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Abstract

The issues of algorithmic fairness and bias have
recently featured prominently in many publica-
tions highlighting the fact that training the algo-
rithms for maximum performance may often re-
sult in predictions that are biased against vari-
ous groups. Educational applications based on
NLP and speech processing technologies often
combine multiple complex machine learning algo-
rithms and are thus vulnerable to the same sources
of bias as other machine learning systems. Yet
such systems can have high impact on people’s
lives especially when deployed as part of high-
stakes tests. In this paper we discuss different defi-
nitions of fairness and possible ways to apply them
to educational applications. We then use simulated
and real data to consider how test-takers’ native
language backgrounds can affect their automated
scores on an English language proficiency assess-
ment. We illustrate that total fairness may not be
achievable and that different definitions of fairness
may require different solutions.

1 Introduction

The issues of algorithmic fairness and bias have
recently featured prominently in many publica-
tions highlighting the fact that training the algo-
rithms for maximum performance may often re-
sult in predictions that are biased against various
groups (Kamiran and Calders, 2009; Kamishima
et al., 2012; Luong et al., 2011; Zemel et al., 2013;
Feldman et al., 2015; Friedler et al., 2016). Like
any algorithm, NLP systems are not immune to
such bias (Hovy and Spruit, 2016; Caliskan et al.,
2017). These days it is hardly necessary to justify
the importance of ensuring algorithmic fairness,
especially in applications that can have a substan-
tial impact on users’ lives.

Automated test scoring is one such application,
and the educational measurement community has
been concerned with the fairness of automated
scoring since long before this topic gained wide
popularity. There exist a variety of standard mea-
sures generally recommended for evaluating fair-
ness of the automated scoring systems (Clauser
et al., 2002; Williamson et al., 2012; Ramineni and
Williamson, 2013) as well as open-source tools for
computing such measures (Madnani et al., 2017).

In this paper we use the data from an operational
spoken language proficiency assessment and an
automated speech scoring engine to show that the
application of these measures may sometimes lead
to seemingly contradictory results. We apply the
insight from the machine learning community that
there are different ways to formally define algo-
rithmic fairness, and propose a framework which
leverages work from both educational measure-
ment and machine learning to formalize these def-
initions in the context of automated scoring.

2 Fairness in educational applications
and beyond

2.1 Fairness metrics for automated scoring

Fairness research has a long tradition in educa-
tional measurement where “fairness” has been de-
fined with reference to “construct”. A construct
is defined as a set of related knowledge, skills,
and other abilities that a test is designed to mea-
sure (Zieky, 2016). A fair test is one where dif-
ferences in test scores between the test-takers are
due only to differences in skills which are part
of the construct. Any consistent differences in
scores between different non-random groups of
test-takers that result from other factors not im-
mediately related to the construct (i.e., “construct-
irrelevant”) may indicate that the test is unfair
(Xi, 2010; Zieky, 2016). Notably such “construct-
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irrelevant” factors include not only protected at-
tributes often considered in studies on algorithmic
bias but also other factors that can affect prede-
fined groups of test-takers, such as screen resolu-
tion on the computers used to administer an as-
sessment (Bridgeman et al., 2001). It follows that
a fair automated scoring system should not intro-
duce additional construct-irrelevant group-related
variance or disadvantage any group of test-takers
in comparison to human scores (Penfield, 2016).

Several standard measures have been used to
evaluate the fairness of the automated scoring sys-
tems across different groups, for example speak-
ers of different languages or test-takers with dis-
abilities (Burstein and Chodorow, 1999; Bridge-
man et al., 2012; Wang and von Davier, 2014;
Wang et al., 2016; An et al., 2016; Loukina and
Buzick, 2017). The two most common analy-
ses are standardized mean score differences and
overall model performance for different groups
with human scores (predictive ability) (Ramineni
and Williamson, 2013; Williamson et al., 2012).
More recently other measures have been used such
as differential feature functioning (Zhang et al.,
2017) to analyze the performance of individual
features or variance in mean model residual across
groups (Yao et al., 2019). The approach taken
in many previous studies on the fairness of auto-
mated scores has been that substantial between-
groups differences in human and automated scores
in any of the measures indicate that the system
might not be fair.

2.2 Algorithmic fairness

There are two key conclusions that emerged from
general research on algorithmic fairness that are
most relevant for this paper. First, there are many
different ways to formally define algorithmic fair-
ness. Second, it may be impossible to achieve fair-
ness according to each and every one of these defi-
nitions at the same time (Friedler et al., 2016; Berk
et al., 2018).

In their review of algorithmic bias in the con-
text of criminal justice risk assessment, Berk et al.
(2018) offer five definitions of fairness: (1) Over-
all accuracy equality: overall classification accu-
racy is the same for all groups; (2) Statistical par-
ity: the marginal distribution of predicted classes
is the same for all groups; (3) Conditional proce-
dure accuracy equality: the prediction is equally
accurate for all groups when conditioned on a

known outcome; (4) Conditional use accuracy
equality: the prediction is equally accurate for all
groups when conditioned on a predicted outcome;
(5) Treatment equality: the ratio of false negatives
and false positives is the same for both groups. To-
tal fairness is achieved when all five definitions are
met. As Berk et al. (2018) show, in practice to-
tal fairness cannot be achieved, except for trivial
cases.

3 Data

The analyses in this paper are based on actual re-
sponses collected during a large-scale assessment
of English language speaking proficiency. For this
assessment all test-takers answered 6 questions
that elicited spontaneous speech. Depending on
the question, the speakers were given 45 seconds
or 1 minute to record their responses.

We will focus on whether automated scoring
might disadvantage test-takers depending on their
native language (L1), a common concern in au-
tomated scoring contexts. Learners with differ-
ent L1 might have different linguistic profile and
it has been shown that it is possible to identify
learner L1 from their written or spoken response
(Malmasi et al., 2017). Therefore there is a danger
that the scoring engine might inadvertently assign
different scores to speakers of different L1 even
when there is no difference in English proficiency,
the actual construct measured by the test. In other
words the system would introduce group-related
construct-irrelevant differences.

In an actual operational scenario there are many
additional factors that can introduce bias to the
performance of an automated scoring system:
some L1s might be over- or under-represented in
the data used for model training and evaluation;
sometimes different versions of the test are admin-
istered in different countries for security reasons,
introducing further scope for conflation between
native language and prompt.

For this study we constructed a corpus of re-
sponses designed to control for these factors. Us-
ing the information about the native language re-
ported by test-takers when taking the test, we
selected responses from native speakers of the
6 most frequently languages among the test-
taker population1: Chinese (CHI), Korean (KOR),
Japanese (JPN), Spanish (SPA), Arabic (ARA) and

1The metadata does not differentiate between different
linguistic varieties.
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German (GER). All test-takers responded to one of
the two versions of the test that were administered
across all these regions.

We then created a corpus with uniform distri-
bution of native languages by randomly sampling
a similar number of test-takers for each version
of the test. The final corpus included 26,710 re-
sponses from 4,452 test-takers (742 for each lan-
guage, about 370 test-takers per version). The
corpus was split into a training set (75%) and a
test set (25%), with 19,942 responses from 3,324
test-takers (554 from each group) allocated to the
former, and the remaining 6,768 responses from
1,128 test-takers (188 from each group) allocated
to the latter.

All responses had been scored by trained human
raters on a scale from 1-4. The raters assigned
a single holistic score to each response using a
scoring rubric that covered different aspects of lan-
guage proficiency including delivery, language use
and content. Most responses were scored by a sin-
gle rater. About 6% of responses were double-
scored. Human-human agreement for responses in
the test set is Pearson’s r = 0.66. The scoring pro-
cess was set up following best practices in order to
minimize any possible bias (Wang and von Davier,
2014; Penfield, 2016). Multiple raters took part in
this process and in no instance did a given rater
score multiple responses from the same test-taker.
All raters were monitored throughout the process
using both exemplar responses with known scores
and random back-scoring. Despite all these mea-
sures, there is still some possibility that the human
scores contained bias which would then be learnt
by the model. For the sake of simplicity, however,
in this paper we will ignore such a possibility and
treat the human scores as a gold standard measure.

3.1 Simulated models

When looking at algorithmic fairness, it is often
helpful to look at extreme simulated cases. In all
four models discussed in this section, the ‘system’
scores were produced by training a linear regres-
sion on the training set and using the regression
parameters to generate predictions for the test set.
All evaluations were done on the test set. The
models were trained using the human score as the
dependent variable and four different types of fea-
tures described below.

Random model: The RANDOM model was
based on a single feature: a random sample drawn

from a normal distribution with mean and stan-
dard deviation equal to those of human scores on
the training set. This feature by definition is blind
to a test-taker’s L1 and any properties of their re-
sponse. This model is not valid as it does not
differentiate test-takers on any construct-relevant
dimension but it is not expected to consistently
differentiate based on any construct-irrelevant fac-
tors. To further make sure that no bias is intro-
duced by chance, we repeated the whole procedure
from feature generation to analysis 10 times with
different random states. All reported results are
average values of the corresponding metrics across
these 10 repetitions. As expected, the model failed
to predict human scores on the test set with no cor-
relation between the predicted and observed scores
(average r = -0.004)

A perfect model: The PERFECT model also
contained a single feature, but this time the feature
was equal to the human score with the addition of
random noise. Random noise was also sampled
from a normal distribution with mean = 0 and σ =
0.2. Like the RANDOM model, this procedure was
applied to the whole data set without using any in-
formation about a test-taker’s L1 or any properties
of their response beyond the human score. We ex-
pect this model to be fair because it distinguishes
test-takers primarily based on their human scores
which are implicitly taken as proxies for language
proficiency. As in case of the RANDOM model, we
repeated the whole procedure 10 times to ensure
no bias had been introduced accidentally during
random sampling. Unsurprisingly, these models
achieved an almost perfect performance on the test
set with average r = 0.97.

An almost perfect model: The
∼PERFECT model was identical to the PER-
FECT model, except that the random noise added
to the human score when generating the “feature”
was sampled from a normal distribution with σ
= 0.5, that is the model was less accurate. Like
the PERFECT model, this model also distinguishes
test-takers primarily based on their language pro-
ficiency. This model achieved a good performance
on the test set with average r = 0.83.

Metadata-based model: While RANDOM and
PERFECT models were designed to be blind to any
L1-effects, the META model only relied on demo-
graphic information. It included two features: the
native country of the test-taker and the country
where they took the test. While this model did
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not directly make use of L1, it used two closely
related features (in our data, L1 was closely re-
lated to the native country and test country). The
model achieved a moderate performance of r =
0.44. Since this model differentiates test-takers
based on their geographic location and not on their
language proficiency, we expect that this model
should not be deemed fair.

4 Fairness evaluations

4.1 Standardized mean differences
We first computed standardized mean difference
(SMD) a standard measure used to evaluate the
fairness of automated scoring engines (Williamson
et al., 2012). To do so, both human and system
scores were converted to z-scores using their re-
spective means and standard deviations. SMD for
each group is the average difference between such
standardized human and system scores within this
group (System score - human score). Absolute
values above 0.1 are considered an issue of con-
cern and require further evaluation (Williamson
et al., 2012).

RANDOM PERFECT ∼PERFECT META
ARA 0.02 -0.00 0.00 0.14
CHI 0.22 0.01 0.03 -0.40
GER -0.78 -0.02 -0.13 0.93
JPN 0.63 0.02 0.11 -0.70
KOR 0.17 0.00 0.03 -0.30
SPA -0.20 -0.01 -0.02 0.27

Table 1: Standardized mean difference (system-
human) for 6 languages in our corpus for scores gen-
erated by different models. Absolute values above 0.1
threshold are highlighted in bold

Table 1 shows SMDs for the four models. As we
predicted, the speakers of all languages would be
disadvantaged by using the META model. Yet sur-
prisingly, even in the case of the∼PERFECT model
two of the languages, GER and JPN, show absolute
SMDs slightly above the recommended 0.1 thresh-
old. In other words, the evaluation suggests that
speakers of these two languages are not treated
fairly by the model: GER speakers are underscored
while JPN speakers are over-scored.

Yet we know that the ∼PERFECT model by de-
sign is blind to test-taker’s L1. Why then do we
see relatively large SMDs? The reason is the un-
usual score distribution for these two groups of
test-takers and consequently the large difference
in their mean scores. As shown in Table 2, the
scores are not distributed uniformly: the propor-

1 2 3 4 Mean
ARA 0.05 0.29 0.51 0.14 2.74
CHI 0.03 0.37 0.55 0.04 2.60
GER 0.00 0.05 0.54 0.41 3.35
JPN 0.11 0.52 0.34 0.02 2.29
KOR 0.05 0.36 0.49 0.10 2.63
SPA 0.02 0.23 0.58 0.17 2.92

Table 2: Proportion of responses assigned each of the
four possible human scores for test-takers with each L1
and mean human score for each group

tion of ‘2’ and ‘3’ is much higher (80% of all
scores) than the proportion of ‘1’ and ‘4’. Fur-
thermore, proficiency levels as measured by hu-
man scores vary greatly across the 6 groups in our
study: GER speakers have a very high proportion
of score 4 responses (40.9%) and a mean score of
3.35, while JPN speakers have a high number of
responses scored as ‘1’ or ‘2’ (63%) and a mean
score of 2.286. The very uneven score distribu-
tion in the training set, in combination with the
noise we introduced to the ‘feature’, resulted in
greater prediction error at the edges of the scale:
mean standardized score differences is 0.35 for re-
sponses scored 1 and -0.29 for responses scored 4
vs. 0.17 for responses scored 2 and -0.05 for re-
sponses scored 3. This in combination with the
unusual score distribution lead to higher absolute
SMDs for GER and JPN speakers.

To confirm that the observed differences are due
to score distribution and are not an artefact of the
model-training process, we sampled from the test
set a subset of 2,700 responses (450 responses per
group) with identical (but not uniform) distribu-
tions of human scores in each group: the sample
sizes for each score level were determined by the
maximum number of responses available for this
score level from all L1s. As a result, 80% in this
sample received a score of ‘3’, 13% received a
score of ‘2’, 5% received a score of ‘4’ and 1%
received a score of ‘1’. The mean human score
for all subgroups was 2.9. We then recomputed
SMDs using only this subset. While SMDs for the
META model remained high, the absolute SMDs
for the other three models were all below 0.02.

4.2 Measuring different dimensions of
fairness

In this section we propose a set of measures that
capture different definitions of fairness. Note that
not all definitions of fairness considered in Berk
et al. (2018) are applicable to automated scoring
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in assessment: thus we do not expect statistical
parity that is the same marginal score distribution
for all groups. The unequal distribution of social,
economic, and educational resources means that
some differences in performance across groups are
to be expected (AERA, 1999).

The three definitions that we will consider in
this paper are: (1) Overall score accuracy; (2)
Overall score difference; (3) Conditional score dif-
ference.2

The overall score accuracy (OSA) measures
whether automated scores are equally accurate for
each group by looking at differences in squared er-
ror (S − H)2 (where H is the human score for a
given response and S is the system score). This
measure is essentially the same as predictive ac-
curacy for different groups considered in previ-
ous studies on automated scoring (Ramineni and
Williamson, 2013; Yao et al., 2019). To get a
numeric estimate we fit a linear regression with
squared error as a dependent variable and test-
taker L1 as an independent variable, used the R2

from this model as a measure of model fairness:
larger R2 indicates high impact of L1 on score ac-
curacy.3

The overall score difference (OSD) considers
whether automated scores are consistently differ-
ent from human scores for members of a certain
group. Since we are interested in the sign of dif-
ference we are using actual error S − H for each
response rather than squared error. This measure
is generally similar to what is evaluated by SMDs
and similar in spirit to the ‘Treatment equality’ in
Berk et al. (2018). To get a numeric estimate we fit
a linear regression with error as a dependent vari-
able and test-taker L1 as an independent variable,
and used the R2 from this model as a measure of
model fairness: larger R2 values indicate high im-
pact of L1 on score differences.

The conditional score difference (CSD) shows
whether automated scoring engines assign differ-
ent scores to speakers from different groups de-
spite their having the same language proficiency.

2For the sake of simplicity we will not consider the fifth
definition of fairness: conditional use equality, that is do the
same automated scores assigned to different group members
correspond to the same proficiency level? This is another im-
portant dimension of fairness that affects score use and inter-
pretation and we will return to it in future work.

3We treat all responses as independent since mixed linear
model analysis showed no clustering by speaker in our data.
This assumption may not hold for all data sets in which case
mixed models might be necessary.

This is similar to conditional procedure equality in
Berk et al. (2018). In educational measurement, a
similar approach has been applied to feature anal-
ysis and is known as “differential feature function-
ing” (Zhang et al., 2017). Using human scores as
a proxy for language proficiency, we can estimate
this metric by fitting a linear regression with er-
ror S −H as a dependent variable, and both test-
taker L1 and human score as independent vari-
ables. To evaluate the impact of L1 beyond human
scores, we first fit the model with human scores
only and then compared the difference in R2 val-
ues between the two models. We use analysis of
variance to establish whether the difference is sig-
nificant. As with overall score difference, larger
R2 values indicate higher impact of L1 on auto-
matic scores4.

Actual Equal
OSA OSD CSD OSA OSD CSD

RANDOM .020 .189 ns ns ns ns
PERFECT ns .012 ns ns ns ns
∼PERFECT .003 .058 ns ns ns ns
META .011 .002 .207 .050 .352 .354

Table 3: Adjusted R2 showing the percentage of vari-
ance in scoring error attributed to L1 for different mod-
els and score distributions (equal and actual score dis-
tribution). Larger values correspond to the greater im-
pact of L1 on scoring error. Cells marked ‘ns’ mean
that the effect of L1 was not significant at α=0.01. See
section 4.2 for further explanation.

4.3 Evaluation on simulated models

Table 3 shows the results of these evaluations for
the four models considered in this section. Since
based on the results in previous section we expect
the overall difference to be dependent on score dis-
tribution, we conducted all analyses twice: once
using the whole test set (“actual score distribu-
tion”) and once using the subset with identical
score distribution across all groups described in
4.1.

As expected, Table 3 shows a striking differ-
ence in results between the two samples. When
the score distribution is held constant across the
groups, we see the results we expect from the de-
sign of the model: L1 was observed to have a sig-
nificant effect on only the META model. For all

4The code used to compute these met-
rics is open-sourced as part of RSMTool:
https://github.com/EducationalTestingService/rsmtool
(Madnani et al., 2017)
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Figure 1: Average system score conditioned on human score for different models and native languages

other models, there was no significant impact of
L1 on scores.

A different picture emerges when we consider
results on the actual score distribution. As we
already observed for SMDs, we saw a signifi-
cant impact of L1 on the OSD. It was particu-
larly large for the RANDOM and∼PERFECT mod-
els, but we also saw a consistent, albeit small, ef-
fect for the PERFECT model. In addition, there
was a difference in OSA for both RANDOM and
∼PERFECT models. As expected, no CSD was ob-
served for any of the models other than META. We
will return to this finding in the discussion.

5 Application to automated speech
scoring

5.1 Automated scoring engine

We will now now apply these evaluations to the ac-
tual scores produced by an automated speech scor-
ing engine similar to the one described in Chen
et al. (2018). The ASR system was trained using
the Kaldi toolkit (Povey et al., 2011) on a propri-
etary corpus consisting of 800 hours of non-native
speech from 8,700 speakers of more than 100 na-
tive languages. There was no overlap of speakers
or questions between the ASR training corpus and
the corpus used in this paper. We did not addition-
ally adapt the ASR to the speakers or responses in
this study.

For each response, we extracted 77 non-sparse
continuous features which covered two of the three
aspects of language proficiency considered by the
human raters: delivery (i.e., prosody, pronuncia-
tion, fluency) and language use (i.e., grammar, vo-
cabulary). The correlation between different fea-
tures and human scores varied between r=0.05 and
r=0.63. For this study we did not use any features

that cover the content of the response.

5.2 Scoring models

Baseline model: As a baseline (BASE) we used a
model which included all 77 features. The model
was fitted using Ridge regression available via
RSMTool, an open-source tool for training auto-
mated scoring models (Madnani et al., 2017). The
model coefficients were estimated using all re-
sponses in the training set with human score as
the dependent variable and features as indepen-
dent variables. The model parameters were used
to generate predictions on the test set. The corre-
lation between automated and human scores was r
= 0.71.

L1-specific model: We also trained a separate
L1 model for each native language using only re-
sponses from test-takers from this group and the
same general procedure as for the BASE model
and then pooled together predictions from these
six models for evaluation. The overall correlation
for all pooled predictions was r = 0.72, similar to
the BASE model. We expect that this model might
reduce the score error for each L1 but will likely
increase CSD as it makes use of speaker L1 in the
scoring process.

Model with “fairer” feature subset: Some of
the features in our model showed greater differen-
tial feature performance; in other words, feature
values differed across groups even for the same
score level. This, in turn, could result in differ-
ent scores for different groups. To identify such
features, we repeated the same analysis as used to
compute conditional procedure accuracy but using
each feature as a dependent variable. The amount
of variance attributed to native language for dif-
ferent features varied between <0.1% and 11%
with median at 3.4%. We used 3% as a thresh-
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old and excluded features where more than 3% of
feature variance could be attributed to native lan-
guage. This left us with 34 out of 77 features.
These analyses were done using the training set.
We then used this subset of 34 features to re-fit the
Ridge regression to the training set and to generate
predictions for the test set. This FAIR(ER) model
achieved r = 0.67, a small loss in performance
considering that we removed more than half of
all features. This model was optimized to reduce
CSD but it might do so at the cost of other mea-
sures.

5.3 Model fairness
The fairness evaluations for these three models are
summarized in Table 4. For the BASE model, test-
taker L1 explained 1.7% of variance in OSD and
6.2% of variance in CSD. There also was a small
difference in OSA. In other words, these evalua-
tions pointed towards a small but significant bias
in model performance.

Actual Equal
OSA OSD CSD OSA OSD CSD

BASE .002 .017 .062 .008 .112 .112
L1 .003 ns .135 .014 .222 .223
FAIR(ER) .004 .045 .030 .004 .054 .055

Table 4: Adjusted R2 showing percentage of variance
in scoring error attributed to L1 for different models
and score distributions. See caption to Table 3 and sec-
tion 4.2 for further explanation

To further understand the nature of these differ-
ences, we can look at the estimates for each group
produced by the model in Table 5. For estimates
computed on the actual score distribution we see
that not only the size but also the direction of dif-
ferences differs depending on whether we look at
the overall or conditional difference. Thus, for
example, the overall difference for GER speakers
suggests lower overall automated scores relative to
human scores than for the reference group (SPA),
while the conditional difference implies that the
automated scores are higher relative to human rat-
ings than for the reference group when speaker
language proficiency is held constant.

Since we already saw that overall differences
may be affected by the score distributions, Table
5 also shows the estimates for the model fitted
to the subset of responses where the score dis-
tribution is held constant across all groups. In
this case, OSA and OSD estimates are identi-
cal and show that given the same level of profi-

ciency the model in fact assigns higher scores to
GER speakers relative to human scores and lower
scores to JPN speakers relative to human scores. In
other words, in the actual data this difference for
GER speakers is compensated by the score distri-
bution effects. Conditional score differences for
the three models are illustrated in Figure 2. For
comparison, Figure 1 shows the same plots for
simulated models.

Actual Equal
OSA OSD CSD OSA OSD CSD

ARA ns 0.06 ns ns ns ns
CHI ns 0.09 -0.10 ns -0.12 -0.12
GER ns -0.11 0.16 0.06 0.20 0.20
JPN ns ns -0.33 0.08 -0.31 -0.31
KOR ns 0.06 -0.11 ns -0.10 -0.10

Table 5: Model estimates for 6 languages in our corpus
for scores generated by the BASE model. SPA is used as
a reference category.

For the other two models the evaluations
in Table 4 are consistent with our predictions:
FAIR(ER) model has the lowest CSD (0.03) while
for the L1 model CSD more than doubled and
reached 0.135. At the same time OSD shows the
reverse pattern with the L1 model outperforming
both BASE and FAIR(ER) model. All three mod-
els show small but significant OSA.

Finally, we compared these results with the
standardized mean differences in Table 6. As in
the case of simulated models, SMDs allowed us
to reach the same general conclusion: L1 model
is the least fair and FAIR(ER) model is proba-
bly the most fair of the three models. Yet in
this case SMDs also obscure the fact that both
BASE and FAIR(ER) model might be over-scoring
GER speakers: in fact the SMDs for the two mod-
els have the opposite sign.

BASE FAIR(ER) L1
ARA 0.07 0.08 -0.01
CHI 0.04 0.10 -0.13
GER 0.08 -0.07 0.35
JPN -0.26 -0.18 -0.24
KOR 0.00 0.05 -0.11
SPA 0.06 0.02 0.11

Table 6: Standardized mean difference for 6 languages
in our corpus for scores generated by different models.
Absolute values above the 0.1 threshold are highlighted
in bold
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Figure 2: Average system score conditioned on human score for different models and native languages

6 Discussion

In this paper we considered three definitions of
fairness in the context of automated scoring: (1)
Overall score accuracy - are automated scores
equally accurate for all groups of interest? (2)
Overall score difference - are automated scores
consistently higher or lower than human scores
for members of different groups? (3) Conditional
score difference - are automated scores consis-
tently higher or lower for members of different
groups despite them having the same language
proficiency? These three metrics capture different
dimensions of fairness and answer different ques-
tions.

Ideally, automated scores should be fair along
all of these dimensions and as we showed it is
possible if the automated scores are a perfect pre-
diction of human scores (error = 0 for all scores)
or if the human score distributions are the same
across all groups. Yet in practice, achieving
such total fairness may not be possible. Thus,
even scores from the PERFECT model (r=0.97)
failed to achieve overall score difference equal-
ity. The scores from the ∼PERFECT model, with
slightly less accurate automated scores than the
PERFECT model, failed to achieve both overall
score accuracy equality and overall score differ-
ence equality when evaluated on the data with ac-
tual score distribution.

Notably when the score distributions differ
across groups, the three different dimensions of
fairness are not necessarily aligned with each
other. Thus the META model based on metadata
only was better than the PERFECT model in terms
of the overall score difference equality: there was
almost no variation between the groups. Yet as
expected, it failed the conditional score difference

equality test since the scores were assigned based
on test-taker geographic location rather than lan-
guage proficiency.

Similarly for actual models, the model trained
separately for each native language is most fair in
terms of overall score differences since the predic-
tions for each group are centered around the group
mean. Yet this model is the worst of the three we
considered in terms of conditional score difference
which is unsurprising given that test-taker native
language is considered when assigning the score.

None of these definitions of fairness is in prin-
ciple more important than another. Overall score
accuracy equality might be more desirable if a sys-
tem is deployed independently in many countries
and the scores are never compared across coun-
tries. At the same time a system that achieves high
overall score accuracy equality but fails to achieve
conditional score difference equality would not be
acceptable in a high-stakes international assess-
ment context.

In automated scoring model fairness issues have
often been interpreted as emerging from particular
linguistic patterns exhibited by a group in ques-
tion or implicit use of group membership in scor-
ing procedure. As we have shown throughout this
paper, not all measures of fairness are good indica-
tors of such group awareness. Thus overall score
accuracy was in fact higher for the META model
than for the RANDOM model. It also did not differ-
entiate between generic and L1-specific models.
It is also not the case that group unaware models
will be more fair across all dimensions: the RAN-
DOM model was blind to group membership and
yet it was not deemed totally fair. And indeed a
system that assigns a random score would clearly
disadvantage a very proficient speaker but might
be advantageous for a low proficiency speaker. If
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proficiency is aligned with group membership, this
can mean that the model favors certain groups over
others.

Finally, the distinction between different as-
pects of fairness is crucial for fine-tuning the auto-
mated scoring models, especially the ones that do
not lend themselves easily to interpretation. Thus
for example the model optimized to minimize the
overall score differences might in fact learn to
“hold the thumb on the scale” by indirectly us-
ing group membership as was the case with our
L1 model. On the other hand, the model opti-
mized for minimal conditional score differences
may not be equally accurate for all groups. Un-
like SMDs, that conflate different aspects of fair-
ness into the same dimension, different measures
discussed in this paper provide different informa-
tion that helps better understand subgroup differ-
ences in the performance of an automated scor-
ing engines. Thus for example in a hypothetical
scenario where the ∼PERFECT model is deployed
for scoring, SMDs rightly point out that German
speakers as a group would see a reduction in their
scores: the mean score for this group would de-
crease from 3.35 to 3.16. This could be a problem
if old and new scores are ever compared at indi-
vidual or group levels. Yet it would be counter-
productive to search for solutions by looking for
idiosyncrasies in the way the scoring engine han-
dles the responses from German speakers. To re-
solve this problem the engine developers would
need to focus on generally improving model per-
formance, especially at scale edges.

7 Conclusion

We considered different definitions of fairness
of an automated scoring system and argued that
achieving all of them simultaneously may not be
possible as long as the automated scores are not
in perfect agreement with human scores and the
score distributions vary across groups. In this pa-
per we considered human scores to be the true
‘gold standard’ measure of language proficiency.
Yet in most practical applications human scores
are likely to contain a certain amount of error and
possibly even bias which brings additional com-
plexity to fairness evaluations. At the same time,
at least in some contexts, automated scoring can
improve overall score reliability and consistency
which benefits all takers. Ultimately, both the
magnitude and the nature of the impact of auto-

mated scores on score differences between groups
needs to be weighed against other benefits of us-
ing automated scoring in a particular educational
application and the consequences for the final user.
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Abstract

Predicting the construct-relevant difficulty of
Multiple-Choice Questions (MCQs) has the
potential to reduce cost while maintaining the
quality of high-stakes exams. In this paper,
we propose a method for estimating the dif-
ficulty of MCQs from a high-stakes medical
exam, where all questions were deliberately
written to a common reading level. To accom-
plish this, we extract a large number of linguis-
tic features and embedding types, as well as
features quantifying the difficulty of the items
for an automatic question-answering system.
The results show that the proposed approach
outperforms various baselines with a statisti-
cally significant difference. Best results were
achieved when using the full feature set, where
embeddings had the highest predictive power,
followed by linguistic features. An ablation
study of the various types of linguistic features
suggested that information from all levels of
linguistic processing contributes to predicting
item difficulty, with features related to seman-
tic ambiguity and the psycholinguistic proper-
ties of words having a slightly higher impor-
tance. Owing to its generic nature, the pre-
sented approach has the potential to generalize
over other exams containing MCQs.

1 Introduction

For many years, approaches from Natural Lan-
guage Processing (NLP) have been applied to esti-
mating reading difficulty, but relatively fewer at-
tempts have been made to measure conceptual
difficulty or question difficulty beyond linguistic
complexity. In addition to expanding the hori-
zons of NLP research, estimating the construct-
relevant difficulty of test questions has a high prac-
tical value because ensuring that exam questions
are appropriately difficult is both one of the most
important and one of the most costly tasks within
the testing industry. For example, test questions

that are too easy or too difficult are less able to
distinguish between different levels of examinee
ability (or between examinee ability and a defined
cut-score of some kind – e.g., pass/fail). This is es-
pecially important when scores are used to make
consequential decisions such as those for licen-
sure, certification, college admission, and other
high-stakes applications1. To address these issues,
we propose a method for predicting the difficulty
of multiple choice questions (MCQs) from a high-
stakes medical licensure exam, where questions
of varying difficulty may not necessarily vary in
terms of reading levels.

Owing to the criticality of obtaining difficulty
estimates for items (exam questions) prior to their
use for scoring, current best practices require
newly-developed items to be pretested. Pretest-
ing typically involves administering new items to
a representative sample of examinees (usually be-
tween a few hundred and a few thousand), and
then using their responses to estimate various sta-
tistical characteristics. Ideally, pretest data are
collected by embedding new items within a stan-
dard live exam, although sometimes special data
collection efforts may also be needed. Based on
the responses, items that are answered correctly
by a proportion of examinees below or above cer-
tain thresholds (i.e. items that are too easy or too
difficult for almost all examinees) are discarded.
While necessary, this procedure has a high finan-
cial and administrative cost, in addition to the time
required to obtain the data from a sufficiently large
sample of examinees.

Here, we propose an approach for estimating
the difficulty of expert-level MCQs, where the

1Examples of well-known high-stakes exams include
the TOEFL (Test of English as a Foreign Language)
(https://www.ets.org/toefl), the SAT (Scholastic Assessment
Test) (https://collegereadiness.collegeboard.org/sat), and the
USMLE (United States Medical Licensing Examination)
(https://www.usmle.org/).
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A 55-year-old woman with small cell carcinoma of the lung is admitted to the hospital to undergo
chemotherapy. Six days after treatment is started, she develops a temperature of 38C (100.4F).
Physical examination shows no other abnormalities. Laboratory studies show a leukocyte count of
100/mm3 (5% segmented neutrophils and 95% lymphocytes).
Which of the following is the most appropriate pharmacotherapy to increase this patient’s
leukocyte count?
(A) Darbepoetin
(B) Dexamethasone
(C) Filgrastim
(D) Interferon alfa
(E) Interleukin-2 (IL-2)
(F) Leucovorin

Table 1: An example of a practice item

gold standard of item difficulty is defined through
large-scale pretesting and is based on the re-
sponses of hundreds of highly-motivated exami-
nees. Being able to automatically predict item dif-
ficulty from item text has the potential to save sig-
nificant resources by eliminating or reducing the
need to pretest the items. These savings are of
even greater importance in the context of some au-
tomatic item generation strategies, which can pro-
duce tens of thousands of items with no feasible
way to pretest them or identify which items are
most likely to succeed. Furthermore, understand-
ing what makes an item difficult other than manip-
ulating its reading difficulty has the potential to aid
the item-writing process and improve the quality
of the exam. Last but not least, automatic diffi-
culty prediction is relevant to automatic item gen-
eration as an evaluation measure of the quality of
the produced output.

Contributions i) We develop and test the pre-
dictive power of a large number of different types
of features (e.g. embeddings and linguistic fea-
tures), including innovative metrics that measure
the difficulty of MCQs for an automatic question-
answering system. The latter produced empirical
evidence on whether parallels exist between ques-
tion difficulty for humans and machines. ii) The
results outperform a number of baselines, show-
ing that the proposed approach measures a no-
tion of difficulty that goes beyond linguistic com-
plexity. iii) We analyze the most common errors
produced by the models, as well as the most im-
portant features, providing insight into the effects
that various item characteristics have on the suc-
cess of predicting item difficulty. iv) Owing to the

generic nature of the features, the presented ap-
proach is potentially generalizable to other MCQ-
based exams. We make our code available2 at:
https://bit.ly/2EaTFNN.

2 Related Work

The vast majority of previous work on difficulty
prediction has been concerned with estimating
readability (Flesch, 1948; Dubay, 2004; Kintsch
and Vipond, 2014; François and Miltsakaki, 2012;
McNamara et al., 2014; Yaneva et al., 2017). Vari-
ous complexity-related features have been devel-
oped in readability research (see Dubay (2004)
and Kintsch and Vipond (2014) for a review),
starting from ones utilising surface lexical fea-
tures (e.g. Flesch (1948)) to NLP-enhanced mod-
els (François and Miltsakaki, 2012) and features
aimed at capturing cohesion (McNamara et al.,
2014).

There have also been attempts to estimate the
difficulty of questions for humans. This has been
mostly done within the realm of language learn-
ing, where the difficulty of reading comprehension
questions is strongly related to their associated
text passages (Huang et al., 2017; Beinborn et al.,
2015; Loukina et al., 2016). Another area where
question-difficulty prediction is discussed is the
area of automatic question generation, as a form
of evaluation of the output (Alsubait et al., 2013;
Ha and Yaneva, 2018). In many cases such evalua-
tion is conducted through some form of automatic
measure of difficulty (e.g., the semantic similarity
between the question and answer options as in (Ha

2The questions cannot be made available because of test
security.
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and Yaneva, 2018)) rather than through extensive
evaluation with humans. Past research has also fo-
cused on estimating the difficulty of open-ended
questions in community question-answering plat-
forms (Wang et al., 2014; Liu et al., 2013); how-
ever, these questions were generic in nature and
did not require expert knowledge. Other studies
use taxonomies representing knowledge dimen-
sions and cognitive processes involved in the com-
pletion of a test task to predict the difficulty of
short-answer questions (Padó, 2017) and identify
skills required to answer school science questions
(Nadeem and Ostendorf, 2017). We build upon
previous work by implementing a large number of
complexity-related features, as well as testing var-
ious prediction models (Section 4).

While relevant in a broad sense, the above
works are not directly comparable to the current
task. Unlike community question answering, the
questions used in this study were developed by
experts and require the application of highly spe-
cialized knowledge. Reading exams, where com-
prehension difficulty is highly associated with text
complexity, are also different from our medical
MCQs, which are deliberately written to a com-
mon reading level (see Section 3). Therefore, the
models needed to capture difficulty in this context
that goes beyond linguistic complexity.

3 Data

Data comprises 12,038 MCQs from the Clinical
Knowledge component of the United States Medi-
cal Licensing Examination R©. An example of a test
item is shown in Table 1. The part describing the
case is referred to as the stem, the correct answer
option is called the key and the incorrect answer
options are known as distractors. The majority of
the items in the data set used here had five or six
answer options.

Item writing All items tested medical knowl-
edge and were designed to emulate real-life sce-
narios wherein examinees must first identify the
relevant findings and then, based on these findings,
make a diagnosis or take a clinical action. Items
were written by experienced item-writers follow-
ing a set of guidelines. These guidelines stipulated
that the writers adhere to a standard structure and
avoid excessive verbosity, “window dressing” (ex-
traneous material not needed to answer the item),
“red herrings” (information designed to mislead
the test-taker), overly long or complicated stems

or options, and grammatical cues (e.g., correct an-
swers that are longer, more specific, or more com-
plete than the other options; or the inclusion of the
same word or phrase in both the stem and the cor-
rect answer). Item writers had to ensure that the
produced items did not have flaws related to vari-
ous aspects of validity. For example, flaws related
to irrelevant difficulty include: Stems or options
are overly long or complicated, Numeric data not
stated consistently and Language or structure of
the options is not homogeneous. Flaws related to
“testwiseness” are: Grammatical cues; The cor-
rect answer is longer, more specific, or more com-
plete than the other options; and A word or phrase
is included both in the stem and in the correct an-
swer. Finally, stylistic rules concerning preferred
usage of terms, formatting, abbreviations, conven-
tions, drug names, and alphabetization of option
sets were also enforced. The goal of standardizing
items in this manner is to produce items that vary
in difficulty and discriminating power due only
to differences in the medical content they assess.
This practice, while sensible, makes modeling dif-
ficulty very challenging.

Item administration The questions in our data
set were pretested by embedding them within live
exams. In practice, the response data collected
during pretesting is used to filter out items that
are misleading, too easy, or too difficult based
on various criteria. Only those items satisfying
these criteria are eligible for use during scoring on
subsequent test forms. The current set of items
contains pretest data administered for four stan-
dard annual cycles between 2012 and 2015. The
questions were embedded within a standard nine-
hour exam and test-takers had no way of know-
ing which items were used for scoring and which
were being pretested. Examinees were medical
students from accredited3 US and Canadian med-
ical schools taking the exam for the first time as
part of a multistep examination sequence required
for medical licensure in the US.

Determining item difficulty On average, each
item was answered by 328 examinees (SD =
67.17). The difficulty of an item is defined by the
proportion of its responses that are correct, which
is commonly referred to in the educational-testing
literature as its P-value4. The P-value is calculated

3Accredited by the Liaison Committee on Medical Edu-
cation (LCME).

4We adopt this convention here but care should be taken
not to confuse this usage with a p-value indicating statistical
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Figure 1: Distribution of the P-value variable

in the following way:

Pi =

∑N
n=1 Un

N
,

where Pi is the p-value for item i, Un is the 0-1
score (correct-incorrect) on item i earned by exam-
inee n , and N is the total number of examinees in
the sample. As an example, a P-value of .3 means
that the item was answered correctly by 30% of
the examinees. The distribution of P-values for the
data set is presented in Figure 1.

4 Features

A number of features were modeled for P-value
prediction and can be roughly divided into three
classes. First, we extract embeddings, which have
been found to have predictive power in many dif-
ferent applications. The second class of features
included more than one hundred linguistic charac-
teristics, which account for differences in the way
the items are written. Finally, a third class of fea-
tures were based on the difficulty an item posed
to an automated question-answering system un-
der the working hypothesis that this system diffi-
culty had a positive relationship with the difficulty
an item poses to human respondents. Information
about each type of feature is presented below. Ad-
ditional details can be found in the available code.

4.1 Embeddings
We experiment with two types of embeddings:
Word2Vec (300 dimensions) (Mikolov et al.,

significance.

2013) and ELMo (1,024 dimensions) (Peters et al.,
2018). The embeddings were generated using
approximately 22,000,000 MEDLINE abstracts,5,
which were found to outperform other versions
of the embeddings extracted from generic cor-
pora (Google News Corpus6 for Word2Vec and 1B
Word (Chelba et al., 2013) for ELMo). Embed-
dings were aggregated at item level using mean
pooling, where an average item embedding is gen-
erated from the embeddings of all words.

4.2 Linguistic features

This class of features includes the following sub-
categories.

Lexical Features Previous research has found
surface lexical features to be very informative in
predicting text readability (Dubay, 2004). Lexical
features in our experiments include counts, inci-
dence scores and ratios for ContentWord, Noun,
Verb, Adjective, and Adverb; Numeral Count;
Type-Token Ratio; Average Word Length In Sylla-
bles; and Complex Word Count (> 3 syllables).

Syntactic Features: These were implemented
using information from the Stanford NLP Parser
(Manning et al., 2014) and include: Average Sen-
tence Length (words); Average Depth Of Tree;
Negation Count; Negation In Stem; Negation
In the Lead-In Question; NP Count; NP Count
With Embedding (the number of noun phrases de-
rived by counting all the noun phrases present in
an item, including embedded NPs); Average NP
Length; PP and VP Count; Proportion Passive
VPs; Agentless Passive Count; Average Number
of Words Before Main Verb; and Relative Clauses
and Conditional Clauses Count.

Semantic Ambiguity Features: This subcat-
egory concerns the semantic ambiguity of word
concepts according to WordNet (WN), as well as
medical concepts according to the UMLS (Uni-
fied Medical Language System) Meta-thesaurus
(Schuyler et al., 1993). The features include Pol-
ysemic Word Index; Average Number of Senses
of: Content Words, Nouns, Verbs, Adjectives, Ad-
verbs; Average Distance To WN Root for: Nouns,
Verbs, Nouns and Verbs; Total No Of UMLS Con-
cepts; Average No Of UMLS Concepts; and Aver-
age No Of Competing Concepts Per Term (average
number of UMLS concepts that each medical term
can refer to).

5https://www.nlm.nih.gov/bsd/medline.html
6https://news.google.com
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Readability Formulae: Flesch Reading Ease
(Flesch, 1948); Flesch Kincaid Grade Level (Kin-
caid et al., 1975); Automated Readability Index
(ARI) (Senter and Smith, 1967); Gunning Fog in-
dex (Gunning, 1952); Coleman-Liau (Coleman,
1965); and SMOG index (McLaughlin, 1969).

Cognitively-Motivated Features: These are
calculated based on information from the MRC
Psycholinguistic Database (Coltheart, 1981),
which contains cognitive measures based on
human ratings for a total of 98,538 words. These
features include Imagability, which indicates the
ease with which a mental image of a word is
constructed; Familiarity of the word for an adult;
Concreteness; Age Of Acquisition; and finally
Meaningfulness Ratio Colorado and Meaning-
fulness Ratio Paivio. The meaningfulness rating
assigned to a word indicates the extent to which
the word is associated with other words.

Word Frequency Features: These include Av-
erage Word Frequency, as well as threshold fre-
quencies such as words not included in the most
frequent words on the BNC frequency list (Not In
First 2000/ 3000/ 4000 or 5000 Count).

Text Cohesion Features: These include counts
of All Connectives, as well as Additive, Temporal,
and Causal Connectives, and Referential Pronoun
Count.

4.3 Information Retrieval (IR) features

The working hypothesis behind this group of fea-
tures is that there is a positive correlation be-
tween the difficulty of questions for humans and
for machines. To quantify machine-difficulty, we
develop features based on information retrieval
that capture how difficult it is for an automatic
question-answering (QA) system to answer the
items correctly. This was accomplished following
the approaches to QA presented in Clark and Et-
zioni (2016).

First, we use Lucene7 with its default options to
index the abstracts of medical articles contained
in the MEDLINE8 database. Then for each test
item we build several queries, corresponding to the
stem and one answer option. We use three dif-
ferent settings: i) All words, ii) Nouns only, and
iii) Nouns, Verbs, and Adjectives (NVA). We then
get the top 5 MEDLINE documents returned by
Lucene as a result of each query and calculate the

7https://lucene.apache.org/
8https://www.nlm.nih.gov/bsd/medline.html

r RMSE
Random Forests 0.24 23.15
Linear Regression 0.17 25.65
SVM 0.17 25.41
Gaussian Processes 0.2 23.87
Dense NN (3 layers) 0.16 25.85

Table 2: Results for algorithm selection (validation set)

sum of the retrieval scores. These scores represent
the content of the IR features (Stem Only, Stem +
Correct Answer, and Stem + Options, where for
each of these configurations we have a different
feature for All words, Nouns only, and NVA.). The
scores reflect how difficult it is for a QA system to
choose the correct answer. Specifically, if the IR
scores of Stem + Correct Answer are much higher
than those of Stem + Options, then the QA sys-
tem is more confident in its answer choice and the
item is deemed relatively easy. This information
can then be used to predict item difficulty.

5 Experiments

In this section we present our experiments on pre-
dicting the P-value.

First, we randomly divide the full data set into
training (60%), validation (20%) and test (20%)
sets for the purpose of evaluating a number of dif-
ferent algorithms9 on the validation set. This was
done using all features. The most notable results
on algorithm selection are presented in Table 2. As
can be seen from the table, the best results are ob-
tained using the Random Forests (RF) algorithm
(Breiman, 2001), which was selected for use in
subsequent experiments.

5.1 Baselines
Five baselines were computed to evaluate model
performance. The first baseline is the output of the
ZeroR algorithm, which simply assigns the mean
of the P-value variable in the training set as a pre-
diction for every instance. Each of the four re-
maining baselines was based on a common feature
known to be a strong predictor of reading diffi-
culty: Word Count, Average Sentence Length, Av-
erage Word Length in Syllables, and the Flesch
Reading Ease10 formula (Flesch, 1948). These

9Parameters for the Neural Network algorithm: 3 dense
layers of size 100, activation function: RELU, loss function:
MSE, weight initialization Xavier and learning rate = 0.001.
Trained for 500 epochs with early stopping after 10 epochs
with no improvement.

10While readability formulae are used as features in the
models and their predictive power is assessed, it is acknowl-
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simple baselines allow us to assess whether the
difficulty of the items in our data set can be re-
liably predicted using heuristics such as “longer
items are more difficult” or “items using longer
words and sentences are more difficult”. The per-
formances of the baselines as single features in
an RF model (except ZeroR, which is an algo-
rithm of its own) are presented in Table 3. In
terms of Root Mean Squared Error (RMSE), the
strongest baseline was ZeroR, with Average Word
Length in Syllables producing somewhat similar
results. All other baselines performed worse than
ZeroR, showing that item length (Word Count), as
well as Average Sentence Length and especially
Flesch readability, are rather weak predictors of
item difficulty for our data. These results provide
an empirical evidence in support of the claim that
easy and difficult items do not differ in terms of
surface readability, commonly measured through
word and sentence length.

5.2 P-value Prediction

We use various combinations of the features pre-
sented in Section 4 as input to an RF model to
predict P-value. The results are presented in Ta-
ble 4. As can be seen from the table, using the
full feature set performs best and is a statisti-
cally significant improvement over the strongest
baseline (ZeroR) with an RMSE reduction of ap-
proximately one point (Training set (10-fold CV):
p = 7.684e−10 with 95% Confidence Intervals
(CI) from 10,000 bootstrap replicates: -0.9170, -
0.4749. Test set: p = 2.20e−16 with 95% CI from
10,000 bootstrap replicates: -1.423, -0.952).

In terms of individual feature groups, Linguis-
tic, W2V, and ELMo achieved comparable per-
formance (RMSE ≈ 22.6 for Test Set). The IR
features performed notably worse, (RMSE = 23.4
for Test set), which is also the only result that
does not outperform the ZeroR baseline (p = 0.08,
95% CI: -0.5336, 0.0401). For reference, the next
“worst” result is obtained by combining the IR and
Linguistic features (RMSE = 22.63); nevertheless,
this is a significant improvement over ZeroR (p =
5.517e−14 with 95% CI: -1.279, -0.756). Combin-
ing the Linguistic, W2V and ELMo features leads
to a slight improvement in performance over their
individual use, indicating that the signals captured

edged that the various formulae were validated on different
types of texts than the MCQs in our data. Therefore, their
performance is expected to be lower compared to applications
which use the intended types of materials.

by the different feature groups do not overlap en-
tirely.

5.3 Error Analysis
Analysis of the 500 test-set items with largest error
residuals between predicted and actual values (the
bottom 20% of the test-set predictions) revealed
that the largest errors occur for items with very low
P-values (µ = 32, SD = 13.39, min = 0, max = 62).
This was expected given the skewness of the P-
value variable towards the high end of the scale.
These items (P-value < 62) account for 34.5% of
the full data. Therefore, one possible explanation
for these large errors is the fact that these items are
underrepresented as training examples.

As a follow-up study, we looked into items with
P-values under .20, which account for only 4.5%
of the full data. These items are considered to be
either highly misleading and/or very difficult, as
test-takers systematically chose incorrect answer
options and performed worse than chance (the ma-
jority of items had five or six answer options). Ex-
cluding this small percentage of items from the
training and test sets resulted in substantial im-
provements in RMSE (20.04 after excluding the
items compared to 22.45 before excluding them),
and outperformed ZeroR again a similar margin
(20.98). This result shows that the success of the
proposed approach would be higher for test sam-
ples with fewer extremely difficult or misleading
items. It is acknowledged, however, that which
items are too difficult or misleading can rarely be
known a priori.

5.4 Feature Importance
Understanding the contributions of individual fea-
ture classes from the Linguistic set is useful for in-
terpreting the models, as well as for informing fu-
ture item-writing guidelines. To address this, we
perform an ablation study where we remove one
feature class at a time from the model using all
Linguistic features.

As shown in Table 5, the removal of individ-
ual classes does not lead to dramatic changes in
RMSE, suggesting that the predictive power of the
Linguistic model is not dependent on a particu-
lar feature type (e.g. lexical, syntactic, seman-
tic, etc). Nevertheless, removal of the Semantic
Ambiguity and the Cognitively-motivated features
led to a slightly lower performance for both cross-
validation on the training set and for the test set.
Indeed, a correlation analysis between individual
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Training set (10-fold CV) Test set
r MAE RMSE r MAE RMSE

ZeroR -0.02 19.9 24.09 0 19.67 23.65
Word Count 0.01 20.13 24.5 0.05 19.81 23.87
Av. Sent. Length -0.006 20.76 25.52 0.04 20.2 24.58
Av. Word Length 0.05 19.89 24.14 0.07 19.6 23.63
Flesch Reading Ease 0.02 22.05 27.53 -0.01 22.27 27.61

Table 3: Baseline results using 10-fold cross validation on the training set and evaluating the models on the test set
(r = correlation coefficient, MAE = Mean Absolute Error, RMSE = Root Mean Squared Error).

Training set (10-fold CV) Test set
r MAE RMSE r MAE RMSE

All 0.27 18.88 23.15 0.32 18.53 22.45
Linguistic 0.26 19 23.22 0.29 18.73 22.62
IR 0.17 19.58 23.91 0.18 19.28 23.4
W2V 0.27 18.94 23.18 0.3 18.61 22.58
ELMo 0.27 18.95 23.18 0.29 18.77 22.64
Ling + IR 0.26 19.04 23.25 0.29 18.75 22.63
Ling + ELMo 0.27 19.08 23.19 0.3 18.79 22.61
Ling + W2Vec 0.28 18.9 23.14 0.31 18.65 22.54
IR + W2V 0.27 18.94 23.18 0.3 18.67 22.56
IR + ELMo 0.26 18.95 23.26 0.31 18.53 22.55
W2V + ELMo 0.28 18.84 23.13 0.32 18.51 22.5
IR + W2V + ELMo 0.27 18.88 23.18 0.3 18.56 22.56
IR + Ling + W2V 0.289 18.9 23.11 0.31 18.6 22.52
IR + Ling + ELMO 0.27 19 23.2 0.327 18.64 22.48

Table 4: Results for the training (10-fold CV) and test sets for various feature combinations.

CV RMSE Test RMSE
All Linguistic 23.22 22.62
Without Lexical 23.3 22.49
Without Syntactic 23.23 22.66
Without Sem. ambiguity 23.31 22.89
Without Readability 23.22 22.59
Without Word Frequency 23.27 22.63
Without Cognitive 23.3 22.74
Without Cohesion 23.29 22.51

Table 5: Changes in RMSE after removing individual
feature classes

features and the P-value variable reveals that the
top three features with highest correlations are
Age of Acquisition (-.11), Familiarity (.1038) and
Referential Pronoun Incidence (.1035). Since the
texts are domain-specific and contain a great deal
of medical terminology, it is likely that the Age
of Acquisition and Familiarity indices reflect the
use of terms, however, further analysis is needed
to confirm this.

6 Discussion

The experiments presented in the previous sec-
tion provided empirical evidence that the difficulty
of expert-level11 multiple-choice questions can be

11Requiring expert knowledge as opposed to general
knowledge

predicted with accuracy significantly higher than
various baselines. It was shown that simple met-
rics of complexity such as item length or aver-
age word and sentence length performed poorer
than the ZeroR baseline, indicating that the dif-
ficulty of the items could not be predicted using
surface readability measures. Best results were
achieved when combining all types of available
features (Linguistic, IR, Word2Vec, and ELMo),
which showed a statistically significant improve-
ment over the baselines. In terms of individual fea-
ture classes, the IR features performed poorly and
were outperformed by the Linguistic, Word2Vec,
and ELMo features – with the latter two being the
strongest classes of predictors. Nevertheless, the
fact that the combination of all the feature classes
performed best supports the idea that the signals
from the different feature groups did not overlap
entirely and instead complemented each other. To
understand whether the way the items were writ-
ten had an effect on difficulty prediction and to
gain insight into how item-writing could be im-
proved, we analyzed the performance of the dif-
ferent types of Linguistic features. It was shown
that the strength of the predictions were not due to
a single linguistic feature; however, the strongest
predictors were features related to semantic am-
biguity and cognitively-motivated features (espe-
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cially Age of Acquisition and Familiarity). Errors
were largest for items at the lower end of the P-
value scale, potentially because these items were
underrepresented as training examples. Further
experiments are needed to corroborate this.

In terms of generalizability, the presented ap-
proach is not test-specific and can therefore be ap-
plied to other exams containing MCQs. The re-
sults are, however, highly dependent on the popu-
lation of test-takers. In fact, predicting the P-value
in our particular case was arguably more chal-
lenging than for other exams owing to the homo-
geneity of the test-taker population. The majority
of items were answered correctly by the majority
of examinees because the test-takers were highly-
able and highly-motivated medical students, who
had already passed many other competitive high-
stakes exams, including those for medical school
admission. All else being equal, the expectation
is that the performance of these models would im-
prove for exams administered to, for example, ex-
aminees from K-12, where the ability of the test-
takers has a higher variance and the distribution of
P-values is less-skewed. However, all else is not
equal and K-12 exams have substantially differ-
ent test questions, the effects of which is unknown.
Further research is needed here.

The presented approach is a first step toward
predicting item difficulty and, therefore, there are
a number of avenues for future work that could
lead to better results. One of these relates to hav-
ing separate embeddings for the stem and answer
options as opposed to item-level embeddings. An-
other interesting approach would be to divide the
items by content category (e.g. psychiatric, car-
diac, etc). Content categories are not used as fea-
tures in the current approach because there was no
practical value in learning that, say, cardiac items
are more difficult than psychiatric ones. However,
it might be worthwhile to build content-specific
models that predict item difficulty within-category
(e.g., what are the relative item difficulties within
the pool of psychiatric items). Finally, the per-
formance of the IR features could be improved
if the information is extracted from corpora that
are more relevant (such as textbooks and examinee
study materials) as opposed to medical abstracts.

The results presented in this paper have both
practical and theoretical importance. Being able to
predict the P-value of an MCQ reduces the cost of
pretesting while maintaining exam quality. From

a theoretical perspective, assessing difficulty be-
yond readability is an exciting new frontier that
has implications for language understanding and
cognition. Last but not least, such an applica-
tion could also potentially be useful for assess-
ing the performance of question-answering sys-
tems by predicting the difficulty of the questions
for humans.

7 Conclusion

The paper presented an approach for predict-
ing the construct-relevant difficulty of multiple-
choice questions for a high-stakes medical licen-
sure exam. Three classes of feature were devel-
oped: linguistic features, embeddings (ELMo and
Word2Vec), and features quantifying the difficulty
of items for an automatic question-answering sys-
tem (IR features). A model using the full feature
set outperformed five different baselines (ZeroR,
Word Count, Average Sentence Length, Average
Word Length in Syllables, and the Flesch Read-
ing Ease formula) with a statistically significant
reduction of RMSE of approximately one point.
Embeddings had the highest predictive power, fol-
lowed by linguistic features, while the IR features
were ranked least useful. Largest errors occurred
for very difficult items, possibly due to the skew-
ness of the data distribution towards items with a
higher proportion of correct responses. Amongst
the linguistic features, all classes contributed
to predicting item difficulty, with the semantic-
ambiguity and cognitively-motivated features hav-
ing a slightly higher predictive power.

These results indicate the usefulness of NLP
for predicting the difficulty of MCQs. While
this study is an early attempt toward the goal of
automatic difficulty prediction for MCQs, it has
both theoretical and practical importance in that it
goes beyond predicting linguistic complexity and
in that it has the potential to reduce cost in the test-
ing industry. Next steps include the application of
the approach to other exam content administered
to a different population of examinees, as well as
various improvements in the methodology.
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Abstract

Testing is an important tool to monitor learn-
ing effects. However, it usually costs a large
amount of time and human labor to build an
item bank and to test large number of stu-
dents. In this paper, we propose a novel testing
strategy by combining automatic item genera-
tion (AIG) and computerized adaptive testing
(CAT) in vocabulary assessment for Chinese
L2 learners. Firstly, we generate three types
of vocabulary questions by modeling both the
vocabulary knowledge and learners’ writing
error data. After evaluation and calibration,
we construct a balanced item pool with au-
tomatically generated items, and implement
a three-parameter computerized adaptive test.
We conduct manual item evaluation and online
student tests in the experiments. The results
show that the combination of AIG and CAT
can construct test items efficiently and reduce
test cost significantly. Also, the test result of
CAT can provide valuable feedback to AIG al-
gorithms.

1 Introduction

Vocabulary is one of the most important parts of
language competence (Cook, 2016). Testing of
vocabulary knowledge is central to research on
reading and language (Brown et al., 2005). How-
ever, it usually costs a large amount of time and
human labor to build an item bank and to test large
number of students.

To enhance the testing efficiency and conve-
nience, we propose a novel testing strategy by
combining automatic item generation (AIG) and
computerized adaptive testing (CAT). Based on
this strategy, we build an online testing system to
evaluate vocabulary knowledge of Chinese second
language learners: http://test.aihanyu.
org. The pipeline of our method is illustrated in
Figure 1:

Step 1. Generate vocabulary questions automat-
ically by modeling both the vocabulary
knowledge and learners’ writing error
data.

Step 2. Construct a balanced item pool by sam-
pling questions from different difficulty
levels, and implement an online vocabu-
lary test with these items.

Step 3. Conduct student tests in which students
with different language proficiencies take
both the online AIG test and a traditional
student placement test developed by ex-
perts.

Step 4. Build an improved three-parameter CAT
model with these items, and estimate the
students’ abilities.

In the experiments, the student tests demon-
strate desirable results. Firstly, the scores of the
online AIG test are strongly correlated with that of
the placement test (ρ=0.8395). Secondly, the stu-
dent abilities estimated by our CAT model reaches
even stronger correlation with the placement test
(ρ=0.8715). Meanwhile, the average test length
decreases greatly by 81% (from 140 to 26).

The experiments show that our strategy can con-
struct test items efficiently and reduce test cost sig-
nificantly for both test developers and test takers.
Also, the test result of CAT can provide valuable
feedback to question generation and selection al-
gorithms.

2 Related Work

2.1 Automatic Item Generation
Automatic item generation (AIG) is a promising
approach to reduce the cost of test development.
AIG methods have been used in generating differ-
ent types of questions, such as reading comprehen-
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Figure 1: The pipeline of our testing strategy that combines AIG and CAT.

sion (Rus et al., 2007; Mostow et al., 2017) and
vocabulary assessment (Mitkov et al., 2006, 2009;
Aldabe and Maritxalar, 2014). Due to its high ef-
ficiency and controllability, automatic item gener-
ation has been used to create solutions and ratio-
nales for Computerized Formative Testing (Gierl
and Lai, 2018).

For vocabulary testing, researchers have made a
lot of efforts in generating vocabulary questions
for ESL (English as a second language) learn-
ers (Mitkov and An Ha, 2003; Singh Bhatia et al.,
2013; Correia et al., 2010; Takuya et al., 2010).
It is well known that lexical knowledge vary a lot
among different languages. For example, Chinese
is a typical analytic language that lacks inflection.
It mainly uses function words and word order to
express grammatical information.

In the area of Chinese item generation, some
methods have been proposed to generate factual
questions and character questions (Liu et al., 2017;
Ding and Gu, 2010; Liu et al., 2018). Different
from existing work, this paper focuses on the gen-
eration of vocabulary questions, and utilizes them
in vocabulary assessment of CSL (Chinese as a
second language) learners. To enhance the test
efficiency, we also integrate these automatically
generated items into a computerized adaptive test-
ing (CAT) model.

2.2 Computerized Adaptive Testing
With the development of language testing tech-
nologies, computerized adaptive testing (CAT) has
attracted considerable attention in language testing
area and has been successfully applied to large-
scale standardized language tests, such as GRE
and GMAT (Chang, 2015). Instead of giving all
the examinees the same fixed test, CAT selects
items that are tailored to each examinee’s abil-
ity. Compared with traditional computer based or
paper-pencil based tests, CAT can greatly shorten
the test length by 50% while maintaining good test
reliability and increasing the test security (Wainer,
2000; Weiss and Kingsbury, 1984).

However, one of the main challenges in CAT
is the item pool development which requires not
only large numbers of high-quality test items, but
also a careful calibration of these items. In this
study, we propose to construct the item pool with
automatically generated questions. It can reduce
the test cost significantly for both test developers
and test takers.

3 Automatic Generation of Vocabulary
Questions

To test the vocabulary knowledge of CSL learn-
ers, we generate three types of multiple-choice
questions which account for different dimensions

22



of vocabulary knowledge. The question examples
can be seen in Figure 2.

(1) Word selection: Select a word that can fill
in the blank of the sentence. It involves the
knowledge of word form, meaning and how it
is used in the context.

(2) Word pronunciation: Select a word that has an
incorrect pinyin label. It focuses on the pro-
nunciation part.

(3) Word collocation: Select a word that can col-
locate with the given word. It addresses the
syntactic behaviors and collocational knowl-
edge of words.

The generation of the vocabulary questions in-
volves two stages: (1) Build a vocabulary knowl-
edge base by extracting features from learner cor-
pus, textbook corpus, test papers and dictionaries.
(2) Generate different types of questions via stem
selection, target word selection and distractor se-
lection.

3.1 Vocabulary Knowledge Base

The knowledge base contains totally 8,400 word
entries, which are collected from the syllabuses
of two official Chinese language proficiency tests:
HSK1 and TOCFL2. We build a list of attributes
for each entry in the knowledge base, and the
attribute values are automatically extracted from
large-scale language resources with multiple natu-
ral language processing (NLP) methods:

• Word frequency: It is calculated from CTC3,
a text corpus for Chinese L2 learners.

• Word level: The 8400 target words are scaled
to 14 difficulty levels according to their fre-
quencies in CTC, i.e. 600 words at each level.

• Words of similar pronunciation: They are
extracted with the pronunciation similarity
model proposed by Hu (2013).

• Words of similar form: If two words are of
equal length in Chinese characters (hanzi)
and have at least one same character, we
count them as words of similar form.

1http://www.chinesetest.cn/godownload.do
2http://www.tw.org/tocfl/
3http://www.aihanyu.org/basic v2/index.html

• Synonyms: They are retrieved from Yang and
Jia (2005)’s synonym dictionary.

• Easily confused words: They are extracted
from leaners’ writing error, as collected and
manually labeled in HSK learner corpus4. If
word a is involved in word selection error for
at least 10 times in the learner corpus, and it
is mistakenly used as word b for over 20%
of the error cases, we identify word b as an
easily confused word of a.

• Collocations: Nine types of collocations
are retrieved from the collocation knowledge
base built by Hu et al. (2016)5.

3.2 Item Generation
3.2.1 Word Selection Question
The model generate the word selection questions
via four steps: preprocessing, stem sentence se-
lection, target word selection and question gener-
ation.

Firstly, all the texts in CTC are preprocessed via
word segmentation, POS tagging and dependency
parsing with LTP-Cloud (Che et al., 2010), a Chi-
nese NLP toolkit. We obtain 2.4 million words and
154,023 dependency trees after the preprocessing.

Secondly, sentences are selected based on the
NLP preprocessing results if they can satisfy mul-
tiple conditions, including sentence length, sen-
tence independence and difficulty levels. We limit
the sentence length to 10-30 words. For inde-
pendence analysis, we target at sentences whose
meanings are context independent, i.e. a com-
plete declarative sentence which is not from a di-
alogue, and does not involve a pronoun that refers
to someone or something in the previous con-
text. We compile 3 rules based on POS tags and
dependency relations to exclude unqualified sen-
tences. For difficulty levels, we check if each word
of the sentence is in our 8400-word vocabulary
for L2 learners, and the percent of OOV (out-of-
vocabulary) words should not exceed 10%.

Thirdly, we locate candidate target words in
the stem sentences. Each candidate word should
appear only once in the sentence and have at
least three distractors in the vocabulary knowledge
base. The distractors include words of similar pro-
nunciation and form, as well as easily confused
words. If more than one candidate target words are

4http://bcc.blcu.edu.cn/hsk
5http://cca.xingtanlu.cn/
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(a) (b) (c)

Figure 2: Examples of automatically generated items as they shown in the online testing application. (a) Word
Selection, (b) Word Pronunciation, (c) Word Collocation. The highlighted option is the correct answer.

retrieved, we choose the one with higher difficulty,
i.e. lower frequency. If a target word has more
than three distractors, we choose the distractors
that have the most similar difficulty levels with the
target words.

At last, the target word is removed to generate
a fill-in-blank question. Three distractors and the
target word are shuffled to construct four options.

3.2.2 Word Pronunciation Question
A target word is firstly selected if one of its char-
acters has an easily confused pronunciation deter-
mined by the pronunciation similarity model (Hu,
2013). We replace the correct pinyin with an easily
confused one, and choose three other words from
the same difficulty level that have correct pinyin
labels and the same length. The item stem is “Se-
lect the word that has an incorrect pinyin label”.

3.2.3 Word Collocation Question
For word collocation question, we firstly retrieve
the collocations of frequency > 3 and mutual in-
formation > 0 for each target word. Given a
target word and its collocation, we obtain candi-
date distractors from the vocabulary knowledge
base. To ensure there is only one correct answer in
the multiple-choice question, we replace the target
word with each candidate distractor to constitute
a new combination. If the new combination does
not appear in our collocation data, this candidate
distractor is accepted. If more than three distrac-
tors are accepted, we choose the ones that have the
most similar difficulty levels with the target word.
At last, the target word is removed and we gen-
erate the question similarly to the word selection
question.

Three types and totally 93764 test items are
successfully generated with our method, includ-
ing 75689 items for word selection, 6697 items
for word pronunciation and 11378 items for word

collocation. After that, we sample questions for
manual evaluation. The results will be discussed
in Section 5.

4 Computerized Adaptive Testing

This paper aims at building a CAT model to eval-
uate vocabulary knowledge of CSL learners. We
use the automatically generated questions for item
calibration. The advantage is we can directly sam-
ple questions from different difficulty levels, so
as to build a balanced item bank. In this study,
item response theory (IRT) with three-parameter
is used for calibration.

4.1 Theoretical Basis

Let pi(θ) be the probability of a correct response
to item i from a examinee with ability θ, thus
qi(θ) = 1 − pi(θ) is the probability of a incorrect
response.

Let u = (u1, u2, ..., un), ui ∈ {0, 1} is the re-
sponses of n items. The likelihood function L is
given by Equation 1.

L(u|θ) =
n∏

i=1

pi(θ)
uiqi(θ)

1−ui (1)

Equation 2 gives the probability of a correct re-
sponse to item i, where ai is discrimination param-
eter, bi is difficulty parameter, and ci is the guess-
ing parameter.

pi(θ) = ci +
1− ci

1 + e−ai(θ−bi)
(2)

Solving L′(θ) = 0 can find the value of θ̂
that maximize the likelihood function L. To sim-
plify, we transform it to a log-likelihood function
l(u|θ) = ln(L(u|θ)) as shown in Equation 3. The
logarithm function could convert the product of
factors to a sum of log factors, which makes it
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much easier to get the derivative.

l(u|θ) =
n∑

i=1

(ui ln pi(θ) + (1− ui) ln qi(θ)) (3)

Thus, to find the θ̂ that maximize L, it is equiv-
alent to solve l′(θ) = 0. It can be computed by
the Newton-Raphson method: θt+1 = θt − l′(θ)

l′′(θ) ,
which is an iterative algorithm with termination
criterion ε, tmax s.t. ∆ = θt+1−θt < ε∨t > tmax.
A simplified iterative formula is given by Equa-
tion 4 (Baker, 2001).

θt+1 = θt +

∑n
i=1 ai(ui − pi(θt))∑n
i=1 a

2
i pi(θt)qi(θt)

(4)

The information function is given by Equa-
tion 5. Ii(θ) is the amount of information for item
i at ability θ.

Ii(θ) = a2i
(pi(θ)− ci)2

(1− ci)2
qi(θ)

pi(θ)
(5)

The test information function is given by Equa-
tion 6. It is the sum of information for all items in
the test.

TI(θ) =
n∑

i=1

Ii(θ) (6)

The standard error function is given by Equa-
tion 7. A higher test information TI implies the
higher precision of estimated ability which can not
be observed directly. Thus, the smaller SE is, the
better estimation is. A threshold of SE acts as a
termination criteria in the test.

SE(θ) =
1√
TI(θ)

(7)

4.2 Adaptive Algorithm
There are four important components in an adap-
tive testing algorithm: the item pool, the item
selection, the ability estimation and stopping
rules (Weiss and Kingsbury, 1984).

Item Pool. The success of CAT is highly depen-
dent on the item pool with sufficient items of dif-
ferent difficulty levels. Our AIG method enables
the system to select as many items as the test needs
from different levels. Thus, a balanced item pool
can be easily sampled for calibration.

Item Selection. The item selection is to select
an item with the highest information I at the esti-
mated ability θ̂. The test normally starts with an
item of medium difficulty. And items can not be
repeated during the test.

Ability Estimation. After each item is an-
swered, the examinee’s ability is estimated and
used by the item selection to select the next item.
The most commonly used estimation method is
maximum likelihood estimation (MLE). Maxi-
mum likelihood is asymptotically unbiased, but it
can not provide an ability estimate for a homo-
geneous set of responses (all correct or all incor-
rect) (Weiss and Kingsbury, 1984). To address this
problem, we set a bound of ability [θmin, θmax] to
enable Newton-Raphson method to convergence
to the bound. The iterative ability estimation pro-
cess is shown in Algorithm 1.

Stopping Rules. After the ability is estimated,
the standard error SE is calculated to determine
whether a new item must be selected or the
test should be terminated. We implement three
stopping rules: the test reaches the maximum
length nmax, the ability reaches the boundary
[θmin, θmax] for five consecutive questions when
more than 15 items are administrated, or the exam-
inee’s standard error SE falls below the threshold
s.

5 Experimental Analysis

We evaluate our method via three experiments: (1)
Evaluate the automatically generated items manu-
ally. (2) Conduct student test with both an online
AIG test and a traditional written test developed
by CSL teachers. (3) Use CAT model to estimate
the students’ abilities.

5.1 Expert Evaluation of AIG

To assess the students’ vocabulary knowledge, we
generate three types and totally 93764 test items.
After that, we randomly sample 100 items for each
type of question, resulting in 300 items in total.
These questions are used for manual evaluation.
Original Acceptance Rate (OAR) and Adjustable
Acceptance Rate (AAR) are calculated. An item
can be originally accepted if two professional CSL
teachers both agree that this item can be directly
used in a vocabulary test. And it can be an ad-
justable item if the teachers both agree that it only
needs a few simple modifications, i.e. the replace-
ment or deletion of less than 2 words.

The evaluation results are shown in Table 1. The
question generation method performs well with
the average OAR of 53% and the AAR of 81.67%.

It is noteworthy that the acceptance rate varies
a lot among three types of questions. Word pro-
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Algorithm 1 Estimate(B, θ0, s, nmax, θmin, θmax, tmax, ε)
Set n = 0
Set A = ∅
Set T = []
Set U = []
Set θ̂ = θ0
while n < nmax ∧ SE(θ̂) ≥ s do

Set n = n+ 1
Find item x st. x ∈ B ∧ x /∈ A ∧ Ix(θ̂) = maxy/∈A Iy(θ̂)
Add(A, x)
if test taker’s answer to item x is correct then

Add(U, 1)
else

Add(U, 0)
end if
Set t = 0
repeat

Set t = t+ 1
Set θtmp = θ̂

Update θ̂ using Equation 4
Set ∆ =

∣∣∣θ̂ − θtmp
∣∣∣

until ∆ < ε ∨ t > tmax ∨ θt /∈ [θmin, θmax]
Set θ̂ = max(min(θ̂, θmax), θmin)
Add(T, θ̂)
if n > 15 ∧ (min(Last(T, 5)) = θmax ∨max(Last(T, 5)) = θmin) then

break while
end if

end while
return θ̂

nunciation question performs best since it focuses
only on the pinyin label, and its generation module
is very simple. The generation of word selection
questions is much more complicated. It involves
appropriate selection of sentences, target words
and distractors. Word collocation question can be
considered as a simplified version of word selec-
tion question. We further analyze the feedback of
the teachers, and find that the distractor selection
works very well, indicating that our vocabulary
knowledge base has a high quality. Meanwhile,
the stem sentence selection and target word se-
lection algorithms needs further improvement on
both difficulty control and semantic analysis.

5.2 Online AIG Test

We build an online vocabulary test with accepted
vocabulary questions of three types. Specifically,
we select 140 questions from 14 word levels, i.e.
10 questions at each level. These questions are

manually reviewed and adjusted to ensure they can
be used in the student test. The score for each
question is one point, thus, the test score equals
the number of questions answered correctly. The
vocabulary size of each student can be estimated
with the method proposed by Beglar and Nation
(2007). Since each level has 600 words, a stu-
dent’s test score will be multiplied by 60 to get
their total receptive vocabulary size. The inter-
faces of the online testing system can be seen in
Figure 3.

155 international students of different language
proficiencies are organized to take a traditional
written test of 90 minutes and the AIG online test
of 30 minutes. The written test is a student place-
ment test including listening, reading and writing
questions constructed by professional CSL teach-
ers. And the online test only includes vocabulary
questions. These two tests are administrated on
the same day to ensure the examinees’ language
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Table 1: Results of Expert Evaluation

Result Word Selection Word Pronunciation Word Collocation Average

OAR 19% 100% 40% 53%
AAR 65% 100% 80% 81.67%

(a) (b) (c) (d)

Figure 3: The online testing system on mobile devices (a) description of the test, (b) examples of test items, (c) the
first item, (d) the last item.
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Figure 4: Score Correlations. (a) Written test score and online AIG test score, ρ = 0.8395; (b) Written test score
and CAT estimated ability, ρ = 0.8715.
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Figure 5: CAT Simulation Results. (a) Test Length, the average length is 26; (b) Percentage of different stopping
rules.
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proficiencies are stable.
After the tests, we compute the correlation

scores of them. As shown in Figure 4(a), the re-
sult is very inspiring that the scores are strongly
correlated with Pearson correlation coefficient of
0.8395, given we only use AIG based vocabulary
questions. Furthermore, the test time is greatly re-
duced from 90 minutes to 30 minutes. The online
AIG test promisingly indicates that:

• Vocabulary knowledge is indeed a core part
of second language proficiency, as stated in
previous works (Nation, 2001; Cook, 2016).

• AIG is an effective tool for vocabulary as-
sessment.

5.3 CAT Simulation
After the online test, we collect students’ answer
data, and estimate three parameters for each item,
including difficulty parameter b, discrimination
parameter a and guessing parameter c. The esti-
mation is based on 3PL item response theory (IRT)
and implemented with the R package ltm.

With this calibrated item pool, we implement
the adaptive algorithm illustrated in Algorithm 1.
The detailed parameter settings are as following:
θ0 = 0.2, s = 0.3, nmax = 80, [θmin, θmax] =
[−1.5, 4.5], tmax = 80, ε = 0.0001.

We simulate the CAT based vocabulary test with
the 155 students’ answers, and output estimated
abilities when one of the stopping rules is trig-
gered.

Figure 4(b) shows that the estimated abilities
reaches an even higher correlation coefficient of
ρ = 0.8715 than the fixed online AIG test. Mean-
while, the average test length is only 26, which
decreases greatly by 81% compared to 140 of the
AIG test.

Figure 5 further illustrates the CAT simulation
result. Regarding the triggered stopping rules,
83% of the students end with the standard devi-
ation threshold, which indicates that our CAT al-
gorithm has a desirable estimate precision. How-
ever, there are still 13% of students end with the
lower ability boundary, and 4% of students stop
with maximum test length. These cases reflect that
our item pool needs improvement by adding more
very simple questions for low ability students and
very hard questions for high ability students. It
is an important feedback to the AIG algorithm,
especially on the difficulty control and sampling
method.

5.4 Vocabulary Size and Score Prediction
After estimating students’ vocabulary abilities
with CAT, we train a linear regression model to
predict a student’s vocabulary size and the written
test score.

The vocabulary size vs is predicted with Equa-
tion 8.

vs = 60× (22.37 θ + 61.43), R2 = 0.8505 (8)

It has been implemented on our online testing sys-
tem http://test.aihanyu.org. Users can
quickly estimate their vocabulary sizes after taking
a CAT test in a few minutes.

The written test score sc can be computed with
Equation 9. The result could serve as an effective
tool for student placement.

sc = 14.10 θ + 49.46, R2 = 0.7594 (9)

6 Conclusions and Future Work

In this paper, we propose a novel testing strategy
by combining automatic item generation (AIG)
and computerized adaptive testing (CAT) in vo-
cabulary assessment. Experiments show that it is
a promising and highly effective path to evaluate
language proficiency. The advantages are obvious
as below:

• AIG is an effective method to construct a bal-
anced CAT item pool.

• CAT is also a good evaluation tool of AIG,
since it can provide important feedback to
AIG which is hard to be given by manual
evaluation.

• The combination of AIG and CAT can reduce
the test cost significantly.

We believe that this testing strategy can serve
as a good basis for research of language testing,
as well as various intelligent learning applications
that need students’ proficiencies for user model-
ing. In the future, we aim at enhancing the AIG al-
gorithms and exploring the generation algorithms
of more question types, as well as in more disci-
plines.
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Abstract

Computational linguistic research on the lan-
guage complexity of student writing typi-
cally involves human ratings as a gold stan-
dard. However, educational science shows that
teachers find it difficult to identify and cleanly
separate accuracy, different aspects of com-
plexity, contents, and structure. In this paper,
we therefore explore the use of computational
linguistic methods to investigate how task-
appropriate complexity and accuracy relate to
the grading of overall performance, content
performance, and language performance as as-
signed by teachers.

Based on texts written by students for the offi-
cial school-leaving state examination (Abitur),
we show that teachers successfully assign
higher language performance grades to essays
with higher task-appropriate language com-
plexity and properly separate this from content
scores. Yet, accuracy impacts teacher assess-
ment for all grading rubrics, also the content
score, overemphasizing the role of accuracy.

Our analysis is based on broad computational
linguistic modeling of German language com-
plexity and an innovative theory- and data-
driven feature aggregation method inferring
task-appropriate language complexity.

1 Introduction

Official state education standards highlight the rel-
evance of language complexity for the evalua-
tion of text readability and reading skills (CCSSO,
2010) and academic writing proficiency in stu-
dents first and second language (KMK, 2014a,b).
The highly assessment-driven U.S. public edu-
cation system has long recognized the benefits
of automating the evaluation of student learn-
ing outcomes, including very substantial research,
development, and commercial applications tar-
geting automatic essay scoring (AES, Shermis
and Burstein, 2013; Vajjala, 2018; Yannakoudakis
et al., 2018). This situation is not transferable

to other education systems, such as the German
one, where so far there is hardly any discus-
sion of automating the assessment of learning out-
comes and no high-stakes testing industry. In the
German Abitur examination, the official school-
leaving state examination that qualifies students
for admission to university, teachers grade lan-
guage performance and content in essays without
technical assistance, using grading templates that
specify content and language expectations. In the
language arts and literacy subject-matters (Ger-
man, English, French, etc.), language performance
is a crucial component of the overall grade across
all states. Yet, unlike content, language require-
ments are only loosely specified in the education
standards, mentioning complex and diverse syn-
tax and lexis, and a coherent argumentation struc-
ture as indicators of high-quality language perfor-
mance (KMK, 2014b). The exact implementa-
tion of these language requirements is left to the
discretion of the teachers. Educational science
has questioned to which extent teachers are biased
by construct-irrelevant text characteristics while
grading. There is evidence that mechanical ac-
curacy over-proportionally influences grades and
even affects the evaluation of unrelated concepts
such as content (Cumming et al., 2002; Rezaei
and Lovorn, 2010). Differences in lexical sophis-
tication and diversity have been shown to impact
teachers’ evaluation of grammar and essay struc-
ture (Vögelin et al., 2019). This is a potentially
severe issue for the German education system.

