on the test set. As baselines,
we use the rounded average of the expert-assigned
scores.

Table 3 shows the results. We can make three
main observations. Firstly, cohesion models out-
perform the corresponding coherence models. Sec-
ondly, the only two models for which the differ-
ences against the baseline are statistically signifi-
cant are the two cohesion models that use RS. This
suggests that our model does provide useful signals
for predicting expert-assigned cohesion scores. In
the absence of statistical significance, the results
for coherence are inconclusive, though we observe
a similar trend.

5 Conclusion

We have described a model for coherence scoring
based on a simple definition of coherence in line

>We use the implementation of Pedregosa et al. (2011).



with cognitive theories of text comprehension. The
model produces scores that correlate with expert-
assigned scores and improve the cohesion predic-
tion of a regression model: a model that uses rhetor-
ical structure scores as features yields a statistically
significant improvement over the baseline of aver-
aged expert-assigned scores. The proposed model
could provide a basis for meaningful feedback in
summaries and other similar tasks, and may also
be used for measuring gist reasoning in case of a
shared knowledge base between the rater and the
examinee.
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Abstract

This paper reports on the BEA-2019 Shared
Task on Grammatical Error Correction (GEC).
As with the CoNLL-2014 shared task, par-
ticipants are required to correct all types
of errors in test data. One of the main
contributions of the BEA-2019 shared task
is the introduction of a new dataset, the
Write&Improve+LOCNESS corpus, which
represents a wider range of native and learner
English levels and abilities. Another contribu-
tion is the introduction of tracks, which con-
trol the amount of annotated data available to
participants. Systems are evaluated in terms
of ERRANT Fj 5, which allows us to report
a much wider range of performance statistics.
The competition was hosted on Codalab and
remains open for further submissions on the
blind test set.

1 Introduction

The Building Educational Applications (BEA)
2019 Shared Task on Grammatical Error Correc-
tion (GEC) continues the tradition of the previ-
ous Helping Our Own (HOO) and Conference
on Natural Language Learning (CoNLL) shared
tasks (Dale and Kilgarriff, 2011; Dale et al., 2012;
Ng et al., 2013, 2014) and was motivated by the
need to re-evaluate the field after a five year hia-
tus. Although significant progress has been made
since the end of the last CoNLL-2014 shared
task, recent systems have been trained, tuned and
tested on different combinations of metrics and
corpora (Sakaguchi et al., 2017; Yannakoudakis
et al., 2017; Chollampatt and Ng, 2018a; Ge
etal., 2018; Grundkiewicz and Junczys-Dowmunt,
2018; Junczys-Dowmunt et al., 2018; Lichtarge
et al., 2018; Zhao et al., 2019). Thus one of the
main aims of the BEA-2019 shared task is to once
again provide a platform where systems can be re-
evaluated under more controlled conditions.
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With this in mind, another significant contribu-
tion of the BEA-2019 shared task is the introduc-
tion of a new annotated dataset, the Cambridge
English Write & Improve (W&I) and LOCNESS
corpus, which is designed to represent a much
wider range of English levels and abilities than
previous corpora. This is significant because sys-
tems have traditionally only been tested on the
CoNLL-2014 test set, which only contains 50 es-
says (1,312 sentences) on 2 different topics writ-
ten by 25 South-East Asian undergraduates (Ng
et al., 2014). In contrast, the W&I+LOCNESS test
set contains 350 essays (4,477 sentences) on ap-
proximately 50 topics written by 334 authors from
around the world (including native English speak-
ers). We hope that this diversity will encourage the
development of systems that can generalise better
to unseen data.

Another difference to the previous shared tasks
is the introduction of tracks; namely the Re-
stricted, Unrestricted and Low Resource track.
While annotated data was comparatively scarce
five years ago, it has since become more avail-
able, so we can now control what resources par-
ticipants have access to. The Restricted track is
closest to the original shared tasks, in that we spec-
ify precisely which annotated learner datasets par-
ticipants should use, while the Unrestricted track
allows use of any and all available datasets. The
Low Resource track, in contrast, significantly lim-
its the amount of annotated data available to par-
ticipants and encourages development of systems
that do not rely on large quantities of human-
annotated sentences. A goal of the Low Resource
track is thus to facilitate research into GEC for lan-
guages where annotated training corpora do not
exist.

Like CoNLL-2014, the main evaluation met-
ric was Fg 5, which weights precision twice as
much as recall. Unlike CoNLL-2014 however, this

Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 5275
Florence, Italy, August 2, 2019. (©2019 Association for Computational Linguistics



Input | Travel by bus is exspensive , bored and
annoying .
Output | Travelling by bus is expensive , boring

and annoying .

Table 1: An example input and output sentence.

is calculated using the ERRANT scorer (Bryant
et al., 2017), rather than the M? scorer (Dahlmeier
and Ng, 2012), because the ERRANT scorer can
provide much more detailed feedback, e.g. in
terms of performance on specific error types. Offi-
cial evaluation is carried out on the Codalab com-
petition platform, where a separate competition is
created for each track. More details and links can
be found on the official shared task website.!

The remainder of this report is structured as fol-
lowed. Section 2 first summarises the task in-
structions and lists exactly what participants are
asked to do. Section 3 next introduces the new
W&I+LOCNESS corpus and describes how it was
compiled. Section 3 also describes the other cor-
pora that allowed in the shared task, including
their formats and how they were standardised, and
reports on a Cross-corpora error type comparison
for the first time. Section 4 next outlines each
of the tracks and their restrictions, while Sec-
tion 5 discusses the evaluation procedure. Sec-
tion 6 next introduces the shared task participants
and summarises each of their approaches, before
Section 7 presents and analyses the final results.
Appendix A contains more details about corpora
and results.

2 Task Instructions

Participants are required to correct all grammati-
cal, lexical and orthographic errors in written plain
text files, one tokenised sentence per line, and are
asked to produce equivalent corrected text files
as output (Table 1). All text is tokenised using
spaCy v1.9.0 and the en_core_web_sm-1.2.0
model.?

Having produced a corrected text file, partici-
pants can then upload it to Codalab where it is au-
tomatically evaluated and a score returned. This
procedure is the same for all tracks.

"https://www.cl.cam.ac.uk/research/nl/
bea2019st/
https://spacy.io/
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A B C N Total
Train
Texts 1,300 1,000 700 - 3,000
Sentences 10,493 13,032 10,783 - 34,308
Tokens 183,684 238,112 206,924 - | 628,720
Dev
Texts 130 100 70 50 350
Sentences 1,037 1,290 1,069 998 4,384
Tokens 18,691 23,725 21,440 23,117 86,973
Test
Texts 130 100 70 50 350
Sentences 1,107 1,330 1,010 1,030 4,477
Tokens 18,905 23,667 19,953 23,143 85,668
Total
Texts 1,560 1,200 840 100 3,700
Sentences 12,637 15,652 12,362 2,018 43,169
Tokens 221,280 285,504 248,317 46,260 | 801,361

Table 2: W&I (A, B, C) and LOCNESS (N) corpus
statistics.

3 Data

This shared task introduces new annotated
datasets: the Cambridge English Write & Improve
(W&I) and LOCNESS corpus.

3.1 Cambridge English Write & Improve

Write & Improve? is an online web platform that

assists non-native English students with their writ-
ing (Yannakoudakis et al., 2018). Specifically, stu-
dents from around the world submit letters, stories,
articles and essays in response to various prompts,
and the W&I system provides automated feed-
back. Since 2014, W&I annotators have manually
annotated some of these submissions with correc-
tions and CEFR ability levels (Little, 2006).

3.1.1 Corpus Compilation

Although users can submit any kind of text to the
Write & Improve system, texts are first filtered
before they are sent to the annotators to remove,
for example, essay fragments, technical essays,
copied website text, and non-English text. Al-
though different versions of the same essays may
be annotated to build up an annotated essay revi-
sion history, we only selected final revisions for
inclusion in the W&I corpus.

We also ignored essays that met at least one of
the following conditions:

e The text contained fewer than 33 words.

e More than 1.5% of all characters in the text
were non-ASCIIL.

e More than 60% of all non-empty lines were
both shorter than 150 characters and did not
end with punctuation.

‘https://writeandimprove.com/



The precise values of these conditions were
tuned manually such that they prioritised ‘cleaner’
texts while maintaining a large enough pool at
each CEFR level. The last condition was designed
to filter out texts that had been formatted to fit
within a certain page width and so contained ex-
plicit new lines; e.g. “This is a \n broken sen-
tence.” Such sentences were often tokenised in-
correctly.

Since evaluation in GEC is typically carried out
at the sentence level, we also wanted to make sure
there was an even distribution of sentences at each
CEFR level. We thus split the data on this basis,
taking into account the fact that beginner essays
tend to be shorter than more advanced essays. As
CEFR levels are originally assigned at the essay
level, sentence level CEFR labels are an approx-
imation, and it is possible that the same sentence
might receive a different label in a different text.

We ultimately selected 3,600 annotated sub-
missions from W&I, which we distributed across
training, development and test sets as shown in Ta-
ble 2. We additionally annotated the test set a total
of 5 times to better account for alternative correc-
tions (cf. Bryant and Ng, 2015).

3.2 LOCNESS

Since most GEC research has traditionally focused
on non-native errors, we also wanted to incorpo-
rate some native errors into the shared task. To
do this, we used the LOCNESS corpus, a collec-
tion of approximately 400 essays written by native
British and American undergraduates on various
topics (Granger, 1998).4

Since these essays were typically much longer
than the texts submitted to Write & Improve,
we first filtered them to remove essays longer
than 550 words. We also removed essays that
contained transcription issue XML tags, such as
<quotation>and <illegible>.

There are not enough essays to create an anno-
tated LOCNESS training set, so we extracted a de-
velopment and test set which was annotated by the
W&I annotators. Like the W&I corpus, we also
controlled the amount of native data in each set in
terms of sentences to ensure a roughly even dis-
tribution at all levels. The test split was again an-
notated a total of 5 times to match the W&I test

*nttps://uclouvain.be/en/
research-institutes/ilc/cecl/locness.
html
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Sentences Tokens
FCE-train 28,350 454,736
FCE-dev 2,191 34,748
FCE-test 2,695 41,932
Lang-8 1,037,561 | 11,857,938
NUCLE 57,151 1,161,567

Table 3: FCE, Lang-8 and NUCLE corpus statistics.

set. The statistics of this dataset are also shown in
Table 2.

3.3 Other Corpora

We allow the use of several existing learner cor-
pora in the Restricted track of the shared task.
Since these corpora were previously only available
in different formats, we make new standardised
versions available with the shared task (Table 3).

FCE The First Certificate in English (FCE) cor-
pus is a subset of the Cambridge Learner
Corpus (CLC) that contains 1,244 writ-
ten answers to FCE exam questions (Yan-
nakoudakis et al., 2011).

Lang-8 Corpus of Learner English Lang-8 is
an online language learning website which
encourages users to correct each other’s
grammar. The Lang-8 Corpus of Learner
English is a somewhat-clean, English subset
of this website (Mizumoto et al., 2012; Tajiri
et al.,, 2012). It is distinct from the raw,
multilingual Lang-8 Learner Corpus.

NUCLE The National University of Singapore
Corpus of Learner English (NUCLE) consists
of 1,400 essays written by mainly Asian un-
dergraduate students at the National Univer-
sity of Singapore (Dahlmeier et al., 2013). It
is the official training corpus for the CoNLL-
2013 and CoNLL-2014 shared tasks.

3.4 Corpus Standardisation

Since FCE and NUCLE were annotated accord-
ing to different error type frameworks and Lang-
8 and W&I+LOCNESS were not annotated with
error types at all, we re-annotated all corpora au-
tomatically using ERRANT (Bryant et al., 2017).
Specifically, we:

1. Tokenised the FCE and W&I+LOCNESS us-
ing spaCy v1.9.0. Lang-8 and NUCLE were
pre-tokenised.



2. Used ERRANT to automatically classify the
human edits in parallel FCE, NUCLE and
W&I+LOCNESS sentences.

3. Used ERRANT to automatically extract and
classify the edits in parallel Lang-8 sen-
tences.

Note that as Lang-8 is not annotated with ex-
plicit edits, it only consists of parallel sentence
pairs. We consequently used ERRANT to align
the sentences and extract the edits automatically.
While we could have also done the same for the
other corpora, we instead chose to preserve and
re-classify the existing human edits. Table 4 thus
shows the ERRANT error type distributions for all
these corpora, and makes them comparable for the
first time.

In terms of edit operations, all corpora are fairly
consistent with respect to the distribution of Miss-
ing (M) Replacement (R) and Unnecessary (U)
word edits. Replacement edits are by far the most
frequent category and account for roughly 60-65%
of all edits in all datasets. Missing word edits ac-
count for roughly 20-25% of remaining edits, al-
though this figure is noticeably lower in FCE and
NUCLE. Unnecessary word edits account for 10-
15% of all edits, although this figure rises to al-
most 20% in NUCLE. One possible explanation
for this is that the NUCLE corpus also has more
determiner (DET) errors, which are known to be
problematic for Asian learners. Each corpus also
contains roughly 2-3% of Unknown (UNK) edits
that annotators identified but were unable to cor-
rect. UNK edits do not exist in Lang-8 because it
was never annotated with edit spans.

NUCLE contains more than twice the propor-
tion of noun number (NOUN:NUM) errors com-
pared to the other corpora. This is possibly be-
cause noun number was one of the five error types
targeted in the CoNLL-2013 shared task. Annota-
tor focus might also account for the slightly higher
proportion of determiner and subject-verb agree-
ment (SVA) errors, which were also among the
five targeted error types.

There is a significant difference in the propor-
tion of punctuation (PUNCT) errors across cor-
pora. Punctuation errors account for just 5% of all
errors in NUCLE, but almost 20% in W&I. This is
possibly because W&I contains data from a much
wider range of learners than the other corpora. A
similar pattern is observed with other (OTHER)
errors, which account for over 25% of all errors

This are a sentence .

1 2| |R:VERB:SVA| | |is|||-REQUIRED-| | |[NONE]| | |0
3 31| IM:ADJ]| | |good]| | | -REQUIRED-| | [NONE| | |0

1 2| |R:VERB:SVA| | |is| | |-REQUIRED-| | |NONE]| | |1
-1 -1|||noop| | |-NONE~-| | |REQUIRED]| | |-NONE~-| | |2

oo P 0

Figure 1: Example M2 format with multiple annota-
tors.

in NUCLE and Lang-8, but roughly 13% of all er-
rors in the FCE and W&I+LOCNESS. We surmise
this is because edits are longer and noisier in the
first two corpora (cf. Felice et al., 2016) and so do
not fit into a more discriminative ERRANT error
category.

3.5 Data Formats

All the above corpora are released in M2 for-
mat, the standard format for annotated GEC files
since the CoNLL-2013 shared task. The FCE
and W&I+LOCNESS corpora are additionally re-
leased in an untokenised JSON format in case re-
searchers want to inspect the raw data.

In M2 format (Figure 1), a line preceded by S
denotes an original sentence while a line preceded
by A indicates an edit annotation. Each edit line
consists of the start and end token offsets of the
edit, the error type, the tokenised correction string,
a flag indicating whether the edit is required or op-
tional, a comment field, and a unique annotator ID.
The penultimate two fields are rarely used in prac-
tice however.

A ‘noop’ edit explicitly indicates when an anno-
tator/system made no changes to the original sen-
tence. If there is only one annotator, noop edits are
optional, otherwise a noop edit should be included
whenever at least 1 out of n annotators considered
the original sentence to be correct. This is some-
thing to be aware of when combining individual
M2 files, as missing noops can affect results.

Figure 1 can thus be interpreted as follows:

[3P8L

e Annotator 0 changed “are” to “is” and in-
serted “good” before “sentence” to produce
the correction: “This is a good sentence .”

e Annotator 1 changed “are” to “is” to produce
the correction: “This is a sentence .”

e Annotator 2 thought the original was correct
and made no changes to the sentence: “This
are a sentence .”



W&I+LOCNESS

FCE (all) Lang-8 NUCLE | Train Dev Test
Type % % % % % %
M 21.00 26.41 19.09 25.29 | 26.32 | 24.86
R 64.39 59.99 59.04 61.43 | 61.23 | 63.40
U 11.47 13.60 19.31 10.69 | 10.21 | 10.34
UNK 3.13 0.00 2.57 2.59 2.24 1.41
ADJ 1.36 1.25 1.58 1.52 1.48 1.05
ADJ:FORM 0.28 0.19 0.27 0.24 0.21 0.18
ADV 1.94 3.37 1.95 1.51 1.51 1.45
CONIJ 0.67 0.98 0.71 0.51 0.58 0.75
CONTR 0.32 0.99 0.11 0.30 0.39 0.32
DET 10.86 11.93 15.98 11.25 | 1043 | 1041
MORPH 1.90 1.62 3.14 1.85 2.07 2.50
NOUN 4.57 4.51 3.80 4.36 4.30 2.89
NOUN:INFL 0.50 0.18 0.12 0.12 0.13 0.28
NOUN:NUM 3.34 4.28 8.13 4.05 3.29 4.07
NOUN:POSS 0.51 0.35 0.61 0.60 0.87 0.93
ORTH 2.94 3.99 1.62 4.77 4.61 8.03
OTHER 13.26 26.62 25.65 12.76 | 12.84 | 15.69
PART 0.29 0.50 0.46 0.84 0.79 0.49
PREP 11.21 8.00 7.69 9.79 9.70 8.33
PRON 3.51 2.72 1.26 2.64 2.33 2.45
PUNCT 9.71 6.06 5.16 17.16 | 19.37 | 16.73
SPELL 9.59 4.45 0.26 3.74 5.07 4.63
UNK 3.13 0.00 2.57 2.59 2.24 1.41
VERB 7.01 6.52 4.31 5.86 5.27 5.09
VERB:FORM 3.55 2.56 349 3.56 3.09 3.10
VERB:INFL 0.19 0.15 0.01 0.04 0.07 0.12
VERB:SVA 1.52 1.58 347 2.23 1.94 2.28
VERB:TENSE 6.04 6.03 7.01 6.07 6.20 5.43
WO 1.82 1.18 0.66 1.64 1.25 1.40
Total Edits 52,671 | 1,400,902 44,482 | 63,683 | 7,632 -

Table 4: The ERRANT error type distributions of the FCE, Lang-8, NUCLE and W&I+LOCNESS corpora. See
Bryant et al. (2017) for more information about each error type. The distribution of the W&I+LOCNESS test data

is averaged across all 5 annotators.

4 Tracks

As parallel training data is now more readily avail-
able, a new feature of the BEA-2019 shared task is
the introduction of three tracks: Restricted, Un-
restricted and Low Resource. Each track con-
trols the amount of annotated data that is avail-
able to participants. We place no restriction on
the amount of unannotated data (e.g. for lan-
guage modelling) or NLP tools (e.g. POS tag-
gers, parsers, spellcheckers, etc.), provided the re-
sources are publicly available.