We pick up on this issue by investigating which
role language complexity and accuracy play in
teachers’ grading of German Abitur essays. For
this, we build upon previous work on complex-
ity and accuracy in the context of the Complexity,
Accuracy, and Fluency (CAF) framework (Wolfe-
Quintero et al., 1998; Bulté and Housen, 2012)
employed in Second Language Acquisition (SLA)
research to model different types of language per-
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formance (McNamara et al., 2010; Vajjala and
Meurers, 2012; Bulté and Housen, 2014). We es-
tablish an automatically obtained measure of task-
appropriate overall language complexity. With
this, we identify texts of more and less appropri-
ate language complexity, which we then manually
assess for their accuracy. We use this to exper-
imentally examine teaching experts’ grading be-
haviour and how it is influenced by accuracy and
complexity. Our results show that while teachers
seem to successfully identify language complexity
and include it in their grading when appropriate,
they are heavily biased by accuracy even when it
is construct-irrelevant.

Our work innovates in exploiting computational
linguistic methods to address questions of broader
relevance from the domain of educational science
by using sophisticated language complexity mod-
eling. This is the first computational linguistic
analysis of German Abitur essays and their hu-
man grading, illustrating the potential of cross-
disciplinary work bringing together computational
linguistics and empirical educational science. The
novel approach presented for the assessment of
appropriate overall language complexity also pro-
vides valuable insights into the task- or text type-
dependence of complexity features. This is of di-
rect relevance for the current discussion of task-
effects in CAF research (Alexopoulou et al., 2017;
Yoon, 2017).

The article is structured as follows: We briefly
review related work on complexity assessment
and insights from educational science into human
grading behavior. We then present our data set and
how we automatically extract language complex-
ity measures. Section 5 elaborates on the construc-
tion of appropriate overall language complexity
including a qualitative analysis of task-wise dif-
ferences between document vectors. Section 6 re-
ports our experiment on teacher grading behavior.
We close in Section 7 with an outlook.

2 Related Work

Language complexity, commonly defined as “[t]he
extent to which the language produced in perform-
ing a task is elaborate and varied” (Ellis, 2003,
p. 340), has been studied extensively in the context
of second language development and proficiency
and text readability in particular with regard to
the English language (Vajjala and Meurers, 2012;
Guo et al., 2013; Bulté and Housen, 2014; Chen

and Meurers, 2019). Complexity has also been in-
vestigated in relation to (academic) writing profi-
ciency of native speakers (Crossley et al., 2011;
McNamara et al., 2010). Research on languages
other than English, remains rather limited, with
some work on German, Russian, Swedish, Italian,
and French (Weiss and Meurers, 2018; Reynolds,
2016; Pilán et al., 2015; Dell’Orletta et al., 2014;
François and Fairon, 2012).

Recently, research has increasingly focused on
the influence of task effects on language complex-
ity in writing quality and language proficiency as-
sessment, both in terms of their influence on CAF
development in the context of the two main frame-
works (Robinson, 2001; Skehan, 1996) as well as
its implications for AES systems and other forms
of language proficiency modeling (Yannakoudakis
et al., 2018; Dell’Orletta et al., 2014). Alex-
opoulou et al. (2017) show that task complexity
and task type strongly affect English as a Foreign
Language (EFL) essay writing complexity. Topic
and text type, too, have been found to impact CAF
constructs in EFL writing and in particular lan-
guage complexity (Yoon and Polio, 2016; Yoon,
2017; Yang et al., 2015). Vajjala (2018) demon-
strates task effects across EFL corpora to the ex-
tent that text length strongly impacts essay quality
negatively on one and positively on the other data
set. Her results further corroborate the importance
of accuracy for essay quality across data sets. Ac-
curacy has overall received considerably less at-
tention in SLA research than complexity (Larsen-
Freeman, 2006; Yoon and Polio, 2016).

An orthogonal strand of research investigates
the quality of human judgments of writing qual-
ity and how complexity and accuracy impact them.
It has been demonstrated that teachers are bi-
ased by accuracy and in particular spelling even
when it is irrelevant for the construct under evalu-
ation such as content quality (Rezaei and Lovorn,
2010; Cumming et al., 2002; Scannell and Mar-
shall, 1966). Other studies showed that charac-
teristics such as syntactic complexity, text length,
and lexical sophistication impact inter-rater agree-
ment (Lim, 2019; Wind et al., 2017; Wolfe et al.,
2016). Vögelin et al. (2019) experimentally ma-
nipulate the lexical diversity and sophistication of
EFL learners’ argumentative essays and let Swiss
English teachers rate them for their overall qual-
ity, grammar, and essay frame. Their findings
show that when the lexical diversity and sophis-
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tication of an essay was manually reduced, it re-
ceived lower grades not only for its overall quality
but also for grammar and the essay’s frame, i.e.,
the structured presentation of the writing objective
through introduction and conclusion.

3 The Abitur Data

We analyzed 344 essays that were written dur-
ing the German literature and language examina-
tion of the German Abitur in 2017. The essays
were elicited across German states and collected
and digitized by the Institute for Educational Qual-
ity Improvement (IQB).1 For each essay, the final
overall grade that was assigned to it in the Abitur
serves as meta information. All essays respond
to one of four task prompts.2 Two tasks require
the interpretation of literature (IL): IL-1 and IL-2.
The other two elicit material-based argumentative
(MA) essays based on several additional materials
provided with the task: MA-1 and MA-2.3

Topic and task differences may substantially
impact the linguistic characteristics of the result-
ing language (Alexopoulou et al., 2017; Yoon and
Polio, 2016). For our data, this is even more the
case given that MA task prompts include a rec-
ommended essay length (around 1,000 for one,
around 800 words for the other), but IL task
prompts do not. The effect this has on the relation-
ship between text length and overall essay grade is
shown in Figure 1. Texts elicited by MA tasks are
overall shorter than answers to IL tasks and exhibit
a lesser variation in length. While for IL tasks we
observe a weak linear correlation between overall
grade and text length, clear deviations from the ex-
pected text length seem to have a negative impact
on the overall grade for MA tasks. To address this
issue, we split our data for the following analyses
in four data sets, one per task prompt. The data
sets are henceforth referred to by the id of the re-
spective task prompt (IL-1, IL-2, MA-1, MA-2).

4 Automatic Complexity Assessment

Our system automatically extracts 320 measures
of language complexity covering a broad range
of linguistic features. We include features from

1The IQB is an academic institute that monitors if schools
across Germany states adhere to the educational standards set
by the Standing Conference of the Ministers of Education and
Cultural Affairs of the States in Germany.

2Figure 4 in the Appendix shows the distribution of doc-
uments and grades across task prompts.

3Table 6 in the Appendix describes the task prompts.

Figure 1: Text length across overall grades split by task
prompts. The vertical line marks the mean length.

two main research strands on text complexity in
our system: measures of the linguistic system and
psycho-linguistic measures of language use and
cognitive processing. An overview of all features
can be found in Table 1.

Our procedure is based on our implementation
of a broad range of complexity features for Ger-
man which we have successfully used for the as-
sessment of German readability of media captions
for adults and children (Weiss and Meurers, 2018),
German L2 proficiency (Weiss, 2017; Weiss and
Meurers, in press), and German L1 writing devel-
opment (Weiss and Meurers, 2019). However, for
the research presented here, we altered the seg-
menter for sentences and tokens. Due to the spe-
cific abbreviations for line and page references
systematically used in our data, we found that a
rule-based segmenter combined with a customized
list of abbreviations typical for German Abitur es-
says outperformed the segmentation by OpenNLP
(Bohnet and Nivre, 2012).4

As mentioned earlier, language complexity is
an important component of the German curricu-
lum for German arts and literacy (KMK, 2014b).
While it lacks a full operationalization of language
complexity, it names some examples of language
complexification strategies that students’ writings
should exhibit. Based on this, we identified a set of
75 complexity features, which implement the lan-

4We used the segmenter by Stefanie Dipper available at
https://www.linguistics.ruhr-uni-bochum.
de/˜dipper/resources/tokenizer.html
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Feature Set Description

Lexical complexity measures lexical density, variation, sophistication, and relatedness;
e.g., type token ratio

Discourse complexity measures use of cohesive devices; e.g., connectives per sentence

Phrasal complexity measures phrase modification; e.g., NP modifiers per NP

Clausal complexity measures clausal elaboration; e.g., subordinate clauses per sentence

Morphological complexity measures inflection, derivation, and composition;
e.g., average compound depth per compound noun

Language Use measures word frequencies based on frequency data bases;
e.g., mean word frequency in SUBTLEX-DE (Brysbaert et al., 2011)

Language Processing measures cognitive load during human sentence processing, mostly
based on Dependency Locality Theory (Gibson, 2000)
e.g., average total integration cost at the finite verb

Table 1: Overview over the feature sets used to capture language complexity

guage requirements that were pre-defined for our
data. These may be grouped into three categories:

Argumentation Structure Texts should be
structured coherently, clearly, be compelling and
provide clear guidance for the reader. The author’s
reasoning should be made explicit. Both, the text’s
general structure as well as the language used
should facilitate this (KMK, 2014b, p. 17). We op-
erationalized these aspects by measuring various
uses of connectives and the local and global co-
occurrence of arguments, nouns, and word stems.

Lexical Complexity Texts should be lexically
elaborate and varied. Stylistically, vocabulary
choice should adhere to a task-appropriate written
register (KMK, 2014b, e.g., pp. 42, 52). We cover
this by including a range of measures of lexical
diversity and density.

Syntactic Complexity Texts should be syntacti-
cally elaborate and varied and include connected
and subordinated clauses to reflect a coherent
structure. Stylistically, they should adhere to a
task-appropriate written register. Students should
also make appropriate use of tenses (KMK, 2014b,
e.g., pp. 42, 52). To measure syntactic complexity,
we include sentence length and several clause to
sentence ratios, e.g., complex t-units per sentence
and relative clauses per sentence.

Due to the repeatedly named focus on stylisti-
cally and norm-appropriate writing (KMK, 2014b,
p. 16f), we also include prominent measures of
German academic language which constitutes the

appropriate written register for all four tasks repre-
sented in our data. There is a broad consensus that
in particular complex noun phrases are a promi-
nent feature of academic language (Hennig and
Niemann, 2013; Morek and Heller, 2012; Schlep-
pengrell, 2001), thus we include a series of mea-
sures of noun phrase elaboration and the variabil-
ity of noun complexity. Another prominent aspect
of academic language is deagentivization (Hennig
and Niemann, 2013; Snow and Uccelli, 2009; Bai-
ley, 2007), which entails passivization, verb mod-
ification and verb cluster. Hence, we specifically
include measures of verb complexity and the vari-
ation of verb clusters as well as the coverage of
deagentivization patterns in general. Finally, we
include measures of tense usage to cover the spe-
cific request for appropriate tense usage across text
types. Note that while across tasks the notions of
what constitutes appropriate tense use may differ,
within tasks these are fixed, e.g., favoring the use
of past tense over present tense or vice versa.5

5 Complexity-Based Essay Selection

In order to evaluate how language complexity im-
pacts grading behavior, we first needed to iden-
tify texts of high and low language complexity
for our experiment (Section 6). For this, we fol-
lowed a two-step approach: First, we transformed
each student essay into a vector representation
of relevant features of language complexity (Sec-
tion 5.1). Then, we ranked them with regard to

5The complete list of theoretically motivated features may
be found in Table 7 in the Appendix.
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Figure 2: Task-wise transformation of essays to lan-
guage complexity vector representations.

their similarity to an artificial ideal vector and se-
lected for each task two essays of high and two of
low language complexity (Section 5.2).

5.1 Building Complexity Vectors

Figure 2 outlines the procedure used to build lan-
guage complexity vectors tailored towards the in-
dividual task prompts. We extracted the 320 mea-
sures of language complexity from the Abitur data
as discussed in Section 4. We then removed all
outliers that deviated more than two standard de-
viations from the mean and calculated the z-score
of each feature. Based on this, we identified which
of the dimensions of linguistic complexity that we
measured are relevant for a given task.

We defined relevance in terms of correlation
with the overall grade an essay received. These
grades represent teachers’ judgments of essay
quality under consideration of language perfor-
mance in a high stakes testing situation. We used
a hybrid approach combining theory-driven and
data-driven feature selection. First, we calculated
the Pearson correlation between the z-scores of
75 theoretically relevant features and the overall
grade each essay had received in the Abitur ex-
amination. We did so separately for each data
set. Features with a significant (p < .05) abso-
lute correlation of r ≥ .2 were included in the
complexity vector if they did not correlate more
than r = .8 with another feature in the vector. For
highly correlated features, we only kept the feature
most highly correlated with the overall grade.

We augmented this feature selection with the re-
maining features of linguistic complexity in our
document vector that had a significant (p < .05)
absolute Pearson correlation with the overall grade
of r ≥ .3. Features were required to correlate
less than r = .8 with other features selected for
the complexity vector. For highly inter-correlated
features, the feature with the highest correlation
with the overall grade or the theoretically moti-
vated feature was favored. This lead to complexity
vectors of size 33 for IL-1, 45 for IL-2, and 13 for

Figure 3: Selection of essays with more and less task-
appropriate overall language complexity.

MA-1 and 13 for MA-2.6, 7

5.2 Ranking by Similarity to Ideal Vector

We selected essays for our experiment using the
similarity of complexity vectors to a reference vec-
tor representing the artificial ideal use of each
complexity feature as illustrated in Figure 3. We
assigned the values 1 for feature dimensions with a
positive correlation with the original overall grade
and 0 for those with a negative correlation with
the original overall grade. Conceptually, this rep-
resents the ideal language complexity for a given
task: Features that are associated with low perfor-
mance are not present and features associated with
high performance are maximally represented.

For each feature in the complexity vector, we
replaced the previously introduced z-scores with a
min-max normalization to enforce a scale from 0
to 1. We calculated the similarity between each es-
say and the reference vector using Manhattan dis-
tance and ranked all essays based on their distance
to the artificial ideal document vector.

Based on this ranking, we chose four essays per
task which were comparable with each other in
terms of their text length: two from the top of our
ranking, i.e. closer to the ideal vector, and two
from the bottom of our ranking, i.e. more distant
to the ideal vector. We limited our choice to essays
that had received a medium overall grade between
7 and 9 points in the German grading system for
the final three years of German high school. This
corresponds to essays with a point percentage be-
tween 55% and 69% (KMK, 2018, p. 22).8 This
restriction ensures on the one hand that essays are
comparable in terms of their overall and content
performance. On the other hand, it prevents ceil-
ing and floor effects in teachers’ grades.

6The final feature selection for all four vector represen-
tations and the correlation of all features with the original
overall grade may be found in Table 8 in the Appendix.

7Table 9 in the Appendix shows for each task how many
features were selected using the theory-driven and the data-
driven selection step.

8An overview relating this system to percentage points
may be found in Table 10 in the Appendix.

34



We labeled the resulting eight texts close to the
ideal vector as essays with more appropriate lan-
guage complexity (+ALC) and the eight texts rel-
atively distant from the ideal vector as essays with
less appropriate language complexity (-ALC).

5.3 Task-Wise Vector Differences
Comparing the features that were selected for the
vector representations across tasks reveals some
interesting structures which are relevant for the
ongoing discussion of task effects on language
performance. Overall, 75 unique features are in-
cluded across all vectors. Table 2 shows a se-
lection of 10 features chosen to illustrate patterns
across vectors.9

Nearly a quarter of features (18 of 75) re-occurs
in at least three of the four vectors. We take this
as an indication of generalizable characteristics of
language performance. This group is predomi-
nantly comprised of features of lexical sophisti-
cation in form of lexical diversity and verb vari-
ation (6/18), clausal elaboration in form of words,
clauses, dependent clauses, and dependent clauses
with conjunctions per sentence as well as the over-
all use of connectives (6/18), and nominal writ-
ing style in form of post-nominal modifiers, geni-
tives, and nominalization strategies (4/18), all of
which are positively correlated with the overall
grade. These groups are represented in Table 2 by
MTLD, dependent clauses per sentence, and the
percentage of derived nouns. Taken together, they
represent important markers of German academic
language (Hennig and Niemann, 2013; Morek and
Heller, 2012). Lexical sophistication has also re-
peatedly been observed as an important indicator
of English first and second language writing per-
formance (Guo et al., 2013; Crossley et al., 2011).
Evidence that the relevance of these features for
writing performance persists across task contexts
is highly relevant as it provides empirical under-
pinning to the mostly theoretical concept of Ger-
man academic language.

Aside from this general overlap across task
prompts, we observe considerable similarities be-
tween both IL task prompts indicating that the fea-
tures represent a coherent subgroup of appropri-
ate linguistic complexity for interpretative writ-
ing rather than idiosyncratic properties of the spe-
cific task prompts. Of 26 features that are rel-

9The selection was taken from the aforementioned full ta-
ble displaying all 75 features relevant for the vector represen-
tations in Table 8 in the Appendix.

evant across two tasks, 21 are shared between
the IL tasks. This is a remarkable overlap given
the respective vector sizes. Characteristic for IL
tasks are especially features of phrasal modifi-
cation (9/21), predominantly but not exclusively
with regard to noun phrase modification, and
clausal elaboration resulting in higher cognitive
load in form of integration cost and dependency
lengths (5/21). All of these are positively cor-
related with the overall grade. The two groups
are represented in Table 2 by the percentage of
complex noun phrases and the average total in-
tegration cost. Several of the features not shared
across both IL tasks relate to different realizations
of clausal elaboration: while for IL-2 several sub-
types of subordination are relevant, such as in-
terrogative clauses, conjunctional clauses, clauses
without conjunction, various types of connectives,
for IL-1 only relative clauses occur as specific type
of clausal elaboration. Table 2 displays this con-
trast for relative clauses, dependent clauses with-
out conjunction, and conjunctional clauses per
sentence. Material-based argumentation does not
exhibit such a pattern which may be due to the
fact that both MA prompts request different text
types, once a commentary (MA-2) and once an
essay (MA-1), while both IL tasks share not only
a task objective (interpretation) but also the same
text type (essay).

6 Experiment

6.1 Set-Up

We recruited 33 teachers (14 female, 19 male)
from different schools across German states.10

Their teaching experience ranges from 5 to 38
years (µ = 19.9;SD = 9.1). All of them have
participated in grading German subject-matter
Abitur tasks at least twice, most of them more
than eight times. We asked them to grade es-
says for their language, content, and overall per-
formance using the grading scale used for the Ger-
man Abitur ranging from 0 to 15 points. Teachers
were provided with a grading template for each
task prompt, which is a standard feature in the Ger-
man Abitur. The template states the expectations
of students’ answers with regard to content and
language. Each teacher received 8 texts from over-

10We recruited 32 teachers plus one replacement teacher to
cover an anticipated drop-out. Since all teachers completed
the study, eight texts were graded by an additional teacher
(i.e. 17 instead of 16 teachers).
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Feature IL-1 IL-2 MA-1 MA-2

MTLD .2014 .4358 .2876 .3361
Dependent clauses per sentence .3040 .2528 .2046 -.0380
Derived nouns per noun phrase .2394 .4751 .1604 .3301
Average total integration cost at finite verb .4093 .4909 .0708 .0308
Complex noun phrases per noun phrase .4177 .3186 .1316 -.0353
Relative clauses per sentence .3027 .1814 .1381 -.0077
Dep. clauses w/o conjunction per sentence .1414 .2460 .0744 .0058
Conjunctional clauses per sentence .1632 .2433 .0744 -.0285

Table 2: Selection of features in the complexity vectors and their correlation with the original overall grade. Gray
font marks uncorrelated features. Italics mark correlated but redundant features.

all 2 tasks: 4 +ALC and 4 -ALC texts. Each text
was graded by 16 teachers independently. Teach-
ers did not know the original grades that their
texts had received, neither were they aware of the
ranking-based selection. This grading situation
was maximally familiar to our subjects, because
it mimics teachers’ real-life experience for essay
grading in the context of German Abitur.

For each of the three grades (overall, con-
tent, and language performance), we built a lin-
ear mixed regression model fitted by REML. The
respective grade served as response variable and
we included task prompt as random effect. Each
model had two predictor variables: ±ALC and
error rate. We included error rate (in form of z-
scores) as a predictor, because accuracy is an im-
portant criterion for the evaluation of students’
language performance and thus overall perfor-
mance in the German Abitur and to investigate its
influence on teachers’ grading. We manually ex-
tracted spelling mistakes, punctuation errors, and
grammatical errors from each essay and aggre-
gated them into one overall error score by dividing
the total number of errors by the number of words.

6.2 Results
Tables 3, 4, and 5 show the respective model fits
for each grade. For all three models, the residuals
were homoscedasticly distributed around a zero
mean. Table 3 shows that +ALC affects language
performance grades by raising it about 1.37 points
(± 0.37 SE) for essays with more appropriate lin-
guistic complexity. Error rate, too, clearly affects
the grade, lowering it about -1.99 points (± 0.21
SE). The model overall explains 37.5% of the vari-
ance, 29.3% of which are attributed to both error
rate and±ALC. Although error rate is the stronger
of the two predictors, ±ALC does significantly

improve the model fit (χ2 = 1277.7, p < 0.001).
The random intercept for the four tasks accounts
for 1.0% of the variance (±1.0 SD). The residuals
account for 7.6% of the variance (±2.8 SD).

Table 4 shows the fit for the content grades the
teachers assigned. We do not see evidence that the
content grade is affected by +ALC in our ratings.
Error rate, however, influences the grade nega-
tively, lowering it about -1.265 points (± 0.227
SE). The model overall explains 29.1% of the vari-
ance. 11.9% are attributed to error rate and±ALC
but complexity does not make a significant con-
tribution to the overall model fit. The random
intercept for the four tasks accounts for 2.1% of
the variance (±1.4 SD). The residuals account for
8.8% of the variance (±2.9 SD). In order to rule
out that this influence of error rate on the content
grade is caused by certain errors obstructing un-
derstanding, we refitted the content grade model
with each of the individual error types instead of
overall error rate. We find that all three error types
impact content grade. Spelling significantly low-
ers it (t = −4.651, p = 0.000) about -1.197 points
(± 0.257 SE). Punctuation significantly lowers it
(t = −3.078, p = 0.002) about -0.597 points
(± 0.194 SE). Grammar significantly lowers it
(t = −7.836, p = 0.000) about -1.560 points (±
0.199 SE).

Table 5 shows the fit for the overall grades
assigned by the teachers. The overall grade is
marginally affected by +ALC . The overall grade
is about 0.703 points higher (± 0.359 SE) for text
with more appropriate linguistic complexity. As
for the other grades, error rate strongly influences
the overall rating lowering it about -1.518 points
(± 0.208 SE). The model overall explains 31.1%
of the variance. Of this, 17.3% are attributed to
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Estimate SE t-value p-value

(Inter.) 6.989 0.561 12.468 < 0.001
+ALC 1.374 0.368 3.732 < 0.001
Error -1.992 0.211 -9.459 < 0.001

Table 3: Estimates for language performance grade.

Estimate SE t-value p-value

(Inter.) 6.138 0.772 7.948 0.003
Error -1.265 0.227 -5.586 < 0.001
+ALC 0.614 0.393 1.562 0.120

Table 4: Estimates for content grade.

Estimate SE t-value p-value

(Inter.) 6.460 0.696 9.278 0.002
+ALC 0.703 0.359 1.962 0.051
Error -1.518 0.208 -7.316 < 0.001

Table 5: Estimates for re-assigned overall grade.

+ALC and error rate. Again, error rate is the
stronger predictor and±ALC does not make a sig-
nificant contribution to the overall model fit. The
random intercept for the four task accounts for
1.7% of the variance (±1.3 SD). The residuals ac-
count for 7.3% of the variance (±2.7 SD).

6.3 Discussion

Our results show that the language performance
grades based on criteria stated in the grading tem-
plate reflect differences between essays exhibiting
more and less appropriate language complexity
(±ALC). This result is not trivial, because previ-
ous research suggests that the assessment of quan-
titative aspects of text complexity is not a key com-
petence of teachers (CCSSO, 2010). We do not
find evidence that teachers are unduly influenced
by differences in language complexity when as-
signing content grades. This is an encouraging
finding in light of Vögelin et al. (2019)’s study on
the effect of differences in lexical complexity on
construct-unrelated grades. Our study differs in
several aspects from their set-up: We asked expe-
rienced teachers rather than pre-service teachers,
and we used the set-up of the Abitur they are fa-
miliar with. We provided them with texts that dif-
fered not only in terms of their lexical complex-
ity (although these dimensions are represented in

each of the document vector representations) but
rather across various linguistic domains. While
they altered texts experimentally, we used essays
that are ecologically valid. We find that teachers
include language complexity to a limited extent in
the overall grades they assign. This is in line with
the grading template stating that language perfor-
mance should account for 30% of the overall per-
formance.

As for accuracy, our results clearly show that all
three grades are heavily influenced by error rate.
For the language performance grade, this is mo-
tivated insofar as correctness is one of the crite-
ria named in the corresponding grading template.
Similarly, accuracy may be reflected in the overall
grade as it is part of the overall evaluation. How-
ever, its weighting in both models is dispropor-
tionate. For content grading, accuracy is concep-
tually irrelevant, which is also stated in the grading
template. Yet, teachers are clearly biased against
essays with higher error rates, which is in line with
previous research findings (Rezaei and Lovorn,
2010; Cumming et al., 2002). All three individ-
ual error types (punctuation, spelling, and gram-
mar) show the same kind of influence on the con-
tent grade as the overall error rate. This demon-
strates that the effect is not restricted to error types
that may impede understanding, such as grammar
errors. All error types affect content grading. Es-
says with a lower overall error rate receive higher
content grades. This strong bias for a construct-
irrelevant characteristic that is already included in
another grading component, namely language per-
formance, is highly problematic. Note, however,
that we cannot rule out the possibility that students
with better spelling in fact coincidentally also pro-
duce texts with better content. This is one of the
limitations of our research design, which focuses
on ecological validity. We will address this issue
in a follow-up study, in which we will include cor-
rected versions of the texts studied here. This way,
we can keep essay content fixed while varying er-
ror rate. Overall our results indicate that although
teachers can successfully capture different dimen-
sions of language performance, such as complex-
ity, accuracy, and content, they fail to modularize
them clearly into separate grades.

7 Outlook

We addressed the question to which extent Ger-
man teachers are able to identify differences in
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appropriate language complexity across tasks and
how complexity and accuracy bias grading when
they are construct-relevant or -irrelevant. For
this, we proposed a novel similarity-based ap-
proach for the identification of task-appropriate
language complexity in student essays. This also
yielded some interesting insights in task differ-
ences between writing objectives and task prompts
confirming common but so far empirically not
sufficiently validated assumptions about German
academic language. While our results indicate
that teachers successfully identify and modular-
ize the concept of language complexity, we show
a clear bias for higher language accuracy across
all grades. Teachers not only consider accuracy
over-proportionally for the grading of language
performance, it also influences their assessment of
construct-irrelevant aspects such as content. This
is in line with previous research findings (Rezaei
and Lovorn, 2010; Cumming et al., 2002).

We see our work as a first step towards the
analysis of the grading behaviour in the German
education system using computational linguistic
methods. In future work, we plan to build on this
by exploring the grading behavior of teachers in
greater depth, clustering teachers in terms of their
characteristics and grading behavior. In particu-
lar, there is evidence that teachers’ personal evalu-
ation of the complexity of a text impacts their per-
ception and, consequently, their grading of its lan-
guage quality. We will explore this in a follow-up
study. We will also follow-up on the question to
which extent better accuracy and content quality
coincide in ecologically valid texts by studying the
link between content grades and writing accuracy
in a more controlled setting with experimentally
manipulated texts with corrected errors.
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Fremdsprache (Englisch/Französisch) für die Allge-
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A Appendix

Figure 4: Original overall grades split by task prompt.

Task Text Type Description

IL-1 Interpretation Interpret poem A written in the 1950s and compare it with poem B written
of literature in the 1980s.

IL-2 Interpretation Interpret the given excerpt from novel A. Focus on the conflicts with
of literature which the protagonist struggles.

MA-1 Material-based Write a newspaper essay on the influence social media has on our
argumentation communication. Use around 1,000 words. Include the following materials

in your argumentation: 6 essays, 1 poem, 1 statistic.
MA-2 Material-based Write a newspaper commentary on the influence of dialects and sociolects

argumentation on success in society. Use around 800 words. Include the following
materials in your argumentation: 4 essays, 1 interview, 2 graphics.

Table 6: Overview of the four task prompts used to elicit the Abitur data.

Domain Feature

Argumentation structure Number of Paragraphs
Adversative and concessive connectives (Breindl) per sentence
Additive connectives (Breindl) per sentence
Adversative connectives (Breindl) per sentence
All connectives (Breindl) per sentence
All multi word connectives (Breindl) per sentence
All single word connectives (Breindl) per sentence
Causal connectives (Breindl) per sentence
Concessive connectives (Breindl) per sentence
Other connectives (Breindl) per sentence
Temporal connectives (Breindl) per sentence
Adversative and concessive connectives (Eisenberg) per sentence
Additive connectives (Eisenberg) per sentence,
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Adversative connectives (Eisenberg) per sentence
All connectives (Eisenberg) per sentence
All multi word connectives (Eisenberg) per sentence
All single word connectives (Eisenberg) per sentence
Causal connectives (Eisenberg) per sentence
Concessive connectives (Eisenberg) per sentence
Other connectives (Eisenberg) per sentence
Temporal connectives (Eisenberg) per sentence
Global argument overlap per sentence
Global content overlap per sentence
Global noun overlap per sentence
Global stem overlap per sentence
Local argument overlap per sentence
Local content overlap per sentence
Local noun overlap per sentence
Local stem overlap per sentence

Lexical complexity HDD
MTLD
TTR
Bilogarithmic TTR
Corrected TTR
Root TTR
Uber index
Yule’s K
Adjectives and adverbs per lexical word
Adjectives per lexical word
Adverbs per lexical word
Corrected lexical verb type per lexical per token
haben instanced per verb
Lexical types per lexical token
Lexical types per token
Lexical verb type per lexical token
Lexical verb type per lexical verb token
Lexical verb per token
Nouns per lexical verb
Lexical verbs per word
Nouns per lexical word
Nouns per word
sein instances per verb
Squared lexical verb types per lexical verb
Verbs per noun

Syntactic complexity Clauses per sentence
Conjunctional clauses per sentence
Dependent clauses per sentence
Relative clauses per sentence
Dependent clauses with conjunction per sentence
Dependent clauses without conjunction per sentence
Interrogative clauses per sentence
Words per sentence
Complex t-units per sentence
Complex nominals per sentence
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Postnominal modifiers per noun phrase
Prenominal modifiers per noun phrase
Noun phrase modifiers per noun phrase
Coverage of noun phrase modifier types
Verb modifiers per verb phrase
Coverage of verb modifier types
Coverage of verb cluster sizes
Coverage of verb cluster types
Standard deviation of verb cluster sizes
Mean verb cluster size
Coverage of Periphrastic tenses
Coverage of tenses
Coverage of deagentivization patterns

Table 7: List of all complexity features that are theoretically motivated by the German curriculum (KMK, 2014b).

Feature IL-1 IL-2 MA-1 MA-2

MTLD .2014 .4358 .2876 .3361
Root type token ratio .3140 .3361 .3355 .2179
Corrected lexical verb types per lexical verb .2338 .3103 .2105 .2294
Squared lexical verb types per lexical verb .2588 .3022 .1998 .2458
Lexical verb types per lexical verb .0587 .2257 .2291 .2446
Uber Index .1153 .2412 .3131 .2281
Lexical word types found in dlexDB -.3367 -.4004 -.1795 -.2597
Lexical word types not found in KCT .3901 .4959 .2770 .1495
Clauses per sentence .2198 .4681 .2304 -.0623
Dep. clauses per sentence .3040 .2528 .2046 -.0380
Dep. clauses with conjunction per sentence .3055 .2013 .2029 -.0484
Words per sentence .3546 .4698 .2197 -.0403
Additive conn. per sentence (Breindl) .2974 .2319 .2073 .1500
1-word conn. per sentence (Breindl) .2131 .2855 .2044 .0745
Genitive case per noun phrase .2853 .4689 .1869 .2044
-ung nominalizations per word .2080 .4286 .1122 .2339
Derived nouns per noun phrase .2394 .4751 .1604 .3301
Postnominal modifiers per noun phrase .3064 .4510 .2031 .1113
Probability(other→other) per sentence .1194 .2077 .1152 .3054
Probability(object→object) per sentence -.1419 -.4929 .0545 -.2068
Global noun overlap per sentence .2686 .3072 .1066 -.1590
Local content overlap per sentence -.1359 -.2527 -.1725 -.3631
Global stem overlap per sentence .2587 .4042 -.1162 -.0647
Temporal conn. per sentence (Breindl) .2769 -.0185 .2206 .0408
Causal conn. per sentence (Eisenberg) .3096 .3876 .0485 .0761
1-word conn. per sentence (Eisenberg) .2733 .5241 .1068 .0275
Maximal total integration cost at finite verb (C) .2739 .5062 -.0398 .0514
Average total integration cost at finite verb .4093 .4909 .0708 .0308
Syll. between non-adjacent 1. argument & VFIN .3158 .2757 .0210 .0815
Syllables in middle field per MF .4244 .4286 .0351 .1092
Longest dependency in words .3929 .3207 .0146 .1740
Prenominal modifiers per noun phrase .2442 .5263 .0229 .1039
Possessive noun modifiers per NP .2378 .4167 .1802 -.0308
Complex noun phrases per noun phrase .4177 .3186 .1316 -.0353
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Noun modifiers per noun phrase .3357 .2045 .0689 .0648
NP deps. per NP with dependents .2855 .4180 .1321 -.0798
Complex noun phrases per sentence .4177 .3186 .1316 -.0353
Verb modifiers per verb phrase .3565 .4219 .1761 .0375
Prepositional verb modifier per sentence .2184 .4347 .0658 -.1204
Coordinated phrases per sentence .3413 .3299 .0465 .1603
Average log type frequency in Google Books ’00 -.4396 -.4289 -.1903 -.0994
Accusative case per noun phrase -.3169 -.2909 -.0131 .0996
Lexical types per token .2413 .1043 .0050 .2446
Verbs per noun -.2213 -.3284 -.1294 -.1475
Nouns per lexical word -.2667 .1709 .1916 .2415
Temporal conn. per sentence (Eisenberg) .2225 .2244 .1665 -.2012
Determiners per noun phrase -.3139 .3066 -.0006 .0023
Lexical verb types per lexical word -.3142 -.0391 .1019 .0736
Yule’s K -.1144 -.2352 -.1663 -.0534
Lexical verbs per token -.2667 -.1414 -.1022 -.0588
Adverbs per lexical word -.0281 -.2781 -.0311 -.0401
Adjectives per lexical word .1259 .3089 .1534 .0970
Dative case per noun phrase -.1291 .1071 -.0440 -.3914
Third person markings per VFIN -.0097 -.4361 -.1556 -.0727
-ist nominalizations per word .0128 .4197 -.1266 .0122
Local argument overlap per sentence .0547 -.1601 -.0256 -.2787
Local noun overlap per sentence -.0007 -.0650 -.1356 -.2188
Causal conn. per sentence (Breindl) .1512 .0658 .2936 -.0194
Concessive conn. per sentence (Eisenberg) .0984 .2497 .0855 .0136
Other conn. per sentence (Breindl) .1757 .2458 -.0343 .0181
Connectives per sentence (Eisenberg) .1989 .3342 -.0400 .0386
Relative clauses per sentence .3027 .1814 .1381 -.0077
Dep. clauses w/o conjunction per sentence .1414 .2460 .0744 .0058
Conjunctional clauses per sentence .1632 .2433 .0744 -.0285
Interrogative clauses per sentence .0982 .4078 .0506 -.0574
Auxiliary verb cluster per verb cluster .0460 .0569 -.0375 -.3221
haben instances per word -.1818 -.2031 .-0251 -.1989
Coverage of verb cluster sizes .1617 -.2824 -.1325 -.0088
Non-modal VP deps. per verb with dependents .3219 .1250 .1804 .1116
Coverage of verb modifier types .0758 .2216 .1706 .0119
Coverage of deagentivization patterns .0763 .0227 .2020 -.0097
Passives per sentence .1879 .4329 -.1692 -.0660
Average lemma frequency in dlexDB -.4126 -.1037 -.1461 .0255
Average log lemma frequency in dlexDB -.3890 -.1767 .0589 .0042
Hyponyms per type in GermaNet -.3018 -.0741 -.1354 -.0926

Table 8: Features used in at least one of the four complexity document vectors and their correlation with the
original overall grade across tasks. Gray font marks uncorrelated features. Italics mark relevant features that were
excluded from the respective vector due to redundancy.
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Task Theory-Driven Data-Driven Total

IL-1 20 13 33
IL-2 32 13 45
MA-1 13 0 13
MA-2 9 4 13

Table 9: Contribution of theory- and data-driven feature selection to each language complexity vector.

Grade Points Percentage

excellent + 15 100–95
excellent 14 94–90
excellent - 13 89–85
good + 12 84–80
good 11 79–75
good - 10 74–70
satisfying + 9 69–65
satisfying 8 64–60
satisfying - 7 59–55
sufficient + 6 54–50

sufficient 5 49–45
sufficient - 4 44–40
insufficient + 3 39–33
insufficient 2 32–27
insufficient - 1 26–20
failed 0 19–0

Table 10: German Abitur Grading System (KMK, 2018, p. 22).
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Abstract
We present a model for automatic scoring
of coherence based on comparing the rhetor-
ical structure (RS) of college student sum-
maries in L2 (English) against expert sum-
maries. Coherence is conceptualised as a con-
struct consisting of a rhetorical relation and its
arguments. Comparison with expert-assigned
scores shows that RS scores correlate with
both cohesion and coherence. Furthermore,
RS scores improve the accuracy of a regression
model for cohesion score prediction.

1 Introduction

Assessment of text quality may benefit from auto-
matic scoring as it is cognitively demanding and
often requires much expertise (Rahimi et al., 2017),
especially in college-level expository writing. One
of the key aspects of text quality is writing co-
herence (Crossley and McNamara, 2010) which
reflects students’ ability to connect ideas in their
mind and to convey the same message in essays or
summaries (Halliday and Hasan, 2014).

Existing approaches to text quality predomi-
nantly focus on surface measures for assessment
(e.g., number of cohesive devices), which some-
times have little relation either to human judgment,
e.g., text length (Mintz et al., 2014), or to text-
specific meaning (Rahimi et al., 2017). However,
automatic scoring of coherence should ideally pro-
vide clear and reliable feedback (Burstein et al.,
2013) based on features with cognitive validity,
e.g., (Loukina et al., 2015).

One way to meet such requirements is to define
coherence as the identification of relations between
the text’s ideas (Rapp et al., 2007). Such a defini-
tion may best be analysed in summaries in which
the key ideas of the source text are integrated into
a rhetorical structure (RS).

In cognitive terms, writing summaries is an exer-
cise in reading-for-understanding (RU) (Sabatini

et al., 2013) and gist reasoning (Chapman and Mu-
dar, 2013). The result of such processes is the
macrostructure of the source text constructed in
the reader’s mind (Louwerse and Graesser, 2005),
which consists of concepts and propositions, their
mutual relations (Sanders and Noordman, 2000),
and relations with prior knowledge. Coherent sum-
maries should express the intention of the source
text (Hobbs, 1993) using linguistic devices (cohe-
sion), which makes summarisation also a reading-
to-write (RW) task (Delaney, 2008). Moreover,
summaries have a distinctive feature for annotation:
a largely shared knowledge base, i.e., the source
text(s) known both to the writer and to the rater(s),
which assists raters in their judgment and helps
develop a reliable text-specific scoring tool.

In this paper we present a model for automatic
scoring of summaries based on analysing a rhetori-
cal structure of a student’s summary compared to
that of reference summaries. Our starting point is
coherence conceptualized as a construct consist-
ing of three elements: a rhetorical relation and its
two arguments. We posit that expository text has
a rhetorical structure (RS) consisting of a series
of text-specific rhetorical segments, the majority
of which will be conveyed in a coherent summary
if full text-level comprehension is achieved. The
model uses a discourse parser to extract rhetorical
structures of summaries, and then compares simi-
larity of these structures. We show that the scores
produced by the model correlate with the expert-
assigned cohesion and coherence scores as well as
with surface indices of cohesion. We also show that
the model-produced scores can be used to improve
cohesion score prediction.

2 Related Work

Automatic assessment of text quality can include
content, language accuracy, sophistication and style
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as well as sometimes overlapping features such as
topic similarity, focus, coherence, cohesion, read-
ability, or text organisation and development, e.g.,
(Pitler et al., 2010; Yannakoudakis and Briscoe,
2012; Guo et al., 2013; Rahimi et al., 2015; Gao
et al., 2018). Coherence is a broad concept assessed
by different automatic tools, e.g., (Higgins et al.,
2004; Yannakoudakis and Briscoe, 2012; Burstein
et al., 2013). Scoring measures may include surface
features such as word or text length or the number
of pronouns and connectives, e.g., (Yannakoudakis
and Briscoe, 2012; MacArthur et al., 2018), which
may also be contextualised, e.g., (Pitler et al., 2010).
Source overlaps may also be used in scoring such as
overlapping n-grams in summaries (Madnani et al.,
2013), and semantic similarity (e.g,. LSA) may
provide information on relatedness between words,
e.g., lexical chaining (Somasundaran et al., 2014),
sentences (Foltz et al., 1998; Higgins et al., 2004;
Higgins and Burstein, 2007), or larger text sections
(Crossley and McNamara, 2010). Both types of fea-
tures (surface and LSA) are encompassed by Coh-
Metrix (Graesser et al., 2004; McNamara et al.,
2014), a comprehensive computational tool using a
range of measures to grasp cognitive aspects of text
analysis. Moreover, inter-sentential coherence can
be measured using syntax-based entity grids (Barzi-
lay and Lapata, 2008), for example, to distinguish
between high- and low-coherence essays (Burstein
et al., 2010), or analysing discourse relations (Pitler
and Nenkova, 2008; Skoufaki, 2009).

In order to improve the predictive value of auto-
matic assessment, scoring measures are often com-
bined. For example, Pitler and Nenkova (2008) use
entity grids, syntactic features, discourse relations
(Prasad et al., 2008), vocabulary, and length fea-
tures. Yannakoudakis and Briscoe (2012) examine
different measures and find that semantic similar-
ity is the best addition to lexical and grammati-
cal features. Somasundaran et al. (2014) combine
lexical chains, grammar, word usage, mechanics,
and RST discourse relations (Mann and Thomp-
son, 1988) in L1 and L2 texts, while Higgins et al.
(2004) use semantic similarity together with dis-
course structure to measure relatedness to the essay
question and between discourse segments. More
recently, Sladoljev-Agejev and Šnajder (2017) com-
bine reference-based and linguistic features (e.g.,
Coh-Metrix, BLEU, ROUGE) to predict coherence
and cohesion in college student summaries in L2.

The coherence assessment model presented here

relies on summaries as a RU/RW task which con-
sists of detecting and conveying the RS of the
source text. Similar to Higgins et al. (2004), we
use semantic similarity and rhetorical structure
to assess coherence of student summaries against
summaries written by experts. While Higgins et
al. measured the coherence of functional discourse
segments (e.g., thesis, conclusion) via semantic
similarity between their respective sentences, in
our study coherence is measured via similarity be-
tween rhethorical structures. Our intuition relies
on the establishment of source macrostructure as a
coherence-building exercise during reading. Such
an approach appears to be cognitively valid and
may ensure meaningful feedback both in terms of
comprehension and writing skills development or
assessment. Our model is constrained by the source
content, so we also compare its performance to
cohesion features provided by Coh-Metrix in (Sla-
doljev-Agejev and Šnajder, 2017) to assess generic
RW skills.

3 Summary Scoring Model

The summary scoring model works by comparing
the RS of a student summary against the rhetori-
cal structures of one or more reference summaries.
The model produces a score that indicates to what
extent the two structures overlap.

Discourse parsing. To extract the rhetorical rela-
tions and their arguments, we use the PDTB-style
parser of Lin et al. (2014), a state-of-the-art, end-to-
end parser which labels instances of both implicit
and explicit relations as well as their argument
spans. The PDTB relation labels are organized
in a three-level hierarchy of “sense tags” (Prasad
et al., 2008). The parser recognizes the first two
levels: relation Category (e.g., Comparison) and
Type (e.g., Contrast). The end-to-end performance
of the parser, measured as F1-score under partial
argument matching, is 48%. The output of this
step is, for each summary S, a set of rhetorical
relations {ri}i, where ri = (li, a

1
i , a

2
i ) is a rela-

tion of class/type label li, while a1i and a2i are text
segments corresponding to its arguments.

Comparing rhetorical structures. When com-
paring the similarity of summaries’ rhetorical struc-
tures, we want the model to assign high scores to
pairs of summaries that have many rhetorical re-
lations in common. Of course, we cannot expect
the arguments of rhetorical relations to be literally

47



the same, but, if two relations of the same label
are to be considered equivalent, their correspond-
ing arguments should be highly semantically sim-
ilar. We formalize this intuition by defining the
weight wij between a pair of rhetorical relations
ri = (li, a

1
i , a

2
i ) and rj = (lj , a

1
j , a

2
j ) as:

wij =

{
1
2

(
s(a1i , a

1
j ) + s(a2i , a

2
j )
)

if li = lj ,
0 otherwise.

where s(·, ·) is the semantic similarity between two
text segments. In line with much of recent work,
we rely on additive compositionality of word em-
beddings, and compute the semantic similarity as
the cosine similarity between averaged word em-
beddings of the two segments. We use the 300-
dimensional skip-gram word embeddings built on
the Google-News corpus (Mikolov et al., 2013).1

To compute the overlap score between a pair of
summaries S1 and S2, each consisting of a set of
rhetorical relations, we use the maximum bipartite
graph matching algorithm (Kuhn, 1955). The graph
edges represent pairs of relations (ri, rj), ri ∈ S1,
rj ∈ S2, weighted by wij . Let n1 = |S1| and
n2 = |S2| be the number of rhetorical relations
in S1 and S2, respectively, and m the maximum
matching score between S1 and S2. We define the
precision (P ) and recall (R) of the match as:

P =
m−max(0, n1 − n2)

n1

R =
m−max(0, n2 − n1)

n2

The intuition is that precision is maximized if all
relations from S1 are perfectly matched to some
relations from S2, and conversely for recall. The
F1-score is the harmonic mean of P and R. Finally,
we compute the F1-score of a student’s summary S
as the mean of pairwise F1-scores between S and
both reference summaries.

4 Evaluation

Dataset. For model evaluation, we adopt the
dataset of (Sladoljev-Agejev and Šnajder, 2017).
The dataset consists of a total of 225 text-present
summaries (c. 300 words) of two articles written by
114 first-year business undergraduates in English
as L2 (mostly upper intermediate and advanced).
Both articles (c. 900 words each) were taken from
The Economist, a business magazine. Two expert

1https://code.google.com/archive/p/word2vec/

raters used a 4-point analytic scale (grades 0–3) to
assess the summaries in terms of coherence (RU)
and cohesion (RW). The scales were quantified
by defining the number of coherence and cohe-
sion breaks. Descriptors for each grade included
expressions such as “meaningfully related ideas”
and “logical sequencing” (for coherence) and “lin-
guistically connected text segments” (for cohesion).
Inter-rater reliability (weighted kappas) was 0.69
for coherence and 0.83 for cohesion. The raters
discussed and agreed on all the grades although
reliability was adequate. As expected, we observe
a strong correlation between coherence and cohe-
sion scores (Spearman correlation coefficient of
0.64). All the summaries were checked for spelling
and basic grammar. For the two articles from The
Economist, two experts with considerable experi-
ence with business texts in English wrote 300-word
summaries following the same instruction as the
students.

Comparison with expert-assigned scores. To
assess the validity of the summary scoring model,
we measure the correlations of P, R, and F1 scores
produced by the model against expert-provided
coherence and cohesion scores, considering both
Class and Type levels of PDTB relations. Table 1
shows the results. We can make several observa-
tions. First, while all the scores correlate posi-
tively with both cohesion and coherence, correla-
tion for coherence is consistently lower, possibly
due to the role of the raters’ prior knowledge, which
is unavailable to the model (also note that inter-
annotator agreement is lower for coherence than
for cohesion). Second, correlation for Type level
is consistently lower than for Class level, which
can probably be traced to the PDTB parser being
less accurate on Type-level relations. Lastly, we
note that the highest correlation with both cohe-
sion and coherence is achieved with the F1-score
of the Class level model. These results suggest that
the proposed summary scoring model is at least
partially successful in modeling both cohesion and
coherence – and this in spite of the unavoidable
errors of the PDTB parser and errors in similarity
computations.

Comparison with Coh-Metrix indices. As
mentioned in the introduction, a number of studies
have used Coh-Metrix cohesion indices as predic-
tors of both cohesion and coherence. In partic-
ular, Sladoljev-Agejev and Šnajder (2017) found
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Class Level Type Level

P@C R@C F1@C P@T R@T F1@T

Chs 0.218 0.320 0.444 0.207 0.295 0.426
Chr 0.105 0.297 0.381 0.071 0.257 0.337

Table 1: Spearman correlation coefficients between
expert-assigned cohesion (Chs) and coherence (Chr)
scores and model-produced scores (P, R, and F1) for
Class and Type levels of PDTB connectives. The high-
est correlations for cohesion and correlation are shown
in boldface. All correlations except those shown in ital-
ics are statistically significant (p<0.05).

Expert scores Model scores

Coh-Metrix index Chs Chr F1@C F1@T

CNCAdd 0.375 0.229 0.545 0.495
CNCLogic 0.453 0.330 0.492 0.409
CNCAll 0.408 0.289 0.477 0.421
CRFAOa 0.430 0.405 0.342 0.320
CRFCWOa 0.416 0.364 0.278 0.278

Table 2: Spearman correlation coefficients between
Coh-Metrix indices (connectives – CNC, referential co-
hesion – CRF) and expert-assigned cohesion (Chs) and
coherence (Chr) scores as well as model-produced F1
scores at Class level (F1@C) and Type level (F1@T)
of PDTB connectives. The highest correlations in each
column are shown in boldface. All correlations are sta-
tistically significant (p<0.05).

modest correlation between expert-assigned coher-
ence/cohesion and indices for connectives (addi-
tive connectives – CNCAdd, logical connectives –
CNCLogic, and all connectives – CNCAll) and ref-
erential cohesion indices (mean of noun/pronoun
overlaps between two sentences – CRFAOa, and
content word overlap – CRFCWOA). It is there-
fore interesting to investigate to what extent these
surface-level predictors correlate with the scores
of our model. Table 2 gives Spearman correla-
tion coefficients between the Coh-Metrix indices
and expert-provided scores as well as the Class-
and Type-level F1-scores of the model. The Coh-
Metrix indices correlate positively with both the
expert-assigned scores and the scores of our model.
However, while CNCLogic and CRFOAo indices
mostly correlate with the expert-assigned cohesion
and coherence scores, respectively, the scores of
our model mostly correlate with the CNCAdd in-
dex.

Supervised scoring. Following Sladoljev-Age-
jev and Šnajder (2017), we frame the automated

Model / Features Chs Chr

Baseline 0.369 0.361
Ridge / CM 0.489 0.409
Ridge / RS 0.476∗ 0.419
Ridge / CM+RS 0.511∗ 0.414

Table 3: Accuracy of cohesion (Chs) and coherence
(Chr) scores predictions for the baseline and ridge
regression models with Coh-Metrix (CM), rhetorical
structure (RS), and combined (CM+RS) feature sets.
The best results are shown in bold. The “*” indicates a
statistically significant difference to baseline (p<0.05,
Wilcoxon signed-rank test). The differences between
regression models with the CM feature set and models
with RS and CM+RS feature sets are not statistically
significant.

scoring as a multivariate regression task and use
two regression models, one for cohesion and the
other for coherence, each trained to predict the
expert-assigned score on a 0–3 scale. We use an
L2-regularized linear regression model (ridge re-
gression)2 and consider three sets of features: (1)
five Coh-Metrix CNC and CRF indices (“CM”),
(2) the F1-scores of the summary scoring model
computed at Class and Type levels (“RS”), and (3)
a combination of the two (“CM+RS”). We evaluate
the models using a nested 10×5 cross-validation:
the models’ performance is measured in terms of
accuracy averaged over the five outer folds, after
rounding the predictions to closest integers and lim-
iting the scores to the 0–3 range. All the features
are z-scored on the train set, and the same trans-
formation is applied on the test set. As baselines,
we use the rounded average of the expert-assigned
scores.

Table 3 shows the results. We can make three
main observations. Firstly, cohesion models out-
perform the corresponding coherence models. Sec-
ondly, the only two models for which the differ-
ences against the baseline are statistically signifi-
cant are the two cohesion models that use RS. This
suggests that our model does provide useful signals
for predicting expert-assigned cohesion scores. In
the absence of statistical significance, the results
for coherence are inconclusive, though we observe
a similar trend.

5 Conclusion

We have described a model for coherence scoring
based on a simple definition of coherence in line

2We use the implementation of Pedregosa et al. (2011).
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with cognitive theories of text comprehension. The
model produces scores that correlate with expert-
assigned scores and improve the cohesion predic-
tion of a regression model: a model that uses rhetor-
ical structure scores as features yields a statistically
significant improvement over the baseline of aver-
aged expert-assigned scores. The proposed model
could provide a basis for meaningful feedback in
summaries and other similar tasks, and may also
be used for measuring gist reasoning in case of a
shared knowledge base between the rater and the
examinee.
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Abstract

This paper reports on the BEA-2019 Shared
Task on Grammatical Error Correction (GEC).
As with the CoNLL-2014 shared task, par-
ticipants are required to correct all types
of errors in test data. One of the main
contributions of the BEA-2019 shared task
is the introduction of a new dataset, the
Write&Improve+LOCNESS corpus, which
represents a wider range of native and learner
English levels and abilities. Another contribu-
tion is the introduction of tracks, which con-
trol the amount of annotated data available to
participants. Systems are evaluated in terms
of ERRANT F0.5, which allows us to report
a much wider range of performance statistics.
The competition was hosted on Codalab and
remains open for further submissions on the
blind test set.

1 Introduction

The Building Educational Applications (BEA)
2019 Shared Task on Grammatical Error Correc-
tion (GEC) continues the tradition of the previ-
ous Helping Our Own (HOO) and Conference
on Natural Language Learning (CoNLL) shared
tasks (Dale and Kilgarriff, 2011; Dale et al., 2012;
Ng et al., 2013, 2014) and was motivated by the
need to re-evaluate the field after a five year hia-
tus. Although significant progress has been made
since the end of the last CoNLL-2014 shared
task, recent systems have been trained, tuned and
tested on different combinations of metrics and
corpora (Sakaguchi et al., 2017; Yannakoudakis
et al., 2017; Chollampatt and Ng, 2018a; Ge
et al., 2018; Grundkiewicz and Junczys-Dowmunt,
2018; Junczys-Dowmunt et al., 2018; Lichtarge
et al., 2018; Zhao et al., 2019). Thus one of the
main aims of the BEA-2019 shared task is to once
again provide a platform where systems can be re-
evaluated under more controlled conditions.

With this in mind, another significant contribu-
tion of the BEA-2019 shared task is the introduc-
tion of a new annotated dataset, the Cambridge
English Write & Improve (W&I) and LOCNESS
corpus, which is designed to represent a much
wider range of English levels and abilities than
previous corpora. This is significant because sys-
tems have traditionally only been tested on the
CoNLL-2014 test set, which only contains 50 es-
says (1,312 sentences) on 2 different topics writ-
ten by 25 South-East Asian undergraduates (Ng
et al., 2014). In contrast, the W&I+LOCNESS test
set contains 350 essays (4,477 sentences) on ap-
proximately 50 topics written by 334 authors from
around the world (including native English speak-
ers). We hope that this diversity will encourage the
development of systems that can generalise better
to unseen data.

Another difference to the previous shared tasks
is the introduction of tracks; namely the Re-
stricted, Unrestricted and Low Resource track.
While annotated data was comparatively scarce
five years ago, it has since become more avail-
able, so we can now control what resources par-
ticipants have access to. The Restricted track is
closest to the original shared tasks, in that we spec-
ify precisely which annotated learner datasets par-
ticipants should use, while the Unrestricted track
allows use of any and all available datasets. The
Low Resource track, in contrast, significantly lim-
its the amount of annotated data available to par-
ticipants and encourages development of systems
that do not rely on large quantities of human-
annotated sentences. A goal of the Low Resource
track is thus to facilitate research into GEC for lan-
guages where annotated training corpora do not
exist.

Like CoNLL-2014, the main evaluation met-
ric was F0.5, which weights precision twice as
much as recall. Unlike CoNLL-2014 however, this
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Input Travel by bus is exspensive , bored and
annoying .

Output Travelling by bus is expensive , boring
and annoying .

Table 1: An example input and output sentence.

is calculated using the ERRANT scorer (Bryant
et al., 2017), rather than the M2 scorer (Dahlmeier
and Ng, 2012), because the ERRANT scorer can
provide much more detailed feedback, e.g. in
terms of performance on specific error types. Offi-
cial evaluation is carried out on the Codalab com-
petition platform, where a separate competition is
created for each track. More details and links can
be found on the official shared task website.1

The remainder of this report is structured as fol-
lowed. Section 2 first summarises the task in-
structions and lists exactly what participants are
asked to do. Section 3 next introduces the new
W&I+LOCNESS corpus and describes how it was
compiled. Section 3 also describes the other cor-
pora that allowed in the shared task, including
their formats and how they were standardised, and
reports on a cross-corpora error type comparison
for the first time. Section 4 next outlines each
of the tracks and their restrictions, while Sec-
tion 5 discusses the evaluation procedure. Sec-
tion 6 next introduces the shared task participants
and summarises each of their approaches, before
Section 7 presents and analyses the final results.
Appendix A contains more details about corpora
and results.

2 Task Instructions

Participants are required to correct all grammati-
cal, lexical and orthographic errors in written plain
text files, one tokenised sentence per line, and are
asked to produce equivalent corrected text files
as output (Table 1). All text is tokenised using
spaCy v1.9.0 and the en core web sm-1.2.0
model.2

Having produced a corrected text file, partici-
pants can then upload it to Codalab where it is au-
tomatically evaluated and a score returned. This
procedure is the same for all tracks.

1https://www.cl.cam.ac.uk/research/nl/
bea2019st/

2https://spacy.io/

A B C N Total
Train
Texts 1,300 1,000 700 - 3,000
Sentences 10,493 13,032 10,783 - 34,308
Tokens 183,684 238,112 206,924 - 628,720
Dev
Texts 130 100 70 50 350
Sentences 1,037 1,290 1,069 998 4,384
Tokens 18,691 23,725 21,440 23,117 86,973
Test
Texts 130 100 70 50 350
Sentences 1,107 1,330 1,010 1,030 4,477
Tokens 18,905 23,667 19,953 23,143 85,668
Total
Texts 1,560 1,200 840 100 3,700
Sentences 12,637 15,652 12,862 2,018 43,169
Tokens 221,280 285,504 248,317 46,260 801,361

Table 2: W&I (A, B, C) and LOCNESS (N) corpus
statistics.

3 Data

This shared task introduces new annotated
datasets: the Cambridge English Write & Improve
(W&I) and LOCNESS corpus.

3.1 Cambridge English Write & Improve
Write & Improve3 is an online web platform that
assists non-native English students with their writ-
ing (Yannakoudakis et al., 2018). Specifically, stu-
dents from around the world submit letters, stories,
articles and essays in response to various prompts,
and the W&I system provides automated feed-
back. Since 2014, W&I annotators have manually
annotated some of these submissions with correc-
tions and CEFR ability levels (Little, 2006).

3.1.1 Corpus Compilation
Although users can submit any kind of text to the
Write & Improve system, texts are first filtered
before they are sent to the annotators to remove,
for example, essay fragments, technical essays,
copied website text, and non-English text. Al-
though different versions of the same essays may
be annotated to build up an annotated essay revi-
sion history, we only selected final revisions for
inclusion in the W&I corpus.

We also ignored essays that met at least one of
the following conditions:

• The text contained fewer than 33 words.

• More than 1.5% of all characters in the text
were non-ASCII.

• More than 60% of all non-empty lines were
both shorter than 150 characters and did not
end with punctuation.

3https://writeandimprove.com/
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The precise values of these conditions were
tuned manually such that they prioritised ‘cleaner’
texts while maintaining a large enough pool at
each CEFR level. The last condition was designed
to filter out texts that had been formatted to fit
within a certain page width and so contained ex-
plicit new lines; e.g. “This is a \n broken sen-
tence.” Such sentences were often tokenised in-
correctly.

Since evaluation in GEC is typically carried out
at the sentence level, we also wanted to make sure
there was an even distribution of sentences at each
CEFR level. We thus split the data on this basis,
taking into account the fact that beginner essays
tend to be shorter than more advanced essays. As
CEFR levels are originally assigned at the essay
level, sentence level CEFR labels are an approx-
imation, and it is possible that the same sentence
might receive a different label in a different text.

We ultimately selected 3,600 annotated sub-
missions from W&I, which we distributed across
training, development and test sets as shown in Ta-
ble 2. We additionally annotated the test set a total
of 5 times to better account for alternative correc-
tions (cf. Bryant and Ng, 2015).

3.2 LOCNESS

Since most GEC research has traditionally focused
on non-native errors, we also wanted to incorpo-
rate some native errors into the shared task. To
do this, we used the LOCNESS corpus, a collec-
tion of approximately 400 essays written by native
British and American undergraduates on various
topics (Granger, 1998).4

Since these essays were typically much longer
than the texts submitted to Write & Improve,
we first filtered them to remove essays longer
than 550 words. We also removed essays that
contained transcription issue XML tags, such as
<quotation> and <illegible>.

There are not enough essays to create an anno-
tated LOCNESS training set, so we extracted a de-
velopment and test set which was annotated by the
W&I annotators. Like the W&I corpus, we also
controlled the amount of native data in each set in
terms of sentences to ensure a roughly even dis-
tribution at all levels. The test split was again an-
notated a total of 5 times to match the W&I test

4https://uclouvain.be/en/
research-institutes/ilc/cecl/locness.
html

Sentences Tokens
FCE-train 28,350 454,736
FCE-dev 2,191 34,748
FCE-test 2,695 41,932
Lang-8 1,037,561 11,857,938
NUCLE 57,151 1,161,567

Table 3: FCE, Lang-8 and NUCLE corpus statistics.

set. The statistics of this dataset are also shown in
Table 2.

3.3 Other Corpora

We allow the use of several existing learner cor-
pora in the Restricted track of the shared task.
Since these corpora were previously only available
in different formats, we make new standardised
versions available with the shared task (Table 3).

FCE The First Certificate in English (FCE) cor-
pus is a subset of the Cambridge Learner
Corpus (CLC) that contains 1,244 writ-
ten answers to FCE exam questions (Yan-
nakoudakis et al., 2011).

Lang-8 Corpus of Learner English Lang-8 is
an online language learning website which
encourages users to correct each other’s
grammar. The Lang-8 Corpus of Learner
English is a somewhat-clean, English subset
of this website (Mizumoto et al., 2012; Tajiri
et al., 2012). It is distinct from the raw,
multilingual Lang-8 Learner Corpus.

NUCLE The National University of Singapore
Corpus of Learner English (NUCLE) consists
of 1,400 essays written by mainly Asian un-
dergraduate students at the National Univer-
sity of Singapore (Dahlmeier et al., 2013). It
is the official training corpus for the CoNLL-
2013 and CoNLL-2014 shared tasks.

3.4 Corpus Standardisation

Since FCE and NUCLE were annotated accord-
ing to different error type frameworks and Lang-
8 and W&I+LOCNESS were not annotated with
error types at all, we re-annotated all corpora au-
tomatically using ERRANT (Bryant et al., 2017).
Specifically, we:

1. Tokenised the FCE and W&I+LOCNESS us-
ing spaCy v1.9.0. Lang-8 and NUCLE were
pre-tokenised.
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2. Used ERRANT to automatically classify the
human edits in parallel FCE, NUCLE and
W&I+LOCNESS sentences.

3. Used ERRANT to automatically extract and
classify the edits in parallel Lang-8 sen-
tences.

Note that as Lang-8 is not annotated with ex-
plicit edits, it only consists of parallel sentence
pairs. We consequently used ERRANT to align
the sentences and extract the edits automatically.
While we could have also done the same for the
other corpora, we instead chose to preserve and
re-classify the existing human edits. Table 4 thus
shows the ERRANT error type distributions for all
these corpora, and makes them comparable for the
first time.

In terms of edit operations, all corpora are fairly
consistent with respect to the distribution of Miss-
ing (M) Replacement (R) and Unnecessary (U)
word edits. Replacement edits are by far the most
frequent category and account for roughly 60-65%
of all edits in all datasets. Missing word edits ac-
count for roughly 20-25% of remaining edits, al-
though this figure is noticeably lower in FCE and
NUCLE. Unnecessary word edits account for 10-
15% of all edits, although this figure rises to al-
most 20% in NUCLE. One possible explanation
for this is that the NUCLE corpus also has more
determiner (DET) errors, which are known to be
problematic for Asian learners. Each corpus also
contains roughly 2-3% of Unknown (UNK) edits
that annotators identified but were unable to cor-
rect. UNK edits do not exist in Lang-8 because it
was never annotated with edit spans.

NUCLE contains more than twice the propor-
tion of noun number (NOUN:NUM) errors com-
pared to the other corpora. This is possibly be-
cause noun number was one of the five error types
targeted in the CoNLL-2013 shared task. Annota-
tor focus might also account for the slightly higher
proportion of determiner and subject-verb agree-
ment (SVA) errors, which were also among the
five targeted error types.

There is a significant difference in the propor-
tion of punctuation (PUNCT) errors across cor-
pora. Punctuation errors account for just 5% of all
errors in NUCLE, but almost 20% in W&I. This is
possibly because W&I contains data from a much
wider range of learners than the other corpora. A
similar pattern is observed with other (OTHER)
errors, which account for over 25% of all errors

S This are a sentence .
A 1 2|||R:VERB:SVA|||is|||-REQUIRED-|||NONE|||0
A 3 3|||M:ADJ|||good|||-REQUIRED-|||NONE|||0
A 1 2|||R:VERB:SVA|||is|||-REQUIRED-|||NONE|||1
A -1 -1|||noop|||-NONE-|||REQUIRED|||-NONE-|||2

Figure 1: Example M2 format with multiple annota-
tors.

in NUCLE and Lang-8, but roughly 13% of all er-
rors in the FCE and W&I+LOCNESS. We surmise
this is because edits are longer and noisier in the
first two corpora (cf. Felice et al., 2016) and so do
not fit into a more discriminative ERRANT error
category.

3.5 Data Formats

All the above corpora are released in M2 for-
mat, the standard format for annotated GEC files
since the CoNLL-2013 shared task. The FCE
and W&I+LOCNESS corpora are additionally re-
leased in an untokenised JSON format in case re-
searchers want to inspect the raw data.

In M2 format (Figure 1), a line preceded by S
denotes an original sentence while a line preceded
by A indicates an edit annotation. Each edit line
consists of the start and end token offsets of the
edit, the error type, the tokenised correction string,
a flag indicating whether the edit is required or op-
tional, a comment field, and a unique annotator ID.
The penultimate two fields are rarely used in prac-
tice however.

A ‘noop’ edit explicitly indicates when an anno-
tator/system made no changes to the original sen-
tence. If there is only one annotator, noop edits are
optional, otherwise a noop edit should be included
whenever at least 1 out of n annotators considered
the original sentence to be correct. This is some-
thing to be aware of when combining individual
M2 files, as missing noops can affect results.

Figure 1 can thus be interpreted as follows:

• Annotator 0 changed “are” to “is” and in-
serted “good” before “sentence” to produce
the correction: “This is a good sentence .”

• Annotator 1 changed “are” to “is” to produce
the correction: “This is a sentence .”

• Annotator 2 thought the original was correct
and made no changes to the sentence: “This
are a sentence .”
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W&I+LOCNESS
FCE (all) Lang-8 NUCLE Train Dev Test

Type % % % % % %
M 21.00 26.41 19.09 25.29 26.32 24.86
R 64.39 59.99 59.04 61.43 61.23 63.40
U 11.47 13.60 19.31 10.69 10.21 10.34
UNK 3.13 0.00 2.57 2.59 2.24 1.41
ADJ 1.36 1.25 1.58 1.52 1.48 1.05
ADJ:FORM 0.28 0.19 0.27 0.24 0.21 0.18
ADV 1.94 3.37 1.95 1.51 1.51 1.45
CONJ 0.67 0.98 0.71 0.51 0.58 0.75
CONTR 0.32 0.99 0.11 0.30 0.39 0.32
DET 10.86 11.93 15.98 11.25 10.43 10.41
MORPH 1.90 1.62 3.14 1.85 2.07 2.50
NOUN 4.57 4.51 3.80 4.36 4.30 2.89
NOUN:INFL 0.50 0.18 0.12 0.12 0.13 0.28
NOUN:NUM 3.34 4.28 8.13 4.05 3.29 4.07
NOUN:POSS 0.51 0.35 0.61 0.60 0.87 0.93
ORTH 2.94 3.99 1.62 4.77 4.61 8.03
OTHER 13.26 26.62 25.65 12.76 12.84 15.69
PART 0.29 0.50 0.46 0.84 0.79 0.49
PREP 11.21 8.00 7.69 9.79 9.70 8.33
PRON 3.51 2.72 1.26 2.64 2.33 2.45
PUNCT 9.71 6.06 5.16 17.16 19.37 16.73
SPELL 9.59 4.45 0.26 3.74 5.07 4.63
UNK 3.13 0.00 2.57 2.59 2.24 1.41
VERB 7.01 6.52 4.31 5.86 5.27 5.09
VERB:FORM 3.55 2.56 3.49 3.56 3.09 3.10
VERB:INFL 0.19 0.15 0.01 0.04 0.07 0.12
VERB:SVA 1.52 1.58 3.47 2.23 1.94 2.28
VERB:TENSE 6.04 6.03 7.01 6.07 6.20 5.43
WO 1.82 1.18 0.66 1.64 1.25 1.40
Total Edits 52,671 1,400,902 44,482 63,683 7,632 -

Table 4: The ERRANT error type distributions of the FCE, Lang-8, NUCLE and W&I+LOCNESS corpora. See
Bryant et al. (2017) for more information about each error type. The distribution of the W&I+LOCNESS test data
is averaged across all 5 annotators.

4 Tracks

As parallel training data is now more readily avail-
able, a new feature of the BEA-2019 shared task is
the introduction of three tracks: Restricted, Un-
restricted and Low Resource. Each track con-
trols the amount of annotated data that is avail-
able to participants. We place no restriction on
the amount of unannotated data (e.g. for lan-
guage modelling) or NLP tools (e.g. POS tag-
gers, parsers, spellcheckers, etc.), provided the re-
sources are publicly available.

4.1 Restricted Track

The Restricted Track is most similar to the pre-
vious shared tasks in that participants are limited
to using only the official datasets as annotated
training data (i.e. the FCE, Lang-8, NUCLE and
W&I+LOCNESS). Since we do not limit unanno-
tated data however, system submissions are still
not entirely comparable given that they might use,
for example, different amounts of monolingual or
artificially-generated data.

4.2 Unrestricted Track

The Unrestricted Track is the same as the Re-
stricted Track except participants may use any and
all datasets and resources to build systems, includ-
ing proprietary datasets and software. The main
aim of this track is to determine how much better
a system can do if it has access to potentially much
larger amounts of data and/or resources.

4.3 Low Resource Track

The Low Resource Track is the same as the
Restricted Track, except participants are only
allowed to use the W&I+LOCNESS development
set as annotated learner data. Since current
GEC systems exploit as much annotated data as
possible to reach the best performance, we hope
this track will motivate work in GEC for other
languages. We place no restriction on how partic-
ipants use the W&I+LOCNESS development set;
e.g. as a seed corpus to generate artificial data or
to tune parameters to the shared task.
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5 Evaluation

Systems are evaluated on the W&I+LOCNESS
test set using the ERRANT scorer (Bryant et al.,
2017), an improved version of the MaxMatch
scorer (Dahlmeier and Ng, 2012) that was pre-
viously used in the CoNLL shared tasks. As in
the previous shared tasks, this means that sys-
tem performance is primarily measured in terms of
span-based correction using the F0.5 metric, which
weights precision twice as much as recall.

In span-based correction, a system is only re-
warded if a system edit exactly matches a refer-
ence edit in terms of both its token offsets and cor-
rection string. If more than one set of reference
edits are available (there were 2 in CoNLL-2014
and 5 in BEA-2019), ERRANT chooses the refer-
ence that maximises the global F0.5 score, or else
maximises true positives and minimises false pos-
itives and false negatives. ERRANT is also able to
report performance in terms of span-based detec-
tion and token-based detection (Table 5).

Although the W&I+LOCNESS training and de-
velopment sets are released as separate files for
each CEFR level, the test set texts are combined
and shuffled such that the sentence order in each
essay is preserved, but the order of the CEFR
levels is random. This is done because systems
should not expect to know the CEFR level of an in-
put text in advance and should hence be prepared
to handle all levels and abilities. In Section 7,
we nevertheless also report system performance in
terms of different CEFR and native levels, as well
as in terms of detection and error types.

5.1 Metric Justification

Since robust evaluation is still a hot topic in GEC
(cf. Asano et al., 2017; Choshen and Abend,
2018), we also wanted to provide some additional
evidence that ERRANT F0.5 is as reliable as Max-
Match F0.5 and other popular metrics (Felice and
Briscoe, 2015; Napoles et al., 2015). We evalu-
ated ERRANT in relation to human judgements
on the CoNLL-2014 test set using the same setup
as Chollampatt and Ng (2018b), and found sim-
ilar correlation coefficients (Table 6). Although
this table shows that no metric is superior in all
settings, the main advantage of ERRANT is that
it can also provide much more detailed feedback
than the alternatives; e.g. in terms of error types.
We hope that researchers can make use of this in-
formation to build better systems.

6 Participants and Approaches

A total of 24 different teams took part in the BEA-
2019 shared task across all 3 tracks. Of these, 21
submitted to the Restricted Track, 7 submitted to
the Unrestricted Track, and 9 submitted to the Low
Resource Track. This also meant 7 teams submit-
ted to 2 separate tracks while 3 teams submitted to
all 3 tracks.

Only 14 teams submitted system description pa-
pers however, with a further 4 sending short de-
scriptions by email. The full list of teams, their
approaches, and the data and resources they used
in each track are shown in Table 8 (Appendix A.1).
We refer the reader to the system description pa-
pers (where available) for more detailed informa-
tion. Additionally: i) although Buffalo submitted
to all 3 tracks, their paper does not describe their
Low Resource system, ii) LAIX submitted exactly
the same system to both the Restricted and Unre-
stricted Track, and iii) TMU submitted 2 separate
papers about their respective Restricted and Low
Resource Track systems.

While past GEC systems have employed differ-
ent approaches, e.g. rules, classifiers, and statis-
tical machine translation (SMT), in contrast, ap-
proximately two-thirds of all teams in the BEA-
2019 shared task5 used transformer-based neural
machine translation (NMT) (Vaswani et al., 2017),
while the remainder used convolutional neural net-
works (CNN), or both. Although they were most
likely inspired by Junczys-Dowmunt et al. (2018)
and Chollampatt and Ng (2018a), who previously
reported state-of-the-art results on the CoNLL-
2014 test set, the main consequence of this is
that systems could only be differentiated based on
lower-level system properties, such as:

• How much artificial data was used, if any, and
how it was generated.

• How much over-sampled data was used, if
any, and in what proportion.

• How many models were combined or ensem-
bled.

• Whether system output was re-ranked.

• Whether the system contained an error detec-
tion component.

5Based on those that submitted system descriptions.
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Original I often look at TV Span-based Span-based Token-based
Reference [2, 4, watch] Correction Detection Detection
Hypothesis 1 [2, 4, watch] Match Match Match
Hypothesis 2 [2, 4, see] No match Match Match
Hypothesis 3 [2, 3, watch] No match No match Match

Table 5: Different types of evaluation in ERRANT.

Corpus Sentence
Metric Pearson r Spearman ρ Kendall τ
ERRANT 0.64 0.626 0.623
M2 0.623 0.687 0.617
GLEU 0.691 0.407 0.567
I-measure -0.25 -0.385 0.564

Table 6: Correlation between various evaluation met-
rics and human judgements.

For example, Shuyao, UEDIN-MS and
Kakao&Brain respectively trained their systems
on 145 million, 100 million and 45 million
artificial sentences, while CAMB-CUED instead
concentrated on optimising the ratio of official
to artificial sentences. TMU meanwhile focused
entirely on re-ranking in their Restricted Track
system, and AIP-Tohoku, CAMB-CLED, Web-
SpellChecker and YDGEC each incorporated
sentence and/or token based detection compo-
nents into their systems. Since most systems used
different combinations of similar techniques, it is
difficult to determine which were most successful.
For example, several teams used artificial data, but
they each generated it using different methods and
corpora, so it is unclear which method performed
best with respect to all the other uncontrolled
system variables.

For the Low Resource track, many teams sub-
mitted the same Restricted Track systems except
trained with the WikEd Corpus (Grundkiewicz
and Junczys-Dowmunt, 2014) or other Wikipedia-
based revision data. Notable exceptions include
CAMB-CUED, who used Finite State Transduc-
ers (FST) to rank confusion sets with a language
model; LAIX, who augmented their transformer
NMT model with a series of 8 error-type specific
classifiers; and TMU, who mapped ‘cross-lingual’
word embeddings to the same space to induce a
phrase table for a SMT system. These systems
hence represent promising alternatives in a heav-
ily transformer NMT dominated shared task.

7 Results

All system output submitted to Codalab during the
test phase was automatically annotated with ER-
RANT and compared against the gold standard
references. Although this meant there was a mis-
match between the automatically annotated hy-
potheses and the human annotated gold references,
we deliberately chose this setting to remain faith-
ful to the gold-standard training data and previous
shared tasks. See Appendix A.7 for more on com-
paring gold and automatic references.

We also set a limit of a maximum of 2 submis-
sions during the test phase to prevent teams from
optimising on the test set. The best results, in
terms of span-based correction ERRANT F0.5, are
used for the official BEA-2019 shared task results,
and all scores are presented in Table 7.

7.1 Restricted Track - Overall

Since many teams used very similar approaches,
it may be unsurprising that many of the Restricted
Track scores were very similar. For example, the
F0.5 difference between the teams that ranked 3-5
was 0.17%, and the precision difference between
the teams that ranked 4-6 was 0.47%. We thus
carried out significance tests between all teams
in each track using the bootstrap method (Efron
and Tibshirani, 1993) based on F0.5 (1,000 itera-
tions, p > .05), and grouped systems that were
not significantly different. The resulting groups
showed that, for example, there was no signifi-
cant difference between the top 2 teams and that
the top 11 teams fit into 4 statistically significant
groups. Groups were defined such that all teams in
each group were statistically similar. This means,
for example, that although ML@IITB was simi-
lar to YDGEC, it was different from Shuyao and
the other teams in Group 2, and so was placed in
Group 3 instead.

The top 2 teams in Group 1 scored significantly
higher than all the teams in Group 2 most likely
because both these teams 1) trained their systems
on artificial data generated using error type distri-
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Restricted
Group Rank Teams TP FP FN P R F0.5

1
1 UEDIN-MS 3127 1199 2074 72.28 60.12 69.47
2 Kakao&Brain 2709 894 2510 75.19 51.91 69.00

2

3 LAIX 2618 960 2671 73.17 49.50 66.78
4 CAMB-CLED 2924 1224 2386 70.49 55.07 66.75
5 Shuyao 2926 1244 2357 70.17 55.39 66.61
6 YDGEC 2815 1205 2487 70.02 53.09 65.83

3
7 ML@IITB 3678 1920 2340 65.70 61.12 64.73
8 CAMB-CUED 2929 1459 2502 66.75 53.93 63.72

4
9 AIP-Tohoku 1972 902 2705 68.62 42.16 60.97

10 UFAL 1941 942 2867 67.33 40.37 59.39
11 CVTE-NLP 1739 811 2744 68.20 38.79 59.22

5 12 BLCU 2554 1646 2432 60.81 51.22 58.62
6 13 IBM 1819 1044 3047 63.53 37.38 55.74

7
14 TMU 2720 2325 2546 53.91 51.65 53.45
15 qiuwenbo 1428 854 2968 62.58 32.48 52.80

8
16 NLG-NTU 1833 1873 2939 49.46 38.41 46.77
17 CAI 2002 2168 2759 48.01 42.05 46.69
18 PKU 1401 1265 2955 52.55 32.16 46.64

9 19 SolomonLab 1760 2161 2678 44.89 39.66 43.73
10 20 Buffalo 604 350 3311 63.31 15.43 39.06
11 21 Ramaiah 829 7656 3516 9.77 19.08 10.83

Unrestricted
Group Rank Teams TP FP FN P R F0.5

1
1 LAIX 2618 960 2671 73.17 49.50 66.78
2 AIP-Tohoku 2589 1078 2484 70.60 51.03 65.57

2 3 UFAL 2812 1313 2469 68.17 53.25 64.55
3 4 BLCU 3051 2007 2357 60.32 56.42 59.50
4 5 Aparecium 1585 1077 2787 59.54 36.25 52.76
5 6 Buffalo 699 374 3265 65.14 17.63 42.33
6 7 Ramaiah 1161 8062 3480 12.59 25.02 13.98

Low Resource
Group Rank Teams TP FP FN P R F0.5

1 1 UEDIN-MS 2312 982 2506 70.19 47.99 64.24
2 2 Kakao&Brain 2412 1413 2797 63.06 46.30 58.80

3
3 LAIX 1443 884 3175 62.01 31.25 51.81
4 CAMB-CUED 1814 1450 2956 55.58 38.03 50.88

4 5 UFAL 1245 1222 2993 50.47 29.38 44.13

5
6 Siteimprove 1299 1619 3199 44.52 28.88 40.17
7 WebSpellChecker 2363 3719 3031 38.85 43.81 39.75

6 8 TMU 1638 4314 3486 27.52 31.97 28.31
7 9 Buffalo 446 1243 3556 26.41 11.14 20.73

Table 7: Official BEA-2019 results for all teams in all tracks using the main overall span-based correction ER-
RANT F0.5. The highest values (lowest for False Positives and False Negatives) are shown in bold.

butions and confusion sets, and 2) re-ranked their
system output. In contrast, Shuyao used a similar
method to generate artificial data, but did not re-
rank, while CAMB-CLED used back-translation
to generate artificial data, but did re-rank. This
suggests that confusion set approaches to artifi-
cial data generation are more successful than back-
translated approaches.