4.1 Restricted Track

The Restricted Track is most similar to the pre-
vious shared tasks in that participants are limited
to using only the official datasets as annotated
training data (i.e. the FCE, Lang-8, NUCLE and
W&I+LOCNESS). Since we do not limit unanno-
tated data however, system submissions are still
not entirely comparable given that they might use,
for example, different amounts of monolingual or
artificially-generated data.
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4.2 Unrestricted Track

The Unrestricted Track is the same as the Re-
stricted Track except participants may use any and
all datasets and resources to build systems, includ-
ing proprietary datasets and software. The main
aim of this track is to determine how much better
a system can do if it has access to potentially much
larger amounts of data and/or resources.

4.3 Low Resource Track

The Low Resource Track is the same as the
Restricted Track, except participants are only
allowed to use the W&I+LOCNESS development
set as annotated learner data. Since current
GEC systems exploit as much annotated data as
possible to reach the best performance, we hope
this track will motivate work in GEC for other
languages. We place no restriction on how partic-
ipants use the W&I+LOCNESS development set;
e.g. as a seed corpus to generate artificial data or
to tune parameters to the shared task.



5 Evaluation

Systems are evaluated on the W&I+LOCNESS
test set using the ERRANT scorer (Bryant et al.,
2017), an improved version of the MaxMatch
scorer (Dahlmeier and Ng, 2012) that was pre-
viously used in the CoNLL shared tasks. As in
the previous shared tasks, this means that sys-
tem performance is primarily measured in terms of
span-based correction using the Fy 5 metric, which
weights precision twice as much as recall.

In span-based correction, a system is only re-
warded if a system edit exactly matches a refer-
ence edit in terms of both its token offsets and cor-
rection string. If more than one set of reference
edits are available (there were 2 in CoNLL-2014
and 5 in BEA-2019), ERRANT chooses the refer-
ence that maximises the global Fy 5 score, or else
maximises true positives and minimises false pos-
itives and false negatives. ERRANT is also able to
report performance in terms of span-based detec-
tion and token-based detection (Table 5).

Although the W&I+LOCNESS training and de-
velopment sets are released as separate files for
each CEFR level, the test set texts are combined
and shuffled such that the sentence order in each
essay is preserved, but the order of the CEFR
levels is random. This is done because systems
should not expect to know the CEFR level of an in-
put text in advance and should hence be prepared
to handle all levels and abilities. In Section 7,
we nevertheless also report system performance in
terms of different CEFR and native levels, as well
as in terms of detection and error types.

5.1 Metric Justification

Since robust evaluation is still a hot topic in GEC
(cf. Asano et al.,, 2017; Choshen and Abend,
2018), we also wanted to provide some additional
evidence that ERRANT Fj 5 is as reliable as Max-
Match Fy 5 and other popular metrics (Felice and
Briscoe, 2015; Napoles et al., 2015). We evalu-
ated ERRANT in relation to human judgements
on the CoNLL-2014 test set using the same setup
as Chollampatt and Ng (2018b), and found sim-
ilar correlation coefficients (Table 6). Although
this table shows that no metric is superior in all
settings, the main advantage of ERRANT is that
it can also provide much more detailed feedback
than the alternatives; e.g. in terms of error types.
We hope that researchers can make use of this in-
formation to build better systems.
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6 Participants and Approaches

A total of 24 different teams took part in the BEA-
2019 shared task across all 3 tracks. Of these, 21
submitted to the Restricted Track, 7 submitted to
the Unrestricted Track, and 9 submitted to the Low
Resource Track. This also meant 7 teams submit-
ted to 2 separate tracks while 3 teams submitted to
all 3 tracks.

Only 14 teams submitted system description pa-
pers however, with a further 4 sending short de-
scriptions by email. The full list of teams, their
approaches, and the data and resources they used
in each track are shown in Table 8 (Appendix A.1).
We refer the reader to the system description pa-
pers (where available) for more detailed informa-
tion. Additionally: i) although Buffalo submitted
to all 3 tracks, their paper does not describe their
Low Resource system, ii) LAIX submitted exactly
the same system to both the Restricted and Unre-
stricted Track, and iii) TMU submitted 2 separate
papers about their respective Restricted and Low
Resource Track systems.

While past GEC systems have employed differ-
ent approaches, e.g. rules, classifiers, and statis-
tical machine translation (SMT), in contrast, ap-
proximately two-thirds of all teams in the BEA-
2019 shared task® used transformer-based neural
machine translation (NMT) (Vaswani et al., 2017),
while the remainder used convolutional neural net-
works (CNN), or both. Although they were most
likely inspired by Junczys-Dowmunt et al. (2018)
and Chollampatt and Ng (2018a), who previously
reported state-of-the-art results on the CoNLL-
2014 test set, the main consequence of this is
that systems could only be differentiated based on
lower-level system properties, such as:

How much artificial data was used, if any, and
how it was generated.

How much over-sampled data was used, if
any, and in what proportion.

e How many models were combined or ensem-

bled.
Whether system output was re-ranked.

Whether the system contained an error detec-
tion component.

SBased on those that submitted system descriptions.



Original I often look at TV | Span-based Span-based Token-based

Reference [2, 4, watch] Correction Detection Detection

Hypothesis 1 [2, 4, watch] Match Match Match

Hypothesis 2 [2, 4, see] No match Match Match

Hypothesis 3 [2, 3, watch] No match No match Match

Table 5: Different types of evaluation in ERRANT.
Corpus Sentence 7 Results

Metric Pearsonr Spearman p Kendall 7
ERRANT 0.64 0.626 0.623 All system output submitted to Codalab during the
m? 0.623 0.687 0.617 test phase was automatically annotated with ER-
GLEU 0.691 0.407 0.567 RANT and compared against the gold standard
I-measure -0.25 -0.385 0.564

Table 6: Correlation between various evaluation met-
rics and human judgements.

For example, Shuyao, UEDIN-MS and
Kakao&Brain respectively trained their systems
on 145 million, 100 million and 45 million
artificial sentences, while CAMB-CUED instead
concentrated on optimising the ratio of official
to artificial sentences. TMU meanwhile focused
entirely on re-ranking in their Restricted Track
system, and AIP-Tohoku, CAMB-CLED, Web-
SpellChecker and YDGEC each incorporated
sentence and/or token based detection compo-
nents into their systems. Since most systems used
different combinations of similar techniques, it is
difficult to determine which were most successful.
For example, several teams used artificial data, but
they each generated it using different methods and
corpora, so it is unclear which method performed
best with respect to all the other uncontrolled
system variables.

For the Low Resource track, many teams sub-
mitted the same Restricted Track systems except
trained with the WikEd Corpus (Grundkiewicz
and Junczys-Dowmunt, 2014) or other Wikipedia-
based revision data. Notable exceptions include
CAMB-CUED, who used Finite State Transduc-
ers (FST) to rank confusion sets with a language
model; LAIX, who augmented their transformer
NMT model with a series of 8 error-type specific
classifiers; and TMU, who mapped ‘cross-lingual’
word embeddings to the same space to induce a
phrase table for a SMT system. These systems
hence represent promising alternatives in a heav-
ily transformer NMT dominated shared task.
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references. Although this meant there was a mis-
match between the automatically annotated hy-
potheses and the human annotated gold references,
we deliberately chose this setting to remain faith-
ful to the gold-standard training data and previous
shared tasks. See Appendix A.7 for more on com-
paring gold and automatic references.

We also set a limit of a maximum of 2 submis-
sions during the test phase to prevent teams from
optimising on the test set. The best results, in
terms of span-based correction ERRANT F 5, are
used for the official BEA-2019 shared task results,
and all scores are presented in Table 7.

7.1 Restricted Track - Overall

Since many teams used very similar approaches,
it may be unsurprising that many of the Restricted
Track scores were very similar. For example, the
Fy 5 difference between the teams that ranked 3-5
was 0.17%, and the precision difference between
the teams that ranked 4-6 was 0.47%. We thus
carried out significance tests between all teams
in each track using the bootstrap method (Efron
and Tibshirani, 1993) based on Fj 5 (1,000 itera-
tions, p > .05), and grouped systems that were
not significantly different. The resulting groups
showed that, for example, there was no signifi-
cant difference between the top 2 teams and that
the top 11 teams fit into 4 statistically significant
groups. Groups were defined such that all teams in
each group were statistically similar. This means,
for example, that although ML@IITB was simi-
lar to YDGEQ, it was different from Shuyao and
the other teams in Group 2, and so was placed in
Group 3 instead.

The top 2 teams in Group 1 scored significantly
higher than all the teams in Group 2 most likely
because both these teams 1) trained their systems
on artificial data generated using error type distri-



Restricted

Group | Rank | Teams TP FP FN P R Fos

1 UEDIN-MS 3127 1199 2074 | 72.28 60.12 69.47

1 2 Kakao&Brain 2709 894 2510 | 75.19 5191 69.00

3 LAIX 2618 960 2671 | 73.17 49.50 66.78

4 CAMB-CLED 2924 1224 2386 | 70.49 55.07 66.75

2 5 Shuyao 2926 1244 2357 | 70.17 5539 66.61

6 YDGEC 2815 1205 2487 | 70.02 53.09 65.83

7 ML@IITB 3678 1920 2340 | 65.70 61.12 64.73

3 8 CAMB-CUED 2929 1459 2502 | 66.75 5393 63.72

9 AIP-Tohoku 1972 902 2705 | 68.62 42.16 60.97

4 10 UFAL 1941 942 2867 | 67.33 40.37 59.39

11 CVTE-NLP 1739 811 2744 | 68.20 38.79 59.22

5 12 BLCU 2554 1646 2432 | 60.81 51.22 58.62

6 13 IBM 1819 1044 3047 | 63.53 3738 55.74

14 TMU 2720 2325 2546 | 5391 51.65 5345

7 15 giuwenbo 1428 854 2968 | 62.58 3248 52.80

16 NLG-NTU 1833 1873 2939 | 49.46 38.41 46.77

8 17 CAI 2002 2168 2759 | 48.01 42.05 46.69

18 PKU 1401 1265 2955 | 52.55 32.16 46.64

9 19 SolomonLab 1760 2161 2678 | 44.89 39.66 43.73

10 20 Buffalo 604 350 3311 | 63.31 1543 39.06

11 21 Ramaiah 829 7656 3516 9.77 19.08 10.83

Unrestricted

Group | Rank | Teams TP FP FN P R Fos

1 LAIX 2618 960 2671 | 73.17 49.50 66.78

1 2 AIP-Tohoku 2589 1078 2484 | 70.60 51.03 65.57

2 3 UFAL 2812 1313 2469 | 68.17 5325 64.55

3 4 BLCU 3051 2007 2357 | 6032 56.42 59.50

4 5 Aparecium 1585 1077 2787 | 59.54 3625 52.76

5 6 Buffalo 699 374 3265 | 65.14 17.63 42.33

6 7 Ramaiah 1161 8062 3480 | 12.59 25.02 13.98
Low Resource

Group | Rank | Teams TP FP FN P R Fos

1 1 UEDIN-MS 2312 982 2506 | 70.19 47.99 064.24

2 2 Kakao&Brain 2412 1413 2797 | 63.06 46.30 58.80

3 LAIX 1443 884 3175 | 62.01 31.25 51.81

3 4 CAMB-CUED 1814 1450 2956 | 55.58 38.03 50.88

4 5 UFAL 1245 1222 2993 | 50.47 29.38 44.13

6 Siteimprove 1299 1619 3199 | 44.52 28.88 40.17

5 7 WebSpellChecker | 2363 3719 3031 | 38.85 43.81 39.75

6 8 TMU 1638 4314 3486 | 27.52 3197 2831

7 9 Buffalo 446 1243 3556 | 26.41 11.14 20.73

Table 7: Official BEA-2019 results for all teams in all tracks using the main overall span-based correction ER-
RANT Fy 5. The highest values (lowest for False Positives and False Negatives) are shown in bold.

butions and confusion sets, and 2) re-ranked their
system output. In contrast, Shuyao used a similar
method to generate artificial data, but did not re-
rank, while CAMB-CLED used back-translation
to generate artificial data, but did re-rank. This
suggests that confusion set approaches to artifi-
cial data generation are more successful than back-
translated approaches.

7.2 Unrestricted Track - Overall

Since participants were allowed to use any and all
datasets in the Unrestricted Track, we expected
scores to be higher, but the highest scoring team
actually submitted exactly the same system to the
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Unrestricted Track as they did to the Restricted
Track. The top 2 teams in the Restricted Track
could thus also have scored highest on this track if
they did the same.

Of the remaining teams, AIP-Tohoku and
UFAL increased their scores by approximately
5 Fos using non-public Lang-8 and parallel
Wikipedia data respectively, BLCU added a more
modest 1 Fy 5 similarly using non-public Lang-
8 data, and Buffalo added roughly 3 Fy 5 using
artificial data generated from a subsection of the
English Gigaword corpus (Graff and Cieri, 2003).
While it is unsurprising that larger quantities of
training data tended to lead to higher scores, these



results help quantify the extent to which perfor-
mance can be improved by simply adding more
data.

7.3 Low Resource Track - Overall

The teams that came top of the Restricted Track
also dominated in the Low Resource Track. The
UEDIN-MS system even outperformed 14 of the
Restricted Track submissions despite the limited
training data. This is most likely because UEDIN-
MS and Kakao&Brain both made effective use of
artificial data.

The CAMB-CUED system also achieved a
fairly competitive score despite not using any par-
allel training data. This contrasts with LAIX, who
scored higher by 1 Fy 5 using a complicated sys-
tem of classifiers, CNNs and transformer NMT
models. The TMU system is also notable for
applying techniques from unsupervised SMT to
GEC for the first time (cf. Artetxe et al., 2018).
Although it performed poorly overall, it took
several years to adapt supervised SMT to GEC
(Junczys-Dowmunt and Grundkiewicz, 2016), so
we hope researchers will continue to explore un-
supervised SMT in future work.

8 Conclusion

It is undeniable that significant progress has been
made since the last shared task on grammati-
cal error correction five years ago. Transformer
based neural machine translation proved effective,
and teams generally scored significantly higher
in BEA-2019 than in the previous CoNLL-2014
shared task. This is significant because we also
introduced a new corpus, the Cambridge English
Write & Improve + LOCNESS corpus, which con-
tains a much wider range of texts at different abil-
ity levels than previous corpora, yet systems still
generalised well to this much more diverse dataset.

Overall, the most successful systems were sub-
mitted by UEDIN-MS (Grundkiewicz et al., 2019)
and Kakao&Brain (Choe et al., 2019) who re-
spectively ranked first and second in both the Re-
stricted and Low Resource Tracks. UEDIN-MS
additionally scored just 5 Fg 5 lower in the Low
Resource Track (64.24) than the Restricted Track
(69.47), which shows that it is possible to build a
competitive GEC system without large quantities
of human annotated training data.

Finally, we note that the appendix contains a
much more fine-grained analysis of system perfor-
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mance in terms of CEFR levels, edit operations,
error types, single vs. multi token errors, detec-
tion vs. correction, and a comparison with other
metrics. Some key findings include:

e There was a clear indication that different
systems performed better at different CEFR
levels.

o All systems still struggle most with content
word errors.

e Systems are significantly better at correcting
multi token errors than they were 5 years ago.

e The GLEU metric (Napoles et al., 2015)
strongly correlates with recall and seems to
be less discriminative than other metrics.

We ultimately hope that the results and cor-
pus statistics we report will serve as useful bench-
marks and guidance for future work.
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A.2 CEFR Levels

Since one of the main contributions of the BEA-
2019 shared task was the introduction of new data
annotated for different proficiency levels, we anal-
ysed each team in terms of their CEFR and Native
level performance. The Fy 5 results for each team
and level are thus plotted in Figure 2.

The top 10 teams in the Restricted Track all per-
formed best on C level texts, while the bottom 11
systems typically performed best on A level texts:
a clear indication that some systems are more bi-
ased towards different learner levels than others.
Different systems may also be differently suited
to correcting different error types. For example,
while punctuation errors are fairly rare at levels A
and B, they are much more common at levels C
and N. Conversely, noun number errors are com-
mon at levels A and B, but are rarer at levels C and
N. Consequently, system performance at different
CEFR levels is affected by each system’s ability to
correct specific error types.

The bottom 13 teams in the Restricted Track
also typically struggled most with the native level
texts. For example, there is an almost 15 Fy 5
gap between AIP-Tohoku’s N level result and their
next lowest CEFR level. Since we did not release
any native level training data, we note that some
systems failed to generalise to the levels and do-
mains that they could not train on. In contrast,
Low Resource Track submissions tended to score
highest on native level texts, perhaps because sev-
eral were trained on corrupted native data which
may be more similar to the N level texts than the
genuine learner data.

A.3 Edit Operation

Results for each team in terms of Missing, Re-
placement and Unnecessary word errors are shown
in Table 9. These results mainly provide a high
level overview of the types of errors systems were
able to correct, but can also be used to help iden-
tify different system strengths and weaknesses.
For example, UEDIN-MS only ranked 7th in terms
of correcting missing word errors, but made up for
this by scoring much higher at replacement and
unnecessary word errors, suggesting their system
could be improved by paying more attention to
missing word errors.

In contrast, Kakao&Brain scored highest at
missing word errors, but came 2nd in terms of re-
placement word errors and 7th in terms of unnec-
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essary word errors. Although they also achieved
the highest precision out of all teams in terms of
unnecessary word errors, they did so at the cost
of almost half the recall of the UEDIN-MS sys-
tem. This suggest that Kakao&Brain should in-
stead focus on improving unnecessary word error
correction. That said, it is also worth reiterating
that approximately 65% of all errors are replace-
ment word errors, compared to 25% missing and
10% unnecessary, and so it is arguably more im-
portant to focus on replacement word errors more
than any other category.

In the Restricted Track, ML@IITB and BLCU
respectively scored highest in terms of recall on
missing and unnecessary word errors. This per-
haps suggests that ML@IITB’s strategy of only
paying attention to the top 500 most frequent miss-
ing word errors paid off, while BLCU’s artificial
data generation method treated all edit operations
equally, and so was perhaps more highly opti-
mised for unnecessary word errors.

In the Low Resource Track, UEDIN-MS was
again the dominant system in terms of replace-
ment and unnecessary word errors, although
Kakao&Brain again came top in terms of miss-
ing word errors. There was also a larger dis-
crepancy between certain teams’ operation scores
and, for example, UFAL scored 43.36 and 50.91
Fo.5 on missing and replacement word errors, but
just 14.89 Fy 5 on unnecessary word errors, while
WebSpellChecker scored 60.40 Fy5 on missing
word errors, but just 34.13 and 28.63 on replace-
ment and unnecessary word errors. These results
suggest that some systems are more heavily bi-
ased towards some edit operations than others, but
researchers can hopefully use this information to
overcome their system’s weaknesses.