7.2 Unrestricted Track - Overall

Since participants were allowed to use any and all
datasets in the Unrestricted Track, we expected
scores to be higher, but the highest scoring team
actually submitted exactly the same system to the

Unrestricted Track as they did to the Restricted
Track. The top 2 teams in the Restricted Track
could thus also have scored highest on this track if
they did the same.

Of the remaining teams, AIP-Tohoku and
UFAL increased their scores by approximately
5 F0.5 using non-public Lang-8 and parallel
Wikipedia data respectively, BLCU added a more
modest 1 F0.5 similarly using non-public Lang-
8 data, and Buffalo added roughly 3 F0.5 using
artificial data generated from a subsection of the
English Gigaword corpus (Graff and Cieri, 2003).
While it is unsurprising that larger quantities of
training data tended to lead to higher scores, these
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results help quantify the extent to which perfor-
mance can be improved by simply adding more
data.

7.3 Low Resource Track - Overall

The teams that came top of the Restricted Track
also dominated in the Low Resource Track. The
UEDIN-MS system even outperformed 14 of the
Restricted Track submissions despite the limited
training data. This is most likely because UEDIN-
MS and Kakao&Brain both made effective use of
artificial data.

The CAMB-CUED system also achieved a
fairly competitive score despite not using any par-
allel training data. This contrasts with LAIX, who
scored higher by 1 F0.5 using a complicated sys-
tem of classifiers, CNNs and transformer NMT
models. The TMU system is also notable for
applying techniques from unsupervised SMT to
GEC for the first time (cf. Artetxe et al., 2018).
Although it performed poorly overall, it took
several years to adapt supervised SMT to GEC
(Junczys-Dowmunt and Grundkiewicz, 2016), so
we hope researchers will continue to explore un-
supervised SMT in future work.

8 Conclusion

It is undeniable that significant progress has been
made since the last shared task on grammati-
cal error correction five years ago. Transformer
based neural machine translation proved effective,
and teams generally scored significantly higher
in BEA-2019 than in the previous CoNLL-2014
shared task. This is significant because we also
introduced a new corpus, the Cambridge English
Write & Improve + LOCNESS corpus, which con-
tains a much wider range of texts at different abil-
ity levels than previous corpora, yet systems still
generalised well to this much more diverse dataset.

Overall, the most successful systems were sub-
mitted by UEDIN-MS (Grundkiewicz et al., 2019)
and Kakao&Brain (Choe et al., 2019) who re-
spectively ranked first and second in both the Re-
stricted and Low Resource Tracks. UEDIN-MS
additionally scored just 5 F0.5 lower in the Low
Resource Track (64.24) than the Restricted Track
(69.47), which shows that it is possible to build a
competitive GEC system without large quantities
of human annotated training data.

Finally, we note that the appendix contains a
much more fine-grained analysis of system perfor-

mance in terms of CEFR levels, edit operations,
error types, single vs. multi token errors, detec-
tion vs. correction, and a comparison with other
metrics. Some key findings include:

• There was a clear indication that different
systems performed better at different CEFR
levels.

• All systems still struggle most with content
word errors.

• Systems are significantly better at correcting
multi token errors than they were 5 years ago.

• The GLEU metric (Napoles et al., 2015)
strongly correlates with recall and seems to
be less discriminative than other metrics.

We ultimately hope that the results and cor-
pus statistics we report will serve as useful bench-
marks and guidance for future work.
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A.2 CEFR Levels

Since one of the main contributions of the BEA-
2019 shared task was the introduction of new data
annotated for different proficiency levels, we anal-
ysed each team in terms of their CEFR and Native
level performance. The F0.5 results for each team
and level are thus plotted in Figure 2.

The top 10 teams in the Restricted Track all per-
formed best on C level texts, while the bottom 11
systems typically performed best on A level texts:
a clear indication that some systems are more bi-
ased towards different learner levels than others.
Different systems may also be differently suited
to correcting different error types. For example,
while punctuation errors are fairly rare at levels A
and B, they are much more common at levels C
and N. Conversely, noun number errors are com-
mon at levels A and B, but are rarer at levels C and
N. Consequently, system performance at different
CEFR levels is affected by each system’s ability to
correct specific error types.

The bottom 13 teams in the Restricted Track
also typically struggled most with the native level
texts. For example, there is an almost 15 F0.5

gap between AIP-Tohoku’s N level result and their
next lowest CEFR level. Since we did not release
any native level training data, we note that some
systems failed to generalise to the levels and do-
mains that they could not train on. In contrast,
Low Resource Track submissions tended to score
highest on native level texts, perhaps because sev-
eral were trained on corrupted native data which
may be more similar to the N level texts than the
genuine learner data.

A.3 Edit Operation

Results for each team in terms of Missing, Re-
placement and Unnecessary word errors are shown
in Table 9. These results mainly provide a high
level overview of the types of errors systems were
able to correct, but can also be used to help iden-
tify different system strengths and weaknesses.
For example, UEDIN-MS only ranked 7th in terms
of correcting missing word errors, but made up for
this by scoring much higher at replacement and
unnecessary word errors, suggesting their system
could be improved by paying more attention to
missing word errors.

In contrast, Kakao&Brain scored highest at
missing word errors, but came 2nd in terms of re-
placement word errors and 7th in terms of unnec-

essary word errors. Although they also achieved
the highest precision out of all teams in terms of
unnecessary word errors, they did so at the cost
of almost half the recall of the UEDIN-MS sys-
tem. This suggest that Kakao&Brain should in-
stead focus on improving unnecessary word error
correction. That said, it is also worth reiterating
that approximately 65% of all errors are replace-
ment word errors, compared to 25% missing and
10% unnecessary, and so it is arguably more im-
portant to focus on replacement word errors more
than any other category.

In the Restricted Track, ML@IITB and BLCU
respectively scored highest in terms of recall on
missing and unnecessary word errors. This per-
haps suggests that ML@IITB’s strategy of only
paying attention to the top 500 most frequent miss-
ing word errors paid off, while BLCU’s artificial
data generation method treated all edit operations
equally, and so was perhaps more highly opti-
mised for unnecessary word errors.

In the Low Resource Track, UEDIN-MS was
again the dominant system in terms of replace-
ment and unnecessary word errors, although
Kakao&Brain again came top in terms of miss-
ing word errors. There was also a larger dis-
crepancy between certain teams’ operation scores
and, for example, UFAL scored 43.36 and 50.91
F0.5 on missing and replacement word errors, but
just 14.89 F0.5 on unnecessary word errors, while
WebSpellChecker scored 60.40 F0.5 on missing
word errors, but just 34.13 and 28.63 on replace-
ment and unnecessary word errors. These results
suggest that some systems are more heavily bi-
ased towards some edit operations than others, but
researchers can hopefully use this information to
overcome their system’s weaknesses.

A.4 Single vs. Multi Token Edits

In addition to error types, we also examined sys-
tem performance in terms of single and multi to-
ken edits, where a multi token edit is defined as
any edit that contains 2 or more tokens on at least
one side of the edit; e.g. [eat → has eaten] or
[only can→ can only]. Systems were evaluated in
this setting mainly because Sakaguchi et al. (2016)
previously advocated fluent, rather than simply
grammatical, edits in GEC, yet fluency edits of-
ten involve multi token corrections. When Bryant
et al. (2017) evaluated the CoNLL-2014 systems
in terms of multi token edits however, they found
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Restricted M R U
Team P R F0.5 P R F0.5 P R F0.5

UEDIN-MS 70.20 64.38 68.95 73.10 58.42 69.60 73.10 60.23 70.11
Kakao&Brain 79.39 65.70 76.22 72.51 47.83 65.73 76.33 33.91 61.05
LAIX 79.01 58.79 73.93 70.22 46.67 63.78 73.68 40.66 63.39
CAMB-CLED 73.30 64.32 71.31 69.88 50.27 64.82 66.05 59.51 64.63
Shuyao 75.53 61.14 72.14 67.36 53.13 63.94 72.61 53.62 67.81
YDGEC 75.72 59.99 71.95 69.60 47.86 63.80 60.92 64.17 61.54
ML@IITB 74.05 73.37 73.91 63.87 53.36 61.45 53.78 67.98 56.13
CAMB-CUED 67.81 66.84 67.62 66.35 47.59 61.50 65.40 56.47 63.39
AIP-Tohoku 71.56 48.63 65.39 69.26 37.73 59.34 61.56 54.70 60.05
UFAL 71.02 47.76 64.72 66.11 36.73 56.99 64.72 45.31 59.61
CVTE-NLP 68.50 40.22 60.05 68.96 38.55 59.56 62.91 37.20 55.27
BLCU 63.86 50.21 60.57 63.16 48.36 59.52 50.48 68.02 53.23
IBM 71.88 48.40 65.52 59.56 33.58 51.58 61.70 31.59 51.82
TMU 63.85 57.26 62.42 52.55 49.32 51.87 42.79 52.94 44.50
qiuwenbo 58.94 25.99 47.01 64.64 34.34 54.95 56.04 33.63 49.45
NLG-NTU 56.68 41.46 52.80 48.74 36.09 45.55 41.80 45.66 42.52
CAI 55.59 48.01 53.89 46.81 39.45 45.12 39.64 44.04 40.45
PKU 66.60 35.43 56.64 49.39 30.16 43.80 48.15 38.41 45.82
SolomonLab 53.18 25.38 43.62 45.62 44.18 45.33 33.72 38.26 34.54
Buffalo 57.43 7.38 24.37 64.24 17.62 42.01 62.24 16.22 39.71
Ramaiah 47.31 28.04 41.59 6.23 14.71 7.04 11.69 27.50 13.21

Unrestricted M R U
Team P R F0.5 P R F0.5 P R F0.5

LAIX 79.01 58.79 73.93 70.22 46.67 63.78 73.68 40.66 63.39
AIP-Tohoku 72.23 54.83 67.92 72.70 47.38 65.68 60.47 63.59 61.07
UFAL 69.21 54.28 65.60 69.47 51.38 64.90 61.03 61.23 61.07
BLCU 64.61 53.85 62.13 63.27 54.50 61.30 47.26 70.93 50.64
Aparecium 63.61 38.29 56.18 58.89 37.36 52.80 53.33 24.02 42.87
Buffalo 70.64 9.49 30.87 65.03 19.65 44.49 61.24 20.26 43.60
Ramaiah 55.06 31.99 48.12 9.14 22.02 10.35 11.53 28.48 13.09

Low Resource M R U
Team P R F0.5 P R F0.5 P R F0.5

UEDIN-MS 69.65 55.92 66.39 71.56 46.77 64.70 61.16 33.11 52.30
Kakao&Brain 70.12 61.76 68.27 59.00 41.10 54.28 60.98 31.45 51.33
LAIX 68.19 41.30 60.33 59.11 27.03 47.77 59.07 31.32 50.18
CAMB-CUED 55.05 22.13 42.42 57.65 41.97 53.64 46.46 45.30 46.22
UFAL 57.82 21.68 43.36 58.43 33.61 50.91 14.64 16.01 14.89
Siteimprove 80.10 17.16 46.21 42.76 33.33 40.47 34.78 22.71 31.44
WebSpellChecker 60.72 59.14 60.40 33.96 34.80 34.13 25.65 53.63 28.63
TMU 35.25 58.81 38.32 21.78 18.53 21.04 18.74 26.72 19.93
Buffalo 27.22 11.94 21.67 26.22 11.95 21.16 25.00 3.05 10.24

Table 9: This table shows the performance of each team in each track in terms of Missing, Replacement and
Unnecessary token edits. In terms of frequency, approximately 25% of all edits are M, 65% are R, and 10% are U
(cf. Table 4). The highest scores for each column are shown in bold.
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(c) Low Resource

1.
U

E
D

IN
-M

S

2.
K

a
ka

o&
B

ra
in

3
.

L
A

IX

4.
C

A
M

B
-C

U
E

D

5.
U

F
A

L

6.
S

it
ei

m
p

ro
ve

7.
W

eb
S

p
el

lC
h

ec
ke

r

8.
T

M
U

9
.

B
u

ff
al

o

0

10

20

30

40

50

60

70

80

F
0
.5

A
B
C
N

Figure 2: The F0.5 scores for each team in each track in terms of CEFR and native levels: A (beginner), B
(intermediate), C (advanced) and N (native).

that only 3 out of 12 teams achieved scores higher
than 10 F0.5, prompting them to conclude that sig-
nificant progress must be made before fluency cor-
rections become a viable option.

With this in mind, we are pleased to report that
Figure 3 shows systems have indeed made signif-
icant progress in terms of correcting multi token
edits, and in fact almost all teams scored higher
than 20 F0.5, with an average of 42 F0.5. While
systems still scored higher in terms of single token
errors overall, this is most likely because single to-
ken errors are not only typically easier to correct
than multi token errors, but are also much more
frequent and tend to account for roughly 70-80%
of all edits.

It is also noteworthy that Kakao&Brain actually
surpassed UEDIN-MS in terms of single token er-
ror performance in the Restricted Track, but fell
much shorter in terms of multi token edits. Shuyao
was also particularly adept at correcting multi to-
ken errors, coming second after UEDIN-MS over-
all. In the Low Resource track meanwhile, Siteim-
prove is notable for not correcting any multi token
errors at all, however this was because their sys-
tem only targeted a limited number of single token
error types by design.

A.5 Detection vs. Correction

One aspect of system performance that is seldom
reported in the literature is that of error detection;
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(c) Low Resource
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Figure 3: The F0.5 scores for each team in each track in terms of single and multi token edits. A multi token is
defined as any edit that has 2 or more tokens on at least one side of the edit.

i.e. the extent to which a system can identify er-
rors. This is significant because detection is an im-
portant task in its own right as well as the first step
in GEC. Figure 4 compares each team in terms of
span based detection, span based detection and to-
ken based correction F0.5.

In general, all systems were fairly consistent
in terms of the difference between their detec-
tion and correction scores, with most teams scor-
ing approximately 12-17 F0.5 higher on token
based detection than correction. CAMB-CLED
and ML@IITB are noteworthy for achieving the
2nd and 3rd highest scores in terms of token detec-
tion, although the former can be explained by the
fact that CAMB-CLED explicitly modelled detec-
tion in their approach. One of the main applica-

tions of this graph is thus to inform teams whether
they should focus on improving the correction of
errors they can already detect, or else extend their
systems to detect new errors.

A.6 Main Error Types

The overall F0.5 scores for each of the main 24 ER-
RANT error types for each team in the Restricted
Track are shown in Table 10, while similar results
for the Unrestricted and Low Resource Tracks are
shown in Table 11. The cells in these tables have
also been shaded such that a darker red indicates a
lower score. This makes it easier to see at a glance
which error types were the hardest for all systems
to correct.
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(c) Low Resource
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Figure 4: The difference in F0.5 scores in terms of span based correction, span based detection, and token based
detection (as defined in Section 5) for each team in each track.

With this in mind, the darkest columns in
these tables include adjectives (ADJ), adverbs
(ADV), conjunctions (CONJ), nouns (NOUN),
other (OTHER), verbs (VERB) and word order
(WO) errors. It should be made clear however,
that these categories mainly contain word choice
errors, such as [eat → consume], and that mor-
phological errors, such as [eat→ eating], are var-
iously subsumed under other categories. The re-
sults indicate that while systems are fairly adept
at correcting morphological and function word er-
rors, they struggle with content word errors. Con-
tent word errors require a deeper understanding of
the text compared to morphological and function

word errors. Such errors should not be ignored
however, and ADJ, ADV, NOUN and VERB er-
rors collectively account for over 10% of all errors,
which is equal to the 3rd most frequent error type.

In terms of error types overall, UEDIN-MS was
the most successful team and scored highest on
15/24 error types in the Restricted Track and 20/24
in the Low Resource Track. YDGEC meanwhile
came 2nd in the Restricted Track, scoring high-
est on 3/24 error types, while a handful of other
teams did best at 1 or 2 types. YDGEC is also
notable for scoring much better at adjective and
adverb errors than UEDIN-MS; it would be inter-
esting to determine why. In contrast, UEDIN-MS
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performed significantly better on content word er-
rors in the Low Resource Track than their near-
est competitors, which suggests that their artificial
data generation method might also be proficient at
simulating content word errors.

Finally, the team that came 5th overall, Shuyao,
came last in terms of orthography (ORTH) errors,
even though they constitute the 5th most frequent
error type. This not only indicates a straightfor-
ward way for them to improve system, but also
demonstrates how an ERRANT error type analysis
can help guide the system development process.

A.7 All Metrics
As mentioned at the start of this section, we chose
to use gold annotated references as the official ref-
erences in the shared task even though all system
hypotheses were annotated automatically by ER-
RANT. One consequence of this however, is that
systems are unlikely to reach 100 F0.5 even if they
produce exactly the same corrected sentences as
the references. This is because ERRANT com-
putes scores in terms of edit overlap, yet automatic
edit spans do not always match human edit spans;
for example ERRANT will merge edits such as [ε
→ has] and [eat→ eaten] into [eat→ has eaten],
but human annotators may choose to keep them
separate. Consequently, although the edits ulti-
mately produce the same correction, the automatic
hypothesis does not match the gold reference and
so the system is not rewarded. This explains why
some teams found that submitting the official cor-
rected development sentences to Codalab during
the development phase only scored ∼86 F0.5.

In this section, we additionally report system
performance using automatic references instead of
gold references. While it may seem unorthodox
to use automatic references instead of gold refer-
ences, the main advantage of this setting is that all
the edits in the hypothesis and reference files are
classified under exactly the same conditions. This
not only means hypothesis edits are more likely
to match the reference edits, but also that the offi-
cial corrected sentences will score the maximum
100 F0.5 on the development and test sets. Ta-
ble 12 hence shows that the ERRANT F0.5 scores
of almost all teams in all tracks increased when
compared against the automatic references, which
indicates that systems are now rewarded for valid
edits that were previously overlooked.

In addition to evaluating systems using gold
and automatic references with ERRANT, we also
evaluated systems using the other most popular
metrics in GEC; namely MaxMatch (Dahlmeier
and Ng, 2012), the I-measure (Felice and Briscoe,
2015), and GLEU (Napoles et al., 2015). The re-
sults, as well as how they affect each team’s rank-
ing, are also shown in Table 12. Note that the I-
measure and GLEU are unaffected by the differ-
ences between gold and auto references and so are
only reported once in this table.

Although we see that the rankings do change
depending on the metric and type of reference,
UEDIN-MS still came top in all settings in both
the Restricted and Low Resource Tracks. While
Kakao&Brain also consistently came second in al-
most all metrics, the exception was GLEU in the
Restricted Track where they dropped to 5th. The
overall GLEU rankings deviate significantly from
the other metrics and also strongly correlate with
recall. For example, ML@IITB, BLCU and TMU
all ranked much better under GLEU, on account of
their higher recall, while LAIX dropped from 3rd
to 9th because their system emphasised precision.
We additionally note that the range in scores for
the top 19 teams in the Restricted Track was less
than 7.5 using GLEU, but over 25 F0.5 for both
ERRANT and MaxMatch and 40 in terms of the
I-measure. We thus conclude that GLEU is less
discriminative than other metrics.

Finally, although MaxMatch F0.5 scores tended
to be higher than ERRANT F0.5 scores in both
the gold and auto reference settings, we note that
MaxMatch exploits a dynamic alignment to artifi-
cially minimise the false positive rate and hence
produces slightly inflated scores (Bryant et al.,
2017). We also note that despite previous research
that suggested MaxMatch correlates more strongly
with human judgements than the I-measure (cf.
Section 5), the I-measure still ranked the top 10
Restricted Track systems in exactly the same or-
der as MaxMatch F0.5. We hope that these results
will encourage researchers to investigate further
and perhaps develop better evaluation practices.
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Restricted

Teams ADJ
ADJ

ADV CONJ CONTR DET MORPH NOUN
NOUN NOUN NOUN

ORTHFORM INFL NUM POSS
UEDIN-MS 43.48 83.33 49.41 48.67 84.75 75.67 79.31 41.17 91.95 79.92 83.68 82.10
Kakao&Brain 42.68 74.07 47.41 19.23 98.21 70.24 70.45 31.82 77.78 75.32 68.97 75.77
LAIX 46.05 54.05 45.11 16.67 76.92 70.07 74.16 34.09 81.52 67.40 63.32 73.02
CAMB-CLED 41.94 78.95 51.65 28.46 77.92 71.87 76.47 34.75 67.31 71.12 69.05 80.69
Shuyao 47.37 83.33 56.64 40.00 91.67 73.10 70.54 33.33 72.29 73.90 66.67 50.41
YDGEC 53.10 76.92 55.02 32.26 75.47 70.42 67.46 25.84 77.59 73.42 64.63 71.08
ML@IITB 19.90 53.57 46.04 58.14 68.97 72.53 63.62 17.73 23.62 72.52 68.63 67.29
CAMB-CUED 50.30 65.22 53.69 36.08 74.47 68.33 72.48 34.05 52.08 71.21 69.31 78.61
AIP-Tohoku 41.67 90.91 51.92 28.17 81.82 68.09 58.69 29.96 69.77 69.64 58.59 65.85
UFAL 43.48 74.07 50.00 32.79 83.33 63.23 72.29 25.24 60.61 65.02 52.63 75.68
CVTE-NLP 46.73 83.33 43.86 45.45 86.54 59.56 62.37 29.24 86.96 68.54 61.22 72.46
BLCU 50.00 83.33 44.12 29.70 61.64 64.30 65.53 22.29 68.42 66.69 58.14 75.63
IBM 28.30 66.67 0.00 0.00 65.22 57.64 51.37 12.58 0.00 62.19 24.75 53.35
TMU 24.62 58.14 32.29 39.82 79.37 61.65 63.69 22.32 72.92 60.53 73.30 74.76
qiuwenbo 38.14 62.50 43.15 16.13 54.05 53.78 57.32 23.32 86.96 64.57 45.00 70.18
NLG-NTU 12.82 41.67 34.74 36.04 70.00 53.09 49.38 9.38 58.82 55.78 60.13 69.15
CAI 19.48 45.45 31.25 28.46 90.16 49.31 54.01 14.60 58.82 52.21 64.71 70.28
PKU 35.97 62.50 34.19 25.32 81.40 59.79 58.46 13.00 60.00 63.66 40.54 69.94
SolomonLab 17.42 62.50 52.08 23.44 77.78 53.23 36.62 12.82 87.63 57.58 57.02 59.15
Buffalo 36.76 58.82 26.32 0.00 50.00 37.13 49.36 18.63 57.14 52.90 18.52 53.55
Ramaiah 3.26 55.56 12.86 3.40 41.67 23.10 33.86 0.80 0.00 40.61 17.24 58.60
Freq. (%) 1.05 0.18 1.45 0.75 0.32 10.41 2.50 2.89 0.28 4.07 0.93 8.03

Teams OTHER PART PREP PRON PUNCT SPELL VERB
VERB VERB VERB VERB

WOFORM INFL SVA TENSE
UEDIN-MS 45.59 66.90 71.81 68.47 67.87 82.71 59.27 79.52 97.22 86.74 66.20 54.27
Kakao&Brain 34.36 73.53 65.56 67.12 78.17 76.12 43.33 71.65 96.77 83.11 63.08 47.69
LAIX 23.99 68.42 62.85 62.99 75.66 72.82 30.30 75.80 86.21 78.95 56.92 47.32
CAMB-CLED 38.95 74.07 65.40 64.55 75.02 77.51 39.80 75.63 93.75 80.08 60.82 52.71
Shuyao 40.49 69.54 65.86 67.68 76.41 77.22 53.52 78.02 97.22 80.37 60.55 59.47
YDGEC 37.13 75.76 65.53 54.69 70.01 77.37 49.28 77.11 100.00 78.37 62.04 50.65
ML@IITB 31.75 65.84 67.35 62.86 75.89 67.93 49.19 75.93 86.96 84.40 58.82 60.14
CAMB-CUED 35.50 72.25 59.85 61.57 72.64 73.44 40.13 73.43 89.29 79.21 55.60 52.56
AIP-Tohoku 34.77 69.67 60.59 51.17 70.42 70.77 42.19 71.51 62.50 75.55 54.39 46.75
UFAL 29.79 54.35 55.82 57.74 70.44 63.32 44.75 74.36 71.43 77.81 51.48 47.52
CVTE-NLP 24.79 67.01 51.16 54.57 64.36 75.73 40.60 69.26 94.59 72.97 49.13 47.62
BLCU 30.36 58.06 59.17 48.11 66.72 66.39 45.57 71.29 96.77 76.06 50.66 61.92
IBM 15.10 51.02 48.95 43.40 66.81 66.80 21.38 62.50 0.00 70.82 51.66 36.89
TMU 23.84 52.88 54.62 45.32 70.83 63.17 32.94 63.64 94.59 73.85 49.16 43.00
qiuwenbo 22.16 58.82 41.19 52.63 48.94 74.36 30.94 66.19 86.21 71.68 44.19 44.60
NLG-NTU 16.41 62.50 45.43 47.39 62.23 53.64 32.44 60.40 73.53 66.06 42.04 41.81
CAI 17.98 48.00 43.71 42.24 60.57 56.14 25.22 56.58 94.59 66.36 33.83 28.07
PKU 14.73 63.73 49.96 52.56 61.46 60.00 27.23 69.90 80.00 71.43 44.38 45.70
SolomonLab 16.20 62.91 48.73 37.38 26.38 66.67 29.32 50.71 89.29 59.27 38.80 39.80
Buffalo 7.68 47.62 21.01 31.03 30.17 50.00 11.47 65.32 38.46 65.29 34.05 12.05
Ramaiah 0.73 38.46 21.90 22.85 51.28 5.63 3.95 48.78 58.82 52.97 32.32 34.38
Freq. (%) 15.69 0.49 8.33 2.45 16.73 4.63 5.09 3.10 0.12 2.28 5.43 1.40

Table 10: Main error type ERRANT F0.5 scores for each team in the Restricted Track. Darker red indicates a lower
score. The percent frequency of each type in the test set is also shown.
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Unrestricted

Teams ADJ
ADJ

ADV CONJ CONTR DET MORPH NOUN
NOUN NOUN NOUN

ORTHFORM INFL NUM POSS
LAIX 46.05 54.05 45.11 16.67 76.92 70.07 74.16 34.09 81.52 67.40 63.32 73.02
AIP-Tohoku 53.96 83.33 49.08 51.14 92.31 68.74 68.38 38.37 89.04 74.74 71.43 71.02
UFAL 50.96 69.77 46.03 37.74 82.19 66.86 70.72 37.91 78.57 71.43 76.04 81.37
BLCU 50.76 78.43 42.57 43.62 68.42 59.67 66.39 33.52 53.85 67.11 59.81 75.79
Aparecium 37.74 43.48 39.53 32.61 30.77 55.87 52.42 18.78 44.44 65.93 50.56 70.69
Buffalo 10.87 53.57 37.04 0.00 66.67 43.26 56.16 13.23 49.02 53.15 33.33 51.75
Ramaiah 1.98 9.26 11.59 0.00 52.63 30.30 30.75 1.20 0.00 41.30 9.90 54.82
Freq. (%) 1.05 0.18 1.45 0.75 0.32 10.41 2.50 2.89 0.28 4.07 0.93 8.03

Teams OTHER PART PREP PRON PUNCT SPELL VERB
VERB VERB VERB VERB

WOFORM INFL SVA TENSE
LAIX 23.99 68.42 62.85 62.99 75.66 72.82 30.30 75.80 86.21 78.95 56.92 47.32
AIP-Tohoku 44.05 71.97 62.37 67.71 72.34 79.40 45.58 76.09 89.29 77.31 59.75 57.18
UFAL 36.50 75.76 61.79 57.29 70.49 84.80 49.45 72.61 89.29 78.91 59.83 43.41
BLCU 34.98 63.16 58.68 61.15 65.86 77.81 43.27 70.85 97.22 74.70 55.41 61.29
Aparecium 18.63 64.71 47.44 49.85 57.17 61.71 31.20 68.29 93.75 75.04 44.64 34.81
Buffalo 10.70 52.63 30.16 34.29 31.54 50.32 17.39 72.44 38.46 71.78 35.50 32.00
Ramaiah 0.84 32.26 31.67 26.47 55.82 4.23 3.88 47.82 41.67 47.17 20.71 32.89
Freq. (%) 15.69 0.49 8.33 2.45 16.73 4.63 5.09 3.10 0.12 2.28 5.43 1.40

Low Resource

Teams ADJ
ADJ

ADV CONJ CONTR DET MORPH NOUN
NOUN NOUN NOUN

ORTHFORM INFL NUM POSS
UEDIN-MS 46.39 83.33 39.39 25.42 51.72 64.01 72.25 41.13 92.59 77.23 79.21 79.23
Kakao&Brain 0.00 50.00 6.10 0.00 44.64 58.17 52.40 16.51 75.58 56.61 18.29 65.14
LAIX 0.00 31.25 9.43 0.00 0.00 51.35 61.71 19.42 80.00 57.36 35.85 51.16
CAMB-CUED 0.00 17.86 0.00 19.13 35.71 40.91 37.18 13.51 93.02 59.71 47.39 73.31
UFAL 32.11 33.33 24.00 10.64 7.69 26.20 48.28 30.49 93.41 66.33 64.52 70.56
Siteimprove 8.20 0.00 9.80 2.48 0.00 18.63 35.71 20.83 40.00 47.18 0.00 4.59
WebSpellChecker 9.98 0.00 16.47 8.33 33.33 54.43 38.67 10.58 37.04 56.07 49.50 67.47
TMU 1.66 36.59 6.99 19.44 0.00 26.50 24.75 1.82 32.05 38.71 10.20 45.95
Buffalo 17.54 0.00 22.47 0.00 21.43 10.64 23.29 7.97 22.73 19.59 17.24 49.28
Freq. (%) 1.05 0.18 1.45 0.75 0.32 10.41 2.50 2.89 0.28 4.07 0.93 8.03

Teams OTHER PART PREP PRON PUNCT SPELL VERB
VERB VERB VERB VERB

WOFORM INFL SVA TENSE
UEDIN-MS 38.51 73.53 62.01 62.26 62.85 84.09 49.12 78.17 97.22 76.59 50.56 29.97
Kakao&Brain 17.61 51.02 47.22 49.00 74.64 73.82 20.72 61.11 96.77 74.35 47.36 11.81
LAIX 4.16 32.79 41.18 11.63 64.42 60.64 0.00 55.18 0.00 67.31 0.00 0.00
CAMB-CUED 9.09 52.45 50.45 22.14 51.88 68.49 4.89 60.22 97.22 85.25 39.21 4.03
UFAL 21.73 42.86 27.03 24.19 33.17 80.25 27.86 58.46 93.75 72.18 21.02 19.05
Siteimprove 13.31 37.23 39.58 30.63 50.88 76.22 8.23 48.55 96.77 76.06 23.10 0.00
WebSpellChecker 8.38 41.67 37.97 33.42 66.74 42.91 17.89 54.26 33.33 71.73 35.21 42.15
TMU 2.51 30.00 18.12 19.30 46.16 65.50 9.27 28.43 75.00 30.22 14.96 18.07
Buffalo 5.19 29.41 11.74 14.04 36.23 6.35 7.50 8.17 66.67 12.82 6.24 28.00
Freq. (%) 15.69 0.49 8.33 2.45 16.73 4.63 5.09 3.10 0.12 2.28 5.43 1.40

Table 11: Main error type ERRANT F0.5 scores for each team in the Unrestricted and Low Resource Track. Darker
red indicates a lower score. The percent frequency of each type in the test set is also shown.
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ERRANT MaxMatch
Restricted Gold Auto Gold Auto
Teams P R F0.5 # F0.5 # F0.5 # F0.5 # I # GLEU #
UEDIN-MS 77.87 62.29 69.47 1 74.16 1 76.48 1 76.62 1 38.92 1 77.93 1
Kakao&Brain 80.18 53.28 69.00 2 72.83 2 74.09 2 74.17 2 36.84 2 75.87 5
LAIX 77.03 50.19 66.78 3 69.59 5 70.78 7 70.79 7 28.20 7 74.33 9
CAMB-CLED 74.59 56.53 66.75 4 70.11 3 72.51 3 72.48 3 34.10 3 76.62 3
Shuyao 74.41 56.31 66.61 5 69.91 4 72.22 4 72.37 4 33.22 4 76.55 4
YDGEC 74.50 54.49 65.83 6 69.41 6 71.60 6 71.20 6 29.21 6 75.39 7
ML@IITB 69.69 63.29 64.73 7 68.30 7 71.97 5 71.75 5 30.75 5 77.89 2
CAMB-CUED 71.49 55.63 63.72 8 67.63 8 70.37 8 70.44 8 26.37 8 75.82 6
AIP-Tohoku 72.79 43.05 60.97 9 63.95 9 65.95 9 65.84 9 19.22 9 73.16 11
UFAL 71.56 41.21 59.39 10 62.37 10 65.70 10 65.19 10 17.46 10 72.79 12
CVTE-NLP 72.12 39.12 59.22 11 61.71 12 63.04 12 63.17 12 16.71 11 72.51 13
BLCU 65.11 52.54 58.62 12 62.14 11 64.82 11 65.05 11 13.04 12 74.33 8
IBM 66.19 37.45 55.74 13 57.38 13 59.47 14 58.79 14 8.84 14 71.48 15
TMU 57.69 53.15 53.45 14 56.72 14 61.44 13 61.60 13 -0.54 17 73.96 10
qiuwenbo 66.56 32.84 52.80 15 55.22 15 57.70 15 57.22 15 8.94 13 71.30 16
LG-NTU 52.54 39.20 46.77 16 49.19 17 53.38 17 53.15 17 -1.45 18 71.13 17
CAI 51.49 42.61 46.69 17 49.43 16 53.68 16 53.56 16 -1.49 19 71.68 14
PKU 54.84 32.17 46.64 18 48.06 18 52.84 18 52.30 18 -0.32 15 71.06 18
SolomonLab 47.05 39.69 43.73 19 45.37 19 50.00 19 50.40 19 -3.50 20 70.56 19
Buffalo 65.09 15.08 39.06 20 39.14 20 40.95 20 40.13 20 -0.32 15 68.32 20
Ramaiah 10.29 19.04 10.83 21 11.33 21 18.68 21 18.49 21 -21.78 21 56.31 21

ERRANT MaxMatch
Unrestricted Gold Auto Gold Auto
Teams P R F0.5 # F0.5 # F0.5 # F0.5 # I # GLEU #
LAIX 77.03 50.19 66.78 1 69.59 1 70.78 3 70.79 3 28.20 3 74.33 3
AIP-Tohoku 75.45 52.59 65.57 2 69.41 2 70.93 2 70.98 2 28.65 2 74.83 2
UFAL 73.35 55.14 64.55 3 68.81 3 71.74 1 71.48 1 29.65 1 75.83 1
BLCU 64.56 58.17 59.50 4 63.17 4 65.42 4 65.74 4 7.08 4 74.11 4
Aparecium 61.87 36.09 52.76 5 54.14 5 55.61 5 55.80 5 5.57 5 71.96 5
Buffalo 66.17 17.19 42.33 6 42.15 6 44.33 6 43.09 6 4.25 6 68.77 6
Ramaiah 13.09 24.94 13.98 7 14.46 7 22.10 7 22.00 7 -20.13 7 57.50 7

ERRANT MaxMatch
Low Resource Gold Auto Gold Auto
Teams P R F0.5 # F0.5 # F0.5 # F0.5 # I # GLEU #
UEDIN-MS 72.97 47.86 64.24 1 66.04 1 67.34 1 67.39 1 16.06 1 74.30 1
Kakao&Brain 65.75 46.73 58.80 2 60.80 2 63.51 2 63.04 2 15.23 2 73.98 2
LAIX 63.86 30.93 51.81 3 52.65 3 53.84 4 53.64 4 4.73 3 70.76 4
CAMB-CUED 56.77 37.42 50.88 4 51.45 4 54.32 3 54.09 3 -0.16 4 71.86 3
UFAL 52.82 29.23 44.13 5 45.48 5 49.28 5 49.34 5 -3.24 7 69.39 6
Siteimprove 45.34 28.26 40.17 6 40.45 7 42.59 7 42.99 7 -1.48 5 69.29 7
WebSpellChecker 40.79 44.08 39.75 7 41.41 6 48.88 6 48.08 6 -4.58 8 69.76 5
TMU 28.21 31.61 28.31 8 28.83 8 32.09 8 32.20 8 -6.98 9 65.50 9
Buffalo 25.87 10.37 20.73 9 19.92 9 22.55 9 21.63 9 -2.39 6 65.82 8

Table 12: ERRANT F0.5 scores on the official gold references are compared against automatic references and other
popular metrics. The differences in how these metrics would rank each team are also shown, where a darker red
indicates a lower rank.

75



Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 76–86
Florence, Italy, August 2, 2019. c©2019 Association for Computational Linguistics

A Benchmark Corpus of English Misspellings
and a Minimally-supervised Model for Spelling Correction

Michael Flor
Educational Testing Service

Princeton
NJ 08541, USA

mflor@ets.org

Michael Fried
Queens College

City University of New York
NY 11367, USA

mjf314@gmail.com

Alla Rozovskaya
Queens College

City University of New York
NY 11367, USA

arozovskaya@qc.cuny.edu

Abstract
Spelling correction has attracted a lot of atten-
tion in the NLP community. However, mod-
els have been usually evaluated on artificially-
created or proprietary corpora. A publicly-
available corpus of authentic misspellings, an-
notated in context, is still lacking. To address
this, we present and release an annotated data
set of 6,121 spelling errors in context, based
on a corpus of essays written by English lan-
guage learners. We also develop a minimally-
supervised context-aware approach to spelling
correction. It achieves strong results on our
data: 88.12% accuracy. This approach can
also train with a minimal amount of annotated
data (performance reduced by less than 1%).
Furthermore, this approach allows easy porta-
bility to new domains. We evaluate our model
on data from a medical domain and demon-
strate that it rivals the performance of a model
trained and tuned on in-domain data.

1 Introduction

This paper addresses automatic correction of
spelling errors where the misspelled string is not a
valid word in the language. Correcting non-word
spelling errors has a long history in the natural lan-
guage processing research (Kukich, 1992). Ear-
lier approaches were evaluated on spelling errors
from proprietary corpora of native English texts or
artificially generated errors in well-formed texts.
While spell checkers today are essential and ubiq-
uitous, dealing with data in a variety of “noisy”
domains poses particular challenges to traditional
spell checkers. Thus, spelling research has shifted
focus primarily to correcting spelling errors in so-
cial media data, biomedical texts, and texts written
by non-native English writers.

Non-native English speakers account for the
majority of people writing in English today, and
spelling errors are some of the most frequent er-
ror types for these writers (Ng et al., 2014). In

some grammatical error correction approaches re-
searchers apply a spell checker prior to running
a grammar-oriented correction model (Chollam-
patt and Ng, 2018; Chollampatt et al., 2016; Ro-
zovskaya and Roth, 2016). In addition to writing-
assistance feedback, spelling correction for non-
native writers is also utilized in computer-aided
language learning applications and in automatic
scoring systems (Sukkarieh and Blackmore, 2009;
Dikli, 2006; Warschauer and Ware, 2006; Leacock
and Chodorow, 2003).

Spelling correction in learner texts is particu-
larly challenging. Non-native writers have higher
spelling error rates than native writers (Flor et al.,
2015). The types of misspellings produced by
these writers typically differ from errors produced
by native speakers. While the majority of spelling
errors produced by native speakers involve single-
character edits (Damerau, 1964), multi-character
edits are a lot more common among non-native
writers (Flor et al., 2015). Finally, learner data is
more likely to contain other errors or non-standard
usage in context, which may further complicate er-
ror correction (Flor and Futagi, 2012).

Several recent works have specifically ad-
dressed spelling correction in learner texts. How-
ever, they evaluated either on small data sets (Na-
gata et al., 2017) or on proprietary corpora (Flor,
2012). Despite several decades of research on
spelling, there is still no publicly available large-
scale corpus, explicitly and exhaustively annotated
for spelling errors. Without such data, it is difficult
to compare and track research progress in the field.

This paper makes the following contributions:

• We present a corpus of learner essays,
TOEFL-Spell, annotated for spelling errors.
This corpus can be used as a benchmark
corpus to develop state-of-the-art models for
spelling correction (Section 3).
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• We develop a minimally-supervised ap-
proach to spelling correction that combines
contextual and non-contextual information
(Section 4). We show that inclusion of
word embeddings provides information com-
plementary to other contextual features.

• The proposed model is shown to be robust,
evaluated on TOEFL-Spell and on an out-of-
domain data set of clinical notes. The perfor-
mance of our model on the clinical data set
rivals that of the model trained on a corpus of
clinical notes (Section 5).

• Evaluation of the contribution of contextual
features shows that contextual information
provides an error reduction of about 45%, im-
proving the correction accuracy by 10 points
on TOEFL-Spell and by 7 points on the clin-
ical data set.

• Error analysis of the system on TOEFL-Spell
and on the clinical data is presented in Sec-
tion 6.

2 Related Work

A non-word misspelling is a spelling error, such
that the produced string is not a valid word in
the language. This is different from real-word
(context-sensitive) errors, for example confusing
“their” and “there” (Wilcox-O’Hearn et al., 2008).
This section provides an overview of prior work on
correction of non-word spelling errors and avail-
ability of corpora for such research.

2.1 Data Sets for Spelling Research

Traditionally, three areas of research have been
particularly interested in spelling errors: informa-
tion retrieval - for misspellings in queries, English
language learning - for misspellings made by lan-
guage learners, and medical information process-
ing - for misspellings in medical documents. Pre-
vious work used either proprietary data sets or ar-
tificially generated errors. Flor (2012) evaluated
on a large corpus of student essays, but the corpus
is not publicly available. Toutanova and Moore
(2002) and Brill and Moore (2000) similarly eval-
uated on proprietary data sets of typos collected
from native English texts.

Query spelling correction has been an impor-
tant aspect of research in the domain of infor-
mation retrieval (Hasan et al., 2015; Chen et al.,

2007; Li et al., 2006). The MSR-Bing Web Scale
Speller Challenge (Wang and Pedersen, 2011) pre-
sented 5500 short queries, with about 10% of them
containing typographical errors. Recently, Hagen
et al. (2017) presented a large corpus of query mis-
spellings - about 54K queries, with about 9K po-
tential spelling errors. Errors were not explicitly
marked; annotators provided alternative formula-
tions, so spelling errors are deduced from compar-
ing the original and revised formulations.

For non-native spelling errors, Nagata et al.
(2011, 2017) describe a small corpus (25K words)
annotated for various errors, with only 438
spelling error tokens. Mizumoto and Nagata
(2017) refer to a newer version of that corpus, with
30K words and 654 spelling errors.

The NUCLE corpus (Dahlmeier et al., 2013)
contains 1400 essays written by students at the
National University of Singapore, and annotated
using twenty seven error codes. In this corpus,
spelling errors were included in the Mechanical
errors category that lumps together quite different
types of low-level errors - ’punctuation, capitaliza-
tion, spelling and typos’. Thus, spelling errors are
marked explicitly, but not distinctively.

Heilman et al. (2014) released a corpus of 1511
learner sentences (28K words), judged for gram-
maticality on an ordinal scale. The JFLEG corpus
(Napoles et al., 2017) built on top of that data – for
each sentence they added three holistic fluency ed-
its (sentence rewrites) to correct the grammar and
also make the original text more fluent. In this cor-
pus, spelling (or other errros) are not explicitly an-
notated, which makes it difficult to isolate them for
spelling correction research. Moreover, the size of
this corpus is rather small, and there is no context
beyond the sentence level.

The Cambridge Learner Corpus First Certificate
in English (FCE) has about 2500 essays (500K
words), written by learners taking the English pro-
ficiency exam (Yannakoudakis et al., 2011). It was
annotated for 80 error types (Nicholls, 2003), in-
cluding an explicit category for spelling mistakes.
However, on closer analysis, one can find that
many spelling errors are tagged with other error
categories. Thus, its annotation is not directly suit-
able for spelling correction research.

In the biomedical domain, the largest corpus an-
notated for spelling errors is a recently released
data set of clinical notes (Fivez et al., 2017a), with
873 annotated misspellings in sentence context.

77



2.2 Approaches to Spelling Correction

Approaches to correcting non-word spelling errors
can be broken down into those that only consider
the characteristics of the target token when rank-
ing correction candidates, and those that also in-
clude the surrounding context. Among the for-
mer are those that compute edit distance (Leven-
shtein, 1966; Damerau, 1964) and phonetic simi-
larity between the misspelling and a candidate cor-
rection (Toutanova and Moore, 2002).

A standard approach to correcting non-word
spelling errors follows the noisy channel model
formulation (Shannon, 1948). It uses edit dis-
tance and phonetic similarity between the mis-
spelling and the candidate correction, and the can-
didate frequency (Kernighan et al., 1990; Church
and Gale, 1991; Toutanova and Moore, 2002).
Weights for different edit operations are estimated
from large training sets of annotated spelling er-
rors. This approach requires a lot of supervision:
thousands of annotated errors paired with their
corrections are used to estimate probabilities as-
sociated with different edits.

The noisy channel model can also incorpo-
rate contextual information. For instance, Brill
and Moore (2000) ranked candidate corrections
by language model scores and reduced the error
rate by 73% on correcting artificially-generated er-
rors in the Brown corpus. However, in general,
adding new features from a variety of sources is
not straightforward in the noisy channel approach.

Contextual features have been used for correct-
ing simulated non-word errors and real-word er-
rors. Carlson and Fette (2007) use a memory-
based model with context features estimated from
the Google Web1T n-gram corpus (Brants and
Franz, 2006). Use of data from the Web for
spelling correction was described by Whitelaw
et al. (2009) and Chen et al. (2007).

Flor (2012) introduced an approach to ranking
candidate corrections that combines edit distance
and phonetic distance with contextual cues, and
evaluated it on errors made by non-native English
speakers. For instance, given ‘forst’, candidate
corrections could include first, forest, frost, and
even forced. In a context like “forst fires in Yel-
lowstone”, forest is a likely candidate. For “forst
in line”, first seems more adequate. That study
demonstrated that contextual features significantly
improve spelling correction accuracy on an an-
notated corpus of spelling errors collected from

TOEFL and GRE exam essays. It significantly
outperformed popular spellers like Aspell and the
speller in MS Word (Flor and Futagi, 2012).

3 The TOEFL-Spell Corpus

We base our data set on the publicly available ETS
Corpus of Non-Native Written English (Blanchard
et al., 2013, 2014), a.k.a. TOEFL11. It consists of
essays written for the TOEFL R© iBT test, which
is used internationally as a measure of academic
English proficiency at institutions of higher learn-
ing where English is the language of instruction.
TOEFL11 contains 12,100 essays from 11 first
language backgrounds; 1,100 essays per language,
sampled evenly from eight prompts (topics), along
with score levels (low/medium/high) for each es-
say. Each prompt poses a proposition and asks
to write an argumentative essay, stating arguments
for or against the proposition.

We sampled 883 essays, selecting among those
that received medium or high score (low-scored
essays are difficult to understand and to annotate).
The data set has 296,141 words. Essay length
ranges from 168 to 672 words, with an average
of 335 words per essay.

The selected essays were annotated by two an-
notators with linguistic background and prior ex-
perience with linguistic annotation. For each es-
say, an automatic dictionary lookup system high-
lighted strings that were not found in dictionary.
For each highlighted string, the annotator had to
determine whether it was indeed misspelled, and
to provide an appropriate correction. To ensure
the annotation is exhaustive, annotators were also
instructed to check for additional misspellings, be-
yond those highlighted.

The resulting annotation contains 6,121 spelling
errors of non-word type, which gives a word er-
ror rate of 2.07%. 35 essays had no spelling er-
rors, while the rest had between one and ten er-
rors per essay. The number of unique misspellings
is 3,958, and the number of unique correction re-
placements is 4,016. In most cases, the same er-
ror has the same correction; the average number
of unique corrections per error is 1.015.

The distribution of misspellings by edit distance
to the correct word is presented in Table 1. The
majority (82.8%) of errors differ from the cor-
rect word by just one character, and an additional
12.6% differ from the correct form by two char-
acters. This is similar to results reported by Flor
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Edit distance Count Percentage (%)
1 5,066 82.76
2 769 12.56
3 198 3.23

> 3 88 1.45
Total 6,121 100

Table 1: Distribution of errors by edit distance to cor-
rect form, in TOEFL-Spell.

et al. (2015) on a different corpus of learner En-
glish. Although the majority of errors constitute
single-token edits, about 5% (296) are fusion er-
rors (e.g. ‘atleast’ for ‘at least’).

Randomly chosen, 76 essays were doubly an-
notated for calculating inter-annotator agreement.
A strict criterion was applied for agreement: two
annotations had to cover exactly the same seg-
ment of text and to specify the same correction.
Inter-Annotator Agreement was 95.6%. (Note that
Kappa statistic cannot be applied to error correc-
tion, as there are too many different responses).

The full set of annotations for TOEFL-Spell is
released and made available for research.1

4 The Spelling Correction Model

In this section, we present our benchmark model
of spelling correction, which extends the model of
Flor (2012). The spelling correction task consists
of three subtasks: detection, generating candidate
corrections, and ranking of the candidates.

4.1 Error Detection

Detection of non-word misspellings is performed
using a dictionary (lexicon). Tokens that are not
in the lexicon are considered to be misspelled.
We use a dictionary that consists of 140,000 sin-
gle words (including inflections), 100,000 multi-
word terms, and 130,000 names (including names
and surnames from various countries). The dictio-
nary includes both American and British spelling
variants, common acronyms, and foreign words.
The dictionary includes lexica from WordNet,2 the
SCOWL project,3 names from US Census Data,4,
Wikipedia lists5, and various sources on the Web.

1https://github.com/
EducationalTestingService/toefl-spell

2https://wordnet.princeton.edu/
3http://wordlist.aspell.net/dicts/
42010 Surnames, on census.gov
5https://en.wikipedia.org/wiki/

Category:Names_by_language

Feature name Description
Non-contextual features

Orthographic Inverse edit distance
similarity
Phonetic Inverse edit distance of
similarity phonetic representations
Word frequency Candidate word

frequency in language
Contextual features

N-gram support N-gram counts in a 4-word
window (from corpus)

Dejavu Is the candidate found
elsewhere in same essay

DejavuSM Is the candidate
found as candidate for
other errors in same essay

Word Using word embeddings to
embeddings estimate candidate word’s

relatedness to context

Table 2: Description of all the features used in the can-
didate ranking module.

4.2 Candidate Generation

Candidates are generated using the dictionary de-
scribed above. Candidates include all dictionary
words within edit distance that does not exceed
half of the length of the misspelled string, with a
maximum distance of 6 characters. Both single-
token and multi-token candidates are generated, to
allow for correction of fusion errors. For each mis-
spelled token, hundreds of correction candidates
are generated, using the Ternary Search Tree data
structure (Bentley and Sedgewick, 1997).

4.3 Ranking of Candidate Corrections

The ranking step is the most challenging one and is
the focus of the most work on non-word spelling
correction (Fivez et al., 2017b). Our model uses
both the features of the misspelling+candidate pair
and the contextual information. The former in-
clude orthographic similarity, phonetic similarity,
and candidate word frequency. The contextual in-
formation includes n-gram support, an estimate of
potential re-use of words in text, and word embed-
dings. The features are listed in Table 2.
Orthographic similarity is computed as inverse
edit distance, 1/(eDist + 1), where eDist is the
edit distance (including transpositions) between
the misspelling and the correction candidate (Lev-
enshtein, 1966; Damerau, 1964).
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Phonetic similarity reflects the intuition that a
good correction should be phonetically similar to
the misspelling. It is computed as 1/(eDistPh+
1), where eDistPh is the edit distance between
the phonetic representation of the misspelling
and the phonetic representation of the candidate.
Phonetic representations are computed using the
Double-Metaphone algorithm (Philips, 2000).
Candidate frequency. A more frequent word is
more likely to be the intended word than a rare
word (Kernighan et al., 1990). Unigram word fre-
quency is computed for each candidate using the
English Wikipedia corpus.
N-gram support. For each correction candi-
date, all n-grams in the window of four context
words on each side are taken into account by the
n-gram support feature. We use co-occurrence
counts computed from the English Wikipedia cor-
pus and weighted as the Positive Normalized PMI
scores (PNPMI). Normalized PMI was introduced
by Bouma (2009), we adapt it as:

log2
p(c, ngram)

p(c)p(ngram)

/
(−log2p(c, ngram)) (1)

PNPMI maps all negative values to zero. For each
candidate c, all n-grams of lengths 2-to-4 words in
the context window are generated, and the PNPMI
values of each c, ngram pair are added.
Dejavu. This feature considers essay-wide con-
text and rewards a candidate that appears in the
same essay. Each occurrence of the candidate (or
its inflection) in the text strengthens the candidate
by the amount 1/sqrt(1 + distance), where dis-
tance is the number of tokens between the mis-
spelling and the position of the candidate in text.
DejavuSM is a feature that caters for systematic
misspellings, when a word is misspelled through-
out the essay (Flor, 2012). For each candidate cor-
rection, we search in the lists of candidate correc-
tions of other misspelled tokens in the text. Each
time the candidate or its inflection is found in
another list, the candidate is strengthened with a
score of SCC/sqrt(1 + distance), where SCC is
the current rescaled overall strength of the corre-
sponding candidate in the other list.
Word embeddings have shown a lot of success
in many NLP applications, especially for estima-
tion of semantic relatedness (Levy and Goldberg,
2014). We use word embeddings to score the con-
textual fit of correction candidates in the local con-
text of a misspelling. The idea is that for a mis-
spelling like “roat”, a correction to “road” should

be strengthened if a word like “drive” is found in
the vicinity. Given a misspelled token, we define
a window of ±15 tokens around it. For every can-
didate, we compute the cosine similarity between
the embedding vector of the candidate and the vec-
tor of each context word, and sum those values.
This is the vector-based contextual fit score for the
candidate. We use the word2vec vectors with 300
dimensions, pre-trained on 100 billion words of
Google News (Mikolov et al., 2013).6

Ranking of candidates. For each misspelled to-
ken, the feature scores of its candidate corrections
are normalized, by dividing the score of the can-
didate feature by the highest-scoring candidate on
that given feature. The final score for each candi-
date correction is computed as a weighted sum of
the feature scores for the candidate:

CandidateScore =
∑
f
wf · Sf

where f ranges over the seven feature types used,
Sf is the normalized score of the current candidate
by feature f , and wf is the predefined weight of
the feature. Learning of weights is described in
Section 5.

Our baseline system implements all the fea-
tures, with the exception of word embeddings.
Due to the feature formulation, each feature group
(e.g. orthographic similarity) requires only one
weight. Feature weights for the baseline model are
adopted from Flor (2012), where they were manu-
ally tuned. In the present work, feature weights are
automatically learned with a linear machine learn-
ing algorithm. We use two linear classifiers – Lo-
gistic Regression and Averaged Perceptron.

5 Experiments

We address the following research questions:

• How does the model compare to a baseline sys-
tem?

• What is the contribution of individual features,
especially those that provide contextual infor-
mation?

• How much training data is needed to learn a ro-
bust model?

• How does the model behave on out-of-domain
data?

6https://code.google.com/archive/p/
word2vec
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5.1 Experiments on TOEFL-Spell

First, we present results on error detection. The
system detected all 6,121 misspellings and flagged
43 additional words (false positives). Thus, the de-
tection recall is 100%, precision is 99.3% and F1
score is 99.65%. This result applies to all experi-
ments with the TOEFL-Spell data set. The candi-
date generation performance is over 99%, i.e. for
over 99% of the errors a valid correction is gener-
ated in the list of candidates. Note that in the can-
didate generation stage, an average of 213 candi-
date corrections is generated for each misspelling
in the TOEFL-Spell corpus.

We now evaluate the performance of the can-
didate ranking component, checking whether the
top-ranked candidate is indeed the gold correction.
The baseline system implements all the features,
except word embeddings, and uses weights from
Flor (2012). For the new approach we add the
feature computed with word-embeddings. Fea-
ture weights are learned automatically, using lin-
ear classifiers – Logistic Regression and Averaged
Perceptron.

We address the first research question above, us-
ing the TOEFL-Spell corpus in a five-fold cross-
validation. Results are presented in Table 3. Each
of the classifiers outperforms the baseline, and
the differences are statistically significant (by two-
proportions z-Test). The difference between Per-
ceptron and Logistic Regression is not significant.
The Perceptron algorithm is the best model, with
over 2 points of absolute improvement, which is
an error reduction of 15%.
Contribution of contextual and non-contextual
features. To assess the contribution of individ-
ual information sources, we perform feature ab-
lation, by removing one feature at a time. Results
are presented in Table 4. The top part of the table
shows feature ablation for non-contextual features.
The most useful is the orthographic similarity: its
removal results in a drop of almost 10 points.
Among the contextual features, n-gram support
and word2vec prove to be the most useful. No-
tably, n-gram features and word2vec supply com-
plementary information, and removing each one
of those results in a drop in performance. Interest-
ingly, the dejavu and dejavuSM features provide
almost no improvement; this result contradicts the
finding by Flor (2012). Eliminating all contextual
features lowers the performance by more than 10
points, to 77.93%. This demonstrates that contex-

Model Accuracy
Baseline (Flor, 2012) 85.97
Logistic Regression (this work) 87.83
Perceptron (this work) 88.12

Table 3: Error correction results for the baseline model
and two linear classifiers on the TOEFL-Spell data set.
Classifiers outperform the baseline (p<0.002).

Feature set Accuracy
Without orthographic sim. 79.84*

Without phonetic sim. 86.47*

Without word freq. 88.07
Without dejavu 88.07
Without dejavuSM 88.01
Without word2vec 86.65*

Without ngram support 82.62*

Without contextual features 77.93*

Without non-contextual features 65.63*

All features 88.12

Table 4: Feature ablation performance (error correc-
tion accuracy %) on TOEFL-Spell. All models are
trained with the Perceptron algorithm in 5-fold cross-
validation. Values marked by * differ significantly from
the value for All features, with p < 0.003.

tual features have a substantial contribution. Over-
all, about 45% of the inadequate corrections pro-
duced by the non-contextual model can be cor-
rected by adding context information.
How much training data is needed for a robust
model. We train the Perceptron classifier, varying
the amounts of training data between 5% and 75%
of the entire data set. We similarly perform ex-
periments using 5-fold cross-validation, with the
exception that we use less data for training each
time. 5% of the training data corresponds to about
240 spelling errors in training. Table 5 demon-
strates that even with the smallest training set the

Amount of training data Accuracy
5% 87.67

10% 87.73
20% 87.86
50% 88.04
75% 88.07
100% 88.12

Table 5: Error correction performance (accuracy %) of
the Perceptron classifier trained on different amounts
of data, on TOEFL-Spell in 5-fold cross-validation.
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drop in performance is less than 1%. In fact, the
differences between the models are not significant.

We emphasize that the noisy-channel model
requires thousands of examples to estimate the
weights of individual edits. In this paper, ortho-
graphic similarity is represented as a single fea-
ture; thus only one weight is estimated (as op-
posed to about 1000 weights for character pairs).
The same is done for our other features, which al-
lows us to train with a small amount of supervi-
sion, couple of hundred of errors.

5.2 Out-of-domain Evaluation

We evaluate the model on a data set from a
very different content domain – clinical medical
records. The genre of clinical free text poses an in-
teresting challenge to the spelling correction task,
since it is notoriously noisy (Fivez et al., 2017a;
Lai et al., 2015).

Clinical corpora typically contain higher
spelling error rates of 7% to 10%, while in native
English text error rates usually range between
0.1% and 0.4% (Ruch et al., 2003). Clinical
text contains domain-specific terminology and
language conventions. Clinical data, in addition
to highly domain-specific vocabulary, can also
be characterized by a large amount of noise, e.g.
the use of non-standard phrases and abbreviations
and is thus particularly challenging (Fivez et al.,
2017a). These properties can render traditional
spell checkers less effective (Patrick et al., 2010).

We use a data set of clinical notes extracted
from the large MIMIC-III medical corpus (John-
son et al., 2016). The data set contains 873 man-
ually annotated misspellings (Fivez et al., 2017a).
The distribution of errors in this data set in terms
of the edit distance is very similar to that in
TOEFL-Spell (see Table 1). In particular, 83%
of errors have edit distance of 1 to the correction,
while another 15% have an edit distance of 2.

The state-of-the-art results on this data set are
reported by Fivez et al. (2017a). Their model
is tuned on artificially generated spelling errors
and trained on word and character embeddings
from MIMIC-III (note that MIMIC-III is the su-
perset of the annotated clinical data set). Their
model outperforms off-the-shelf spelling correc-
tion tools (Aspell) and the noisy channel model.
Similarly to (Fivez et al., 2017a), we accommo-
date to the medical domain by enhancing the dic-
tionary with a comprehensive medical lexicon (the

Model Accuracy Accuracy
off-the-shelf completed

Fivez et al. (2017a) 88.21 93.02
Logistic Regression 87.40 89.35
Perceptron 87.63 89.00

Table 6: Clinical corpus: Performance (accuracy %)
of the state-of-the-art system that uses in-domain data,
and of the models proposed in this work.

Features Accuracy
Without orthographic sim. 58.88
Without phonetic sim. 85.68
Without word freq. 87.51
Without dejavu 87.06
Without dejavuSM 87.74
Without word2vec 84.88
Without ngram support 85.22
Without contextual feats 80.18
Without non-contextual feats 31.73
All features 87.63

Table 7: Feature ablation performance (accuracy %) on
the clinical data set. All models are trained with the
Perceptron algorithm on TOEFL-Spell data.

UMLS R© SPECIALIST Lexicon.7)
Fivez et al. (2017a) note that some of the re-

quired rare corrections were not available even in
the medical lexicon. For this reason, they report
two versions of results: off-the-shelf (using gen-
eral+medical dictionaries), and completed lexicon
(where additional rare terms from the annotations
were added to the dictionary).

Results for off-the-shelf evaluation are reported
in Table 6. Our models were trained on TOEFL-
Spell (the same models reported in Table 3). Note
that our n-gram and embedding features are also
not from the clinical domain. In the off-the-shelf
evaluation, our models achieve performance that is
comparable to the state-of-the-art system that used
in-domain data and was tuned on the clinical cor-
pus. In the completed lexicon evaluation, the Fivez
et al. system is better: it obtained a score of 93.02
vs. 89.35 for our Perceptron algorithm. We be-
lieve that the off-the-shelf performance reflects a
more realistic scenario, as manually adding candi-
dates to the dictionary introduces bias. We further
discuss this in the next section.

7https://lexsrv3.nlm.nih.gov/
LexSysGroup/Projects/lexicon/current/
web/index.html
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Finally, we evaluate the contribution of each in-
formation source on the clinical data (Table 7).
Orthographic similarity is the most useful fea-
ture, just as it is in the TOEFL-Spell data set,
and removing it results in a very big performance
drop (almost 30 points). Unsurprisingly, the or-
thographic similarity feature works well cross-
domain. The least helpful features are word fre-
quency, dejavu, and dejavuSM. This is consistent
across the two data sets. The word2vec feature
provides a slightly better improvement on the clin-
ical data (3 points vs. 2 on TOEFL-Spell), while
the n-gram feature performs slightly worse (only
2 points improvement, compared to 6 on TOEFL-
Spell). Overall, contextual features contribute 7
points here versus 10 on TOEFL-Spell. This re-
sult is expected given that contextual features are
estimated on out-of-domain data.

In sum, the experiments on the clinical data set
demonstrate that our model is robust and compet-
itive on out-of-domain data. This also stresses the
value of the TOEFL-Spell data set, on which our
model was trained.

6 Error Analysis

We perform error analysis on both data sets. We
first consider cases where the gold correction was
not selected as the top candidate. For the TOEFL-
Spell data set, our best system places the gold cor-
rection at the top of the ranked list in 88% of the
cases. If we consider the top five candidates, the
system finds the gold correction in 96.7% of the
cases. We investigate the cases where the top can-
didate is different from the gold. In 15.25% of the
cases, the top candidate and the gold are inflec-
tional variants of the same lemma (e.g. error: up-
dations, gold: updates, system-best: updating). In
11.4% of cases, the top candidate and the gold are
derivationally related (e.g. error: elastico, gold:
elasticity, system-best: elastic). In 4% of cases,
the top candidate is a close variant of the gold (e.g.
error: donot, gold: do not, system-best: don’t), or
a US/UK spelling variant (e.g. error: bahaviours,
gold: behaviours, system-best: behaviors).

For the clinical data set, the system’s top sug-
gestion is correct in 87.6% of the cases. The gold
correction appears among the top five candidates
in 96.7% of the cases (with off-the-shelf dictionar-
ies). In 29.6% of the cases with an incorrect top
candidate, the top candidate and the gold correc-
tion are inflectional variants of the same lemma, in

14.4% of the cases they are derivationally related,
and in 3% of the cases, the top candidate simply
has an alternative spelling (e.g. cyclosporin and ci-
closporin). Overall, in 43% of the cases the system
selects a morphological variant of the gold correc-
tion. This number is lower for the TOEFL-Spell
corpus (25%).

We also checked why, in the completed lexi-
con evaluation on clinical data, our model does not
perform as well as the one by Fivez et al. (2017a).
It turns out that our model has poor accuracy on
the specially added words (41.38%). Further in-
spection shows that these manually added words
are extremely rare medical terms. As a result, con-
textual features do not fire on them. We expect that
adding medical corpora to train word embeddings
will solve this issue.

Finally, we provide some examples of errors
that our system managed to correct with contex-
tual information but failed to correct without con-
text. An example from the clinical data set: “was
thought to be cold agglutin hemolytic anemia...”.
Without context, the system chooses agglutin →
gluten. With context, the system chooses agglutin
→ agglutinin, because ”cold agglutinin” happens
to be a strong collocation. An example from the
TOEFL-Spell data set: “countries such as eng-
land, fance and the usa are...”. Without context,
the system prefers fance → fence, but with con-
text, it correctly chooses fance→ france.

7 Conclusions

This paper addressed the problem of correcting
non-word spelling errors, with a focus on errors
occurring in noisy natural data. We presented
TOEFL-Spell, a publicly-available large data set
of authentic misspellings annotated in context.
This data set should facilitate further research on
spelling correction for noisy data.

We also presented a minimally-supervised
model for spelling correction that utilizes non-
contextual and contextual features, and does not
require a lot of training data. The model demon-
strated a state-of-the-art performance on data sets
from two noisy domains: learner data and clinical
notes. On the latter, competitive performance was
achieved, compared to a model developed specif-
ically for the medical domain and trained on in-
domain clinical data. We plan to extend this model
for handling real-word spelling errors.
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Abstract

The quantity and quality of training data plays
a crucial role in grammatical error correction
(GEC). However, due to the fact that obtain-
ing human-annotated GEC data is both time-
consuming and expensive, several studies have
focused on generating artificial error sentences
to boost training data for grammatical error
correction, and shown significantly better per-
formance. The present study explores how flu-
ency filtering can affect the quality of artifi-
cial errors. By comparing artificial data fil-
tered by different levels of fluency, we find that
artificial error sentences with low fluency can
greatly facilitate error correction, while high
fluency errors introduce more noise.

1 Introduction

Grammatical Error Correction (GEC), a NLP task
of automatically detecting and correcting gram-
matical errors in text, has received much attention
in the past few years, because of an ever-growing
demand for reliable and quick feedback to facil-
itate the progress of English learners. In a typi-
cal GEC task, an error sentence such as I follows
his advice needs to be corrected to a grammati-
cal sentence I follow his advice, while a grammat-
ical sentence She follows his advice should out-
put the same sentence without any modification.
Currently, neural machine translation (NMT) sys-
tems using sequence-to-sequence (seq2seq) learn-
ing (Sutskever et al., 2014) that “translate” incor-
rect sentences into correct ones, have shown to
be promising in grammatical error correction, and
several recent NMT approaches have obtained the
state-of-the-art results in GEC (e.g., Chollampatt
and Ng, 2018; Ge et al., 2018; Zhao et al., 2019).

While designing a GEC-oriented seq2seq archi-
tecture is one important aspect to achieve high
performance in grammatical error correction, the
quantity and quality of data also plays a crucial

role in the NMT approach to GEC, as NMT pa-
rameters cannot learn and generalize well with
limited training data. Due to the fact that ob-
taining human-annotated GEC data is both time-
consuming and expensive, several studies have fo-
cused on generating artificial error sentences to
boost training data for grammatical error correc-
tion. One main approach is to extract errors and
their surrounding context (the context window ap-
proach) from available annotated data, and then
apply the errors to error-free sentences naively
or probabilistically (Yuan and Felice, 2013; Fe-
lice, 2016). The other approach uses machine
back-translation, which switches the source-target
sentence pairs in GEC and learns to ”translate”
correct sentences into their incorrect counterparts
(Kasewa et al., 2018). While the first approach
may not generalize well to unseen errors, and the
second one may have no control over what kind
of error is produced, artificial error sentences gen-
erated from both approaches contribute to better
performance in grammatical error correction.

In this paper, we do not focus on which ap-
proach is superior in artificial error generation.
Rather, given that both approaches can generate
multiple error candidates for each correct sen-
tence, we investigate how to select the best ones
that can boost GEC performance the most. Al-
though previous studies have shown that artificial
errors that match the real error distributions tend
to generate better results (Felice, 2016; Xie et al.,
2018), we propose an alternative framework that
incorporates fluency filtering based on language
models. We evaluate four strategies of artificial er-
ror selection using different fluency ranges (from
lowest to highest) on the recent W&I+LOCNESS
test set. Our results show that three of the four
strategies lead to evident improvement over the
original baseline, which is in line with previous
findings that in general GEC benefits from artifi-
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cial error data. The model trained with artificial
error sentences with the lowest fluency obtains the
highest recall among the four settings, while the
one trained with error sentences with the median
fluency achieves the highest performance in terms
of F0.5, with an absolute increase of 5.06% over
the baseline model.

2 Related Work

Our work mainly builds on the context window
approach to artificial error generation. In this ap-
proach, all the possible error fragments (errors and
their surrounding context) and their corresponding
correct fragments are first extracted from GEC an-
notated corpora. For example, I follows his and
I follow his are the fragments extracted from the
example sentences in the first paragraph. With
these correct-incorrect fragments, for each error-
free sentence, if we find the same correct fragment
in the sentence, we can inject errors by replacing
that fragment with the incorrect one. Felice (2016)
has shown that a context window size of one, that
is, one token before and after the error words or
phrases, is able to generate a decent amount of er-
ror sentences while maintaining the plausibility of
the errors. Thus, the current study also adopts this
context window size in extracting fragments.

The current work is also inspired by the fluency
boost learning proposed in Ge et al. (2018). In
their study, sentence fluency is defined as the in-
verse of the sentence’s cross entropy. During flu-
ency boost training, the fluency of candidate sen-
tences generated by their GEC seq2seq model is
monitored. Candidate sentences with less than
perfect fluency compared to the correct ones are
appended as additional error-contained data for
subsequent training. Fluency is also used during
multi-round GEC inference, in that inference con-
tinues as long as the fluency of the output sen-
tences keeps improving. The present study uses
fluency measure in an opposite way. We examine
how the decrease of fluency in artificial error sen-
tences influences the performance of grammatical
error correction.

3 Proposed Methods

To filter candidate error sentences based on flu-
ency, our first step is to generate all the candi-
date sentences. With correct-incorrect fragment
pairs extracted from GEC annotated corpora, we
replace all correct fragments found in each error-

free sentence with their incorrect counterparts ex-
haustively. Unlike a method described in Felice
(2016) that multiple errors can apply to one sen-
tence at the same time, we only allow one error
at a time. Table 1 shows an example of an error-
free sentence and the candidate sentences after ap-
plying all the possible error replacements. There
is only one error in each candidate sentence, and
the same position in the correct sentence can have
multiple different replacements (e.g., effects →
impacts|effect|dealing). We then calculate the flu-
ency score of each candidate sentence and select
the ones with the highest fluency, lowest fluency
and median fluency. Fluency score is measured
by sentence perplexity, the inverse probability of
the sentence based on a language model, normal-
ized by the number of words in that sentence. A
sentence’s fluency score is negatively related to its
perplexity. Our prediction is that low sentence flu-
ency (high perplexity) can facilitate error detec-
tion and correction by maximizing and highlight-
ing the difference between correct and incorrect
sentences. Conversely, artificial error sentences of
high fluency can be confusing to the model as the
difference between correct and incorrect sentences
may be subtle.

4 Experiments and Results

4.1 Dataset and evaluation

We used the four datasets — FCE, NUCLE,
W&I+LOCNESS and Lang-8 — provided in the
BEA 2019 Shared Task on GEC1 as the training
data for our baseline model (in total about 1.1M
sentence pairs). Table 2 shows the summary of the
four datasets. There are slightly over half a mil-
lion error-contained sentences in these datasets,
where we extracted 1.3M correct-incorrect frag-
ments. We applied our artificial error injection
procedure to the remaining 0.6M error-free sen-
tences, and over 0.4M of them received replace-
ments. We trained a 3-gram language model on all
the correct-side sentences using KenLM (Heafield,
2011). The language model was used to calcu-
late perplexity of artificial error sentences. From
the 0.4M sentences with error injections, we cre-
ated four different artificial datasets: one with the
highest fluency error sentences among the candi-
dates of each correct sentence, one with the low-
est, one with the median, and the last one was

1https://www.cl.cam.ac.uk/research/nl/
bea2019st/
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Sentence Fluency
Correct the effects of the use of biometric identification are obvious .
Candidates: the effects of the used of biometric identification are obvious .

the effects of use of biometric identification are obvious . Median
the effects of the using of biometric identification are obvious .
the impacts of the use of biometric identification are obvious .
the effect of the use of biometric identification are obvious . Highest

...
the dealing of the use of biometric identification are obvious . Lowest

Table 1: An example of an error-free sentence and its error injected candidate sentences with three levels of fluency.

Corpus # Sent Pairs
FCE (Train) 28,346

NUCLE 57,113
W&I+LOCNESS

(Train)
34,304

LANG-8 1,037,561
Total 1,157,324

Correct 601,958
Error Injection

to Correct
444,521

Table 2: Summary of training data.

randomly selected. Each version was then com-
bined with the original error-contained sentences
and the remaining unchanged correct sentences so
that all these settings had the same number of sen-
tence pairs as in our baseline model (1.1M). The
goal of the experiment was to compare the GEC
performance trained with these four settings to the
baseline. The W&I+LOCNESS development set
of 4,382 sentences was used as validation, and
the W&I+LOCNESS test set of 4,477 sentences as
evaluation2. All these settings were run for three
times. Performance was evaluated in terms of pre-
cision, recall and F0.5 using ERRANT (Bryant
et al., 2017).

4.2 Experimental settings

We used the 7-layer convolutional seq2seq model3

proposed in Chollampatt and Ng (2018) for gram-
matical error correction with minimal modifica-
tion. The only difference to Chollampatt and Ng
(2018) is that the word embedding dimensions in
both encoders and decoders were set to 300 rather
than 500, and the word embeddings were trained

2https://competitions.codalab.org/
competitions/21922

3https://github.com/pytorch/fairseq

separately using the error and correct side training
data instead of external corpora. Other parame-
ters were set as recommended in Chollampatt and
Ng (2018), including the top 30K BPE tokens as
the vocabularies of input and output, 1,024 × 3
hidden layers in the encoders and decoders, Nes-
terov Accelerated Gradient as the optimizer with
a momentum of 0.99, dropout rate of 0.2, initial
learning rate of 0.25, and minimum learning rate
of 10−4. A beam size of 10 was used during model
inference. No spell checker was incorporated in
the present study, either as pre-processing or post-
processing.

4.3 Experimental results

Table 3 shows the results for our baseline and
models trained with different fluency-filtered ar-
tificial errors. The model trained on the baseline
data, which include 0.6M correct sentence pairs,
performs the worst in terms of recall (18.85%), be-
cause the large proportion of the same sentences
makes the model too conservative to make correc-
tions. Indeed, true positive for the baseline model
is only 749, which is about half of that in the low-
est fluency condition. All the four models with ar-
tificial errors obtain higher recall (over 26%), but
at the expense of precision. The model with error
sentences that have the highest fluency among can-
didate sentences, in particular, drops over 15% in
precision compared to the baseline, making it the
worst model in terms of F0.5 (42.86%). Error sen-
tences with the lowest fluency lead to the highest
recall (32.96%) and second highest F0.5 (48.68%)
among all the models, while the model in the me-
dian fluency condition achieves a good balance be-
tween precision drop and recall gain, resulting in
the highest F0.5 (49.03%).
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Prec. Recall F0.5

Original
(Baseline)

65.93 18.85 43.97

Random 55.67 27.61 46.26
Highest 50.44 26.77 42.86
Median 57.69 30.64 49.03
Lowest 55.27 32.96 48.68

Table 3: Performance of multi-layer CNNs for GEC on
W&I+LOCNESS test set with different error data from
different fluency filtering.

5 Conclusions and Future Work

The goal of the current study was to explore how
the fluency of artificial error sentences can affect
the performance of grammatical error correction.
We greedily generated all possible error sentences
using the similar context window approach as in
Felice (2016), and then selected among candidate
sentences based on fluency score (sentence per-
plexity). As predicted, the model trained with
artificial error sentences of highest fluency per-
formed even worse than the baseline model with
a large proportion of correct sentence pairs. Mod-
els in both lowest and median fluency conditions
performed significantly better than the other three
models. The former one achieved the highest re-
call, while the latter one was more balanced with
the highest F0.5. These results indicate that flu-
ency filtering can be used a means to select high-
quality artificial error sentences for grammatical
error detection and correction.

Although the present study just focused on flu-
ency and ignored error probability, the two factors
are not mutually exclusive. Rather, combining the
two approaches may generate even better artifi-
cial errors. Additionally, fluency filtering is not
restricted to the context window approach to er-
ror generation, it can be part of the machine back-
translation approach to help select among the N
best translations.

One limitation of the current study is that we
only generated one error at a time for each sen-
tence. In the training data, the 0.5M error sen-
tences contain 1.3M errors, which means that on
average each sentence has 2.4 errors. Our next
step is to explore using fluency filtering to ensure
the quality of artificial multi-error sentences and
to see if this can boost GEC performance even fur-
ther.
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Abstract

In this paper we present first results for the
task of Automated Essay Scoring for Norwe-
gian learner language. We analyze a number
of properties of this task experimentally and
assess (i) the formulation of the task as ei-
ther regression or classification, (ii) the use of
various non-neural and neural machine learn-
ing architectures with various types of input
representations, and (iii) applying multi-task
learning for joint prediction of essay scoring
and native language identification. We find
that a GRU-based attention model trained in
a single-task setting performs best at the AES
task.

1 Introduction

Automated essay scoring (AES), in the literature
also referred to as Assessment of Proficiency or
Automated Text Scoring (ATS), considers the task
of assigning a grade to a free form text, often re-
sponding to a specific prompt. Automation of this
assessment task has clear applications in language
education, where second language learners can re-
ceive feedback as to which proficiency level they
might be on, for instance in relation to the Com-
mon European Framework of Reference (CEFR)
level. This may help learners who want to take lan-
guage examination to find the appropriate timing
and level of testing, since an examination can be
both an economical and logistical inconvenience.
Automation also allows students to receive feed-
back quicker and more frequently.1

Recent work on the AES task has used both
non-neural, feature-rich approaches that make use
of a variety of linguistic features (Briscoe et al.,

1This work was performed when the first author was a
Masters student with the Language Technology Group at Uni-
versity of Oslo. Similarly, the second author took part in the
BigMed project https://bigmed.no/ hosted at Univer-
sity of Oslo.

2010; Yannakoudakis et al., 2011; Vajjala, 2017),
and neural end-to-end architectures (Taghipour
and Ng, 2016; Alikaniotis et al., 2016). Previ-
ous work has furthermore adopted different for-
mulations of the task, either as a regression prob-
lem (Phandi et al., 2015; Taghipour and Ng, 2016)
or a classification task (Rudner and Liang, 2002;
Briscoe et al., 2010; Vajjala and Rama, 2018).
Most previous work however, with a few note-
worty exceptions (Hancke, 2013; Vajjala and Loo,
2014; Pilán et al., 2016), has been focused on En-
glish learner language.

In this paper we present first results for auto-
mated essay scoring of Norwegian learner lan-
guage. We make use of the ASK corpus of learner
language (Tenfjord et al., 2006), with added CEFR
labels (Carlsen, 2012), and compare and contrast
different formulations of the task, a number of dif-
ferent machine learning architectures and different
input representations and further experiment with
a multi-task setting with Native Language Identi-
fication as auxiliary task.

The rest of the paper is structured as follows.
We present related work in section 2 and go on
to describe the Norwegian learner corpus (ASK)
in section 3. We describe the aims of this paper
in section 4.1 and describe the data preprocessing
and the creation of training, development, and test
datasets in section 4.2. We present the results of
non-neural linear models in section 5 and CNNs
and Gated-RNNs on the development dataset in
section 6. Then, we briefly describe the results
of our experiments with native language identifi-
cation in section 7 and the subsequent results of
multitask experiments in section 8. Finally, we re-
port the results of the best linear and neural models
on the held-out test data in section 9. We summa-
rize and conclude the paper in section 10.
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2 Related work

Yannakoudakis et al. (2011) present the CLC First
Certificate of English (FCE) corpus as well as
a system that makes use of deep linguistic fea-
tures, such as PoS-tags and syntactic information
and further employ a discriminative ranker that is
shown to outperform a regression approach on the
FCE corpus.

Vajjala (2017) trains linear classifiers over the
TOEFL11 corpus of non-native English (Blan-
chard et al., 2013) and the FCE corpus and makes
use of a number of linguistic features for the task,
including several different measures for lexical di-
versity, distribution of POS tags, and syntactic
complexity, as well as features capturing discourse
properties. Several of these features were based on
previous work on measuring syntactic complexity
in L2 writing by (Lu, 2010).

Alikaniotis et al. (2016) and Taghipour and Ng
(2016) both present neural systems trained and
evaluated on the ASAP Kaggle dataset of stu-
dent essays. Both formulate the AES task as
a regression task and experiment with several
types of neural architectures applied to the same
dataset, showing the best results using a bidirec-
tional LSTM with pre-trained embeddings.

Whereas much previous work has been focused
on English learner language, there has also been
some work on AES using the CEFR scale for lan-
guages other than English, viz. Hancke (2013)
for German, Vajjala and Loo (2014) for Estonian
and Pilán et al. (2016) for Swedish learner texts.
All these papers take a very similar approach to
the task, modeling essay scoring as SVM clas-
sification using a large number of lexical, mor-
phological, syntactic and semantic features. Fi-
nally, Vajjala and Rama (2018) present results
for mono-lingual, cross-lingual and multi-lingual
CEFR classification using the MERLIN corpus
(Boyd et al., 2014).

The ASK corpus (Tenfjord et al., 2006) em-
ployed in the current study, and further described
in section 3, has been used in several linguistic
studies on features of Norwegian learner language
and transfer effects from different L1 (Pepper,
2012; Golden, 2016; Vigrestad, 2016). The ASK
corpus has also been used in previous work to train
machine learning systems for Native Language
Identification (NLI). The task of NLI for English
language learners has been the subject of several
shared tasks (Tetreault et al., 2013; Schuller et al.,

2016; Malmasi et al., 2017). Norwegian NLI has
been studied by Malmasi et al. (2015), using the
ASK corpus. In their methodology, they create ar-
tificial documents to train on by segmenting the
learner texts into sentences, then putting all the
sentences from learners with the same L1 into a
bag and sampling sentences from the bag to cre-
ate the new documents. Their rationale for the
methodology is that all the resulting documents
are of similar length, and that they eliminate the
variation between individual writers that otherwise
might present a stronger signal than the writer’s L1
alone.

In a later study, Malmasi and Dras (2017)
perform an NLI experiment on several corpora,
namely TOEFL11, the Norwegian ASK corpus
and the Jinan Chinese Learner corpus. For Nor-
wegian, they use the features such as function
word uni-/bigrams and part-of-speech n-grams.
By combining a selection of base classifiers using
a LDA meta-classifier trained with bootstrap ag-
gregation (bagging), they achieve an accuracy of
0.818 on the artificially Norwegian essay corpus.
The authors’ methodology also involves generat-
ing artificial essays which discard the discourse
properties of a text that could help in improving
the system performance at NLI task. Therefore,
we do not replicate their experiments but chose to
test our best models tuned on development split
and then report the best model on a separate test
split.

In this paper, we test several RNN models were
implemented based on the architecture described
in Taghipour and Ng (2016). We made necessary
changes to the architectures in order to accommo-
date our data. For instance, Taghipour and Ng
(2016) modelled the task as a regression problem,
where the output layer consists of a single node
with a value constrained to (0, 1) by the sigmoid
function. This layer was replaced with a softmax
layer which is described further in section 6.

3 Dataset

The ASK corpus (AndreSpråksKorpus; Tenfjord
et al., 2006) contains Norwegian learner essays
from two different language tests: Språkprøven i
norsk for voksne innvandrere and Test i norsk –
høyere nivå,2 which test proficiency at the B1 and
B2 levels, respectively. Following the naming in

2Translated to as “Language testing in Norwegian for
adult immigrants” and “Test in upper Norwegian levels”.
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Carlsen (2012), we will refer to these tests as the
IL test (Intermediate Level, “Språkprøven”) and
the AL test (Advanced Level, “Høyere nivå”).

First language AL test IL test Total

English 100 100 200
Polish 100 100 200
Russian 100 100 200
Somali 7 100 107
Spanish 100 100 200
German 100 100 200
Vietnamese 5 100 105

Subtotal (included languages) 512 700 1212

(Albanian) 24 100 124
(Bosnian-Croatian-Serbian) 100 100 200
(Dutch) 100 100 200
(Norwegian nynorsk) 21 11 32
(Norwegian bokmål) 79 89 168

Subtotal (excluded languages) 324 400 724

Total (all languages) 836 1100 1936

Table 1: Distributions of first languages for each test
level in ASK. Texts in each test level for all L1. Lan-
guages which are not included in our CEFR-labeled
dataset are listed in parentheses.

The corpus contains 1736 texts and each doc-
ument includes metadata such as the writer’s L1:
one of German, Dutch, English, Spanish, Russian,
Polish, Bosnian-Croatian-Serbian, Albanian, Viet-
namese, and Somali. All texts from seven of these
language backgrounds, 1212 in total, have been
assigned a CEFR score at a later stage (Carlsen,
2012), and these texts comprise the subcorpus we
will be working with. In particular, all texts except
those written by learners with Dutch, Bosnian-
Croatian-Serbian or Albanian as L1 have a CEFR
score. The CEFR labels are available since work
by Carlsen (2012), and were not included in the
initial release of the corpus. Table 1 shows the
number of texts in the corpus for each native lan-
guage and at each test level.

Restricting the corpus size to only 1212 doc-
uments with CEFR scores, the number of to-
kens amounted to approximately 487,000 in total.
Other types of metadata, apart from L1 and CEFR
score, include, but are not limited to: the test level
the essay was written for, what topic the essay is
about, and the learner’s country of origin, age, and
gender. The CEFR scores in the ASK corpus range
between A2 and C1, and also include intermediate
labels between the canonical proficiency scores,
such as A2/B1 and B1/B2. Thus, the total number
of distinct CEFR scores is seven, which is more
fine-grained than the TOEFL11 corpus (Blanchard

et al., 2013), which only uses three distinct pro-
ficiency categories, or the corpus used in Vajjala
and Rama (2018), the MERLIN corpus, where the
CEFR scores range between A1 and C1, but with-
out any intermediate levels.

When examining the correlation between var-
ious types of metadata and proficiency scores in
the corpus, there are several noteworthy prop-
erties. First of all, we observe that test levels
have different distributions of proficiency. We
find that the distribution of CEFR scores corre-
sponds to the similarity of the various L1 to Nor-
wegian. The Germanic languages—German and
English—have the fewest number of essays below
B1 level in the IL test. Two non-Indo-European
languages—Vietnamese and Somali—rarely score
above B1 level in the IL test, and their mode is
A2/B1 compared to B1 for all the Indo-European
languages.

4 Methods

4.1 Aims

In this section, we describe the objectives of the
experiments reported in the paper. Apart from an
extensive analysis of the ASK corpus using linear
and neural models, we investigate whether AES
based on ASK should be modelled as a classifi-
cation task or a regression task (given that both
the approaches are common in the literature, see
section 2). We approach this question by testing
three different models namely: Logistic regres-
sion, Support Vector Regression, and SVM clas-
sification for a wide range of linguistic represen-
tation combinations. We then go on to assess the
level of performance at the AES task using neu-
ral methods? Finally, we combine both the AES
task and the NLI task under a single multi-tasking
model to check if joint training of a neural model
with two different objectives can improve the per-
formance at the AES task.

4.2 Preprocessing

The data files in the ASK corpus are in XML
format, and contain information about tags, mis-
takes and corrections, paragraphs, sentences and
more. First, the files were converted to plain
text files where all the tags or correction labels
were stripped of. The text files have one sen-
tence per line, consisting of space-separated to-
kens, and an empty line separating paragraphs.
These raw text files were then processed using the
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UDPipe pipeline (Straka and Straková, 2017) for
PoS-tagging and dependency parsing, with pre-
trained models trained on the Norwegian UD tree-
bank (Øvrelid and Hohle, 2016).

Two different sets of output labels are used in
the experiments: The original seven CEFR la-
bels, and a collapsed set where the intermediate
classes, such as ‘A2/B1’, are rounded up to the
nearest canonical class, i.e., the CEFR label af-
ter the slash. This step yields only four different
labels in the collapsed set: ‘A2’, ‘B1’, ‘B2’ and
‘C1’.

4.3 Reported metrics

We report both the macro and micro F1-scores for
all experiments. The metrics are reported for two
different modes: The first utilizing the full set of
classes, and the second mode involved training
and evaluating on the collapsed classes. A third
option, namely to train on the full set of classes
and reduce the predictions to the collapsed set of
classes, was also attempted, however, in practice
the best performers on the collapsed labels turned
out to be the models that were also trained on the
collapsed tags.

4.4 Data split

Since this paper reports the first results for AES
on the ASK corpus, care was taken to create well-
defined splits of the data for training, development
and final held-out testing. In an ideal scenario, the
training and testing datasets would typically have
the same distribution of classes, but the limited
amount of data makes this difficult; and, as many
as 15 combinations of language and proficiency la-
bel have fewer than three documents. Moreover,
we also took care to create splits in such a man-
ner such that there is no overlap of topics between
the splits. The reason for this split is to perform
our experiments in a real-world setting where the
model needs to be tested on topics not seen in the
training data. The final data splits follow a 8:1:1
distribution and we tried to ensure that the joint
distribution of proficiency and native language is
similar across the splits and that topics do not re-
cur across training, development, and test splits.

5 Linear models

In this section, we train and evaluate the perfor-
mance of three different linear models on the de-
velopment dataset. We use the results of this ex-

periment to establish if AES is best modelled as
a regression or classification task for the ASK
dataset.

Classification vs. Regression As mentioned
earlier, AES can be modelled both as a classifi-
cation task and as a regression task. A disadvan-
tage with using regression for the AES task is that
while we know the correct order of classes, it is
not obvious if the distance between the adjacent
classes is always the same. For instance, we do
not know if the distance from CEFR score ‘A2/B1’
to ‘B1’ is just as ‘B1’ to ‘B1/B2’. However, we
need to be aware of this when we transform the
labels into numeric values for regression. This
challenge of quantifying distance between classes
does not apply to the classification approach, but it
does come with another problem. The multi-class
approach does not take the order of classes into
consideration which is an intrinsic property of the
class label in AES tasks.

Implementation All models in this section were
implemented using the scikit-learn (Pedregosa
et al., 2011) library. The logistic regression model
was trained with the ‘lgbfs’ solver to minimize
multinomial loss. The linear regression model
was a support vector regressor also chosen from
scikit-learn with default parameters. We experi-
ment with different types of input and use both to-
kens, character ngrams, mixed POS and function
word ngrams, and POS ngrams as inputs.

Results In order to report classification based
metrics for a regression model, we transformed the
predicted scores, which are continuous, into dis-
crete scores equivalent to the given classes. This
was done by rounding the raw regression scores
to the nearest integer. The output from the sup-
port vector regression model is not constrained to
any interval, making it necessary to additionally
clip the output values to the range of scores: [0, 6]
in our full set of labels and [0, 3] in the collapsed
set. All the macro and micro F1 scores for the lin-
ear models, for both the full and collapsed sets of
classes, are reported in table 2. The Support Vec-
tor Regression model is the best performing model
at both all labels and collapsed labels tasks. The
best model turns to the one trained using UPOS n-
grams. The results suggest that treating the AES as
a regression problem is a better approach than the
classification approach, at least for ASK dataset.

95



All labels Collapsed labels

Model Macro F1 Micro F1 Macro F1 Micro F1

Majority 0.040 0.163 0.127 0.341

LogReg BOW 0.199 0.317 0.384 0.626
LogReg Char 0.221 0.317 0.399 0.602
LogReg POS 0.190 0.301 0.312 0.569
LogReg Mix 0.213 0.341 0.337 0.577

SVC BOW 0.210 0.317 0.391 0.610
SVC Char 0.189 0.293 0.347 0.537
SVC POS 0.157 0.244 0.336 0.618
SVC Mix 0.215 0.350 0.319 0.585

SVR BOW 0.444 0.415 0.429 0.659
SVR Char 0.252 0.317 0.440 0.602
SVR POS 0.334 0.358 0.476 0.593
SVR Mix 0.312 0.350 0.441 0.659

Table 2: F1-scores of various classifiers. LogReg is lo-
gistic regression, SVC is support vector classification,
and SVR is support vector regression.

6 Neural models

In this section, we train and evaluate a wide range
of convolutional networks and gated RNNs for the
AES task. We further experiment with the use of
pre-trained word embeddings which are fine-tuned
for the task. The embedding models have been
trained on a large Norwegian corpus, the combina-
tion of Norsk aviskorpus (The Norwegian News-
paper Corpus) and NoWaC (Norwegian Web As
Corpus; Stadsnes, 2018) using the FastText soft-
ware (Bojanowski et al., 2017) and are available
from the NLPL vector repository (Fares et al.,
2017).3

6.1 Convolutional Networks
We train a number of models which are variants
of the convolutional architecture described in Kim
(2014). Here, documents are represented as se-
quences of token IDs and fed into an embedding
lookup layer. We pad short documents (length
< 700) and use a word frequency cutoff to model
out-of-vocabulary words. All models were imple-
mented using Keras (Chollet et al., 2015) and Ten-
sorFlow (Abadi et al., 2015) as backend.

The central part of the architecture is a set of
convolutional filter banks that are applied to se-
quences of embeddings. The default architecture
from (Kim, 2014) uses 300 convolutional filters:
100 each of window size 3, 4 and 5. After ap-
plying the convolutions, the output is max pooled
along the time axis. This selects the highest out-
put each filter computed across all windows in the
document. In practice, three pooling operations

3http://vectors.nlpl.eu/repository/

are included in the computational graph, one for
each filter bank. This is a technical consideration,
necessary because of the different window sizes.

The pooled vectors for each of the filter banks
are concatenated into a single vector, representing
the document as a whole. This vector has as many
elements as there are filters in all the filter banks
combined. This representation vector is fed to a
final softmax layer to produce a classification out-
put. During training, we apply dropout to the final
softmax layer.

All labels Collapsed labels

Model Macro F1 Micro F1 Macro F1 Micro F1

Randomly initialized embeddings

CNN 0.168 0.398 0.388 0.732
CNN+POS 0.146 0.374 0.398 0.748
CNN Mix 0.201 0.398 0.383 0.724
CNN Reg 0.230 0.382 0.439 0.724
CNN Reg+POS 0.236 0.341 0.383 0.724
CNN Reg Mix 0.258 0.398 0.412 0.642
CNN Rank 0.177 0.374 0.392 0.740
CNN Rank+POS 0.187 0.382 0.397 0.748
CNN Rank Mix 0.231 0.382 0.379 0.715

Pre-trained, fine tuned embeddings

CNN 0.208 0.382 0.384 0.724
CNN+POS 0.161 0.366 0.402 0.756
CNN Reg 0.242 0.341 0.463 0.724
CNN Reg+POS 0.232 0.366 0.411 0.715
CNN Rank 0.198 0.350 0.384 0.724
CNN Rank+POS 0.181 0.325 0.401 0.756

Table 3: F1 scores of CNN classifiers on AES. +POS:
Multi-channel input with both words and UPOS tags.
Reg: Regression model. Rank: Ordinal regression.

We employ both pre-trained and randomly ini-
tialized embeddings and fine-tune the embeddings
in the training step. The results of this experiment
are given in table 3. In the case of all label pre-
diction, the best results are obtained with a CNN
regression model with mixed POS tags as input.
The best model in the case of collapsed label pre-
diction is a CNN ordinal rank regression with POS
tags as input.

6.2 Recurrent Networks
In this section, we tested a wide range of recurrent
models for the AES task by modeling the prob-
lem as a regression problem. Taghipour and Ng
(2016) test multiple recurrent architectures such as
LSTM, GRU, and attention model in their paper.
We made some changes to the architectures and
added more experiments which are described in
the following. The embedding layer in Taghipour
and Ng (2016) was of 50 dimensions and ran-
domly initialized. We increased the embedding di-
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mensions size to 100 and experimented with ran-
domly initialized embeddings and with pre-trained
ones as in the experiments with CNN. Due to
the long essay length, we chose to work with
gated RNNs since they are known to capture long-
distance dependencies. We experimented with the
following settings in the case of gated RNNs:

• Long Short Term Memory network (LSTM)
vs. Gated Recurrent Unit (GRU)

• Bidirectional vs. unidirectional

• Attention mechanisms: Mean, maximum of
the hidden states over all the time steps, and
a weighted version of attention involving a
feed-forward network (Pappas and Popescu-
Belis, 2017).

All labels Collapsed labels

Model Macro F1 Micro F1 Macro F1 Micro F1

Random init, unidirectional GRU

Mean 0.264 0.374 0.455 0.675
Max 0.219 0.325 0.487 0.683
Attn 0.434 0.431 0.806 0.805
+POS Mean 0.348 0.398 0.450 0.642
+POS Max 0.230 0.374 0.500 0.748
+POS Attn 0.434 0.423 0.718 0.813
Mix Mean 0.225 0.333 0.388 0.634
Mix Max 0.200 0.398 0.398 0.756
Mix Attn 0.302 0.455 0.509 0.780

Random init, BiGRU

Mean 0.314 0.333 0.444 0.667
Max 0.160 0.325 0.460 0.691
Attn 0.459 0.447 0.805 0.805
+POS Mean 0.373 0.333 0.425 0.683
+POS Max 0.175 0.309 0.503 0.748
+POS Attn 0.460 0.447 0.687 0.821
Mix Mean 0.231 0.350 0.395 0.642
Mix Max 0.200 0.382 0.405 0.764
Mix Attn 0.275 0.455 0.617 0.707

Pre-trained, unidirectional GRU

Mean 0.274 0.366 0.463 0.715
Max 0.185 0.350 0.401 0.756
Attn 0.414 0.431 0.678 0.797
+POS Mean 0.282 0.382 0.477 0.699
+POS Max 0.193 0.382 0.405 0.764
+POS Attn 0.409 0.423 0.746 0.789

Pre-trained, BiGRU

Mean 0.266 0.390 0.435 0.707
Max 0.187 0.398 0.393 0.740
Attn 0.454 0.447 0.773 0.797
+POS Mean 0.281 0.382 0.480 0.724
+POS Max 0.183 0.341 0.397 0.748
+POS Attn 0.433 0.439 0.758 0.805

Table 4: F1 scores of GRU classifiers on AES. BiGRU
is birectional GRU; Attn is attention model.

The results of our experiments are given in table
4. Although we experimented with both LSTM

and GRUs we found that the GRU architectures
performed better than the LSTM architectures at
different metrics and label sets with wide variety
of settings. Therefore, we report only the results
from our GRU classifier. The results show that a
combination of embeddings trained separately on
words and POS tags give better results at both the
full label set and the collapsed label set. Through-
out the experiments the document attention model
performed the best with randomly initialized em-
beddings.

7 Native language identification

In contrast to the proficiency labels in ASK where
the number of higher level classes are so few, the
distribution of L1 labels is more even across the
documents. Regression as such is not applicable
to NLI since there is no natural ordering among
the L1 languages. Therefore, we model the NLI
task as a classification problem. We train both
CNN, LSTM, and GRU architectures to predict
the native language of the writers of the essays.
We found that the RNN models performed bet-
ter than CNN models and among the RNN mod-
els, GRU architectures performed better than their
LSTM counterparts. Therefore, we report only the
results of our best GRU model in table 5. The best
model is a GRU model which employs pretrained
embeddings and takes mean of the hidden states
over the time steps to perform classification using
a softmax layer. This model achieves a best ac-
curacy of 0.537 which is lower than the score of
0.542 reported by Malmasi and Dras (2018) on the
original essays.

Model Macro F1 Micro F1

Mean 0.520 0.537
Max 0.401 0.390
Attn 0.447 0.480
+POS Mean 0.467 0.480
+POS Max 0.406 0.431
+POS Attn 0.454 0.463

Table 5: F1 scores of Pre-trained, BiGRU classifier at
the NLI task consisting of 7 classes.

Note however that we cannot compare our re-
sults to the previous work for the following rea-
sons. First, our subset of the ASK dataset corre-
sponds to the seven L1 languages which has been
assigned CEFR scores, as compared to the full set
of ten L1 languages used by Malmasi et al. (2015).
Second, Malmasi et al. (2015) used simulated data
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sets and not the actual raw essays to perform NLI
experiments. Third, unlike the previous studies
we do not evaluate our results in a cross-validation
fashion.

8 Multi-task learning

Until now, we treated AES and NLI as indepen-
dent tasks and performed experiments on both the
tasks separately. We will now attempt to train a
joint model to predict both the tasks jointly.

We selected four models for the multi-task
experiments—two convolutional and two recur-
rent neural networks—based on the macro F1 re-
sults on the development set. The top two mod-
els (two each for CNN and RNN) had the high-
est macro F1 on the full set of labels on the de-
velopment set. The multi-task model that we use
in this paper has two outputs with different loss
functions: one for CEFR prediction and the other
for NLI task. The loss function for CEFR out-
put is mean squared loss and for NLI is categor-
ical cross-entropy loss. The losses from both the
models are linearly weighted with weights sum-
ming up to 1. We searched for the best loss weight
by searching over the range of [0, 1] where each
weight is separated by an interval of 0.1.

Hyperparameter CNN1 CNN2

Word embeddings Dynamic
Embedding size 100
L2 constraint 3
Windows 3,4,5
Embedding init Random Pre-trained
Input representation Mixed UPOS Tokens

Hyperparameter RNN1 RNN2

Word embeddings Dynamic
Embedding size 100
RNN cell GRU
Pooling method Attention
Bidirectional Yes
Embedding init Random Pre-trained
Input representation Tokens+UPOS Tokens

Table 6: Descriptions of the CNN and RNN models
showing different settings.

The hyperparameters for the four models are
summarized in table 6. All our word embeddings
are based on the FastText model. We also tested
the variability of the models by training and evalu-
ating each model five times with different random
seeds to estimate the variance of the results.

Results We show the results of all the models
with all the auxiliary weight combinations in fig-
ure 1. When the auxiliary task loss weight is
zero, the model reduces to the original single task
model of CEFR prediction. The RNN models
show the highest macro F1 scores on the full la-
bel set. There is some variablity in the perfor-
mance of the RNN models in accordance with the
loss weight. In each panel, we show the F1 scores
for the five models trained with different random
seeds. The CNN models do not benefit from in-
cluding the NLI task as additional task. The five
highest macro-F1 scores are in the range of 0.468
and 0.483 and were achieved using auxiliary loss
weights in the range from 0 to 0.5. Although, the
highest score was achieved in single-task mode
the auxiliary task results are also competitive as
shown in the figure. In fact, the variability due to
the initial random seed allows us to conclude that
the macro-F1 scores for a multi-task model is al-
most the same as the single task mode (auxiliary
loss weight set to zero).
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Figure 1: Lines follow the mean of macro F1 scores.
Shaded areas show 95% confidence interval for the
mean. Results for the collapsed set of classes are plot-
ted with cross symbols and dashed lines.

The same trend can be observed with RNN2
model also which shows a decreasing trend in the
macro-F1 scores. The macro-F1 scores’ trends for
both the RNN models are not similar at the task
of collapsed label set classification. The RNN1
model shows a high variation with changes in the
auxiliary loss weights. Similar to the full label set
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classification, the collapsed label set classification
does not show worse performance but shows com-
petitive results when the auxiliary loss weight is
set to 0.1. We conclude from these experiments
that including the NLI task as auxiliary task, at
least, does not hurt the performance at AES task.

9 Results

Until now, we evaluated the performance of our
models on the development dataset. We now go
on to report the performance of our best models
from development on the held-out test dataset in
table 7. In the case of the neural architectures, we
employed the model showing the best macro-F1

during development.

All labels Collapsed labels

Model Macro Micro Macro Micro

Majority 0.045 0.187 0.127 0.341

SVR BOW 0.231 0.285 0.420 0.602
SVR POS 0.271 0.350 0.422 0.602

RNN1 0.291 0.439 0.478 0.724
RNN2 0.388 0.480 0.511 0.724
Multi-RNN1 0.266 0.398 0.509 0.707
Multi-RNN2 0.356 0.447 0.443 0.724

Table 7: Results from evaluation on the held-out test
set. SVR is support vector regression. Hyperparame-
ters for RNN1 and RNN2 are found in table 6. Multi-
task models use an auxiliary task weight of 0.1.

We report the results for SVR, RNNs, and
Multi-task RNN models. In terms of micro-F1

scores, the RNN models are the best across both
the collapsed labels and full label sets. Across all
the models, both the micro- and macro-F1 scores
are lower than the scores reported on the develop-
ment split. The Multi-RNN2 model performs the
best in terms of micro-F1 score at collapsed labels.
The multi-tasking model shows poor performance
in terms of macro-F1 score across all the tasks
when compared to the single task model. The lin-
ear models show worse performance than the neu-
ral models across all the label sets and evaluation
measures. We further observe that a multi-task set-
up with NLI as auxiliary task does not show com-
petitive results. In conclusion, a fine-tuned embed-
ding BiGRU model augmented with attention and
initiated with FastText word embeddings performs
the best.

We further examine the confusion matrices for
our best multi-task model, ‘RNN2 Multi’, on the
test set. The plot is given in figure 2. We see in

the confusion matrix that we can identify a diag-
onal running from the top-left to the bottom-right,
with zeros in the top-right and bottom-left corners.
Furthermore, mis-classifications are mostly close
to the true value, with no predictions being more
than two classes away from the gold label.

In the confusion matrix for L1, we see that all
languages are predicted to be Spanish at some
point. German is predicted with 100% precision,
however a lot of German texts are wrongly clas-
sified as English. This seems reasonable since
English and German are similar languages in the
same language family. However, the Slavic lan-
guages are not confused for each other, as one
might expect, but rather Russian and Polish are
both commonly mistaken for Spanish.

10 Conclusion

In this paper, we analyzed the ASK corpus for the
first time at the AES task with neural and non-
linear models. We addressed the question of mod-
eling AES as regression vs. classification task us-
ing three different non-neural models. We find that
the AES task is best modeled as regression, at least
in the case of the ASK corpus. We tested different
input representations such as word, character, and
POS n-grams for training the non-neural models.
We find that the best results are obtained when us-
ing Support Vector Regression algorithm.

In the case of neural models, we tested both
convolutional networks and recurrent neural net-
works (LSTM and GRU) both at AES and NLI
tasks. We augmented the neural models with dif-
ferent models of attention such as mean-over-time,
max-over-time, and attention learned through a
feed-forward network. We find in our experiments
that attention augmented BiGRU perform the best
at AES task. In contrast, the simpler mean-over-
time BiGRU model performed the best at NLI
task.

We performed an extensive evaluation of four
multitasking models where NLI is an auxiliary
task. We tuned the auxiliary loss weight over the
development split and found that the weight of 0.1
is best suited for joint modeling of AES and NLI
tasks. Although the joint model does not yield re-
sults that are better than the single task AES mod-
els, we conclude that the joint model yields results
that are competitive with the single task model set-
ting. We conclude that multi-task models do not
help improve the performance of AES task. We
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Figure 2: Confusion matrices for RNN2 Multi on the held-out test set. AES task on the left, NLI task on the right.
The numbers are counts.

also tested if initializing the embeddings with the
FastText model improves the AES results. Al-
though the results on development dataset are am-
biguous about the choice of pretrained vs. ran-
dom initialized embeddings, the results on the test
set show that the RNN2 model (fine-tuned) works
best at AES classification. Therefore, we suggest
that any future neural system for AES should use
pretrained embeddings to achieve the best results.

As future work, we intend to analyze the errors
made by the model and compare them with the er-
rors marked by the human annotators which are
available in the ASK corpus. We believe that such
an analysis would be the first that would be use-
ful for designing better models and understanding
where the neural models make mistakes. Another
direction of future work is to use a hierarchical
RNN where each sentence within an essay is en-
coded by a RNN that would be stacked with an
additional RNN layer to handle possible loss of
signal in extremely long documents.
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Norsk som andrespråk, 30(1-2):77–120.

Julia Hancke. 2013. Automatic prediction of CEFR
proficiency levels based on linguistic features of
learner language. Master’s thesis, University of
Tubingen, Germany.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Xiaofei Lu. 2010. Automatic analysis of syntactic
complexity in second language writing. Interna-
tional journal of corpus linguistics, 15(4):474–496.

Shervin Malmasi and Mark Dras. 2017. Native lan-
guage identification using stacked generalization.
arXiv preprint arXiv:1703.06541.

Shervin Malmasi and Mark Dras. 2018. Native lan-
guage identification with classifier stacking and en-
sembles. Computational Linguistics, 44(3):403–
446.

Shervin Malmasi, Mark Dras, and Irina Temnikova.
2015. Norwegian native language identification. In
Proceedings of the International Conference Recent
Advances in Natural Language Processing, pages
404–412, Hissar, Bulgaria.

Shervin Malmasi, Keelan Evanini, Aoife Cahill, Joel
Tetreault, Robert Pugh, Christopher Hamill, Diane
Napolitano, and Yao Qian. 2017. A report on the
2017 native language identification shared task. In
Proceedings of the 12th Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 62–75, Copenhagen, Denmark. Association
for Computational Linguistics.

Lilja Øvrelid and Petter Hohle. 2016. Universal De-
pendencies for Norwegian. In Proceedings of the
Tenth International Conference on Language Re-
sources and Evaluation, Portorož, Slovenia.
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Abstract

Grammatical error detection (GED) in non-
native writing requires systems to identify a
wide range of errors in text written by lan-
guage learners. Error detection as a purely
supervised task can be challenging, as GED
datasets are limited in size and the label dis-
tributions are highly imbalanced. Contextual-
ized word representations offer a possible so-
lution, as they can efficiently capture composi-
tional information in language and can be opti-
mized on large amounts of unsupervised data.
In this paper, we perform a systematic com-
parison of ELMo, BERT and Flair embeddings
(Peters et al., 2017; Devlin et al., 2018; Akbik
et al., 2018) on a range of public GED datasets,
and propose an approach to effectively inte-
grate such representations in current methods,
achieving a new state of the art on GED. We
further analyze the strengths and weaknesses
of different contextual embeddings for the task
at hand, and present detailed analyses of their
impact on different types of errors.

1 Introduction

Detecting errors in text written by language learn-
ers is a key component of pedagogical applications
for language learning and assessment. Super-
vised learning approaches to the task exploit pub-
lic error-annotated corpora (Yannakoudakis et al.,
2011; Ng et al., 2014; Napoles et al., 2017) that
are, however, limited in size, in addition to hav-
ing a biased distribution of labels: the number of
correct tokens in a text far outweighs the incor-
rect (Leacock et al., 2014). As such, Grammatical
Error Detection (GED) can be considered a low-
/mid-resource task.

The current state of the art explores error de-
tection within a semi-supervised, multi-task learn-
ing framework, using a neural sequence labeler
optimized to detect errors as well as predict their

surrounding context (Rei, 2017). To further im-
prove GED performance, recent work has investi-
gated the use of artificially generated training data
(Rei et al., 2017; Kasewa et al., 2018). On the re-
lated task of grammatical error correction (GEC),
Junczys-Dowmunt et al. (2018) explore transfer
learning approaches to tackle the low-resource
bottleneck of the task and, among others, find sub-
stantially improved performance when incorporat-
ing pre-trained word embeddings (Mikolov et al.,
2013), and importing network weights from a lan-
guage model trained on a large unlabeled corpus.

Herein, we extend the current state of the art for
error detection (Rei, 2017) to effectively incorpo-
rate contextual embeddings: word representations
that are constructed based on the context in which
the words appear. These embeddings are typically
the output of a set of hidden layers of a large lan-
guage modelling network, trained on large vol-
umes of unlabeled and general domain data. As
such, they are able to capture detailed information
regarding language and composition from a wide
range of data sources, and can help overcome re-
source limitations for supervised learning.

We evaluate the use of contextual embed-
dings in the form of Bidirectional Encoder Rep-
resentations from Transformers (BERT) (Devlin
et al., 2018), embeddings from Language Models
(ELMo) (Peters et al., 2018) and Flair embeddings
(Akbik et al., 2018). To the best of our knowledge,
this is the first evaluation of the use of contextual
embeddings for the task of GED. Our contribu-
tions are fourfold:

• We present a systematic comparison of dif-
ferent contextualized word representations
for the task of GED;

• We describe an approach for effectively in-
tegrating contextual representations to error
detection models, achieving a new state of the
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art on a number of public GED datasets, and
make our code and models publicly available
online;

• We demonstrate that our approach has partic-
ular benefits for transferring to out-of-domain
datasets, in addition to overall improvements
in performance;

• We perform a detailed analysis of the
strengths and weaknesses of different contex-
tual representations for the task of GED, pre-
senting detailed results of their impact on dif-
ferent types of errors in order to guide future
work.

2 Related work

In this section, we describe previous work on GED
and on the related task of GEC. While error cor-
rection systems can be used for error detection,
previous work has shown that standalone error
detection models can be complementary to error
correction ones, and can be used to further im-
prove performance on GEC (Yannakoudakis et al.,
2017).

Early approaches to GED and GEC relied upon
handwritten rules and error grammars (e.g. Fos-
ter and Vogel (2004)), while later work focused
on supervised learning from error-annotated cor-
pora using feature engineering approaches and of-
ten utilizing maximum entropy-based classifiers
(e.g. Chodorow et al. (2007); De Felice and Pul-
man (2008)). A large range of work has focused
on the development of systems targeting specific
error types, such as preposition (Tetreault and
Chodorow, 2008; Chodorow et al., 2007), article
usage (Han et al., 2004, 2006), and verb form er-
rors (Lee and Seneff, 2008). Among others, error-
type agnostic approaches have focused on gen-
erating synthetic ungrammatical data to augment
the available training sets, or learning from native
English datasets; for example, Foster and Ander-
sen (2009) investigate rule-based error generation
methods, while Gamon (2010) trains a language
model (LM) on a large, general domain corpus,
from which features (e.g. word likelihoods) are de-
rived for use in error classification.

As a distinct task, GEC has been formulated
as a naı̈ve-bayes classification (Rozovskaya et al.,
2013, 2014; Rozovskaya and Roth, 2016) or a
monolingual (statistical or neural) machine trans-
lation (MT) problem (where uncorrected text is

treated as the source “language” and the corrected
text as its target counterpart) (Felice et al., 2014;
Junczys-Dowmunt and Grundkiewicz, 2014; Ro-
zovskaya and Roth, 2016; Yuan and Briscoe,
2016).

Recently, Rei and Yannakoudakis (2016) pre-
sented the first approach towards neural GED,
training a sequence labeling model based on word
embeddings processed by a bidirectional LSTM
(bi-LSTM), outputting a probability distribution
over labels informed by the entire sentence as
context. This approach achieves strong results
when trained and evaluated on in-domain data, but
shows weaker generalization performance on out-
of-domain data. Rei et al. (2016) extended this
model to include character embeddings in order to
capture morphological similarities such as word
endings. Rei (2017) subsequently added a sec-
ondary LM objective to the neural sequence la-
beling architecture, operating on both word and
character-level embeddings. This was found to
be particularly useful for GED – introducing an
LM objective allows the network to learn more
generic features about language and composition.
At the same time, Rei and Yannakoudakis (2017)
investigated the effectiveness of a number of aux-
iliary (morpho-syntactic) training objectives for
the task of GED, finding that predicting part-of-
speech tags, grammatical relations or error types
as auxiliary tasks yields improvements in perfor-
mance over the single-task GED objective (though
not as high as when utilizing an LM objective).

The current state of the art on GED is based
on augmenting neural approaches with artificially
generated training data. Rei et al. (2017) showed
improved GED performance using the bi-LSTM
sequence labeler, by generating artificial errors in
two different ways: 1) learning frequent error pat-
terns from error-annotated corpora and applying
these to error-free text; 2) using a statistical MT
approach to “translate” correct text to its incor-
rect counterpart using parallel corpora. Recently,
Kasewa et al. (2018) applied the latter approach
using a neural MT system instead, and achieved a
new state of the art on GED using the neural model
of Rei (2017).

3 Data

In this section, we describe the different public
datasets we use to train our models.

The First Certificate in English (FCE) dataset
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(Yannakoudakis et al., 2011) is a publicly-released
set of essays written by non-native learners of En-
glish taking a language assessment exam. Each
essay is annotated by professional annotators with
the spans of language errors committed, the types
of errors, and suggested corrections. In addition,
the CoNLL 2014 shared task on GEC (Ng et al.,
2014) used a dataset of English essays written by
advanced undergraduate students at the National
University of Singapore. Each essay is annotated
by two experienced annotators and has error anno-
tations similarly to the FCE, though using a differ-
ent error taxonomy. The Johns Hopkins University
(JHU) FLuency-Extended GUG Corpus (JFLEG)
dataset (Napoles et al., 2017) contains essays writ-
ten by a range of English learners with different
first languages and proficiency levels. Each essay
is corrected by four annotators with native-level
proficiency and annotated with fluency and gram-
mar edits.

The 2019 Building Educational Applications
(BEA) shared task on GEC (Bryant et al., 2019)
released two new datasets: the Cambridge English
Write & Improve (W&I) corpus, which is a col-
lection of texts written by learners of English of
varying levels of proficiency and submitted for as-
sessment to the Write & Improve system (Yan-
nakoudakis et al., 2018), an automated online tool
for writing feedback; and the LOCNESS corpus
(Granger, 1998), originally compiled at the Centre
for English Corpus Linguistics at the University of
Louvain, and comprising essays written by native
English students. Both datasets are annotated for
corrections by the W&I annotators.

In this work, we use the FCE training set as
training data, and evaluate our models on the FCE
test set, the CoNLL-2014 test set, the JFLEG test
set, and the BEA 2019 shared task development
and test sets. This setup allows us to investigate
the extent to which our models and the use of
contextualized representations transfer to out-of-
domain data.

We follow Rei and Yannakoudakis (2016)
and convert the span-based annotations in these
datasets to binary error detection labels at the to-
ken level (i.e. is a token correct or incorrect).
Performance is evaluated using precision, recall,
and F0.5 at the token level. F0.5 places twice
the weight on precision than recall: systems that
incorrectly penalize correct language can have a
much more negative impact to language learning

compared to systems that miss to detect some er-
rors (Ng et al., 2014). We note that performance
on the BEA shared task test set is conducted using
the official evaluation tool in CodaLab.

We also perform detailed analyses in order to
evaluate the performance of our models per error
type. As the datasets above either have their own
error type taxonomy or they are not annotated with
error types at all, we follow the 2019 BEA shared
task and induce error types for all datasets au-
tomatically using the ERRor ANnotation Toolkit
(ERRANT) (Bryant et al., 2017). ERRANT auto-
matically annotates parallel uncorrected and cor-
rected sentences with error types using a universal
error taxonomy and hence allowing for compar-
isons across datasets. The system uses distance-
based alignment followed by rule-based error cat-
egorization. An error type is hence assigned to ev-
ery incorrect token in each dataset, with the ex-
ception of the BEA 2019 shared task test set, for
which the corrected versions are not yet publicly
available.

4 Error detection model

In this section, we extend the current state of
the art (neural) architecture for GED (Rei, 2017),
which we use as our baseline system. This model
is a bi-LSTM sequence labeler over token embed-
dings where, for each token, the model is trained
to output a probability distribution over binary cor-
rect/incorrect labels using a softmax layer (i.e. pre-
dicting whether a token is correct or incorrect in
context). The model is additionally trained with
a secondary bidirectional LM objective, predict-
ing the surrounding context of the target token in
the sequence. Specifically, the model uses a for-
ward LM to predict the next token in the sequence,
and a backward LM to predict the previous token.
Rei (2017) also makes use of a character-level bi-
LSTM, as opposed to solely conditioning on to-
kens, in order to benefit from sub-word morpho-
logical units, of particular use in the case of un-
known or incorrectly spelled words. The outputs
of the character-level LSTMs are concatenated to
the word embeddings and given as input to the
word-level bi-LSTM.

The model learns 300-dimensional word em-
beddings, initialized with pre-trained Google
News embeddings (Mikolov et al., 2013),1 and

1https://code.google.com/archive/p/
word2vec/
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(a)

(b)

Figure 1: Simplified bi-LSTM sequence labeler with: (a) contextual embeddings (context) concatenated to the
input word embeddings (embed), before being passed through the bi-LSTM (h); (b) contextual embeddings
(context) concatenated to the LSTM output (o) before being passed through a softmax layer (s).

100-dimensional character embeddings. The hid-
den states of the word- and character-level LSTMs
are also of 300 and 100 dimensions respectively.
The outputs of each LSTM are passed through
a 50-dimensional hidden layer with a tanh ac-
tivation function. Dropout is applied to the in-
puts and outputs of each LSTM with a probabil-
ity of 0.5. The model is trained with a cross-
entropy loss function for the error detection ob-
jective that minimizes the negative log probabil-
ity of the gold label. As the model is also trained
with a secondary LM objective, a second bipar-
tite cross-entropy loss function is used, minimiz-
ing the negative log probability of the next word
in the sequence for the forward LM, and the pre-
vious word for the backward LM. A hyperparam-
eter γ = 0.1 weights the combination of the two
loss functions, assigning more importance to the
main task of error detection over the auxiliary task
of language modelling. Optimization is performed

with the AdaDelta optimizer (Zeiler, 2012), using
an initial learning rate of 1.0, and batches of 32
sentences. Training is terminated when validation
performance does not improve for 7 epochs.

In this work, we extend the above model by
incorporating contextualized word embeddings,
produced by three different approaches (BERT,
ELMo and Flair; each described in more detail in
Section 5). Specifically, we concatenate the con-
textual embeddings either to the input word em-
beddings before being passed through the word-
level bi-LSTM (Figure 1a), or to the bi-LSTM’s
output (Figure 1b). Peters et al. (2018) find that
the best point to integrate ELMo vectors varies by
task and, as such, we continue that line of analysis
here.

We make a TensorFlow (Abadi et al., 2016)
implementation of our code and models publicly
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available online.2

5 Contextualized embeddings

Three types of contextual embeddings are consid-
ered in this work: BERT, ELMo and Flair embed-
dings (Peters et al., 2017; Devlin et al., 2018; Ak-
bik et al., 2018). In each case, we use the publicly-
available pre-trained models released by the au-
thors.

BERT embeddings are extracted from the high-
est layers of a transformer architecture trained
with a masked LM objective: rather than predict-
ing the next or previous word in a sequence, a
percentage of input tokens are masked and then
the network learns to predict the masked tokens.
BERT is also trained with a second objective pre-
dicting whether one sentence directly follows an-
other, given two input sentences. BERT pre-
trained embeddings are available in two variants:
base embeddings, which are the concatenation
of the four highest 768-dimension hidden layers,
yielding a 3, 072-dimension embedding; large em-
beddings, which are the concatenation of the four
highest 1024-dimension hidden layers, yielding a
4, 096-dimension embedding (Devlin et al., 2018).
BERT embeddings are trained on the BooksCor-
pus (0.8 billion words) of books written by un-
published authors (Zhu et al., 2015) and English
Wikipedia (2.5 billion words).

ELMo embeddings are a weighted element-
wise sum of the outputs of three-layered stacked
bi-LSTM LMs, trained to predict both the next
and previous token in the sequence. Using a task-
specific scalar per layer, the outputs of the three
LSTMs are reduced to a single 1, 024-dimension
embedding (Peters et al., 2018). This task-specific
weighting is learned by our sequence labeler dur-
ing training. ELMo is trained on the One Billion
Word Benchmark corpus (0.8 billion words), com-
posed primarily of online news articles (Chelba
et al., 2014a).

Flair embeddings are the concatenated output of
a single (i.e. unstacked) character-level bi-LSTM.
We use the concatenation of both the 2, 048-
dimension “news-forward” and “news-backward”
embeddings, each produced by a forward and
backward bi-LSTM respectively, and both trained
on the One Billion Word Benchmark (Chelba
et al., 2014b). This yields a 4, 096-dimensional

2https://github.com/samueljamesbell/
sequence-labeler

embedding (Akbik et al., 2018).

6 Results

Table 1 and Table 2 present the results of inte-
grating different contextual embeddings with the
current state-of-the-art model described by Rei
(2017).3 The experiments in this section are based
on models with contextual representations con-
catenated to the word embeddings; Section 6.1 in-
cludes a more detailed investigation of different
integration points. For comparison, we also re-
port the results of Rei et al. (2017) and Kasewa
et al. (2018), who improve error detection perfor-
mance by additionally augmenting Rei (2017)’s
model with artificial training data.

The experiments demonstrate a substantial im-
provement in precision, recall and F0.5 for ev-
ery model incorporating contextual embeddings,
across every dataset considered. On the FCE
test set, even our lowest performing model (Flair,
F0.5 = 49.97) outperforms the baseline (F0.5 =
42.15), with a relative improvement of 18.55%.
Our best performing model (BERT base, F0.5 =
57.28) outperforms the baseline by a relative
35.9%. This is also the new state-of-the-art re-
sult on the FCE test set, without using additional
manually-annotated training data.

The best performance on the CoNLL-2014 test
set is achieved by BERT large (F0.5 = 36.94)
and BERT base (F0.5 = 46.29) for the first and
second annotator respectively. These scores show
more than 30% relative improvement over the pre-
vious best results by Kasewa et al. (2018), even
without using additional artificial training data,
for both annotators. On the JFLEG test set (Ta-
ble 2), and both the BEA 2019 GEC Shared Task
development and test sets, BERT base yields the
highest performance. The improvement on the
BEA shared task datasets is particularly large,
with BERT base achieving 69.70% relative im-
provement on the development set and 63.30% rel-
ative improvement on the test set, compared to the
baseline model.

These experiments demonstrate that contextual
embeddings provide a very beneficial addition for
GED systems, achieving a new state of the art
across all datasets. Learning to compose language

3We include the results reported by Rei (2017) along with
our re-trained baseline. We note that the differences in perfor-
mance are due to a re-processing of the data in order to align
parallel original–corrected sentences and derive fine-grained
error type labels for later analyses (see Section 6.2).
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CoNLL Test 1 CoNLL Test 2 FCE test
P R F0.5 P R F0.5 P R F0.5

Rei (2017) 17.68 19.07 17.86 27.6 21.18 25.88 58.88 28.92 48.48
Rei et al. (2017) 23.28 18.01 21.87 35.28 19.42 30.13 60.67 28.08 49.11
Kasewa et al. (2018) - - 28.3 - - 35.5 - - 55.6

Baseline 20.82 16.31 19.73 31.91 17.81 27.55 46.55 30.58 42.15

Flair 29.53 17.11 25.79 44.12 18.22 34.35 58.36 31.72 49.97
ELMo 30.83 23.90 29.14 46.66 25.77 40.15 58.50 38.01 52.81
BERT base 37.62 29.65 35.70 53.52 30.05 46.29 64.96 38.89 57.28
BERT large 38.04 33.12 36.94 51.40 31.89 45.80 64.51 38.79 56.96

Table 1: Error detection precision, recall, and F0.5 on the FCE and CoNLL-2014 test sets: test 1 and test 2 refer to
the two different CoNLL annotators. ‘Baseline’ refers to our own re-training of the model by Rei (2017).

JFLEG Test Shared Task Dev Shared Task Test
P R F0.5 P R F0.5 P R F0.5

Baseline 72.84 22.83 50.65 31.31 21.18 28.58 40.05 34.99 38.93

Flair 75.65 25.26 54.08 41.80 24.10 36.45 53.40 39.84 50.00
ELMo 74.95 31.21 58.54 47.90 30.41 42.96 58.72 47.79 56.15
BERT base 79.51 32.94 61.98 53.31 35.65 48.50 66.47 54.11 63.57
BERT large 76.47 34.52 61.52 51.54 36.90 47.75 63.35 54.10 61.26

Table 2: Error detection precision, recall, and F0.5 on the JFLEG test set and BEA 2019 GEC Shared Task devel-
opment and test sets.

representations on large unsupervised datasets al-
lows the models to access a wider range of use-
ful information. While our error detection models
are optimized on the FCE training set, we observe
particularly large improvements on the CoNLL-
2014 and BEA shared task datasets, indicating that
contextual embeddings allow the models to gen-
eralize better and capture errors in out-of-domain
texts. Overall, we found BERT base to provide
the highest improvements across all datasets. The
slightly lower performance of BERT large could
be attributed to the larger embedding sizes requir-
ing more parameters to be optimized on our lim-
ited GED dataset.

6.1 Integration method

We performed additional experiments to investi-
gate the optimal method for integrating contextual
embeddings into the error detection model. The
embeddings are either concatenated to the stan-
dard word embeddings at the input level (reported
in our results as ‘input’), or to the output of the
word-level bi-LSTM (reported as ‘output’). In all
experiments, contextual embeddings are not fine-
tuned.

Table 3 compares the F0.5 of these two strate-
gies for each model, across all the datasets. We
observe that, although performance varies across
datasets and models, integration by concatena-

tion to the word embeddings yields the best re-
sults across the majority of datasets for all models
(BERT: 3/5 datasets; ELMo: 4/5 datasets; Flair:
5/5 datasets). The lower integration point allows
the model to learn more levels of task-specific
transformations on top of the contextual represen-
tations, leading to an overall better performance.

6.2 Error type performance

Using ERRANT (Bryant et al., 2017), we analyze
the performance on different types of errors and
specifically focus on two error type taxonomies:
one that uses part-of-speech (POS) based error
types (i.e. the type is based on the POS tag of the
incorrect token), and another based on edit oper-
ations (i.e. is it a missing token, an unnecessary
token, or a replace token error). This allows us to
yield insights into how different types of contex-
tual embeddings and the data in which they were
trained may impact performance on specific er-
rors. Since identifying type-specific false positives
is not possible in this setting, we follow Ng et al.
(2014) and report recall on each error type.

Figure 2 presents the performance on POS-
based error types, showing the change in error type
recall of each contextual embedding model com-
pared to our baseline, averaged over all datasets.
While all models yield an improvement in aggre-
gate performance metrics (P,R, F0.5), when bro-
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Shared Task Dev CoNLL Test 1 CoNLL Test 2 FCE test JFLEG test

Flair Input 36.45 25.79 34.35 49.97 54.08
Output 33.47 24.52 33.18 48.50 52.10

ELMo Input 42.96 29.14 40.15 52.81 58.54
Output 37.33 27.33 38.10 52.99 54.86

BERT base Input 48.50 35.70 46.29 57.28 61.98
Output 46.33 37.04 46.50 55.32 60.97

BERT large Input 47.75 36.94 45.80 56.96 61.52
Output 46.72 39.07 46.96 55.10 60.56

Table 3: Error detection F0.5 of different embedding integration strategies (‘input’ vs. ‘output’) per model on all
datasets.

ken down by POS-based error type, some trends
emerge. BERT base, BERT large and ELMo each
show strong improvements in recall of errors re-
lating to nouns, particles, prepositions and mor-
phology. In comparison, relatively weak improve-
ments are achieved for errors of conjugation, or-
thography and spelling. As such words/errors are
less likely to occur frequently in general-purpose
corpora of English (i.e. spelling mistakes are less
frequent in news articles compared to learner es-
says), contextual embeddings trained on such cor-
pora are also less helpful for these error types.

We also note the sharp decline in recall of the
BERT base model on contraction errors. This error
type occurs quite infrequently (see Figure 1 in the
Appendix) and we do not observe this issue with
BERT large.

Compared to BERT and ELMo, Flair offers
very little improvement on POS-based error type
recall or even actively degrades recall (e.g. con-
jugation, punctuation or spelling errors). While
the purely character-based representations of Flair
could potentially offer more flexibility in the
model, these results suggest that the limited vo-
cabulary of our learner data may be better captured
with word-level approaches.

Figure 3 presents the differences between mod-
els when looking at error types based on the nec-
essary edit operation: missing token, replace to-
ken or unnecessary token. While BERT improves
overall performance compared to ELMo, this im-
provement appears to be limited to replacement
and unnecessary error types. On missing word er-
rors, BERT base performs comparably to ELMo
and BERT large even decreases performance. We
discuss the possible reasons for this in Section 7.

We include the full results table for different
error types in the Appendix (Table 1, Table 2).
Our analysis shows that focusing more on punctu-

ation, determiner and preposition errors might be
the most beneficial avenue for improving the over-
all performance on GED. For example, punctua-
tion errors are the third most common error type,
but even with contextual embeddings the models
only achieve 27.7% recall across all datasets.

Overall, our results suggest that, while contex-
tual embeddings always improve aggregate perfor-
mance on GED, error type specific properties of
models should also be considered.

7 Discussion

The previous section has demonstrated consistent
improvement in precision, recall and F0.5 across
a range of GED datasets, including many exam-
ples of transfer to different domains, irrespective
of the choice of contextual embedding. Contex-
tual embeddings bring the possibility of leverag-
ing information learned in an unsupervised man-
ner from high volumes of unlabeled data, by large
and complex models, trained for substantial peri-
ods of time. For these reasons, they are a partic-
ularly appropriate addition to a low-resource task
such as GED. While each choice of contextual em-
bedding yields improved performance, BERT base
and BERT large consistently outperform ELMo
and Flair embeddings. Here, we suggest that de-
tails of the BERT architecture and training process
may be responsible for its specific performance
profile.

One difference between contextual embedding
models is the choice of training corpora. While
both ELMo and Flair embeddings are trained us-
ing the One Billion Word Benchmark, BERT
is trained on the BooksCorpus, and English
Wikipedia. It is likely that the usage and dis-
tribution of English varies across these corpora,
yielding different results on downstream tasks. We
might expect a corpus of books to exhibit a greater
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Figure 2: Mean change in recall of ERRANT-induced POS-based error types over all datasets when adding con-
textual embeddings at the input level, vs. our baseline without contextual embeddings. A: ELMo. B: BERT base.
C: BERT large. D: Flair.

variance in writing style, audience, and even writer
ability than a corpus of news articles, perhaps re-
sulting in more useful contextual embeddings for
GED. However, in contrast to the 0.8 billion to-
kens of training data available to ELMo and Flair,
BERT’s combination of BooksCorpus and English
Wikipedia provides 3.3 billion tokens of train-
ing data. The increased volume of training data
may alone suffice to explain BERT’s compara-
tively strong performance.

Another difference is that BERT is not trained
with a bi-directional LM objective. In contrast to
ELMo and Flair, BERT is trained with a masked
LM objective, such that it must predict the original
tokens when presented with a sentence with any
number of tokens masked. This training objective
always provides the model access to the correct
number of tokens in each sentence, which means
it never needs to consider possible missing tokens.
This could explain the decreased improvements on
the “missing” error types compared to other error
operations (Figure 3), and future work could ex-

periment with integrating missing tokens directly
into the BERT training objective.

At this point, we note that while the number of
parameters, and the dimensionality of the resulting
representations vary by model, extensive ablation
studies (Devlin et al., 2018; Peters et al., 2018) in-
dicate only small decreases in performance with
decreasing layers or dimensionality. Future re-
search may contrast the models considered here
with those of a paired number of parameters but
with randomly-initialized contextual embeddings.
However, as contextual embeddings enable the in-
tegration of information captured via unsupervised
learning on large general-purpose corpora, we ex-
pect that embeddings without this information (i.e.
randomly-initialized) would not yield the degree
of improvement detailed herein.

8 Conclusion

We have experimentally demonstrated that us-
ing contextual embeddings substantially improves
GED performance, achieving a new state of the art
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Figure 3: Mean change in recall of ERRANT-induced edit operation error types across all datasets when adding
contextual embeddings at the input level, vs. the model using BERT base. A: ELMo. B: BERT large. C: Flair.

on a number of public datasets. We have shown
that a sequence labeling architecture augment-
ing the input word embeddings with the BERT
family (base or large) of contextual embeddings
produces, overall, the best performance across
datasets. In addition to improving overall perfor-
mance, contextual embeddings proved to be par-
ticularly useful for improving on out-of-domain
datasets.

We have also performed a detailed analysis of
the strengths and weaknesses of the use of differ-
ent contextual embeddings on detecting specific
types of errors. We aim for the analyses pre-
sented here to facilitate future work in GED and
in improving such systems further. Future work
can also be directed towards investigating alterna-
tive approaches to integrating contextualized rep-
resentations and fine-tuning such representations
for GED.
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A Supplementary figures

Figure 1: Mean proportion of ERRANT-induced POS-based error types across datasets (FCE test set, CoNLL 2014
test set 1 (both annotators), BEA 2019 GEC Shared Task development set and JFLEG test set). Error bars show
the standard deviation.

Figure 2: Mean proportion of ERRANT-induced edit operation error types across all datasets (FCE test set, CoNLL
2014 test set (both annotators), BEA 2019 GEC Shared Task development set and JFLEG test set). Error bars show
the standard deviation.
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B Supplementary tables

R
Baseline BERT base BERT large ELMo Flair Frequency

ADJ 16.35 25.47 29.49 24.13 18.77 373
ADV 8.18 16.62 17.39 13.81 11.25 391
CONJ 9.63 15.56 12.59 8.89 8.15 135
CONTR 18.60 11.63 20.93 25.58 25.58 43
DET 24.78 38.11 38.02 37.28 27.30 2304
MORPH 36.34 53.12 52.69 47.53 35.48 465
NOUN 26.28 40.53 45.97 36.26 31.45 2245
ORTH 29.40 28.96 28.20 30.49 27.76 915
OTHER 18.77 29.96 31.06 27.04 20.69 4800
PART 9.62 28.85 31.41 31.41 16.67 156
PREP 10.70 34.71 35.25 31.40 20.42 1841
PRON 12.20 25.98 28.35 19.69 13.78 508
PUNCT 17.21 27.72 26.32 22.80 15.97 2504
SPELL 88.33 92.88 91.48 89.06 84.88 1362
VERB 18.63 33.75 36.80 25.40 19.32 3929
WO 13.52 23.16 22.13 19.47 14.75 488

Table 1: Overall recall of each model over all datasets broken out by ERRANT-induced POS-based error type,
with frequency of occurrence of each error type.

R
Baseline BERT base BERT large ELMo Flair Frequency

Missing 19.00 28.98 26.83 29.17 22.48 3816
Replacement 27.02 39.94 41.60 35.02 28.63 14839
Unnecessary 15.38 29.07 31.81 24.50 16.72 3804

Table 2: Overall recall of each model over all datasets broken out by ERRANT-induced edit operation error type,
with frequency of occurrence of each error type.
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Abstract

Character-based representations in neural
models have been claimed to be a tool to over-
come spelling variation in word token-based
input. We examine this claim in neural models
for content scoring. We formulate precise hy-
potheses about the possible effects of adding
character representations to word-based mod-
els and test these hypotheses on large-scale
real-world content scoring datasets. We find
that, while character representations may pro-
vide small performance gains in general, their
effectiveness in accounting for spelling varia-
tion may be limited. We show that spelling
correction can provide larger gains than char-
acter representations, and that spelling correc-
tion improves the performance of models with
character representations. With these insights,
we report a new state of the art on the ASAP-
SAS short content scoring dataset.

1 Introduction

Character-based representations have recently
been explored in a variety of models in natural
language processing, including sequence labeling
(Peters et al., 2017) and machine translation (Chen
et al., 2018). In educational applications such as
content and essay scoring, character-based repre-
sentations have been claimed to hold promise as
a way to account for variation in spelling with-
out resorting to spelling correction (Madnani et al.,
2017; Horbach et al., 2017) – particularly in as-
sessments of K-12 populations or English lan-
guage learners – in part because spelling correc-
tion can introduce mistakes from bad corrections.
To the extent that character-based representations
can in fact help overcome noise from spelling and
other errors, they could be a useful component of
robust scoring models. For content scoring appli-
cations in particular, where scoring rubrics specif-

∗Work carried out while at ETS.

ically exclude spelling variation from considera-
tion in scoring, it is important that credit is given
for the intended words and ideas regardless of
spelling.

However, the contributions of character-based
representations to automated scoring performance
have rarely been systematically studied. To date,
no large-scale study of the effect of character rep-
resentations in real-world scoring scenarios has
been carried out. In particular, given the suc-
cess and proliferation of neural network-based
character-based representations in related tasks,
there is a need to assess the potential of neural
character representations for educational scoring
applications.

The rationale for adoption and use of charac-
ter representations, especially to augment a back-
bone of word representations in neural models,
is typically based on enriching the input repre-
sentations with morphological information (Peters
et al., 2017; Chen et al., 2018), accounting for
noise, out-of-vocabulary inputs (Luong and Man-
ning, 2016), or both (Madnani et al., 2017).

We distinguish two main claims that are made
for employing character representations in order
to account for noise in inputs, sometimes implic-
itly. One claim is that including character repre-
sentations in a model accounts for spelling errors
in the input. The idea is that models sensitive to
characters can implicitly learn the correspondence
between incorrect and correct spellings of words
from the character-sequence-to-score associations
(as opposed to word-to-score associations) across
the training data (Horbach et al., 2017). If this
is the case, then models without access to char-
acter representations should perform more poorly
on responses with more misspelled words, since
standard word-only neural models ignore these to-
kens (because the tokens are unlikely to appear in
sets of word embeddings and hence are typically
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treated as an unknown token). Therefore, one way
to operationalize this claim is the following hy-
pothesis:

• Hypothesis 1: On responses with more
spelling errors, models with additional char-
acter representations should improve model
performance relative to models with only
word representations. This result should be
manifested in a statistical interaction between
the addition of character representations to a
model and number of misspellings in the in-
put.

A second claim, based on the first claim, is
that the addition of character representations to a
model’s representational repertoire should be suf-
ficient to match the use of spelling correction on
the input (without adding character representa-
tions). This claim leads to two hypotheses:

• Hypothesis 2.1: Models with additional char-
acter representations should achieve perfor-
mance similar to models without character
representations trained on spell-corrected in-
put.

• Hypothesis 2.2: The performance of mod-
els with additional character representations
should be similar whether or not they are
trained on spell-corrected input.

In this paper, we test these hypotheses on a large
and diverse collection of content-based questions
spanning formative and summative assessments.

We focus on neural models for content scoring.
Content scoring scenarios offer a good testbed for
exploring the potential contributions of character-
based models because the rubrics of questions fo-
cus solely on the content of responses and ignore
writing quality metrics such as spelling and me-
chanics errors. Neural models have seen the most
active research on character-based representation
and may make possible more flexible and expres-
sive character representations compared with non-
neural models. We leave a more general explo-
ration of the contribution of character-based mod-
els across both neural and non-neural contexts to
future work.

Our work makes the following contributions:

• We demonstrate that, while neural mod-
els with additional character representations

show a small but durable edge over word-
only models in representative real-world con-
texts, this improvement does not increase sig-
nificantly as the number of spelling errors in-
creases.

• We show that spell-corrected input improves
model performance more than the addition
of character representations, and that models
with additional character representations can
be improved further by using spell correction.

• We achieve a new state of the art on the
ASAP-SAS dataset.

2 Related Work

Several recent works provide background on auto-
mated content scoring in educational applications
(Horbach and Zesch, 2019; Burrows et al., 2015;
Riordan et al., 2017). The effect of spelling er-
rors on content scoring was investigated by Hor-
bach et al. (2017). They generated artificial er-
rors on the ASAP-SAS dataset and explored how
the scoring performance of a non-neural model of
word and character n-grams was affected by in-
creasing amounts of artificial misspellings. They
found that models with additional character repre-
sentations were relatively resilient at higher rates
of misspellings. Our work is complementary in
that (1) we investigate neural models and (2) we
analyze trends in performance on two additional
large collections of real-world data.

Spelling correction has been employed in sev-
eral published systems for the ASAP-SAS dataset.
Tandalla (2012), the best-performing system on
the ASAP-SAS shared task, employed spelling
correction. Kumar et al. (2019) demonstrate
strong performance on ASAP-SAS in part due to
spelling correction, but use a different train and
test set along with data augmentation. Recent
work on neural methods for short content scor-
ing uses word- and sentence-level representations
(Kumar et al., 2017; Saha et al., 2018; Marvaniya
et al., 2018); the current work examines character
representations in neural content scoring and ex-
plores both short and long content scenarios.

Among neural approaches for essay scoring,
Dong et al. (2017) explore a family of combi-
nations of hierarchical CNNs and LSTMs with
character-based, word-based, and combined word-
and character-based representations. They find
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that the concatenation of word and character repre-
sentations does not improve on a word-based rep-
resentation. Cozma et al. (2018) describe a model
that incorporates character information via string
kernels. We leave to future work an exploration of
the strengths of this and other non-neural character
representations for capturing character-sequence-
to-score correspondences that account for spelling
variation in content scoring.

While spelling correction is often mentioned as
a preprocessing step for content scoring, text clas-
sification, and other content-focused NLP tasks, to
our knowledge, little work exists that attempts to
quantify the relative contribution of spelling cor-
rection to task performance (although there are in-
dications that general NLP tools such as morpho-
logical analyzers can have strong positive effects
(Zalmout and Habash, 2017)).

3 Datasets

Table 1 shows basic statistics for each dataset.

3.1 ASAP-SAS

One of the most widely-used short answer scor-
ing datasets is the Automated Student Assessment
Prize Short Answer Scoring (ASAP-SAS) dataset.
The dataset is comprised of 10 individual ques-
tions on academic subjects such as science, bi-
ology, and English Language Arts. The ques-
tions were administered to high school students in
the United States on state-level assessments. Re-
sponses were often one or a few sentences. The re-
sponses were scored by two human annotators on
a scale from 0 to 2 or 0 to 3 depending on the ques-
tion (Shermis, 2015). For this study, we used the
official training and test data as is without any fil-
tering of responses or manual correction.1 Figure
1 shows a histogram of the number of misspellings
per response (automatically detected). For analy-
sis of the behavior of the models with respect to
different numbers of misspellings, we manually
binned the number of misspellings per response
into 0, 1, and 2+ (cf. Figure 5).

3.2 Formative-K12-SAS

We collected a large sample of content-based short
answer questions that have been used in a vari-
ety of formative classroom settings with middle
and high school students. The questions span the

1https://www.kaggle.com/c/asap-sas. The
official test set is public_leaderboard_rel_2.tsv.

Mean SD
Per response 0.920 1.327

Per word 0.040 0.113

Figure 1: ASAP-SAS spelling errors.

Mean SD
Per response 0.414 0.997

Per word 0.026 0.093

Figure 2: Formative assessments spelling errors.

subject areas of science, ELA, and social studies.
While the questions used different kinds of scor-
ing rubrics with a variety of score ranges, all ques-
tions were content-focused. We manually binned
the number of misspellings per response (Figure 2)
in the same way as was done for the ASAP-SAS
dataset (cf. Figure 6).

3.3 Summative-LAS
This dataset is comprised of 20 questions from
a series of high-stakes, large-scale standardized
tests. The tests are administered to an adult pop-
ulation in the United States, with individuals hav-
ing completed high school and at least some post-
secondary education. Test takers are typically pro-
ficient English speakers. Each test measures con-
tent knowledge of academic subject areas or ele-
ments of effective institutional leadership. Con-
structed response scores are assigned on a 0–3
scale. Writing proficiency is not part of the scoring
rubric. Notably, the mean number of words per re-
sponse is more than 230, making the length of re-
sponses comparable to essay questions. Hence, we
dub this dataset Summative-LAS for long answer
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Dataset Number of
questions

Number of
responses

Score
ranges

Mean number of
training responses

Mean number of
words (train)

ASAP-SAS 10 22,267 0/1/2(/3) 1363 48.4
Formative-K12-SAS 118 228,909 (0/)1/2(/3/4/5/6) 989 33.0
Summative-LAS 20 108,658 0/1/2/3 4346 233.9

Table 1: Overview of the datasets used in this work. The number of responses covers both the official train and
test splits for ASAP-SAS. The mean number of responses and words were computed over the official training set
for ASAP-SAS and over 5-fold splits of each question’s data (80% train) for the remaining datasets.

Mean SD
Per response 3.342 3.836

Per word 0.017 0.019

Figure 3: Summative-LAS spelling errors.

scoring. For this dataset, because of the larger
spread of spelling errors (Figure 3), we elected to
bin the misspellings automatically into relatively
equal-sized bins: 0-1, 2-4, and 5+ (cf. Figure
7).

4 Method

4.1 Network architecture

The space of network architectures that we ex-
plored for this study is depicted in Figure 4. For
a word token-only model, pretrained word embed-
dings are fed to a bidirectional GRU. The hidden
states of the GRU are aggregated by a pooling
or attention mechanism. Pooling mechanisms in-
cluded mean and max pooling (Taghipour and Ng,
2016; Shen et al., 2018). The attention mechanism
is an MLP-based document-level attention to com-
bined word-character vectors (Yang et al., 2016)2.
The output of the encoder is aggregated in a fully-
connected feedforward layer with sigmoid activa-
tion that computes a scalar output for the predicted
score.

For a model with additional character repre-

2A document context vector u is updated at word i with:
ui = tanh(Whi + b). The attention is computed with αi =
exp(uT

i u)/
∑

t exp(u
T
i u) and d =

∑
t αihi for a document

d (response) and RNN states h.

Figure 4: Neural network architectures.

sentations, each word is represented with a se-
quence of 25-dimensional character embeddings
(randomly initialized). These sequences are en-
coded with a character encoder (see 4.3). The en-
coded outputs are concatenated with the word em-
beddings prior to the word-level encoder.

4.2 Data preparation and model training

The text is preprocessed with the spaCy tokenizer
with limited custom postprocessing to improve the
tokenization outputs. Each response is padded
to uniform length, but these padding tokens are
masked out during model training. Prior to train-
ing, we scale all scores of responses to [0, 1] and
use these scaled scores as input to the networks.
For evaluation, the scaled scores are converted
back to their original range.
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For the word tokens, we use GloVe 100 dimen-
sion vectors (Pennington et al., 2014) as pretrained
embeddings and fine-tune these during training.
Word tokens that are not found in the embeddings
are mapped to a randomly initialized UNK embed-
ding.

Networks are trained with a mean squared er-
ror loss. We carried out extensive preliminary ex-
periments on the ASAP-SAS dev sets to find the
highest-performing optimizer (RMSProp with ρ
set to 0.9), learning rate (0.001), batch size (32),
and gradient clipping setting (10.0).

We employ an exponential moving average
of the model’s weights during training. These
weights wEMA are updated after each batch with

wEMA −= (1.0− d) ∗ (wEMA − wcurrent).

d is a decay rate that is updated dynamically
at each batch taking into account the number of
batches so far:

min(decay,
1 + #batches

10 + #batches
).

We set decay, the maximum decay rate, to 0.999.
For all experiments, we train models with 5-fold

cross validation with train/dev/test splits. On the
ASAP-SAS dataset, we split the official training
data into 5 folds of 80% train and 20% dev. On
all other datasets, we split the data into 5 folds
of 60% train, 20% dev, and 20% test. For hyper-
parameter tuning, we evaluate performance only
on the dev sets and record the best performance
across epochs. For training final models after hy-
perparameter tuning, we combine the training and
dev sets and stop training at the average best epoch
across dev folds rounded to the nearest 5th epoch
(cf. Johnson & Zhang (2017; 2015)). For ASAP-
SAS, final test performance is from the official
public test set. For the other datasets, final test per-
formance is the average test performance across
folds.

4.3 Hyperparameter tuning
We tuned hyperparameters for both the character
and combined word-character encoders. For both
encoders, we experimented with several encoder
types and hyperparameter configurations on the
ASAP-SAS dataset (dev sets only).

For the combined word-character encoder, we
varied the encoder type in bidirectional {GRU,
LSTM}. Bidirectional GRUs performed better in

most cases. We varied the encoder hidden di-
mensions in {100, 250}, number of layers in {1,
2}, dropout on embeddings in {0.0, 0.3}, pool-
ing/attention in {final state, mean pooling, max
pooling, and attention pooling}, and dropout af-
ter pooling/attention in {0.0, 0.3}. We obtained
the best results on average across the ASAP-SAS
questions with 1 layer, 250 dimensions, max pool-
ing, and no dropout.

For the character encoder, we tested a convo-
lutional encoder and three bidirectional recurrent
encoders with the same pooling/attention mecha-
nisms: {final state, mean pooling, max pooling,
and attention pooling}. For the CNN, we varied
the number of filters in {50, 100} and the filter
sizes in {3, 5, (3,4,5)}. For the RNNs, we var-
ied the encoder hidden dimensions in {25, 50}.
For these experiments, we used a combined word-
character encoder with the best hyperparameter
settings from the word-character encoder experi-
ments. The best character encoder results were
achieved with the CNN with 100 filters and fil-
ter sizes of (3,4,5) (i.e. the concatenation of filter
sizes 3, 4, and 5) (Johnson and Zhang, 2015).

4.4 Spelling detection and correction

A spelling detection and correction system based
on the approach described in Flor (2012) and
Flor and Futagi (2012) was used in all experi-
ments. The system employs a set of large-scale
dictionaries and language models. The approach
demonstrated high spelling correction accuracy on
benchmark datasets of essays written on high-
stakes summative assessments by both native and
non-native English speakers, outperforming com-
parable industry and open-source spelling correc-
tion systems.

For each question in each dataset, we adapted
the spelling detection algorithm by incorporating
the tokens from the question text. The current
work focused on non-word misspellings, that is,
character sequences that are not valid in stan-
dard written English. We leave an examination of
real-word (context-sensitive) errors (e.g., confus-
ing their and there) to future work.

4.5 Evaluation and statistical analysis

To summarize model performance, we report
mean squared error (MSE) and quadratic weighted
kappa (QWK). For the ASAP-SAS dataset, we
also report the Fisher-weighted mean QWK across
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questions, which was the official metric of the
ASAP competition.

To analyze the robustness of performance im-
provements with character representations, we
employ generalized linear mixed-effect models
(GLMMs) (Harrison et al., 2018). Mixed-effect
models can better capture variation across individ-
ual questions by modeling questions as random ef-
fects. In contrast with previous work in NLP that
analyzes model performance with mixed-effect
models, we analyze per-response prediction errors
using real-valued regression model predictions.
Since the prediction errors are not normally dis-
tributed, using standard linear mixed effect models
(even with transformation of the dependent vari-
able) can result in Type I errors. Analysis of the
prediction error data showed that gamma distri-
butions provided the best fit. Hence we employ
gamma GLMMs with a log link function.

We investigated the interaction predicted by Hy-
pothesis 1 with the following GLMM:

error ∼ feat ∗missp+#words+ (1)

score+ (1|question)

feat is the representation type (w vs. w+c),
missp is the misspelling bin, and feat*missp
is their interaction. #words is the num-
ber of words in the response, and score
is the response’s human-assigned score.
(1|question) represents a random inter-
cept for each question. This model estimates the
effect of the representation type and the number
of misspellings and their interaction, while con-
trolling for the effect of number of words and
assigned score.

Hypothesis 2 was examined with a GLMM
model of the form:

error ∼ feat ∗ sp + (1|question) (2)

where sp is the presence or absence of spelling
correction.

For each dataset, we address Hypothesis 2 first,
since the evidence relating to this hypothesis is
the relative performance of the different models.
Then, looking at model predictions by bins of re-
sponses for numbers of misspellings, we examine
evidence for Hypothesis 1.

Condition Mean
MSE

Mean
QWK

MeanFisher
QWK

w -sp 0.2286 0.7562 0.7652
w+c -sp 0.2218 0.7602 0.7691
w +sp 0.2236 0.7660 0.7748
w+c +sp 0.2200 0.7705 0.7788

Table 2: Human-machine agreement across models on
ASAP-SAS. w = word representations, w+c = word
and character representations, -sp = no spelling correc-
tion, +sp = spelling correction.

Estimate SE Pr(>|z|)
(Intercept) -1.132 0.119 <2e-16
feature set (w+c) -0.028 0.020 0.168
spelling (+sp) -0.017 0.020 0.389
feature set : spelling 0.023 0.029 0.423

Table 3: GLMM parameter estimates, standard errors,
and p-values for model prediction error across all mod-
els on ASAP-SAS. Feature set is w vs. w+c. Spelling
is +/- spelling correction.

5 Results

5.1 ASAP-SAS

Table 2 shows the mean MSE, mean QWK, and
mean Fisher-transformed QWK across the 10
questions in the ASAP-SAS dataset. First, we see
that the models with character representations out-
perform their word-only counterparts (w+c vs. w;
lower MSE and higher QWK). Second, the spell-
corrected models outperform the corresponding
uncorrected models (+sp vs. -sp) with the same
representations. The spell-corrected model with
character representations achieves the highest per-
formance. The Fisher-transformed mean QWK of
0.7788 represents a new state of the art for the
ASAP-SAS dataset for the official test set for sin-
gle models without data augmentation.3

3Ramachandran et al. (2015) report a QWK of 0.78
on the ASAP-SAS dataset, but we conclude that their ac-
tual unrounded Fisher-transformed mean QWK score was
0.77696. As they note, “The mean QW Kappa achieved by
our patterns is 0.78 and that achieved by Tandalla’s man-
ual regular expressions is 0.77. Although the QW Kap-
pas are very close... their unrounded difference of 0.00530
is noteworthy.” According to the Kaggle public leader-
board (https://www.kaggle.com/c/asap-sas/leaderboard), the
Tandalla system’s unrounded score was 0.77166. Combin-
ing this information: 0.77166 + 0.00530 = 0.77696. More-
over, elsewhere in their paper Ramachandran et al. note
“The human benchmark for the dataset was 0.90. The best
team achieved a score of 0.77.” Because these scores match
the Fisher-transformed QWK scores on the Kaggle leader-
board, we conclude that they used the Fisher-transformed
mean QWK as opposed to the untransformed mean QWK.
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Figure 5: Mean prediction error by models without
spell correction on ASAP-SAS. Numbers on the bars
represent the difference between w+c and w.

Estimate SE Pr(>|z|)
(Intercept) -1.681 0.111 <2e-16
feature set (w+c) -0.018 0.028 0.506
missp 1 0.050 0.034 0.143
missp 2+ 0.138 0.037 0.0002
# words 1.947 0.142 <2e-16
score 0.651 0.037 <2e-16
feat (w+c) : missp 1 -0.036 0.048 0.454
feat (w+c) : missp 2+ -0.022 0.051 0.656

Table 4: GLMM summary for model prediction error
on ASAP-SAS for the models without spelling correc-
tion. Feature set is w vs. w+c. Missp {1,2+} are bins
of number of misspellings. Score is human-assigned
response score.

With regard to Hypothesis 2.1, that character
representations should improve performance as
much as spell correction, the results demonstrate
that adding character representations (w+c, -sp:
mean MSE = 0.2218) can outperform spell correc-
tion of a word-only model (w, +sp: mean MSE =
0.2236) (although this is not reflected in the QWK
results).

To test the strength of these results, we used the
GLMM from equation (2). The model parameter
estimates are shown in Table 3. Neither the effect
of adding character representations (w+c) nor the
effect of spelling correction (+sp) are statistically
significant. Notably, there is no evidence for an
interaction between character representations and
spelling correction, suggesting relatively indepen-
dent effects.

Next, we examine Hypothesis 1, that charac-
ter representations should aid performance more
on responses with more spelling errors. Figure
5 shows the mean error across all responses in
ASAP-SAS by number of spelling errors in bins
of 0, 1, and 2+ for the models without spelling
correction (w -sp and w+c -sp).

The mixed effect model parameter estimates are

Condition Mean
MSE

Mean
QWK

w -sp 0.3220 0.7759
w+c -sp 0.3190 0.7799
w +sp 0.3176 0.7815
w+c +sp 0.3140 0.7828

Table 5: Human-machine agreement across models on
Formative-K12-SAS.

Estimate SE Pr(>|z|)
(Intercept) -0.962 0.024 <2e-16
feature set (w+c) -0.010 0.002 0.0005
spelling (+sp) -0.011 0.002 6.58e-05
feature set : spelling 0.001 0.004 0.643

Table 6: GLMM parameter estimates, standard errors,
and p-values for model prediction error across all mod-
els on Formative-K12-SAS.

presented in Table 4. The main result for our in-
vestigation is that there is no significant interaction
between model type and number of spelling bins.
In other words, the w+c models’ performance did
not significantly improve as the number of mis-
spellings increased 4.

5.2 Formative-K12-SAS
The performance of the neural models on the
Formative-K12-SAS dataset are shown in Table 5.
The same trends that were observed for ASAP-
SAS are observed here: (1) character and word
representations outperform word representations
alone (w+c vs. w); (2) spell-corrected models out-
perform models without spell correction (+sp vs.
-sp); (3) the spell-corrected model with character
and word representations performs best. More-
over, on this dataset, the mean MSE and mean
QWK trends are consistent.

Applying the statistical model from equation (2)
to the prediction errors on all responses in this
large dataset (Table 6), both model representations
and spelling correction achieve statistical signifi-
cance. No interaction was observed between rep-
resentation type and spelling correction.

To analyze the differences between model rep-
resentations by number of misspellings, we spec-
ified 3 bins: 0, 1, and 2+. This was because of

4The data for question 10 in the ASAP-SAS dataset suf-
fers from preprocessing issues such that random spaces are
introduced between many words. As a result, a much higher
number of misspellings are detected for this question. How-
ever, refitting the GLMM model excluding the data for this
question produced nearly identical trends.
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Figure 6: Mean prediction error by models without
spell correction on the Formative-K12-SAS dataset.
Numbers on the bars represent the difference between
w+c and w.

Estimate SE Pr(>|z|)
(Intercept) -1.108 0.023 <2e-16
feature set (w+c) -0.008 0.003 0.017
missp 1 0.077 0.005 <2e-16
missp 2+ 0.158 0.007 <2e-16
# words 1.996 0.157 <2e-16
score 0.230 0.008 <2e-16
feat (w+c) : missp 1 -0.009 0.008 0.242
feat (w+c) : missp 2+ -0.004 0.010 0.703

Table 7: GLMM summary for model prediction er-
ror on Formative-K12-SAS for the models without
spelling correction.

the extreme skew in the misspellings counts – the
large majority of responses actually had no mis-
spellings – which precluded specifying bins with
a similar number of responses. The model mean
prediction error increased across misspellings bins
for both w and w+c models (Figure 6). Unlike
ASAP-SAS, both the difference between feature
sets and between misspellings bins was significant
even when controlling for score and number of
words (Table 7). As before, however, there was
not a significant interaction between misspelling
bins and representation type.