A.4 Single vs. Multi Token Edits

In addition to error types, we also examined sys-
tem performance in terms of single and multi to-
ken edits, where a multi token edit is defined as
any edit that contains 2 or more tokens on at least
one side of the edit; e.g. [eat — has eaten] or
[only can — can only]. Systems were evaluated in
this setting mainly because Sakaguchi et al. (2016)
previously advocated fluent, rather than simply
grammatical, edits in GEC, yet fluency edits of-
ten involve multi token corrections. When Bryant
et al. (2017) evaluated the CoNLL-2014 systems
in terms of multi token edits however, they found



Restricted M R U

Team P R F0.5 P R F0.5 P R F0.5
UEDIN-MS 70.20 64.38 68.95 | 73.10 5842 69.60 | 73.10 60.23 70.11
Kakao&Brain 79.39 65.70 76.22 | 72.51 47.83 65.73 | 76.33 3391 61.05
LAIX 79.01 58.79 7393 | 70.22 46.67 63.78 | 73.68 40.66 63.39
CAMB-CLED 73.30 64.32 71.31 | 69.88 50.27 64.82 | 66.05 59.51 64.63
Shuyao 75.53 61.14 72.14 | 67.36 53.13 6394 | 72.61 53.62 67.81
YDGEC 7572 59.99 7195 | 69.60 47.86 63.80 | 60.92 64.17 61.54
ML@IITB 74.05 73.37 7391 | 63.87 5336 6145 | 53.78 67.98 56.13
CAMB-CUED 67.81 66.84 67.62 | 66.35 47.59 61.50 | 6540 5647 63.39
AIP-Tohoku 71.56 48.63 65.39 | 69.26 37.73 59.34 | 61.56 54.70 60.05
UFAL 71.02 47.76 64.72 | 66.11 36.73 56.99 | 64.72 4531 59.61
CVTE-NLP 68.50 40.22 60.05 | 68.96 38.55 59.56 | 6291 37.20 55.27
BLCU 63.86 50.21 60.57 | 63.16 4836 59.52 | 50.48 68.02 53.23
IBM 71.88 48.40 65.52 | 59.56 33.58 51.58 | 61.70 31.59 51.82
™U 63.85 57.26 6242 | 52.55 4932 51.87 | 42.79 5294 44.50
giuwenbo 58.94 2599 47.01 | 64.64 3434 5495 | 56.04 33.63 4945
NLG-NTU 56.68 41.46 52.80 | 48.74 36.09 45.55 | 41.80 45.66 42.52
CAI 55.59 48.01 53.89 | 46.81 39.45 45.12 | 39.64 44.04 4045
PKU 66.60 3543 56.64 | 4939 30.16 43.80 | 48.15 3841 45.82
SolomonLab 53.18 25.38 43.62 | 45.62 44.18 45.33 | 33.72 38.26 34.54
Buffalo 5743  7.38 2437 | 6424 17.62 4201 | 6224 16.22 39.71
Ramaiah 4731 28.04 41.59 6.23 14.71 7.04 | 11.69 27.50 13.21
Unrestricted M R U

Team P R F()_5 P R F0_5 P R F0_5
LAIX 79.01 58.79 7393 | 70.22 46.67 63.78 | 73.68 40.66 63.39
AIP-Tohoku 7223 54.83 67.92 | 7270 4738 65.68 | 60.47 63.59 61.07
UFAL 69.21 54.28 65.60 | 6947 5138 6490 | 61.03 61.23 61.07
BLCU 64.61 53.85 62.13 | 63.27 54.50 61.30 | 47.26 70.93 50.64
Aparecium 63.61 38.29 56.18 | 58.89 37.36 52.80 | 53.33 24.02 42.87
Buffalo 70.64 9.49 30.87 | 65.03 19.65 4449 | 61.24 20.26 43.60
Ramaiah 55.06 31.99 48.12 | 9.14 22.02 1035 | 11.53 2848 13.09
Low Resource M R U

Team P R F0_5 P R F0_5 P R F0_5
UEDIN-MS 69.65 55.92 66.39 | 71.56 46.77 64.70 | 61.16 33.11 52.30
Kakao&Brain 70.12 61.76 68.27 | 59.00 41.10 54.28 | 60.98 31.45 51.33
LAIX 68.19 41.30 60.33 | 59.11 27.03 47.77 | 59.07 31.32 50.18
CAMB-CUED 55.05 22.13 4242 | 57.65 4197 53.64 | 46.46 4530 46.22
UFAL 57.82 21.68 43.36 | 5843 33.61 5091 | 14.64 16.01 14.89
Siteimprove 80.10 17.16 46.21 | 4276 33.33 4047 | 34.78 22.71 31.44
WebSpellChecker | 60.72 59.14 60.40 | 33.96 34.80 34.13 | 25.65 53.63 28.63
™U 3525 58.81 3832 | 21.78 1853 21.04 | 18.74 26.72 19.93
Buffalo 2722 1194 21.67 | 26.22 1195 21.16 | 25.00 3.05 10.24

Table 9: This table shows the performance of each team in each track in terms of Missing, Replacement and
Unnecessary token edits. In terms of frequency, approximately 25% of all edits are M, 65% are R, and 10% are U

(cf. Table 4). The highest scores for each column are shown in bold.
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Figure 2: The Fy 5 scores for each team in each track in terms of CEFR and native levels: A (beginner), B

(intermediate), C (advanced) and N (native).

that only 3 out of 12 teams achieved scores higher
than 10 Fy 5, prompting them to conclude that sig-
nificant progress must be made before fluency cor-
rections become a viable option.

With this in mind, we are pleased to report that
Figure 3 shows systems have indeed made signif-
icant progress in terms of correcting multi token
edits, and in fact almost all teams scored higher
than 20 Fy 5, with an average of 42 Fp5. While
systems still scored higher in terms of single token
errors overall, this is most likely because single to-
ken errors are not only typically easier to correct
than multi token errors, but are also much more
frequent and tend to account for roughly 70-80%
of all edits.
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It is also noteworthy that Kakao&Brain actually
surpassed UEDIN-MS in terms of single token er-
ror performance in the Restricted Track, but fell
much shorter in terms of multi token edits. Shuyao
was also particularly adept at correcting multi to-
ken errors, coming second after UEDIN-MS over-
all. In the Low Resource track meanwhile, Siteim-
prove is notable for not correcting any multi token
errors at all, however this was because their sys-
tem only targeted a limited number of single token
error types by design.

A.5 Detection vs. Correction

One aspect of system performance that is seldom
reported in the literature is that of error detection;
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Figure 3: The Fy 5 scores for each team in each track in terms of single and multi token edits. A multi token is
defined as any edit that has 2 or more tokens on at least one side of the edit.

i.e. the extent to which a system can identify er-
rors. This is significant because detection is an im-
portant task in its own right as well as the first step
in GEC. Figure 4 compares each team in terms of
span based detection, span based detection and to-
ken based correction Fy 5.

In general, all systems were fairly consistent
in terms of the difference between their detec-
tion and correction scores, with most teams scor-
ing approximately 12-17 Fg 5 higher on token
based detection than correction. CAMB-CLED
and ML@IITB are noteworthy for achieving the
2nd and 3rd highest scores in terms of token detec-
tion, although the former can be explained by the
fact that CAMB-CLED explicitly modelled detec-
tion in their approach. One of the main applica-

70

tions of this graph is thus to inform teams whether
they should focus on improving the correction of
errors they can already detect, or else extend their
systems to detect new errors.

A.6 Main Error Types

The overall F 5 scores for each of the main 24 ER-
RANT error types for each team in the Restricted
Track are shown in Table 10, while similar results
for the Unrestricted and Low Resource Tracks are
shown in Table 11. The cells in these tables have
also been shaded such that a darker red indicates a
lower score. This makes it easier to see at a glance
which error types were the hardest for all systems
to correct.
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Figure 4: The difference in Fy 5 scores in terms of span based correction, span based detection, and token based
detection (as defined in Section 5) for each team in each track.

With this in mind, the darkest columns in
these tables include adjectives (ADIJ), adverbs
(ADV), conjunctions (CONIJ), nouns (NOUN),
other (OTHER), verbs (VERB) and word order
(WO) errors. It should be made clear however,
that these categories mainly contain word choice
errors, such as [eat — consume], and that mor-
phological errors, such as [eat — eating], are var-
iously subsumed under other categories. The re-
sults indicate that while systems are fairly adept
at correcting morphological and function word er-
rors, they struggle with content word errors. Con-
tent word errors require a deeper understanding of
the text compared to morphological and function
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word errors. Such errors should not be ignored
however, and ADJ, ADV, NOUN and VERB er-
rors collectively account for over 10% of all errors,
which is equal to the 3rd most frequent error type.

In terms of error types overall, UEDIN-MS was
the most successful team and scored highest on
15/24 error types in the Restricted Track and 20/24
in the Low Resource Track. YDGEC meanwhile
came 2nd in the Restricted Track, scoring high-
est on 3/24 error types, while a handful of other
teams did best at 1 or 2 types. YDGEC is also
notable for scoring much better at adjective and
adverb errors than UEDIN-MS; it would be inter-
esting to determine why. In contrast, UEDIN-MS



performed significantly better on content word er-
rors in the Low Resource Track than their near-
est competitors, which suggests that their artificial
data generation method might also be proficient at
simulating content word errors.

Finally, the team that came 5th overall, Shuyao,
came last in terms of orthography (ORTH) errors,
even though they constitute the 5th most frequent
error type. This not only indicates a straightfor-
ward way for them to improve system, but also
demonstrates how an ERRANT error type analysis
can help guide the system development process.

A.7 All Metrics

As mentioned at the start of this section, we chose
to use gold annotated references as the official ref-
erences in the shared task even though all system
hypotheses were annotated automatically by ER-
RANT. One consequence of this however, is that
systems are unlikely to reach 100 Fy 5 even if they
produce exactly the same corrected sentences as
the references. This is because ERRANT com-
putes scores in terms of edit overlap, yet automatic
edit spans do not always match human edit spans;
for example ERRANT will merge edits such as [e
— has] and [eat — eaten] into [eat — has eaten],
but human annotators may choose to keep them
separate. Consequently, although the edits ulti-
mately produce the same correction, the automatic
hypothesis does not match the gold reference and
so the system is not rewarded. This explains why
some teams found that submitting the official cor-
rected development sentences to Codalab during
the development phase only scored ~86 Fg 5.

In this section, we additionally report system
performance using automatic references instead of
gold references. While it may seem unorthodox
to use automatic references instead of gold refer-
ences, the main advantage of this setting is that all
the edits in the hypothesis and reference files are
classified under exactly the same conditions. This
not only means hypothesis edits are more likely
to match the reference edits, but also that the offi-
cial corrected sentences will score the maximum
100 Fy 5 on the development and test sets. Ta-
ble 12 hence shows that the ERRANT Fj 5 scores
of almost all teams in all tracks increased when
compared against the automatic references, which
indicates that systems are now rewarded for valid
edits that were previously overlooked.
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In addition to evaluating systems using gold
and automatic references with ERRANT, we also
evaluated systems using the other most popular
metrics in GEC; namely MaxMatch (Dahlmeier
and Ng, 2012), the I-measure (Felice and Briscoe,
2015), and GLEU (Napoles et al., 2015). The re-
sults, as well as how they affect each team’s rank-
ing, are also shown in Table 12. Note that the I-
measure and GLEU are unaffected by the differ-
ences between gold and auto references and so are
only reported once in this table.

Although we see that the rankings do change
depending on the metric and type of reference,
UEDIN-MS still came top in all settings in both
the Restricted and Low Resource Tracks. While
Kakao&Brain also consistently came second in al-
most all metrics, the exception was GLEU in the
Restricted Track where they dropped to 5th. The
overall GLEU rankings deviate significantly from
the other metrics and also strongly correlate with
recall. For example, ML@IITB, BLCU and TMU
all ranked much better under GLEU, on account of
their higher recall, while LAIX dropped from 3rd
to 9th because their system emphasised precision.
We additionally note that the range in scores for
the top 19 teams in the Restricted Track was less
than 7.5 using GLEU, but over 25 Fy 5 for both
ERRANT and MaxMatch and 40 in terms of the
I-measure. We thus conclude that GLEU is less
discriminative than other metrics.

Finally, although MaxMatch Fj 5 scores tended
to be higher than ERRANT Fj 5 scores in both
the gold and auto reference settings, we note that
MaxMatch exploits a dynamic alignment to artifi-
cially minimise the false positive rate and hence
produces slightly inflated scores (Bryant et al.,
2017). We also note that despite previous research
that suggested MaxMatch correlates more strongly
with human judgements than the I-measure (cf.
Section 5), the I-measure still ranked the top 10
Restricted Track systems in exactly the same or-
der as MaxMatch Fy 5. We hope that these results
will encourage researchers to investigate further
and perhaps develop better evaluation practices.



Restricted

ADJ NOUN NOUN NOUN

Teams ADJ FORM ADV CONJ CONTR DET MORPH NOUN INFL. NUM  POSS ORTH
UEDIN-MS 43.48 8333 4941  48.67 84.75 75.67 79.31 41.17  91.95 79.92 83.68  82.10
Kakao&Brain 42.68 74.07 4741 19.23 98.21 70.24 70.45 31.82 7778 7532 68.97 7577
LAIX 46.05 54.05 45.11  16.67 76.92 70.07 74.16 3409 8152  67.40 6332  73.02
CAMB-CLED 41.94 7895 51.65 2846 77.92 71.87 76.47 34.75 67.31 71.12 69.05  80.69
Shuyao 47.37 83.33 56.64 40.00 91.67 73.10 70.54 3333 7229 7390 66.67 5041
YDGEC 53.10 7692 55.02 3226 75.47 70.42 67.46 2584 7759 7342 64.63  71.08
ML@IITB 19.90 53.57 46.04 58.14 68.97 72.53 63.62 17.73 23.62  72.52 68.63  67.29
CAMB-CUED 50.30 6522 53.69 36.08 74.47 68.33 72.48 34.05 52.08 7121 6931  78.61
AIP-Tohoku 41.67 9091 = 51.92  28.17 81.82 68.09 58.69 2996  69.77  69.64 58.59  65.85
UFAL 43.48 74.07  50.00  32.79 83.33 63.23 72.29 2524  60.61 65.02 5263  75.68
CVTE-NLP 46.73 83.33 4386 45.45 86.54 59.56 62.37 2924 86.96  68.54 6122 7246
BLCU 50.00 83.33  44.12  29.70 61.64 64.30 65.53 2229 6842  66.69 58.14  75.63
IBM 28.30 66.67 0.00 0.00 65.22 57.64 51.37 12.58 0.00 62.19 2475 5335
T™U 24.62 58.14 3229  39.82 79.37 61.65 63.69 2232 7292 6053 7330 7476
giuwenbo 38.14 62.50 43.15 16.13 54.05 53.78 57.32 2332 86.96  64.57 45.00 70.18
NLG-NTU 12.82 41.67 3474  36.04 70.00 53.09 49.38 938 5882 5578 60.13  69.15
CAI 19.48 4545 3125 2846 90.16 49.31 54.01 1460 5882 5221 64.71  70.28
PKU 35.97 62.50 34.19 2532 81.40 59.79 58.46 13.00 60.00 63.66 4054  69.94
SolomonLab 17.42 6250 52.08 2344 77.78 53.23 36.62 12.82 | 87.63  57.58 57.02  59.15
Buffalo 36.76 58.82 « 26.32 0.00 50.00 37.13 49.36 18.63 57.14  52.90 18.52 5355
Ramaiah 3.26 55.56 | 12.86 3.40 41.67 23.10 33.86 0.80 0.00 40.61 17.24 58.60
Freq. (%) 1.05 0.18 1.45 0.75 0.32 10.41 2.50 2.89 0.28 4.07 0.93 8.03

VERB VERB VERB VERB

Teams OTHER PART PREP PRON PUNCT SPELL VERB FORM  INFL SVA TENSE WO
UEDIN-MS 45.59 6690 71.81 6847 67.87 82.71 59.27 7952 9722  86.74 6620  54.27
Kakao&Brain 34.36 73.53 65.56  67.12 78.17 76.12 43.33 71.65 96.77 83.11 63.08  47.69
LAIX 23.99 68.42 6285 62.99 75.66 72.82 30.30 75.80  86.21 78.95 56.92  47.32
CAMB-CLED 38.95 74.07 6540 6455 75.02 77.51 39.80 75.63 93.75 80.08 60.82 5271
Shuyao 40.49 69.54 6586 67.68 76.41 77.22 53.52 78.02 9722 8037 60.55  59.47
YDGEC 37.13 75776 6553  54.69 70.01 71.37 49.28 77.11 100.00  78.37 62.04  50.65
ML@IITB 31.75 6584 6735 62.86 75.89 67.93 49.19 75.93 86.96  84.40 58.82  60.14
CAMB-CUED 35.50 7225 59.85  61.57 72.64 73.44 40.13 73.43 89.29 7921 55.60 5256
ATIP-Tohoku 34.77 69.67 60.59 51.17 70.42 70.77 42.19 71.51 62.50  75.55 5439  46.75
UFAL 29.79 5435 5582 5774 70.44 63.32 44.75 7436 7143 7781 51.48 4752
CVTE-NLP 24.79 67.01 51.16 5457 64.36 75.73 40.60 69.26 9459 7297 49.13  47.62
BLCU 30.36 58.06 59.17 48.11 66.72 66.39 45.57 7129  96.77  76.06 50.66  61.92
IBM 15.10 51.02 4895 4340 66.81 66.80 21.38 62.50 0.00 | 70.82 51.66  36.89
T™U 23.84 52.88 54.62 4532 70.83 63.17 32.94 63.64 9459  73.85 49.16  43.00
giuwenbo 22.16 58.82 41.19 52.63 48.94 74.36 30.94 66.19  86.21 71.68 4419  44.60
NLG-NTU 16.41 62.50 4543 47.39 62.23 53.64 32.44 6040  73.53  66.06 42.04 4181
CAI 17.98 48.00 43.71 4224 60.57 56.14 2522 56.58 9459  66.36 33.83  28.07
PKU 14.73 63.73 4996 5256 61.46 60.00 27.23 69.90  80.00 71.43 4438 4570
SolomonLab 16.20 6291 4873  37.38 26.38 66.67 29.32 50.71 89.29  59.27 38.80  39.80
Buffalo 7.68 4762 21.01 31.03 30.17 50.00 11.47 6532 3846 6529 34.05 12.05
Ramaiah 0.73 38.46 2190 22.85 51.28 5.63 3.95 48.78 5882 5297 3232 3438
Freq. (%) 15.69 0.49 8.33 2.45 16.73 4.63 5.09 3.10 0.12 2.28 5.43 1.40

Table 10: Main error type ERRANT F 5 scores for each team in the Restricted Track. Darker red indicates a lower
score. The percent frequency of each type in the test set is also shown.
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Unrestricted

ADJ NOUN NOUN NOUN
Teams ADJ  porm ADV CONJ CONTR DET MORPH NOUN | o' \um poss ORTH
LAIX 4605 5405 4511 | 1667 7692  70.07 74.16 8152 6740 6332 73.02

AIP-Tohoku 5396 8333  49.08 51.14 9231  68.74 68.38 89.04 7474 7143 71.02
UFAL 5096  69.77 4603 3774 8219  66.86 70.72 7857 7143 76.04 8137
BLCU 5076 7843 4257 4362 6842  59.67 66.39 5385 6711  59.81 7579
Aparecium 39.53 55.87 52.42 4444 6593 50.56  70.69
Butffalo 43.26 53.15 5175
Ramaiah 41.30