5.3 Summative-LAS

Table 8 provides the MSE and QWK for the
dataset of content-based questions on the sum-
mative assessment dataset. As in the other
two datasets, character and word representations
(w+c) perform best, and the best models are the
models based on spell-corrected text. On this
dataset, however, what is striking is the degree to
which spelling correction improves model perfor-
mance: QWK scores increase about 15 points.

The GLMM parameter estimates (Table 9) show
that the difference between models with and with-
out spell correction nearly reaches the 0.05 thresh-

Condition Mean
MSE

Mean
QWK

w -sp 0.4768 0.5082
w+c -sp 0.4766 0.5115
w +sp 0.3457 0.6590
w+c +sp 0.3441 0.6609

Table 8: Human-machine agreement across models on
Summative-LAS.

Estimate SE Pr(>|z|)
(Intercept) -0.763 0.031 <2e-16
feature set (w+c) -0.002 0.003 0.479
spelling (+sp) -0.006 0.003 0.051
feature set : spelling 0.003 0.004 0.508

Table 9: GLMM parameter estimates, standard errors,
and p-values for model prediction error across all mod-
els on Summative-LAS.

Estimate SE Pr(>|z|)
(Intercept) -0.544 0.032 <2e-16
feature set (w+c) -0.002 0.005 0.706
missp 2-4 0.027 0.005 6.24e-07
missp 5+ 0.054 0.006 <2e-16
# words 0.228 0.022 <2e-16
score -0.478 0.005 <2e-16
feat (w+c) : missp 2-4 9.09e-05 0.007 0.991
feat (w+c) : missp 5+ -0.001 0.008 0.856

Table 10: GLMM summary for model prediction er-
ror on Summative-LAS for the models without spelling
correction.

old of significance, underlining the strength of the
effect of building models on spell corrected text on
this dataset. The addition of character representa-
tions, on the other hand, shows a negligible effect
on model performance.

The mean prediction error for the w and w+c
models is shown in Figure 7. The results of mod-

Figure 7: Mean prediction error by models without
spell correction on the Summative-LAS dataset. Num-
bers on the bars represent the difference between w+c
and w.
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eling the prediction errors with the model from
equation (1) with these bins are given in Table
10. The mean prediction error increases signifi-
cantly from bin 0-1 to 5+, but there is little differ-
ence between representation types and there is no
interaction between representation type and mis-
spelling bin.

6 Discussion

This study is the first large-scale examination
of the contribution of character representations
in neural network models for automated content
scoring. We formulated three hypotheses about
the effects of adding character representations to
neural models and tested these hypotheses with
three diverse datasets, including two large-scale
real-world datasets. The results provide several
new insights into the capabilities of character rep-
resentations for content scoring.

First, we examined whether the addition of
character representations improves scoring model
performance as the number of spelling errors in-
creases. If a model were to effectively learn
character-to-score correspondences, we might ex-
pect the model to show solid gains on responses
with more misspellings. While there was a small
trend toward an improvement in word+character
models over word-only models on such responses,
this trend was not strong enough to produce a
statistically significant difference between model
representation types. Hence, we cannot conclude
that character representations readily account for
spelling variation in the training data.

Second, we showed that spelling correction
can increase word-only model performance be-
yond what is achieved with only the addition of
character representations (without spelling correc-
tion). This trend was strongest in the data with
the most spelling errors (Section 5.3). Moreover,
we showed that spelling correction can boost the
performance of models with character representa-
tions. In fact, leveraging spelling correction and
character representations contributed to establish-
ing a new state-of-the-art result on the ASAP-SAS
official test set. While both trends were not statis-
tically significant given the variability in the pre-
diction error data, neither of these trends are pre-
dicted by common ideas about the effectiveness of
character representations in automatically learning
how spelling variants correlate with scores.

We note that our results do not establish that

models with character representations do not learn
about some associations between spelling varia-
tion and scores. It may be the case that larger train-
ing data would lead to more effective learning of
the association between character sequence vari-
ants and scores. However, large datasets are gen-
erally not typical in training data for educational
applications. Different kinds of character (or sub-
word) representations may also prove more ef-
fective than the space of character representations
considered here.

Our results show that character representations,
when added to word-based neural models, consis-
tently provide small gains in performance. There-
fore, we conclude that character representations
may provide some benefit in practice in neural
models for content scoring, but that they are un-
likely to serve as a replacement for spelling cor-
rection of the training data.
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A Appendix: ASAP-SAS detailed results

Dataset-general tuning

Prompt w -sp w+c -sp w +sp w+c +sp

1 0.8222 0.8310 0.8339 0.8301
2 0.7802 0.8017 0.7857 0.7913
3 0.6443 0.6311 0.6577 0.6620
4 0.7044 0.6934 0.7120 0.7310
5 0.8285 0.8272 0.8355 0.8441
6 0.8562 0.8477 0.8625 0.8610
7 0.7060 0.7250 0.7115 0.7362
8 0.6510 0.6662 0.6778 0.6641
9 0.8045 0.7942 0.8178 0.8087

10 0.7645 0.7847 0.7650 0.7766

Mean QWK 0.7561 0.7602 0.7659 0.7705
Mean

QWKFisher
0.7652 0.7691 0.7748 0.7788

Table 11: Human-machine agreement on ASAP-SAS
by prompt.

In Table 11 we report the performance of each
prompt’s model on ASAP-SAS. We used dataset-
general tuning of hyperparameters by considering
the average best performance across all prompts.
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Abstract

Recent work on Grammatical Error Correc-
tion (GEC) has highlighted the importance of
language modeling in that it is certainly pos-
sible to achieve good performance by com-
paring the probabilities of the proposed edits.
At the same time, advancements in language
modeling have managed to generate linguistic
output, which is almost indistinguishable from
that of human-generated text. In this paper,
we up the ante by exploring the potential of
more sophisticated language models in GEC
and offer some key insights on their strengths
and weaknesses. We show that, in line with
recent results in other NLP tasks, Transformer
architectures achieve consistently high perfor-
mance and provide a competitive baseline for
future machine learning models.

1 Introduction

Transformer models (Vaswani et al., 2017) trained
on large-scale language modeling datasets have re-
cently proved to be a very effective means of rep-
resenting the meaning of a sentence, being put
to effective use in fine-tuning both sentence-level
tasks, such as the GLUE benchmark (Wang et al.,
2018) and token-level tasks, such as Named Entity
Recognition (Devlin et al., 2019). Recent work
has also found them to produce linguistically valid
representations (Goldberg, 2019), as well as to dis-
play excellent performance across multiple down-
stream NLP tasks (e.g., Houlsby et al. 2019).

In this work, we explore how such models per-
form in the task of Grammatical Error Correc-
tion (GEC). While there is a substantial amount of
work on statistical (Rozovskaya and Roth, 2016;
Junczys-Dowmunt and Grundkiewicz, 2014; Yan-
nakoudakis et al., 2017) and neural (Ji et al.,
2017; Xie et al., 2016; Yuan and Briscoe, 2016;
Chollampatt et al., 2016; Chollampatt and Ng,
2017; Sakaguchi et al., 2017; Chollampatt and

Ng, 2018) machine translation methods for GEC,
we follow the approach of Bryant and Briscoe
(2018) and explore how such models would fare
in this task when treated as simple language mod-
els. More specifically, Bryant and Briscoe (2018)
train a 5-gram language model on the One Bil-
lion Word Benchmark (Chelba et al., 2013) dataset
and find that it produces competitive baseline re-
sults without any supervised training. In our work,
we extend this work by substituting the n-gram
model for several publicly available implemen-
tations of state-of-the-art Transformer language
models trained on large linguistic corpora and as-
sess their performance on GEC without any super-
vised training. We find that Transformer language
models produce results on par with supervised ap-
proaches providing a solid baseline system. This
finding is of particular importance in GEC, where
data collection and annotation requires substantial
manual effort.

2 Related Work

The idea of using language models is quite funda-
mental to the task of Grammatical Error Correc-
tion, which has fed a substantial body of work over
the years. More recently, with the availability of
web-scale data powering the advances in language
modeling, among most of the other advances in
NLP, a plethora of language-modeling based ap-
proaches have been proposed for the GEC task.
Gamon et al. (2008); Matthieu Hermet and Sz-
pakowicz (2008) and Yi et al. (2008) were some of
the early works to successfully leverage language
models trained on large amounts of web-scale data
into a GEC system, reinforcing the idea that sim-
ple models and a lot of data trump more elabo-
rate models based on annotated data (Halevy et al.,
2009).

Since then, multiple works based on language-
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models have been proposed for the GEC task
(Park and Levy, 2011; Dahlmeier and Ng, 2012a),
either relying entirely on LMs or using them
for fine-tuning their systems. Many of the top-
ranked systems in the CoNLL-2013 and 2014
GEC shared tasks (Ng et al., 2013, 2014), were
either based on language models or had them as
integral parts of their systems (Kao et al., 2013;
Yoshimoto et al., 2013; Xing et al., 2013; Lee
and Lee, 2014; Junczys-Dowmunt and Grund-
kiewicz, 2014). LM-only approaches though took
a backseat and were only sporadically used after
the shared tasks, as Neural Machine Translation-
based approaches took over, but LMs remained
an integral part of the GEC systems (Junczys-
Dowmunt and Grundkiewicz, 2016; Ji et al., 2017;
Xie et al., 2016; Junczys-Dowmunt et al., 2018;
Chollampatt and Ng, 2018). However, Bryant and
Briscoe (2018) recently revived the idea, achiev-
ing competitive performance with the state-of-
the-art, demonstrating the effectiveness of the ap-
proaches to the task without using any annotated
data for training.

3 Methodology

In this work, we follow the setup from Bryant
and Briscoe (2018) substituting the 5-gram lan-
guage model for different language models based
on the Transformer architecture. Specifically, we
use Google’s BERT (Devlin et al., 2019) and Ope-
nAI’s GPT (Radford et al., 2018) and GPT-2 (Rad-
ford et al., 2019).1 While all these are best thought
of as language models in that they have been
trained to predict an element in a sequence, they
use slightly different objectives which does not
make them directly comparable. Specifically, GPT
and GPT-2 have been trained with a classic lan-
guage modeling objective, whereby they predict
the next word in a sequence, whereas BERT has
been trained using a masked language modeling
objective in which the network attempts to predict
masked words in the sentence.

We extract the probability of a sentence from
BERT, by iteratively masking every word in the
sentence and then summing the log probabilities.
While this approach is far from ideal, it has been
shown (Wang and Cho, 2019) that it approximates
the log-likelihood of a sentence.

1https://github.com/huggingface/
pytorch-pretrained-BERT/

Test set Sent. Tokens Annot.

CoNLL-2014 1,312 30k 2
FCE 2,715 47k 1

Table 1: Statistics for evaluation data

3.1 Confusion sets

Since our systems do not generate novel se-
quences, we follow Bryant and Briscoe (2018) and
use simple heuristics to generate a confusion set
of sentences that our language models score. For
prepositions and determiners, the confusion set in-
cludes the set of all prepositions and determiners
plus an empty string ε to remove unnecessary ad-
ditions. For morphological errors (e.g., past tense
or pluralization), we use the Automatically Gener-
ated Inflection Database (AGID) which contains
different morphological forms for each word.2

However, we notice that due to the automatic gen-
eration, AGID contains errors that might prop-
agate into our scoring. The problem with in-
troducing new errors and non-words is that they
would be interpreted as unknown words (hence-
forth [UNK]s) from the model’s perspective. An
unknown word in some context might give higher
probabilities to an erroneous sentence and cause
the model not to select the correct alternative. To
remedy this issue, we generate a vocabulary from
all the training sets and make sure that any pro-
posed words which do not exist in the vocabulary
are replaced by [UNK]s. Note that there is no rea-
son to re-use the vocabulary of the training sets as
any large English wordlist would achieve a simi-
lar effect. Finally, for spelling mistakes, we, again,
follow Bryant and Briscoe (2018) and use CyHun-
Spell3 to generate alternatives for non-words.

3.2 Thresholding

Given that our confusion set is prone to errors (due
to its automatic generation procedure) as well as
the fact that we cannot target all potential errors
(e.g., insertions), we bias our method to prefer
the original sentence unless a much better the al-
ternative is found. We quantify this margin by
imposing a threshold above which we accept a
candidate sentence as a better alternative. Con-
cretely, let P (sc) be the probability of the can-
didate sentence and P (so) the probability of the

2http://wordlist.aspell.net/other/
3https://pypi.org/project/CyHunspell/
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ERRANT M2

Dataset System P R F0.5 P R F0.5

CoNLL-2014

Felice et al. (2014) † - - - 39.71 30.10 37.33
Yannakoudakis et al. (2017) - - - 58.79 30.63 49.66
Chollampatt and Ng (2017) - - - 62.74 32.96 53.14
Chollampatt and Ng (2018) - - - 65.49 33.14 54.79
Ge et al. (2018) - - - 74.12 36.30 61.34

Bryant and Briscoe (2018) 36.62 19.93 31.37 40.56 20.81 34.09
BERT 33.27 27.14 31.83 35.69 27.99 33.83
GPT-1 49.58 27.06 42.5 51.08 27.45 43.57
GPT-2 57.73 24.75 45.58 58.51 24.9 46.08

FCE

Yannakoudakis et al. (2017) - - - 65.03 32.45 54.15

Bryant and Briscoe (2018) 41.92 13.62 29.61 44.78 14.12 31.22
BERT 29.56 34.67 30.46 31.97 35.01 32.53
GPT-1 62.75 32.19 52.74 64.01 32.33 53.52
GPT-2 61.91 33.47 52.92 62.64 33.74 53.48

Table 2: Results of our Transformer-Language Model approach against similar approaches (Bryant and Briscoe,
2018) and state-of-the-art on Grammatical Error Correction. For each of the datasets, we use the corresponding
test set, and we do not train our models on the corpora. As BERT, we report the best performing BERT model (12
layers, retaining uppercase characters). In the top part of each dataset, we report the scores of supervised methods
and in the bottom the unsupervised ones. † denotes this system won the shared task competition.

original sentence, then we accept the candidate if
P (sc) > P (so) + τ , where τ is some threshold
parameter which we fit on each development set.
Note that, practically, this parameter controls the
trade-off between precision and recall as higher
τ values would mean that there is less chance of
changing the original sentence (i.e., higher preci-
sion) and vice versa. We explore different values
for τ ∈ {0, 2, 4, 6, 8} by, as above, fitting them on
the corresponding development set.4

3.3 Search

Finally, we perform greedy search to find the best
alternative sentence by iterating over each sen-
tence multiple times, once for every position for
which our heuristics found alternatives. If an alter-
native is selected for the target position, we update
the original sentence and proceed to the next po-
sition. This pseudo-log-likelihood approximation
makes the problem of considering every permuta-
tion more computationally tractable.

4 Experiments

We evaluate our method and report results on two
standard publicly available datasets. Our evalua-
tion is aimed to stay as true to Bryant and Briscoe
(2018) as possible to ensure an even compari-
son. Concretely, we use the test dataset from

4Note that the probability of each sentence is in log space.

the CoNLL-2014 (Ng et al., 2014) shared task5

and the publicly available First Certificate in En-
glish (FCE) (Yannakoudakis et al., 2011). Unfor-
tunately, due to licensing issues, we were unable
to obtain permission to use the JFLEG (Napoles
et al., 2017) corpus for evaluation. Note that in
our method, we do not make use of the training
sets commonly used with these datasets. However,
we use the development sets used by Bryant and
Briscoe (2018) to tune the hyperparameter τ . The
number of sentences and tokens for the datasets
we used can be found in Table 1.

Similar to Bryant and Briscoe (2018), we report
results on three metrics. We use the MaxMatch
(M2) Precision, Recall and F0.5 (Dahlmeier and
Ng, 2012b) and ERRANT Precision, Recall and
F0.5 (Bryant et al., 2017).

5 Results

Table 2 presents the results of our method compar-
ing them against recent state-of-the-art supervised
models and the simple n-gram language model
used by Bryant and Briscoe (2018). Table 3 shows
some qualitative examples on how each model cor-
rects two sentences pulled from the FCE along
with the gold annotations. The reported results

5While we acknowledge the contemporaneous nature of
the BEA 2019 Shared Task on GEC and would have liked to
report results on the W&I+LOCNESS data, we could not do
so because of license limitations.
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Source It will start by a speech from the Director of the conference, followed by a meal.
Gold It will start with a speech by the Director of the conference, followed by a meal.
BERT It will start with a speech from the Director of the conference, followed by a meal.
GPT It will start by a speech from the Director of the conference, followed by a meal.
GPT-2 It will start with a speech from the Director of the conference, followed by a meal.

Source They all knows where the conference is and when.
Gold They all know where the conference is and when.
BERT They all know where the conferencing is and when.
GPT They all knows where the conference is and when.
GPT-2 They all know where the conference is and when.

Table 3: Source sentences along with the gold edits and the proposed candidates from each of our models.

come from the best performing hyperparameter τ
on each dataset. For BERT, we also explored dif-
ferent sizes (12 vs. 24 layers) and whether re-
taining uppercase characters helps in performance.
The best performing τ values were τ = 4 for
CoNLL14 for all models; for the FCE dataset:
BERT τ = 4, GPT τ = 8, and GPT-2 τ = 6.
The best ‘version,’ of BERT was the large, cased
(i.e., retaining the lower- /uppercase distinction).

A key result of Table 2 is that Transformer Lan-
guage Models prove to be more than just a com-
petitive baseline to legitimate Grammatical Er-
ror Correction systems on their own. Across the
board, Transformer Models are able to outperform
the simple n-gram model and even approach the
performance of supervised GEC systems.

6 Discussion

Looking at the performance of the two GPT mod-
els more closely, we see that their performance
is nearly identical with GPT-2 leading by a small
margin in the CoNLL14 dataset. Given that the
versions we used share the same number of layers
(12), we attribute GPT-2’s slight advantage to the
fact that it was trained on considerably more data.

Another interesting result is that while BERT
surpasses the n-gram baseline overall, it achieves
worse performance than the rest in terms of preci-
sion and F0.5 score. Considering its overall suc-
cess at modeling NLP tasks, one might expect
BERT to achieve better performance here. How-
ever, as mentioned above, BERT is not truly a
language model in the sense that GPT and GPT-
2 are but uses a quasi-language modeling objec-
tive which could explain its degraded performance
in this setting. Note that framing the task differ-
ently (e.g., by masking the preposition in a sen-

tence and selecting the one with the highest proba-
bility) might give the edge to BERT as it resembles
the way it was trained.

It is also worth mentioning that despite tun-
ing τ to each dataset, we do not explore different
weights for different kinds of errors (e.g., penal-
izing more spelling mistakes). Our key motivation
was to corroborate and extend the results of Bryant
and Briscoe (2018) to current state-of-the-art lan-
guage models which have been trained in several
languages and show that these models are tough
baselines to beat for novel GEC systems.

While the results of the Transformer language
models shown in Table 2 demonstrate that they
are a tough baseline to beat, it is worth noting that
the present approach is not without its limitations.
We believe that our methodology should not be
considered a panacea to GEC. For instance, being
bound by the confusion sets, our system (1) cannot
handle missing words (which make up about 20%
of all errors), and (2) it is tuned to capture only a
subset of the possible mistakes a writer can make
(closed class words).

It could be argued that since our system makes
use of a pre-defined confusion set (even an auto-
matically generated one), it could not be consid-
ered as a fully unsupervised system. In principle,
we agree with that statement and we believe that
a system which uses, for example, corpus statis-
tics to on-the-fly generate a confusion set would
be a very interesting exercise and could yield sim-
ilar results. However, the present paper is con-
cerned with highlighting the importance of lan-
guage modeling in GEC and its potential in aid-
ing in low-resource languages where large parallel
datasets are unavailable, but such confusion sets
are relatively easily obtainable.
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7 Conclusion

In this work, we advanced on the foundational idea
that a simple language modeling-based approach
to GEC with no annotated data can challenge the
latest neural and machine translation approaches
that rely on large quantities of annotated training
data. To this end, we improve on previous work
by leveraging state-of-the-art language modeling
techniques and perform a thorough comparison of
three state-of-the-art Transformer language mod-
els which in turn have been trained on data of the
order of hundreds of millions of words. We find
that merely using pre-trained, and publicly avail-
able neural language models improves the perfor-
mance by a significant margin and comes within
striking distance of the state-of-the-art methods.

This work reinforces the strength and robust-
ness of language-model based methods for the
task of grammatical error correction. While recent
state-of-the-art GEC systems are pursuing NMT-
based models with huge amounts (millions of sen-
tences) of annotated training data, approaches like
this which require no annotated training data pro-
vide great value to researchers and developers
interested in building competitive GEC systems
(e.g., in other languages) with limited annotated
data.
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Abstract
We introduce unsupervised techniques based
on phrase-based statistical machine transla-
tion for grammatical error correction (GEC)
trained on a pseudo learner corpus created by
Google Translation. We verified our GEC sys-
tem through experiments on a low resource
track of the shared task at Building Educa-
tional Applications 2019 (BEA2019). As a re-
sult, we achieved an F0.5 score of 28.31 points
with the test data.

1 Introduction

Research on grammatical error correction (GEC)
has gained considerable attention recently. Many
studies treat GEC as a task that involves translation
from a grammatically erroneous sentence (source-
side) into a correct sentence (target-side) and thus,
leverage methods based on machine translation
(MT) for GEC. For instance, some GEC systems
use large parallel corpora and synthetic data (Ge
et al., 2018; Xie et al., 2018).

We introduce an unsupervised method based on
MT for GEC that does not use parallel learner
data. In particular, we use methods proposed by
Marie and Fujita (2018), Artetxe et al. (2018b),
and Lample et al. (2018). These methods are
based on phrase-based statistical machine trans-
lation (SMT) and phrase table refinements. For-
ward refinement used by Marie and Fujita (2018)
simply augments a learner corpus with automatic
corrections. We also use forward refinement for
improvement of phrase table.

Unsupervised MT techniques do not require a
parallel but a comparable corpus as training data.
Therefore, we use comparable translated texts us-
ing Google Translation as the source-side data.
Specifically, we use News Crawl written in En-
glish as target-side data and News Crawl writ-
ten in another language translated into English as
source-side data.

We verified our GEC system through exper-
iments for a low resource track of the shared
task at Building Educational Applications 2019
(BEA2019). The experimental results show that
our system achieved an F0.5 score of 28.31 points.

2 Unsupervised GEC

Algorithm 1 shows the pseudocode for unsuper-
vised GEC. This code is derived from Artetxe
et al. (2018b). First, the cross-lingual phrase em-
beddings are acquired. Second, a phrase table is
created based on these cross-lingual embeddings.
Third, the phrase table is combined with a lan-
guage model trained by monolingual data to ini-
tialize a phrase-based SMT system. Finally, the
SMT system is updated through iterative forward-
translation.

Cross-lingual embeddings First, n-gram em-
beddings were created on the source- and target-
sides. Specifically, each monolingual embedding
was created based on the source- and target-sides
using a variant of skip-gram (Mikolov et al., 2013)
for unigrams, bigrams, and trigrams with high fre-
quency1 in the monolingual data. Next, the mono-
lingual embeddings were mapped onto a shared
space to obtain cross-lingual embeddings. The
self-learning method of Artetxe et al. (2018a) was
used for unsupervised mapping.

Phrase table induction A phrase table was cre-
ated based on the cross-lingual embeddings. In
particular, this involved the creation of phrase
translation models and lexical translation models.

The translation candidates were limited in the
source-to-target phrase translation model ϕ(f |e)
for each source phrase e to its 100 nearest neigh-
bor phrases f on the target-side. The score of

1We used the most frequent 200K unigrams, 400K bi-
grams, and 400K trigrams in the monolingual data.
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Algorithm 1 Unsupervised GEC
Require: language models of the target-side LMt

Require: source training corpus Cs

Require: target training corpus Ct

Require: tuning data T
Require: iteration number N
Ensure: source-to-target phrase table P

(N)
s→t

Ensure: source-to-target weights W (N)
s→t

1: W emb
s ← TRAIN(Cs)

2: W emb
t ← TRAIN(Ct)

3: W cross emb
s ,W cross emb

t ← MAPPING(W emb
s ,W emb

t )

4: P
(0)
s→t← INITIALIZE(W cross emb

s ,W cross emb
t )

5: W
(0)
s→t← TUNE(P (0)

s→t, LMt, T )
6: for iter = 1, . . . , N do
7: synthetic datat
8: ← DECODE(P (iter−1)

s→t , LMt, W
(iter−1)
s→t , Cs)

9: P
(iter)
s→t ← TRAIN(Cs, synthetic datat)

10: W
(iter)
s→t ← TUNE(P

(iter)
s→t , LMt, T )

the phrase translation model was calculated based
on the normalized cosine similarity between the
source and target phrases.

ϕ(f |e) = exp(cos(e, f)/τ)
∑

f
′ exp(cos(e, f

′
)/τ)

(1)

f
′ represents each phrase embedding on the target-

side and τ is a temperature parameter that con-
trols the confidence of prediction2. The backward
phrase translation probability ϕ(e|f) was deter-
mined in a similar manner.

The source-to-target lexical translation model
lex(f |e) considers the word with the highest trans-
lation probability in a target phrase for each word
in a source phrase. The score of the lexical trans-
lation model was calculated based on the product
of respective phrase translation probabilities.

lex(f |e) =
∏

i

max

(
ϵ,max

j
ϕ
(
f i|ej

))
(2)

ϵ is a constant term for the case where no align-
ments are found. As in Artetxe et al. (2018b), the
term was set to 0.001. The backward lexical trans-
lation probability lex(e|f) is calculated in a simi-
lar manner.

Refinement of SMT system The phrase table
created is considered to include noisy phrase pairs.
Therefore, we update the phrase table using an
SMT system. The SMT system trained on syn-
thetic data eliminates the noisy phrase pairs using

2As in Artetxe et al. (2018b), τ is estimated by maximiz-
ing the phrase translation probability between an embedding
and the nearest embedding on the opposite side.

Corpus Sent. Learner

Fi News Crawl 1,904,880 No
En News Crawl 2,116,249 No
One-Billion 24,482,651 No

tuning data 2,191 Yes
dev data 2,193 Yes

Table 1: Data statics: train and dev data size.

language models trained on the target-side corpus.
This process corresponds to lines 6—10 in Algo-
rithm 1. The phrase table is refined with forward
refinement (Marie and Fujita, 2018).

For forward refinement, target synthetic data
were generated from the source monolingual data
using the source-to-target phrase table P

(0)
s→t and

target language model LMt. A new phrase table
P

(1)
s→t was then created with this target synthetic

corpus. This operation was executed N times.

Construction of a comparable corpus This un-
supervised method is based on the assumption that
the source and target corpora are comparable. In
fact, Lample et al. (2018), Artetxe et al. (2018b)
and Marie and Fujita (2018) use the News Crawl
of source and target language as training data.

To make a comparable corpus for GEC, we
use translated texts using Google Translation as
the source-side data. Specifically, we use Finnish
News Crawl translated into English as source-side.
English News Crawl is used as the target-side as is.
Finnish data is used because Finnish is not similar
to English.

This translated data does not include misspelled
words. To address these words, we use a spell
checker as a preprocessing step before inference.

3 Experiment of low resource GEC

3.1 Experimental setting

Table 1 shows the training and development data
size. Finnish News Crawl 2014—2015 trans-
lated into English was used as source training data
and English News Crawl 2017 was used as target
training data. To train the extra language model
of the target-side (LMt), we used training data
of One Billion Word Benchmark (Chelba et al.,
2014). We used googletrans v2.4.03 for
Google Translation. This module did not work
sometimes and thus, we obtained 2,122,714 trans-

3https://github.com/ssut/py-googletrans

135



Team TP FP FN P R F0.5

UEDIN-MS 2,312 982 2,506 70.19 47.99 64.24
Kakao&Brain 2,412 1,413 2,797 63.06 46.30 58.80
LAIX 1,443 884 3,175 62.01 31.25 51.81
CAMB-CUED 1,814 1,450 2,956 55.58 38.03 50.88
UFAL, Charles University, Prague 1,245 1,222 2,993 50.47 29.38 44.13
Siteimprove 1,299 1,619 3,199 44.52 28.88 40.17
WebSpellChecker.com 2,363 3,719 3,031 38.85 43.81 39.75
TMU 1,638 4,314 3,486 27.52 31.97 28.31
Buffalo 446 1,243 3,556 26.41 11.14 20.73

Table 2: GEC results with test data.

lated sentences4. We sampled the 3,000,000 sen-
tences from English News Crawl 2017 and ex-
cluded the sentences with more than 150 words
for either source- and target-side data. Finally,
the synthetic comparable corpus comprises pro-
cessed News Crawl data listed in Table 1. The low
resource track permitted to use W&I+LOCNESS
(Bryant et al., 2019; Granger, 1998) development
set, so we split it in half; tune data and dev data5.

These data are tokenized by spaCy v1.9.06

and the en_core_web_sm-1.2.0 model. We
used moses truecaser for the training data; this
truecaser model is learned from processed English
News Crawl. We used byte-pair-encoding (Sen-
nrich et al., 2016) learned from processed English
News Crawl; the number of operations is 50K.

The implementation proposed by Artetxe et al.
(2018b)7 was modified to conduct the experi-
ments. Specifically, some features were added;
word-level Levenshtein distance, word-, and
character-level edit operation, operation sequence
model, (Durrani et al., 2013)8 and 9-gram word
class language model, similar to Grundkiewicz
and Junczys-Dowmunt (2018) without sparse fea-
tures. Word class language model was trained with
One Billion Word Benchmark data; the number of
classes is 200, and the word class was estimated
with fastText (Bojanowski et al., 2017). The
distortion feature was not used.
Moses (Koehn et al., 2007) was used to train

the SMT system. FastAlign (Dyer et al.,
2013) was used for word alignment and KenLM
(Heafield, 2011) was used to train the 5-gram lan-
guage model over each processed English News

4Finnish News Crawl 2014—2015 have 6,360,479 sen-
tences.

5Because W&I+LOCNESS data had four types of learner
level, we split it so that each learner level is equal.

6https://github.com/explosion/spaCy
7https://github.com/artetxem/monoses
8Operation sequence model was used in refinement step.

Crawl and One Billion Word Benchmark. MERT
(Och, 2003) was used with the tuning data for
Mˆ2 Scorer (Dahlmeier and Ng, 2012). Syn-
thetic sentence pairs with a [3, 80] sentence length
were used at the refinement step. The number of
iterations N was set to 5, and the embedding di-
mension was set to 300. We decided best iteration
using the dev data and submitted the output of the
best iteration model.

We used pyspellchecker9 as a spell
checker. This tool uses Levenshtein distance to
obtain permutations within an edit distance of 2
over the words included in a word list. We made
the word list from One Billion Word Benchmark
and included words that occur more than five
times.

We report precision, recall, and F0.5 score based
on the dev data and official test data. The output
of dev data was evaluated using ERRANT scorer
(Bryant et al., 2017) similarly to official test data.

3.2 Results
Table 2 shows the results of the GEC experiments
with test data. The F0.5 score for our system
(TMU) is 28.31; this score is eighth among the
nine teams. In particular, the number of false pos-
itives of our system is 4,314; this is the worst result
of all.

4 Discussion

Table 3 shows the results of the dev data listed
in Table 1. On the dev data, the system of itera-
tion 1 is the best among all. According to the im-
provement of iteration from 0 to 1, it is confirmed
that the refinement method works well. However,
it is observed that the system is not improved af-
ter iteration 1. The source-side data is fixed, and
target-side data is generated from the source-side
for each iteration. Therefore, the quality of the

9https://github.com/barrust/pyspellchecker
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iter P R F0.5

Unsupervised SMT 0 12.33 16.13 12.94
w/o spell check 1 17.59 14.63 16.91

2 17.30 14.15 16.56
3 16.04 14.17 15.63
4 17.06 14.01 16.35
5 15.88 13.88 15.44

spell check→ SMT 1 20.58 18.04 20.01
SMT→ spell check 1 19.42 16.86 18.85

Table 3: GEC results with dev data. The bold scores
represent the best score without the spell checker.

source-side data is important for this refinement
method. In this study, we use the automatically
translated text as source-side data; thus, it is con-
sidered that the quality is not high and the refine-
ment after iteration 1 does not work.

The results of Table 3 confirm that the spell
checker works well. We also investigate the im-
portance of the order; SMT or spell check, which
is suitable for the first system for a better result?
As a result, it is better to use the SMT system af-
ter using the spell checker. That is because the
source-side data does not include the misspelled
words as mentioned above.

Table 4 shows the error types that our system
corrected well or mostly did not correct on the dev
data. SPELL means the misspell errors; the cor-
rection of these errors depends only on the spell
checker. PUNCT means the errors about the punc-
tuation; e.g., ‘Unfortunately when we...→ Unfor-
tunately, when we...’. It is considered that our sys-
tem can correct errors such as these owing to the
n-gram co-occurrence knowledge derived from the
language models.

In contrast, our system struggled to correct con-
tent word errors. For example, NOUN includes
an error like this; ‘way → means’ and VERB in-
cludes an error like this; ‘watch → see’. It is con-
sidered that our system is mostly not able to cor-
rect the errors regarding word usage based on the
context because the phrase table was still noisy.
Although we observed some usage error examples
of ‘watch’ in the synthetic source data, our model
was not able to replace ‘watch’ to ‘see’ based on
the context.

5 Related Work

Unsupervised Machine Translation Studies on
unsupervised methods have been conducted for
both NMT (Lample et al., 2018; Marie and Fu-
jita, 2018) and SMT (Artetxe et al., 2018b). In

　 P R F0.5

Top2
SPELL 39.93 59.24 42.71
PUNCT 28.91 38.14 30.38

Bottom2
NOUN 0.87 1.74 0.97
VERB 2.13 0.99 1.73

Table 4: Error types for which our best system cor-
rected errors well or mostly did not correct on the dev
data. Top2 denotes the top two errors, and Bottom2
denotes the lowest two errors in terms of the F0.5

10.

this study, we apply the USMT method of Artetxe
et al. (2018b) and Marie and Fujita (2018) to GEC.
The UNMT method (Lample et al., 2018) was in-
effective under the GEC setting in our preliminary
experiments.

GEC with NMT/SMT Several studies that in-
troduce sequence-to-sequence models in GEC
heavily rely on large amounts of training data. Ge
et al. (2018), who presented state-of-the-art re-
sults in GEC, proposed a supervised NMT method
trained on corpora of a total 5.4 M sentence pairs.
We mainly use the monolingual corpus because
the low resource track does not permit the use of
the learner corpora.

Despite the success of NMT, many stud-
ies on GEC traditionally use SMT (Susanto
et al., 2014; Junczys-Dowmunt and Grund-
kiewicz, 2014). These studies apply an off-
the-shelf SMT toolkit, Moses, to GEC. Junczys-
Dowmunt and Grundkiewicz (2014) claimed that
the SMT system optimized for BLEU learns to not
change the source sentence. Instead of BLEU,
they proposed tuning an SMT system using the
M2 score with annotated development data. In
this study, we also tune the weights with an F0.5

score measured by the M2 scorer because the offi-
cial score is an F0.5 score.

6 Conclusion

In this paper, we described our GEC system for the
low resource track of the shared task at BEA2019.
We introduced an unsupervised approach based
on SMT for GEC. This track prohibited the use
of learner data as training data, so we created a
synthetic comparable corpus using Google Trans-
lation. The experimental results demonstrate that

10We investigate the frequent error types; the errors occur
more than one hundred times in the dev data.
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our system achieved an F0.5 score of 28.31 points
with the test data.
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Abstract

The field of Grammatical Error Correction
(GEC) has produced various systems to deal
with focused phenomena or general text edit-
ing. We propose an automatic way to combine
black-box systems. Our method automatically
detects the strength of a system or the combi-
nation of several systems per error type, im-
proving precision and recall while optimizing
F score directly. We show consistent improve-
ment over the best standalone system in all
the configurations tested. This approach also
outperforms average ensembling of different
RNN models with random initializations.

In addition, we analyze the use of BERT for
GEC - reporting promising results on this end.
We also present a spellchecker created for this
task which outperforms standard spellcheckers
tested on the task of spellchecking.

This paper describes a system submission
to Building Educational Applications 2019
Shared Task: Grammatical Error Correc-
tion(Bryant et al., 2019).

Combining the output of top BEA 2019 shared
task systems using our approach, currently
holds the highest reported score in the open
phase of the BEA 2019 shared task, improving
F0.5 by 3.7 points over the best result reported.

1 Introduction

Unlike other generation tasks (e.g. Machine
Translation and Text Summarization), Grammat-
ical Error Correction (GEC) contains separable
outputs, edits that could be extracted from sen-
tences, categorized (Bryant et al., 2017) and eval-
uated separately (Choshen and Abend, 2018a).
Throughout the years different approaches were
considered, some focused on specific error types
(Rozovskaya et al., 2014) and others adjusted sys-
tems from other tasks (Zhao et al., 2019). While

∗Contributed equally

the first receive high precision, the latter often
have high recall and differ in what they correct. To
benefit from both worlds, pipelines (Rozovskaya
and Roth, 2016) and rescoring hybrids (Grund-
kiewicz and Junczys-Dowmunt, 2018) were intro-
duced. Another suggested method for combining
is average ensembling (Junczys-Dowmunt et al.,
2018), used when several end to end neural net-
works are trained.

As single systems tend to have low recall
(Choshen and Abend, 2018b), pipelining systems
may propagate errors and may not benefit from
more than one system per error. Rescoring reduces
recall and may not be useful with many systems
(Grundkiewicz and Junczys-Dowmunt, 2018). We
propose a new method for combining systems (§4)
that can combine many systems and relies solely
on their output, i.e., it uses systems as a black-box.
We show our system outperforms average ensem-
bling, has benefits even when combining a single
system with itself, and produces the new state of
the art by combining several existing systems (§5).

To develop a system we trained GEC systems
and gathered outputs from black-box systems (§3).
One of the most frequent error types is spelling
errors, we compared off of the shelf spellcheck-
ers, systems developed for this error type specifi-
cally, to a new spellchecker (§3.1), finding that our
spellchecker outperforms common spellcheckers
on the task of spellchecking.

Another system tested was modifications of
BERT (Devlin et al., 2018) to correct errors, al-
lowing for less reliance on parallel data and more
generalizability across domains (§3.4).

Lastly, we tested generating synthetic errors
(Felice and Yuan, 2014) as a way to replace data in
an unsupervised scenario. While finding that mim-
icking the error distribution and generating errors
on the same domain is better, we did not eventu-
ally participate in the low-resource track.
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2 Data

2.1 Preprocessing

Many systems assume the input is standard un-
tokenized English sentences. In these cases, we
detokenized the input data sets and then tokenized
again to perform the combination and evalua-
tion steps. For training the Nematus network,
we passed the data tokenization and truecasing
(Koehn et al., 2007) and trained BPE (Sennrich
et al., 2015).

2.2 Synthetic Error Generation

Generating training data for the GEC problem is
expensive and slow when done manually by hu-
man annotators. Most machine-learning based
systems today benefit from the quantity and rich-
ness of the training data, therefore, generating syn-
thetic data has a lot of potential, as was also shown
in previous work (Felice and Yuan, 2014). We
generate data with errors by applying corrections
backwards. Meaning, if a correction adds a miss-
ing word X to a sentence, to produce the cor-
responding error we remove X from a sentence.
And if a correction removes a redundant word X
from a sentence, to produce the corresponding er-
ror we add word X in a random location in a sen-
tence. And if a correction replaces word X with
word Y in a sentence, to produce the correspond-
ing error we replace word Y with word X in a
sentence. In order to preserve the distribution of
errors as found in the W&I+LOCNESS train data
set, we analyze it and measure the distribution of
corrections in it. We measure the distribution of
number of corrections in a sentence and distribu-
tion of specific corrections. Using these distri-
butions and a corpus of gold (correct) sentences
we produce errors with similar distributions. We
first randomly select the number of corrections in
a sentence according to the distribution measured
before. Then, we randomly select specific correc-
tions according to the distribution of corrections.
We then find all sentences where all corrections
can be applied backwards and pick one of them
randomly. Lastly, we generate the errors in the
sentence and add the gold sentence and error sen-
tence to corresponding output files.

3 Systems

3.1 Constructing a spellchecker

Many tools are available for spelling correction.
Yet, with a few heuristics we managed to get a
comparatively high result. As by Errant (Bryant
et al., 2017), our spellchecker receives a better
F0.5 score of spelling (type R:SPELL) than other
leading open-source spell-checkers. A compari-
son can be found at §5.1.

Our method of correcting spelling mistakes is
as follows. As a preprocessing stage, we go over
a large monolingual corpus - specifically a 6 mil-
lion sentences corpus taken from books in project
Gutenberg1. We count the number of occurrences
of each word (in it’s surface form), skipping words
with less than 3 characters and words that are not
composed exclusively of letters. We also use an
English dictionary (both US and GB) from Libre-
Office site 2 for enriching our data with English
words that are not in our books corpus. When cor-
recting a sentence, we find words that are not in
our word-count (or in it and have a count below
3) nor in the Dictionary. Skipping words with dig-
its or if it was all upper case. These words are
suspected to be misspelled and we try to correct
them.

For every misspelled word we try to find a re-
placement word by going over the words in the
word-count data (words with count greater than
20) in a descending order of occurrences. For
each suggested word, we check if it can be con-
sidered as a correction for the misspelled word by
two methods. First, we check if the original word
and the candidate correction differ from each other
by swapping two characters. If not, we calculate
the distance between the two words using Leven-
shtein distance (Levenshtein, 1966) and check if
the distance is 1. We return the most frequent word
that satisfies one of these conditions . If no candi-
date is found, we do the same with all words in
the dictionary in a lexicographical order. If still
no candidate is found, we check if we can split
the misspelled word into two words that are in our
word-count data or in the dictionary.

3.2 Nematus

We trained 4 neural machine translation systems
based on Nematus (Sennrich et al., 2017) Trans-

1https://www.gutenberg.org
2https://cgit.freedesktop.org/

libreoffice/dictionaries/tree/en
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former (Vaswani et al., 2017) implementation. All
parameters used are the ones suggested for the
2017 Workshop on Machine Translation 3. As
training data we used all the restricted data, i.e.,
FCE (Dale and Kilgarriff, 2011), LANG8 (Mizu-
moto et al., 2011), NUCLE (Dahlmeier et al.,
2013) and W&I+LOCNESS (Bryant et al., 2019;
Granger, 1998) (upsampled 10 times). Each of
the four trained models was regarded as a separate
correction method and all systems were combined
using our method (§4), this was especially benefi-
cial as ensembling is not yet implemented for the
transformer. See §5.4 for comparison of the two
ensembling methods over RNN based Nematus.

3.3 Off the shelf

LanguageTool. LanguageTool is a free gram-
mar correction tool mainly based on spellchecking
and rules. We used language tool programmatic
API to obtain all the possible corrections and ap-
plied all the suggestions.

Grammarly. Grammarly is the company own-
ing the world leading grammar correction product,
as such it is the obvious candidate to be used as a
component and to assess the potential of combin-
ing black box systems. We used their free web
interface to correct the dev and test sets. Gram-
marly does not support a programmatic API, so
this process was manual. We uploaded the texts af-
ter detokenization into the web interface. For each
suggested correction, we took the top prediction
without human discretion. The reason to choose
the top prediction was to allow combining using a
single reference of Grammarly.

Spelling correction. We tested Enchant, Jam-
Spell and Norvig spellcheckers, finding our
spellchecker outperforms those in terms of
spelling correction (See §5).

3.4 BERT

BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2018) is a
language representation model. BERT is ex-
tremely effective in general purpose tasks, among
its virtues, BERT holds a syntactic understand-
ing of a language (Goldberg, 2019). Initial pre-
training of BERT was performed over a large cor-
pora jointly on two tasks: (1) Masked Language

3https://github.com/EdinburghNLP/
wmt17-transformer-scripts

Model - randomly replace words with a predefined
token, [MASK], and predict the missing word. (2)
Next Sentence Prediction - given a pair of sen-
tences A and B, does sentence B follow sentence
A.

Our general approach for using BERT to solve
the GEC task is by iteratively querying BERT as
a black box language model, reminding former
use of language models (Dahlmeier and Ng, 2012;
Bryant and Briscoe, 2018). To detect missing
words we add [MASK] between every two words,
if BERT suggests a word with high confidence, we
conclude that this word is missing in this gap. To
detect unnecessary words, we replace words with
the [MASK] token and if all the suggestions re-
turned from BERT have a low probability, we con-
clude that the masked word was unnecessary. For
replacing words, we perform the same procedure
by replacing each word with [MASK] and check-
ing if BERT returns a different word with high
probability.

The described process produces many unde-
sired replacements/deletions due to BERT’s ver-
satile nature, for example, given a sentence such
as:

There are few ways to get there.

BERT may suggest replacing few with many.
Such a replacement preserves the grammatically
soundness of the sentence, but alters the seman-
tic meaning. Hence, although possibly improving
fluency, arguably the true goal of GEC (Napoles
et al., 2017), this behaviour does not align with
the goals of GEC requiring semantic preservation
(Choshen and Abend, 2018c). In order to focus the
exploration space of BERT’s suggestions, we limit
replacements/deletions to operate within a prede-
fined word set. The word sets considered included
syntactically interchangeable words, often sharing
some semantic properties. When considering a re-
moval correction, we remove a word only if the
returned values from BERT are not in the same
word-set as the replaced word. Replacement is al-
lowed only within the same word set. For exam-
ple, a typical mistake which occurred frequently
in the dataset is wrong usage of determiners such
as a and an, given the word set {a, an} and the
sentence:

Is that a armadillo?

The mechanism described limits the replace-
ment correction options to suggest making a
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replacement-correction of a with an to result with
the corrected sentence

Is that an armadillo?

At each iteration of this process, a correction
(addition/replacement/deletion) is performed and
the resulting sentence is then used as the input to
the next iteration. Each replacement/addition of
the [MASK] token is a single candidate for a spe-
cific correction. Given an input sequence, each
possible correction gives rise to a different candi-
date which is then sent to BERT. The most proba-
ble correction (above a minimal threshold) is then
selected, this process accounts for one iteration.
The resulting sentence is then processed again and
the best correction is chosen until all corrections
have a low probability in which case the sentence
is assumed to be correct.

The above mechanism with threshold values be-
tween 0.6 and 0.98 did not yield satisfying re-
sults. For this reason, in the submitted system
we limit the mechanism significantly, ignoring ad-
ditions and deletions to focus solely on the re-
place corrections. Word sets were chosen from
the most frequent errors in the training data across
different error types (excluding punctuation marks
R:PUNCT).

Another approach for using BERT is by fine-
tuning BERT to the specific data at hand. Since the
GEC task is naturally limited to specific types of
errors, we fine-tuned the Masked Language Model
task using synthetic data. Instead of randomly re-
placing words with the [MASK] token, we replace
only specific words in a distribution which mim-
ics the training data. This process should create a
bias in the language model towards the prediction
of words which we want to correct. Unfortunately,
these efforts did not bear fruit. The authors believe
a more extensive exploration of experimental set-
tings may prove beneficial.

4 Combining systems

Combining the output of multiple systems has the
potential to improve both recall and precision. Re-
call is increased because typically different sys-
tems focus on different aspects of the problem and
can return corrections which are not identified by
other systems (Bryant et al., 2017). Precision can
be increased by utilizing the fact that if multiple
systems predict the same annotations, we can be
more confident that this correction is correct.

The outputs of Seq2Seq models, differing in
training parameters, can be merged using an en-
semble approach, where the predictions of the
models for each possible word in the sequence
are used to compute a merged prediction. It was
shown that even an ensemble of models trained
with the same hyperparameters but with different
instances of random initialization can yield benefit
(Junczys-Dowmunt et al., 2018).

The idea of automatically combining multiple
system outputs is not new to other fields and was
successfully used in the Named Entity Recogni-
tion (NER) and Entity linking (EL) tasks. Jiang
et al. (2016) evaluated multiple NER systems and
based on these results, manually selected a rule
for combining the two best systems, building a
hybrid system that outperformed the standalone
systems. Ruiz and Poibeau (2015) used the pre-
cision calculated on a training corpus to calcu-
late a weighted vote for each EL output on un-
seen data. Dlugolinskỳ et al. (2013) used deci-
sion tree classifier to identify which output to ac-
cept. They used a feature set based on the overall
text, NE surface form, the NE type and the over-
lap between different outputs. In GEC, combining
was also proposed but was ad-hoc rather than auto-
matic and general. Combining was done by either
piping (Rozovskaya and Roth, 2016), where each
system receives the output of the last system, or
correction of specific phenomena per system (Ro-
zovskaya and Roth, 2011), or more involved meth-
ods tailored to the systems used (Grundkiewicz
and Junczys-Dowmunt, 2018). This required man-
ual adjustments and refinements for every set of
systems.

Evaluating by a corpus level measure such
as F score renders combining systems diffi-
cult. Systems developed towards F0.5 tend to
reduce recall improving precision (Choshen and
Abend, 2018b), while avoiding catastrophic errors
(Choshen and Abend, 2018c) this behaviour might
reduce the flexibility of the combination. It is pos-
sible to tune systems to other goals (e.g. recall)
(Grundkiewicz and Junczys-Dowmunt, 2018) and
thus achieve more versatile systems, but that is not
the case when using black-box systems, and hence
left for future inspection.

System pair. We propose a method to combine
multiple systems by directly optimizing Fβ for a
chosen β, in the field 0.5 is usually used. We begin
by considering a combination of two systems
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1. Given a development set, where E are the
sentences with errors and G are the gold an-
notations, generate M2

gold file, which con-
tains all the gold corrections to the sentences.

2. Correct E with each of the systems, to re-
ceive corrected sentences hypothesis Hi.

3. GenerateM2
i for each system i by comparing

the systems’ output Hi and the E input.

4. Split the annotations of the systems into three
subsets: H1\2 - all the suggested annotations
of system1 which were not suggested by
system2; H2\1 - all the suggested annota-
tions of system2 which were not suggested
by system1; andH1∩2 - all the suggested an-
notations in common.

5. Generate M2 files for each of the three sets:
M2

1\2, M2
1\2, M2

1∩2.

6. Evaluate the performance on each of the
three subsets of annotations, split by error
type, by comparing M2

subset with M2
gold. For

each subset and each error type, we obtain
TP error−typesubset , FP error−typesubset , FN error−type

subset .

7. Define selection variables Serror−typesubset which
determine the probability an edit of the spe-
cific error type in a specific subset of edits
will be used. According to the way subsets
were built, each edit corresponds to exactly
one subset (e.g. 1 \ 2).

8. For all error types and subset of ed-
its, compute the optimal selection variables
Serror−typesubset that maximize fβ by solving

0 ≤ Serror−typesubset ≤ 1

total =
∑

t∈error−type
TP t1∩2 + FN t

1∩2

TP =
∑

t∈error−type,s∈subset
TP ts ∗ Sts

FP =
∑

t∈error−type,s∈subset
FP ts ∗ Sts

FN = total − TP
Sopt = argmax

S
fβ(TP, FP, FN)

This is a convex optimization problem with
linear constraints and pose no difficulty to
standard solvers.

Sopterror−typesubset need not be integer, although in
practice they usually are. 4. In our submission,
for simplicity, we avoid these cases and round
Sopterror−typesubset to nearest integer value (either 0 or
1). But our implementation allows sampling.

A major concern is to what extent does the pre-
cision and recall statistics per error type and subset
on the development set represent the actual distri-
bution expected during inference on unseen data.
Assuming the development set and the unseen are
sampled from the same distributions, the confi-
dence is correlated with the number of samples
seen for each error-type and subset.

Assuming errors come from a binomial distri-
bution, we try to estimate the conditional prob-
ability P (|prectest − precdev| < 0.15 | precdev).
Given more than 20 samples, the probability for
15% difference in development and test precision
is 14.5%, and if there are 50 samples, this proba-
bility drops to 2.8%. In the experiments, we ignore
error-types where there are less than 2 samples.

The process of correcting an unseen set of sen-
tences T is as follows:

1. Correct T by every system i, to receive cor-
rected sentences hypothesis Hi .

2. Generate M2
i files for each system by com-

paring the systems’ output Hi and the T in-
put.

3. Split the annotations of the systems into three
sets: H1\2 , H2\1 , and H1∩2 .

4. Generate M2 files for each of the three sets:
M2

1\2, M2
2\1, M2

1∩2.

5. Remove all annotations from the M2 files for
which Sopterror−typesubset = 0.

6. Merge all the annotations from the modified
M2

1\2,M2
2\1, andM2

1∩2 files to createM2
final.

If there are overlapping annotations - we cur-
rently select an arbitrary annotation.

7. Apply all the corrections in M2
final to T and

receive the final output.

In Table 1, we present the results of the most
frequent error types when combining two systems,

4Non integer value can occur when a 0 value yields high
precision and low recall, and a 1 value yields low precision
and high recall. In this case, randomly selecting a subset of
the corrections will yield a medium recall and medium preci-
sion, which maximizes fβ
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Nematus and Grammarly. As expected, the preci-
sion on corrections found by both systems is sig-
nificantly higher than those found by a single sys-
tem. For correction type ’R:OTHER’, for exam-
ple, the precision on common corrections is 0.67,
compared to 0.17 and 0.28 of the respective stan-
dalone systems. Therefore, the optimal solution
uses only the corrections produced by both sys-
tems. We can also see that in some error types
(e.g., R:SPELL or R:DET) the precision of cor-
rections identified by the Nematus system is low
enough that the optimization algorithm selected
only the corrections by Grammarly.

Multiple systems. When N > 2 systems are
available, it is possible to extend the above ap-
proach by creating more disjoint subsets, which
include any of the 2N subsets of corrections.
When N is large, many of these subsets will be
very small, and therefore may not contain mean-
ingful statistics. We propose an iterative approach,
where at each step two systems are combined. The
results of this combination can be then combined
with other systems. This approach works better
when the development set is small, but can also
suffers from over-fitting to the dev set, because
subsequent combination steps are performed on
the results of the previous merges steps, which
were already optimized on the same data set.

5 Experiments

As our system is based on various parts and mainly
focuses on the ability to smartly combine those,
we experiment with how each of the parts work
separately. A special focus is given to combining
strong components, black-box components and
single components as combining is a crucial part
of the innovation in this system.

5.1 Spell checkers’ comparison

We’ve compared our home-brewed spell-checker
with JamSpell5, Norvig6 and ENCHANT7. When
comparing the results over all error categories,
our spell-checker has relatively low results (See
Table 2). However, when comparing the results
in spelling (R:SPELL) category alone, our spell-
checker excels (See Table 3).

5https://github.com/bakwc/JamSpell
6https://github.com/barrust/

pyspellchecker
7https://github.com/AbiWord/enchant

5.2 Nematus

We trained Nematus using several different data
sets. First, we trained using only the W&I train
set data, we then added Lang8, FCE and Nucle
data sources. Since Lang8 is significantly larger
than W&I train set, inspired by Junczys-Dowmunt
et al. (2018), we upsampled W&I 10 times so that
it will have more significant effect on the training
process. This procedure improved results signifi-
cantly (See Table 4).

5.3 Synthetic Error Generation

We also tried training Nematus over synthetic er-
rors data. We generated errors using data from two
different domains. Books from project Gutenberg
and gold sentences from W&I train set. Addition-
ally, we varied data sizes and observed the effect
on the results (See Table 5). These experiments
show that relying on the source domain is crucial
and it is best to generate data using text from sim-
ilar domain. When using the synthetic W&I train
set we reached a score that is just a little lower
than the score when training over W&I train set di-
rectly (0.19 vs 0.23). This might suggest that there
is potential in using synthetic data when combined
with other data sets and promise for synthetic data
methods for unsupervised GEC.

5.4 Combining

The experiments regarding combining were per-
formed on the dev set, which was not used for
training the systems. The dev set was split to two
randomly. The optimal selection of error-types
and subsets to combine was done on one half, and
we report system results on the second half. For
example, when combining the output of the Ne-
matus and Grammarly systems under 10 different
fold partitions, the average F0.5 improvement over
the best of the two systems was 6.2 points, with
standard deviation of 0.28 points.

Improvement of a single tool. Even given a
single system, we are able to improve the sys-
tem’s performance by eschewing predictions on
low performing error types. This filtering proce-
dure has a minor effect and is exemplified in Table
6. While such findings are known to exist implic-
itly by the cycles of development (Choshen and
Abend, 2018b), and were suggested as beneficial
for rule based and statistical machine translation
systems when precision is 0 (Felice et al., 2014),
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error-type Frequency S1\2 P1\2 R1\2 S1∩2 P1∩2 R1∩2 S2\1 P2\1 R2\1
R:PUNCT %4 1.0 0.47 0.15 0.0 0.0 0.0 1.0 0.4 0.01
U:DET %4 1.0 0.38 0.07 1.0 0.77 0.15 1.0 0.51 0.2
R:VERB %5 1.0 0.5 0.02 0.0 1.0 0.01 1.0 0.57 0.02
M:DET %5 0.0 0.29 0.05 1.0 0.68 0.12 1.0 0.4 0.31
R:ORTH %5 0.0 0.28 0.22 1.0 0.86 0.13 1.0 0.46 0.18
R:SPELL %5 0.0 0.32 0.04 1.0 1.0 0.11 1.0 0.66 0.65
R:VERB:TENSE %5 1.0 0.54 0.15 0.0 0.0 0.0 0.0 0.0 0.0
R:PREP %6 1.0 0.37 0.07 1.0 0.72 0.07 1.0 0.56 0.1
R:OTHER %11 0.0 0.17 0.02 1.0 0.67 0.02 0.0 0.28 0.04
M:PUNCT %15 1.0 0.55 0.17 1.0 0.68 0.06 1.0 0.38 0.12

Table 1: Combination statistics of the most common error types over two systems - Nematus and Grammarly

All Categories P R F0.5

Norvig 0.5217 0.0355 0.1396
Enchant 0.2269 0.0411 0.1192
Jamspell 0.4385 0.0449 0.1593
our 0.5116 0.0295 0.1198

Table 2: Comparison of Grammatical Error Perfor-
mance of Spellcheckers. Jamspell achieves the best
score as previously suggested.

R:SPELL P R F0.5

Norvig 0.5775 0.6357 0.5882
Enchant 0.316 0.6899 0.3544
Jamspell 0.5336 0.6977 0.5599
our 0.6721 0.5297 0.6378

Table 3: Comparison of spellcheckers on spelling. Our
method outperforms other methods.

to the best of our knowledge we are the first to re-
port those results directly, on non trivial precision
with neural network based systems. In explicitly
filtering corrections by error types we gain two ad-
ditional benefits over the mere score improvement.
First, the weak spots of the system are empha-
sized, and work might be directed to improving
components or combining with a relevant strong
system. Second, the system itself is not discour-
aged or changed to stop producing those correc-
tions. So, if future enhancement would improve
this type of errors enough, it will show up in re-
sults, without discouraging smaller improvements
done on the way.

Restricted track. In Table 7 we present the re-
sults of our shared task restricted track submis-
sion. The submission includes four Nematus
models, our spellchecker, and Bert based system

Training Data P R F0.5

W&I train set 0.3187 0.1112 0.232
W&I train set
+ lang8 + FCE

0.4604 0.0742 0.225

W&I train set
(upsampled X 10)

+ Lang8 + FCE + Nucle
0.4738 0.1529 0.333

Table 4: Nematus performance on W&I dev set by
training data. The use of more data improves the sys-
tem, but only when the training from the domain is up-
sampled.

Data Source Size (sentences) F0.5

Gutenberg Books 650,000 0.1483
Gutenberg Books 7,000,000 0.1294

W&I train set 1,300,000 0.1919

Table 5: Size of synthetic datasets and Nematus scores
when trained on them.

(§3.4). This generated a 6 point improvement on
the dev set of f0.5 when compared the best stan-
dalone Nematus model.

Off the shelf systems. As can be seen in Ta-
ble 8 when we combine the system with several
off the self systems, we get 3 point improvement
over the restricted baseline, and a 9 point improve-

System P R F0.5

Language Tool 0.2905 0.1004 0.2107
Filtered Language Tool 0.4005 0.0889 0.2355

Grammarly 0.4846 0.1808 0.3627
Filtered Grammarly 0.5342 0.1715 0.3754

Nematus 0.52 0.1751 0.373
Filtered Nematus 0.554 0.1647 0.3761

Table 6: Change in performance when avoiding hard
errors.
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System P R F0.5

(1) Nematus1 0.4788 0.1544 0.3371
(2) Nematus2 0.4839 0.1583 0.3429
(3) Nematus3 0.4842 0.1489 0.3338
(4) Nematus4 0.4843 0.1502 0.3352

(5) Spellchecker 0.5154 0.0308 0.1242
(6) Bert 0.0132 0.0147 0.0135

1+2 0.4972 0.1854 0.3721
1+2+3 0.5095 0.1904 0.3816

1+2+3+4 0.4926 0.2017 0.3824
1+2+3+4+5 0.5039 0.2233 0.4027

1+2+3+4+5+6 0.5029 0.2278 0.4051

Table 7: Performance of systems and iterative combi-
nation of them. Combination improves both precision
and recall even using low performing systems.

ment over the best standalone system. This im-
plies there is a promise in combining existing ap-
proaches which we can’t improve ourselves to har-
ness some of their correction power. 8

System P R F0.5

(1) Restricted-best 0.5029 0.2278 0.4051
(2) Language Tool 0.2699 0.0955 0.1977

(3) Grammerly 0.4783 0.1825 0.3612
(4) Jamspell 0.423 0.0413 0.1484

1+2 0.5274 0.2175 0.4105
1+2+3 0.522 0.2656 0.4375

1+2+3+4 0.5221 0.2641 0.4367

Table 8: Combining with off the shelf systems helps.

Ensemble VS Combining models results. Ne-
matus has average ensembling built-in which en-
ables inference over several RNN models by per-
forming geometric average of the individual mod-
els’ probability distributions. Combining outper-
forms the built-in ensemble by almost 4 points
(See Table 9). It is also important to note that
while average ensemble improves precision, it re-
duces recall. Combination is balancing precision
and recall, improving both, in a way that maxi-
mizes F0.5. The last observation is far from trivial
as most ways to combine systems would empha-
size one or the other, e.g., piping would support
mainly recall perhaps reducing precision. Lastly,
combining is based on the types of errors and is
linguistically motivated, and hence could be fur-

8Although some of the systems use only rules and non-
parallel data, we did not include them in our submission to
the restricted tracked, as we are not their originators.

ther improved by smart categorization and per-
haps improvements of automatic detection (Bryant
et al., 2017).

System P R F0.5

(1) Nematus RNN 1 0.4676 0.1157 0.2908
(2) Nematus RNN 2 0.4541 0.1223 0.2944
(3) Nematus RNN 3 0.484 0.1191 0.3002
(4) Nematus RNN 4 0.4839 0.1184 0.2991
1+2+3+4 ensemble 0.5577 0.1131 0.3122

1+2+3+4 combination 0.4861 0.166 0.3508

Table 9: Combining fares better compared to ensemble.

Combining the shared task systems. After the
completion of the competition test phase, several
teams agreed to release their outputs on the dev
and test set. We combined them using the entire
dev set and submitted the results to the open phase
of the restricted track for evaluation. This achieves
a 3.7 point improvement in F0.5 and a 6.5 point
improvement in precision over the best standalone
results (See Table 10). This means this combina-
tion is the best result currently known in the field
as assessed by the BEA 2019 shared task.

System P R F0.5

(1) UEDIN-MS 72.28 60.12 69.47
(2) Kakao&Brain 75.19 51.91 69.00

(3) Shuyao 70.17 55.39 66.61
(4) CAMB-CUED 66.75 53.93 63.72

1+2 78.31 58.00 73.18
3+4 74.99 54.41 69.72

1+2+3+4 78.74 56.04 72.84

Table 10: Test set results when combining systems
from the competition used as black boxes. The com-
bination is the new state of the art.

6 Conclusion and Future Work

In this paper, we have shown how combining mul-
tiple GEC systems, using a pure black-box ap-
proach, can improve state of the art results in the
error correction task.

Additional variants of this combination ap-
proach can be further examined. The approach
can work with any disjoint partition systems’ cor-
rections. We can consider combining more than
2 systems at the same time, or we can consider
more refined subsets of two systems. For exam-
ple, the setH1\2 of all the suggested corrections of
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system1 which were not suggested by system2,
can be split to the two sets: H1overlapping2 and
H1non−overlapping2, the former containing correc-
tions of system 1 which have an overlapping (but
different) corrections by system2, and the later
corrections of system1 which have no overlap
with any annotation of system2.

Several other approaches can be taken. The
problem can be formulated as multiple-sequence
to single sequence problem. The input sequences
are the original text and n system corrections. The
output sequence is the combined correction. Dur-
ing training, the gold correction is used. Given
sufficient labeled data, it may be possible for such
a system to learn subtle distinctions which may re-
sult in better combinations without relying on sep-
arating error types or iterative combinations.

In addition, we harnessed Bert for GEC and
showed a simple spellchecking mechanism yields
competitive results to the leading spellcheckers.
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Abstract

It has been demonstrated that the utiliza-
tion of a monolingual corpus in neural
Grammatical Error Correction (GEC) sys-
tems can significantly improve the system
performance. The previous state-of-the-
art neural GEC system is an ensemble of
four Transformer models pretrained on a
large amount of Wikipedia Edits. The
Singsound GEC system follows a similar
approach but is equipped with a sophis-
ticated erroneous data generating compo-
nent. Our system achieved an F0.5 of 66.61
in the BEA 2019 Shared Task: Grammat-
ical Error Correction. With our novel er-
roneous data generating component, the
Singsound neural GEC system yielded an
M2 of 63.2 on the CoNLL-2014 bench-
mark (8.4% relative improvement over the
previous state-of-the-art system).

1 Introduction

The most effective approaches to Grammatical
Error Correction (GEC) task are machine trans-
lation based methods. Both Statistical Machine
Translation (SMT) approaches and Neural Ma-
chine Translation (NMT) methods have achieved
promising results in the GEC task.

Pretraining a decoder as a language model is
an effective method to improve the performance
of neural GEC systems (Junczys-Dowmunt et al.,
2018). As an extension of this work, Lichtarge et
al. (2018) showed pretraining on 4 billion tokens
of Wikipedia edits to be beneficial for the GEC
task.

In this work, we investigate a similar approach
by systematically generating parallel data for pre-
training. As shown in Table 1, in addition to
spelling errors (price → puice), transposition er-
rors (independent voters → voters independent)
and concatenation errors (the man→ theman), our

Origin
the primary is open to independent
voters .

Generated
the primary is opens to voters
independhent .

Origin
the price of alcohol is ramped up
at every budget .

Generated
the puice of alchool is ramping up
at every budget .

Origin
they say the police shot and killed
the man after he had fired at them .

Generated
they say the polices shot and killed
theman after he had firing at them .

Table 1: Examples of generated data.

method also introduces errors such as ramped →
ramping. Our approach obtained competitive re-
sults compared to the top systems in the BEA 2019
GEC Shared Task. Both our single model and en-
semble models have exceeded the previous state-
of-the-art systems on the CoNLL-2014 (Ng et al.,
2014) benchmark and our system reaches human-
level performance on the JFLEG (Napoles et al.,
2017) benchmark.

2 Related Work

Chollampatt and Ng (2018) used a convolutional
sequence-to-sequence (seq2seq) model (Gehring
et al., 2017) with a large language model for
rescoring. Their model was the first NMT
based GEC system that exceeded the strong SMT
baseline system (Junczys-Dowmunt and Grund-
kiewicz, 2016) which combined a Phrase-based
Machine Translation (PBMT) with a large lan-
guage model. Then a hybrid PBMT-NMT sys-
tem (Grundkiewicz and Junczys-Dowmunt, 2018)
appeared to reach the new state-of-the-art on the
CoNLL-2014 benchmark. Later, various pure neu-
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Corpus Sentences Tokens Anno.
WMT11 115M 2362M No
1B words 30M 769M No
Lang-8 1037K 12M Yes
NUCLE 57K 1.2M Yes
FCE 28K 455K Yes
ABCN 34K 628K Yes

Table 2: Statistics for training data sets.

Corpus Sentences Scorer
ABCN dev 4384 ERRANT
ABCN test 4477 ERRANT
JFLEG test 747 GLEU
CoNLL-2014 test 1312 M2 Scorer

Table 3: Statistics for test and development data.

ral systems (Ge et al., 2018; Junczys-Dowmunt
et al., 2018; Lichtarge et al., 2018) reported state-
of-the-art results successively. Ge et al. presented
the fluency boosting method which was demon-
strated to be effective to improve performance of
GEC seq2seq models. The system proposed by
Junczys-Dowmunt et al. (2018) is an ensemble of
Transformer models (Vaswani et al., 2017); they
pretrained the decoder of transformer as a lan-
guage model on a large monolingual corpus. To
our best knowledge, the current state-of-the-art
GEC system on both the CoNLL-2014 benchmark
and the JFLEG benchmark is the system presented
by Lichtarge et al. (2018), which is an ensemble of
four Transformer models pretrained on Wikipedia
revisions and then fine-tuned on Lang-8 (Mizu-
moto et al., 2011).

3 Data

We list the training data in Table 2. The text
data used to generate parallel corpus automatically
was the One Billion Words Benchmark dataset
(1B words) (Chelba et al., 2013) and the WMT11
monolingual corpus (WMT11) which can be ob-
tained from WMT11 Website1. Our fine-tuning
data is Lang-8 (Mizumoto et al., 2011; Tajiri et al.,
2012), NUS Corpus of Learner English (NUCLE)
(Dahlmeier et al., 2013), FCE (Yannakoudakis
et al., 2011), the Cambridge English Write & Im-
prove (W&I) corpus and the LOCNESS corpus
(ABCN) (Granger, 1998; Bryant et al., 2019) .

1http://statmt.org/wmt11/
training-monolingual.tgz

Length Err. Prob.

[1, 3)
0 0.50
1 0.50

[3, 6)
1 0.50
2 0.50

[9, 16)

3 0.15
4 0.25
5 0.30
6 0.30

[20, 30)

4 0.10
5 0.15
6 0.15
7 0.30
8 0.30

Length Err. Prob.

[6, 9)
2 0.30
3 0.45
4 0.25

[16, 20)

3 0.10
4 0.15
5 0.15
6 0.30
7 0.30

[30,∞)

5 0.10
6 0.15
7 0.15
8 0.30
9 0.30

Table 4: Probability distribution of sentence errors.

Table 3 shows the development and test data
sets in our experiments. We choose the ABCN
dev set as our development set and the ABCN test,
the CoNLL-2014 test, the JFLEG as our bench-
mark. For these benchmarks, we report precision
(P ), recall (R) and F0.5 with ERRANT (Bryant
et al., 2017) on the ABCN test, GLEU (Sakaguchi
et al., 2016) on the JFLEG test set (Napoles et al.,
2017). To compare with previous state-of-the-art
systems, we provide results of MaxMatch (M2)
Scorer (Dahlmeier and Ng, 2012) on the CoNLL-
2014 test set.

4 Erroneous Data Generation

In this section, we describe our error generating
method. For each sentence, we assign a proba-
bility distribution (as shown in Table 4) to deter-
mine the number of errors according to the sen-
tence length. The parameters in Table 4 are de-
termined empirically, as well as the parameters in
Table 5, Table 6 and Table 7. Because of the time
limitation of the GEC competition, we did not op-
timize these parameters.

After the number of errors (E) in a sentence
has been determined, we randomly select E to-
kens from all the tokens of the sentence with equal
probability to be errors. And for each error, we
apply a random variable (Table 5) to determine
which error type it should be.

We introduce five error types:

• Concatenation: combine two consecutive to-
kens, e.g., hello world→ helloworld.

• Misspelling: introduce spelling errors into
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Type Prob.
Concatenation 0.12
Misspell 0.45
Substitution 0.40
Deletion 0.00
Transposition 0.03

Table 5: Error types.

Tok. length Err. Prob.
[1, 3) 0 1.00
[3, 5) 1 1.00

[5, 10)
1 0.80
2 0.20

[10,∞)
1 0.75
2 0.15
3 0.10

Table 6: Number of misspells in a token.

Type Prob.
Deletion 0.30
Insertion 0.15
Transposition 0.25
Replacement 0.30

Table 7: Mispell types.

words, e.g., computer→ camputer.

• Substitution: we introduce seven different
types of substitutions.

• Deletion: delete the token.

• Transposition: the token exchange position
with a consecutive token.

4.1 Misspelling

To generate misspellings, we introduce a random
variable to determine how many errors in the to-
ken according to the token length (parameters are
shown in Table 6.), and we randomly insert errors
into the token.

For each spelling error, we apply another ran-
dom variable to determine which error type should
be. We introduce four spelling error types (Table
7 lists the parameters.).

• Deletion: delete the character.

• Insertion: insert a random English letter into
the current position.

• Transposition: exchange position with the
consecutive character.

• Replacement: replace the current character
with a random English character.

We only introduce spelling errors into words be-
longing to a vocabulary list of 32k ordinary words2

which does not include numerals (e.g., 2019), to-
kens that contain digits (e.g., Lang8), URLs or
non-word symbols (e.g., ≥ 5 ≤).

4.2 Substitution

We introduce seven types of substitutions accord-
ing to token and its part-of-speech (POS).

• Substitution between Prepositions. E.g., in,
on, at, through, for, with.

• Substitution between Articles. E.g., a, an,
the.

• Substitution between Pronouns (Singular).
E.g., he, she, his, him, her, hers.

• Substitution between Pronouns (Plural). E.g.,
their, them, they, theirs.

• Substitution between Wh words. E.g., which,
where, what, how, when, who, whose, whom.

• Substitution between Modal verbs. E.g., will,
shall, can, may, would, could, might.

• Substitution in a Word Tree (see 4.3 for de-
tails).

4.3 Word Tree

We want to make substitutions such as going →
gone, useful → usable, administration → admin-
istrative. To make such substitution possible, we
introduce the Word Tree.

A Word Tree represents a group of words that
share the same stem but have different suffixes.
Figure 1 shows an example of Word Tree of ”use”.
A node denotes a word (e.g., usable) and corre-
sponding Extended part-of-speech (EPOS) (e.g.,
VBP JJ BLE) (see 4.4 for details.), and an edge
indicates the root from which the word is derived
(e.g., ”usable” is derived from ”use”).

With EPOS, we can easily set rules or assign
probability distributions to determine which sub-
stitutions are more likely to happen, (e.g., singu-
lar ↔ plural, VBD ↔ VBZ ↔ VBP ↔ VBN ↔

2We manually created this vocabulary for building the
Word Tree (see 4.3 for details).
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RAW
use

VB
use

VBP
use

VBP NN R
user

VBP NNS R
users

VBP JJ BLE
usable

VBP JJ BLE NN
usableness

VBP RB BLE
usably

VBD
used

VBZ
uses

VBG
using

VBN
used

NN
use

NN JJ F
useful

NN RB F
usefully

NN JJ F NN
usefulness

NNS
uses

NN JJ L
useless

NN RB L
uselessly

NN JJ L NN
uselessness

Figure 1: Word Tree: use

VB

VBG

VBG NNS VBG RB

VBD VBP

VBP JJ BLE

VBP JJ BLE NN

VBP JJ BLE NNS

VBP RB BLE

VBP NN M

VBP NNS M

VBP NN O

VBP NNS O

VBP NN R

VBP NNS R

VBP JJ

VBP RB VBP JJ NN

VBP JJ NNS

VBP JJ NN ORI

VBP JJ NNS ORI

VBZ VBN

VBN RB VBN NN

VBN NNS

Figure 2: Verb branch of the EPOS Tree

VBG, adjective ↔ adverb), and which substitu-
tions are less likely to happen (e.g., happiest JJS
↔ happiness JJ NN). In our experiments, due to
the time limitation of the competition, we sim-
ply assigned a uniform distribution to all existing
words in a Word Tree, excluding substitutions that
were definitely unlikely to occur such as substi-
tutions between the words in an NN JJ F branch
(e.g., careful) and the words in an NN JJ L branch
(e.g., carelessness).

4.4 Extended part-of-speech

A Word Tree can contain multiple words of the
same POS. As shown in the example in Figure 1,
use, user and usefulness can all be nouns. There-
fore, in order to identify the different roles for
words in a Word Tree, we propose EPOS, derived
from part-of-speech (POS) and the surface form of
the word.

POS explains how a word is used (mostly syn-

tactically) in a sentence. Compared to POS, EPOS
also reflects some semantic role of a word in a sen-
tence.

We define EPOS in Table 11 in the Appendix.
We used NLTK (Bird, 2006) as our POS tagger,
and use NLTK-style tags in this paper.

We briefly describe our method of creating
word trees.

a. Extract the vocabulary from a text corpus
which is tagged with NLTK POS tagger.

b. Create three tables for Noun, Verb, and Ad-
jective respectively. The Noun table contains
two columns: singular and plural; the Verb ta-
ble has six columns: original verb form (VB),
non-third person present (VBP), third person
present (VBZ), past tense (VBD), past partici-
ple (VBN) and present participle (VBG); the
Adjective table has four columns: adjective, ad-
verb, comparative degree and superlative de-
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# System P R F0.5

1 UEDIN-MS 72.28 60.12 69.47
...

4 CAMB-CLED 70.49 55.07 66.75
5 Singsound 70.17 55.39 66.61

Table 8: Results of BEA 2019 GEC competition.

dev test
F0.5 P R F0.5

single 52.29 66.06 56.68 63.94
w/o pretrain 44.60 50.59 43.60 49.02

4 ensemble 55.37 70.14 57.57 67.21
w/o pretrain 47.01 56.05 44.33 53.24

Table 9: Results of ABCN set. ”w/o pretrain” refers to
models without pretraining.

gree. Then we fill words into corresponding
entries according to their POS tags. Words that
cannot be filled in any of the above tables are
filled into a list.

c. Manually check and correct all entries of the
three tables, and fill missing entries as well.

d. Define EPOS as listed in Table 11 in the Ap-
pendix according to suffix transforming rules.

e. Extract a RAW list from the vocabulary accord-
ing to the suffix transforming rules.

f. Create an EPOS tree structure for each token
in the RAW list, and then fill each word from
the vocabulary into the corresponding entry of
the corresponding EPOS tree (The full struc-
ture of the EPOS Tree is described in Table 12
in the Appendix, and Figure 2 shows the Verb
branch); then prune empty entries in the trees.

g. Manually check every entry of every word tree,
and fix all incorrect entries.

h. Update the defined EPOS (final version in Ta-
ble 11) and the EPOS tree (Table 12); recreate
word trees.

i. Repeat step g and h until satisfied.

5 Experiments

In our experiments, we generated a corpus of 3
billion tokens, of which about 24% were errors.

Following Lichtarge et al. (2018), we also use
Transformer as our encoder-decoder model, using
Tensor2Tensor open source implementation 3.

The models are trained on words, and rare
words are segmented into sub-words with the byte
pair encoding (BPE) (Sennrich et al., 2015). We
use 6 layers for both encoder and decoder, and 4
attention heads. The embedding size and hidden
size are 1024, and the filter size for all position-
wise feed forward network is 4096. We set
dropout rate to 0.3, and source word dropout is set
to 0.2 as a noising technique. Following Junczys-
Dowmunt et al. (2018), source, target and output
embeddings are tied in our models.

Following Lichtarge et al. (2018), we first
trained our model on an artificially generated par-
allel corpus with a batch size of approximately
3072 tokens. Then we set the batch size to 2048
tokens and fine-tuned on human annotated data
for 20 epochs, and we averaged the 5 best check-
points. Finally, the averaged model was fine-tuned
on the ABCN and FCE training data for 1000 steps
as domain adaptation (Junczys-Dowmunt et al.,
2018).

There are about 50% sentence pairs without any
correction in the Lang-8 dataset, and we noticed
that training with too many error-free sentence
pairs had a negative effect. Therefore, we filtered
out these error-free sentence pairs in the Lang-
8 dataset. Since the NUCLE, FCE and ABCN
datasets are much smaller than the Lang-8 set, we
did not filter out the error-free sentence pairs in
these datasets.

We used beam search for decoding with a beam
size of 4 at evaluation time. For the ensemble,
we averaged logits from 4 Transformer models
with identical hyper-parameters at each decod-
ing step. Following (Grundkiewicz and Junczys-
Dowmunt, 2018; Junczys-Dowmunt et al., 2018;
Lichtarge et al., 2018), we preprocessed the JF-
LEG dataset with spell-checking. We did not ap-
ply spell-checking to the ABCN and CoNLL-2014
datasets.

6 Results and Discussion

The results of the Singsound System in the GEC
competition (Table 8) were obtained by an ensem-
ble of four models. Because of the time limi-
tation, we only trained two independent models

3https://github.com/
tensorflow/tensor2tensor
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CoNLL-2014 CoNLL-10 (SvH) JFLEG
Model P R F0.5 P R F0.5 GLEU

(1) Word&Char SMT-GEC 62.7 33.0 53.1 68.3 56.8

(2) MLConv (4 ensemble) 65.5 33.1 54.8 57.5

(3)
Transformer (single) 53.0 57.9

Transformer (4 ensemble) 63.0 38.9 56.1 58.5
Transformer (4 ensemble) + LM 61.9 40.2 55.8 59.9

(4) Hybrid PBMT+NMT+LM 66.8 34.5 56.3 83.2 47.0 72.0 61.5

(5)
Transformer (single) 62.2 37.8 54.9 59.3

Transformer (4 ensemble) 67.5 37.8 58.3 62.4

Singsound
Transformer (single) 68.3 42.5 60.9 83.5 55.2 75.7 60.8

Transformer (4 ensemble) 73.0 41.1 63.2 86.0 53.8 76.8 62.6

Human avg. 73.5 69.6 72.6 62.4

Table 10: Comparison with top performing systems on CoNLL and JFLEG datasets. (1): Chollampatt and Ng
(2017) (2): Chollampatt and Ng (2018); (3): Junczys-Dowmunt et al. (2018); (4): Grundkiewicz and Junczys-
Dowmunt (2018); (5): Lichtarge et al.(2018).

from scratch. The other two were based on ex-
isting trained models. Concretely, after we got a
model trained from scratch, we kept training it on
the generated corpus for 0.2 epoch; then fine-tuned
the model on the annotated data and ABCN and
FCE training sets as before.

We provide the performance of our single model
and the ensemble of 4 independently trained mod-
els 4 on the ABCN dev and test datasets in Table 9.
As the results shown in Table 9, models pretrained
on the generated corpus significantly outperform
the models without pretraining.

To compare with previous state-of-the-art GEC
systems, we evaluated our systems on the CoNLL-
2014 and JFLEG datasets. As the results shown
in Table 10, our single model exceeded previ-
ous state-of-the-art systems on the CoNLL-2014
dataset. Our ensemble models achieved 8.4% rel-
ative improvement over the latest state-of-the-art
results on the CoNLL-2014 benchmark.

We also report the results on the CoNLL-2014
10 annotation dataset (denoted as CoNLL-10)
(Bryant and Ng, 2015) which is an extension of
the CoNLL-2014 test set with 10 annotators. The
human-level scores are calculated by averaging the
scores for each annotator with regard to the re-
maining annotators. Following Chollampatt and
Ng (2017), scores on CoNLL-10 (SvH) are calcu-

4The four models are trained on the same data with the
same hyper-parameter set.

lated by removing one set of human annotations
at a time and evaluating the system against the re-
maining sets. Our models reach human-level per-
formance on both CoNLL-10 and JFLEG bench-
marks.

7 Conclusion

In this work, we present a novel erroneous data
generating method for training English GEC mod-
els. Our experiments show that Transformer mod-
els pretrained on generated corpus significantly
outperform the previous GEC systems that are also
based on Transformer. We also present a novel
tool: the Word Tree, which represents a group of
words that share the same stem but have different
suffixes; and we show that one possible applica-
tion of the Word Tree is generating erroneous text
for training GEC models.
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A Appendix

EPOS POS Annotation Examples
RAW Root of word trees, original form use
NN NN Noun use
NNS NNS Plural form of Noun uses
NN JJ F JJ NN + ful 5 useful
NN JJ F NN NN NN JJ F + ness usefulness
NN JJ F NNS NNS Plural form of NN JJ F NN
NN JJ F NN ORI NN Adjective used as Noun dreadful
NN JJ F NNS ORI NNS Plural form of NN JJ F NN ORI dreadfuls
NN RB F RB Adverb form of NN JJ F usefully
NN JJ L JJ NN + less useless
NN JJ L NN NN NN JJ L + ness uselessness
NN JJ L NNS NNS Plural form of NN JJ L NN
NN JJ L NN ORI NN Adjective used as Noun wireless
NN JJ L NNS ORI NNS Plural form of NN JJ L NN ORI wirelesses
NN RB L RB Adverb form of NN JJ L uselessly
NN JJ OUS JJ NN + ous dangerous
NN JJ OUS NN NN NN JJ OUS + ness dangerousness
NN JJ OUS NNS NNS Plural form of NN JJ OUS NN
NN RB OUS RB Adverb form of NN JJ OUS dangerously
NN JJ AL JJ NN + al rational
NN JJ AL NN NN NN JJ AL + ness rationalness
NN JJ AL NNS NNS Plural form of NN JJ AL NN
NN RB AL RB Adverb form of NN JJ AL rationally
NN JJ Y JJ NN + y lucky
NN JJR Y JJR Comparative degree of NN JJ Y luckier
NN JJS Y JJS Superlative degree of NN JJ Y luckiest
NN JJ Y NN NN NN JJ Y + ness luckiness
NN JJ Y NNS NNS Plural form of NN JJ Y NN
NN JJ Y NN ORI NN Adjective used as Noun safety
NN JJ Y NNS ORI NNS Plural form of NN JJ Y NN ORI safeties
NN RB Y RB Adverb form of NN JJ Y luckily
NN JJ D JJ NN + ed warmhearted
NN JJ D NN NN NN JJ D + ness warmheartedness
NN JJ D NNS NNS Plural form of NN JJ D NN
NN RB D RB Adverb form of NN JJ D warmheartedly
VB VB Original form of verbs go
VBD VBD Past tense went
VBZ VBZ Present third person singular goes
VBN VBN Past participle gone
VBN NN NN VBN + ness limitedness
VBN NNS NNS Plural form of VBN NN
VBN NNS ORI NNS Plural form of VBN when VBN used as Noun shots, thoughts
VBN RB RB Adverb form of VBN excitedly
VBG VBG Present participle baking
VBG NNS ORI NNS Plural form of VBG when VBG used as Noun bakings
VBG RB RB Adverb form of VBG excitingly
VBP VBP non-third person present go
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VBP NN O NN VBP + ion connection
VBP NNS O NNS Plural form of VBP NN O connections
VBP NN R NN VBP + er / or / ar dancer, editor
VBP NNS R NNS Plural form of VBP NN R dancers, editors
VBP JJ BLE JJ VBP + able / ible usable
VBP JJ BLE NN NN VBP JJ BLE + ness usableness
VBP JJ BLE NNS NNS Plural form of VBP JJ BLE NN
VBP RB BLE RB Adverb form of VBP JJ BLE usably
VBP JJ JJ VBP + ive active
VBP RB RB Adverb form of VBP JJ actively
VBP JJ NN NN VBP JJ + ness attractiveness
VBP JJ NNS NNS Plural form of VBP JJ NN
VBP JJ NN ORI NN VBP JJ used as Noun representative
VBP JJ NNS ORI NNS Plural form of VBP JJ NN ORI representatives
VBP NN M NN VBP + ment movement
VBP NNS M NNS Plural form of VBP NN M movements
JJ JJ Adjectivel happy
JJS JJS Superlative degree of Adjective happiest
JJR JJR Comparative degree of Adjective happier
JJ NN NN JJ + ness happiness
JJ NNS NNS Plural form of JJ NN happinesses
RB RB Adverb happily
RBR RBR Comparative degree of Adverb harder
RBS RBS Superlative degree of Adverb hardest
CD CD Cardinal digits one
CD JJ JJ Adjective form of CD first
CD RB RB Adverb form of numbers firstly
CD JJ NN ORI NN Adjective used as Noun first
CD JJ NNS ORI NNS Plural form of CD JJ NN ORI firsts
CD RB ORI RB Adverbs that are same as CD JJ first
CD NNS NNS Plural form of CD ones
DT DT Determiner the
WRB WRB Wh-adverb how, where
PRP PRP Personal pronoun I, you, they
IN IN Preposition or subordinating conjunction in, from, after
CC CC Coordinating conjunction and
MD MD Modal verb can
OFS Any POS out of the POS column

Table 11: EPOS table.

5By abuse notation, ”+” denotes ”with some suffix”.
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Parent Children
RAW NN, JJ, VB, IN, OFS, CC, MD, DT, PRP, CD, WDT, WP, WRB
NN NNS, NN JJ F, NN JJ L, NN JJ Y, NN JJ D, NN JJ OUS, NN JJ AL
NN JJ D NN RB D, NN JJ D NN
NN JJ Y NN RB Y, NN JJR Y, NN JJS Y, NN JJ Y NN, NN JJ Y NN ORI
NN JJ Y NN NN JJ Y NNS
NN JJ Y NN ORI NN JJ Y NNS ORI
NN JJ F NN RB F, NN JJ F NN, NN JJR F, NN JJS F, NN JJ F NN ORI
NN JJ F NN NN JJ F NNS
NN JJ F NN ORI NN JJ F NNS ORI
NN JJ L NN RB L, NN JJ L NN, NN JJR L, NN JJS L, NN JJ L NN ORI
NN JJ L NN NN JJ L NNS
NN JJ L NN ORI NN JJ L NNS ORI
NN JJ AL NN RB AL, NN JJ AL NN
NN JJ AL NN NN JJ AL NNS
NN JJ OUS NN RB OUS, NN JJ OUS NN
NN JJ OUS NN NN JJ OUS NNS
VB VBP, VBD, VBZ, VBG, VBN
VBP VBP JJ, VBP NN R, VBP NN M, VBP NN O, VBP JJ BLE
VBP JJ VBP RB, VBP JJ NN, VBP JJ NN ORI
VBP JJ NN VBP JJ NNS
VBP JJ NN ORI VBP JJ NNS ORI
VBP JJ BLE VBP RB BLE VBP JJ BLE NN
VBP JJ BLE NN VBP JJ BLE NNS
VBP NN R VBP NNS R
VBP NN M VBP NNS M
VBP NN O VBP NNS O
VBG VBG RB, VBG NNS
VBN VBN RB, VBN NN
VBN NN VBN NNS
JJ JJR, JJS, RB, JJ NN, JJ NN ORI
JJ NN JJ NNS
JJ NN ORI JJ NNS ORI
RB RBR, RBS
CD CD JJ, CD JJ NN ORI, CD NNS
CD JJ CD RB, CD RB ORI
CD JJ NN ORI CD JJ NNS ORI

Table 12: Structure of the EPOS Tree.
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Abstract

In this paper, we describe two systems we de-
veloped for the three tracks we have partic-
ipated in the BEA-2019 GEC Shared Task.
We investigate competitive classification mod-
els with bi-directional recurrent neural net-
works (Bi-RNN) and neural machine transla-
tion (NMT) models. For different tracks, we
use ensemble systems to selectively combine
the NMT models, the classification models,
and some rules, and demonstrate that an en-
semble solution can effectively improve GEC
performance over single systems. Our GEC
systems ranked the first in the Unrestricted
Track, and the third in both the Restricted
Track and the Low Resource Track.

1 Introduction

Grammatical error correction (GEC) is the task
of automatically correcting grammatical errors in
text. With the increasing number of language
learners, GEC has gained more and more atten-
tion from educationists and researchers in the past
decade. The following is a GEC example: I [fall
→ fell] asleep at 11 p.m. last [nigh → night].
Here fall needs to be corrected to its past tense
form and nigh is a spelling mistake.

GEC is considered as a mapping task from in-
correct sentences to correct sentences. Incorrect
sentences can be seen as being produced by adding
noises to correct sentences. The added noise does
not happen randomly, but occurs when people
learn or use the language according to a certain er-
ror distribution and language usage bias. Initially,
people used rule-based approaches to solve GEC
problems (Naber and Miłkowski, 2005). Rules are
relatively easy to make but with poor generaliza-
tion. Later researchers began to treat GEC as a
classification task. According to the grammati-
cal information around the target word, classifiers

can be constructed to predict the true grammati-
cal role of the target word. One drawback of the
classification methods for GEC is that training dif-
ferent classifiers for different error types may be
resource-intensive and inefficient since there are
many grammatical error types. Recently, transla-
tion methods have become the focus of research,
and there is a clear trend that state-of-the-art GEC
systems are being shifted from traditional NLP
methods to NMT based methods.

In recent years, GEC performance has seen sig-
nificant improvement in some public GEC test
sets (Ge et al., 2018). In CoNLL-2013 (Ng et al.,
2013) and CoNLL-2014 (Ng et al., 2014) GEC
Shared Task, machine learning based GEC meth-
ods emerged with relatively good performance.
Classification methods achieved the best result in
CoNLL-2013 (Rozovskaya et al., 2013). After
that, statistical machine translation (SMT) meth-
ods began to show better performance in CoNLL-
2014 (Felice et al., 2014). (Chollampatt et al.,
2016) was the first study to obtain the state-of-
the-art result with neural networks. Then af-
ter (Junczys-Dowmunt and Grundkiewicz, 2016),
machine translation methods became the main-
stream in GEC solutions. In addition, an RNN-
based context model achieved better results than
previous traditional classification models (Wang
et al., 2017). Using a CNN-based sequence-
to-sequence architecture (Gehring et al., 2017),
(Chollampatt and Ng, 2018) proposed the first
end-to-end NMT model and reported the state-of-
the-art result. As Transformer (Vaswani et al.,
2017) plays an increasingly important role in se-
quence modeling, Transformer-based end-to-end
NMT models began to lead the current GEC re-
search (Junczys-Dowmunt et al., 2018; Grund-
kiewicz and Junczys-Dowmunt, 2018; Ge et al.,
2018; Zhao et al., 2019). It is worth mentioning
that (Lichtarge et al., 2019) used Wikipedia ed-
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its history corpus, which is huge but noisy, and
gained a result very close to the state-of-the-art
result. Learning a GEC translation model from
noisy data is a worthy future direction as the GEC
parallel corpus is expensive to obtain.

This paper describes our two systems for
the three tracks in the BEA-2019 GEC Shared
Task (Bryant et al., 2019). We use two popular
NMT models and two improved versions of neu-
ral classification models to train the basic models.
Ensemble strategies are then used to combine out-
comes from different models. Our two systems for
the three tracks are described in next section. In
Section 3, we evaluate the systems on the devel-
opment data and show the final results on the test
data. Section 4 concludes the paper and summa-
rizes the future work.

2 System Overview

2.1 Restricted and Unrestricted Track

We submitted the same system output for the Re-
stricted and Unrestricted tasks. The system uses
several ensemble methods to combine the CNN-
based and Transformer-based translation models,
described in details below.

2.1.1 CNN-based translation ensemble
systems

We found that CNN-based systems obtained the
best results for some error types, likely due
to some characteristics derived from CNN. We
trained four CNN-based ensemble systems, using
the model architecture in (Chollampatt and Ng,
2018), but without reranking. Four best combina-
tions to build the ensemble systems were selected.
Unlike (Chollampatt and Ng, 2018), we did not
use fastText (Bojanowski et al., 2017) to initial-
ize word embeddings because we found no im-
provement on the development set by doing that.
We tuned parameters for the system, such as batch
size, word embedding dimension, etc.

2.1.2 Transformer-based translation systems
Transformer is currently considered to be one of
the most powerful models for sequence model-
ing. For GEC, some of the best recent results re-
ported on CoNLL-2014 test set are obtained by
Transformer-based translation models. We trained
eight Transformer-based translation models in
a low resource translation paradigm (Junczys-
Dowmunt et al., 2018). We tuned parameters for

domain and error adaptation. We also compared
the results using 2 GPUs and 4 GPUs as the au-
thors reported the difference in their Github repos-
itory1.

2.1.3 Ensemble methods
We expect to combine these models trained above
into a more powerful system through effective en-
semble methods. Our ensemble work mainly fo-
cuses on rule-based solutions. We will introduce
two main modules first.

Confidence Table We can obtain the precision
and F0.5 metric on each error type through sen-
tence alignment and error type classification by
Errant (Bryant et al., 2017). Errant provides per-
formance statistics based on 55 error types and is
also the tool used to evaluate this GEC shared task,
thus we use the result of operation and error type
span-level (Bryant et al., 2017) for a model or sys-
tem as the confidence table.

Conflict Solver We often encounter GEC error
conflicts when combining multiple models or sys-
tems. For example, We love played soccer. One
system corrects played to playing, while another
system may correct played to to play. When two
different corrections occur in the same place, we
need to consider which one to choose.

We solve this problem in a unified pipeline,
which can also be seen as an ensemble way:

(1) We sort each group of conflicting correc-
tions proposed by all the systems in a reverse order
of location index and confidence.

(2) We apply three sub-strategies:

• When combining outcomes from different
systems, we treat the precision in a confi-
dence table as the confidence. Each correc-
tion has its confidence obtained by looking
up the precision of the corresponding type of
the correction in the table. If two conflict-
ing corrections are the same, we merge them
and add α to the confidence of the correction;
otherwise, the correction with a lower confi-
dence will be discarded.

• After combining outcomes, if the confidence
of a correction is lower than β, the correction
is discarded.

• γ is used to distinguish when it is more im-
portant to focus on the precision or F0.5 of

1https://github.com/grammatical/
neural-naacl2018
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Figure 1: The architecture of the ensemble system in Restricted and Unrestricted Tracks.

a correction. When we move to the final
ensemble with confidence tables of existing
systems, if the confidence is larger than γ, we
select the correction proposed by the system
that has the best F0.5 on the type of this cor-
rection. Otherwise, the correction by a sys-
tem with the best precision is selected.

In Figure 1, ⊗ means the outcome is obtained
by combining two systems represented by inter-
secting lines of two different colours. If there are
multiple ⊗ on a line, it means the ensemble is
over all of these ⊗ on this line. Figure 1 displays
three types of ensemble methods based on all of
the CNN-based and Transformer-based translation
models.

• Combine each CNN-based ensemble model
with each of the selected five of the
Transformer-based models. This is noted as
‘ensemble-by-2’.

• Perform ensemble over all of the ensemble
models relating to either CNN ensemble 1 or
CNN ensemble 2, noted as EoE (Ensemble
over Ensemble) 1 and 2.

• Ensemble each CNN ensemble model with
some selected combinations of Transformer-

based models to produce 16 strong ensemble
system outcomes, represented as ‘Hybrid En-
semble’ in Figure 1. It is where multiple lines
of the same color are merged into one line in
Figure 1.

After getting all of the ensemble outcomes, we
will do the final ensemble step: select the best con-
fidence for each type from each single or ensem-
ble system to form the strongest final outcome. In
this ensemble step, we use the last aforementioned
sub-strategy, and discard the error types with very
low confidence to boost the final performance.

2.2 Low Resource Track
For the Low Resource Track we developed dif-
ferent individual systems and used an ensemble
method to combine them. For the translation
model, we did not obtain very strong performance
because the training data is limited. We also ex-
plored the noisy Wikipedia edit history corpus for
the Transformer-based translation model. How-
ever, we noticed that, for some error types with
clear definitions, the classifiers trained on a large
amount of native corpus have good performance.
In addition, we made some grammatical rules to
correct errors and adopted an off-the-shelf spelling
checker (Kelly, 2006). Finally, we leverage a sim-

161



ple ensemble method to combine all of the classi-
fiers, rules, spelling checker and translation mod-
els. Note that for the Restricted and Unrestricted
tracks, we did not observe any gain from the clas-
sification models or the rule-based methods, there-
fore only the translation systems were used for
those tracks.

2.2.1 Classification model
After an analysis of the development sets, we de-
cided to build classifiers for eight common error
types. Based on (Wang et al., 2017), we devel-
oped two classification model structures for the
eight error types.

(A) Bi-GRU context model
Figure 2 shows the bi-directional GRU context

model we use to determine the right grammatical
category for a target word. The concatenated left
and right source states of the target word form the
contextual semantic vector representation. This is
used as a query to calculate the attention weight
at. An attention vector Ct is then computed as
the weighted average, according to at, over all the
source states. Ct is then fed through a fully con-
nected layer and softmax layer to produce the pre-
dictive distribution.

Figure 2: Bi-GRU Context model structure.

We use this to train models for the following er-
ror types: Subject-verb agreement, Article, Plural
or singular noun, Verb form, Preposition substi-
tution, Missing comma and Period comma substi-
tution. Labels for each task were extracted auto-
matically from the native corpus through part-of-
speech tagging tools.

(B) Pointer context model
The classifiers above use the same classification

labels for different target words. We also need a
classification model to deal with the problem as in
the Word form task, where each word has a dif-
ferent set of predictive labels (as shown for word
‘gone’ in Figure 3). Inspired by the Pointer net-
work model (Vinyals et al., 2015), we proposed
the pointer context model. Figure 3 shows the
pointer context model that takes the target word’s
confusion set as the label candidates. The compu-
tation path is the same as the Bi-GRU model struc-
ture. We concatenate the target word’s char-based
embedding and Ct to obtain C1

t , and then use it
as the query to compute dot product a1t with each
of the word embeddings in the confusion set. a1t
is then fed through a softmax layer to produce the
predictive distribution. This model is very effec-
tive at dealing with varying number of candidates
as seen in the Word form task.

Figure 3: Pointer Context model structure.

2.2.2 NMT model
We use the same Transformer-based translation
model mentioned in Subsection 3.2.2. Due
to the limitation of the corpus, we leverage
the Wiked (Grundkiewicz and Junczys-Dowmunt,
2014) as our training corpus for the NMT model.

2.2.3 Rules and spell checker
We have implemented the following GEC rules.

(1) ‘a’ and ‘an’ substitution. For this problem,
we made rules based on the first phoneme of the
following word.

(2) Comma deletion. After a prepositional
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Track FCE Lang-8 NUCLE W&I+
LOCNESS

Common
Crawl Wiked Wiki

dumps
Restricted Track Yes Yes Yes Yes Yes - -

Unrestricted Track Yes Yes Yes Yes Yes - -
Low Resource Track - - - - Yes Yes Yes

Table 1: Corpus used for training in corresponding track.

Seed Batch size Word embedding
dimension

Number of
input channels

Number of
output channels

Number
of layers F0.5

5001 32 128 256 256 7 0.3370
5002 32 128 256 256 7 0.3219
5003 32 128 256 256 7 0.3370
5004 32 128 256 256 7 0.3411
5005 32 128 256 256 7 0.3449
5012 32 256 512 512 10 0.3339
5102 32 128 512 512 7 0.3329
7011 16 256 512 512 7 0.3328
7205 32 256 512 512 14 0.3328

Table 2: Results of tuned single CNN-based translation models on the development set.

phrase at the beginning of a sentence, we add a
comma. For example, “Despite our differences we
collaborate well.” A comma should be added after
Despite our differences.

(3) Orthography mistakes. We obtain statis-
tics of named entities that require initial capital-
ization and make a white list using the Wikipedia
corpus. If a word is on the white list, we will force
the conversion to the initial capitalization form.

In addition, we use Pyenchant as our spell
checker (Kelly, 2006). The top candidate is con-
sidered to be the correction.

2.2.4 Ensemble
We use the conflict solver described above to do
the ensemble for all of the outputs of the classi-
fiers, rules, spell checker and NMT model.

3 Experiments

3.1 Data Sets
Table 1 lists the data sets used in Restricted Track
and Unrestricted Track, including FCE (Yan-
nakoudakis et al., 2011), Lang-82 (Mizumoto
et al., 2012), NUCLE (Ng et al., 2014),
W&I+LOCNESS (Bryant et al., 2019) and Com-
mon Crawl. We use Common Crawl to pretrain
the decoder parameters for the Transformer-based
translation model. FCE, Lang-8, NUCLE and
W&I are used to train all of the translation models.

2https://lang-8.com

It is worth noting that we did data augmentation
for W&I to train all of the translation models. The
data sets used in Low Resource Track include
Wiked, Wikipedia Dumps and Common Crawl.
All of the classifiers are trained on Wikipedia
Dumps and the translation model is trained on
Wiked corpus. For Wiked corpus, we did some
data cleaning work. We discarded some noisy sen-
tences that include error types such as U:OTHER,
R:OTHER, R:NOUN, etc. The development set
from W&I+LOCNESS are used in all the tracks.
Following the data pre-processing pipeline used to
generate the data provided by the shared task, we
tokenize all of the data using spaCy3.

3.2 Restricted and Unrestricted Track

3.2.1 CNN-based translation ensemble
models

We added the W&I corpus eight times to the train-
ing corpus for domain adaptation. Table 2 shows
the performance of the single CNN-based trans-
lation models. All the parameters in Table 2 are
tuned over the W&I+LOCNESS development set.

Table 3 shows the results of the four CNN-based
ensemble systems. We use ensembles in the same
way as (Chollampatt and Ng, 2018). The above
results prove that the ensemble method has yielded
a very large improvement in this task.

3https://spacy.io
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Ensemble index Combination Precision Recall F0.5

1 5012,5102,7011,7205 0.5076 0.2195 0.4021
2 5001,5002,5003,5004 0.5003 0.1951 0.3811
3 5005,5012,5102,7205 0.5156 0.2150 0.4029
4 5005,5012,7011,7205 0.5152 0.2159 0.4034

Table 3: Results of CNN-based ensemble systems on the development set.

Model index Error weight Copy number of
W&I trainset

GPU
number Precision Recall F0.5

1 3 10 2 0.4585 0.3525 0.4325
2 3 10 4 0.4602 0.3514 0.4333
3 3 8 2 0.4592 0.3575 0.4345
4 3 8 4 0.4641 0.3548 0.4372
5 3 15 2 0.4494 0.3479 0.4247
6 3 15 4 0.4648 0.3467 0.4352
7 2 10 2 0.4715 0.3303 0.4343
8 2 10 4 0.4868 0.3412 0.4485

Table 4: Results of Transformer-based translation models on the development set.

3.2.2 Transformer-based translation models

We trained eight Transformer-based translation
models in different combinations of error adapta-
tion, domain adaptation, and GPU set.

In Table 4, we notice that a smaller error weight
yields higher precision and a slight decrease in re-
call. We set the copy number as 8, 10 and 15,
and find that domain adaptation has no significant
effect on the results. 4 GPU is obviously better
than 2 GPU sets, which is probably because of the
larger batch size accumulation for gradient calcu-
lation.

3.2.3 Ensemble methods

As described in Section 2.1.3, we need to ensem-
ble all of the CNN-based and Transformer-based
translation models. We have already introduced
the configuration of the single models in Section
3.2.1 and Section 3.2.2. Next we will describe the
configuration of the ensemble system.

For the three ensemble types: Ensemble-by-2,
EoE and Hybrid Ensemble, as shown in Figure 1,
we used different parameters in the conflict solver.

We did a small-scale grid search for the param-
eters in Table 5. When combining two models that
are not strong, we expect a higher recall so β was
not high. For EoE and hybrid ensemble, we expect
a higher precision so that they can provide high
quality single type performance. Corrections pro-
posed by multiple models are given higher weights
(controlled by α). If the confidence of a correction

Ensemble method α β γ

Ensemble-by-2 0.2 0.4 -
EoE 0.15 0.8 -

Hybrid ensemble 0.15 0.62 -
Final ensemble 0.0 0.5 0.52

Table 5: Parameters in the conflict solver for the
ensemble methods in Restricted and Unrestricted
Track.

finally reaches β, the correction will be adopted.
In the final ensemble, we select the best perfor-
mance on each type from each single system or
ensemble system and discard the corrections with
low precision (controlled by β). To get higher
F0.5, in the case where the precision is greater than
a predefined threshold (controlled by γ), we will
choose the model with the highest F0.5 for the cor-
responding error type. The final outcome of the
data set is then fed through the translation models
and ensemble systems again to do a second pass
correction.

3.2.4 Results
Table 6 summarizes some results on the develop-
ment set and gives the official test result. We can
see that the individual CNN or Transformer-based
translation models perform reasonably well, and
the ensemble methods consistently outperform the
individual systems. The second pass correction
further improves the performance, and the last
post-processing step boosts both recall and F0.5.
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Step Precision Recall F0.5

Best CNN-based ensemble model 0.5152 0.2159 0.4034
Best Transformer-based translation model 0.4868 0.3412 0.4485
Best ensemble-by-2 0.5281 0.3434 0.4768
Best hybrid ensemble 0.5885 0.3278 0.5078
+ Combine best performance 0.6283 0.3269 0.5305
+ Second pass 0.6272 0.3412 0.5372
Submission system (+ Post-processing, Dev set) 0.6243 0.3457 0.5376
Submission system (Test set) 0.7317 0.4950 0.6678

Table 6: Results of Restricted and Unrestricted Track.

Ensemble method α β γ

Ensemble for all 0.15 0.3 -
Final ensemble 0.0 0.25 0.3

Table 7: Parameters for the ensemble method in Low
Resource Track.

Table 6 also shows that there is a big gap between
the performance on the development set and test
set, partly because the final test set uses a combi-
nation of five annotators.

3.3 Low Resource Track

3.3.1 Classification models
We trained classifiers for seven error types:
Subject-verb agreement, Article, Plural or singular
noun, Verb form, Preposition substitution, Miss-
ing comma and Period comma substitution and
Word form. As mentioned in Subsection 2.2.1,
Word form model is trained using the Pointer Con-
text model. The other error types are trained using
Bi-GRU Context model.

3.3.2 NMT model
A Transformer-based translation model is trained
on the filtered Wiked corpus. The model archi-
tecture follows that in (Junczys-Dowmunt et al.,
2018). Although the performance of the NMT
model is not strong, it provides good performance
equivalent to the classifiers for some error types.

3.3.3 Ensemble
We use one conflict solver to combine the outputs
from all of the systems in this task. Parameters for
this ensemble system are shown in Table 7.

3.3.4 Results
Table 8 shows results for different systems (for
classification models, different error type classi-
fiers) on the development set, and the overall re-

Model Precision Recall F0.5

Rule 0.4497 0.0216 0.0905
Spelling 0.3188 0.0363 0.1248
Article 0.4367 0.0134 0.0597

Missing comma 0.4729 0.0503 0.1763
Period comma

substitution
0.4561 0.0070 0.0328

Plural or
singular noun

0.3203 0.0121 0.0524

Preposition
substitution

0.3713 0.0101 0.0454

Subject-verb
agreement

0.3981 0.0115 0.0517

Verb form 0.4135 0.0074 0.0344
Word form 0.4506 0.0294 0.1164

NMT 0.1279 0.1480 0.1315
Submission
system (Dev

set)
0.4970 0.1686 0.3577

Submission
system (Test

set)
0.6201 0.3125 0.5181

Table 8: Results of Low Resource Track.

sults on the test set. We can see that the base sys-
tems are not very strong, and the ensemble system
significantly improves the performance. The dif-
ference between the development set and test set
can still be observed in this task.

4 Conclusions and Future Work

We have presented two different systems for the
three GEC tracks. When there is a sufficient
parallel learner corpus, such as in Restricted
Track and Unrestricted Track, the NMT en-
semble model is the best choice to implement a
GEC system. We have evaluated two kinds of
NMT models: CNN-based and Transformer-based
translation models. We have also explored differ-
ent ensemble strategies from multiple base mod-
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els to maximize the overall system performance.
Finally we reached the result of F0.5=0.6678 on
the official test set in Restricted Track and Unre-
stricted Track, ranking the third in the Restricted
track4. It is worth noting that there is a huge gap
between the results on the development set and
the test set, which suggests that there might be an
unneglectable mismatch between the development
set and the test set. Indeed, the development set
is annotated by one annotator, while the test set is
annotated by five, as announced officially.

For Low Resource Track, there is a lack of
parallel learner corpus, and thus we rely less on
the translation models. We have built eight classi-
fiers trained on Wikipedia dumps according to dif-
ferent error types and an NMT model trained on
the Wikipedia edits history corpus. By a simple
ensemble method, we reached F0.5=0.5181, plac-
ing our system in the third place in Low Resource
Track.

Although GEC has reached the human level per-
formance on some GEC test sets, there is still
room for improvement. In a low resource setup,
how to deal with the huge but noisy data is worth
exploring. (Lichtarge et al., 2019) gave a good
solution on this topic, but more work needs to
be done. Second, we will investigate methods
such as the reinforcement learning based method
(Wu et al., 2018) to address the mismatch between
the training objectives and evaluation methods in
GEC.
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Abstract

We describe two entries from the Cambridge
University Engineering Department to the
BEA 2019 Shared Task on grammatical er-
ror correction. Our submission to the low-
resource track is based on prior work on us-
ing finite state transducers together with strong
neural language models. Our system for the
restricted track is a purely neural system con-
sisting of neural language models and neural
machine translation models trained with back-
translation and a combination of checkpoint
averaging and fine-tuning – without the help
of any additional tools like spell checkers. The
latter system has been used inside a separate
system combination entry in cooperation with
the Cambridge University Computer Lab.

1 Introduction

The automatic correction of errors in text [In a
such situaction → In such a situation] is receiv-
ing more and more attention from the natural lan-
guage processing community. A series of compe-
titions has been devoted to grammatical error cor-
rection (GEC): the CoNLL-2013 shared task (Ng
et al., 2013), the CoNLL-2014 shared task (Ng
et al., 2014), and finally the BEA 2019 shared
task (Bryant et al., 2019). This paper presents the
contributions from the Cambridge University En-
gineering Department to the latest GEC competi-
tion at the BEA 2019 workshop.

We submitted systems to two different tracks.
The low-resource track did not permit the use
of parallel training data except a small develop-
ment set with around 4K sentence pairs. For our
low-resource system we extended our prior work
on finite state transducer based GEC (Stahlberg
et al., 2019) to handle new error types such as
punctuation errors as well as insertions and dele-
tions of a small number of frequent words. For
the restricted track, the organizers provided 1.2M

pairs (560K without identity mappings) of cor-
rected and uncorrected sentences. Our goal on
the restricted track was to explore the potential of
purely neural models for grammatical error cor-
rection.1 We confirm the results of Kasewa et al.
(2018) and report substantial gains by applying
back-translation (Sennrich et al., 2016b) to GEC
– a data augmentation technique common in ma-
chine translation. Furthermore, we noticed that
large parts of the training data do not match the
target domain. We mitigated the domain gap by
over-sampling the in-domain training corpus, and
by fine-tuning through continued training. Our
final model is an ensemble of four neural ma-
chine translation (NMT) models and two neural
language models (LMs) with Transformer archi-
tecture (Vaswani et al., 2017). Our purely neu-
ral system was also part of the joint submission
with the Cambridge University Computer Lab de-
scribed by Yuan et al. (2019).

2 Low-resource Track Submission

2.1 FST-based Grammatical Error
Correction

Stahlberg et al. (2019) investigated the use of fi-
nite state transducers (FSTs) for neural grammat-
ical error correction. They proposed a cascade of
FST compositions to construct a hypothesis space
which is then rescored with a neural language
model. We will outline this approach and explain
our modifications in this section. For more details
we refer to (Stahlberg et al., 2019).

In a first step, the source sentence is converted
to an FST I (Fig. 1). This initial FST is augmented
by composition (denoted with the ◦-operator) with
various other FSTs to cover different error types.
Composition is a widely used standard operation

1Models will be published at http://ucam-smt.
github.io/sgnmt/html/bea19_gec.html.
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Figure 1: Input FST I representing the source sentence ‘In a such situaction there is no other way.’. We follow
standard convention and highlight the start state in bold and the final state with a double circle.

Figure 2: Deletion FST D which can map any token in
the list R from Tab. 1 to ε. The σ-label matches any
symbol and maps it to itself.

Deletion Frequency Token
(dev set)

164 the
78 ,
50 a
33 to
20 it
18 of
16 in
12 that
8 will
8 have
8 for
8 an
7 is
7 -
6 they
6 ’s
6 and
5 had

Table 1: List of tokens R that can be deleted by the
deletion transducer D in Fig. 2.

on FSTs and supported efficiently by FST toolk-
its such as OpenFST (Allauzen et al., 2007). We
construct the hypothesis space as follows:2

1. We compose the input I with the deletion
transducer D in Fig. 2. D allows to delete to-
kens on the short list shown in Tab. 1 at a cost
λdel. We selected R by looking up all tokens
which have been deleted in the dev set more
than five times and manually filtered that list
slightly. We did not use the full list of dev
set deletions to avoid under-estimating λdel in
tuning.

2. In a next step, we compose the transducer
from step 1 with the edit transducer E in
Fig. 3. This step addresses substitution er-
rors such as spelling or morphology errors.

2Note that our description differs from (Stahlberg et al.,
2019) in the following ways: First, we use additional FSTs to
allow insertions and deletions. Second, we integrate penal-
ties directly into the FSTs rather than using special tokens in
combination with a penalization transducer.

Figure 3: Edit FSTE which allows substitutions with a
cost of λsub. The σ-label matches any symbol and maps
it to itself at no cost.

Figure 4: Insertion FST A for adding the symbols “,”,
“-”, and “’s” at a cost of λins. The σ-label matches any
symbol and maps it to itself at no cost.

Like Stahlberg et al. (2019), we use the con-
fusion sets of Bryant and Briscoe (2018)
based on CyHunspell for spell checking (Ro-
driguez and Seal, 2014), the AGID morphol-
ogy database for morphology errors (Atkin-
son, 2011), and manually defined corrections
for determiner and preposition errors to con-
struct E. Additionally, we extracted all sub-
stitution errors from the BEA-2019 dev set
which occurred more than five times, and
added a small number of manually defined
rules that fix tokenization around punctuation
symbols.

3. We found it challenging to allow insertions in
LM-based GEC because the LM often prefers
inserting words with high unigram probabil-
ity such as articles and prepositions before
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Sub Del Ins LM Beam CoNLL-2014 BEA-2019 Dev
P R M2 P R ERRANT

Best published: Stahlberg et al. (2019) 54.12 25.52 44.21 n/a
X 1x 8 58.59 24.14 45.58 42.44 14.68 30.79
X X 1x 8 59.01 26.07 47.11 41.21 16.47 31.69
X X X 1x 8 52.89 26.68 44.20 40.09 19.97 33.36
X X X 2x 8 54.05 26.71 44.87 40.70 20.01 33.73
X X X 2x 16 57.05 27.22 46.80 42.02 19.76 34.29
X X X 2x 32 58.48 28.21 48.15 42.37 19.92 34.58

Table 2: Results on the low-resource track. The λ-parameters are tuned on the BEA-2019 dev set.

less predictable words like proper names. We
therefore restrict insertions to the three to-
kens “,”, “-”, and “’s” and allow only one
insertion per sentence. We achieve this by
adding the transducer A in Fig. 4 to our com-
position cascade.

4. Finally, we map the word-level FSTs to the
subword-level by composition with a map-
ping transducer T that applies byte pair en-
coding (Sennrich et al., 2016c, BPE) to the
full words. Word-to-BPE mapping transduc-
ers have been used in prior work to combine
word-level models with subword-level neu-
ral sequence models (Stahlberg et al., 2019,
2017b, 2018b, 2017a).

In a more condensed form, we can describe the
final transducer as:

I ◦D ◦ E ◦A ◦ T (1)

with D for deletions, E for substitutions, A for in-
sertions, and T for converting words to BPE to-
kens. Path scores in the FST in Eq. 1 are the
accumulated penalties λdel, λsub, and λins. The
λ-parameters are tuned on the dev set using a
variant of Powell search (Powell, 1964). We
apply standard FST operations like output pro-
jection, ε-removal, determinization, minimization,
and weight pushing (Mohri, 1997; Mohri and Ri-
ley, 2001) to help downstream decoding. Follow-
ing Stahlberg et al. (2019) we then use the result-
ing transducer to constrain a neural LM beam de-
coder.

2.2 Experimental Setup
Our LMs are Transformer (Vaswani et al., 2017)
decoders (transformer big) trained using the
Tensor2Tensor library (Vaswani et al., 2018).
We delay SGD updates (Stahlberg et al., 2018a;
Saunders et al., 2018) with factor 2 to simulate
500K training steps with 8 GPUs on 4 physi-
cal GPUs. Training batches contain about 4K

source and target tokens. Our LM training set
comprises the monolingual news2015-news2018
English training sets3 from the WMT evaluation
campaigns (Bojar et al., 2018) after language de-
tection (Nakatani, 2010) (138M sentences) and
subword segmentation using byte pair encod-
ing (Sennrich et al., 2016c) with 32K merge op-
erations. For decoding, we use our SGNMT
tool (Stahlberg et al., 2017b, 2018b) with Open-
FST backend (Allauzen et al., 2007).

2.3 Results
We report M2 (Dahlmeier and Ng, 2012) scores
on the CoNLL-2014 test set (Ng et al., 2014) and
span-based ERRANT scores (Bryant et al., 2017)
on the BEA-2019 dev set (Bryant et al., 2019). On
CoNLL-2014 we compare with the best published
results with comparable amount of parallel train-
ing data. We refer to (Bryant et al., 2019) for a
full comparison of BEA-2019 systems. We tune
our systems on BEA-2019 and only report the per-
formance on CoNLL-2014 for comparison to prior
work.

Tab. 2 summarizes our low-resource experi-
ments. Our substitution-only system already out-
performs the prior work of Stahlberg et al. (2019).
Allowing for deletions and insertions improves the
ERRANT score on BEA-2019 Dev by 2.57 points.
We report further gains on both test sets by en-
sembling two language models and increasing the
beam size.

2.4 Differences Between CoNLL-2014 and
BEA-2019 Dev

Our results in Tab. 2 differ significantly between
the CoNLL-2014 test set and the BEA-2019 dev
set. Allowing insertions is beneficial on BEA-
2019 Dev but decreases the M2 score on CoNLL-
2014. Increasing the beam size improves our sys-
tem by 3.28 points on CoNLL-2014 while the im-

3http://www.statmt.org/wmt19/
translation-task.html
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Per Sentence Per Word
CoNLL BEA CoNLL BEA

Missing 0.35 0.46 1.51% 2.30%
Replacement 1.52 1.31 6.62% 6.57%
Unnecessary 0.42 0.19 1.83% 0.98%
Total 2.29 1.96 9.95% 9.86%

Table 3: Number of correction types in CoNLL-2014
and BEA-2019 Dev references.

pact on BEA-2019 Dev is smaller (+0.85 points).
These differences can be partially explained by
comparing the error type frequencies in the refer-
ence annotations in both test sets (Tab. 3). Samples
in CoNLL-2014 generally need more corrections
per sentence than in BEA-2019 Dev. More im-
portantly, the CoNLL-2014 test set contains fewer
missing words, but much more unnecessary words
than BEA-2019 Dev. This mismatch tempers with
tuning as we explicitly tune insertion and deletion
penalties.

3 Restricted Track Submission

In contrast to our low-resource submission, our
restricted system entirely relies on neural models
and does not use any external NLP tools, spell
checkers, or hand-crafted confusion sets. For sim-
plicity, we also chose to use standard implemen-
tations (Vaswani et al., 2018) of standard Trans-
former (Vaswani et al., 2017) models with stan-
dard hyper-parameters. This makes our final sys-
tem easy to deploy as it is a simple ensemble
of standard neural models with minimal prepro-
cessing (subword segmentation). Our contribu-
tions on this track focus on NMT training tech-
niques such as over-sampling, back-translation,
and fine-tuning. We show that over-sampling ef-
fectively reduces domain mismatch. We found
back-translation (Sennrich et al., 2016b) to be
a very effective technique to utilize unannotated
training data. However, while over-sampling is
commonly used in machine translation to bal-
ance the number of real and back-translated train-
ing sentences, we report that using over-sampling
this way for GEC hurts performance. Finally,
we propose a combination of checkpoint averag-
ing (Junczys-Dowmunt et al., 2016) and continued
training to adapt our NMT models to the target do-
main.

3.1 Experimental Setup
We use neural LMs and neural machine transla-
tion (NMT) models in our restricted track entry.

BASE BIG
T2T HParams set trans. base trans. big
# physical GPUs 4 4
Batch size 4,192 2,048
SGD delay factor 2 4
# training iterations 300K 400K
Beam size 4 8

Table 4: NMT setups BASE and BIG used in our exper-
iments for the restricted track.

Number of Sentences
With Identities W/o Identities

FCE 28K 18K
Lang-8 1,038K 498K
NUCLE 57K 21K
W&I+LOCNESS 34K 23K
Total 1,157K 560K

Table 5: BEA-2019 parallel training data with and
without removing pairs where source and target sen-
tences are the same.

Our neural LM is as described in Sec. 2.2. Our
LMs and NMT models share the same subword
segmentation. We perform exploratory NMT ex-
periments with the BASE setup, but switch to the
BIG setup for our final models. Tab. 4 shows
the differences between both setups. Tab. 5 lists
some corpus statistics for the BEA-2019 training
sets. In our experiments without fine-tuning we
decode with the average of the 20 most recent
checkpoints (Junczys-Dowmunt et al., 2016). We
use the SGNMT decoder (Stahlberg et al., 2017b,
2018b) in all our experiments.

In-domain corpus over-sampling The BEA-
2019 training corpora (Tab. 5) differ significantly
not only in size but also their closeness to the
target domain. The W&I+LOCNESS corpus is
most similar to the BEA-2019 dev and test sets
in terms of domains and the distribution over En-
glish language proficiency, but only consists of
34K sentence pairs. To increase the importance
of in-domain training samples we over-sampled
the W&I+LOCNESS corpus with different rates.
Tab. 6 shows that over-sampling by factor 4 (i.e.
adding the W&I+LOCNESS corpus four times
to the training set) improves the ERRAMT F0.5-
score by 2.2 points on the BEA-2019 dev set
and does not lead to substantial losses on the
CoNLL-2014 test set. We will over-sample the
W&I+LOCNESS corpus by four in all subsequent
experiments.

Removing identity mappings Previous works
often suggested to remove unchanged sentences
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W&I+LOCNESS Ratio CoNLL-2014 BEA-2019 Dev
Over-sampling Rate P R M2 P R ERRANT

1x 1:33 59.88 17.46 40.30 38.20 15.09 29.24
4x 1:8 59.16 17.20 39.76 40.40 16.67 31.44
8x 1:4 57.73 17.76 39.81 39.19 16.73 30.90

Table 6: Over-sampling the BEA-2019 in-domain corpus W&I+LOCNESS under BASE models. The second
column contains the ratio of W&I+LOCNESS samples to training samples from the other corpora.

Identity CoNLL-2014 BEA-2019 Dev
Removal P R M2 P R ERR.
× 59.16 17.20 39.76 40.40 16.67 31.44
X 53.34 28.83 45.59 33.04 23.14 30.44

Table 7: Impact of identity removal on BASE models.

(i.e. source and target sentences are equal) from
the training corpora (Stahlberg et al., 2019; Zhao
et al., 2019; Grundkiewicz and Junczys-Dowmunt,
2018). We note that removing these identity map-
pings can be seen as measure to control the bal-
ance between precision and recall. As shown in
Tab. 7, removing identities encourages the model
to make more corrections and thus leads to higher
recall but lower precision. It depends on the test
set whether this results in an improvement in F0.5

score. For the subsequent experiments we found
that removing identities in the parallel training
corpora but not in the back-translated synthetic
data works well in practice.

Back-translation Back-translation (Sennrich
et al., 2016b) has become the most widely used
technique to use monolingual data in neural
machine translation. Back-translation extends the
existing parallel training set by additional training
samples with real English target sentences but
synthetic source sentences. Different methods
have been proposed to synthesize the source
sentence such as using dummy tokens (Sennrich
et al., 2016b), copying the target sentence (Currey
et al., 2017), or sampling from or decoding with
a reverse sequence-to-sequence model (Sennrich
et al., 2016b; Edunov et al., 2018; Kasewa et al.,

2018). The most popular approach is to generate
the synthetic source sentences with a reverse
model that is trained to transform target to source
sentences using beam search. In GEC, this means
that the reverse model learns to introduce errors
into a correct English sentence. Back-translation
has been applied successfully to GEC by Kasewa
et al. (2018). We confirm the effectiveness of
back-translation in GEC and discuss some of
the differences between applying this technique
to grammatical error correction and machine
translation.

Our experiments with back-translation are sum-
marized in Tab. 8. Adding 1M synthetic sentences
to the training data already yields very substantial
gains on both test sets. We achieve our best re-
sults with 5M synthetic sentences (+8.44 on BEA-
2019 Dev). In machine translation, it is important
to maintain a balance between authentic and syn-
thetic data (Sennrich et al., 2016b; Poncelas et al.,
2018; Sennrich et al., 2016a). Over-sampling the
real data is a common practice to rectify that ratio
if large amounts of synthetic data are available. In-
terestingly, over-sampling real data in GEC hurts
performance (row 3 vs. 5 in Tab. 8), and it is possi-
ble to mix real and synthetic sentences at a ratio of
1:7.9 (last three rows in Tab. 8). We will proceed
with the 5M setup for the remainder of this paper.

Fine-tuning As explained previously, we over-
sample the W&I+LOCNESS corpus by factor 4 to
mitigate the domain gap between the training set
and the BEA-2019 dev and test sets. To further
adapt our system to the target domain, we fine-

Over-sampling Rate Number of Ratio CoNLL-2014 BEA-2019 Dev
(Real Data) Synthetic Sentences P R M2 P R ERRANT

1x 0 - 53.34 28.83 45.59 33.04 23.14 30.44
1x 1M 1:1.6 56.17 31.30 48.47 37.79 23.86 33.84
1x 3M 1:4.8 61.40 34.29 53.02 42.62 25.30 37.49
1x 5M 1:7.9 64.18 34.27 54.64 44.69 25.59 38.88
3x 3M 1:1.6 57.12 32.55 49.63 40.08 24.79 35.68
6x 5M 1:1.3 59.15 33.99 51.52 41.52 25.05 36.69

Table 8: Using back-translation for GEC (BASE models). The third column contains the ratio between real and
synthetic sentence pairs.
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Fine-tuning Checkpoint CoNLL-2014 BEA-2019 Dev
(Continued Training) Averaging P R M2 P R ERRANT

63.61 33.39 53.86 44.16 25.01 38.29
X 64.18 34.27 54.64 44.69 25.59 38.88

X 64.98 33.05 54.46 48.62 27.19 42.00
X X 66.03 34.17 55.65 48.99 26.87 42.06

Table 9: Fine-tuning through continued training on W&I+LOCNESS and checkpoint averaging with a BASE model
with 5M back-translated sentences.
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Figure 5: Span-based ERRANT F0.5 scores on the
BEA-2019 dev set over the number of fine-tuning train-
ing iterations (single GPU, SGD delay factor (Saunders
et al., 2018) of 16).

tune the NMT models on W&I+LOCNESS after
convergence on the full training set. We do that
by continuing training on W&I+LOCNESS from
the last checkpoint of the first training pass. Fig. 5
plots the F0.5 score on the BEA-2019 dev set for
two different setups. For the red curve, we average
all checkpoints (Junczys-Dowmunt et al., 2016)
(including the last unadapted checkpoint) up to a
certain training iteration. Checkpoints are dumped
every 500 steps. The green curve does not use
any checkpoint averaging. Checkpoint averaging
helps to smooth out fluctuations in F0.5 score, and
also generalizes better to CoNLL-2014 (Tab. 9).

Final system Tab. 10 contains our experiments
with the BIG configuration. In addition to
W&I+LOCNESS over-sampling, back-translation
with 5M sentences, and fine-tuning with check-
point averaging, we report further gains by adding

the language models from our low-resource sys-
tem (Sec. 2.2) and ensembling. Our best sys-
tem (4 NMT models, 2 language models) achieves
58.9 M2 on CoNLL-2014, which is slightly (2.25
points) worse than the best published result on that
test set (Zhao et al., 2019). However, we note
that we have tailored our system towards the BEA-
2019 dev set and not the CoNLL-2013 or CoNLL-
2014 test sets. As we argued in Sec. 2.4, our re-
sults throughout this work suggest strongly that
the optimal system parameters for these test sets
are very different from each other, and that our fi-
nal system settings are not optimal for CoNLL-
2014. We also note that unlike the system of Zhao
et al. (2019), our system for the restricted track
does not use spell checkers or other NLP tools but
relies solely on neural sequence models.

4 Conclusion

We participated in the BEA 2019 Shared Task on
grammatical error correction with submissions to
the low-resource and the restricted track. Our low-
resource system is an extension of prior work on
FST-based GEC (Stahlberg et al., 2019) to allow
insertions and deletions. Our restricted track sub-
mission is a purely neural system based on stan-
dard NMT and LM architectures. We pointed out
the similarity between GEC and machine trans-
lation, and demonstrated that several techniques
which originate from MT research such as over-
sampling, back-translation, and fine-tuning, are
also useful for GEC. Our models have been used
in a joint submission with the Cambridge Univer-
sity Computer Lab (Yuan et al., 2019).

NMT Fine-tuning LM CoNLL-2014 BEA-2019 Dev
P R M2 P R ERRANT

Best published: Zhao et al. (2019) 71.57 38.65 61.15 n/a
1x 64.04 35.74 55.28 45.86 26.46 40.00
1x X 66.57 35.21 56.50 51.57 27.49 43.88
1x X 2x 61.53 40.44 55.72 48.30 33.08 44.23
4x X 70.37 35.12 58.60 55.84 27.80 46.47
4x X 2x 66.89 39.85 58.90 53.17 32.89 47.34

Table 10: Final results on the restricted track with BIG models and back-translation.
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Abstract

We introduce the AIP-Tohoku grammatical er-
ror correction (GEC) system for the BEA-
2019 shared task in Track 1 (Restricted Track)
and Track 2 (Unrestricted Track) using the
same system architecture. Our system com-
prises two key components: error generation
and sentence-level error detection. In particu-
lar, GEC with sentence-level grammatical er-
ror detection is a novel and versatile approach,
and we experimentally demonstrate that it sig-
nificantly improves the precision of the base
model. Our system is ranked 9th in Track 1
and 2nd in Track 2.

1 Introduction

As part of the BEA-2019 shared task, we partic-
ipated in Track 1 (Restricted Track) and Track
2 (Unrestricted Track). We utilized the Trans-
former (Vaswani et al., 2017) architecture as a base
GEC model for machine translation systems as it
has become a state-of-the-art approach for gram-
matical error correction (GEC).

In our system, the error correction model col-
laborates with a sentence-level error detection
model. In GEC, F0.5 is used for evaluation be-
cause precision is more important than recall. To
improve the precision score on the test set, our
system corrected the input sentences by detect-
ing errors using a sentence-level error detection
model (which we denote as SED). We applied the
bidirectional encoder representations from trans-
formers (BERT) model (Devlin et al., 2018) for
sentence-level error detection. In order to im-
prove the performance of SED, we propose an
SED model taking the learner’s proficiency into

∗ Current affiliation: Yahoo Japan Corporation,
hiroasan@yahoo-corp.jp

† Current affiliation: Future Corporation, mizu-
moto.tomoya.mh7@is.naist.jp

account. To the best of our knowledge, this is the
first study that has combined GEC with SED.

Because grammatical correctness is required for
output sentences in GEC, the target side of paral-
lel training corpora should not contain noisy sen-
tences. Our correction model is trained to cor-
rect sentence pairs, which were identified by our
sentence-level grammatical error detection model.
We call this data cleaning process BERT-Cleaning.

For Track 1, similar to back-translation (Sen-
nrich et al., 2016b; Edunov et al., 2018), we aug-
mented the parallel training corpus with errors
generated from monolingual data. After addition
of the generated data and SED process, the F0.5

score on the base model improved.
For Track 2, we used the EF-Cambridge Open

Language Database (EFCAMDAT) (Geertzen
et al., 2013) and non-public Lang-8 as the exter-
nal language learner corpus.

2 Related Work

2.1 Error Detection

The field of grammatical error detection (GED)
has a long history. Many previous studies have
treated GED as a token-level binary classifica-
tion task (Tetreault and Chodorow, 2008; Han
et al., 2006; Chodorow et al., 2012; Rei and Yan-
nakoudakis, 2016; Rei et al., 2016; Rei, 2017).
Kaneko et al. (2017) improved grammatical er-
ror detection by learning word embeddings that
consider grammaticality and error patterns. Yan-
nakoudakis et al. (2017) propose an approach
to N-best list re-ranking using neural sequence-
labelling models.

While many studies in GED focus on token-
level error detection, there are studies that perform
sentence-level binary classification of sentences
that need some editing (Han et al., 2006; Tetreault
and Chodorow, 2008; Chodorow et al., 2012;
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Schmaltz et al., 2016). Compared with token-
level grammatical error correction, sentence-level
grammatical error correction is a simple problem
setting because there is no need to identify the lo-
cation of errors.

2.2 Error Generation

In the field of machine translation, back-
translation is an effective method for neural ma-
chine translation systems (Sennrich et al., 2016b;
Imamura et al., 2018). Edunov et al. (2018) re-
ported that back-translation obtained via sampling
or noised beam outputs is effective for neural ma-
chine translation systems.

Recently, back-translation has been applied to
grammatical error detection and correction. Rei
et al. (2017) proposed artificial error generation
with statistical machine translation and syntactic
patterns for error detection. Kasewa et al. (2018)
constructed synthetic samples using a seq2seq
neural model with greedy search and temperature
sampling for error detection. Xie et al. (2018)
proposed certain noising methods for error gener-
ation, and Ge et al. (2018) proposed back-boost
learning using fluency scores.

3 System Architecture

3.1 Base Correction Model

We used Transformer, the self-attention-based
translation model, as a base GEC system (Vaswani
et al., 2017). Some previous studies used Trans-
former to achieve high performance (Junczys-
Dowmunt et al., 2018; Zhao et al., 2019).

3.2 Sentence-level Error Detection

3.2.1 Motivation
The sentence-level error detection (SED) mod-
ule is one of the key components of our system,
with the goal of detecting sentences with gram-
matical errors. The aim of introducing SED is
to reduce false positive by passing only sentences
that contain errors to the GEC model. We cal-
culated the rate of a sentence that changes in the
W&I+LOCNESS development set and found it to
be 64.34%, i.e., almost 35% of the sentences did
not require corrections.

3.2.2 Base Model
We built a base SED model using BERT (De-
vlin et al., 2018), which is a straightforward ex-
tension of sequence classification tasks such as

CoLA (Warstadt et al., 2018) and SST-2 (Socher
et al., 2013). For setting up a training set for the
base SED model, we preprocessed it to obtain bi-
nary labeled data (e.g., 0 for correct and 1 for in-
correct, respectively).

3.2.3 Proposed Model
Figure 1 shows the architecture of our proposed
SED model. The key ideas of our proposed model
are as follows:

• There is a correlation between the error rate
and the learner’s level of proficiency.

• The performance of SED can be improved by
fine-tuning the model according to the learn-
ers proficiency.

The first idea is based on the following obser-
vation on the W&I+LOCNESS development set:
Looking at the word error rate (WER) across three
different CEFR levels: A (beginner), B (interme-
diate), C (advanced), we can confirm that 19.49%
for level A, 13.18% for level B, and 6.04% for
level C. The second idea comes from previous
studies on GEC (Junczys-Dowmunt and Grund-
kiewicz, 2016; Junczys-Dowmunt et al., 2018).
They showed that better results can be achieved if
the error rate of the training data is adapted to the
error rate of the development set, which is called
error adaptation.

Let N and M denote the total number of source
words and sentences in a corpus, respectively.
WER is defined as follows:

WER =

∑M
m=1 d(X

m, Y m)
∑M

m=1N
m

where Xm denotes each source sentence, Y m

denotes each corrected sentence, and d(Xm, Y m)
denotes the edit distance between Xm and Y m.

Based on the above ideas, our SED model is de-
veloped in two steps:

1. Building Proficiency Prediction Module
(PPM): The PPM predicts the proficiency of the
learner who wrote a given sentence. Based on the
above key ideas, we employed a multi-task learn-
ing approach in which the model estimates the
learner’s proficiency and performs sentence-level
error detection simultaneously (PP&SED in Fig-
ure1), trained on labelled data obtained by simply
conjoining the SED label with PP label (e.g., 1 A).
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We confirmed that the PP&SED outperforms the
vanilla PP by a large margin of up to 7.8 points at
accuracy (from 42.2 to 50.0).

2. Fine-tuning SED model: After dividing the
given text by proficiency based on the label esti-
mated by the PPM, the SED model is fine-tuned
for each level of proficiency.

Then, the SED module performs sentence-level
binary classification of sentences that need edit-
ing. Table 1 shows the performance of SED on
our dev set. Here, we split the official development
set into test/dev set for our experiments. Our pro-
posed SED model achieved a significant improve-
ment both in precision and recall, by considering
learner proficiency.

Prec. Rec. F
Base Model 88.5 79.8 83.9
Proposed Model 91.3 95.6 93.4

Table 1: Performance of sent-level error detection
(SED).

3.3 Error Generation

Our error generation system follows the system
developed by Edunov et al. (2018). A target-to-
source model is trained, and back-translation is
applied to monolingual data to generate pseudo-
parallel data via sampling from the distribution of
the target-to-source model.

4 Experiment

4.1 Experimental Setting

We will now describe the training data and tools
used to train our model.

4.1.1 Tools
We used the Transformer implemented in
Fairseq1 (Ott et al., 2019) as our GEC model.
For the Transformer, we used a token embedding
size of dimension 512. The hidden size is set
to 512, and the filter size is set to 2048. The
multi-head attention has eight individual attention
heads, whereas the encoder and decoder have six
layers. We use Adam optimizer with β1 = 0.9,
β2 = 0.98, and ε = 10−9. We use inverse squared
root decay. We set the dropout to 0.3. Rather
than using words directly, we used byte pair
encoding (BPE) (Sennrich et al., 2016a), and each

1https://github.com/pytorch/fairseq

of the source and target vocabularies comprises
30K elements, which are the most frequent BPE
tokens.

For building the sentence-level error detection
model, we employed the model based on BERT,
especially for the sequence-level tasks as de-
scribed in Section 3.2. Thus, we used the PyTorch
implementations for Googles BERT model 2.

For building the error generation model, we
used a 7-layer convolutional seq2seq model im-
plemented in Fairseq (Gehring et al., 2017; Chol-
lampatt and Ng, 2018). As Chollampatt and Ng
(2018), both source and target embeddings are of
500 dimensions. Each of the source and target vo-
cabularies comprises the 30K most frequent BPE
tokens. The hidden size of encoders and decoders
is 1,024 with a convolution window width of 3.
The output of each encoder and decoder layer is
1,024 dimensions. We set the dropout rate to 0.3.
The parameters are optimized using the Nesterov
Accelerated Gradient (Sutskever et al., 2013) opti-
mizer with a momentum value of 0.99. We set the
initial learning rate to 0.25, using early stopping.

For evaluating the system outputs, the ER-
RANT (Bryant et al., 2017) is used as a scorer.
In this study, all the results shown are “span-based
correction F0.5”.

4.1.2 Dataset for Track-1
For training our transformer-based GEC sys-
tem, we used the BEA-2019 workshop official
data: the First Certificate in English corpus
(FCE) (Yannakoudakis et al., 2011), the Lang-
8 Corpus of Learner English (Lang-8) (Mizu-
moto et al., 2011; Tajiri et al., 2012), the Na-
tional University of Singapore Corpus of Learner
English (NUCLE) (Dahlmeier et al., 2013), and
W&I+LOCNESS (Bryant et al., 2019; Granger,
1998). Our pre-processing for training data is the
same as that reported previously (Chollampatt and
Ng, 2018). As the result, we obtained 564,565
sentence pairs.

In generating erroneous sentences, we used
Simple Wikipedia and essay scoring data sets (i.e.,
International Corpus of Learner English (Granger
et al., 2009), and International Corpus Network
of Asian Learners of English (Ishikawa, 2013),
the Automated Student Assessment Prize dataset3,
ETS Corpus of Non-Native English (TOEFL

2https://github.com/huggingface/
pytorch-pretrained-BERT

3https://www.kaggle.com/c/asap-sas
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Figure 1: Architecture of proposed sentence-level error detection (SED) model. Native-level (N) is combined with
C-level data.

Prec. Rec. F0.5
Base 61.97 42.11 56.63
Base+SED 65.45 38.04 57.20
Base+GenData 64.57 46.40 59.88
Base+SED+GenData 68.62 42.16 60.97

Table 2: Track1 results

11) (Blanchard et al., 2013). With respect to Sim-
ple Wikipedia, we ignored sentences that were
longer than 60 tokens. To remove erroneous sen-
tences, we applied BERT-Cleaning to the essay
scoring data sets. After BERT-Cleaning and pre-
processing (Chollampatt and Ng, 2018), we ob-
tained 1,426,354 sentence pairs by error genera-
tion.

4.1.3 External Dataset for Track-2

We used EFCAMDAT (Geertzen et al., 2013) and
non-public Lang-8 as the external language learner
corpus. The EFCAMDAT is constructed by the
Department of Theoretical and Applied Linguis-
tics at the University of Cambridge. Lo et al.
(2018) were the first the researchers to use the EF-
CAMDAT for the GEC task. However, the sys-
tem trained with the EFCAMDAT gave lower per-
formance than the system trained with the Lang-8
Corpus. One of the causes of the lower perfor-
mance is that many errors are found in the EF-
CAMDAT corrected sentences. Thus, we applied
BERT-Cleaning to the EFCAMDAT to remove the
erroneous sentences. Consequently, the number of
sentence pairs of EFCAMDAT was reduced from
1,157,339 to 760,393. Finally, we used 7,739,577
sentence pairs (non-public Lang-8 + Cleand EF-
CAMDAT) by using pre-processing (Chollampatt
and Ng, 2018) as the additional training data.

Prec. Rec. F0.5
Track1 68.62 42.16 60.97
Track1 + AddData 70.60 51.03 65.57

Table 3: Track2 results

4.2 Results on Track-1

Table 2 shows the results of our systems, en-
semble decoding of five independently trained
models. We compared the following four sys-
tems: (1) Base (Transformer-based GEC sys-
tem), (2) Base plus sentence error detection
(Base+SED) described in section 3.2, (3) Base
plus generated data (Base+GenData), and (4) Base
plus sentence error detection and generated data
(Base+SED+GenData).

Note that our system, which was composed of
both SED and GenData, achieved a 60.97 F0.5

score. Our proposed methods, the SED, and the
GenData were effective for improving GEC per-
formance. Especially, the SED is effective for
a precision score, which improved from 61.97 to
65.45 (+3.48). However, the recall dropped from
42.11 to 38.04 (4.07). Nevertheless, the GenData
improved both recall (from 42.11 to 46.40) and
precision (from 61.97 to 64.57).

4.3 Results on Track-2

Table 3 shows the results of the model trained
with additional data (Track1+AddData). The ad-
ditional data improve precision and recall, and no-
tably give a large increase in recall (improved from
42.16 to 51.03).

5 Conclusion

We described our system for the BEA-2019
Shared Task. Our system has two key compo-
nents: error generation and sentence-level error
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detection. We input grammatically incorrect sen-
tences predicted by the sentence-level error detec-
tion model into our correction model. Sentence-
level grammatical error detection is a novel ap-
proach to grammatical error correction, and we
have shown that it can significantly improve per-
formance. Our system ranked 9th in Track-1 and
2nd in Track-2.
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Abstract
In this paper, we describe our systems submit-
ted to the Building Educational Applications
(BEA) 2019 Shared Task (Bryant et al., 2019).
We participated in all three tracks. Our models
are NMT systems based on the Transformer
model, which we improve by incorporating
several enhancements: applying dropout to
whole source and target words, weighting tar-
get subwords, averaging model checkpoints,
and using the trained model iteratively for cor-
recting the intermediate translations. The sys-
tem in the Restricted Track is trained on the
provided corpora with oversampled “cleaner”
sentences and reaches 59.39 F0.5 score on the
test set. The system in the Low-Resource
Track is trained from Wikipedia revision histo-
ries and reaches 44.13 F0.5 score. Finally, we
finetune the system from the Low-Resource
Track on restricted data and achieve 64.55
F0.5 score, placing third in the Unrestricted
Track.

1 Introduction

Starting with the 2013 and 2014 CoNLL Shared
Tasks on grammatical error correction (GEC),
much progress has been done in this area. The
need to correct a variety of error types lead most
researchers to focus on models based on ma-
chine translation (Brockett et al., 2006) rather than
custom designed rule-based models or a combi-
nation of single error classifiers. The machine
translation systems turned out to be particular-
ity effective when Junczys-Dowmunt and Grund-
kiewicz (2016) presented state-of-the-art statisti-
cal machine translation system. Currently, mod-
els based on statistical and neural machine trans-
lation achieve best results: in restricted settings
with training limited to certain public training
sets (Zhao et al., 2019); unrestricted settings with
no restrictions on training data (Ge et al., 2018);
and also in low-resource track where the training

data should not come from any annotated corpora
(Lichtarge et al., 2018).1

In this paper, we present our models and their
results in the restricted, unrestricted, and low-
resource tracks. We start with a description of
related work in Section 2. We then describe our
systems together with the implementation details
in Section 3. Section 4 is dedicated to our results
and ablation experiments. Finally, in Section 5 we
conclude the paper with some proposals on future
work.

2 Related Work

Transformer (Vaswani et al., 2017) is currently one
of the most popular architectures used in machine
translation. Its self-attentive layers allow better
gradient flow when compared to recurrent neural
models and the masking in decoder provides faster
training. Junczys-Dowmunt et al. (2018) propose
several improvements for training Transformer on
GEC: using dropout on whole input words, assign-
ing weight to target words based on their align-
ment to source words, and they also propose to
oversample sentences from the training set in or-
der to have the same error rate as the test set.

Majority of work in grammatical error correc-
tion has been done in restricted area with a fixed
set of annotated training datasets. Lichtarge et al.
(2018), however, show that training a neural ma-
chine translation system from Wikipedia edits can
lead to surprisingly good results. As the authors
state, corpus of Wikipedia edits is only weakly
supervised for the task of GEC, because most of
the edits are not corrections of grammatical errors
and also they are not human curated specifically
for GEC. To overcome these issues, the authors
use iterative decoding which allows for incremen-
tal corrections. In other words, the model can re-

1Note that in this settings Wikipedia revisions are allowed
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peatedly translate its current output as long as the
translation is more probable then keeping the sen-
tence unchanged. Similar idea is also presented in
(Ge et al., 2018), where the translation system is
trained with respect to the incremental inference.

3 Our System

In this section, we present our three systems sub-
mitted to each track of the BEA 2019 Shared Task.
We start with the Restricted Track In Section 3.1,
where we present a series of improvements to the
baseline Transformer model. In Section 3.2, we
describe our model trained on Wikipedia revisions
which was submitted to the Low-Resource Track.
Finally, in Section 3.3, we describe the model sub-
mitted to the Unrestricted Track.

All our models are based on the Trans-
former model from Tensor2Tensor framework ver-
sion 1.12.0.2

3.1 Restricted Track

In the Restricted Track, we use the 5 pro-
vided datasets for system development: FCE v2.1
(Yannakoudakis et al., 2011), Lang-8 Corpus of
Learner English (Mizumoto et al., 2011; Tajiri
et al., 2012), NUCLE (Dahlmeier et al., 2013),
Write & Improve (W&I) and LOCNESS v2.1
(Bryant et al., 2019; Granger, 1998). From Lang-
8 corpus, we took only the sentences annotated by
annotators with ID 0 (A0) and ID 1 (A1). All but
the development sets from W&I and LOCNESS
datasets were used for training. The simple statis-
tics of these datasets are presented in Table 1. The
displayed error rate is computed using maximum
alignment of original and annotated sentences as a
ratio of non-matching alignment edges (insertion,
deletion, and replacement).

We use the transformer base configuration of
Tensor2Tensor as our baseline solution. The train-
ing dataset consists of 1 230 231 sentences. Af-
ter training, beam search decoding is employed
to generate model corrections and we choose the
checkpoint with the highest accuracy on a devel-
opment set concatenated from the W&I and LOC-
NESS development sets.

3.1.1 Transformer Big
The first minor improvement was to use the
transformer big configuration instead of trans-
former base. This configuration has bigger capac-

2https://github.com/tensorflow/tensor2tensor

Dataset Sentences
Average

error rate

Lang8
A0 1 037 561 13.33 %
A1 67 975 25.84 %

FCE v2.1
train 28 350 11.31 %
dev 2 191 11.67 %
test 2 695 12.87 %

NUCLE 57 151 6.56 %

W&I

train A 10 493 18.13 %
train B 13 032 11.68 %
train C 10 783 5.62 %
dev A 1 037 18.32 %
dev B 1 290 12.46 %
dev C 1 069 5.91 %

LOCNESS dev N 998 4.72 %

Table 1: Statistics of available datasets. The error
rate is computed as a ratio of non-matching alignment
edges.

ity and as Popel and Bojar (2018) show, it reaches
substantially better results on certain translation
tasks.

3.1.2 Source and Target Word Dropout
Dropout (Srivastava et al., 2014) is a regulariza-
tion technique that turned out to be particularly ef-
fective in the field of neural networks. It works
by masking several randomly selected activations
during training, which should prevent the neural
network from overfitting the training data. In the
area of NLP, it is a common approach to apply
dropout to whole embeddings, randomly zeroing
certain dimensions. As Junczys-Dowmunt et al.
(2018) show, we can also apply dropout to whole
source words to reduce trust in the source words.
Specifically, full source word embedding vector is
set to zero vector with probability p. We further
note this probability as the source word dropout.

To make regularization even more effective, we
decided to dropout also whole target word embed-
dings. We refer to the probability with which we
dropout entire target word embeddings as the tar-
get word dropout.

3.1.3 Edited MLE
Compared to traditional machine translation task,
whose goal is to translate one language to another,
GEC operates on a single language. Together with
the relatively low error rate, the translation system
may converge to a local optimum, in which the
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model copies the input unchanged to the output.
To overcome this issue, Junczys-Dowmunt et al.
(2018) propose to change the maximum likelihood
objective to assign bigger weights to target tokens
different from the source tokens. More specifi-
cally, they start by computing the word alignment
between each source x = (x0, x1, ..xN ) and tar-
get sentence y = (y0, y1, ...yM ). Then they set the
weight λt of the target word yt to 1 if it is matched,
and otherwise, if it is an insertion or replacement
of a source token, λt is set to some predefined con-
stant. Modified log-likelihood training objective
then takes following form:

L(x, y) = −
M∑

t=1

λt logP (yt|x, y0, . . . , yt−1).

3.1.4 Data oversampling
It is crucial to have training data from the same
domain as the test data, i.e., training data con-
taining similar errors with similar distribution as
the test data. As we can see in the Table 1, the
vast majority of our training data comes from the
Lang-8 corpus. However, as it is quite noisy and
of low quality, it matches the target domain the
least. Therefore, we decided to oversample other
datasets. Specifically, we add the W&I training
data 10 times, all FCE data 5 times and NUCLE
corpus 5 times to the training data. The oversam-
pled training set consists of 1 900 551.

In Table 1, we can also see token error rate of
each corpus. The development error rate in W&I
and LOCNESS varies from 5.91% up to 18.32%.
This gives us a basic idea how the test data looks
like, and since the test data does not contain anno-
tations from which set (A, B, C, N) it comes, we
decided not to optimize the training data against
the token error rate any further.

3.1.5 Checkpoint Averaging
Popel and Bojar (2018) report that averaging sev-
eral last Transformer model checkpoints during
training leads both to lower variance results and
also to slightly better performance than the base-
line without averaging. They propose to save
checkpoints every one hour and average either 8
or 16 last checkpoints. Since we found out that
the model overfits the oversampled dataset quite
quickly, we save checkpoints every 30 minutes.

3.1.6 Iterative decoding
A system for grammatical error correction should
correct all errors in the text while keeping the rest

Data: input sent; max iters; threshold
for iter in [1,2,..,max iters] do

beam results = decode(input sent);
identity cost = +∞;
non identity cost = +∞;
non identity sent = None
for beam item in beam results do

text = beam item[”text”];
cost = beam item[”cost”];
if text == input sent then

identity cost = cost;
else if cost < non identity cost
then

non identity cost = cost;
non identity sent = text;

end
if non identity cost ≤

threshold · identity cost then
input sent = non identity sent;

else
break;

end
end
return input sent;

Algorithm 1: Iterative decoding algorithm

of the text intact. In many situations with multi-
ple errors in a sentence, the trained system, how-
ever, corrects only a subset of its errors. Lichtarge
et al. (2018) and Ge et al. (2018) propose to use
the trained system iteratively to allow the sys-
tem to correct certain errors during further itera-
tions. Iterative decoding is done as long as the
cost of the correction is less than the cost of the
identity translation times a predefined constant.
While Lichtarge et al. (2018) use the same trained
model log-likelihoods as the cost function, Ge
et al. (2018) utilize an external language model for
it. Because the restricted track does not contain
enough training data to train a quality language
model, we adopted the first approach and utilize
the trained system log-likelihoods as a stopping
criterion.

The iterative decoding algorithm we use is pre-
sented in Algorithm 1. Note that when the re-
sulting beam does not contain the identical (non-
modified) sentence, the correction with the lowest
cost is returned regardless of the provided thresh-
old. We adopted this approach for two reasons
– efficiently obtaining the log-likelihood of the
identical sentence would require non-trivial mod-
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ification of the Tensor2Tensor framework, and for
threshold > 1 (i.e., allow generating changes
which are less likely than identical sentence) the
results are the same.

3.1.7 Implementation Details

Apart from the first experiment in which we use
transformer base configuration, all our experi-
ments are based on transformer big architecture.
We use Adafactor optimizer (Shazeer and Stern,
2018), linearly increasing the learning rate from 0
to 0.011 over the first 8000 steps, then decrease it
proportionally to the number of steps after that.3

We also experimented with Adam optimizer with
default learning rate schedule, however, training
converged poorly. We hypothesise that this was
caused by the higher learning rate.

All systems are trained on 4 Nvidia P5000
GPUs for approximately 2 days. The vocabu-
lary consists of approximately 32k most common
word-pieces, batch size is 2000 word-pieces per
each GPU and all sentences with more than 150
word-pieces are discarded. Model checkpoints are
saved every 30 minutes. We ran a grid search to
find values of all hyperparameters described in the
previous sections.

At evaluation time, we run iterative decoding
using a beam size of 4. Beam-search length-
balance decoding hyperparameter alpha is set to
0.6. This applies to all further experiments.

3.2 Low-Resource Track

The dataset for our experiments in the Low-
Resource Track consists of nearly 190M seg-
ment pairs extracted from Wikipedia XML revi-
sion dumps. To acquire these, we downloaded
all English Wikipedia revision dumps (155GB in
size) and processed them with the WikiRevision
dataset problem from Tensor2Tensor. The pro-
cessing pipeline extracts individual pages with
chronological snapshots, removes all non-text ele-
ments and downsamples the snapshots. With low
probability, additional spelling noise is added by
either inserting a random character, deleting a ran-
dom character, transposing two adjacent charac-
ters or replacing a character with a random one.
With the same low probability, a random text sub-
string (up to 8 characters) may also be replaced
with a marker, which should force the model to

3We use 8000 warmup steps and learn-
ing rate schedule=rsqrt decay

learn infilling. Finally, the texts from two consec-
utive snapshots are aligned and sequences between
matching segments are extracted to form a training
pair. Only 4% of identical samples are preserved.

Despite having an enormous size compared to
1.2M sentences in the Restricted Track, the train-
ing pairs extracted from Wikipedia are extremely
noisy, containing a lot of edits that are in no sense
grammatical correction. It is also worth noting that
the identical data modified by the spelling and in-
filling operations form nearly 50% of the training
pairs.

Since we want to re-use the system in other sce-
narios, we train the model on the original (untok-
enized) training data. To evaluate the model on the
BEA development and test data, we detokenize the
data using Moses,4 run model inference and finally
tokenize corrected sentences using spaCy.5

The training segments may contain newline and
tab symbols; therefore, we applied additional post-
processing in which we replaced both these sym-
bols with spaces.

Because overfitting should not be an issue
with the Wikipedia data, we decided to use
transformer clean big tpu configuration, follow-
ing Lichtarge et al. (2018). This configura-
tion, compared to transformer big, performs no
dropouts. The vocabulary consists of approxi-
mately 32k most common word-pieces, batch size
is 2000 word-pieces per each GPU and all sen-
tences with more than 150 word-pieces are dis-
carded. We train the model for approximately 10
days on 4 Nvidia P5000 GPUs. After training, the
last 8 checkpoints saved in 1 hour intervals are av-
eraged. Finally, we run a grid search to find opti-
mal values of threshold and max iters in iterative
decoding algorithm.

3.3 Unrestricted Track

Our system submitted to the Unrestricted Track
is the best system from the Low-Resource Track
finetuned on the oversampled training data as de-
scribed in Section 3.1.4. Since our system in
the Unrestricted Track was trained on detokenized
data, the training sentences for finetuning were
also detokenized. The tokenization and detok-
enization was done in the same way as described
in Section 3.2.

4We use mosestokenizer v1.0.0 and its detokenizer.
5We use spaCy v1.9.0 and the en core web sm-1.2.0

model.
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Track P R F0.5 Best Rank
Restricted 67.33 40.37 59.39 69.47 10 / 21
Unrestricted 68.17 53.25 64.55 66.78 3 / 7
Low Resource 50.47 29.38 44.13 64.24 5 / 9

Table 2: Official shared task F0.5 scores on the test set.

System A B C N Combined
Transformer-base architecture 39.98 32.68 23.97 14.49 32.47
Transformer-big architecture 39.70 35.13 26.22 20.20 34.20
+ 0.2 src drop, 0.1 tgt drop, 3 MLE 42.06 38.25 28.72 23.80 38.15

+ Extended dataset 45.99 41.79 32.52 27.89 40.86
+ Averaging 8 checkpoints 47.90 44.13 36.19 29.05 43.29

+ Iterative decoding 48.75 45.46 37.09 30.19 44.27

Table 3: Development combined F0.5 score of incremental improvements of our system.

We finetune the system with the Adafactor op-
timizer. The learning rate linearly increases from
0 to 0.0003 over the first 20 000 steps and then re-
mains constant. We employ source word dropout,
target word dropout and weighted MLE. The train-
ing data for finetuning and the rest of the training
scheme are identical to Section 3.1.7.

4 Results

We now present the results of our system. Addi-
tionally, we present several ablation experiments,
which are evaluated on the concatenation of W&I
and LOCNESS development sets (the Dev com-
bined).

4.1 Shared Task Results

The official results of our three systems on the
blind test set are presented in Table 2. All our
systems have substantially higher precision than
recall. It is an interesting observation that the sys-
tem in the unrestricted track has similar precision
as the model in the restricted track while having
higher recall.

4.2 Restricted Track

The first experiment we conducted is devoted to
the incremental enhancements that we proposed in
Section 3.1. As Table 3 indicates, applying each
enhancement results in higher performance on the
development set. By applying all incremental im-
provements, total F0.5 score on the development
set increases by 11.8%.

We improved the F0.5 score by adding

Source Target
MLE

Dev
word word combined

dropout dropout F0.5

0 0 1 34.20
0.1 37.89
0.2 38.26

0.1 35.43
0.2 33.98

2 34.56
3 34.28
4 34.17

0.2 0.1 37.89
0.2 3 38.68
0.2 0.1 3 38.15

Table 4: The effect of source word dropout, target word
dropout, and MLE weight on development combined
F0.5 score.

source word dropout, target word dropout and
MLE weighting by almost 4%. To find out opti-
mal values of all three hyper-parameters, we ran
a small grid search. The results of this experi-
ment are presented in Table 4. The source-word
dropout improves the results the most, MLE pro-
vides minor gains, while the influence of target-
word dropout on the results is unclear.