Freq. (%) 0.75 0.32

VERB VERB VERB VERB
FORM INFL SVA TENSE WO
7580 8621 7895 5692  47.32

OTHER PART PREP PRON PUNCT SPELL VERB
68.42 6285 62.99 75.66 72.82

Teams
LAIX

AIP-Tohoku 7197 6237 6771 7234 79.40 7609 8929 7731 5975  57.18
UFAL 7576 6179 5729 7049  84.80 7261 8929 7891  59.83 4341
BLCU 63.16 5868 61.15 6586  77.81 7085 9722 7470 5541 6129
Aparecium 49.85 57.17 68.29 9375  75.04
Buffalo 7244 | 3846  71.78
Ramaiah 4782 4167 4717

Freq. (%) X . 245 16.73 X . 3.10 0.12 2.28

Low Resource

ADJ NOUN NOUN NOUN

Teams ADJ  porm ADV CONJ CONTR DET MORPH NOUN e num poss ORTH
UEDIN-MS 64.01 72.25 4113 9259  77.23 79.21  79.23
Kakao&Brain 58.17 52.40 7558  56.61 65.14
LAIX 51.35 61.71 80.00  57.36 51.16
CAMB-CUED 40.91 93.02  59.71 4739 7331
UFAL 9341 6633 64.52  70.56
Siteimprove 40.00  47.18
WebSpellChecker 56.07 49.50  67.47
T™MU 45.95
Buffalo 49.28

Freq. (%) . . K A 0.32

VERB VERB VERB VERB
OTHER PART PREP PRON PUNCT SPELL VERB FORM INFL SVA  TENSE
UEDIN-MS 73.53 62.01 62.26 62.85 84.09
Kakao&Brain 74.64 73.82
LAIX 64.42 60.64
CAMB-CUED 51.88
UFAL
Siteimprove
WebSpellChecker
T™MU
Buffalo

Freq. (%)

Teams

Table 11: Main error type ERRANT Fg 5 scores for each team in the Unrestricted and Low Resource Track. Darker
red indicates a lower score. The percent frequency of each type in the test set is also shown.
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ERRANT MaxMatch
Restricted Gold Auto Gold Auto
Teams P R F0.5 # F0.5 # F0_5 # F0,5 # I # | GLEU #
UEDIN-MS 77.87 6229 6947 17416 1]7648 1]7662 1| 3892 1 77.93 1
Kakao&Brain 80.18 5328 69.00 2 |7283 2|7409 2|7417 2| 3684 2| 7587 5
LAIX 77.03 50.19 66.78 36959 5| 7078 77079 7| 2820 7 7433 9
CAMB-CLED 7459 56.53 66.75 47011 3| 7251 3|7248 3| 3410 3 76.62 3
Shuyao 7441 5631 6661 56991 4| 7222 4|7237 4| 3322 4| 7655 4
YDGEC 7450 5449 6583 66941 6| 71.60 67120 6| 2921 6 7539 7
ML@IITB 69.69 6329 6473 76830 77197 S5 |7175 5| 3075 5 77.89 2
CAMB-CUED 7149 5563 6372 8 |6763 8| 7037 8|7044 8| 2637 8 7582 6
AIP-Tohoku 7279 4305 6097 96395 9|6595 96584 9| 1922 9 73.16 11
UFAL 71.56 4121 5939 10 | 62.37 10| 65.70 10 | 65.19 10 | 1746 10| 72.79 12
CVTE-NLP 7212 39.12 5922 11 | 61.71 12 | 63.04 12 | 63.17 12 | 16.71 11 7251 13
BLCU 65.11 5254 5862 12 | 62.14 11 | 64.82 11 | 6505 11 | 13.04 12| 7433 8
IBM 66.19 3745 5574 13 | 57.38 13 | 59.47 14 | 58.79 14 8.84 14 | 7148 |15
TMU 57.69 53.15 5345 14 | 56.72 14 | 6144 13 | 61.60 13 | -0.54 | 17 7396 10
qiuwenbo 66.56 32.84 52.80 15 | 55.22 15 | 57.70 [ 15 | 57.22 | 15 8.94 13 71.30 | 16
LG-NTU 52.54 3920 46.77 16 | 49.19 | 17 | 53.38 | 17 | 53.15 ' 17 | -1.45 [ 18 71.13 | 17
CAI 5149 4261 46.69 17 | 4943 | 16 | 53.68 | 16 | 53.56 16 | -1.49 | 19 71.68 14
PKU 54.84 3217 46.64 18 | 48.06 | 18 | 52.84 | 18 | 52.30 | 18 | -0.32 | 15 71.06 | 18
SolomonLab 47.05 39.69 43.73 [ 19 | 4537 [ 19 | 50.00 | 19 | 5040 [ 19 -3.50 [ 20| 70.56 | 19
Buffalo 65.09 15.08 39.06 | 20 | 39.14 | 20 | 40.95 | 20 | 40.13 [ 20 | -0.32 | 15 68.32 | 20
Ramaiah 1029 19.04 10.83 f21 | 11.33 [21 | 18.68 [ 21 | 18.49 [21 -21.78 | 21 56.31 | 21

ERRANT MaxMatch
Unrestricted Gold Auto Gold Auto
Teams P R F0,5 # F0.5 # F0.5 # F0.5 # I # | GLEU #
LAIX 77.03 50.19 66.78 116959 17078 37079 3| 2820 3 7433 3
AIP-Tohoku 7545 5259 6557 26941 2|7093 2|7098 2| 28.65 2 74.83 2
UFAL 7335 55.14 6455 36881 3| 71.74 1|7148 1| 29.65 1 75.83 1
BLCU 64.56 58.17 5950 4 |63.17 4 |6542 46574 4 7.08 4| 7411 4
Aparecium 61.87 36.09 5276 S5 |54.14 5 |5561 | 5|5580 | 5 5571 5 7196 = S
Buffalo 66.17 17.19 4233 | 6 |42.15 6 |4433 | 6 |43.09 | 6 425 1 6| 6877 6
Ramaiah 13.09 2494 1398 | 7 1446 [ 7| 22.10 | 7 | 2200 | 7 | -20.13 | 7 57.50 | 7

ERRANT MaxMatch
Low Resource Gold Auto Gold Auto
Teams P R Fos #| Fos #| Fos #| For5 # I #|GLEU #
UEDIN-MS 7297 4786 6424 16604 1|6734 1]6739 1| 1606 1 7430 1
Kakao&Brain 65.75 46.73 5880 2 |6080 2|6351 2|6304 2| 1523 2 7398 2
LAIX 63.86 3093 51.81 35265 3|5384 45364 4 473 3 70.76 4
CAMB-CUED 56.77 3742 5088 4 |5145 45432 35409 3| -016 4| 7186 3
UFAL 52.82 2923 44,13 5 |4548 54928 54934 5| -324 7 69.39 6
Siteimprove 4534 2826 40.17 | 6 | 4045 | 7 |4259 7 4299 | 7| -148 5 69.29 | 7
WebSpellChecker | 40.79 44.08 39.75 7 | 4141 @ 6| 4888 6 | 4808 6| -458 | 8 69.76 5
TMU 2821 31.61 2831 8 2883 83209 8 3220 8| -698 | 9 6550 | 9
Buffalo 2587 1037 2073 1 91992 = 92255 9 2163} 9| -239 6| 6582 8

Table 12: ERRANT Fj 5 scores on the official gold references are compared against automatic references and other
popular metrics. The differences in how these metrics would rank each team are also shown, where a darker red
indicates a lower rank.
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Abstract

Spelling correction has attracted a lot of atten-
tion in the NLP community. However, mod-
els have been usually evaluated on artificially-
created or proprietary corpora. A publicly-
available corpus of authentic misspellings, an-
notated in context, is still lacking. To address
this, we present and release an annotated data
set of 6,121 spelling errors in context, based
on a corpus of essays written by English lan-
guage learners. We also develop a minimally-
supervised context-aware approach to spelling
correction. It achieves strong results on our
data: 88.12% accuracy. This approach can
also train with a minimal amount of annotated
data (performance reduced by less than 1%).
Furthermore, this approach allows easy porta-
bility to new domains. We evaluate our model
on data from a medical domain and demon-
strate that it rivals the performance of a model
trained and tuned on in-domain data.

1 Introduction

This paper addresses automatic correction of
spelling errors where the misspelled string is not a
valid word in the language. Correcting non-word
spelling errors has a long history in the natural lan-
guage processing research (Kukich, 1992). Ear-
lier approaches were evaluated on spelling errors
from proprietary corpora of native English texts or
artificially generated errors in well-formed texts.
While spell checkers today are essential and ubiq-
uitous, dealing with data in a variety of “noisy”
domains poses particular challenges to traditional
spell checkers. Thus, spelling research has shifted
focus primarily to correcting spelling errors in so-
cial media data, biomedical texts, and texts written
by non-native English writers.

Non-native English speakers account for the
majority of people writing in English today, and
spelling errors are some of the most frequent er-
ror types for these writers (Ng et al., 2014). In
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some grammatical error correction approaches re-
searchers apply a spell checker prior to running
a grammar-oriented correction model (Chollam-
patt and Ng, 2018; Chollampatt et al., 2016; Ro-
zovskaya and Roth, 2016). In addition to writing-
assistance feedback, spelling correction for non-
native writers is also utilized in computer-aided
language learning applications and in automatic
scoring systems (Sukkarieh and Blackmore, 2009;
Dikli, 2006; Warschauer and Ware, 2006; Leacock
and Chodorow, 2003).

Spelling correction in learner texts is particu-
larly challenging. Non-native writers have higher
spelling error rates than native writers (Flor et al.,
2015). The types of misspellings produced by
these writers typically differ from errors produced
by native speakers. While the majority of spelling
errors produced by native speakers involve single-
character edits (Damerau, 1964), multi-character
edits are a lot more common among non-native
writers (Flor et al., 2015). Finally, learner data is
more likely to contain other errors or non-standard
usage in context, which may further complicate er-
ror correction (Flor and Futagi, 2012).

Several recent works have specifically ad-
dressed spelling correction in learner texts. How-
ever, they evaluated either on small data sets (Na-
gata et al., 2017) or on proprietary corpora (Flor,
2012). Despite several decades of research on
spelling, there is still no publicly available large-
scale corpus, explicitly and exhaustively annotated
for spelling errors. Without such data, it is difficult
to compare and track research progress in the field.

This paper makes the following contributions:

e We present a corpus of learner essays,
TOEFL-Spell, annotated for spelling errors.
This corpus can be used as a benchmark
corpus to develop state-of-the-art models for
spelling correction (Section 3).
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e We develop a minimally-supervised ap-
proach to spelling correction that combines
contextual and non-contextual information
(Section 4). We show that inclusion of
word embeddings provides information com-
plementary to other contextual features.

The proposed model is shown to be robust,
evaluated on TOEFL-Spell and on an out-of-
domain data set of clinical notes. The perfor-
mance of our model on the clinical data set
rivals that of the model trained on a corpus of
clinical notes (Section 5).

Evaluation of the contribution of contextual
features shows that contextual information
provides an error reduction of about 45%, im-
proving the correction accuracy by 10 points
on TOEFL-Spell and by 7 points on the clin-
ical data set.

Error analysis of the system on TOEFL-Spell
and on the clinical data is presented in Sec-
tion 6.

2 Related Work

A non-word misspelling is a spelling error, such
that the produced string is not a valid word in
the language. This is different from real-word
(context-sensitive) errors, for example confusing
“their” and “there” (Wilcox-O’Hearn et al., 2008).
This section provides an overview of prior work on
correction of non-word spelling errors and avail-
ability of corpora for such research.

2.1 Data Sets for Spelling Research

Traditionally, three areas of research have been
particularly interested in spelling errors: informa-
tion retrieval - for misspellings in queries, English
language learning - for misspellings made by lan-
guage learners, and medical information process-
ing - for misspellings in medical documents. Pre-
vious work used either proprietary data sets or ar-
tificially generated errors. Flor (2012) evaluated
on a large corpus of student essays, but the corpus
is not publicly available. Toutanova and Moore
(2002) and Brill and Moore (2000) similarly eval-
uated on proprietary data sets of typos collected
from native English texts.

Query spelling correction has been an impor-
tant aspect of research in the domain of infor-
mation retrieval (Hasan et al., 2015; Chen et al.,
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2007; Li et al., 2006). The MSR-Bing Web Scale
Speller Challenge (Wang and Pedersen, 2011) pre-
sented 5500 short queries, with about 10% of them
containing typographical errors. Recently, Hagen
etal. (2017) presented a large corpus of query mis-
spellings - about 54K queries, with about 9K po-
tential spelling errors. Errors were not explicitly
marked; annotators provided alternative formula-
tions, so spelling errors are deduced from compar-
ing the original and revised formulations.

For non-native spelling errors, Nagata et al.
(2011, 2017) describe a small corpus (25K words)
annotated for various errors, with only 438
spelling error tokens. Mizumoto and Nagata
(2017) refer to a newer version of that corpus, with
30K words and 654 spelling errors.

The NUCLE corpus (Dahlmeier et al., 2013)
contains 1400 essays written by students at the
National University of Singapore, and annotated
using twenty seven error codes. In this corpus,
spelling errors were included in the Mechanical
errors category that lumps together quite different
types of low-level errors - *punctuation, capitaliza-
tion, spelling and typos’. Thus, spelling errors are
marked explicitly, but not distinctively.

Heilman et al. (2014) released a corpus of 1511
learner sentences (28K words), judged for gram-
maticality on an ordinal scale. The JFLEG corpus
(Napoles et al., 2017) built on top of that data — for
each sentence they added three holistic fluency ed-
its (sentence rewrites) to correct the grammar and
also make the original text more fluent. In this cor-
pus, spelling (or other errros) are not explicitly an-
notated, which makes it difficult to isolate them for
spelling correction research. Moreover, the size of
this corpus is rather small, and there is no context
beyond the sentence level.

The Cambridge Learner Corpus First Certificate
in English (FCE) has about 2500 essays (500K
words), written by learners taking the English pro-
ficiency exam (Yannakoudakis et al., 2011). It was
annotated for 80 error types (Nicholls, 2003), in-
cluding an explicit category for spelling mistakes.
However, on closer analysis, one can find that
many spelling errors are tagged with other error
categories. Thus, its annotation is not directly suit-
able for spelling correction research.

In the biomedical domain, the largest corpus an-
notated for spelling errors is a recently released
data set of clinical notes (Fivez et al., 2017a), with
873 annotated misspellings in sentence context.



2.2 Approaches to Spelling Correction

Approaches to correcting non-word spelling errors
can be broken down into those that only consider
the characteristics of the target token when rank-
ing correction candidates, and those that also in-
clude the surrounding context. Among the for-
mer are those that compute edit distance (Leven-
shtein, 1966; Damerau, 1964) and phonetic simi-
larity between the misspelling and a candidate cor-
rection (Toutanova and Moore, 2002).

A standard approach to correcting non-word
spelling errors follows the noisy channel model
formulation (Shannon, 1948). It uses edit dis-
tance and phonetic similarity between the mis-
spelling and the candidate correction, and the can-
didate frequency (Kernighan et al., 1990; Church
and Gale, 1991; Toutanova and Moore, 2002).
Weights for different edit operations are estimated
from large training sets of annotated spelling er-
rors. This approach requires a lot of supervision:
thousands of annotated errors paired with their
corrections are used to estimate probabilities as-
sociated with different edits.

The noisy channel model can also incorpo-
rate contextual information. For instance, Brill
and Moore (2000) ranked candidate corrections
by language model scores and reduced the error
rate by 73% on correcting artificially-generated er-
rors in the Brown corpus. However, in general,
adding new features from a variety of sources is
not straightforward in the noisy channel approach.

Contextual features have been used for correct-
ing simulated non-word errors and real-word er-
rors. Carlson and Fette (2007) use a memory-
based model with context features estimated from
the Google WeblT n-gram corpus (Brants and
Franz, 2006). Use of data from the Web for
spelling correction was described by Whitelaw
et al. (2009) and Chen et al. (2007).

Flor (2012) introduced an approach to ranking
candidate corrections that combines edit distance
and phonetic distance with contextual cues, and
evaluated it on errors made by non-native English
speakers. For instance, given ‘forst’, candidate
corrections could include first, forest, frost, and
even forced. In a context like “forst fires in Yel-
lowstone”, forest is a likely candidate. For “forst
in line”, first seems more adequate. That study
demonstrated that contextual features significantly
improve spelling correction accuracy on an an-
notated corpus of spelling errors collected from
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TOEFL and GRE exam essays. It significantly
outperformed popular spellers like Aspell and the
speller in MS Word (Flor and Futagi, 2012).

3 The TOEFL-Spell Corpus

We base our data set on the publicly available ETS
Corpus of Non-Native Written English (Blanchard
etal.,, 2013, 2014), a.k.a. TOEFLI11. It consists of
essays written for the TOEFL®)iBT test, which
is used internationally as a measure of academic
English proficiency at institutions of higher learn-
ing where English is the language of instruction.
TOEFLI11 contains 12,100 essays from 11 first
language backgrounds; 1,100 essays per language,
sampled evenly from eight prompts (topics), along
with score levels (low/medium/high) for each es-
say. Each prompt poses a proposition and asks
to write an argumentative essay, stating arguments
for or against the proposition.

We sampled 883 essays, selecting among those
that received medium or high score (low-scored
essays are difficult to understand and to annotate).
The data set has 296,141 words. Essay length
ranges from 168 to 672 words, with an average
of 335 words per essay.

The selected essays were annotated by two an-
notators with linguistic background and prior ex-
perience with linguistic annotation. For each es-
say, an automatic dictionary lookup system high-
lighted strings that were not found in dictionary.
For each highlighted string, the annotator had to
determine whether it was indeed misspelled, and
to provide an appropriate correction. To ensure
the annotation is exhaustive, annotators were also
instructed to check for additional misspellings, be-
yond those highlighted.

The resulting annotation contains 6,121 spelling
errors of non-word type, which gives a word er-
ror rate of 2.07%. 35 essays had no spelling er-
rors, while the rest had between one and ten er-
rors per essay. The number of unique misspellings
is 3,958, and the number of unique correction re-
placements is 4,016. In most cases, the same er-
ror has the same correction; the average number
of unique corrections per error is 1.015.

The distribution of misspellings by edit distance
to the correct word is presented in Table 1. The
majority (82.8%) of errors differ from the cor-
rect word by just one character, and an additional
12.6% differ from the correct form by two char-
acters. This is similar to results reported by Flor



Table 1: Distribution of errors by edit distance to cor-
rect form, in TOEFL-Spell.

et al. (2015) on a different corpus of learner En-
glish. Although the majority of errors constitute
single-token edits, about 5% (296) are fusion er-
rors (e.g. ‘atleast’ for ‘at least’).

Randomly chosen, 76 essays were doubly an-
notated for calculating inter-annotator agreement.
A strict criterion was applied for agreement: two
annotations had to cover exactly the same seg-
ment of text and to specify the same correction.
Inter-Annotator Agreement was 95.6%. (Note that
Kappa statistic cannot be applied to error correc-
tion, as there are too many different responses).

The full set of annotations for TOEFL-Spell is
released and made available for research.'

4 The Spelling Correction Model

In this section, we present our benchmark model
of spelling correction, which extends the model of
Flor (2012). The spelling correction task consists
of three subtasks: detection, generating candidate
corrections, and ranking of the candidates.

4.1 Error Detection

Detection of non-word misspellings is performed
using a dictionary (lexicon). Tokens that are not
in the lexicon are considered to be misspelled.
We use a dictionary that consists of 140,000 sin-
gle words (including inflections), 100,000 multi-
word terms, and 130,000 names (including names
and surnames from various countries). The dictio-
nary includes both American and British spelling
variants, common acronyms, and foreign words.
The dictionary includes lexica from WordNet,” the
SCOWL project,3 names from US Census Data,*,
Wikipedia lists’, and various sources on the Web.

'nttps://github.com/
EducationalTestingService/toefl-spell
https://wordnet .princeton.edu/
*http://wordlist.aspell.net/dicts/
42010 Surnames, on census.gov
‘https://en.wikipedia.org/wiki/
Category:Names_by_language

Edit distance | Count | Percentage (%) Feature name | Description
1 5,066 82.76 Non-contextual features
2 769 12.56 Orthographic Inverse edit distance
3 198 3.23 similarity
>3 88 1.45 Phonetic Inverse edit distance of
Total 6,121 100 similarity phonetic representations
Word frequency | Candidate word
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frequency in language
Contextual features

N-gram support | N-gram counts in a 4-word

window (from corpus)

Dejavu Is the candidate found
elsewhere in same essay
DejavuSM Is the candidate
found as candidate for
other errors in same essay
Word Using word embeddings to
embeddings estimate candidate word’s

relatedness to context

Table 2: Description of all the features used in the can-
didate ranking module.

4.2 Candidate Generation

Candidates are generated using the dictionary de-
scribed above. Candidates include all dictionary
words within edit distance that does not exceed
half of the length of the misspelled string, with a
maximum distance of 6 characters. Both single-
token and multi-token candidates are generated, to
allow for correction of fusion errors. For each mis-
spelled token, hundreds of correction candidates
are generated, using the Ternary Search Tree data
structure (Bentley and Sedgewick, 1997).

4.3 Ranking of Candidate Corrections

The ranking step is the most challenging one and is
the focus of the most work on non-word spelling
correction (Fivez et al., 2017b). Our model uses
both the features of the misspelling+candidate pair
and the contextual information. The former in-
clude orthographic similarity, phonetic similarity,
and candidate word frequency. The contextual in-
formation includes n-gram support, an estimate of
potential re-use of words in text, and word embed-
dings. The features are listed in Table 2.
Orthographic similarity is computed as inverse
edit distance, 1/(eDist 4 1), where eDist is the
edit distance (including transpositions) between
the misspelling and the correction candidate (Lev-
enshtein, 1966; Damerau, 1964).



Phonetic similarity reflects the intuition that a
good correction should be phonetically similar to
the misspelling. It is computed as 1/(eDistPh +
1), where eDistPh is the edit distance between
the phonetic representation of the misspelling
and the phonetic representation of the candidate.
Phonetic representations are computed using the
Double-Metaphone algorithm (Philips, 2000).
Candidate frequency. A more frequent word is
more likely to be the intended word than a rare
word (Kernighan et al., 1990). Unigram word fre-
quency is computed for each candidate using the
English Wikipedia corpus.

N-gram support. For each correction candi-
date, all n-grams in the window of four context
words on each side are taken into account by the
n-gram support feature. We use co-occurrence
counts computed from the English Wikipedia cor-
pus and weighted as the Positive Normalized PMI
scores (PNPMI). Normalized PMI was introduced
by Bouma (2009), we adapt it as:

p(c, ngram)
p(c)p(ngram)
PNPMI maps all negative values to zero. For each
candidate c, all n-grams of lengths 2-to-4 words in
the context window are generated, and the PNPMI
values of each ¢, ngram pair are added.

Dejavu. This feature considers essay-wide con-
text and rewards a candidate that appears in the
same essay. Each occurrence of the candidate (or
its inflection) in the text strengthens the candidate
by the amount 1/sqrt(1 + distance), where dis-
tance is the number of tokens between the mis-
spelling and the position of the candidate in text.
DejavuSM is a feature that caters for systematic
misspellings, when a word is misspelled through-
out the essay (Flor, 2012). For each candidate cor-
rection, we search in the lists of candidate correc-
tions of other misspelled tokens in the text. Each
time the candidate or its inflection is found in
another list, the candidate is strengthened with a
score of Scc/sqrt(1 + distance), where Scc is
the current rescaled overall strength of the corre-
sponding candidate in the other list.

Word embeddings have shown a lot of success
in many NLP applications, especially for estima-
tion of semantic relatedness (Levy and Goldberg,
2014). We use word embeddings to score the con-
textual fit of correction candidates in the local con-
text of a misspelling. The idea is that for a mis-
spelling like “roat”, a correction to “road” should

logo /(—logzp(c, ngram)) (1)
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be strengthened if a word like “drive” is found in
the vicinity. Given a misspelled token, we define
a window of 15 tokens around it. For every can-
didate, we compute the cosine similarity between
the embedding vector of the candidate and the vec-
tor of each context word, and sum those values.
This is the vector-based contextual fit score for the
candidate. We use the word2vec vectors with 300
dimensions, pre-trained on 100 billion words of
Google News (Mikolov et al., 2013).°

Ranking of candidates. For each misspelled to-
ken, the feature scores of its candidate corrections
are normalized, by dividing the score of the can-
didate feature by the highest-scoring candidate on
that given feature. The final score for each candi-
date correction is computed as a weighted sum of
the feature scores for the candidate:

CandidateScore = ) wy - Sy
f

where f ranges over the seven feature types used,
Sy is the normalized score of the current candidate
by feature f, and wy is the predefined weight of
the feature. Learning of weights is described in
Section 5.

Our baseline system implements all the fea-
tures, with the exception of word embeddings.
Due to the feature formulation, each feature group
(e.g. orthographic similarity) requires only one
weight. Feature weights for the baseline model are
adopted from Flor (2012), where they were manu-
ally tuned. In the present work, feature weights are
automatically learned with a linear machine learn-
ing algorithm. We use two linear classifiers — Lo-
gistic Regression and Averaged Perceptron.

5 Experiments

We address the following research questions:

e How does the model compare to a baseline sys-

tem?

What is the contribution of individual features,
especially those that provide contextual infor-
mation?

How much training data is needed to learn a ro-
bust model?

How does the model behave on out-of-domain
data?

®https://code.google.com/archive/p/
word2vec



5.1 Experiments on TOEFL-Spell

First, we present results on error detection. The
system detected all 6,121 misspellings and flagged
43 additional words (false positives). Thus, the de-
tection recall is 100%, precision is 99.3% and F1
score is 99.65%. This result applies to all experi-
ments with the TOEFL-Spell data set. The candi-
date generation performance is over 99%, i.e. for
over 99% of the errors a valid correction is gener-
ated in the list of candidates. Note that in the can-
didate generation stage, an average of 213 candi-
date corrections is generated for each misspelling
in the TOEFL-Spell corpus.

We now evaluate the performance of the can-
didate ranking component, checking whether the
top-ranked candidate is indeed the gold correction.
The baseline system implements all the features,
except word embeddings, and uses weights from
Flor (2012). For the new approach we add the
feature computed with word-embeddings. Fea-
ture weights are learned automatically, using lin-
ear classifiers — Logistic Regression and Averaged
Perceptron.

We address the first research question above, us-
ing the TOEFL-Spell corpus in a five-fold cross-
validation. Results are presented in Table 3. Each
of the classifiers outperforms the baseline, and
the differences are statistically significant (by two-
proportions z-Test). The difference between Per-
ceptron and Logistic Regression is not significant.
The Perceptron algorithm is the best model, with
over 2 points of absolute improvement, which is
an error reduction of 15%.

Contribution of contextual and non-contextual
features. To assess the contribution of individ-
ual information sources, we perform feature ab-
lation, by removing one feature at a time. Results
are presented in Table 4. The top part of the table
shows feature ablation for non-contextual features.
The most useful is the orthographic similarity: its
removal results in a drop of almost 10 points.
Among the contextual features, n-gram support
and word2vec prove to be the most useful. No-
tably, n-gram features and word2vec supply com-
plementary information, and removing each one
of those results in a drop in performance. Interest-
ingly, the dejavu and dejavuSM features provide
almost no improvement; this result contradicts the
finding by Flor (2012). Eliminating all contextual
features lowers the performance by more than 10
points, to 77.93%. This demonstrates that contex-
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Model Accuracy
Baseline (Flor, 2012) 85.97
Logistic Regression (this work) 87.83
Perceptron (this work) 88.12

Table 3: Error correction results for the baseline model
and two linear classifiers on the TOEFL-Spell data set.
Classifiers outperform the baseline (p<<0.002).

Feature set Accuracy
Without orthographic sim. 79.84"
Without phonetic sim. 86.47"
Without word fregq. 88.07
Without dejavu 88.07
Without dejavuSM 88.01
Without word2vec 86.65"
Without ngram support 82.62"
Without contextual features 77.93"
Without non-contextual features | 65.63"
All features 88.12

Table 4: Feature ablation performance (error correc-
tion accuracy %) on TOEFL-Spell. All models are
trained with the Perceptron algorithm in 5-fold cross-
validation. Values marked by * differ significantly from
the value for All features, with p < 0.003.

tual features have a substantial contribution. Over-
all, about 45% of the inadequate corrections pro-
duced by the non-contextual model can be cor-
rected by adding context information.

How much training data is needed for a robust
model. We train the Perceptron classifier, varying
the amounts of training data between 5% and 75%
of the entire data set. We similarly perform ex-
periments using 5-fold cross-validation, with the
exception that we use less data for training each
time. 5% of the training data corresponds to about
240 spelling errors in training. Table 5 demon-
strates that even with the smallest training set the

Amount of training data | Accuracy
5% 87.67
10% 87.73
20% 87.86
50% 88.04
75% 88.07
100% 88.12

Table 5: Error correction performance (accuracy %) of
the Perceptron classifier trained on different amounts
of data, on TOEFL-Spell in 5-fold cross-validation.



drop in performance is less than 1%. In fact, the
differences between the models are not significant.

We emphasize that the noisy-channel model
requires thousands of examples to estimate the
weights of individual edits. In this paper, ortho-
graphic similarity is represented as a single fea-
ture; thus only one weight is estimated (as op-
posed to about 1000 weights for character pairs).
The same is done for our other features, which al-
lows us to train with a small amount of supervi-
sion, couple of hundred of errors.

5.2 Out-of-domain Evaluation

We evaluate the model on a data set from a
very different content domain — clinical medical
records. The genre of clinical free text poses an in-
teresting challenge to the spelling correction task,
since it is notoriously noisy (Fivez et al., 2017a;
Lai et al., 2015).

Clinical corpora typically contain higher
spelling error rates of 7% to 10%, while in native
English text error rates usually range between
0.1% and 0.4% (Ruch et al., 2003). Clinical
text contains domain-specific terminology and
language conventions. Clinical data, in addition
to highly domain-specific vocabulary, can also
be characterized by a large amount of noise, e.g.
the use of non-standard phrases and abbreviations
and is thus particularly challenging (Fivez et al.,
2017a). These properties can render traditional
spell checkers less effective (Patrick et al., 2010).

We use a data set of clinical notes extracted
from the large MIMIC-III medical corpus (John-
son et al., 2016). The data set contains 873 man-
ually annotated misspellings (Fivez et al., 2017a).
The distribution of errors in this data set in terms
of the edit distance is very similar to that in
TOEFL-Spell (see Table 1). In particular, 83%
of errors have edit distance of 1 to the correction,
while another 15% have an edit distance of 2.

The state-of-the-art results on this data set are
reported by Fivez et al. (2017a). Their model
is tuned on artificially generated spelling errors
and trained on word and character embeddings
from MIMIC-III (note that MIMIC-III is the su-
perset of the annotated clinical data set). Their
model outperforms off-the-shelf spelling correc-
tion tools (Aspell) and the noisy channel model.
Similarly to (Fivez et al., 2017a), we accommo-
date to the medical domain by enhancing the dic-
tionary with a comprehensive medical lexicon (the
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Model Accuracy | Accuracy
off-the-shelf | completed
Fivez et al. (2017a) 88.21 93.02
Logistic Regression 87.40 89.35
Perceptron 87.63 89.00

Table 6: Clinical corpus: Performance (accuracy %)
of the state-of-the-art system that uses in-domain data,
and of the models proposed in this work.

Features Accuracy
Without orthographic sim. 58.88
Without phonetic sim. 85.68
Without word fregq. 87.51
Without dejavu 87.06
Without dejavuSM 87.74
Without word2vec 84.88
Without ngram support 85.22
Without contextual feats 80.18
Without non-contextual feats 31.73
All features 87.63

Table 7: Feature ablation performance (accuracy %) on
the clinical data set. All models are trained with the
Perceptron algorithm on TOEFL-Spell data.

UMLS®) SPECIALIST Lexicon.”)

Fivez et al. (2017a) note that some of the re-
quired rare corrections were not available even in
the medical lexicon. For this reason, they report
two versions of results: off-the-shelf (using gen-
eral+medical dictionaries), and completed lexicon
(where additional rare terms from the annotations
were added to the dictionary).

Results for off-the-shelf evaluation are reported
in Table 6. Our models were trained on TOEFL-
Spell (the same models reported in Table 3). Note
that our n-gram and embedding features are also
not from the clinical domain. In the off-the-shelf
evaluation, our models achieve performance that is
comparable to the state-of-the-art system that used
in-domain data and was tuned on the clinical cor-
pus. In the completed lexicon evaluation, the Fivez
et al. system is better: it obtained a score of 93.02
vs. 89.35 for our Perceptron algorithm. We be-
lieve that the off-the-shelf performance reflects a
more realistic scenario, as manually adding candi-
dates to the dictionary introduces bias. We further
discuss this in the next section.

"https://lexsrv3.nlm.nih.gov/
LexSysGroup/Projects/lexicon/current/
web/index.html



Finally, we evaluate the contribution of each in-
formation source on the clinical data (Table 7).
Orthographic similarity is the most useful fea-
ture, just as it is in the TOEFL-Spell data set,
and removing it results in a very big performance
drop (almost 30 points). Unsurprisingly, the or-
thographic similarity feature works well cross-
domain. The least helpful features are word fre-
quency, dejavu, and dejavuSM. This is consistent
across the two data sets. The word2vec feature
provides a slightly better improvement on the clin-
ical data (3 points vs. 2 on TOEFL-Spell), while
the n-gram feature performs slightly worse (only
2 points improvement, compared to 6 on TOEFL-
Spell). Overall, contextual features contribute 7
points here versus 10 on TOEFL-Spell. This re-
sult is expected given that contextual features are
estimated on out-of-domain data.

In sum, the experiments on the clinical data set
demonstrate that our model is robust and compet-
itive on out-of-domain data. This also stresses the
value of the TOEFL-Spell data set, on which our
model was trained.

6 Error Analysis

We perform error analysis on both data sets. We
first consider cases where the gold correction was
not selected as the top candidate. For the TOEFL-
Spell data set, our best system places the gold cor-
rection at the top of the ranked list in 88% of the
cases. If we consider the top five candidates, the
system finds the gold correction in 96.7% of the
cases. We investigate the cases where the top can-
didate is different from the gold. In 15.25% of the
cases, the top candidate and the gold are inflec-
tional variants of the same lemma (e.g. error: up-
dations, gold: updates, system-best: updating). In
11.4% of cases, the top candidate and the gold are
derivationally related (e.g. error: elastico, gold:
elasticity, system-best: elastic). In 4% of cases,
the top candidate is a close variant of the gold (e.g.
error: donot, gold: do not, system-best: don’t), or
a US/UK spelling variant (e.g. error: bahaviours,
gold: behaviours, system-best: behaviors).

For the clinical data set, the system’s top sug-
gestion is correct in 87.6% of the cases. The gold
correction appears among the top five candidates
in 96.7% of the cases (with off-the-shelf dictionar-
ies). In 29.6% of the cases with an incorrect top
candidate, the top candidate and the gold correc-
tion are inflectional variants of the same lemma, in
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14.4% of the cases they are derivationally related,
and in 3% of the cases, the top candidate simply
has an alternative spelling (e.g. cyclosporin and ci-
closporin). Overall, in 43% of the cases the system
selects a morphological variant of the gold correc-
tion. This number is lower for the TOEFL-Spell
corpus (25%).

We also checked why, in the completed lexi-
con evaluation on clinical data, our model does not
perform as well as the one by Fivez et al. (2017a).
It turns out that our model has poor accuracy on
the specially added words (41.38%). Further in-
spection shows that these manually added words
are extremely rare medical terms. As a result, con-
textual features do not fire on them. We expect that
adding medical corpora to train word embeddings
will solve this issue.

Finally, we provide some examples of errors
that our system managed to correct with contex-
tual information but failed to correct without con-
text. An example from the clinical data set: “was
thought to be cold agglutin hemolytic anemia...”.
Without context, the system chooses agglutin —
gluten. With context, the system chooses agglutin
— agglutinin, because “cold agglutinin” happens
to be a strong collocation. An example from the
TOEFL-Spell data set: “countries such as eng-
land, fance and the usa are...”. Without context,
the system prefers fance — fence, but with con-
text, it correctly chooses fance — france.

7 Conclusions

This paper addressed the problem of correcting
non-word spelling errors, with a focus on errors
occurring in noisy natural data. We presented
TOEFL-Spell, a publicly-available large data set
of authentic misspellings annotated in context.
This data set should facilitate further research on
spelling correction for noisy data.

We also presented a minimally-supervised
model for spelling correction that utilizes non-
contextual and contextual features, and does not
require a lot of training data. The model demon-
strated a state-of-the-art performance on data sets
from two noisy domains: learner data and clinical
notes. On the latter, competitive performance was
achieved, compared to a model developed specif-
ically for the medical domain and trained on in-
domain clinical data. We plan to extend this model
for handling real-word spelling errors.
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Abstract

The quantity and quality of training data plays
a crucial role in grammatical error correction
(GEC). However, due to the fact that obtain-
ing human-annotated GEC data is both time-
consuming and expensive, several studies have
focused on generating artificial error sentences
to boost training data for grammatical error
correction, and shown significantly better per-
formance. The present study explores how flu-
ency filtering can affect the quality of artifi-
cial errors. By comparing artificial data fil-
tered by different levels of fluency, we find that
artificial error sentences with low fluency can
greatly facilitate error correction, while high
fluency errors introduce more noise.