In the next experiment, we examined the effect
of checkpoint averaging. Table 5 presents results
of the model without averaging and with averag-
ing 4, 6, and 8 model checkpoints. The best results
are achieved when 8 checkpoints are used and the
results indicate that the more checkpoints are av-
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Figure 1: Performance of iterative decoding depending
on number of iterations and threshold parameters.

eraged the better the results are.
Finally, we inspect the effect of iterative decod-

ing. Specifically, we run an exhaustive grid search
to find optimal values of threshold and max iters.
The results of this experimented are visualised in
Figure 1. We can see that increasing threshold
from 1 to values around 1.20 leads to substan-
tially better results. Moreover, using more itera-
tions also has a positive impact on the model per-
formance. Both of these improvements are caused
by the model generating more corrections which
are deemed less likely to the model, i.e., we in-
crease recall at the expense of precision.

4.3 Low-Resource Track

We train following models in the Low-Resource
Track:

1. the transformer big configuration with

Checkpointing Dev combined F0.5

No checkpointing 41.55
Averaging 4 checkpoints 43.00
Averaging 6 checkpoints 43.13
Averaging 8 checkpoints 43.29

Table 5: Maximum development combined F0.5 score
achieved by averaging the given number of check-
points.

ID Model
Dev

combined
F0.5

1
transformer big

22.03
0.2 src drop, 0.1 tgt drop

2
transformer clean big tpu

26.05
no src drop, no tgt drop

3
transformer clean big tpu

24.80
0.2 src drop, 0.1 tgt drop

4
transformer clean big tpu

21.16
no spelling or infillment errors

Table 6: Development combined F0.5 score achieved
with different models in the Low-Resource Track.

input word dropout set to 0.2 and tar-
get word dropout to 0.1 – settings similar to
the best system in the Restricted Track but
without edited MLE;

2. the transformer clean big tpu configuration
– this configuration uses no internal dropouts;

3. the transformer clean big tpu configu-
ration with input word dropout 0.2 and
target word dropout 0.1;

4. the transformer clean big tpu configura-
tion trained on sentences extracted from
Wikipedia revisions without introducing
additional spelling errors and infillment
marker.

All but the fourth model use the training data as
described in Section 3.2 and the training scheme
is in all models identical. The results of all models
are presented in Table 6.

The best results are achieved with the second
model which performs no dropouts. When we in-
corporate source and target word dropouts in the
third experiment, the performance deteriorates by
more than 1%. When we also add Transformer in-
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Figure 2: Performance of iterative decoding depending
on number of iterations and threshold parameters.

ternal dropouts in the first experiment, the perfor-
mance drops by additional 2.8%. This confirms
our assumption that the enormous amount of data
is strong enough regularizer and the usage of ad-
ditional regularizers leads to worse performance.

The results of the fourth model, which was
trained on data without additional spelling and in-
fillment noise, are almost 5% worse than when
training on data with this noise. It would be an
interesting experiment to evaluate the effect of
spelling and infillment noise separately, but this
was not done in this paper.

We also run an exhaustive grid search to find op-
timal values of threshold and max iters in iterative
decoding. As we can see in Figure 2, the optimal
value of threshold is now below 1 indicating that
precision is now increased at the expense of recall.
A performance gain in using more than one itera-
tion is clearly visible.

4.4 Unrestricted Track
In the Unrestricted Track, we tried finetuning the
pretrained system with two different learning rate
schedules:

• linearly increase learning rate from 0 to 0.011
over the first 8000 steps, then decrease it
proportionally to the number of steps after
that – exactly same as while training system
from scratch in the Restricted Track (see Sec-
tion 3.1.7);

• linearly increase learning rate from 0 to 3e-4
then keep the learning rate constant as pro-
posed by Lichtarge et al. (2018).

All other hyper-parameters and the training pro-
cess remain the same as described in Section 3.3.

The first finetuning scheme overfitted the train-
ing corpus quite quickly while reaching score of
48.33. The second scheme converged slower and
reached a higher score of 48.82.

5 Conclusion

We have presented our three systems submitted
to the BEA 2019 Shared Tasks. By employ-
ing larger architecture, source and target word
dropout, edited MLE, dataset extension, check-
point averaging, and iterative decoding, our sys-
tem reached 59.39 F0.5 score in the Restricted
Track, finishing 10th out of 21 participants.

In the Low Resource Track, we utilized
Wikipedia revision edits as a training data, reach-
ing 44.14 F0.5 score. Finally, we finetuned this
model using the annotated training data, obtaining
65.55 F0.5 score in the Unrestricted Track, ranking
3rd out of 7 submissions.

As future work, we would like to explore itera-
tive decoding algorithm more thoroughly. Specif-
ically, we hope that allowing threshold parameter
to change in each iteration might provide gains.
We would also like to train systems on Wikipedia
revisions in other languages.
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Abstract

This paper describes our contribution to the
low-resource track of the BEA 2019 shared
task on Grammatical Error Correction (GEC).
Our approach to GEC builds on the theory
of the noisy channel by combining a chan-
nel model and language model. We generate
confusion sets from the Wikipedia edit history
and use the frequencies of edits to estimate the
channel model. Additionally, we use two pre-
trained language models: 1) Google’s BERT
model, which we fine-tune for specific error
types and 2) OpenAI’s GPT-2 model, utilizing
that it can operate with previous sentences as
context. Furthermore, we search for the opti-
mal combinations of corrections using beam
search.

1 Introduction

Grammatical Error Correction Grammatical
Error Correction (GEC) is the task of automat-
ically correcting grammatical errors in written
text. The task is relevant for users producing text
through text interfaces, both as assistance dur-
ing the writing process and for proofreading al-
ready written work. In recent years, GEC has re-
ceived increasing attention in the research commu-
nity with several shared tasks on the topic, such
as CoNLL 13-14 (Ng et al., 2013, 2014), HOO
(Dale and Kilgarriff, 2011), and AESW (Daudar-
avicius et al., 2016), and most recently the BEA
2019 shared task on GEC (Bryant et al., 2019),
which this work is a contribution to.

Supervised GEC Current state-of-the-art ap-
proaches to GEC use a supervised machine trans-
lation setup (Ge et al., 2018; Grundkiewicz and
Junczys-Dowmunt, 2018), that relies on large
amounts of annotated learner data. This means
that systems do not generalize well to non-learner
domains and that these approaches do not work

well for low-resource languages. As most existing
datasets are not freely available for commercial
use, the supervised approach also limits industrial
uses.

Unsupervised GEC In order to combat these
problems, in recent years several approaches to
GEC have used the concept of language modeling,
which allows for training GEC systems without
supervised data, and have so far given promising
results. Bryant and Briscoe (2018) uses a 5-gram
language model while Makarenkov et al. (2019)
uses a bidirectional LSTM-based language model.
Kaili et al. (2018) fine-tunes LSTM-based lan-
guage models for specific error types.

Using a language modeling approach means
that we can create models that are trained unsuper-
vised by only being based on high quality native
text corpora. This means that our systems will only
require a small amount of labeled data for tuning
purposes. We can therefore build GEC systems for
any language given enough native text.

The Noisy Channel The core idea that these
language modeling approaches are using for GEC
is that low probability sequences are more likely
to contain grammatical errors than high probabil-
ity sequences. However this formulation does not
take into account the writer’s likelihood of making
particular errors. For example, “then”→ “than” is
much more common than “then” → “the” due to
an underlying similarity in phonetics.

In order to take this into account we utilize the
concept of the noisy channel model, which allows
for modeling the users likelihood of making par-
ticular errors, instead of only relying on which se-
quences of words are more probable.

Contributions In the following, we present our
low-resource approach to GEC, which ranked as
the 6th best performing system in the low-resource

191



track of the BEA 2019 shared task. We utilize con-
fusion sets and edit statistics gathered from the
Wikipedia edit history, as well as unsupervised
language models in a noisy channel setting.

Our contributions are 1) formalizing GEC in the
noisy channel framework, 2) generating confusion
sets from the Wikipedia edit history, 3) estimat-
ing a channel model based on frequencies of ed-
its from the confusion sets, 4) combining existing
pre-trained language models, with each their own
strength, 5) specializing models for specific gram-
matical error types, and 6) using beam search to
find the optimal combination of corrections.

2 The Noisy Channel

The intuition of the noisy channel model
(Kernighan et al., 1990; Mays et al., 1990) is that
for any given word in a sentence, we have a true
underlying word, that has been passed through a
noisy communication channel, which potentially
has modified the word into an erroneous surface
form.

Our goal is to build a model of the channel. With
this, given a confusion set, we can pass every can-
didate correction through this noisy channel to see
which one is most likely to have produced the sur-
face word.

The noisy channel model can be formulated as
a form of Bayesian inference. Given a potentially
erroneous surface word, x, we want to find the hid-
den word, c∗, from all candidates c ∈ C, that gen-
erated x.

ĉ = argmax
c∈C

P (c|x)

Using Bayes’ rule this can be restated as

ĉ = argmax
c∈C

P (x|c) ∗ P (c)

where P (x|c) is the likelihood of the noisy
channel producing a particular x. This is referred
to as the channel model. The prior probability of
a hidden word, P (c), is modeled by a language
model (Jurafsky and Martin, 2009).

3 System

Our system is a combination of several com-
ponents: a PoS tagger, the channel model, two
language models (BERT and GPT-2) and beam
search. We first PoS tag the sentence. Then, the
sentence is processed from left to right, and for ev-
ery word x, we identify the set C of possible cor-
rection candidates, based on the PoS tag and our

generated confusion sets. We then pick the c ∈ C
with the highest P (c|x) estimated using our com-
ponents in the following formula:

P (c|x) = PChannel ∗ PBERT ∗ PGPT−2

We allow the system to consider multiple hypothe-
ses by using beam search, which continuously
keeps track of a beam of the most likely hypothe-
ses.

In the following, we describe the different com-
ponents that make up our GEC system in more de-
tail.

3.1 Channel Model

We estimate the channel model in two ways, de-
pending if the written word is in our vocabulary
(real-word error) or not (non-word error).

Real-word errors In order to estimate the chan-
nel model P (x|c) for real-word errors, we first
make a simplifying assumption that a human only
makes a mistake for 1 in 20 words. This means
that there is a 5% probability (denoted as α) of the
surface word x being wrong. This probability can
be distributed between the candidate corrections
taken from the confusion set. For a given candi-
date word ci we can calculate the channel proba-
bility using frequency counts of edits for all can-
didates in C. We gather frequency counts from the
Wikipedia edit history (§ 4.1).

P (x|ci) = α ∗ |x→ ci|
|C|∑
j=1
|x→ cj |

Non-word errors For non-word errors we as-
sume that any x not in our vocabulary and not a
named entity1 is an error. Assuming a list of can-
didate corrections, we use the inverse Levenshtein
distance to distribute the error probability between
the candidates. Hereby, candidates which are lex-
ically closer to the original word are made more
likely.

3.2 Language Models

For language modeling we use a combination of
two pre-trained models that have recently given
good results: BERT (Devlin et al., 2018) and
GPT-2 (Radford et al., 2019).

1as estimated by Spacy, https://spacy.io
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BERT BERT is a Transformer-based (Vaswani
et al., 2017) language model pre-trained on a large
text corpus. It estimates probabilities by jointly
conditioning on both left and right context. We use
the pre-trained BERT-Base Uncased model as a
starting point for several models, which are each
fine-tuned for specific error types on sentences ex-
tracted from a Wikipedia dump. We do three types
of fine-tuning, using the default hyperparameters
of BERT.

• PoS-based fine-tuning, where a word is re-
moved and the model predicts its PoS tag.
This is used to classify which word category
should be at the position for verb form errors
and noun number errors.

• Word-based fine-tuning, where a word is re-
moved and the model predicts the word from
a vocabulary of the most common 40.000
words from the Wikipedia dump. This is used
to estimate probabilities for words in our con-
fusion sets.

• Comma prediction, where we remove all
commas and let the model predict where to
insert commas. Any discrepancies between
the produced and original sentence is used as
comma edits, if the model is more than 95%
certain.

GPT-2 GPT-2 is another Transformer-based lan-
guage model trained on a dataset of 8 million web
pages. GPT-2 only looks at the previous context
to estimate probabilities. We take advantage of
the fact that GPT-2 is trained using previous sen-
tences as context by including the previous sen-
tence when estimating probabilities.

3.3 Beam Search
Since our error correction models make a decision
separately for every word, sometimes conflicting
corrections can be made, e.g., “the cats is big.”
might be corrected to “the cat are big”. Therefore
we utilize beam search in order to efficiently ex-
plore combinations of corrections in order to find
the optimal output sentence. We utilize a beam
width of 3.

4 Confusion Sets

The first step in correcting a sentence is to identify
the potentially erroneous tokens (or groups of to-
kens) and determine a set of possible corrections

for each. We use several methods for deducing
these confusion sets according to different error
types.

4.1 Wikipedia Edit History

We utilize the WikEd Error Corpus (Grund-
kiewicz and Junczys-Dowmunt, 2014) generated
from Wikipedia revision histories to create confu-
sion sets. We only retain edits of sentences where
only a single word has been changed. We first end
up with a list of confused token pairs which in-
cludes all types of edits, i.e., semantic or gram-
matical. We set up a set of rules to filter the
edits not adapted to the task (e.g., the seman-
tic replacements), and infrequent ones. We thus
remove confusion pairs which define: (i) the re-
placement of a verb form (e.g., tense/subject–verb
agreement errors); (ii) noun number errors; (iii) re-
placement of numbers or dates; (iv) synonyms and
antonyms (using Wordnet2 (Miller, 1995)); (v) re-
placement of pronouns with determiners; (vi) in-
sertion/deletion of content words (e.g., nouns) and
numbers; (vii) spelling errors.

We end up with a list of 348 edit pairs and their
corresponding frequency counts in the WikedEd
Error Corpus (ranging from 741 to 60,184 in-
stances). The list includes, for instance, deter-
miner replacements (e.g., “a”→“an”) and fre-
quently confused tokens (e.g. “to”→“too”). It
covers most replacement error types but mostly
closed-class words replacements such as R:DET

or R:PREP.

4.2 Misspelled Words

Given a misspelled word (which we refer as non-
word in the channel model) we use the Enchant
library3 to derive a set of suggestions for correc-
tions. It mostly covers the R:SPELL error type but
can also include other replacement types (such as
content word replacements).

4.3 Specialized Models

For fine-tuned models on specific error types,
we define specific rules (mainly based on Part-
of-Speech tags) to detect the corresponding to-
kens and their possible replacements. We use the
Spacy4 library to PoS-tag the sentences.

2https://wordnet.princeton.edu/
3Wrapper for various spell checker engines.
4https://spacy.io/
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Noun number model We detect the nouns by
their PoS-tags: NN (singular) and NNS (plural)
and use a list of matching singular/plural nouns
derived from Wiktionary5 to suggest a correction.
It covers the R:NOUN:NUM and R:NOUN:INFL

error types.

Verb forms model We detect all forms of verbs
through their PoS-tags and derive a list of potential
corrections (i.e., all possible inflections) using the
list of English verb inflections from the Unimorph
project (Kirov et al., 2016). Here, we mainly
cover the R:VERB:FORM and R:VERB:SVA

error types but also cases of R:VERB:INFL and
R:VERB:TENSE error types.

5 Discussion

5.1 Results

Results on the BEA 2019 shared task test dataset
are listed per edit and error type in Table 1. It is
evident, that out approach deals with a wide ar-
ray of error types, but with varying quality. The
model performs particularly well on spelling er-
rors, subject–verb agreement errors and inserting
missing commas. However, the model performs
rather poorly on the replacement of adjectives, ad-
verbs and conjunctions which are based on confu-
sion sets derived from Wikipedia edits suggesting
that more filtering would be necessary.

5.2 Ablation analysis

We do an ablation analysis of the different com-
ponents of our model to see how each part con-
tributes to the performance. The global results are
shown in Table 2. Detailed results per error type
are shown in Appendix A for all models.

Beam search removing the beam search results
in a considerable drop in F0.5 by 2.73. This shows
that figuring out how to optimally combine multi-
ple local edits is important.

GPT-2 removing GPT-2 results in the largest
drop in F0.5 score of 5.09. The drop is large for
most error types but the ablation is especially dam-
aging on the precision of verb form errors.

BERT dropping BERT results in a 1.11 drop in
F0.5 score. This indicates that GPT-2 is pulling
most of the weight.

5https://www.wiktionary.org/

Error type # P R F0.5

M:PUNCT 422 80.10 38.15 65.66
R:ADJ 24 12.50 4.17 8.93
R:ADV 17 33.33 5.88 17.24
R:CONJ 5 2.22 20.00 2.70
R:DET 129 20.48 52.71 23.34
R:MORPH 128 46.15 18.75 35.71
R:NOUN 70 50.00 8.57 25.42
R:NOUN:INFL 19 42.86 31.58 40.00
R:NOUN:NUM 290 43.79 68.31 47.18
R:ORTH 349 10.20 1.43 4.59
R:OTHER 618 20.43 6.15 13.95
R:PART 15 38.89 46.67 40.23
R:PREP 292 39.49 58.56 42.24
R:PRON 50 34.15 56.00 37.04
R:SPELL 321 76.51 75.08 76.22
R:VERB 134 25.00 2.99 10.10
R:VERB:FORM 169 47.96 55.62 49.32
R:VERB:INFL 7 100.00 85.71 96.77
R:VERB:SVA 146 74.39 83.56 76.06
R:VERB:TENSE 160 42.50 10.62 26.56
U:PUNCT 118 34.90 88.14 39.69

All error types 4498 44.52 28.88 40.17

Table 1: Span-level correction results of our system. We
do not show results for the error types we do not pre-
dict.

Channel model we ablate the channel model by
dividing out probabilities by uniform distribution
over the candidates instead of using the frequency
counts of the confusion sets and reverse Leven-
shtein distance. It results in a drop in F0.5 score
by 0.44.

P R F0.5

Chan + BERT + GPT 40.29 29.19 37.44
Chan + BERT + beam 37.03 28.98 35.08
Chan + GPT + beam 42.31 29.89 39.06
BERT + GPT + beam 43.50 29.49 39.73

Chan + BERT + GPT + beam 44.52 28.88 40.17

Table 2: Span-level correction results of the ablated
models.

6 Conclusions

In this work we have presented our system for the
BEA 2019 shared task on Grammatical Error Cor-
rection, which ranked as the 6th best in the low
resource track.

Our ablation analysis showed that each of the
components of our system has a positive effect on
the overall performance, meaning that the combi-
nation of all of our components leads to the best
score.

Future work could explore using more advanced
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channel models, such as using phonetic features
to determine the similarity of words. Furthermore
our approach could also be adapted to handle in-
sertions and deletions. Additionally, there are sev-
eral parameters that could be tuned for better per-
formance, including for example, α, the probabil-
ity that the channel inserts an error, and the beam
width.
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A Results per error type

Error type # All models C+B+G C+B+beam C+G+beam B+G+beam

M:PUNCT 422 65.66 65.86 65.54 64.15 65.65
R:ADJ 24 8.93 7.69 8.20 7.81 15.38
R:ADV 17 17.24 12.20 17.24 16.67 13.16
R:CONJ 5 2.70 1.92 2.65 2.65 2.36
R:DET 129 23.34 19.92 23.15 22.24 23.29
R:MORPH 128 35.71 29.48 28.12 31.18 35.09
R:NOUN 70 25.42 23.81 25.21 23.08 23.81
R:NOUN:INFL 19 40.00 38.46 37.31 69.57 46.67
R:NOUN:NUM 290 47.18 43.82 42.59 47.11 46.46
R:ORTH 349 4.59 4.58 4.57 4.61 4.60
R:OTHER 618 13.95 13.30 14.24 13.29 15.07
R:PART 15 40.23 44.12 38.89 33.98 41.67
R:PREP 292 42.24 39.47 41.46 40.46 42.01
R:PRON 50 37.04 34.25 32.22 34.04 35.48
R:SPELL 321 76.22 73.66 75.59 70.85 75.02
R:VERB 134 10.10 9.76 9.35 11.57 10.47
R:VERB:FORM 169 49.32 44.53 17.86 46.58 48.03
R:VERB:INFL 7 96.77 96.77 96.77 96.77 96.77
R:VERB:SVA 146 76.06 72.73 72.66 73.16 74.88
R:VERB:TENSE 160 26.56 26.88 26.61 31.73 30.03
U:PRON 21 0.00 20.00 0.00 18.52 20.00
U:PUNCT 118 39.69 39.13 39.91 39.79 39.91

All types 4498 40.17 37.44 35.08 39.06 39.73

Table 3: Span-level correction results (F0.5) for different error types (we do not show results for the error types that
we do not predict). C: Channel Model, B: BERT, G: GPT-2.
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Abstract

This paper describes the BLCU Group
submissions to the Building Educational
Applications (BEA) 2019 Shared Task on
Grammatical Error Correction (GEC). The
task is to detect and correct grammatical
errors that occurred in essays. We participate
in 2 tracks including the Restricted Track and
the Unrestricted Track. Our system is based
on a Transformer model architecture. We
integrate many effective methods proposed
in recent years, such as Byte Pair Encoding,
model ensemble, checkpoints average and
spell checker. We also corrupt the public
monolingual data to further improve the
performance of the model. On the test data
of the BEA 2019 Shared Task, our system
yields F0.5 = 58.62 for the Restricted Track
and 59.50 for the Unrestricted Track, ranking
twelfth and fourth respectively.

1 Introduction

The GEC task has attracted wide interest in recent
years. The goal of GEC is to detect and correct
errors in essays made by English as a Second
Language (ESL) learners. Since the end of both
CoNLL2013 (Ng et al., 2013) and CoNLL2014
(Ng et al., 2014), many GEC researchers have
used the two test sets as benchmark evaluation
sets. Because of using different training sets,
such as Lang-8, NUCLE, FCE, the performance
of the systems are not comparable, even though
they are evaluated on the same test sets. The
Building Educational Applications 2019 Shared
Task provides a forum for participating teams to
evaluate on the same blind test set using the same
training sets and evaluation metric.

Unlike previous GEC shared tasks, new corpus
provided by the organizers has different CEFR1

1https://www.cambridgeenglish.org/
exams-and-tests/cefr/

A B C N Total
Train 10,493 13,032 10,783 - 34,308
Dev 1,037 1,290 1,069 998 4,384
Test 1,107 1,330 1,010 1,030 4,477
Total 29.3% 36.3% 29.8% 4.6% 43,169

Table 1: Statistics for the sentence pairs of W&I+L
corpus. A, B and C represent different CEFR levels for
describing language ability, from beginner to proficient
user. N denotes essays written by native English
students.

levels. The distribution of different levels is shown
in Table 1. The training set includes essays at
different levels of language ability, but no articles
written by native students. There are three tracks
in this shared task: Restricted Track, Unrestricted
Track and Low Resource Track. Each sub-task
restricts the error-corrected corpus that can be
used except the Unrestricted Track. It means that
the model needs to learn useful information from
a large number of data written by ESL in order to
correct the errors written by native learners.

In this paper, we describe the submissions
from the group of Beijing Language and Culture
University (BLCU) in the first two tracks. This
shared task aims to tackle the full set of grammar
errors, classified into 56 kinds of errors. More
types of errors represent an increase in difficulty.
Subtask one of the shared task (Restricted Track)
restricts participants to use only the learner corpus
provided by the organizers. We believe that
effective use of monolingual data will enable the
model to achieve better performance. Therefore,
we propose a data augmentation method to corrupt
a monolingual corpus with a fixed probability
according to the proportion of errors in the
development set and integrate many techniques
proposed in recent years. We also participate in
the second subtask (Unrestricted Track) which
allows participants to use any learner corpus.
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Example Source Target

A I think that the public transport will
always be in the future .

I think that public transport will always
exist in the future .

B When the concert finished , we went
to cloakroom to get signatures from
musicians .

When the concert finished , we went to
the dressing room to get autographs
from musicians .

C Nevertheless , you have another side to
this reality .

Nevertheless , there is another side to
this reality .

N All professional boxers are at risk from
being killed in his next fight .

All professional boxers are at risk from
being killed in their next fight .

Table 2: Example of sentence pairs with different CEFR levels. Bold font represents the difference between the
source and the target.

The paper is structured as follows: we present
the related work in the next section. In Section
3, we describe the details of our system features.
Section 4, we describe the training procedure for
our system. Section 5 we specify the data sets and
experiments settings. We draw our conclusions in
Section 6.

2 Related Work

To our knowledge, Helping Our Own (HOO)
2011 (Dale and Kilgarriff, 2011) is the first shared
task on grammatical error correction. The aim of
HOO2011 is to correct errors in papers written
by non-native authors (NNS), which have been
published in the proceedings of ACL. Dahlmeier
et al. (2011) use different open-source tools to
detect spelling mistakes, prepositional errors and
article errors and correct them with rule-based
methods. Except for the group of University of
Illinois, all participants score below 20.

Therefore, the HOO2012 shared task (Dale
et al., 2012) focus more specifically on the prepo-
sition and determiner errors made by NNS who
are learning English. Dahlmeier et al. (2012) treat
the error correction as a classification problem
and build different classifiers for determiner errors
and preposition errors. Their system achieves the
highest score.

The Conference on Computational Natural
Language Learning (CoNLL) 2013 (Ng et al.,
2013) believes that the GEC community is ready
for dealing with more error types, including the
two types in HOO2012, noun number, verb form
and subject-verb agreement errors. Although the
number of error types has increased, the most
effective way at that time is still to use a pipeline

of processes that combines the results from
multiple systems, like Rozovskaya et al. (2013).

The CoNLL 2014 shared task (Ng et al., 2014)
is the extension of CoNLL 2013, which requires
participants to correct all 28 error types. Felice
et al. (2014) present a hybrid approach, using
statistical machine translation (SMT) as part of
their pipeline system. Junczys-Dowmunt and
Grundkiewicz (2014) combine Lang-8 large-scale
corpus (Mizumoto et al., 2011) with the Moses
(Koehn et al., 2007) SMT system. These two
studies perform well, ranking first and third
respectively.

Yuan and Briscoe (2016) present the first
study using neural machine translation (NMT)
for grammatical error correction. Xie et al.
(2016a) use a character level RNN structure with
attention. But all their results are worse than SMT
at the same period. Chollampatt and Ng (2018)
use a multilayer convolutional encoder-decoder
neural network with embeddings that make use
of character N-gram information. It is the first
neural approach that outperforms the current
state-of-the-art statistical machine translation-
based approach. In the same year, Grundkiewicz
and Junczys-Dowmunt (2018) combine the RNN
with a phrase-based SMT system to achieve a
similar score to Chollampatt and Ng (2018).

On the other hand, many scholars are commit-
ted to using additional monolingual corpora to
improve the effectiveness of the models. Sennrich
et al. (2016a) argue that the decoder of an NMT
model is equivalent to a language model. They
explore strategies to train with monolingual data
without changing the NMT architecture. Yuan and
Felice (2013) explore ways of generating pairs
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Figure 1: The pipeline of our grammatical error correction system

of incorrect and correct sentences automatically
from other existing learner corpora. Both Rei
et al. (2017) and Xie et al. (2018) add noise
to monolingual data using Back-translation
mechanism based on SMT and NMT. Wang et al.
(2018) randomly replace words in both the source
and target sentence with other random words from
their corresponding vocabularies.

3 System Features

In this section, we will describe the features of our
grammatical error correction system.

Figure 1 shows the general pipeline of the sys-
tem. The training steps are shown as follows:

1) Pre-processing the learner corpora provided
by the organizers.

2) Training Byte Pair Encoding (BPE) on the
corpora.

3) Corrupting the One Billion Word Benchmark
monolingual corpus.

4) Training model using corrupted data.

5) Fine-tuning model using the learner corpora.

The error correction steps for evaluation are:

1) Using monolingual corpus to train a language
model as the spell check model.

2) Using the spell check model to correct
spelling errors in the test set.

3) Decoding the output of the previous step with
the grammar error correction model.

The final output after the last step forms our
submission to the shared task. The following
sections describe each of these components in
detail.

3.1 Pre-processing and sub-words

In track one, we use four learner corpora provided
by the organizers and an additional monolingual
corpus.

NUCLE - This corpus is collected by the Nation-
al University of Singapore and release
in CoNLL shared task (Dahlmeier
et al., 2013).

Lang-8 - This corpus is collected from the
website called Lang-8. It is the largest
publicly available learner corpus
(Mizumoto et al., 2011).

FCE - The First Certificate in English corpus
is collected by the University of Cam-
bridge (Yannakoudakis et al., 2011).

W&I+L - It consists of two corpora, including
Write & Improve (Bryant et al., 2019)
and LOCNESS (Granger, 1998). The
Write & Improve is collected by the
University of Cambridge with W&I
system (Yannakoudakis et al., 2018)
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Source Target
said that two Tele involved the case had
been disciplined .

It said that two officers involved in the
case had been disciplined .

That y to have been com their model til
stat now .

That seems to have been their model up
til now .

Why does sp everything have to become
such a issue

Why does everything have to become
such a big issue ?

Ch majority will be of the standard 6X6
configuration for carrying personnel k

The majority will be of the standard 6X6
configuration for carrying personnel .

Table 3: Example of sentence pairs made by corruption method.

and is one of the key contributions of
this shared task.

One Billion - One Billion Word Benchmark dataset
is a public monolingual corpus (Chel-
ba et al., 2013), consisting of close
to one billion words of English taken
from news articles on the web.

All learner corpora use M2 format. For
each sentence, the start and end token offsets
of the wrong text range are marked and the
corresponding corrections are provided.

Firstly, we extract the original sentences and
modified sentences from the M2 files and write
them into two files. Like in previous works
(Zhao et al., 2019), we remove the unchanged
sentence pairs from the original sentences and the
modified sentences. We use spaCy v1.9.02 and
the en core web sm-1.2.0 model as a serializer
based on the organizers’ recommendations.

By analyzing the data, we find that there are
many instances containing URLs in NUCLE,
character encoding errors and emojis in Lang-8.
So we removed the sentence pairs containing the
previously mentioned case from all training sets.

In track two, we use an additional Non-public
Lang-8 corpus besides all the corpora used in track
one. The pre-processing method is the same as
before.

In order to solve the large vocabulary and
out-of-vocabulary (OOV) problem, we adopt
the recommendation of Junczys-Dowmunt et al.
(2018) to use the Byte Pair Encoding (BPE)
algorithm (Sennrich et al., 2016b). All of the
corpora are used to train the BPE vocabulary
except the One Billion monolingual corpus. We
split the training set, development set and the

2https://spacy.io/

test set into sub-words using the learned BPE
code. The sub-words in the test set will be merged
before evaluating.

3.2 Corrupting Corpora

Many resent work regard grammatical error
correction as a low-resource neural machine
translation task (Junczys-Dowmunt et al., 2018;
Zhao et al., 2019; Lichtarge et al., 2019). Both
Grundkiewicz and Junczys-Dowmunt (2014) and
Lichtarge et al. (2019) use the Wikipedia revision
histories to generate additional corpora. Junczys-
Dowmunt and Grundkiewicz (2016); Junczys-
Dowmunt et al. (2018) utilize the Common Crawl
corpus to train the language model and pre-train
part of the NMT model. Inspired by these studies,
we also try to use a monolingual corpus for data
augmentation.

First, we define the error rate of the corpus as:

Er(C) =
1

n

n∑

i=0

levenshtein(src, trg)

length(trg)
(1)

where n is the number of sentence pairs in corpus,
src refers to the sentence to be modified, trg is the
modification of src. levenshtein(src, trg) means
the shortest edit distance for the src and trg in
terms of tokens. length(trg) refers to the number
of token in trg.

Secondly, we assume that errors in the corpus
can be divided into three types (Bryant et al.,
2017):

• Missing type (M)

src : w0 ... wi−1 wi+1 ... wn

trg : w0 ... wi−1 wi wi+1 ... wn

Token wi is a missing type.
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• Unnecessary type (U)

src : w0 ... wi−1 wi wi+1 ... wn

trg : w0 ... wi−1 wi+1 ... wn

Token wi is an unnecessary type.

• Replacement type (R)

src : w0 ... wi−1 wi′ wi+1 ... wn

trg : w0 ... wi−1 wi wi+1 ... wn

Token wi is a replacement type.

Counting all of the training sets, we find that the
error rate is 30% and the ratio of M : U : R is 1:1:1.
We apply this to corrupt the monolingual corpus.
It means that 30% tokens in the training set will
be corrupted. The steps of corruption are shown
as follows:

• Delete the token with a probability of 33%.

• Randomly add a token in the vocabulary with
a probability of 33%.

• Randomly replace a token in the vocabulary
with a probability of 34%.

This process produces a large number of wrong
sentences. Finally, the original One Billion Word
Benchmark corpus sentence is the target sentence
and the output of the corruption system is the
corresponding source sentence.

3.3 Transformer
As mentioned in the previous section, neural ma-
chine translation has become the state-of-the-art
approach for Grammatical Error Correction. We
adopt the attention-based NMT model proposed
by Vaswani (Vaswani et al., 2017).

The embedding layer is divided into two
embeddings, including token and position embed-
ding. The token embedding contains the vector
corresponding to each token, and the position
embedding contains the vector of each absolute
position. The embedding layer encodes each
token Ssrc

i of the input sentence Ssrc into a vector
hsrcSi

by looking up in a token embedding matrix
and adding a position vector, as shown in Eq (2).

hsrcSi
= Token emb(Ssrc

i ) + Position emb(i)
(2)

The Encoder has N identical attention blocks,
each block containing a Multi-Head attention and

a linear layer. The Multi-Head is the concate-
nation of the N attention heads. The Encoder
produces the input context-aware hidden state,
shown in the Eq (3,4).

MultiHead(hsrcS , hsrcS , hsrcS ) =

Concat(Attention(hsrcS , hsrcS , hsrcS )) (3)

HSsrc
S = Encoder(hsrcS ) (4)

The structure of the decoder is similar to that
of the encoder, with N identical attention blocks.
The only difference is that the decoder’s attention
block has an extra Multi-Head attention which
attends over the encoder’s context-aware hidden
state. The decoder updates the hidden state of the
current layer based on the attention output from
the encoder and the hidden states of previous
layer:

HStrg
Si+1

= Decoder(HSsrc
S , HStrg

Si
) (5)

The final decoder layer output vector HStrg
S is

dot-multiplied with the output embedding. Apply-
ing softmax on the inner product’s output can get
the predicted probability of each word, like Eq (6).
Words with the highest predicted probability are
chosen as the final output.

p(Si+1|S1, ..., Si, S) =

softmax(OutEmbedding(HStrg
S )) (6)

The model can be trained with maximum likeli-
hood estimation, as shown in Eq(7):

L(Strg) = −
T∑

i=1

log(p(Strg
i )) (7)

For the grammatical error correction task,
the model copy correct tokens in most cases.
But what the model really needs to learn is to
translate the wrong tokens into the right ones.
Therefore, we add the Edit-weighted MLE
objective (Junczys-Dowmunt et al., 2018) into
the loss function to give the wrong tokens greater
penalty. Details of the implementation are shown
as follows:
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L(Strg) = −
T∑

i=1

A(Ssrc
j , Strg

i )log(p(Strg
i ))

A(Ssrc
j , Strg

i ) =

{
Λ if Ssrc

j 6= Strg
i

1 otherwise

(8)

where A(Ssrc
j , Strg

i ) is an alignment between
source token and target token. It means that if the
source token is inconsistent with the target, the
loss value will be multiplied by Λ.

3.4 Language Model based Spell Checker
As mentioned in Xie et al. (2016b) and Chol-
lampatt and Ng (2017), a token-based neural
machine translation model is not designed to
correct spelling mistakes. To address this issue,
we have adopted a language model based spell
checker.

We use Kenlm3 to build a 5-gram language
model from the Billion Word Benchmark dataset.
Based on this language model, we use CyHun-
spell4 which is a Python wrapper for Hunspell to
correct spelling errors in corpora.

Algorithm 1 describes the process of correcting
the corpus using the spell check model.

Algorithm 1 Language Model based Spell Check-
er
Input: Language Model LM , corpus with errors
E, error correction threshold η, CyHunspell
spell checker Spell

Output: corrected corpus C
Initialize C = {}
for all sentences si in E do

score = LM .score(si)
for all tokens tj in si do

candidate = Spell.suggest(tj)
temp = si.apply(candidate)
tempscore = LM .score(temp)
if tempscore/score > η then

si = si.apply(candidate)
end if

end for
Add si to C

end for
return C

For each sentence in E, record the language
model score. The modification will be applied

3https://github.com/kpu/kenlm
4https://pypi.org/project/CyHunspell/

only if the ratio of tempscore to score is greater
than η. Finally, the output of the program is the
corrected result.

4 Training procedure

Augmentation data for corruption is collected
from articles on news sites. The Lang-8 corpus
used in training is written by many second
language learners about their daily life. Corrupted
corpus and learner corpus belong to different
domains. Moreover, the errors contained in the
augmentation data are not common errors for
second language learners.

Based on this situation, we train on the augmen-
tation corpus and the learner corpus separately.
Firstly, we pre-train the corrupted corpus for 5
epochs. We use the arithmetic mean of the last
three epochs as the final weighed result of the
pre-training.

Next, we fine-tune the pre-trained model using
the learner corpus consisting of (Non-public)
Lang-8, NUCLE, FCE and W&I+L datasets and
evaluate on the development set at each end of
epoch. For each single model, we calculate the
arithmetic mean of the five epochs with the best
cross-entropy cost on the development set as the
final model.

Our model is composed of the ensemble of 8 s-
ingle models. The hyper-parameters and the train-
ing procedure used in each single model are the
same except the random seed.

5 Data sets and Experiments

In this section, we will detail the data sets, the
hyper-parameters and the open source tools we
use.

5.1 Data sets

The statistics for the data we use in this shared
task are shown in Table 6. We implement the
pre-processing method mentioned in Section 3.1
for both tracks. The first four rows list the fine-
tuning datasets we use in track one. The fifth line
summaries the above datasets. The Non-public
Lang-8 in the sixth line is the additional corpus we
collect from Lang-85. It is worth mentioning that
some instances of Non-public Lang-8 also exist in
Lang-8. We use the union of all learner corpora as
the training data for track two, including 6 million

5https://lang-8.com/
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Model without LM Spell Checker with LM Spell Checker
Precision Recall F0.5 Precision Recall F0.5

transformer single 43.11 24.98 37.65 43.61 26.87 38.78
transformer single + CC 46.14 27.66 40.71 46.23 29.50 41.52
transformer ensemble + CC 48.83 26.39 41.79 48.96 28.29 42.72

Table 4: The evaluation of our system on the track one development set. Transformer single refers to the single
model, while transformer ensemble denotes the ensemble of 8 single models. CC means use additional corrupted
corpus.

Restricted Track Unrestricted Track
Precision Recall F0.5 Precision Recall F0.5

A 64.26 49.89 60.76 68.29 54.18 64.91
B 61.83 48.71 58.67 61.89 53.87 60.10
C 60.75 55.84 59.70 56.31 64.04 57.71
N 49.02 58.86 50.71 44.25 62.58 47.00

ALL 60.81 51.22 58.62 60.32 56.42 59.50

Table 5: The evaluation of our system on the test set.

Corpus Before process After process
NUCLE 56,670 21,242

FCE 32,844 20,552
Lang-8 1,112,513 560,542
W&I+L 34,308 22,544

Track One 1,236,335 624,880
Non-public Lang-8 8,655,173 6,230,606

Track Two 9,891,508 6,456,889
One Billion* 30,301,028 20,032,188
W&I+L(dev) 4,384 -
W&I+L(test)* 4,477 -

Table 6: Number of the sentence pair for different
dataset. Track one summaries the statistic of all of the
data we use in track one, and so does Track Two. Non-
public Lang-8 is the additional corpus we use in track
two. W&I+L(dev,test) is provided by the organizers. *
indicates that this corpus has no target available.

sentence pairs. The last two rows in the table
show the size of the development and test set.

5.2 Experimental settings

In this shared task, we use the Transformer model
(Vaswani et al., 2017) implemented by FAIR6 as
the GEC model. The detailed parameters of the
model are as follows: model BPE embeddings are
trained for 50,000 steps (Junczys-Dowmunt et al.,
2018) on the error-annotated data by the subword
algorithm7. Both the source embedding and the
target embeddings have 512 dimensions and use

6https://github.com/pytorch/fairseq
7https://github.com/rsennrich/

subword-nmt

the same vocabulary. We share the weights of
decoder input and output embeddings. Both of
the encoder and decoder have 6 multi-head layers
and 8 attention heads. The size of the inner layer
at each layer is 2048.

We use the Adam optimizer (Kingma and Ba,
2014) to train transformer with inverse squared
root schedule which decays the learning rate
based on the inverse square root of the warm-up
steps. The initial learning rate is 5 × 10−4 and
the warm-up step is set to be 4000. We use a
batch size of approximately 32,000 tokens and
fine-tune the model on learner corpus for 50,000
steps. Dropout is applied at a ratio of 0.3. The
loss factor Λ is set to 1.2.

The ensemble model is composed of 8 identi-
cal Transformers trained and fine-tuned separate-
ly. The only difference between them is that they
use different random seeds.

During model inference, we run beam search
with the emsemble model and set the beam size
to 12. We use ERRANT8 (Bryant et al., 2017) to
evaluate the decoding results.

5.3 Experiment result and analysis

Table 4 shows the performance of our model
with different settings. For the without LM Spell
Checker columns, we do not use language model
based spell checker to correct spelling mistakes,

8https://github.com/chrisjbryant/
errant
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while with LM Spell Checker is the opposite.
The first two lines report the result with a single
Transformer model, and the last line with the
ensemble model. + CC means that we pretrain
the transformer model using the corrupted corpus
and then fine-tune with learner corpus. We submit
the best model, namely the ensemble model, for
the shared task.

In Table 4, we can see that the main contribu-
tion comes from the corruption method. About 20
million monolingual data have brought about an
increase of 3.06 in terms of F-measure on a single
model. The spell checker based on the language
model improves the performance of the model by
about one point. We use an ensemble of identical
models (except for the random seed), but we will
attempt to use different types of models in future
work.

Table 5 shows the result on the test set which is
evaluated by the organizers. Comparing the results
of the two tracks, we find that training with the
Non-public Lang-8 data can significantly improve
the recall about 5-10 points. However, in terms of
F0.5, the performance of the model has only been
significantly improved on the test data at A and B
levels, and has dropped by about two points in C
and N. One possible explanation is that the errors
contained in the Non-public Lang-8 belong to the
lower CEFR level. Overtraining in a large amount
of data containing beginner errors has reduced the
performance of our system at C and N levels.

6 Conclusions

In this paper, we have described the submission to
the BEA 2019 shared task on Grammatical Error
Correction. Our approach combines a method of
data augmentation with a pipeline system based
on the Transformer model. We first corrupt the
monolingual corpus and pre-train a single model
on it. Then we fine-tune on the learner corpora
and ensemble eight single Transformer models to
further improve the performance.

The results of our best system on the blind
test set are F0.5 = 58.62 for the Restricted Track
and F0.5 = 59.50 for the Unrestricted Track,
placing our system in the twelfth and fourth place
respectively.
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Abstract

We introduce our system that is submitted to
the restricted track of the BEA 2019 shared
task on grammatical error correction1 (GEC).
It is essential to select an appropriate hypothe-
sis sentence from the candidates list generated
by the GEC model. A re-ranker can evalu-
ate the naturalness of a corrected sentence us-
ing language models trained on large corpora.
On the other hand, these language models and
language representations do not explicitly take
into account the grammatical errors written by
learners. Thus, it is not straightforward to uti-
lize language representations trained from a
large corpus, such as Bidirectional Encoder
Representations from Transformers (BERT),
in a form suitable for the learner’s grammat-
ical errors. Therefore, we propose to fine-
tune BERT on learner corpora with grammat-
ical errors for re-ranking. The experimen-
tal results of the W&I+LOCNESS develop-
ment dataset demonstrate that re-ranking using
BERT can effectively improve the correction
performance.

1 Introduction

Grammatical error correction (GEC) systems may
be used for language learning to detect and cor-
rect grammatical errors in text written by language
learners. GEC has grown in importance over the
past few years due to the increasing need for peo-
ple to learn new languages. GEC has been ad-
dressed in the Helping Our Own (HOO) (Dale and
Kilgarriff, 2011; Dale et al., 2012) and Confer-
ence on Natural Language Learning (CoNLL) (Ng
et al., 2013, 2014) shared tasks between 2011 and
2014.

Recent research has demonstrated the effective-
ness of the neural machine translation model for

1https://www.cl.cam.ac.uk/research/nl/
bea2019st/

GEC. There are three main types of neural net-
work models for GEC, namely, recurrent neural
networks (Ge et al., 2018), a multi-layer convo-
lutional model based on convolutional neural net-
works (Chollampatt and Ng, 2018a) and a trans-
former model based on self-attention (Junczys-
Dowmunt et al., 2018). We follow the best prac-
tices to develop our system based on the trans-
former model, which has achieved better perfor-
mance for GEC (Zhao et al., 2019).

Re-ranking using a language model trained on
large-scale corpora contributes to the improved
hypotheses of the GEC model (Chollampatt and
Ng, 2018a). Typically, a language model is trained
by maximizing the log-likelihood of a sentence.
Hence, such models observe only the positive ex-
amples of a raw corpus. However, these mod-
els may not be sufficient to take into account the
grammatical errors written by language learners.
Therefore, we fine-tune these models trained from
large-scale raw data on learner corpora to explic-
itly take into account grammatical errors to re-rank
the hypotheses for the GEC tasks.

Bidirectional Encoder Representations from
Transformer (BERT) (Devlin et al., 2019) can con-
sider information of large-scale raw corpora and
task specific information by fine-tuning on the
target task corpora. Moreover, BERT is known
to be effective in the distinction of grammatical
sentences from ungrammatical sentences (Kaneko
and Komachi, 2019). They proposed a grammat-
ical error detection (GED) model based on BERT
that achieved state-of-the-art results in word-level
GED tasks. Therefore, we use BERT, pre-trained
with large-scale raw corpora, and fine-tune it with
learner corpora for re-ranking the hypotheses of
our GEC model to utilize not only the large-scale
raw corpora but also a set of information on gram-
matical errors.

The main contribution of this study is that
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the experimental results demonstrate that BERT,
which considers both the representations trained
on large-scale and learners corpora, is effective
for re-ranking the hypotheses for GEC tasks. Ad-
ditionally, we demonstrated that BERT based on
self-attention can re-rank sentences corrected from
the GEC model by capturing long distance infor-
mation.

2 TMU System

Our system is a GEC model that is combined with
a re-ranker. The GEC model is given a source sen-
tence as input and generates hypothesis sentences.
These hypothesis sentences are given as input to
the re-ranker, which selects the final corrected sen-
tence form the hypothesis sentences.

We use the transformer (Vaswani et al., 2017)
architecture for the GEC model because it is a
state-of-the-art model in the GEC task (Zhao et al.,
2019). The transformer architecture comprises
multiple layers of transformer block. The
layers of the encoder and decoder have position-
wise feedforward layers over the tokens of input
sentences. The decoder has an extra attention layer
over the encoder’s hidden states. This GEC model
is optimized by minimizing the label smoothed
cross-entropy loss.

The re-ranker uses five features. We use BERT
fine-tuned on learner corpora to predict the gram-
matical quality as a feature of re-ranking.

2.1 Architecture and training of BERT for
re-ranking

We used BERT (Devlin et al., 2019) as a fea-
ture for re-ranking the hypotheses of the GEC
system. BERT is designed to learn deep bidi-
rectional representations by jointly conditioning
both the left and right contexts in all layers, based
on transformer block with multi-head self-
attention and fully connected layers. The param-
eters of BERT were pre-trained using a masked
language model and the prediction of the next sen-
tence.

We fine-tuned the pre-trained BERT on learner
corpora to judge the grammatical quality of the in-
put sentence, i.e., to distinguish between a sen-
tence with and without grammatical errors on a
sentence-level. We annotated sentences from par-
allel learner corpora having incorrect and correct
sentences with 0 (incorrect) and 1 (correct) labels.
Hence, using the above, we can take advantage of

Corpus Train Dev Test
FCE 28,350 2,191 2,695
Lang-8 1,037,561 - -
NUCLE 57,151 - -
W&I+LOCNESS 34,308 4,384 4,477

Table 1: Number of sentences in corpora on GEC
shared task for restricted track.

both the large-scale raw data and learner corpora
by using BERT. The model was optimized dur-
ing fine-tuning by minimizing the sentence-level
cross-entropy loss.

2.2 Re-ranking
We used the following set of features for re-
ranking, which are the same as those in a pre-
viously reported approach (Chollampatt and Ng,
2018a), except for BERT:

• GEC model: The score of the hypothesis
sentence from the GEC model is computed
using the log probabilities of predictions nor-
malized by sentence length on a token-level.

• Language model: A 5-gram language model
score is computed by normalizing the log
probabilities of the hypothesis sentence by
sentence length.

• BERT: The predicted score for the grammat-
ical quality of the hypothesis sentence.

• Edit operations: Three token level features,
namely, denoting the number of substitutions,
deletions, and insertions between the source
sentence and the hypothesis sentence.

• Hypothesis sentence length: The number of
words in the hypothesis sentence to penalize
short hypothesis sentences.

Feature weights are optimized by minimum error
rate training (MERT) (Och, 2003) on the develop-
ment set.

3 Experiments

3.1 Dataset
In the restricted track, we only used the corpora
listed in Table 1. The First Certificate in English
(FCE) corpus (Yannakoudakis et al., 2011), Lang-
8 learner corpus (Mizumoto et al., 2011), Na-
tional University of Singapore Corpus of Learner
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Parameter Value
Word embedding size 500
Multi-head number 10
Layer size 6
Hidden size 2,048
Optimizer Adam
Adam β1 0.9
Adam β2 0.98
Learning rate 0.0005
Learning rate scheduler inverse square root
Warmup steps 4,000
Minimum learning rate 1e-09
Dropout 0.3
Weight decay 0.0001
Label smoothing 0.1
Max token size 4,096
Ensemble size 3

Table 2: Hyperparameter values of our transformer
GEC model.

# Team Name P R F0.5

1 UEDIN-MS 72.28 60.12 69.47
2 Kakao&Brain 75.19 51.91 69.00
7 ML@IITB 65.70 61.12 64.73

14 TMU 53.91 51.65 53.45

Table 3: Results of GEC systems with the highest P, R
and F0.5 overall vs TMU on restricted track on official
W&I test data.

English (NUCLE) (Dahlmeier et al., 2013) and
Write & Improve (W&I)+LOCNESS corpus (Yan-
nakoudakis et al., 2018; Granger, 1998) were used
for this shared task. W&I+LOCNESS corpus was
a new corpus released for this shared task and the
shared task systems were evaluated on a gold test
set of the overall W&I+LOCNESS dataset.

We used FCE (official split of train, dev, and
test set), Lang-8, NUCLE, and W&I+LOCNESS
training set as training data and we split the
W&I+LOCNESS development set into develop-
ment and test data by random selection from each
Common European Framework of Reference for
Languages (CEFR) levels (beginner, intermediate,
advanced, native) for the transformer and BERT.
The development and test data sizes were 2,191
and 2,193, respectively.

Model P R F0.5

TMU system 37.79 28.08 35.35
w/o BERT 38.75 23.76 34.41
w/o language model 37.85 26.41 34.83
w/o re-ranking 36.46 22.91 32.60

Table 4: Effectiveness of re-ranking without different
features.

3.2 Setup

We implemented the transformer model based on
the Fairseq tool2. The hyperparameters used in
our transformer GEC model are listed in Table
2. The parameters of the ensemble models were
initialized with different values. We initialized
the embedding layers of the encoder and decoder
with the embeddings pre-trained on the English
Wikipedia using fastText tool3 (Bojanowski et al.,
2017).

We used a publicly available pre-trained BERT
model4, namely the BERTBASE uncased model,
which was pre-trained on large-scale BooksCor-
pus and English Wikipedia corpora. This model
had 12 layers, 768 hidden sizes, and 16 heads of
self-attention. Our model’s hyperparameters for
re-ranking were similar to the default ones de-
scribed by Devlin et al. (2019). We used the
same learner corpora with incorrect and correct
sentences used for training our GEC model to fine-
tune BERT.

The 5-gram language model for re-ranking was
trained on a subset of the Common Crawl cor-
pus (Chollampatt and Ng, 2018a).5 We used a
Python spell checker tool6 on the GEC model hy-
pothesis sentences.

3.3 Evaluation

The systems submitted to the shared task were
evaluated using the ERRANT7 scorer (Felice
et al., 2016; Bryant et al., 2017). This metric
is an improved version of the MaxMatch scorer
(Dahlmeier and Ng, 2012) originally used in the

2https://github.com/pytorch/fairseq
3https://github.com/facebookresearch/

fastText
4https://github.com/google-research/

bert
5https://github.com/nusnlp/

mlconvgec2018
6https://pypi.org/project/

pyspellchecker/
7https://github.com/chrisjbryant/

errant
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(a)

Source The range of public services will be expanded to remote areas , it become much more convenient .
Gold The range of public services will be expanded to remote areas , and it will become much more convenient .
w/o BERT The range of public services will be expanded to remote areas , has become much more convenient .
TMU system The range of public services will be expanded to remote areas , and it will become much more convenient .

(b)

Source Her sister is 6 years old and you should look after every weekend .
Gold Her sister is 6 years old and you would have to look after her every weekend .
w/o BERT Her sister is 6 years old and you should look after it every weekend .
TMU system Her sister is 6 years old and you should look after it every weekend .

Table 5: (a) Successful and (b) unsuccessful examples of TMU system for long distance errors. Bold indicates the
erroneous part of the source sentence; Underline indicates the corrected part of the gold sentence; Italic represents
the corrected output of the GEC system.

CoNLL shared tasks (Ng et al., 2013, 2014). The
scorer reported the performance in terms of span-
based and token-based detection. The system per-
formance was primarily measured with regard to
span-based correction using the F0.5 metric, which
assigned twice as much weight to the precision. In
this study, we report on precision, recall, and F0.5

based on the ERRANT score.

3.4 Results

Table 3 presents the results of our system (TMU)
and others on precision (P), recall (R) and F0.5 on
W&I+LOCNESS test data for the BEA 2019 GEC
shared task on the restricted track. Our system was
ranked 14 out of 21 teams.

4 Discussions

We investigated whether using BERT as a fea-
ture for re-ranking can improve the corrected re-
sults. Table 4 presents the experimental results
of removing the following re-ranking features:
BERT (w/o BERT); language model (w/o lan-
guage model); and all features (w/o re-ranking).
The recall and F0.5 of the complete model (TMU
system) is higher than those of w/o BERT, indicat-
ing that using BERT for re-ranking can improve
the accuracy; especially, the recall is significantly
improved. We conclude that BERT uses the ad-
vantage of large-scale raw data to acquire general
linguistic expressions and learn grammatical error
information from learner corpora, thus detecting
and re-ranking errors more effectively.

Additionally, we analyzed the type of grammat-
ical errors that were corrected by using BERT for
re-ranking. Table 5 presents the output examples
of our system with and without BERT. Example
(a) demonstrates that our system can correct long
distance verb tense errors, matching Gold in this
case, where after stating that “... services will be
expanded ...” in the first half, our system prop-

erly corrected “... it become ...” to “... it will be-
come ...” in the second part of the given sentence.
On the other hand, w/o BERT created a sentence
with inconsistent verb tense by changing “... it
become ...” to “... it has become ...”. Example
(b) demonstrates that neither of the systems, i.e.,
with and without BERT, could properly correct the
coreference resolution error. They both failed to
trace the reference of “it” to “her sister”. By us-
ing BERT based on self-attention for re-ranking,
which is effective for long distance information,
our system became better at solving long distance
errors; however, there is a room for improvement.

5 Related Work

Re-ranking using a language model trained
on large-scale raw data significantly improved
the results in numerous GEC studies (Junczys-
Dowmunt and Grundkiewicz, 2016; Chollam-
patt and Ng, 2018a; Grundkiewicz and Junczys-
Dowmunt, 2018; Junczys-Dowmunt et al., 2018;
Zhao et al., 2019). However, their models do not
explicitly consider grammatical errors of language
learners.

Yannakoudakis et al. (2017) utilized the score
from a GED model as a feature to consider gram-
matical errors for re-ranking. Chollampatt and Ng
(2018b) proposed a neural quality estimator for
GEC. Their models predict the quality score when
given a source sentence and its corresponding hy-
pothesis. They consider representations of gram-
matical errors of learners for re-ranking. However,
their models did not use large-scale raw corpora.

Rei and Søgaard (2018) used a sentence-level
GED model based on bidirectional long short-term
memory (LSTM). The goal of their study was to
predict the token-level labels on a sentence-level
using the attention mechanism for zero-shot se-
quence labeling.
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Kaneko and Komachi (2019) proposed a model
of applying attention to each layer of BERT for
GED and achieved state-of-the-art results in word-
level GED tasks. Our BERT model predicts gram-
matical quality on a sentence-level for re-ranking.

6 Conclusion

In this paper, we described our TMU system,
which is based on the GEC transformer model
using BERT for re-ranking. We evaluated our
TMU system on the restricted track of the BEA
2019 GEC shared task. The experimental results
demonstrated that using BERT for re-ranking can
improve the correction quality.

In this work, we only considered the infor-
mation of the hypothesis sentence. In our fu-
ture work, we will analyze the re-ranker, allowing
BERT to utilize the information of the source sen-
tence of the GEC model as well, given both source
and hypothesis sentences.
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Abstract

Grammatical error correction can be viewed
as a low-resource sequence-to-sequence task,
because publicly available parallel corpora are
limited. To tackle this challenge, we first
generate erroneous versions of large unanno-
tated corpora using a realistic noising func-
tion. The resulting parallel corpora are sub-
sequently used to pre-train Transformer mod-
els. Then, by sequentially applying transfer
learning, we adapt these models to the domain
and style of the test set. Combined with a
context-aware neural spellchecker, our system
achieves competitive results in both restricted
and low resource tracks in ACL 2019 BEA
Shared Task. We release all of our code and
materials for reproducibility. 1

1 Introduction

Grammatical error correction (GEC) is the task of
correcting various grammatical errors in text, as
illustrated by the following example:

[Travel→ Travelling] by bus is [exspensive→
expensive], [bored→ boring] and annoying.

While the dominant approach following the
CoNLL-2014 Shared Task (Ng et al., 2014)
has been different adaptations of phrase-based
and statistical machine translation (PBSMT)
models (Junczys-Dowmunt and Grundkiewicz,
2016), more recent work on GEC increas-
ingly adopted partial (Grundkiewicz and Junczys-
Dowmunt, 2018) or exclusive (Junczys-Dowmunt
et al., 2018; Chollampatt and Ng, 2018a) use
of deep sequence-to-sequence (seq2seq) architec-
tures (Sutskever et al., 2014; Cho et al., 2014),
which showed immense success in neural ma-
chine translation (NMT) (Bahdanau et al., 2015;
Gehring et al., 2017; Vaswani et al., 2017).

∗Equal contribution. Listed alphabetically.
1https://github.com/kakaobrain/helo_

word

In GEC, unlike NMT between major languages,
there are not enough publicly available corpora
(GEC’s hundreds of thousands to NMT’s tens of
millions). This motivates the use of pre-training
and transfer learning, which has shown to be
highly effective in many natural language process-
ing (NLP) scenarios in which there is not enough
annotated data, notably in low-resource machine
translation (MT) (Lample et al., 2018b; Ruder,
2019). As a result, recent GEC systems also in-
clude pre-training on various auxiliary tasks, such
as language modeling (LM) (Junczys-Dowmunt
et al., 2018), text revision (Lichtarge et al., 2018),
and denoising (Zhao et al., 2019).

In this paper, we introduce a neural GEC system
that combines the power of pre-training and trans-
fer learning. Our contributions are summarized as
follows:

• We pre-train our model for the denoising task
using a novel noising function, which gives
us a parallel corpus that includes realistic
grammatical errors;

• We leverage the idea of sequential transfer
learning (Ruder, 2019), thereby effectively
adapting our pre-trained model to the domain
as well as the writing and annotation styles
suitable for our final task.

• We introduce a context-aware neural
spellchecker, which improves upon an
off-the-shelf spellchecker by incorporating
context into spellchecking using a pre-trained
neural language model (LM).

2 Background

2.1 Transformers

Transformers (Vaswani et al., 2017) are powerful
deep seq2seq architectures that rely heavily on the
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attention mechanism (Bahdanau et al., 2015; Lu-
ong et al., 2015). Both the encoder and the de-
coder of a Transformer are stacks of Transformer
blocks, each of which consists of a multi-head
self-attention layer followed by a position-wise
feed-forward layer, along with residual connection
(He et al., 2016) and layer normalization (Ba et al.,
2016). Each decoder block also attends (Luong
et al., 2015) to the encoder outputs, in between its
self-attention and feed-forward layers. Each input
token embedding in a Transformer is combined
with a positional embedding that encodes where
the token appeared in the input sequence.

2.2 Copy-Augmented Transformers

Copy-augmented Transformers (Zhao et al., 2019)
are a class of Transformers that also incorporate
an attention-based copying mechanism (Gu et al.,
2016; See et al., 2017; Jia and Liang, 2016) in
the decoder. For each output token yt at output
position t, the output probability distribution of a
copy-augmented Transformer is a mixture of the
decoder’s generative distribution pgen and a copy
distribution pcopy, which is defined as an encoder-
decoder attention layer that assigns a distribution
over tokens appearing in the source sentence. By
defining a mixture weight parameter αcopy

t per
each decoding step, the output distribution can be
compactly represented as follows:

p(yt) = (1− αcopy
t ) · pgen(yt) + αcopy

t · pcopy(yt)
(1)

The mixture weight balances between how likely
it is for the model to simply copy a source token,
rather than generating a possibly different token.

2.3 Denoising Autoencoders

Denoising autoencoders (DAEs) (Vincent et al.,
2008) are a class of neural networks that learns to
reconstruct the original input given its noisy ver-
sion. Given an input x and a (stochastic) noising
function x 7→ x̃, the encoder-decoder model of a
DAE minimizes the reconstruction loss:

L(x, dec(enc(x̃))) (2)

where L is some loss function.
Within the NLP domain, DAEs have been for

pre-training in seq2seq tasks that can be cast as a
denoising task. For example, in GEC, pre-trained
DAEs have been used for correcting erroneous

sentences (Xie et al., 2018; Zhao et al., 2019). An-
other example is low-resource machine translation
(MT) (Lample et al., 2018b), pre-trained DAEs
were used to convert word-by-word translations
into natural sentences.

3 Related Work

Many recent neural GEC models (Junczys-
Dowmunt et al., 2018; Lichtarge et al., 2018;
Zhao et al., 2019) made use of the Transformer
(Vaswani et al., 2017) architecture and saw re-
sults nearly as good as or better than convolu-
tional (Chollampatt and Ng, 2018a,b) and recur-
rent (Grundkiewicz and Junczys-Dowmunt, 2018;
Ge et al., 2018a) architectures. Recently, Zhao
et al. (2019) further incorporated a copying mech-
anism (Gu et al., 2016; See et al., 2017; Jia and
Liang, 2016) to the Transformer, highlighting the
fact that most (from 83% in Lang-8 to 97% in
CoNLL-2013) of the target tokens are exact copies
of the corresponding source tokens.

Several prior results, both early (Brockett et al.,
2006; Felice and Yuan, 2014) and recent (Ge et al.,
2018a; Xie et al., 2018; Zhao et al., 2019), in-
troduced different strategies for generating erro-
neous text that can in turn be used for model
(pre-)training. One major direction is to intro-
duce an additional “back-translation” model (Ge
et al., 2018a; Xie et al., 2018), inspired by its suc-
cess in NMT (Sennrich et al., 2016a), and let this
model learn to generate erroneous sentences from
correct ones. While these back-translation models
can learn naturally occurring grammatical errors
from the parallel corpora in reverse, they also re-
quire relatively large amounts of parallel corpora,
which are not readily available in low resource
scenarios. The other direction, which can avoid
these issues, is to incorporate a pre-defined noising
function, which can generate pre-training data for
a denoising task (Zhao et al., 2019). Compared to
(Zhao et al., 2019), our work introduces a noising
function that generates more realistic grammatical
errors.

4 Pre-training a Denoising Autoencoder
on Realistic Grammatical Errors

Given the relative lack of parallel corpora for the
GEC task, it is important to define a realistic pre-
training task, from which the learned knowledge
can transfer to an improved performance.
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When pre-training a seq2seq model on an auxil-
iary denoising task, the choice of the noising func-
tion is important. For instance, in low-resource
MT, Lample et al. (2018a,b) made use of a nois-
ing function that randomly insert/replace/remove
tokens or mix up nearby words at uniform proba-
bilities. They showed that this approach is effec-
tive in translating naive word-by-word translations
into correct ones, both because the coverage of
word-to-word dictionaries can be limited and be-
cause word order is frequently swapped between
languages (e.g., going from SVO to SOV).

In GEC, Zhao et al. (2019) used a similar nois-
ing function to generate a pre-training dataset.
However, we find that this noising function is less
realistic in GEC than in low-resource MT. For ex-
ample, randomly mixing up nearby words can be
less effective for GEC than for low-resource MT,
because word order errors occur less frequently
than other major error categories, such as miss-
ing punctuations and noun numbers. Also, replac-
ing a word to any random word in the vocabulary
is a less realistic scenario than only replacing it
with its associated common error categories, such
as prepositions, noun numbers and verb tenses.

To generate realistic pre-training data, we in-
troduce a novel noising function that captures in-
domain grammatical errors commonly made by
human writers.

4.1 Constructing Noising Scenarios

We introduce two kinds of noising scenarios, us-
ing a token-based approach and a type-based ap-
proach.

In the token-based approach, we make use of
extracted human edits from annotated GEC cor-
pora, using automated error annotation toolkits
such as ERRANT (Bryant et al., 2017). We first
take a subset of the training set, preferably one that
contains in-domain sentences with high-quality
annotations, and using an error annotation toolkit,
we collect all edits that occurred in the parallel
corpus as well as how often each edit was made.
We then take edits that occur in for at least k times,
where k is a pre-defined threshold (we fix k = 4
in our experiments), in order to prevent overfitting
to this (possibly small) subset. These extracted ed-
its include errors commonly made by human writ-
ers, including missing punctuations (e.g., adding
a comma), preposition errors (e.g., of → at), and
verb tenses (e.g., has → have). As a result, we

obtain an automatically constructed dictionary of
common edits made by human annotators on the
in-domain training set. Then, we can define a real-
istic noising scenario by randomly applying these
human edits, in reverse, to a grammatically correct
sentence.

In the type-based approach, we also make use
of a priori knowledge and construct a noising sce-
nario based on token types, including prepositions,
nouns, and verbs. For each token type, we define
a noising scenario based on commonly made er-
rors associated with that token type, but without
changing the type of the original token. In partic-
ular, we replace prepositions with other preposi-
tions, nouns with their singular/plural version, and
verbs with one of their inflected versions. This in-
troduces another set of realistic noising scenarios,
thereby increasing the coverage of the resulting
noising function.

4.2 Generating Pre-training Data

Our goal is to come up with an error function that
introduces grammatical errors that are commonly
made by human writers in a specific setting (in
this case, personal essays written by English stu-
dents). Given sets of realistic noising scenarios,
we can generate large amounts of erroneous sen-
tences from high-quality English corpora, such as
the Project Gutenberg corpus (Lahiri, 2014) and
Wikipedia (Merity et al., 2016).

We first check if a token exists in the dictionary
of token edits. If it does, a token-based error is
generated with the probability of 0.9. Specifically,
the token is replaced by one of the associated ed-
its with the probabilities proportional to the fre-
quency of each edit. For example, the token for
may be replaced with during, in, four, and also for
(coming from a noop edit).

If a token is not processed through the token-
based scenario, we then examine if it belongs to
one of the pre-defined token types: in our case,
we use prepositions, nouns, and verbs. If the to-
ken belongs to one such type, we then apply the
corresponding noising scenario.

5 Sequential Transfer Learning

5.1 Transferring Pre-trained DAE Weights

As discussed in (Zhao et al., 2019), an important
benefit of pre-training a DAE is that it provides
good initial values for both the encoder and the
decoder weights in the seq2seq model. Given a
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pre-trained DAE, we initialize our seq2seq GEC
model using the learned weights of the DAE and
train on all available parallel training corpora with
smaller learning rates. This model transfer ap-
proach (Wang and Zheng, 2015) can be viewed as
a (relatively simple) version of sequential transfer
learning (Ruder, 2019).

5.2 Adaptation by Fine-tuning
As noted in (Junczys-Dowmunt et al., 2018), the
distribution of grammatical errors occurring in text
can differ across the domain and content of text.
For example, a Wikipedia article introducing a his-
torical event may involve more rare words than a
personal essay would. The distribution can also be
affected significantly by the writer’s style and pro-
ficiency, as well as the annotator’s preferred style
of writing (e.g., British vs. American styles, syn-
onymous word choices, and Oxford commas).

In this work, given that the primary source
of evaluation are personal essays at various lev-
els of English proficiency – in particular the
W&I+LOCNESS dataset (Yannakoudakis et al.,
2018) – we adapt our trained models to such char-
acteristics of the test set by fine-tuning the model
only on the training portion of W&I, which largely
matches the domain of the development and test
sets.2 Similar to our training step in §5.1, we
use (even) smaller learning rates. Overall, this
sequential transfer learning framework can also
be viewed as an alternative to oversampling in-
domain data sources, as proposed in (Junczys-
Dowmunt et al., 2018).

6 A Context-Aware Neural Spellchecker

Many recent GEC systems include an off-the-
shelf spellchecker, such as the open-source pack-
age enchant (Sakaguchi et al., 2017; Junczys-
Dowmunt et al., 2018) and Microsoft’s Bing
spellchecker (Ge et al., 2018a,b). While the idea of
incorporating context into spellchecking has been
repeatedly discussed in the literature (Flor and Fu-
tagi, 2012; Chollampatt and Ng, 2017), popular
open-sourced spellcheckers such as hunspell
primarily operate at the word level. This funda-
mentally limits their capacity, because it is often
difficult to find which word is intended for with-
out context. For example, given the input sen-
tence This is an esay about my favorite sport.,

2This is analogous to the NUCLE dataset matching “per-
fectly” with the CoNLL dataset, as noted in (Junczys-
Dowmunt et al., 2018).

Source Public? # Sent. # Annot.
Gutenberg Yes 11.6M n/a

Tatoeba Yes 1.17M n/a
WikiText-103 Yes 3.93M n/a

FCE Yes 33.2K 1
Lang-8 Yes 1.04M 1-8
NUCLE Yes 57.2K 1

W&I-Train Yes 34.3K 1
W&I+L-Dev Yes 4.38K 1
W&I+L-Test Yes 4.48K 5

Table 1: Summary of datasets. The first three datasets
are unannotated English corpora, from which we gen-
erate parallel data for pre-training using a pre-defined
noising function.

hunspell invariably suggests easy as its top
candidate for esay, which should actually be cor-
rected as essay.

Our spellchecker incorporates context to
hunspell using a pre-trained neural language
model (LM). Specifically, we re-rank the top
candidates suggested by hunspell through
feeding each, along with the context, to the neural
LM and scoring them.

7 Experiments

Throughout our experiments, we use fairseq3

(Ott et al., 2019), a publicly available sequence-
to-sequence modeling toolkit based on PyTorch
(Paszke et al., 2017). Specifically, we take
fairseq-0.6.1 and add our own implemen-
tations of a copy-augmented transformer model as
well as several GEC-specific auxiliary losses.

7.1 Datasets & Setups

In Table 1, we summarize all relevant data sources,
their sizes, whether they are public, and the num-
ber of annotators.

For pre-training, we use the Gutenberg dataset
(Lahiri, 2014), the Tatoeba4 dataset, and the
WikiText-103 dataset (Merity et al., 2016). We
learned through initial experiments that the quality
of pre-training data is crucial to the final model’s
performance, because our DAE model assumes §4
that these unannotated corpora contain little gram-
matical errors. Our choice of corpora is based
on both the quality and diversity of text: Guten-

3https://github.com/pytorch/fairseq
4https://tatoeba.org/eng/downloads
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Restricted (§7.5) Low Resource (§7.6) CoNLL-2014 (§7.7)
Error Extraction W&I Train W&I+L Dev-3K NUCLE

Pre-training Gutenberg, Tatoeba, WikiText-103

Training FCE, Lang-8, NUCLE,
W&I+L Dev-3K FCE, Lang-8, NUCLE

W&I Train
Fine-tuning W&I Train n/a NUCLE
Validation W&I+L Dev W&I+L Dev-1K CoNLL-2013

Test W&I+L Test W&I+L Test CoNLL-2014

Table 2: Datasets used for each set of results. For the W&I+L development set, Dev-3K and Dev-1K respec-
tively indicate a 3:1 train-test random split of the development set, such that the original proportions of English
proficiency (A, B, C, N) are kept the same in each split. See Table 1 for more information about each dataset.

Pre-processing
• Fix tokenization errors
• Spellcheck
• BPE segmentation

Pre-training (DAE)
• Error extraction
• Perturbation

Training Fine-tuning 
(optional)

Sequential Transfer Learning Using (copy) Transformers

Post-processing
• <unk> edit removal
• Re-rank
• Error type control

Figure 1: Overall pipeline for our approach. Gray shaded box includes the training steps for a seq2seq model.

berg contains clean novel writings with minimal
grammatical errors, Tatoeba contains colloquial
sentences used as sample sentences in dictionar-
ies, and WikiText-103 contains “Good” and “Fea-
tured” articles from Wikipedia. Our final pre-
training data is a collection of 45M (perturbed,
correct) sentence pairs based on these datasets,
with our noising approach (§4) applied multi-
ple times to each dataset to approximately bal-
ance data from each source (1x Gutenberg, 12x
Tatoeba, and 5x WikiText-103).

Our default setup is the “Restricted Track” sce-
nario (§7.5) for the BEA 2019 Shared Task, where
we use four data sources: the FCE dataset (Bryant
et al., 2019), the Lang-8 dataset5 (Mizumoto et al.,
2011; Tajiri et al., 2012), the NUCLE (v3.3)
dataset (Dahlmeier et al., 2013), and the newly re-
leased Write & Improve and LOCNESS (W&I+L)
datasets (Yannakoudakis et al., 2018).6 For the
“Low Resource Track” (§7.6), we use a 3:1 train-
test random split of the W&I+L development set,
keeping the proportions of proficiency levels the
same. In both tracks, we report our final results on
the W&I+L test set, which contains 5 annotations.
Further, because the W&I+L dataset is relatively

5As in previous results, we remove all duplicates but take
multiple annotations (if available) the Lang-8 dataset, leaving
only 575K parallel examples.

6See Appendix B for an exploratory data analysis.

new, we also include results on the CoNLL-2014
(Ng et al., 2014) dataset, with and without using
the W&I+L dataset during training (§7.7). In Ta-
ble 2, we summarize which datasets were used in
each setup.

7.2 Pre-processing

As part of pre-processing, we first fix minor to-
kenization issues in the dataset using regular ex-
pressions. We use spaCy v1.9 (Honnibal and
Montani, 2017) to make tokenization consistent
with the final evaluation module (ERRANT).

This tokenized input is then fed to our context-
aware neural spellchecker (§6). For the neural LM,
we use a gated convolutional neural network lan-
guage model (Dauphin et al., 2017) pre-trained on
WikiText-103 (Merity et al., 2016).

During spellchecking, we also found it benefi-
cial to fix casing errors within our context-aware
spellchecking process. To fix case errors, we ex-
tract a list of words used in the capital form much
more than their lower-case version (more than 99
times) in WikiText-103 (Merity et al., 2016). We
then include a capitalized version of the word as
a candidate in the LM re-scoring process if it ap-
pears in its capitalized form is in the extracted list
of common capital words.

Before feeding spellchecked text into our
seq2seq model, we apply byte-pair encoding
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(BPE) (Sennrich et al., 2016b) using Sentence-
Piece (Kudo and Richardson, 2018). We first train
a SentencePiece model with 32K vocabulary size
on the original Gutenberg corpus, and apply this
model to all input text to the model. This allows
us to avoid <unk> tokens in most training and val-
idation sets, including the W&I+L development
set.

7.3 Model & Training Details
Throughout our experiments, we use two vari-
ants of the Transformer model: the “vanilla”
Transformer (Vaswani et al., 2017) and the copy-
augmented Transformer (Zhao et al., 2019). We
use two configurations for the vanilla Trans-
former: a base model with 6 blocks of 512-2048
units with 8 attention heads, and a large model
with 6 blocks of 1024-4096 units with 16 at-
tention heads and pre-attention layer normaliza-
tion. We only use the large model for Restricted
Track (§7.5) and for the CoNLL-2014 comparison
(§7.7). For the copy-augmented Transformer, we
follow the default configuration from (Zhao et al.,
2019): 6 blocks of 512-4096 units with 8 attention
heads, along with an 8-head copy attention layer.
For each model configuration, we train two inde-
pendent models using different seeds.

Our model training is a three-stage process, as
illustrated in Figure 1: DAE pre-training, training,
and fine-tuning, except in Low Resource Track
where there is no fine-tuning data (see Table 2).
At each step, we train a model until its ERRANT
score on the development set reaches convergence,
and use the learned weights as initial values for the
next step. In all training steps, we used the Adam
(Kingma and Ba, 2015) optimizer.

Our final model is an ensemble among the dif-
ferent model configurations and seeds. Among the
six (four for Low Resource Track) best models, we
greedily search for the best combination, starting
with the best-performing single model.

7.4 Post-processing
Our post-processing phase involves three steps.
First, we find any <unk> tokens found in the
original input text, and using ERRANT, we re-
move any edits associated with the token. Next,
since many of the model’s corrections can still
be unnatural, if not incorrect, we re-rank candi-
date corrections within each sentence using a pre-
trained neural LM (Dauphin et al., 2017). Specif-
ically, we remove any combination of up to 7

edits per sentence, and choose the combination
that yields the highest LM score. Finally, we
noticed that, as in many previous results, our
neural system performs well on some error cate-
gories (e.g., M:PUNCT) but poorly on others (e.g.,
R:OTHER). Because ERRANT provides a fine-
grained analysis of model performance based on
error types, we found it beneficial to remove ed-
its belonging to certain categories in which the
model performs too poorly. Given our final model,
we randomly remove all edits from a subset of (at
most N ) categories for repeated steps, and choose
to remove the subset of error categories that gave
the highest score on the development set.

7.5 Restricted Track Results

In Table 3, we summarize our results on Restricted
Track. The results illustrate that each step in our
approach substantially improves upon the previ-
ous model, both on the W&I+L development and
test sets. We highlight that our pre-training step
with realistic human errors already gets us at a
54.82 F0.5 score on span-based correction in ER-
RANT for the test set, even though we only indi-
rectly used the W&I training set for error extrac-
tion and no other parallel corpora. This suggests
that pre-training on a denoising task with realistic
and common errors can already lead to a decent
GEC system.

Our final ensemble model is a combination of
five independent models – one base model, two
large models, and two copy-augmented models –
achieving 69.06 F0.5 score on the test set.

7.6 Low Resource Track Results

In Table 4, we summarize our results on Low Re-
source Track. Similar to Restricted Track, each
step in our approach improves upon the previous
model significantly, and despite the lack of parallel
data (3K for training, 1K for validation), our pre-
training step already gets us at 51.71 F0.5 score
on the test set. Compared to Restricted Track,
the only difference in pre-training is that the re-
verse dictionary for the noising function was con-
structed using much fewer parallel data (3K), but
we see that this amount of parallel data is already
enough to get within 3 points of our pre-trained
model in Restricted Track.

Our final model is an ensemble of two indepen-
dent models – one base model and one copy model
– achieving 61.47 F0.5 score on the test set.
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Steps W&I+L Dev W&I+L Test
P R F0.5 ∆ P R F0.5 ∆

Spellcheck 59.28 5.27 19.43 n/a 68.77 10.55 32.69 n/a
+ DAE Pre-train 48.58 24.92 40.82 +21.39 58.33 44.20 54.82 +22.13
+ Train 54.30 28.67 46.07 + 5.25 66.05 50.72 62.28 + 7.46
+ Fine-tune 54.34 32.15 47.75 + 1.68 66.02 53.41 63.05 + 0.77
+ Ensemble (5) 63.54 31.48 52.79 + 5.04 76.19 50.25 69.06 + 6.01

Table 3: ACL 2019 BEA Workshop Restricted Track results. For each training step, we only list results from the
model configuration that achieved the best F0.5 test set score. All evaluation is done using ERRANT’s span-based
correction scorer. Pre-processing and post-processing are included in the first step and last steps, respectively.

Steps W&I+L Dev-1K W&I+L Test
P R F0.5 ∆ P R F0.5 ∆

Spellcheck 61.88 5.29 19.72 n/a 68.77 10.55 32.69 n/a
+ DAE Pre-train 46.26 19.84 36.53 +16.81 57.14 37.46 51.71 +19.02
+ Train 47.97 30.91 43.20 + 6.67 58.60 47.47 55.98 + 4.27
+ Ensemble (4) 58.89 26.68 47.02 + 5.75 69.69 41.76 61.47 + 5.49

Table 4: ACL 2019 BEA Workshop Low Resource Track results. For each training step, we only list results from
the model configuration that achieved the best F0.5 test set score. All evaluation is done using ERRANT’s span-
based correction scorer. Note that 3K examples from the W&I+Locness development set (“W&I+L Dev-3K”)
were used for the training step and is excluded during evaluation. Pre-processing and post-processing are included
in the first step and last steps, respectively.

7.7 CoNLL-2014 Results

In Table 5, we show the performance of our ap-
proach on the CoNLL-2014 (Ng et al., 2014)
dataset, with and without the newly released
W&I+L dataset.7 We also list some of the state-
of-the-art8 results prior to the shared task: copy-
augmented Transformers pre-trained on random
error denoising (Zhao et al., 2019), Transform-
ers pre-trained on Wikipedia revisions and round-
trip translations (Lichtarge et al., 2019), hybrid
statistical and neural machine translation systems
(Junczys-Dowmunt et al., 2018), and convolu-
tional seq2seq models with quality estimation
(Chollampatt and Ng, 2018b).