1 Introduction

Grammatical Error Correction (GEC), a NLP task
of automatically detecting and correcting gram-
matical errors in text, has received much attention
in the past few years, because of an ever-growing
demand for reliable and quick feedback to facil-
itate the progress of English learners. In a typi-
cal GEC task, an error sentence such as [ follows
his advice needs to be corrected to a grammati-
cal sentence [ follow his advice, while a grammat-
ical sentence She follows his advice should out-
put the same sentence without any modification.
Currently, neural machine translation (NMT) sys-
tems using sequence-to-sequence (seq2seq) learn-
ing (Sutskever et al., 2014) that “translate” incor-
rect sentences into correct ones, have shown to
be promising in grammatical error correction, and
several recent NMT approaches have obtained the
state-of-the-art results in GEC (e.g., Chollampatt
and Ng, 2018; Ge et al., 2018; Zhao et al., 2019).
While designing a GEC-oriented seq2seq archi-
tecture is one important aspect to achieve high
performance in grammatical error correction, the
quantity and quality of data also plays a crucial

87

Jungyeul Park'

role in the NMT approach to GEC, as NMT pa-
rameters cannot learn and generalize well with
limited training data. Due to the fact that ob-
taining human-annotated GEC data is both time-
consuming and expensive, several studies have fo-
cused on generating artificial error sentences to
boost training data for grammatical error correc-
tion. One main approach is to extract errors and
their surrounding context (the context window ap-
proach) from available annotated data, and then
apply the errors to error-free sentences naively
or probabilistically (Yuan and Felice, 2013; Fe-
lice, 2016). The other approach uses machine
back-translation, which switches the source-target
sentence pairs in GEC and learns to translate”
correct sentences into their incorrect counterparts
(Kasewa et al., 2018). While the first approach
may not generalize well to unseen errors, and the
second one may have no control over what kind
of error is produced, artificial error sentences gen-
erated from both approaches contribute to better
performance in grammatical error correction.

In this paper, we do not focus on which ap-
proach is superior in artificial error generation.
Rather, given that both approaches can generate
multiple error candidates for each correct sen-
tence, we investigate how to select the best ones
that can boost GEC performance the most. Al-
though previous studies have shown that artificial
errors that match the real error distributions tend
to generate better results (Felice, 2016; Xie et al.,
2018), we propose an alternative framework that
incorporates fluency filtering based on language
models. We evaluate four strategies of artificial er-
ror selection using different fluency ranges (from
lowest to highest) on the recent W&I+LOCNESS
test set. Our results show that three of the four
strategies lead to evident improvement over the
original baseline, which is in line with previous
findings that in general GEC benefits from artifi-

Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 87-91
Florence, Italy, August 2, 2019. (©2019 Association for Computational Linguistics



cial error data. The model trained with artificial
error sentences with the lowest fluency obtains the
highest recall among the four settings, while the
one trained with error sentences with the median
fluency achieves the highest performance in terms
of Fy 5, with an absolute increase of 5.06% over
the baseline model.

2 Related Work

Our work mainly builds on the context window
approach to artificial error generation. In this ap-
proach, all the possible error fragments (errors and
their surrounding context) and their corresponding
correct fragments are first extracted from GEC an-
notated corpora. For example, / follows his and
I follow his are the fragments extracted from the
example sentences in the first paragraph. With
these correct-incorrect fragments, for each error-
free sentence, if we find the same correct fragment
in the sentence, we can inject errors by replacing
that fragment with the incorrect one. Felice (2016)
has shown that a context window size of one, that
is, one token before and after the error words or
phrases, is able to generate a decent amount of er-
ror sentences while maintaining the plausibility of
the errors. Thus, the current study also adopts this
context window size in extracting fragments.

The current work is also inspired by the fluency
boost learning proposed in Ge et al. (2018). In
their study, sentence fluency is defined as the in-
verse of the sentence’s cross entropy. During flu-
ency boost training, the fluency of candidate sen-
tences generated by their GEC seq2seq model is
monitored. Candidate sentences with less than
perfect fluency compared to the correct ones are
appended as additional error-contained data for
subsequent training. Fluency is also used during
multi-round GEC inference, in that inference con-
tinues as long as the fluency of the output sen-
tences keeps improving. The present study uses
fluency measure in an opposite way. We examine
how the decrease of fluency in artificial error sen-
tences influences the performance of grammatical
error correction.

3 Proposed Methods

To filter candidate error sentences based on flu-
ency, our first step is to generate all the candi-
date sentences. With correct-incorrect fragment
pairs extracted from GEC annotated corpora, we
replace all correct fragments found in each error-
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free sentence with their incorrect counterparts ex-
haustively. Unlike a method described in Felice
(2016) that multiple errors can apply to one sen-
tence at the same time, we only allow one error
at a time. Table 1 shows an example of an error-
free sentence and the candidate sentences after ap-
plying all the possible error replacements. There
is only one error in each candidate sentence, and
the same position in the correct sentence can have
multiple different replacements (e.g., effects —
impacts|effect|dealing). We then calculate the flu-
ency score of each candidate sentence and select
the ones with the highest fluency, lowest fluency
and median fluency. Fluency score is measured
by sentence perplexity, the inverse probability of
the sentence based on a language model, normal-
ized by the number of words in that sentence. A
sentence’s fluency score is negatively related to its
perplexity. Our prediction is that low sentence flu-
ency (high perplexity) can facilitate error detec-
tion and correction by maximizing and highlight-
ing the difference between correct and incorrect
sentences. Conversely, artificial error sentences of
high fluency can be confusing to the model as the
difference between correct and incorrect sentences
may be subtle.

4 Experiments and Results

4.1 Dataset and evaluation

We used the four datasets — FCE, NUCLE,
W&I+LOCNESS and Lang-8 — provided in the
BEA 2019 Shared Task on GEC! as the training
data for our baseline model (in total about 1.1M
sentence pairs). Table 2 shows the summary of the
four datasets. There are slightly over half a mil-
lion error-contained sentences in these datasets,
where we extracted 1.3M correct-incorrect frag-
ments. We applied our artificial error injection
procedure to the remaining 0.6M error-free sen-
tences, and over 0.4M of them received replace-
ments. We trained a 3-gram language model on all
the correct-side sentences using KenLLM (Heafield,
2011). The language model was used to calcu-
late perplexity of artificial error sentences. From
the 0.4M sentences with error injections, we cre-
ated four different artificial datasets: one with the
highest fluency error sentences among the candi-
dates of each correct sentence, one with the low-
est, one with the median, and the last one was

"https://www.cl.cam.ac.uk/research/nl/
bea2019st/



Sentence Fluency
Correct the effects of the use of biometric identification are obvious .
Candidates: | the effects of the used of biometric identification are obvious .
the effects of use of biometric identification are obvious . Median
the effects of the using of biometric identification are obvious .
the impacts of the use of biometric identification are obvious .
the effect of the use of biometric identification are obvious . Highest
the dealing of the use of biometric identification are obvious . Lowest

Table 1: An example of an error-free sentence and its error injected candidate sentences with three levels of fluency.

Corpus # Sent Pairs
FCE (Train) 28,346
NUCLE 57,113
W&I+LO.CNESS 34.304
(Train)
LANG-8 1,037,561
Total 1,157,324
Correct 601,958
Error Injection 444,521
to Correct

Table 2: Summary of training data.

randomly selected. Each version was then com-
bined with the original error-contained sentences
and the remaining unchanged correct sentences so
that all these settings had the same number of sen-
tence pairs as in our baseline model (1.1M). The
goal of the experiment was to compare the GEC
performance trained with these four settings to the
baseline. The W&I+LOCNESS development set
of 4,382 sentences was used as validation, and
the W&IH+LOCNESS test set of 4,477 sentences as
evaluation?. All these settings were run for three
times. Performance was evaluated in terms of pre-
cision, recall and Fg5 using ERRANT (Bryant
etal., 2017).

4.2 Experimental settings

We used the 7-layer convolutional seq2seq model®
proposed in Chollampatt and Ng (2018) for gram-
matical error correction with minimal modifica-
tion. The only difference to Chollampatt and Ng
(2018) is that the word embedding dimensions in
both encoders and decoders were set to 300 rather
than 500, and the word embeddings were trained

https://competitions.codalab.org/
competitions/21922
*https://github.com/pytorch/fairseq
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separately using the error and correct side training
data instead of external corpora. Other parame-
ters were set as recommended in Chollampatt and
Ng (2018), including the top 30K BPE tokens as
the vocabularies of input and output, 1,024 x 3
hidden layers in the encoders and decoders, Nes-
terov Accelerated Gradient as the optimizer with
a momentum of 0.99, dropout rate of 0.2, initial
learning rate of 0.25, and minimum learning rate
of 10~%. A beam size of 10 was used during model
inference. No spell checker was incorporated in
the present study, either as pre-processing or post-
processing.

4.3 Experimental results

Table 3 shows the results for our baseline and
models trained with different fluency-filtered ar-
tificial errors. The model trained on the baseline
data, which include 0.6M correct sentence pairs,
performs the worst in terms of recall (18.85%), be-
cause the large proportion of the same sentences
makes the model too conservative to make correc-
tions. Indeed, true positive for the baseline model
is only 749, which is about half of that in the low-
est fluency condition. All the four models with ar-
tificial errors obtain higher recall (over 26%), but
at the expense of precision. The model with error
sentences that have the highest fluency among can-
didate sentences, in particular, drops over 15% in
precision compared to the baseline, making it the
worst model in terms of F 5 (42.86%). Error sen-
tences with the lowest fluency lead to the highest
recall (32.96%) and second highest Fg 5 (48.68%)
among all the models, while the model in the me-
dian fluency condition achieves a good balance be-
tween precision drop and recall gain, resulting in
the highest Fg 5 (49.03%).



Prec. Recall Fgs5

Original
(Baseline) 65.93 18.85 4397
Random | 55.67 27.61 46.26
Highest | 50.44 26.77 42.86
Median | 57.69 30.64 49.03
Lowest 55.27 3296 48.68

Table 3: Performance of multi-layer CNNs for GEC on
W&I+LOCNESS test set with different error data from
different fluency filtering.

5 Conclusions and Future Work

The goal of the current study was to explore how
the fluency of artificial error sentences can affect
the performance of grammatical error correction.
We greedily generated all possible error sentences
using the similar context window approach as in
Felice (2016), and then selected among candidate
sentences based on fluency score (sentence per-
plexity). As predicted, the model trained with
artificial error sentences of highest fluency per-
formed even worse than the baseline model with
a large proportion of correct sentence pairs. Mod-
els in both lowest and median fluency conditions
performed significantly better than the other three
models. The former one achieved the highest re-
call, while the latter one was more balanced with
the highest F 5. These results indicate that flu-
ency filtering can be used a means to select high-
quality artificial error sentences for grammatical
error detection and correction.

Although the present study just focused on flu-
ency and ignored error probability, the two factors
are not mutually exclusive. Rather, combining the
two approaches may generate even better artifi-
cial errors. Additionally, fluency filtering is not
restricted to the context window approach to er-
ror generation, it can be part of the machine back-
translation approach to help select among the N
best translations.

One limitation of the current study is that we
only generated one error at a time for each sen-
tence. In the training data, the 0.5M error sen-
tences contain 1.3M errors, which means that on
average each sentence has 2.4 errors. Our next
step is to explore using fluency filtering to ensure
the quality of artificial multi-error sentences and
to see if this can boost GEC performance even fur-
ther.
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Abstract

In this paper we present first results for the
task of Automated Essay Scoring for Norwe-
gian learner language. We analyze a number
of properties of this task experimentally and
assess (1) the formulation of the task as ei-
ther regression or classification, (ii) the use of
various non-neural and neural machine learn-
ing architectures with various types of input
representations, and (iii) applying multi-task
learning for joint prediction of essay scoring
and native language identification. We find
that a GRU-based attention model trained in
a single-task setting performs best at the AES
task.

1 Introduction

Automated essay scoring (AES), in the literature
also referred to as Assessment of Proficiency or
Automated Text Scoring (ATS), considers the task
of assigning a grade to a free form text, often re-
sponding to a specific prompt. Automation of this
assessment task has clear applications in language
education, where second language learners can re-
ceive feedback as to which proficiency level they
might be on, for instance in relation to the Com-
mon European Framework of Reference (CEFR)
level. This may help learners who want to take lan-
guage examination to find the appropriate timing
and level of testing, since an examination can be
both an economical and logistical inconvenience.
Automation also allows students to receive feed-
back quicker and more frequently.!

Recent work on the AES task has used both
non-neural, feature-rich approaches that make use
of a variety of linguistic features (Briscoe et al.,

!This work was performed when the first author was a
Masters student with the Language Technology Group at Uni-
versity of Oslo. Similarly, the second author took part in the
BigMed project https://bigmed.no/ hosted at Univer-
sity of Oslo.
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2010; Yannakoudakis et al., 2011; Vajjala, 2017),
and neural end-to-end architectures (Taghipour
and Ng, 2016; Alikaniotis et al., 2016). Previ-
ous work has furthermore adopted different for-
mulations of the task, either as a regression prob-
lem (Phandi et al., 2015; Taghipour and Ng, 2016)
or a classification task (Rudner and Liang, 2002;
Briscoe et al., 2010; Vajjala and Rama, 2018).
Most previous work however, with a few note-
worty exceptions (Hancke, 2013; Vajjala and Loo,
2014; Pilan et al., 2016), has been focused on En-
glish learner language.

In this paper we present first results for auto-
mated essay scoring of Norwegian learner lan-
guage. We make use of the ASK corpus of learner
language (Tenfjord et al., 2006), with added CEFR
labels (Carlsen, 2012), and compare and contrast
different formulations of the task, a number of dif-
ferent machine learning architectures and different
input representations and further experiment with
a multi-task setting with Native Language Identi-
fication as auxiliary task.

The rest of the paper is structured as follows.
We present related work in section 2 and go on
to describe the Norwegian learner corpus (ASK)
in section 3. We describe the aims of this paper
in section 4.1 and describe the data preprocessing
and the creation of training, development, and test
datasets in section 4.2. We present the results of
non-neural linear models in section 5 and CNNs
and Gated-RNNs on the development dataset in
section 6. Then, we briefly describe the results
of our experiments with native language identifi-
cation in section 7 and the subsequent results of
multitask experiments in section 8. Finally, we re-
port the results of the best linear and neural models
on the held-out test data in section 9. We summa-
rize and conclude the paper in section 10.

Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 92—102
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2 Related work

Yannakoudakis et al. (2011) present the CLC First
Certificate of English (FCE) corpus as well as
a system that makes use of deep linguistic fea-
tures, such as PoS-tags and syntactic information
and further employ a discriminative ranker that is
shown to outperform a regression approach on the
FCE corpus.

Vajjala (2017) trains linear classifiers over the
TOEFL11 corpus of non-native English (Blan-
chard et al., 2013) and the FCE corpus and makes
use of a number of linguistic features for the task,
including several different measures for lexical di-
versity, distribution of POS tags, and syntactic
complexity, as well as features capturing discourse
properties. Several of these features were based on
previous work on measuring syntactic complexity
in L2 writing by (Lu, 2010).

Alikaniotis et al. (2016) and Taghipour and Ng
(2016) both present neural systems trained and
evaluated on the ASAP Kaggle dataset of stu-
dent essays. Both formulate the AES task as
a regression task and experiment with several
types of neural architectures applied to the same
dataset, showing the best results using a bidirec-
tional LSTM with pre-trained embeddings.

Whereas much previous work has been focused
on English learner language, there has also been
some work on AES using the CEFR scale for lan-
guages other than English, viz. Hancke (2013)
for German, Vajjala and Loo (2014) for Estonian
and Pilan et al. (2016) for Swedish learner texts.
All these papers take a very similar approach to
the task, modeling essay scoring as SVM clas-
sification using a large number of lexical, mor-
phological, syntactic and semantic features. Fi-
nally, Vajjala and Rama (2018) present results
for mono-lingual, cross-lingual and multi-lingual
CEFR classification using the MERLIN corpus
(Boyd et al., 2014).

The ASK corpus (Tenfjord et al., 2006) em-
ployed in the current study, and further described
in section 3, has been used in several linguistic
studies on features of Norwegian learner language
and transfer effects from different L1 (Pepper,
2012; Golden, 2016; Vigrestad, 2016). The ASK
corpus has also been used in previous work to train
machine learning systems for Native Language
Identification (NLI). The task of NLI for English
language learners has been the subject of several
shared tasks (Tetreault et al., 2013; Schuller et al.,
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2016; Malmasi et al., 2017). Norwegian NLI has
been studied by Malmasi et al. (2015), using the
ASK corpus. In their methodology, they create ar-
tificial documents to train on by segmenting the
learner texts into sentences, then putting all the
sentences from learners with the same L1 into a
bag and sampling sentences from the bag to cre-
ate the new documents. Their rationale for the
methodology is that all the resulting documents
are of similar length, and that they eliminate the
variation between individual writers that otherwise
might present a stronger signal than the writer’s L1
alone.

In a later study, Malmasi and Dras (2017)
perform an NLI experiment on several corpora,
namely TOEFL11, the Norwegian ASK corpus
and the Jinan Chinese Learner corpus. For Nor-
wegian, they use the features such as function
word uni-/bigrams and part-of-speech n-grams.
By combining a selection of base classifiers using
a LDA meta-classifier trained with bootstrap ag-
gregation (bagging), they achieve an accuracy of
0.818 on the artificially Norwegian essay corpus.
The authors’ methodology also involves generat-
ing artificial essays which discard the discourse
properties of a text that could help in improving
the system performance at NLI task. Therefore,
we do not replicate their experiments but chose to
test our best models tuned on development split
and then report the best model on a separate test
split.

In this paper, we test several RNN models were
implemented based on the architecture described
in Taghipour and Ng (2016). We made necessary
changes to the architectures in order to accommo-
date our data. For instance, Taghipour and Ng
(2016) modelled the task as a regression problem,
where the output layer consists of a single node
with a value constrained to (0, 1) by the sigmoid
function. This layer was replaced with a softmax
layer which is described further in section 6.

3 Dataset

The ASK corpus (AndreSpraksKorpus; Tenfjord
et al.,, 2006) contains Norwegian learner essays
from two different language tests: Sprdakprgven i
norsk for voksne innvandrere and Test i norsk —
hgyere nivd,” which test proficiency at the B1 and
B2 levels, respectively. Following the naming in

*Translated to as “Language testing in Norwegian for
adult immigrants” and “Test in upper Norwegian levels”.



Carlsen (2012), we will refer to these tests as the
IL test (Intermediate Level, “Sprakprgven”) and
the AL test (Advanced Level, “Hgyere niva”).

First language AL test 1L test Total
English 100 100 200
Polish 100 100 200
Russian 100 100 200
Somali 7 100 107
Spanish 100 100 200
German 100 100 200
Vietnamese 5 100 105
Subtotal (included languages) 512 700 1212
(Albanian) 24 100 124
(Bosnian-Croatian-Serbian) 100 100 200
(Dutch) 100 100 200
(Norwegian nynorsk) 21 11 32
(Norwegian bokmal) 79 89 168
Subtotal (excluded languages) 324 400 724
Total (all languages) 836 1100 1936

Table 1: Distributions of first languages for each test
level in ASK. Texts in each test level for all L1. Lan-
guages which are not included in our CEFR-labeled
dataset are listed in parentheses.

The corpus contains 1736 texts and each doc-
ument includes metadata such as the writer’s L1:
one of German, Dutch, English, Spanish, Russian,
Polish, Bosnian-Croatian-Serbian, Albanian, Viet-
namese, and Somali. All texts from seven of these
language backgrounds, 1212 in total, have been
assigned a CEFR score at a later stage (Carlsen,
2012), and these texts comprise the subcorpus we
will be working with. In particular, all texts except
those written by learners with Dutch, Bosnian-
Croatian-Serbian or Albanian as L1 have a CEFR
score. The CEFR labels are available since work
by Carlsen (2012), and were not included in the
initial release of the corpus. Table 1 shows the
number of texts in the corpus for each native lan-
guage and at each test level.

Restricting the corpus size to only 1212 doc-
uments with CEFR scores, the number of to-
kens amounted to approximately 487,000 in total.
Other types of metadata, apart from L1 and CEFR
score, include, but are not limited to: the test level
the essay was written for, what topic the essay is
about, and the learner’s country of origin, age, and
gender. The CEFR scores in the ASK corpus range
between A2 and C1, and also include intermediate
labels between the canonical proficiency scores,
such as A2/B1 and B1/B2. Thus, the total number
of distinct CEFR scores is seven, which is more
fine-grained than the TOEFL11 corpus (Blanchard
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et al., 2013), which only uses three distinct pro-
ficiency categories, or the corpus used in Vajjala
and Rama (2018), the MERLIN corpus, where the
CEFR scores range between Al and C1, but with-
out any intermediate levels.

When examining the correlation between var-
ious types of metadata and proficiency scores in
the corpus, there are several noteworthy prop-
erties. First of all, we observe that test levels
have different distributions of proficiency. We
find that the distribution of CEFR scores corre-
sponds to the similarity of the various L1 to Nor-
wegian. The Germanic languages—German and
English—have the fewest number of essays below
B1 level in the IL test. Two non-Indo-European
languages—Vietnamese and Somali—rarely score
above B1 level in the IL test, and their mode is
A2/B1 compared to B1 for all the Indo-European
languages.

4 Methods
4.1 Aims

In this section, we describe the objectives of the
experiments reported in the paper. Apart from an
extensive analysis of the ASK corpus using linear
and neural models, we investigate whether AES
based on ASK should be modelled as a classifi-
cation task or a regression task (given that both
the approaches are common in the literature, see
section 2). We approach this question by testing
three different models namely: Logistic regres-
sion, Support Vector Regression, and SVM clas-
sification for a wide range of linguistic represen-
tation combinations. We then go on to assess the
level of performance at the AES task using neu-
ral methods? Finally, we combine both the AES
task and the NLI task under a single multi-tasking
model to check if joint training of a neural model
with two different objectives can improve the per-
formance at the AES task.

4.2 Preprocessing

The data files in the ASK corpus are in XML
format, and contain information about tags, mis-
takes and corrections, paragraphs, sentences and
more. First, the files were converted to plain
text files where all the tags or correction labels
were stripped of. The text files have one sen-
tence per line, consisting of space-separated to-
kens, and an empty line separating paragraphs.
These raw text files were then processed using the



UDPipe pipeline (Straka and Strakova, 2017) for
PoS-tagging and dependency parsing, with pre-
trained models trained on the Norwegian UD tree-
bank (@vrelid and Hohle, 2016).

Two different sets of output labels are used in
the experiments: The original seven CEFR la-
bels, and a collapsed set where the intermediate
classes, such as ‘A2/B1’, are rounded up to the
nearest canonical class, i.e., the CEFR label af-
ter the slash. This step yields only four different
labels in the collapsed set: ‘A2’, ‘B1’, ‘B2’ and
‘CI".

4.3 Reported metrics

We report both the macro and micro F;-scores for
all experiments. The metrics are reported for two
different modes: The first utilizing the full set of
classes, and the second mode involved training
and evaluating on the collapsed classes. A third
option, namely to train on the full set of classes
and reduce the predictions to the collapsed set of
classes, was also attempted, however, in practice
the best performers on the collapsed labels turned
out to be the models that were also trained on the
collapsed tags.

4.4 Data split

Since this paper reports the first results for AES
on the ASK corpus, care was taken to create well-
defined splits of the data for training, development
and final held-out testing. In an ideal scenario, the
training and testing datasets would typically have
the same distribution of classes, but the limited
amount of data makes this difficult; and, as many
as 15 combinations of language and proficiency la-
bel have fewer than three documents. Moreover,
we also took care to create splits in such a man-
ner such that there is no overlap of topics between
the splits. The reason for this split is to perform
our experiments in a real-world setting where the
model needs to be tested on topics not seen in the
training data. The final data splits follow a 8:1:1
distribution and we tried to ensure that the joint
distribution of proficiency and native language is
similar across the splits and that topics do not re-
cur across training, development, and test splits.

5 Linear models

In this section, we train and evaluate the perfor-
mance of three different linear models on the de-
velopment dataset. We use the results of this ex-
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periment to establish if AES is best modelled as
a regression or classification task for the ASK
dataset.

Classification vs. Regression As mentioned
earlier, AES can be modelled both as a classifi-
cation task and as a regression task. A disadvan-
tage with using regression for the AES task is that
while we know the correct order of classes, it is
not obvious if the distance between the adjacent
classes is always the same. For instance, we do
not know if the distance from CEFR score ‘A2/B1’
to ‘B1’ is just as ‘B1’ to ‘B1/B2’. However, we
need to be aware of this when we transform the
labels into numeric values for regression. This
challenge of quantifying distance between classes
does not apply to the classification approach, but it
does come with another problem. The multi-class
approach does not take the order of classes into
consideration which is an intrinsic property of the
class label in AES tasks.

Implementation All models in this section were
implemented using the scikit-learn (Pedregosa
etal., 2011) library. The logistic regression model
was trained with the ‘lgbfs’ solver to minimize
multinomial loss. The linear regression model
was a support vector regressor also chosen from
scikit-learn with default parameters. We experi-
ment with different types of input and use both to-
kens, character ngrams, mixed POS and function
word ngrams, and POS ngrams as inputs.

Results In order to report classification based
metrics for a regression model, we transformed the
predicted scores, which are continuous, into dis-
crete scores equivalent to the given classes. This
was done by rounding the raw regression scores
to the nearest integer. The output from the sup-
port vector regression model is not constrained to
any interval, making it necessary to additionally
clip the output values to the range of scores: [0, 6]
in our full set of labels and [0, 3] in the collapsed
set. All the macro and micro F; scores for the lin-
ear models, for both the full and collapsed sets of
classes, are reported in table 2. The Support Vec-
tor Regression model is the best performing model
at both all labels and collapsed labels tasks. The
best model turns to the one trained using UPOS n-
grams. The results suggest that treating the AES as
a regression problem is a better approach than the
classification approach, at least for ASK dataset.



All labels Collapsed labels
Model Macro F;  MicroF; MacroF; Micro Fy
Majority 0.040 0.163 0.127 0.341
LogReg BOW 0.199 0.317 0.384 0.626
LogReg Char 0.221 0.317 0.399 0.602
LogReg POS 0.190 0.301 0.312 0.569
LogReg Mix 0.213 0.341 0.337 0.577
SVC BOW 0.210 0.317 0.391 0.610
SVC Char 0.189 0.293 0.347 0.537
SVC POS 0.157 0.244 0.336 0.618
SVC Mix 0.215 0.350 0.319 0.585
SVR BOW 0.444 0.415 0.429 0.659
SVR Char 0.252 0.317 0.440 0.602
SVR POS 0.334 0.358 0.476 0.593
SVR Mix 0.312 0.350 0.441 0.659

Table 2: F;-scores of various classifiers. LogReg is lo-
gistic regression, SVC is support vector classification,
and SVR is support vector regression.

6 Neural models

In this section, we train and evaluate a wide range
of convolutional networks and gated RNNs for the
AES task. We further experiment with the use of
pre-trained word embeddings which are fine-tuned
for the task. The embedding models have been
trained on a large Norwegian corpus, the combina-
tion of Norsk aviskorpus (The Norwegian News-
paper Corpus) and NoWaC (Norwegian Web As
Corpus; Stadsnes, 2018) using the FastText soft-
ware (Bojanowski et al., 2017) and are available
from the NLPL vector repository (Fares et al.,
2017).3

6.1 Convolutional Networks

We train a number of models which are variants
of the convolutional architecture described in Kim
(2014). Here, documents are represented as se-
quences of token IDs and fed into an embedding
lookup layer. We pad short documents (length
< 700) and use a word frequency cutoff to model
out-of-vocabulary words. All models were imple-
mented using Keras (Chollet et al., 2015) and Ten-
sorFlow (Abadi et al., 2015) as backend.

The central part of the architecture is a set of
convolutional filter banks that are applied to se-
quences of embeddings. The default architecture
from (Kim, 2014) uses 300 convolutional filters:
100 each of window size 3, 4 and 5. After ap-
plying the convolutions, the output is max pooled
along the time axis. This selects the highest out-
put each filter computed across all windows in the
document. In practice, three pooling operations

Shttp://vectors.nlpl.eu/repository/
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are included in the computational graph, one for
each filter bank. This is a technical consideration,
necessary because of the different window sizes.

The pooled vectors for each of the filter banks
are concatenated into a single vector, representing
the document as a whole. This vector has as many
elements as there are filters in all the filter banks
combined. This representation vector is fed to a
final softmax layer to produce a classification out-
put. During training, we apply dropout to the final
softmax layer.

All labels Collapsed labels

Model MacroF;  MicroF; Macro F;  Micro Fy

Randomly initialized embeddings
CNN 0.168 0.398 0.388 0.732
CNN+POS 0.146 0.374 0.398 0.748
CNN Mix 0.201 0.398 0.383 0.724
CNN Reg 0.230 0.382 0.439 0.724
CNN Reg+POS 0.236 0.341 0.383 0.724
CNN Reg Mix 0.258 0.398 0.412 0.642
CNN Rank 0.177 0.374 0.392 0.740
CNN Rank+POS 0.187 0.382 0.397 0.748
CNN Rank Mix 0.231 0.382 0.379 0.715

Pre-trained, fine tuned embeddings
CNN 0.208 0.382 0.384 0.724
CNN+POS 0.161 0.366 0.402 0.756
CNN Reg 0.242 0.341 0.463 0.724
CNN Reg+POS 0.232 0.366 0.411 0.715
CNN Rank 0.198 0.350 0.384 0.724
CNN Rank+POS 0.181 0.325 0.401 0.756

Table 3: F; scores of CNN classifiers on AES. +POS:
Multi-channel input with both words and UPOS tags.
Reg: Regression model. Rank: Ordinal regression.

We employ both pre-trained and randomly ini-
tialized embeddings and fine-tune the embeddings
in the training step. The results of this experiment
are given in table 3. In the case of all label pre-
diction, the best results are obtained with a CNN
regression model with mixed POS tags as input.
The best model in the case of collapsed label pre-
diction is a CNN ordinal rank regression with POS
tags as input.

6.2 Recurrent Networks

In this section, we tested a wide range of recurrent
models for the AES task by modeling the prob-
lem as a regression problem. Taghipour and Ng
(2016) test multiple recurrent architectures such as
LSTM, GRU, and attention model in their paper.
We made some changes to the architectures and
added more experiments which are described in
the following. The embedding layer in Taghipour
and Ng (2016) was of 50 dimensions and ran-
domly initialized. We increased the embedding di-



mensions size to 100 and experimented with ran-
domly initialized embeddings and with pre-trained
ones as in the experiments with CNN. Due to
the long essay length, we chose to work with
gated RNNss since they are known to capture long-
distance dependencies. We experimented with the
following settings in the case of gated RNNs:

e Long Short Term Memory network (LSTM)
vs. Gated Recurrent Unit (GRU)

e Bidirectional vs. unidirectional

e Attention mechanisms: Mean, maximum of
the hidden states over all the time steps, and
a weighted version of attention involving a
feed-forward network (Pappas and Popescu-
Belis, 2017).

All labels Collapsed labels
Model Macro F; MicroF; MacroF; Micro F;
Random init, unidirectional GRU
Mean 0.264 0.374 0.455 0.675
Max 0.219 0.325 0.487 0.683
Attn 0.434 0.431 0.806 0.805
+POS Mean 0.348 0.398 0.450 0.642
+POS Max 0.230 0.374 0.500 0.748
+POS Attn 0.434 0.423 0.718 0.813
Mix Mean 0.225 0.333 0.388 0.634
Mix Max 0.200 0.398 0.398 0.756
Mix Attn 0.302 0.455 0.509 0.780
Random init, BIGRU
Mean 0.314 0.333 0.444 0.667
Max 0.160 0.325 0.460 0.691
Attn 0.459 0.447 0.805 0.805
+POS Mean 0.373 0.333 0.425 0.683
+POS Max 0.175 0.309 0.503 0.748
+POS Attn 0.460 0.447 0.687 0.821
Mix Mean 0.231 0.350 0.395 0.642
Mix Max 0.200 0.382 0.405 0.764
Mix Attn 0.275 0.455 0.617 0.707
Pre-trained, unidirectional GRU
Mean 0.274 0.366 0.463 0.715
Max 0.185 0.350 0.401 0.756
Attn 0.414 0.431 0.678 0.797
+POS Mean 0.282 0.382 0.477 0.699
+POS Max 0.193 0.382 0.405 0.764
+POS Attn 0.409 0.423 0.746 0.789
Pre-trained, BIGRU
Mean 0.266 0.390 0.435 0.707
Max 0.187 0.398 0.393 0.740
Attn 0.454 0.447 0.773 0.797
+POS Mean 0.281 0.382 0.480 0.724
+POS Max 0.183 0.341 0.397 0.748
+POS Attn 0.433 0.439 0.758 0.805

Table 4: F; scores of GRU classifiers on AES. BiGRU
is birectional GRU; Attn is attention model.

The results of our experiments are given in table
4. Although we experimented with both LSTM
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and GRUs we found that the GRU architectures
performed better than the LSTM architectures at
different metrics and label sets with wide variety
of settings. Therefore, we report only the results
from our GRU classifier. The results show that a
combination of embeddings trained separately on
words and POS tags give better results at both the
full label set and the collapsed label set. Through-
out the experiments the document attention model
performed the best with randomly initialized em-
beddings.

7 Native language identification

In contrast to the proficiency labels in ASK where
the number of higher level classes are so few, the
distribution of L1 labels is more even across the
documents. Regression as such is not applicable
to NLI since there is no natural ordering among
the L1 languages. Therefore, we model the NLI
task as a classification problem. We train both
CNN, LSTM, and GRU architectures to predict
the native language of the writers of the essays.
We found that the RNN models performed bet-
ter than CNN models and among the RNN mod-
els, GRU architectures performed better than their
LSTM counterparts. Therefore, we report only the
results of our best GRU model in table 5. The best
model is a GRU model which employs pretrained
embeddings and takes mean of the hidden states
over the time steps to perform classification using
a softmax layer. This model achieves a best ac-
curacy of 0.537 which is lower than the score of
0.542 reported by Malmasi and Dras (2018) on the
original essays.

Model Macro F;  Micro Fy
Mean 0.520 0.537
Max 0.401 0.390
Attn 0.447 0.480
+POS Mean 0.467 0.480
+POS Max 0.406 0.431
+POS Attn 0.454 0.463

Table 5: Fy scores of Pre-trained, BiGRU classifier at
the NLI task consisting of 7 classes.

Note however that we cannot compare our re-
sults to the previous work for the following rea-
sons. First, our subset of the ASK dataset corre-
sponds to the seven L1 languages which has been
assigned CEFR scores, as compared to the full set
of ten L1 languages used by Malmasi et al. (2015).
Second, Malmasi et al. (2015) used simulated data



sets and not the actual raw essays to perform NLI
experiments. Third, unlike the previous studies
we do not evaluate our results in a cross-validation
fashion.

8 Multi-task learning

Until now, we treated AES and NLI as indepen-
dent tasks and performed experiments on both the
tasks separately. We will now attempt to train a
joint model to predict both the tasks jointly.

We selected four models for the multi-task
experiments—two convolutional and two recur-
rent neural networks—based on the macro F; re-
sults on the development set. The top two mod-
els (two each for CNN and RNN) had the high-
est macro F; on the full set of labels on the de-
velopment set. The multi-task model that we use
in this paper has two outputs with different loss
functions: one for CEFR prediction and the other
for NLI task. The loss function for CEFR out-
put is mean squared loss and for NLI is categor-
ical cross-entropy loss. The losses from both the
models are linearly weighted with weights sum-
ming up to 1. We searched for the best loss weight
by searching over the range of [0, 1] where each
weight is separated by an interval of 0.1.

Hyperparameter CNNI1 CNN2
Word embeddings Dynamic
Embedding size 100

Lo constraint 3

Windows 3,45
Embedding init Random Pre-trained
Input representation Mixed UPOS  Tokens
Hyperparameter RNNI1 RNN2
Word embeddings Dynamic
Embedding size 100

RNN cell GRU

Pooling method Attention
Bidirectional Yes

Embedding init Random Pre-trained

Input representation

Tokens+UPOS Tokens

Table 6: Descriptions of the CNN and RNN models
showing different settings.

The hyperparameters for the four models are
summarized in table 6. All our word embeddings
are based on the FastText model. We also tested
the variability of the models by training and evalu-
ating each model five times with different random
seeds to estimate the variance of the results.
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Results We show the results of all the models
with all the auxiliary weight combinations in fig-
ure 1. When the auxiliary task loss weight is
zero, the model reduces to the original single task
model of CEFR prediction. The RNN models
show the highest macro F; scores on the full la-
bel set. There is some variablity in the perfor-
mance of the RNN models in accordance with the
loss weight. In each panel, we show the F; scores
for the five models trained with different random
seeds. The CNN models do not benefit from in-
cluding the NLI task as additional task. The five
highest macro-F; scores are in the range of 0.468
and 0.483 and were achieved using auxiliary loss
weights in the range from 0 to 0.5. Although, the
highest score was achieved in single-task mode
the auxiliary task results are also competitive as
shown in the figure. In fact, the variability due to
the initial random seed allows us to conclude that
the macro-F; scores for a multi-task model is al-
most the same as the single task mode (auxiliary
loss weight set to zero).

Model = CNN1

Model = CNN2
0.8

0.6

Macro Fi

0.4

0.2

» x
% %%

Macro F1

0.00

0.25
Auxiliary loss weight

0.50 0.75 0.00 025 050 0.75

Auxiliary loss weight

Figure 1: Lines follow the mean of macro F; scores.
Shaded areas show 95% confidence interval for the
mean. Results for the collapsed set of classes are plot-
ted with cross symbols and dashed lines.

The same trend can be observed with RNN2
model also which shows a decreasing trend in the
macro-F; scores. The macro-F; scores’ trends for
both the RNN models are not similar at the task
of collapsed label set classification. The RNN1
model shows a high variation with changes in the
auxiliary loss weights. Similar to the full label set



classification, the collapsed label set classification
does not show worse performance but shows com-
petitive results when the auxiliary loss weight is
set to 0.1. We conclude from these experiments
that including the NLI task as auxiliary task, at
least, does not hurt the performance at AES task.

9 Results

Until now, we evaluated the performance of our
models on the development dataset. We now go
on to report the performance of our best models
from development on the held-out test dataset in
table 7. In the case of the neural architectures, we
employed the model showing the best macro-F;
during development.

All labels Collapsed labels
Model Macro Micro Macro  Micro
Majority 0.045 0.187 0.127 0.341
SVR BOW 0.231 0.285 0.420 0.602
SVR POS 0.271  0.350 0.422 0.602
RNNI1 0.291 0439 0478 0.724
RNN2 0.388 0.480 0.511 0.724
Multi-RNN1  0.266  0.398  0.509 0.707
Multi-RNN2  0.356  0.447 0.443 0.724

Table 7: Results from evaluation on the held-out test
set. SVR is support vector regression. Hyperparame-
ters for RNN1 and RNN2 are found in table 6. Multi-
task models use an auxiliary task weight of 0.1.

We report the results for SVR, RNNs, and
Multi-task RNN models. In terms of micro-F;
scores, the RNN models are the best across both
the collapsed labels and full label sets. Across all
the models, both the micro- and macro-F; scores
are lower than the scores reported on the develop-
ment split. The Multi-RNN2 model performs the
best in terms of micro-F; score at collapsed labels.
The multi-tasking model shows poor performance
in terms of macro-F; score across all the tasks
when compared to the single task model. The lin-
ear models show worse performance than the neu-
ral models across all the label sets and evaluation
measures. We further observe that a multi-task set-
up with NLI as auxiliary task does not show com-
petitive results. In conclusion, a fine-tuned embed-
ding BiGRU model augmented with attention and
initiated with FastText word embeddings performs
the best.

We further examine the confusion matrices for
our best multi-task model, ‘RNN2 Multi’, on the
test set. The plot is given in figure 2. We see in
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the confusion matrix that we can identify a diag-
onal running from the top-left to the bottom-right,
with zeros in the top-right and bottom-left corners.
Furthermore, mis-classifications are mostly close
to the true value, with no predictions being more
than two classes away from the gold label.

In the confusion matrix for L1, we see that all
languages are predicted to be Spanish at some
point. German is predicted with 100% precision,
however a lot of German texts are wrongly clas-
sified as English. This seems reasonable since
English and German are similar languages in the
same language family. However, the Slavic lan-
guages are not confused for each other, as one
might expect, but rather Russian and Polish are
both commonly mistaken for Spanish.

10 Conclusion

In this paper, we analyzed the ASK corpus for the
first time at the AES task with neural and non-
linear models. We addressed the question of mod-
eling AES as regression vs. classification task us-
ing three different non-neural models. We find that
the AES task is best modeled as regression, at least
in the case of the ASK corpus. We tested different
input representations such as word, character, and
POS n-grams for training the non-neural models.
We find that the best results are obtained when us-
ing Support Vector Regression algorithm.

In the case of neural models, we tested both
convolutional networks and recurrent neural net-
works (LSTM and GRU) both at AES and NLI
tasks. We augmented the neural models with dif-
ferent models of attention such as mean-over-time,
max-over-time, and attention learned through a
feed-forward network. We find in our experiments
that attention augmented BiGRU perform the best
at AES task. In contrast, the simpler mean-over-
time BiGRU model performed the best at NLI
task.

We performed an extensive evaluation of four
multitasking models where NLI is an auxiliary
task. We tuned the auxiliary loss weight over the
development split and found that the weight of 0.1
is best suited for joint modeling of AES and NLI
tasks. Although the joint model does not yield re-
sults that are better than the single task AES mod-
els, we conclude that the joint model yields results
that are competitive with the single task model set-
ting. We conclude that multi-task models do not
help improve the performance of AES task. We
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Figure 2: Confusion matrices for RNN2 Multi on the held-out test set. AES task on the left, NLI task on the right.

The numbers are counts.

also tested if initializing the embeddings with the
FastText model improves the AES results. Al-
though the results on development dataset are am-
biguous about the choice of pretrained vs. ran-
dom initialized embeddings, the results on the test
set show that the RNN2 model (fine-tuned) works
best at AES classification. Therefore, we suggest
that any future neural system for AES should use
pretrained embeddings to achieve the best results.

As future work, we intend to analyze the errors
made by the model and compare them with the er-
rors marked by the human annotators which are
available in the ASK corpus. We believe that such
an analysis would be the first that would be use-
ful for designing better models and understanding
where the neural models make mistakes. Another
direction of future work is to use a hierarchical
RNN where each sentence within an essay is en-
coded by a RNN that would be stacked with an
additional RNN layer to handle possible loss of
signal in extremely long documents.
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Abstract

Grammatical error detection (GED) in non-
native writing requires systems to identify a
wide range of errors in text written by lan-
guage learners. Error detection as a purely
supervised task can be challenging, as GED
datasets are limited in size and the label dis-
tributions are highly imbalanced. Contextual-
ized word representations offer a possible so-
lution, as they can efficiently capture composi-
tional information in language and can be opti-
mized on large amounts of unsupervised data.
In this paper, we perform a systematic com-
parison of ELMo, BERT and Flair embeddings
(Peters et al., 2017; Devlin et al., 2018; Akbik
etal., 2018) on a range of public GED datasets,
and propose an approach to effectively inte-
grate such representations in current methods,
achieving a new state of the art on GED. We
further analyze the strengths and weaknesses
of different contextual embeddings for the task
at hand, and present detailed analyses of their
impact on different types of errors.

1 Introduction

Detecting errors in text written by language learn-
ers is a key component of pedagogical applications
for language learning and assessment. Super-
vised learning approaches to the task exploit pub-
lic error-annotated corpora (Yannakoudakis et al.,
2011; Ng et al., 2014; Napoles et al., 2017) that
are, however, limited in size, in addition to hav-
ing a biased distribution of labels: the number of
correct tokens in a text far outweighs the incor-
rect (Leacock et al., 2014). As such, Grammatical
Error Detection (GED) can be considered a low-
/mid-resource task.

The current state of the art explores error de-
tection within a semi-supervised, multi-task learn-
ing framework, using a neural sequence labeler
optimized to detect errors as well as predict their
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surrounding context (Rei, 2017). To further im-
prove GED performance, recent work has investi-
gated the use of artificially generated training data
(Rei et al., 2017; Kasewa et al., 2018). On the re-
lated task of grammatical error correction (GEC),
Junczys-Dowmunt et al. (2018) explore transfer
learning approaches to tackle the low-resource
bottleneck of the task and, among others, find sub-
stantially improved performance when incorporat-
ing pre-trained word embeddings (Mikolov et al.,
2013), and importing network weights from a lan-
guage model trained on a large unlabeled corpus.

Herein, we extend the current state of the art for
error detection (Rei, 2017) to effectively incorpo-
rate contextual embeddings: word representations
that are constructed based on the context in which
the words appear. These embeddings are typically
the output of a set of hidden layers of a large lan-
guage modelling network, trained on large vol-
umes of unlabeled and general domain data. As
such, they are able to capture detailed information
regarding language and composition from a wide
range of data sources, and can help overcome re-
source limitations for supervised learning.

We evaluate the use of contextual embed-
dings in the form of Bidirectional Encoder Rep-
resentations from Transformers (BERT) (Devlin
et al., 2018), embeddings from Language Models
(ELMo) (Peters et al., 2018) and Flair embeddings
(Akbik et al., 2018). To the best of our knowledge,
this is the first evaluation of the use of contextual
embeddings for the task of GED. Our contribu-
tions are fourfold:

e We present a systematic comparison of dif-
ferent contextualized word representations
for the task of GED;

e We describe an approach for effectively in-
tegrating contextual representations to error
detection models, achieving a new state of the

Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 103-115
Florence, Italy, August 2, 2019. (©2019 Association for Computational Linguistics



art on a number of public GED datasets, and
make our code and models publicly available
online;

We demonstrate that our approach has partic-
ular benefits for transferring to out-of-domain
datasets, in addition to overall improvements
in performance;

e We perform a detailed analysis of the
strengths and weaknesses of different contex-
tual representations for the task of GED, pre-
senting detailed results of their impact on dif-
ferent types of errors in order to guide future
work.

2 Related work

In this section, we describe previous work on GED
and on the related task of GEC. While error cor-
rection systems can be used for error detection,
previous work has shown that standalone error
detection models can be complementary to error
correction ones, and can be used to further im-
prove performance on GEC (Yannakoudakis et al.,
2017).

Early approaches to GED and GEC relied upon
handwritten rules and error grammars (e.g. Fos-
ter and Vogel (2004)), while later work focused
on supervised learning from error-annotated cor-
pora using feature engineering approaches and of-
ten utilizing maximum entropy-based classifiers
(e.g. Chodorow et al. (2007); De Felice and Pul-
man (2008)). A large range of work has focused
on the development of systems targeting specific
error types, such as preposition (Tetreault and
Chodorow, 2008; Chodorow et al., 2007), article
usage (Han et al., 2004, 2006), and verb form er-
rors (Lee and Seneff, 2008). Among others, error-
type agnostic approaches have focused on gen-
erating synthetic ungrammatical data to augment
the available training sets, or learning from native
English datasets; for example, Foster and Ander-
sen (2009) investigate rule-based error generation
methods, while Gamon (2010) trains a language
model (LM) on a large, general domain corpus,
from which features (e.g. word likelihoods) are de-
rived for use in error classification.

As a distinct task, GEC has been formulated
as a naive-bayes classification (Rozovskaya et al.,
2013, 2014; Rozovskaya and Roth, 2016) or a
monolingual (statistical or neural) machine trans-
lation (MT) problem (where uncorrected text is
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treated as the source “language” and the corrected
text as its target counterpart) (Felice et al., 2014;
Junczys-Dowmunt and Grundkiewicz, 2014; Ro-
zovskaya and Roth, 2016; Yuan and Briscoe,
2016).

Recently, Rei and Yannakoudakis (2016) pre-
sented the first approach towards neural GED,
training a sequence labeling model based on word
embeddings processed by a bidirectional LSTM
(bi-LSTM), outputting a probability distribution
over labels informed by the entire sentence as
context. This approach achieves strong results
when trained and evaluated on in-domain data, but
shows weaker generalization performance on out-
of-domain data. Rei et al. (2016) extended this
model to include character embeddings in order to
capture morphological similarities such as word
endings. Rei (2017) subsequently added a sec-
ondary LM objective to the neural sequence la-
beling architecture, operating on both word and
character-level embeddings. This was found to
be particularly useful for GED - introducing an
LM objective allows the network to learn more
generic features about language and composition.
At the same time, Rei and Yannakoudakis (2017)
investigated the effectiveness of a number of aux-
iliary (morpho-syntactic) training objectives for
the task of GED, finding that predicting part-of-
speech tags, grammatical relations or error types
as auxiliary tasks yields improvements in perfor-
mance over the single-task GED objective (though
not as high as when utilizing an LM objective).

The current state of the art on GED is based
on augmenting neural approaches with artificially
generated training data. Rei et al. (2017) showed
improved GED performance using the bi-LSTM
sequence labeler, by generating artificial errors in
two different ways: 1) learning frequent error pat-
terns from error-annotated corpora and applying
these to error-free text; 2) using a statistical MT
approach to “translate” correct text to its incor-
rect counterpart using parallel corpora. Recently,
Kasewa et al. (2018) applied the latter approach
using a neural MT system instead, and achieved a
new state of the art on GED using the neural model
of Rei (2017).

3 Data

In this section, we describe the different public
datasets we use to train our models.

The First Certificate in English (FCE) dataset



(Yannakoudakis et al., 2011) is a publicly-released
set of essays written by non-native learners of En-
glish taking a language assessment exam. Each
essay is annotated by professional annotators with
the spans of language errors committed, the types
of errors, and suggested corrections. In addition,
the CoNLL 2014 shared task on GEC (Ng et al.,
2014) used a dataset of English essays written by
advanced undergraduate students at the National
University of Singapore. Each essay is annotated
by two experienced annotators and has error anno-
tations similarly to the FCE, though using a differ-
ent error taxonomy. The Johns Hopkins University
(JHU) FLuency-Extended GUG Corpus (JFLEG)
dataset (Napoles et al., 2017) contains essays writ-
ten by a range of English learners with different
first languages and proficiency levels. Each essay
is corrected by four annotators with native-level
proficiency and annotated with fluency and gram-
mar edits.

The 2019 Building Educational Applications
(BEA) shared task on GEC (Bryant et al., 2019)
released two new datasets: the Cambridge English
Write & Improve (W&I) corpus, which is a col-
lection of texts written by learners of English of
varying levels of proficiency and submitted for as-
sessment to the Write & Improve system (Yan-
nakoudakis et al., 2018), an automated online tool
for writing feedback; and the LOCNESS corpus
(Granger, 1998), originally compiled at the Centre
for English Corpus Linguistics at the University of
Louvain, and comprising essays written by native
English students. Both datasets are annotated for
corrections by the W&I annotators.

In this work, we use the FCE training set as
training data, and evaluate our models on the FCE
test set, the CoNLL-2014 test set, the JFLEG test
set, and the BEA 2019 shared task development
and test sets. This setup allows us to investigate
the extent to which our models and the use of
contextualized representations transfer to out-of-
domain data.

We follow Rei and Yannakoudakis (2016)
and convert the span-based annotations in these
datasets to binary error detection labels at the to-
ken level (i.e. is a token correct or incorrect).
Performance is evaluated using precision, recall,
and Fj5 at the token level. [y places twice
the weight on precision than recall: systems that
incorrectly penalize correct language can have a
much more negative impact to language learning
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compared to systems that miss to detect some er-
rors (Ng et al., 2014). We note that performance
on the BEA shared task test set is conducted using
the official evaluation tool in CodaLab.

We also perform detailed analyses in order to
evaluate the performance of our models per error
type. As the datasets above either have their own
error type taxonomy or they are not annotated with
error types at all, we follow the 2019 BEA shared
task and induce error types for all datasets au-
tomatically using the ERRor ANnotation Toolkit
(ERRANT) (Bryant et al., 2017). ERRANT auto-
matically annotates parallel uncorrected and cor-
rected sentences with error types using a universal
error taxonomy and hence allowing for compar-
isons across datasets. The system uses distance-
based alignment followed by rule-based error cat-
egorization. An error type is hence assigned to ev-
ery incorrect token in each dataset, with the ex-
ception of the BEA 2019 shared task test set, for
which the corrected versions are not yet publicly
available.

4 Error detection model

In this section, we extend the current state of
the art (neural) architecture for GED (Rei, 2017),
which we use as our baseline system. This model
is a bi-LSTM sequence labeler over token embed-
dings where, for each token, the model is trained
to output a probability distribution over binary cor-
rect/incorrect labels using a softmax layer (i.e. pre-
dicting whether a token is correct or incorrect in
context). The model is additionally trained with
a secondary bidirectional LM objective, predict-
ing the surrounding context of the target token in
the sequence. Specifically, the model uses a for-
ward LM to predict the next token in the sequence,
and a backward LM to predict the previous token.
Rei (2017) also makes use of a character-level bi-
LSTM, as opposed to solely conditioning on to-
kens, in order to benefit from sub-word morpho-
logical units, of particular use in the case of un-
known or incorrectly spelled words. The outputs
of the character-level LSTMs are concatenated to
the word embeddings and given as input to the
word-level bi-LSTM.

The model learns 300-dimensional word em-
beddings, initialized with pre-trained Google
News embeddings (Mikolov et al., 2013),' and

"https://code.google.com/archive/p/
word2vec/
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Figure 1: Simplified bi-LSTM sequence labeler with: (a) contextual embeddings (context) concatenated to the
input word embeddings (embed), before being passed through the bi-LSTM (h); (b) contextual embeddings
(context) concatenated to the LSTM output (o) before being passed through a softmax layer (s).

100-dimensional character embeddings. The hid-
den states of the word- and character-level LSTMs
are also of 300 and 100 dimensions respectively.
The outputs of each LSTM are passed through
a b0-dimensional hidden layer with a tanh ac-
tivation function. Dropout is applied to the in-
puts and outputs of each LSTM with a probabil-
ity of 0.5. The model is trained with a cross-
entropy loss function for the error detection ob-
jective that minimizes the negative log probabil-
ity of the gold label. As the model is also trained
with a secondary LM objective, a second bipar-
tite cross-entropy loss function is used, minimiz-
ing the negative log probability of the next word
in the sequence for the forward LM, and the pre-
vious word for the backward LM. A hyperparam-
eter v = 0.1 weights the combination of the two
loss functions, assigning more importance to the
main task of error detection over the auxiliary task
of language modelling. Optimization is performed
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with the AdaDelta optimizer (Zeiler, 2012), using
an initial learning rate of 1.0, and batches of 32
sentences. Training is terminated when validation
performance does not improve for 7 epochs.

In this work, we extend the above model by
incorporating contextualized word embeddings,
produced by three different approaches (BERT,
ELLMo and Flair; each described in more detail in
Section 5). Specifically, we concatenate the con-
textual embeddings either to the input word em-
beddings before being passed through the word-
level bi-LSTM (Figure 1a), or to the bi-LSTM’s
output (Figure 1b). Peters et al. (2018) find that
the best point to integrate ELMo vectors varies by
task and, as such, we continue that line of analysis
here.

We make a TensorFlow (Abadi et al., 2016)
implementation of our code and models publicly



available online.?

5 Contextualized embeddings

Three types of contextual embeddings are consid-
ered in this work: BERT, ELMo and Flair embed-
dings (Peters et al., 2017; Devlin et al., 2018; Ak-
bik et al., 2018). In each case, we use the publicly-
available pre-trained models released by the au-
thors.

BERT embeddings are extracted from the high-
est layers of a transformer architecture trained
with a masked LM objective: rather than predict-
ing the next or previous word in a sequence, a
percentage of input tokens are masked and then
the network learns to predict the masked tokens.
BERT is also trained with a second objective pre-
dicting whether one sentence directly follows an-
other, given two input sentences. BERT pre-
trained embeddings are available in two variants:
base embeddings, which are the concatenation
of the four highest 768-dimension hidden layers,
yielding a 3, 072-dimension embedding; large em-
beddings, which are the concatenation of the four
highest 1024-dimension hidden layers, yielding a
4,096-dimension embedding (Devlin et al., 2018).
BERT embeddings are trained on the BooksCor-
pus (0.8 billion words) of books written by un-
published authors (Zhu et al., 2015) and English
Wikipedia (2.5 billion words).

ELMo embeddings are a weighted element-
wise sum of the outputs of three-layered stacked
bi-LSTM LMs, trained to predict both the next
and previous token in the sequence. Using a task-
specific scalar per layer, the outputs of the three
LSTMs are reduced to a single 1, 024-dimension
embedding (Peters et al., 2018). This task-specific
weighting is learned by our sequence labeler dur-
ing training. ELMo is trained on the One Billion
Word Benchmark corpus (0.8 billion words), com-
posed primarily of online news articles 