The results show that our approach is com-
petitive with some of the recent state-of-the-art
results that achieve around 56 MaxMatch (M2)
scores and further achieves 60+ M2 score when
the W&I+L dataset is used. This illustrates that
our approach can also achieve a “near human-
level performance” (Grundkiewicz and Junczys-
Dowmunt, 2018). We also note that the 60.33 M2

score was obtained by the final ensemble model

7See Appendix F for a step-by-step training progress.
8http://nlpprogress.com/english/

grammatical_error_correction.html.

from §7.5, which includes a fine-tuning step to the
W&I model. This suggests that “overfitting” to
the W&I dataset does not necessarily imply a re-
duced performance on an external dataset such as
CoNLL-2014.

8 Analysis & Discussion

8.1 Error Analysis

Here, we give an analysis of our model’s per-
formance on some of the major ERRANT er-
ror categories on the W&I test set. Detailed
information is available in Tabel 10. We ob-
serve that our model performs well on syn-
tax relevant error types, i.e., subject-verb agree-
ment (VERB:SVA) (84.09 F0.5), noun numbers
(NOUN:NUM) (72.19), and prepositions (PREP)
(64.27), all of which are included as part of our
type-based error generation in the pre-training
data (§4.2). Our model also achieves 77.26
on spelling errors (SPELL) and 75.83 on ortho-
graphic errors (ORTH), both of which are im-
provements made mostly by our context-aware
neural spellchecker. Our model also achieves
77.86 on punctuation errors (PUNCT), which hap-
pen to be the most common error category in the
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Models Pre-training W&I+L CoNLL-2014
P R F0.5

Our Models
Transformers

(Vanilla + Copy-Aug.)
DAE with Realistic Errors

No
Yes

71.11
74.76

32.56
34.05

57.50
60.33

Previous Results
Copy-Aug. Transformers DAE with Random Errors No 71.57 38.65 61.15

Transformers Revisions + Round-Trip Translations No 66.70 43.90 60.40
ConvS2S + QE LM (Decoder Pre-training) No n/a n/a 56.52
SMT + BiGRU LM (Ensemble Decoding) No 66.77 34.49 56.25

Table 5: Results on CoNLL-2014 as point of comparison. “W&I+L” indicates whether the approach made use of
the (newly released) W&I+L dataset. Evaluation is done using the MaxMatch (M2) scorer, rather than ERRANT.
Pre-processing & post-processing are included before the first step and after the last step, respectively. See §7.7
for details and references.

Step Ours Random ∆

DAE 54.82 32.25 +22.57
+ Train 62.28 57.00 + 5.28
+ Fine-tune 63.05 60.22 + 2.83

Table 6: Comparison of realistic and random error gen-
eration on Restricted Track. ∆ means the difference
between Ours and Random.

Step Ours Random ∆

DAE 51.71 32.01 +19.70
+ Train 55.98 35.44 +20.54

Table 7: Comparison of realistic and random error gen-
eration on Low Resource Track. ∆ means the differ-
ence between Ours and Random.

W&I+L dataset. This may be due to both our
use of extracted errors from the W&I dataset dur-
ing pre-training and our fine-tuning step. Finally,
we find it challenging to match human annota-
tors’ “naturalness” edits, such as VERB (26.76),
NOUN (41.67), and OTHER (36.53). This is pos-
sibly due to the variability in annotation styles and
a lack of large training data with multiple human
annotations.

8.2 Effect of Realistic Error Generation

To see how effective our realistic error based
pre-training is, we compare it with (Zhao et al.,
2019)’s method. According to them, random in-
sertion, deletion, and substitution occur with the
probability of 0.1 at every word, and words are re-
ordered with a certain probability. As seen in Ta-
ble 6 and 7, our pre-training method outperforms

the random based one in both Restricted and Low
Resource Tracks by 22.57 and 19.70, respectively.
And it remains true for each step of the following
transfer learning. The performance gap, however,
decreases to 5.3 after training and to 3.2 after fine-
tuning in Restricted Track. On the other hand, the
gap in Low Resource Track slightly increases to
20.54 after training. This leads to the conclusion
that our pre-training functions as proxy for train-
ing, for our generated errors resemble the human
errors in the training data more than the random
errors do.

8.3 Effect of Context-Aware Spellchecking

We further investigate the effects of incorporating
context and fixing casing errors to the off-the-shelf
hunspell, which we consider as a baseline.
We test three spellchecker variants: hunspell,
hunspell using a neural LM, and our final
spellchecker model.

On the original W&I+L test set, our LM-based
approach improves upon the ERRANT F0.5 score
by 5.07 points, and fixing casing issues further
improves this score by 4.02 points. As a result,
we obtain 32.69 F0.5 score just by applying our
context-aware spellchecker model.

9 Conclusion & Future Work

We introduced a neural GEC system that leverages
pre-training using realistic errors, sequential trans-
fer learning, and context-aware spellchecking with
a neural LM. Our system achieved competitive re-
sults on the newly released W&I+L dataset in both
standard and low-resource settings.
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Spellchecker W&I+L Test
P R F0.5 ∆

Hunspell 53.59 7.29 23.60 n/a
Hunspell + LM 65.14 8.85 28.67 +5.07

Ours 68.77 10.55 32.69 +4.02

Table 8: Effect of incorporating context into a standard
spellchecker.

There are several interesting future directions
following our work. One is to extend sentence-
level GEC systems to multi-sentence contexts, for
example by including the previous sentence, to
better cope with complex semantic errors such as
collocation. Because the W&I+L dataset is also
a collection of (multi-)paragraph essays, adding
multi-sentence contexts can improve these GEC
systems. Also, to better understand the role of sev-
eral components existing in modern GEC systems,
it is important to examine which components are
more necessary than others.
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A Copy-Augmented Transformers:
Formal Derivation

Copy-augmented Transformers (Zhao et al., 2019)
incorporate an attention-based copying mecha-
nism (Gu et al., 2016; See et al., 2017; Jia and
Liang, 2016) in the decoder of Transformers. For
each output token yt at output position t, given
source token sequence x = (x1, . . . , xT ′), the out-
put probability distribution over token vocabulary
V is defined as:

Henc = enc(x) (3)

hdec
t = dec (y1:t−1;Henc) (4)

pgen(yt | y1:t−1;x) = softmax
(
Wgenhdec

t

)

(5)

where enc denotes the encoder that maps the
source token sequence x to a sequence of hidden
vectors Henc ∈ Rd×T ′ , dec denotes the decoder
that takes output tokens at previous time steps
along with encoded embeddings and produces a
hidden vector hdec

t ∈ Rd, and Wgen ∈ R|V |×d is a
learnable linear output layer that maps the hidden
vector to a pre-softmax output probabilities (“log-
its”). We denote the resulting distribution as the
(token) generative distribution, denoted as pgen.

A copy attention layer can be defined as an ad-
ditional (possibly multi-head) attention layer be-
tween the encoder outputs and the final-layer hid-
den vector at the current decoding step. The atten-
tion layer yields two outcomes, the layer output ot
and the corresponding attention scores st:

st = softmax

(
(hdec

t )THenc

√
d

)
(6)

ot = Hencst (7)
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The copy distribution is then defined as the atten-
tion scores in (6) themselves9:

pcopy(yt | y1:t−1;x) = st (8)

The final output of a copy-augmented Trans-
former as a mixture of both generative and copy
distributions. The mixture weight10 αcopy

t is de-
fined at each decoding step as follows:

αcopy
t = sigmoid

(
(walpha)Tot

)
(9)

p(yt) = (1− αcopy
t ) · pgen(yt) + αcopy

t · pcopy(yt)
(10)

where walpha ∈ Rd is a learnable linear output
layer. (For simplicity, we omit the dependencies
of all probabilities in (10) on both y1:t−1 and x.)
The mixture weight balances between how likely
it is for the model to simply copy a source token,
rather than generating a possibly different token.

B Exploratory Data Analysis

B.1 Data Sizes

Figure 2 illustrates the number of available paral-
lel corpora (counting multiple annotations) across
data sources. Note that the vertical axis is capped
at 100K for a better visual comparison among
other sources.

For the Lang-8 dataset, we count all available
(ranging from 1 to 8) annotations for each of
1.04M original sentences. Also note that we only
use the subset of Lang-8 whose source and tar-
get sentences are different, leaving only 575K sen-
tences instead of 1.11M.

B.2 Sentence Length vs. Number of Edits

Figure 3 illustrates the distribution of sentence
lengths and the number of edits per sentence
across different data sources.

Table 9 includes our permutation test11 results
on the number of edits per sentence, normalized

9In practice, this involves adding up the copy scores de-
fined for each source token into a |V |-dimensional vector, us-
ing commands such as scatter add() in PyTorch.

10When computing the mixture weight αcopy
t , Zhao et al.

(2019) applies a linear layer to Hencs̃t, where s̃t are the at-
tention scores in (6) before taking softmax. Our formulation
gives essentially the same copying mechanism, while being
more compatible to standard Transformer implementations.

11We used the off-the-shelf mlxtend package to run
permutation tests. See http://rasbt.github.io/
mlxtend/user_guide/evaluate/permutation_
test/.

Figure 2: Data size per source for all Restricted Track
training data. Number includes multiple annotations
for Lang-8. Vertical axis is capped at 100K for a bet-
ter visual comparison among the smaller sources. The
three FCE splits (train, dev, test) are collectively used
for training, and the three W&I+L splits correspond to
three English proficiency levels (“A”, “B”, “C”). After
duplicate removal, only 575K of the Lang-8 parallel
corpus are actually used for training.

by sentence length (i.e., number of word-level to-
kens), between training data sources. Using an ap-
proximate permutation test with 10k simulations
and a significant level of α = 0.05, we find that
there is a statistical difference in the normalized
edit count per sentence between the W&I training
set and each of FCE, NUCLE, and Lang-8. This
serves as a preliminary experiment showing how
the distribution of grammatical errors can be sig-
nificantly different across different sources – even
when they belong to a roughly similar domain.

C Full Noising Algorithm

Algorithms 1 and 2 detail our noising scenarios.

D Results on error categories

Table 10 shows the result on error categories.

E CoNLL-2014 Full Results
(Without Using W&I+L)

In Table 11, we include the training progress for
our result for CoNLL-2014.

A noticeable difference between this result and
our results for Restricted Track and Low Resource
Track is that adaptation via fine-tuning is not nec-
essarily effective here. We hypothesize that this
is mostly due to the fact that the training subset
to which we fine-tune our model (NUCLE) comes
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Algorithm 1 Pseudocode for constructing noise dictionary
function CONSTRUCTNOISEDICTIONARY(ParallelCorpus, min count)

Initialize a dictionary dict
for (CorToken, OriToken) in ParallelCorpus do

dict[CorToken] += OriToken
end for
for CorToken, OriTokenList in dict do

for OriToken in OriTokenList do
if count(OriToken) < min count then

delete OriToken from dict[CorToken]
end if

end for
if length(OriTokenList)==1 and CorToken==OriTokenList[0] then

delete OriToken from dict
end if

end for
return dict
end function

Algorithm 2 Pseudocode for generating noisy sentences
function CHANGE TYPE(word, prob)

preposition set = [∅, for, to, at, · · · ]
if random[0, 1] > prob then return word
else

if word in preposition set then
random choose one from(preposition set)

else if word is Noun then change number(word)
else if word is Verb then change form(word)
end if

end if
return word
end function
function MAKE NOISE(sentence, prob)

dict = ConstructNoiseDictionary(ParallelCorpus, min count)
noised = []
for word in sentence do

if word in dict and random[0, 1] > prob then
candidates = dict[word]
noise = random choose one from(candidates)

else
noise = change type(word)

end if
noised += noise

end forreturn noised
end function
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Figure 3: Sentence length versus the number of edits made in each sentence, across all training data sources for the
Restricted Track. The horizontal axis is capped at 100 words (less than 0.02% of all sentences contain more than
100 words). The vertical axis is capped at 40 edits (less than 0.02% of all sentences contain more than 30 edits).

Source # Sent. # Edits Perm. Test
/ Length vs. W&I

W&I-Train 34.3K 0.0922 n/a
FCE 33.2K 0.0898 p = .002

NUCLE 57.2K 0.0318 p < .001

Lang-8 1.11M 0.1357 p < .001

Table 9: Comparing the average number of edits per
sentence, normalized by sentence length, between the
W&I training set and other available training data
sources for the Restricted Track. “vs. W&I” refers
to the result of an approximate permutation test (10k
rounds) against that in the W&I training set. Under the
significance level of α = 0.05, the number for FCE,
NUCLE, and Lang-8 are all significantly different from
that for the W&I training set.

from a different source than the actual test set
(CoNLL-2014) – despite the fact that both datasets
have similar domains (personal essays from En-
glish students), they can still have many other dif-
ferent characteristics, including the writer’s En-
glish proficiency and annotation styles.

F Training Details

Our model training is a three-stage process: DAE
pre-training, training, and fine-tuning, except in
Low Resource Track where there is no fine-tuning
data. At each step, we train a model until its
ERRANT score on the development set reaches
convergence, and use the learned weights as ini-

Error types P R F0.5
ADJ 71.43 28.57 54.95

ADJ:FORM 100.00 40.00 76.92
ADV 70.59 22.22 49.18
CONJ 100.00 4.76 20.00

CONTR 100.00 91.67 98.21
DET 78.95 47.04 69.52

MORPH 81.18 49.29 71.88
NOUN 64.52 17.24 41.67

NOUN:INFL 100.00 41.18 77.78
NOUN:POSS 81.82 48.21 71.81

ORTH 87.38 49.60 75.83
OTHER 55.93 15.30 36.53
PART 76.19 55.17 70.80
PREP 69.69 49.01 64.27
PRON 78.67 43.70 67.82

PUNCT 79.95 70.48 77.86
SPELL 76.07 82.41 77.26
VERB 66.67 7.88 26.76

VERB:FORM 72.45 73.20 72.60
VERB:INFL 100.00 85.71 96.77
VERB:SVA 83.77 85.43 84.09

VERB:TENSE 71.43 45.64 64.18
WO 67.74 25.61 50.97

Table 10: Results on error types.
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Steps CoNLL-2014
P R F0.5

Spellcheck 54.75 5.75 20.25
+ Pre-train (b) 54.76 15.09 35.89
+ Train (b) 60.43 34.22 52.40
+ Fine-tune (b) 60.81 33.32 52.20
+ Pre-train (c) 65.81 24.17 48.95
+ Train (c) 61.38 30.97 51.30
+ Fine-tune (c) 60.82 32.50 51.79
+ Ensemble (b+c) 71.11 32.56 57.50

Table 11: Training progress on CoNLL-2014. No
W&I+Locness datasets were used in these results. ‘b’
and ‘c’ refer to the base and copy configurations of
the Transformer, respectively. Evaluation is done using
the MaxMatch (M2) scorer. Pre-processing & post-
processing are included before the first step and after
the last step, respectively.

tial values for the next step. For pre-training, we
used a learning rate of 5 · 10−4 for the base and
copy-augmented Transformers and 10−3 for the
large Transformer. For training, we reset the op-
timizer and set the learning rate to 10−4. For fine-
tuning (if available), we again reset the optimizer
and set the learning rate to 5 · 10−5. In all training
steps, we used the Adam (Kingma and Ba, 2015)
optimizer with the inverse square-root schedule
and a warmup learning rate of 10−7, along with
a dropout rate of 0.3.

G Further Analysis

G.1 Effect of Copying Mechanisms &
Ensembles

One of our contributions is to highlight the benefit
of ensembling multiple models with diverse char-
acteristics. As shown in Table 3, the final ensem-
ble step involving different types of models was
crucial for our model’s performance, improving
the test score by over 6 F0.5 points. We first no-

Model (Config.) W&I+L Test
P R F0.5

Vanilla (Large) 63.66 56.82 62.17
Copy (Copy) 66.02 53.41 63.05

∆ +2.36 -3.41 +0.88

Table 12: Single-model ERRANT scores for Re-
stricted Track, using a large Transformer and a copy-
augmented Transformer.

ticed that the copy-augmented Transformer learns
to be more conservative – i.e., higher precision but
lower recall given similar overall scores – in its
edits than the vanilla Transformer, presumably be-
cause the model includes an inductive bias that fa-
vors copying (i.e., not editing) the input token via
its copy attention scores. Table 12 shows this phe-
nomenon for Restricted Track.

Given multiple models with diverse characteris-
tics, the choice of models for ensemble can trans-
late to controlling how conservative we want our
final model to be. For example, combining one
vanilla model with multiple independent copy-
augmented models will result in a more conser-
vative model. This could serve as an alternative
to other methods that control the precision-recall
ratio, such as the edit-weighted loss (Junczys-
Dowmunt et al., 2018).
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Abstract

In this paper, we describe our submission
to the BEA 2019 shared task on grammat-
ical error correction. We present a system
pipeline that utilises both error detection and
correction models. The input text is first
corrected by two complementary neural ma-
chine translation systems: one using convo-
lutional networks and multi-task learning, and
another using a neural Transformer-based sys-
tem. Training is performed on publicly avail-
able data, along with artificial examples gener-
ated through back-translation. The n-best lists
of these two machine translation systems are
then combined and scored using a finite state
transducer (FST). Finally, an unsupervised re-
ranking system is applied to the n-best output
of the FST. The re-ranker uses a number of
error detection features to re-rank the FST n-
best list and identify the final 1-best correction
hypothesis. Our system achieves 66.75% F0.5

on error correction (ranking 4th), and 82.52%
F0.5 on token-level error detection (ranking
2nd) in the restricted track of the shared task.

1 Introduction

Grammatical error correction (GEC) is the task
of automatically correcting grammatical errors in
written text. In this paper, we describe our submis-
sion to the restricted track of the BEA 2019 shared
task on grammatical error correction (Bryant et al.,
2019), where participating teams are constrained
to using only the provided datasets as training
data. Systems are expected to correct errors of
all types, including grammatical, lexical and or-
thographical errors. Compared to previous shared
tasks on GEC, which have primarily focused on
correcting errors committed by non-native speak-
ers (Dale and Kilgarriff, 2011; Dale et al., 2012;
Ng et al., 2013, 2014), a new annotated dataset
is introduced, consisting of essays produced by
native and non-native English language learners,

with a wide coverage of language proficiency lev-
els for the latter, ranging from elementary to ad-
vanced.

Neural machine translation (NMT) systems for
GEC have drawn growing attention in recent
years (Yuan and Briscoe, 2016; Xie et al., 2016;
Ji et al., 2017; Sakaguchi et al., 2017; Chollampatt
and Ng, 2018; Junczys-Dowmunt et al., 2018), as
they have been shown to achieve state-of-the-art
results (Ge et al., 2018; Zhao et al., 2019). Within
this framework, error correction is cast as a mono-
lingual translation task, where the source is a sen-
tence (written by a language learner) that may con-
tain errors, and the target is its corrected counter-
part in the same language.

Due to the fundamental differences between a
“true” machine translation task and the error cor-
rection task, previous work has investigated the
adaptation of NMT for the task of GEC. Byte
pair encoding (BPE) (Chollampatt and Ng, 2018;
Junczys-Dowmunt et al., 2018) and a copying
mechanism (Zhao et al., 2019) have been intro-
duced to deal with the “noisy” input text in GEC
and the non-standard language used by learners.
Some researchers have investigated ways of in-
corporating task-specific knowledge, either by di-
rectly modifying the training objectives (Schmaltz
et al., 2017; Sakaguchi et al., 2017; Junczys-
Dowmunt et al., 2018) or by re-ranking machine-
translation-system correction hypotheses (Yan-
nakoudakis et al., 2017; Chollampatt and Ng,
2018). To ameliorate the lack of large amounts of
error-annotated learner data, various approaches
have proposed to leverage unlabelled native data
within a number of frameworks, including arti-
ficial error generation with back translation (Rei
et al., 2017; Kasewa et al., 2018), fluency boost
learning (Ge et al., 2018), and pre-training with
denoising autoencoders (Zhao et al., 2019).

Previous work has shown that a GEC system
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Figure 1: Overview of our best GEC system pipeline.

targeting all errors may not necessarily be the best
approach to the task, and that different GEC sys-
tems may be better suited to correcting different
types of errors, and can therefore be complemen-
tary (Yuan, 2017). As such, hybrid systems that
combine different approaches have been shown to
yield improved performance (Felice et al., 2014;
Rozovskaya and Roth, 2016; Grundkiewicz and
Junczys-Dowmunt, 2018). In line with this work,
we present a hybrid approach that 1) employs
two NMT-based error correction systems: a neural
convolutional system and a neural Transformer-
based system; 2) a finite state transducer (FST)
that combines and further enriches the n-best out-
puts of the NMT systems; 3) a re-ranking system
that re-ranks the n-best output of the FST based
on error detection features.

The remainder of this paper is organised as fol-
lows: Section 2 describes our approach to the
task; Section 3 describes the datasets used and
presents our results on the shared task develop-
ment set; Section 4 presents our official results on
the shared task test set, including a detailed analy-
sis of the performance of our final system; and, fi-
nally, Section 5 concludes the paper and provides
an overview of our findings.

2 Approach

We approach the error correction task using a
pipeline of systems, as presented in Figure 1. In
the following sections, we describe each of these
components in detail.

2.1 The convolutional neural network (CNN)
system

We use a neural sequence-to-sequence model
and an encoder–decoder architecture (Cho et al.,
2014; Sutskever et al., 2014). An encoder first
reads and encodes an entire input sequence x =
(x1, x2, ..., xn) into hidden state representations.
A decoder then generates an output sequence y =
(y1, y2, ..., ym) by predicting the next token yt

based on the input sequence x and all the previ-
ously generated tokens {y1, y2, ..., yt−1}:

p(y) =
m∏

t=1

p(yt|{y1, ..., yt−1},x) (1)

Our convolutional neural system is based
on a multi-layer convolutional encoder–decoder
model (Gehring et al., 2017), which employs con-
volutional neural networks (CNNs) to compute
intermediate encoder and decoder states. The
parameter settings follow Chollampatt and Ng
(2018) and Ge et al. (2018). The source and target
word embeddings have size 500, and are initialised
with fastText embeddings (Bojanowski et al.,
2017) trained on the native English Wikipedia cor-
pus (2, 405, 972, 890 tokens). Each of the encoder
and decoder is made up of seven convolutional
layers, with a convolution window width of 3. We
apply a left-to-right beam search to find a correc-
tion that approximately maximises the conditional
probability in Equation 1.

BPE is introduced to alleviate the rare-word
problem, and rare and unknown words are split
into multiple frequent subword tokens (Sennrich
et al., 2016b). NMT systems often limit vocabu-
lary size on both source and target sides due to the
computational complexity during training. There-
fore, they are unable to translate out-of-vocabulary
(OOV) words, which are treated as unknown to-
kens, resulting in poor translation quality. As
noted by Yuan and Briscoe (2016), this problem
is more serious for GEC as non-native text con-
tains, not only rare words (e.g., proper nouns), but
also misspelled words (i.e., spelling errors).

In our model, each of the source and target vo-
cabularies consist of the 30K most frequent BPE
tokens from the source and target side of the paral-
lel training data respectively. The same BPE oper-
ation is applied to the Wikipedia data before being
used for training of our word embeddings.

Copying mechanism is a technique that has led
to performance improvement on various mono-
lingual sequence-to-sequence tasks, such as text
summarisation, dialogue systems, and paraphrase
generation (Gu et al., 2016; Cao et al., 2017). The
idea is to allow the decoder to choose between
simply copying an original input word and out-
putting a translation word. Since the source and
target sentences are both in the same language
(i.e., monolingual translation) and most words in
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the source sentence are correct and do not need to
change, GEC seems to benefit from the copying
mechanism.

Following the work of Gu et al. (2016), we
use a dynamic target vocabulary, which contains
a fixed vocabulary learned from the target side
of the training data plus all the unique tokens
introduced by the source sentence. As a re-
sult, the probability of generating any target to-
ken p(yt|{y1, ..., yt−1},x) in Equation 1 is de-
fined as a “mixture” of the generation probability
p(yt, g|{y1, ..., yt−1},x) and the copy probability
p(yt, c|{y1, ..., yt−1},x):

p(yt|{y1, ..., yt−1},x) = p(yt, g|{y1, ..., yt−1},x)
+ p(yt, c|{y1, ..., yt−1},x) (2)

Multi-task learning has found success in a
wide range of tasks, from natural language pro-
cessing (NLP) (Collobert and Weston, 2008) and
speech recognition (Deng et al., 2013) to computer
vision (Girshick, 2015). Multi-task learning al-
lows systems to use information from related tasks
and learn from multiple objectives, which leads
to performance improvement on individual tasks.
Recently, Rei (2017) and Rei and Yannakoudakis
(2017) investigated the use of different auxiliary
objectives for the task of error detection in learner
writing.

In addition to our primary error correction task,
we propose two related auxiliary objectives to
boost model performance:

• Token-level labelling
We jointly train an error detection and er-
ror correction system by providing error de-
tection labels. Instead of only generating a
corrected sentence, we extend the system to
additionally predict whether a token in the
source sentence is correct or incorrect.

• Sentence-level labelling
A binary classification task is also introduced
to predict whether the original source sen-
tence is grammatically correct or incorrect.
We investigate the usefulness of sentence-
level classification as an auxiliary objective
for training error correction models.

Labels for both auxiliary error detection tasks are
generated automatically by comparing source and
target tokens using the ERRANT automatic align-
ment tool (Bryant et al., 2017). We first align each

token xi in the source sentence x with a token yj
in the target sentence y. If xi = yj , the source
token xi is correct; while if xi 6= yj , the source to-
ken xi is incorrect. Similarly, the source sentence
x is correct if x = y, and incorrect otherwise.

Artificial error generation is the process of in-
jecting artificial errors into a set of error-free sen-
tences. Compared to standard machine transla-
tion tasks, GEC suffers from the limited availabil-
ity of large amounts of training data. As man-
ual error annotation of learner data is a slow and
expensive process, artificial error generation has
been applied to error correction (Felice and Yuan,
2014) and detection (Rei et al., 2017) with some
success. Following the work of Rei et al. (2017),
we treat error generation as a machine translation
task, where a grammatically correct sentence is
translated to an incorrect counterpart. We built an
error generation system using the same network
architecture as the one described here, with error-
corrected sentences as the source and their corre-
sponding uncorrected counterparts written by lan-
guage learners as the target. The system is then
used to collect the n-best outputs: y1

o,y
2
o, ...,y

n
o ,

for a given error-free native and/or learner sen-
tence y. Since there is no guarantee that the error
generation system will inject errors into the input
sentence y to make it less grammatically correct,
we apply “quality control”. A pair of artificially
generated sentences (yk

o ,y), for k ∈ {1, 2, ..., n},
will be added to the training set of the error cor-
rection system if the following condition is met:

f(y)

f(yk
o)
≤ σ (3)

where f(y) is the normalised log probability of y:

f(y) =

∑m
t=1 log(P (yt|y<t))

m
(4)

This ensures that the quality of the artificially
generated sentence, as estimated by a language
model, is lower compared to the original sentence.
We use a 5-gram language model (LM) trained on
the One Billion Word Benchmark dataset (Chelba
et al., 2014) with KenLM (Heafield, 2011) to com-
pute P (yt|y<t).

The σ in Equation 3 is a threshold used to fil-
ter out sentence pairs with unnecessary changes;
e.g., [I look forward to hearing from you. → I am
looking forward to hearing from you.]. It is an av-
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eraged score learned on the development set:

σ =

∑N
i=1

f(yi)
f(xi)

N
(5)

where (x,y) is a pair of parallel sentences in the
development set, and N is the total number of
pairs.

2.2 The neural Transformer-based system

Besides the convolutional system from the pre-
vious section, we also use the purely neural
Transformer-based system of Stahlberg and Byrne
(2019). They use an ensemble of four Trans-
former (Vaswani et al., 2017) NMT and two Trans-
former LM models in Tensor2Tensor (Vaswani
et al., 2018) transformer big configura-
tion. The NMT models are trained with back-
translation (Sennrich et al., 2016a; Rei et al., 2017;
Kasewa et al., 2018) and fine-tuning through con-
tinued training. For a detailed description of this
system we refer the reader to Stahlberg and Byrne
(2019).

2.3 FST-based system combination

Stahlberg et al. (2019) demonstrated the useful-
ness of FSTs for grammatical error correction.
Their method starts with an input lattice I which is
generated with a phrase-based statistical machine
translation (SMT) system. The lattice I is com-
posed with a number of FSTs that aim to enrich
the search space with further possible corrections.
Similarly to Bryant and Briscoe (2018), they rely
on external knowledge sources like spell check-
ers and morphological databases to generate ad-
ditional correction options for the input sentence.
The enriched lattice is then mapped to the sub-
word level by composition with a mapping trans-
ducer, and re-scored with neural machine transla-
tion models and neural LMs.

In this work, rather than combining SMT and
neural models, we use the framework of Stahlberg
et al. (2019) to combine and enrich the outputs of
two neural systems. The input lattice I is now the
union of two n-best lists – one from the convo-
lutional system (Section 2.1), and one from the
Transformer-based system (Section 2.2). After
composition, we re-score the enriched input lat-
tice I with the system described in Section 2.2.
The FST-based system combination uses 7 dif-
ferent features: the convolutional system score,
the LM and NMT scores from the Transformer-

based system, the edit distance of hypotheses in
I to the input sentence, substitution and dele-
tion penalties for the additional correction options
from the FST framework, and the word count.
Following Stahlberg et al. (2019); Stahlberg and
Byrne (2019), we scale these features and tune
the scaling weights on the BEA-2019 develop-
ment set using a variant of Powell search (Powell,
1964). We use OpenFST (Allauzen et al., 2007)
as backend for FST operations, and the SGNMT
decoder (Stahlberg et al., 2017, 2018) for neural
decoding under FST constraints.

2.4 Re-ranking FST output

Yannakoudakis et al. (2017) found that grammati-
cal error detection systems can be used to improve
error correction outputs. Specifically, they re-rank
the n-best correction hypotheses of an SMT sys-
tem based on error detection predictions. Follow-
ing this work, we also deploy a re-ranking compo-
nent which re-ranks the n-best correction hypothe-
ses of the FST system (Section 2.3) based on error
detection predictions output by an error detection
system.

Error detection. Our system for grammatical
error detection is based on the model described
by Rei (2017).1 The task is formulated as a se-
quence labeling problem – given a sentence, the
model assigns a probability to each token, indicat-
ing the likelihood of that token being incorrect in
the given context (Rei and Yannakoudakis, 2016).
The architecture maps words to distributed em-
beddings, while also constructing character-based
representations for each word with a neural com-
ponent. These are then passed through a bidirec-
tional LSTM, followed by a feed-forward layer
and a softmax layer at the output.

In addition to neural text representations, we
also include several external features into the
model, designed to help it learn more accurate er-
ror detection patterns from the limited amounts of
training data available:

• Two binary features indicating whether two
publicly available spell-checkers – HunSpell2

and JamSpell3 – identify the target word as a
spelling mistake.

1https://github.com/marekrei/
sequence-labeler

2http://hunspell.github.io/
3https://github.com/bakwc/JamSpell
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• The POS tag, NER label and dependency re-
lation of the target word based on the Stan-
ford parser (Chen and Manning, 2014).

• The number of times the unigram, bigram, or
trigram context of the target word appears in
the BNC (Burnard, 2007) and in ukWaC (Fer-
raresi et al., 2008).

• Contextualized word representations from
ELMo (Peters et al., 2018).

The discrete features are represented as 10-
dimensional embeddings and, together with the
continuous features, concatenated to each word
representation in the model. The overall architec-
ture is optimized for error detection using cross-
entropy. Once trained, the model returns the pre-
dicted probabilities of each token in a sentence be-
ing correct or incorrect.

Re-ranker. We generate the list of the 8 best cor-
rection hypotheses from our FST system, and then
use the following set of error detection-based fea-
tures to assign a new score to each hypothesis and
determine a new ranking:

1. Sentence correctness probability: the error
detection model outputs a probability indicat-
ing whether a token is likely to be correct or
incorrect in context. We therefore use as a
feature the overall FST sentence probability,
calculated based on the probability of each of
its tokens being correct:

∑
w

logP (w)

2. Levenshtein distance (LD): we first use LD
to identify 1) which tokens in the origi-
nal/uncorrected sentence have been corrected
by the FST candidate hypothesis, and 2)
which tokens in the original/uncorrected sen-
tence our detection model predicts as incor-
rect (i.e., the probability of being incorrect
is > 0.5). We then convert these annota-
tions to binary sequences – i.e., 1 if the token
is identified as incorrect, and 0 otherwise –
and use as a feature the LD between those bi-
nary representations. Specifically, we would
like to select the candidate FST sentence that
has the smallest LD from the binary sequence
created by the detection model, and therefore
use as a feature the following: 1.0

LD+1.0

3. False positives: using the binary sequences
described above, we count the number of

false positives (FP) on token-level error de-
tection by treating the error detection model
as the “gold standard”. Specifically, we count
how many times the candidate FST hypothe-
sis disagrees with the detection model on the
tokens identified as incorrect, and use as a
feature the following: 1.0

FP+1.0

We use a linear combination of the above three
features together with the original score given by
the FST system for each candidate hypothesis to
re-rank the FST system’s 8-best list in an unsuper-
vised way. The new 1-best correction hypothesis
c∗ is then the one that maximises:

c∗ = argmax
c

K∑

i=1

λi hi(c) (6)

where h represents the score assigned to candidate
hypothesis c according to feature i; λ is a weight-
ing parameter that controls the effect feature i has
on the final ranking; and K = 4 as we use a total
of four different features (three features based on
the detection model, and one which is the original
score output by the FST system). λs are tuned on
the development set and are set to λ = 2.0 for fea-
tures 1. and 2., λ = 3.0 for feature 3. and λ = 1.5
for the original FST score.

3 Experiments and results

3.1 Datasets and evaluation
In the restricted track, participating teams were
constrained to use only the provided learner
datasets:4

• Cambridge English W&I corpus
Cambridge English Write & Improve (W&I)5

(Yannakoudakis et al., 2018) is an online
web platform that assists non-native En-
glish learners with their writing. Learners
from around the world submit letters, sto-
ries, articles and essays for automated assess-
ment in response to various prompts. The
W&I corpus (Bryant et al., 2019) contains
3, 600 annotated submissions across 3 differ-
ent CEFR6 levels: A (beginner), B (interme-
diate), and C (advanced). The data has been

4We note that there are no restrictions on the use of NLP
tools (e.g., POS taggers, parsers, spellcheckers, etc.), nor on
the amount of unannotated data that can be used, so long as
such resources are publicly available.

5https://writeandimprove.com/
6https://www.cambridgeenglish.org/

exams-and-tests/cefr/
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split into training (3, 000 essays), develop-
ment (200 essays), and test (200 essays) par-
titions.

• LOCNESS

The LOCNESS7 corpus (Granger, 1998) con-
sists of essays written by native English stu-
dents. A subsection of 100 essays has been
manually annotated, and equally partitioned
into development and test sets.

• FCE

The First Certificate in English (FCE) cor-
pus (Yannakoudakis et al., 2011) is a sub-
set of the Cambridge Learner Corpus (CLC)
that consists of 1, 244 exam scripts written by
learners of English sitting the FCE exam.

• NUCLE

The National University of Singapore Cor-
pus of Learner English (NUCLE) (Dahlmeier
et al., 2013) contains 1, 400 essays written by
undergraduate students at the National Uni-
versity of Singapore who are non-native En-
glish speakers.

• Lang-8 Corpus of Learner English

Lang-88 is an online language learning web-
site which encourages users to correct each
other’s grammar. The Lang-8 Corpus of
Learner English (Mizumoto et al., 2011;
Tajiri et al., 2012) refers to an English sub-
section of this website (can be quite noisy).

Additional resources used in our system include:

• English Wikipedia corpus

The English Wikipedia corpus
(2, 405, 972, 890 tokens in 110, 698, 467
sentences) is used to pre-train word embed-
dings for the convolutional neural system.
We also use it as error-free native data for
artificial error generation (see Section 2.1).

• One Billion Word Benchmark dataset

A LM is trained on the One Billion Word
Benchmark dataset, which consists of close
to a billion words of English taken from news

7https://uclouvain.be/en/
research-institutes/ilc/cecl/locness.
html

8https://lang-8.com/

articles on the web, to evaluate the qual-
ity of artificially generated sentence pairs.
A filtered version (768, 646, 526 tokens in
30, 301, 028 sentences) is used as input to the
error generation model in Section 2.1.

In order to cover the full range of English lev-
els and abilities, the official development set con-
sists of 300 essays from W&I (A: 130, B:100, and
C:70) and 50 essays from LOCNESS (86, 973 to-
kens in 4, 384 sentences).

The ERRANT scorer (Bryant et al., 2017) is
used as the official scorer for the shared task. Sys-
tem performance is evaluated in terms of span-
level correction using F0.5, which emphasises pre-
cision twice as much as recall.

3.2 Training details

The convolutional NMT model is trained with a
hidden layer size of 1, 024 for both the encoder
and the decoder. Dropout at a rate of 0.2 is applied
to the embedding layers, convolutional layers and
decoder output. The model is optimized using
Nesterov’s Accelerated Gradient Descent (NAG)
with a simplified formulation for Nesterov’s mo-
mentum (Bengio et al., 2013). The initial learning
rate is set to 0.25, with a decaying factor of 0.1
and a momentum value of 0.99. We perform vali-
dation after every epoch, and select the best model
based on the performance on the development set.
During beam search, we keep a beam size of 12
and discard all other hypotheses.

The grammatical error detection system was op-
timized separately as a sequence labeling model.
Word embeddings were set to size 300 and ini-
tialized with pre-trained Glove embedding (Pen-
nington et al., 2014). The bi-LSTM has 300-
dimensional hidden layers for each direction.
Dropout was applied to word embeddings and
LSTM outputs with probability 0.5. The model
was optimized with Adam (Kingma and Ba,
2015), using a default learning rate 0.001. Train-
ing was stopped when performance on the devel-
opment set did not improved over 7 epochs.

3.3 Individual system performance

Individual system performance on the develop-
ment set is reported in Table 1, where ‘CNN’
refers to the convolutional neural system, and
‘Transformer’ refers to the Transformer-based
neural system. These results are based on the 1-
best output from each system, although the n-best
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System TP FP FN P R F0.5
CNN 1697 2371 5858 41.72 22.46 35.61
Transformer 2455 2162 5006 53.17 32.90 47.34

Table 1: Span-level correction results for individual
systems on the development set. TP: true positives, FP:
false positives, FN: false negatives, P: precision, R: re-
call.

lists are used later for system combination.

3.4 Pipelines

Since corrections made by the convolutional neu-
ral system and the Transformer-based system are
often complementary, and re-scoring has been
proven to be useful and effective for error correc-
tion, we investigated ways to combine corrections
generated by both systems. Table 2 shows results
for different combinations, where ‘CNN’ refers
to the convolutional neural system, ‘Transformer’
refers to the Transformer-based system, subscript
‘10-best’ indicates the use of the 10-best list of
correction candidates from the system, ‘+’ indi-
cates a combination of corrections from different
systems, and ‘>’ indicates a pipeline where the
output of one system is the input to the other.

4 Official evaluation results

Our submission to the shared task is the result of
our best hybrid system, described in Section 2 and
summarised in Figure 1. Similar to the official
development set, the test set comprises 350 texts
(85, 668 tokens in 4, 477 sentences) written by na-
tive and non-native English learners.

Systems were evaluated using the ERRANT
scorer, with span-based correction F0.5 as the pri-
mary measure. In the restricted track, where par-
ticipants were constrained to use only the provided
training sets, our submitted system ranked fourth9

out of 21 participating teams. The official results
of our submission in terms of span-level correc-
tion, span-level detection and token-level detec-
tion, including our system rankings, are reported
in Table 3. It is worth noting that our correction
system yielded particularly high performance on
error detection tasks, ranking third on span-level
detection and second on token-level detection. We
believe that much of the success in error detection
can be credited to the error detection auxiliary ob-
jectives introduced in the convolutional neural sys-

9The system is tied for third place as the difference in F0.5
is negligible.

tem (see Section 2.1) and the error detection fea-
tures used in our final re-ranking system (see Sec-
tion 2.4).

We also report span-level correction perfor-
mance in terms of different CEFR levels (A, B,
and C),10 as well as on the native texts only (N)
in Table 4. Our final error correction system per-
forms best on advanced learner data (C), achiev-
ing an F0.5 score of 73.28, followed by interme-
diate learner data (B), native data (N), and lastly
beginner learner data (A). The difference between
the highest and lowest F0.5 scores is 8.12 points.
We also note that the system seems to be han-
dling errors made by native students effectively
even though it has not been trained on any native
parallel data. Overall, we observe that our system
generalises well across native and non-native data,
as well as across different proficiency/CEFR lev-
els.

In order to better understand the performance
of our hybrid error correction system, we per-
form a detailed error analysis. This helps us un-
derstand the strengths and weaknesses of the sys-
tem, as well as identify areas for future work. Er-
ror type-specific performance is presented in Ta-
ble 5. We can see that our system achieves the
highest results on VERB:INFL (verb inflection) er-
rors with an F0.5 of 93.75. However, the result is
not truly representative as there are only 8 verb
inflection errors in the test data, and our system
successfully corrects 6 of them. The error type
that follows is ORTH (orthography), which com-
prises case and/or whitespace errors. A high pre-
cision score of 89.11 is observed, suggesting that
our system is particularly suitable for these kind of
errors. We also observe that our system is effec-
tive at correcting VERB:SVA (subject–verb agree-
ment) errors, achieving an F0.5 of 80.08. Results
for ADJ:FORM (adjective form; F0.5=78.95) and
CONTR (contraction; F0.5=77.92) are high; how-
ever, these error types only account for small frac-
tions of the test set (0.188% and 0.245% respec-
tively).

The worst performance is observed for type
CONJ (conjunction), with an F0.5 of 28.46.
Our system successfully corrected 7 conjunc-
tion errors, while missed 20 and made 17 un-
necessary changes. We note that our system
is less effective at correcting open-class errors

10https://www.cambridgeenglish.org/
exams-and-tests/cefr/
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Pipeline TP FP FN P R F0.5
CNN10-best + Transformer10-best > FST 2416 1798 5045 57.33 32.38 49.68
CNN10-best + Transformer10-best > FST8-best > Re-ranking 2502 1839 4959 57.64 33.53 50.39

Table 2: Span-level correction results for different system pipelines on the development set.

Evaluation TP FP FN P R F0.5 #
Span-level correction 2924 1224 2386 70.49 55.07 66.75 4
Span-level detection 3383 774 2181 81.38 60.80 76.22 3
Token-level detection 4098 470 2461 89.71 62.48 82.52 2

Table 3: Official results of our submitted system on the
test set.

Level TP FP FN P R F0.5
A 1272 573 1108 68.94 53.45 65.16
B 905 368 806 71.09 52.89 66.51
C 425 131 251 76.44 62.87 73.28
N 322 152 221 67.93 59.30 66.01

Table 4: Proficiency level-specific span-level correc-
tion performance of our submitted system on the test
set. A: CEFR beginner; B: CEFR intermediate; C:
CEFR advanced; N: native.

such as NOUN (noun; F0.5=34.75), OTHER
(other;11 F0.5=38.95); VERB (verb; F0.5=39.80);
ADJ (adjective; F0.5=41.94) and ADV (adverb;
F0.5=51.65) errors. As noted by Kochmar (2016),
such error types are quite challenging for error
detection and correction systems: content words
express meaning, and their semantic properties
should be taken into account. Unlike errors in
function words, content word errors are often less
systematic; e.g., [person → people, ambulate →
walk, big→ wide, speedily→ quickly].

5 Conclusion

In this paper, we have presented a hybrid approach
to error correction that combines a convolutional
and a Transformer-based neural system. We have
explored different combination techniques involv-
ing sequential pipelines, candidate generation and
re-ranking. Our best hybrid system submitted to
the restricted track of the BEA 2019 shared task
yields a span-level correction score of F 0.5 =
66.75, placing our system in the fourth place out
of 21 participating teams. High results were ob-
served for both span-level and token-level error
detection (ranking our system third and second re-
spectively), suggesting that our error correction
system can also effectively detect errors. De-

11Errors that do not fall into any other category (e.g., para-
phrasing).

Error type TP FP FN P R F0.5
ADJ 13 15 30 46.43 30.23 41.94
ADJ:FORM 6 1 4 85.71 60.00 78.95
ADV 25 19 41 56.82 37.88 51.65
CONJ 7 17 20 29.17 25.93 28.46
CONTR 12 4 1 75.00 92.31 77.92
DET 421 149 228 73.86 64.87 71.87
MORPH 91 20 60 81.98 60.26 76.47
NOUN 36 63 86 36.36 29.51 34.75
NOUN:INFL 7 1 13 87.50 35.00 67.31
NOUN:NUM 199 85 64 70.07 75.67 71.12
NOUN:POSS 29 10 25 74.36 53.70 69.05
ORTH 229 28 162 89.11 58.57 80.69
OTHER 160 181 530 46.92 23.19 38.95
PART 24 8 10 75.00 70.59 74.07
PREP 262 125 193 67.70 57.58 65.40
PRON 59 20 82 74.68 41.84 64.55
PUNCT 636 192 291 76.81 68.61 75.02
SPELL 204 47 108 81.27 65.38 77.51
VERB 57 64 175 47.11 24.57 39.80
VERB:FORM 157 52 45 75.12 77.72 75.63
VERB:INFL 6 0 2 100.00 75.00 93.75
VERB:SVA 127 32 30 79.87 80.89 80.08
VERB:TENSE 122 64 137 65.59 47.10 60.82
WO 35 27 49 56.45 41.67 52.71

Table 5: Error type-specific span-level correction per-
formance of our submitted system on the test set.

tailed analyses show that our system generalises
well across different language proficiency levels
(CEFR) and native / non-native domains. An
error-type analysis showed that our system is par-
ticularly good at correcting verb inflection, or-
thography and subject–verb agreement errors, but
less effective at correcting open-class word errors
which are less systematic.
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Abstract

In this paper, we explore two approaches of
generating error-focused phrases and examine
whether these phrases can lead to better per-
formance in grammatical error correction for
the restricted track of BEA 2019 Shared Task
on GEC. Our results show that phrases di-
rectly extracted from GEC corpora outperform
phrases from a statistical machine translation
phrase table by a large margin. Appending er-
ror+context phrases to the original GEC cor-
pora yields comparably higher precision. We
also explore the generation of artificial syntac-
tic error sentences using error+context phrases
for the unrestricted track. The additional train-
ing data greatly facilitates syntactic error cor-
rection (e.g., verb form) and contributes to bet-
ter overall performance.

1 Introduction

Grammatical Error Correction (GEC) is a natu-
ral language processing (NLP) task of automat-
ically detecting and correcting grammatical er-
rors in the text. With the ever-growing number
of second language learners of English and de-
mand to facilitate their learning with timely feed-
back, GEC has become increasingly popular and
attracted much attention in both academia and in-
dustry in recent years. In a typical GEC task,
for example, Travel and bored. in the sentence
Travel by bus is expensive and bored needs to be
first detected as incorrect and then be modified to
their correct forms (Travelling and boring). Var-
ious approaches have been proposed to solve this
problem including language modeling, rule-based
classifiers, machine-learning based classifiers, ma-
chine translation (MT), and etc. (Ng et al., 2013,
2014). In the past few years, both GEC-tuned
statistical machine translation (SMT) and neu-
ral machine translation (NMT) using sequence-to-

∗Equally contributed authors

sequence (seq2seq) learning have demonstrated to
be more effective in grammatical error correction
than other approaches (Chollampatt and Ng, 2017,
2018; Ge et al., 2018; Zhao et al., 2019).

Just as in other machine translation tasks, the
quantity anfd quality of data play an important role
in the MT approach to grammatical error correc-
tion. While several recent studies have focused on
generating artificial grammatical error sentences
(e.g. Rei et al., 2017; Kasewa et al., 2018), the cur-
rent study explores how error-focused phrases in-
fluence the performance of grammatical error cor-
rection. There are slightly over half million error-
contained sentences in the training data provided
by the BEA 2019 Shared Task, and the total num-
ber of errors is over 1.3 million, which means there
are on average 2 or 3 errors in each error sentence.
Our intuition is that multiple errors in one sentence
can be challenging for MT models to learn and
generalize, especially when the amount of training
data is limited. Thus, by augmenting the training
data with error-focused phrases, which we term
“cheat sheet”, MT models can directly “see” the
errors and their corrections. We predict that this
will lead to better overall performance and preci-
sion in particular. We examine two ways of cre-
ating a cheat sheet–one extracting errors and sur-
rounding context and the other one extracting from
a SMT phrase table (§2). Phrases extracted from
the first method are also used to generate artificial
syntactic error sentences for the unrestricted track
of the shared task (§3). We run both SMT using
Moses (Koehn et al., 2007) and multi-layer CNN
seq2seq NMT (Chollampatt and Ng, 2018) for our
training data in restricted (original training + cheat
sheet) and unrestricted (original training + cheat
sheet + syntactic pseudo corpus) settings (§4). In
general, our results show that a cheat sheet created
with errors and surrounding context does lead to
an improvement in precision. However, compared
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to current state-of-the-art results, the recall of our
models is considerably lower. These results and
future work are discussed in the last section.

2 Cheat Sheet

2.1 Error+Context Dictionary

Artificial Error Generation has been a long-studied
technique for creating more training data for
Grammatical Error Correction systems. In pre-
vious studies, there are two types of methods of
generating an artificial error, one making use of
the real learner data statistics and the other treats
all types of errors uniformly. Through experi-
ments, it has been shown that accuracy improves
when training and test data are more similar to
each other (Felice, 2016). This observation is one
reason that motivates us to use directly the ex-
tracted parallel phrase dictionary from the com-
bined m2 files as part of our training data since
the dictionary preserves the original error distri-
bution. In the dictionary, each pair of the phrases
contains one edit in the m2 file and contains one
context word on both sides of the edit (one con-
text word if the edit is at the start of the end of
the sentence). The instances in the dictionary have
shorter lengths compared to the parallel sentences.

2.2 SMT Phrase Translation Table

Generating a large table of phrase pairs is an inte-
gral part of statistical machine translation. These
phrase pairs and their corresponding scores (e.g.,
translation probability and lexical weighting) are
the knowledge source during translation/decoding.
These phrases are not linguistically well-formed
(e.g., noun phrases and prepositional phrases).
Rather, they are just sequences of words of arbi-
trary length. One major difference between the er-
ror+context approach and this one is that error is
always centered in the former approach, while an
error can appear in any position in a phrase in this
one.

The Moses SMT system (Koehn et al., 2007)
was used to generate a phrase translation table.
We used Giza++ (Och and Ney, 2003) for word
alignment, and a 3-gram language model trained
on 2 million sentences from the AFP news corpus1

with KenLM (Heafield, 2011). Our input and out-
put sentence length was limited to 40 to ensure the
quality of the phrase table, as longer sentences are

1From English Gigaword, https://catalog.ldc.
upenn.edu/LDC2003T05

harder to train using SMT because of their com-
plex syntax and long dependency structures (Bach,
2012). We then extracted phrase pairs with five or
more words and the direct translation probability
over 95%. Phrase pairs that were same on the er-
ror and correct side were also discarded.

3 Pseudo Corpus with Syntactic Errors

We can define syntactic errors as errors that are
grammatically incorrect but in most cases, the
meaning is still conveyed as compared to seman-
tic errors where the learner fails to convey the de-
sired meaning across to the reader but the sentence
structure is correct. Observing syntactic errors is
crucial in improving grammatical error correction
since they have a direct correlation to grammati-
cal errors since syntactic errors produce grammat-
ically incorrect sentences.

Learners usually make these errors mostly due
to overgeneralizations and simplifications (Hey-
dari and Bagheri, 2012). The learner will overgen-
eralize and apply the grammatical rule to a place
where it does not apply. For simplification, the
learner will omit the rule in the context when the
rule is supposed to apply. Most of this is due to
the learner not having a frame of reference for that
rule in their native language. For example, Chi-
nese does not use article or determiners so they
tend to overgeneralize or simplify and some times
insert or omit an article or determiner (Robertson,
2000). Table 1 shows examples of a syntactic error
and a semantic error. In the syntactic error exam-
ple, the use of the form of the verb is incorrect.
Working should be changed to to work. In the se-
mantic example, Lately should be changed to Re-
cently.

For the unrestricted track, we created a pseudo
corpus by using the syntactic errors from the dic-
tionary described in the previous section. We
used 6 types of syntactic errors based on the
ERRANT annotation (Bryant et al., 2017), in-
cluding ADJ:FORM (is good for our health
than – is better for our health than), MORPH
(the everyday invents – the everyday inventions),
NOUN:INFL (TVs companies – TV companies),
VERB:FORM (make my dream comes true – make
my dream come true), VERB:INFL (he thinked –
he thought) and VERB:SVA (there are a – there is
a). The total number of syntactic error pairs we ex-
tracted from the dictionary is around 100K entries.
The clean corpus we use has around 2 million sen-
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Syntactic Error: I want working in our cafe.
Semantic Error: Lately I have seen a very interesting TV show.

Table 1: Examples of a syntactic error and a semantic error

tences from the AFP news corpus. Each error in
the syntactic error dictionary can be used at most
once. We keep the numbers of different types of
errors the same and thirty percent of the sentences
in the pseudo learner corpus contains exactly one
error. For each sentence, the search of the phrase
starts from the longest length. Once we find an
n-gram that appeared in the correct side of the dic-
tionary, we replace it with the incorrect counter-
part. The cheat sheet and the pseudo syntactic er-
ror corpus improved our results by emphasizing
the learners’ errors and their contexts.

4 Experiments and Results

4.1 Experiment settings

We used all the four datasets — FCE, NUCLE,
W&I+LOCNESS and Lang-8 — provided in the
BEA 2019 Shared Task2 as our baseline data
(1,171,078 sentence pairs). For the restricted
track, we appended the baseline data with our
cheat sheet (in total over 2M sentence / phrase
pairs), and for the unrestricted track, the additional
syntactic pseudo corpus was supplemented on top
of the training data in the restricted track (over 4M
sentences in total). The official W&I+LOCNESS
development set and test set were used as devel-
opment and evaluation3. We did not use any spell
check to pre- or post-process our data, which could
affect our results negatively (Chollampatt and Ng,
2017).

For the SMT approach to GEC, we used the
same Moses (Koehn et al., 2007) setup as in
§2.2, except for the sentence length, which we
changed to the default value (1 – 80). The standard
Minimum Error Rate Training (MERT) algorithm
(Och, 2003) was used for tuning. For the NMT
approach, we used a 7-layer convolutional seq2seq
model4 as described in Chollampatt and Ng (2018)
with similar hyper-parameters, such as the top 30K
BPE tokens as the input and output vocabular-
ies, 1,024 (hidden size) × 3 (convolution window

2https://www.cl.cam.ac.uk/research/nl/
bea2019st/

3https://competitions.codalab.org/
competitions/21922

4https://github.com/pytorch/fairseq

Prec. Recall F0.5

Baseline SMT 52.68 16.42 36.54

Restricted
SMT 51.48 17.85 37.39
NMT 63.31 15.43 39.06

Unrestricted
SMT 56.03 15.85 37.18
NMT 65.14 17.63 42.33

Table 2: Baseline result and results submitted to the
BEA 2019 Shared Task

size) in the encoders and decoders, Nesterov Ac-
celerated Gradient as the optimizer with a momen-
tum of 0.99, dropout rate of 0.2 and an adaptive
learning rate (initially 0.25, minimum 10−4). Un-
like Chollampatt and Ng (2018), we set the word
embedding dimensions in both encoders and de-
coders to 300 rather than 500, and we trained the
word embeddings separately using the error and
correct side training data instead of external cor-
pora. During inference, we used a beam size of
10.

4.2 Results

Table 2 shows the baseline result and the results
we submitted to the BEA 2019 Shared Task. The
submitted results were all from the versions with
an error+context cheat sheet because our phrase
table cheat sheet yielded much worse results.
Overall, our models with an error+context cheat
sheet achieved higher precision and F0.5 in both
restricted and unrestricted tracks than the baseline
model. Within our own models, GEC-tuned NMT,
as expected, consistently outperformed the generic
SMT models. In the unrestricted setting, for ex-
ample, the gap in F0.5 was over 5%. When com-
paring the two NMT models across the two tracks,
our results clearly show that the additional pseudo
corpus contributed to better performance in preci-
sion, recall and F0.5.

5 Conclusion and Future Work

In this study, we explored two error-focused ap-
proaches to grammatical error correction. One
was to extract parallel error-correct phrases (error
+ surrounding context) from the GEC corpora and
append them to our training data direct. Extracting

242



error phrases is not a new method per se, as pre-
vious studies have used these phrases to generate
artificial errors (e.g., Felice, 2016). However, we
purposefully included these phrases in our training
in order for our models to pay attention to these er-
rors and to focus on one error at a time. As a result,
the precision of our GEC models gained much im-
provement.

The second approach was to incorporate
phrases from SMT-generated phrase translation ta-
ble. In the current study, we extracted parallel
phrases with five or more words and the direct
translation probability (from error to correct) over
95%. Contrary to our prediction, appending these
phrases to our training data dramatically decreased
the performance. A closer examination of the
phrases shows that there are many partial redun-
dancies, which may have caused our models to
miss focus. Thus, we plan to investigate various
techniques to prune the phrase table (e.g. Johnson
et al., 2007; Zens et al., 2012) so that errors are
truly highlighted as in the error+context approach.

In the unrestricted track, we injected syntactic
errors from our error+context dictionary to a clean
corpus and appended the artificial error corpus to
the training data for the restricted track. When
training with SMT, there was no performance gain
overall and at the syntactic error type level. For
example, the precision of the VERB:FORM error
type was only 48.98% and the F0.5 was 35.40%.
However, when the same data was trained with
NMT, the benefit of additional data was evident.
The precision and F0.5 of VERB:FORM almost
doubled in this setting, compared to that in SMT.
These results, again, demonstrate the limitations
of the generic SMT approach to grammatical error
correction (e.g. Yuan and Felice, 2013).

The recall of our models stayed low across all
the settings, which indicates our models were too
conservative. The conservativeness can be mainly
attributed to the large proportion of unchanged
sentences in the training data. Indeed, our pseudo
corpus generation process was constrained as only
30% of the two million sentences were applied er-
ror injection. We will further explore the relation-
ship between recall and proportion of unchanged
sentences in GEC.

Finally, our current study only focused on syn-
tactic errors, which should be easier for MT mod-
els to detect and correct compared to semantic er-
rors, because semantic errors require knowledge

about meaning in addition to structure. Given the
complexity of language, the individual meaning of
a word in a sentence changes according to the con-
text. A simple example, She kicked the bucket.
and He filled the bucket with soda. both contain
the word bucket, but the meanings are drastically
different. Traditional word embeddings such as
word2vec (Mikolov et al., 2013), GloVe (Penning-
ton et al., 2014) and fastText (Bojanowski et al.,
2017) only have one representation per word. As
the meaning of each word changes based on the
surrounding context, in which previous methods
fail. Therefore, we require a model that is capa-
ble of understanding the variations in meaning of
the given word based on its surrounding text in the
sentence. ELMo is another method for text em-
bedding (Peters et al., 2018) which uses a deep,
bi-directional LSTM model that takes contextual
information into account and achieves state-of-
the-art results in many NLP tasks. ELMo anal-
yses words within the context that they are used,
hence the way ELMo is used is quite different to
word2vec or fastText. As opposed to having a dic-
tionary of words and their corresponding vectors,
ELMo instead creates vectors on-the-fly by pass-
ing text through the deep learning model. The
model is character based and hence forms repre-
sentations of out-of-vocabulary words. We will
investigate whether incorporating ELMo in our
NMT model can improve the performance of cor-
recting semantic errors in the near future.
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Abstract

During last years we have seen tremen-
dous progress in the development of NLP-
related solutions and area in general. It
happened primarily due to emergence of
pre-trained models based on the Trans-
former (Vaswani et al., 2017) architecture
such as GPT (Radford et al., 2018) and BERT
(Devlin et al., 2019). Fine-tuned models con-
taining these representations can achieve state-
of-the-art results in many NLP-related tasks.
Given this, the use of pre-trained models in
the Grammatical Error Correction (GEC) task
seems reasonable.

In this paper, we describe our approach to
GEC using the BERT model for creation
of encoded representation and some of our
enhancements, namely, “Heads” are fully-
connected networks which are used for find-
ing the errors and later receive recommenda-
tion from the networks on dealing with a high-
lighted part of the sentence only. Among the
main advantages of our solution is increasing
the system productivity and lowering the time
of processing while keeping the high accuracy
of GEC results.

1 Introduction

Modern state-of-the-art GEC models use the
sequence-to-sequence (seq2seq) approach and
Transformer Encoder-Decoder architecture
(Ge et al., 2018). The core idea of seq2seq
approach for GEC is the following: tokens
from the source sequence are sent to the model
input, and a similar sequence without errors is
expected as an output. Transformer Decoder is
auto-regressive, meaning that it predicts tokens
one by one. Though this approach can represent
the following challenges: (i) the sequence is re-
constructed entirely, regardless of errors number;
(ii) sentences are processed at low speed during
inference; (iii) errors tend to accumulate since a

failure in prediction of a single token can lead to a
rupture of the entire chain in the network.

In this paper, we suggest an alternative ap-
proach for GEC with “Multi-headed” architec-
ture that uses BERT as Encoder and specialized
“Heads” networks enabling additional text pro-
cessing based on particular error types. In ad-
dition, particular Heads let us discover the error
placement and come out with error correction.
When we can create an effective dictionary for
different types of errors suggested in ERRor AN-
notation Toolkit (Bryant et al., 2017), such Heads
as Punctuation, Articles and Case will be used.
Otherwise, if we cant create an effective dictio-
nary, we are going to use a special “highlight and
decode” technique in a bundle with Transformer
Decoder to suggest a correction.

Also, we used Boosting Approach (Ge et al.,
2018) as an auxiliary step to improve the GEC
within the framework of this competition.

2 Data and Text Pre-processing

The data sets which we used for the network train-
ing were in the m2 format (Dahlmeier and Ng,
2012). This data obviously has its issues; not all
the data sets can be considered the perfect ones
and may require pre-processing before they can be
used for neural networks training. Thus, before
using given data sets we performed a number of
operations to filter out irrelevant data and improve
its quality by simplifying its form. The main prob-
lem of such data format is that each edit made is
recorded separately, and it is not possible to dis-
play the related changes.

The data and text pre-processing phases are de-
scribed below.

Phase 1. Adjusting form of the information in
data sets (by combining related changes). Below
is an example of a sentence in m2 format which
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displays our approach to grammatical errors cor-
rection:

S I think that you have to bring with you winter clothes because 
here there is a really cold weather !
          A 7 11|||R:OTHER|||winter|||REQUIRED|||-NONE-|||0
          A 11 11|||M:OTHER|||clothes with you|||REQUIRED|||-NONE-|||0
          A 13 14|||R:OTHER|||it|||REQUIRED|||-NONE-|||0
          A 15 16|||U:DET||||||REQUIRED|||-NONE-|||0
          A 18 19|||U:NOUN||||||REQUIRED|||-NONE-|||0
Result - I think that you have to bring winter clothes with you 
because here it is really cold !

S I think that you have to bring with you winter clothes because 

          A 11 11|||M:OTHER|||clothes with you|||REQUIRED|||-NONE-|||0

Result - I think that you have to bring winter clothes with you 

          A 7 11|||R:OTHER|||winter|||REQUIRED|||-NONE-|||0

As you can see, the related changes in the sen-
tence are divided into a number of edit operations
U (Unnecessary), M (Missing) and in some cases
R (Replacement), M, and even R, R. To combine
related changes, we find R ∩ I where R removed
tokens, I inserted tokens from all edits. In ad-
dition, we have combined edits with a non-zero
intersection into one edit. As a result, we get an
example with only one edit which is MOVE.

S I think that you have to bring with you winter clothes because here 
it is really cold !
A 7 11|||MOVE|||winter clothes with you|||REQUIRED|||-NONE-|||0

Phase 2. Using Textual Semantic Similarity
(Yang and Tar, 2018) analysis to filter noisy data.
For example, to filter noise in the data like this:

S It was very spicy .
A 0 1|||R:OTHER|||Delete|||REQUIRED|||-NONE-|||0
A 1 4|||R:OTHER|||this sentence|||REQUIRED|||-NONE-|||0

Textual Semantic Similarity analysis was used
to define the similarity between a source sequence
and a sequence after applying corrections and dis-
carded the sentences with the similarity below
0.87.

The original sentence containing a mistake is a
vector as well as the meaning of a corrected sen-
tence. Textual Semantic Similarity is calculated
using the scalar multiplication of vectors (vector
size equals 512), each of them is output of the
Universal Sentence Encoder1. As a result we have
one number ranging from 0 to 1 which is the ra-
tio of semantic similarity of the two sentences.
The higher the scalar multiplication number is, the
higher Textual Semantic Similarity of the two sen-
tences.

1https://tfhub.dev/google/universal-sentence-encoder/2

After we have processed 600K sentences from
the data sets used for this competition2, we re-
alised that most part of sentences before the num-
ber of 0.87 are not acceptable for usage and change
the meaning or not valid at all.

Thus, our assumption is that the sentences that
equal 0.87 and above are usable, and we will train
our model on it. All the other sentences are filtered
as noise as in the example in m2 format above.

Phase 3. Flattening the data by extending the
number of sentences for training. Our next step
is to enlarge the amount of data for training and
convert the sentence with N edits to N sentences
with one edit. Conventionally, we called it “flatten
m2 blocks”.

Example below represents a sentence in
m2 format with 2 edits: we replace the
verb (R:VERB:SVA) and add missing adjective
(M:ADJ). As a result we have two sentences with
one edit, one for a replaced verb (R:VERB:SVA)
and the second for an added missing adjective
(M:ADJ).

Example of the original sentence in m2 format:

S This are a sentence .
A 1 2|||R:VERB:SVA|||is|||-REQUIRED-|||NONE|||0
A 3 3|||M:ADJ|||good|||-REQUIRED-|||NONE|||0
Result - This is a good sentence.

Result sentence after the first edit:

S This are a sentence .
A 1 2|||R:VERB:SVA|||is|||-REQUIRED-|||NONE|||0
Result - This is a sentence.

Result sentence after the second edit:

S This is a sentence .
A 3 3|||M:ADJ|||good|||-REQUIRED-|||NONE|||0
Result - This is a good sentence.

Our assumption is that one epoch (or the pro-
cess of training of a neural network) on the “flat-
ten” of data should have a better result than a few
epochs on the original data and reduce the effect
of network overfitting.

3 The Model

The main architectural advantage of our approach
is using trained “Heads”. Heads are the fully-
connected networks that receive the BERT output

2https://www.cl.cam.ac.uk/research/nl/bea2019st/
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result embedding as input and have an output of
the Head dictionary size. Each Head is classified
by error type given in Errant Error Type Token
Tier (Bryant et al., 2017).

We distinguish the following Heads types de-
pending on their usage and based on their context:

• By the type of operation: Replace, Insert,
Range Start and Range End;

• By the type of error: Punctuation, Articles,
Case, Noun Number, Spelling, Verbs;

• By the type of correction method: ByDic-
tionary (Punctuation, Articles, Case), ByDe-
coder (Noun Number, Spelling, Verbs). Out-
put of ByDictionary Heads will be a sug-
gestion from the dictionary. Output of By-
Decoder Heads which only detect errors po-
sitions will be represented as a “Head type
mask” (e.g. Spelling Head mask). For exam-
ple, Punctuation offers suggestions from its
dictionary while Verbs points the place of the
error to generate a suggestion by Decoder.

Figure 1 below outlines the number of the pa-
rameters of each Head. The dark grey color rep-
resents the output which is processed by Decoder,
and light grey - the results provided from a Head
dictionary.

Error Types

Punctuation Articles Case
Noun
Number Spelling Verbs

Operations

Replace BES * PDS

2 * BES * (PDS - 1)

BES * ADS BES * CDS

- - - -

BES * HDS

BES * RDS

BES * RDS

2 * BES * (ADS - 1)Insert

Range Start

Range End

Figure 1: Number of parameters for each Head type.

The following Head dictionary sizes are used:
BERT embedding size (BES) 768; Punctuation
dictionary size (PDS) 36; Articles dictionary size
(ADS) 5; Case dictionary size (CDS) 3; High-
lighting dictionary size (HDS) 2; Range dictio-
nary size (RDS) 2. RDS is applicable for Range
Start and Range End Hands. The size of the dictio-
nary for both equals 2; one for skip and the other
for start position or end position accordingly. Ad-
ditionally, for the Insert operation, Delete is elim-
inated action, thus, we use “-1”.

Since a BERT output is the encoded representa-
tion of each token from the input sequence, Heads
analyze each token from the BERT output, detect

an error in it and depending on its type, either im-
mediately provide a correction or highlight this er-
ror position for further correction by the Decoder
as shown in Figure 2 below.

Original sentence

BERT output

Replace HEADS Replace HEADS 
ByDictionary ByDecoder

Punctuation

Range Start Range End

Articles Case
Insert HEADS 

Range HEADS
Punctuation Articles

SpellingVerbsNoun Number

BERT

HEADS

Suggested correction

DECODER

Suggested correction Hightlighted BERT output 

Figure 2: The Multi-headed model architecture.

Also, Heads networks are distinguished by the
type of the operation performed such as Replace
and Insert. Replace Heads are the Heads perform-
ing the Replace operation, and it can either provide
a suggestion from its dictionary (ByDictionary),
or provide a Head type mask for further processing
by the Decoder (ByDecoder) as shown in Figure 3
below.

BERT output

Punctuation HEAD

skip del. . . .,

Dictionary

Figure 3: Example of the Replace operation.

During the Insert operation, an Insert Head
takes two BERT output embeddings which have
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the dimension of 768 located nearby, concatenates
to one embedding with dimension 2*768, pro-
cesses it and outputs the result with the dimen-
sion which equals the dictionary size of a partic-
ular Head type.

Thus, we have probability distribution of a par-
ticular Head. Position with highest probability in a
dictionary is what should be inserted. If the prob-
ability equals 0, nothing should be done. An ex-
ample of the Insert operation is shown in Figure 4
below.

BERT output

Punctuation HEAD dictionary
skip . . . . ,

Punctuation HEAD

skip del. . . .,

Dictionary

Figure 4: Example of the Insert operation.

Range Heads, Range Start, and Range End are
used to define the range (start and end position)
of an error for the Decoder. Each Range Head
uses an approach similar to the Replace ByDic-
tionary Head, thus, the length of its dictionary
equals 2. As an output from two Heads, we re-
ceive Range Start mask and Range End mask. Us-
ing these masks we receive a resulting Range mask
that will be used in the highlight and decode tech-
nique as shown in Figure 5 below. Thus, Range
Head enables detection of those parts of the sen-
tence which need to be either replaced or para-
phrased.

0 0 0 0 0 0 01

0 0 0 0 0 0 01 1 1

0 0 00 0 0 0 01

Range Start mask

Range End mask

Range mask

Figure 5: Example of the Range Start and Range End
operation.

4 Highlight and Decode Technique

Since there are different types of errors, and it is
not possible to compile effective dictionaries as
the number of correction options is too large, we
used classic Transformer Decoder (Vaswani et al.,
2017) and the entire BERT vocabulary. We devel-
oped a special “highlight and decode” technique
to generate a suggestion for a particular place, de-
termined by one of the Heads, and, thus, managed
to avoid the reconstruction of the entire sentence
(see Figure 6 below).

0 0 0 0 0 01 1
“Head type” mask

Highlighting tensor based on the “Head type” mask

+
=

BERT output

Highlighted BERT output

Special trainable highlighting vector 
which equals BERT hidden size [768].
Zero vector which equals BERT 
hidden size [768].

Figure 6: Obtaining of the highlighted BERT output.

The highlighted BERT output, a Decoder in-
put, in Figure 6 above is a summary of the BERT
output and the highlighting tensor, consisting of
special embeddings (based on Head type mask)
in place of errors detected by one of the ByDe-
coder Heads (such as Spelling), and zero vectors in
other places. Such approach allows the Decoder to
learn how to predict a suggestion only for the high-
lighted place in the sentence. The various types
of Heads and “highlight and decode” technique let
the network find and offer suggestions for any er-
ror types.

5 Training Process and Setup

We trained our neural networks using Google Co-
lab TPU resources. A total of 100,000 iterations
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were performed on “flatten” data from the Cam-
bridge English Write & Improve (W&I) corpus
and the LOCNESS corpus dataset3. The learn-
ing rate 5e-5 which is recommended in the BERT
approach (Devlin et al., 2019) was implemented.
However, for the layers of the BERT itself, a layer-
by-layer multiplier was used for the learning rate
which decreases from the last layers to the first.
We calculated the learning rate of a specific layer
using the logarithmic formula:

,

where BL is number of the BERT layers; LR is
model learning rate, e.g.: 5e-5.

It helped us to manage the accuracy of the re-
sults adjusting their weights, thus, helping to sort
out the errors and improving the results quality by
15% according to our empirical observations.

Also, for each Head of the Replace operation,
a special “protection mask” was used to reveal an
error only for tokens that can be changed by the
given Head. The approach which is shown in Fig-
ure 7 below the was used to create a protection
mask (for details, see the Spacy library 4).

This are a .sentence

10 0 0 0
Punctuation protection mask

10 0 1 0 0
Articles protection mask

10 1 0 0 0
Verbs protection mask

Original Sentence

Figure 7: The protection masks examples for three
Head types, namely Punctuation, Articles, and Verbs.

Unlike the Replace operation, the protection
masks are not used for the Insert operation as it is
equal to a protection mask with all values equaling

3https://www.cl.cam.ac.uk/research/nl/bea2019st
4https://spacy.io/

1. Thus, Insert can be done to any place between
the tokens.

6 Post Processing and Model Output

At the inference stage, iterative sentences correc-
tions were applied. Each sentence passes through
the model, and we get the probability distribution
for each Head as an output. During each iteration,
the Head with the highest “confidence rate” is cho-
sen from all the Heads as the code below shows:

max class = argmax(prob) confidence rate =
prob[max class] if max class != 0 else 0. # Index
0 means skip in all dictionaries.

Similar to the training stage, the probabilities
for the Replace operation are multiplied by the
protection mask. The edit proposed by the Head
with maximal confidence rate is applied to the sen-
tence, preliminary saving it to the history of previ-
ous changes. The process is looped until the fol-
lowing conditions are met: (i) probabilities of ed-
its in all Heads reach zero (0), e.g. all errors have
been fixed; (ii) length of the history is more than
ten (10) meaning the network tried to improve the
original sentence more than 10 times.

Also during each stage, we calculate Textual
Semantic Similarity between the current version
and the original sentence. This is also a part of
our architecture concept. If the similarity is below
0.87, the loop stops, and we use the most recent
sentence from the iterations history. Thus, we in-
tended to perform the most effective correction for
all grammatical errors in a sentence.

7 Concept Analysis and Roadmap

We have achieved the following results5 within the
framework of BEA 2019 competition. Let us now
summarize the main challenges we faced when de-
veloping the suggested concept:

• Each Head type has a different learning speed
due to different sizes and quality of dictio-
naries. When some Heads have not been
trained yet, others start overfitting. For ex-
ample, Spelling, Articles, and Punctuation
Heads were trained faster than the Range
Head and the Decoder itself. Thus, the re-
sults have worsened.

5https://competitions.codalab.org/
my/competition/submission/563950/
detailed_results/
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• All Heads work independently. This is an
issue for sentences where errors depend on
each other, for example, in a sentence where
the tense of one verb relies on the tense of
another one. In the approach proposed in this
article, each Head gives the probability of an
error without taking into account the prob-
abilities for other Heads in other networks.
The same is true for the suggestion predic-
tion. Thus, all results should be revised, and
assessment should be made.

• The Decoder learned to predict the “End Of
Sequence” (EOS) token as the first one to
remove the token. Since EOS is the most
frequently encountered token, position of the
maximum probability on the Decoder predic-
tion was often EOS. As a result, our solution
has mistakenly eliminated tokens from the
sentence, thus, lowering the quality of neural
network and final output result .

To address the above-mentioned issues, we plan
the following changes for our proposal:

• Choosing a unique learning rate for each
Head separately. A different approach to con-
sider in our case is to freeze the change in
Head weights after it reaches the maximum
accuracy for the validation dataset.

• Redesigning the architecture so that the
Heads can share information among them-
selves.

• Using a separate token for deletion, as an op-
tion to use one of [unused1-100] tokens from
the BERT vocabulary. According to our re-
search and test results, it can improve the ac-
curacy in two times.
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Abstract

Considerable effort has been made to address
the data sparsity problem in neural grammati-
cal error correction. In this work, we propose a
simple and surprisingly effective unsupervised
synthetic error generation method based on
confusion sets extracted from a spellchecker
to increase the amount of training data. Syn-
thetic data is used to pre-train a Transformer
sequence-to-sequence model, which not only
improves over a strong baseline trained on au-
thentic error-annotated data, but also enables
the development of a practical GEC system in
a scenario where little genuine error-annotated
data is available. The developed systems
placed first in the BEA19 shared task, achiev-
ing 69.47 and 64.24 F0.5 in the restricted and
low-resource tracks respectively, both on the
W&I+LOCNESS test set. On the popular
CoNLL 2014 test set, we report state-of-the-
art results of 64.16 M2 for the submitted sys-
tem, and 61.30 M2 for the constrained system
trained on the NUCLE and Lang-8 data.

1 Introduction

For the past five years, machine translation meth-
ods have been the most successful approach to
automated Grammatical Error Correction (GEC).
Work started with statistical phrase-based machine
translation (SMT) methods (Junczys-Dowmunt and
Grundkiewicz, 2016; Chollampatt and Ng, 2017)
while sequence-to-sequence methods adopted from
neural machine translation (NMT) lagged in quality
until recently (Chollampatt and Ng, 2018; Junczys-
Dowmunt et al., 2018b). These two papers es-
tablished a number of techniques for neural GEC,
such as transfer learning from monolingual data,
strong regularization, model ensembling, and using
a large-scale language model.

Subsequent work highlighted two challenges in
neural GEC, data sparsity and multi-pass decoding:

Data sparsity: parallel training data has been en-
larged by generating additional parallel sen-
tences during training (Ge et al., 2018a,b), syn-
thesizing noisy sentences (Xie et al., 2018),
or pre-training a neural network on a large-
scale but out-of-domain parallel corpus from
Wikipedia (Lichtarge et al., 2018).

Multi-pass decoding: the correction process has
been improved by incrementally correcting a
sentence multiple times through multi-round
inference using a model of one type (Ge et al.,
2018a; Lichtarge et al., 2018), involving right-
to-left models (Ge et al., 2018b), or by pipelin-
ing SMT and NMT-based systems (Grund-
kiewicz and Junczys-Dowmunt, 2018).

Motivated by the problems identified in these pa-
pers but concerned by the complexity of their meth-
ods, we sought simpler and more effective ap-
proaches to both challenges. For data sparsity, we
propose an unsupervised synthetic parallel data
generation method exploiting confusion sets from
a spellchecker to augment training data used for
pre-training sequence-to-sequence models. For
multi-pass decoding, we use right-to-left models
in rescoring, similar to competitive neural machine
translation systems.

In the Building Educational Application (BEA)
2019 Shared Task on Grammatical Error Correc-
tion1 (Bryant et al., 2019), our GEC systems ranked
first in the restricted and low-resource tasks.2 This
confirms the effectiveness of the proposed meth-
ods in scenarios with and without readily-available
large amounts of error-annotated data.

The rest of the paper is organized as follows:

1https://www.cl.cam.ac.uk/research/nl/
bea2019st/

2Incidentally, our restricted system also outperformed all
submissions to the unrestricted task to which we did not sub-
mit.
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Section 2 briefly describes the BEA19 shared task
and Section 3 presents related work. In Section 4
we demonstrate components of our neural GEC sys-
tems: transformer models, unsupervised synthetic
data generation, ensembling and rescoring meth-
ods. Section 5 provides details of the experiments.
The results are discussed in Sections 6 and 7, and
we summarize in Section 8.

2 BEA19 shared task

The object of the BEA 2019 shared task was to
automatically correct errors in written text, includ-
ing grammatical, lexical, and orthographic errors.
The shared task introduced two new annotated
datasets for development and evaluation: Cam-
bridge English Write & Improve (W&I) and the
LOCNESS corpora (Bryant et al., 2019; Granger,
1998). These represent a more diverse cross-section
of English language levels and domains than previ-
ous datasets.

There were three tracks that varied in the amount
of admissible annotated learner data for system
development. In the restricted track, participants
were provided with four learner corpora contain-
ing 1.2 million sentences in total: the public
FCE corpus (Yannakoudakis et al., 2011), NU-
CLE (Dahlmeier et al., 2013), Lang-8 Corpus of
Learner English (Mizumoto et al., 2012), and the
mentioned W&I+LOCNESS datasets. No restric-
tion was placed on publicly available unannotated
data or NLP tools such as spellcheckers. The
low-resource track was limited to the use of the
W&I+LOCNESS development set. The organizers
further clarified that automatically extracted paral-
lel data, e.g. from Wikipedia, could be used only to
build low-resource and unrestricted systems; it was
inadmissible in the restricted track. We participated
in the restricted and low-resource tracks; the third
track allowed unrestricted data.

The performance of participating systems was
evaluated using the ERRANT scorer (Bryant et al.,
2017) which reports a F0.5 over span-based correc-
tions.

3 Related work

Many recent advances in neural GEC aim at over-
coming the mentioned data sparsity problem. Ge
et al. (2018a) proposed fluency-boost learning that
generates additional training examples during train-
ing from an independent backward model or the
forward model being trained. Xie et al. (2018) sup-

plied their model with noisy examples synthesized
from clean sentences. Junczys-Dowmunt et al.
(2018b) utilized a large amount of monolingual
data by pre-training decoder parameters with a lan-
guage model, and Lichtarge et al. (2018, 2019), on
the other hand, used a large-scale out-of-domain
parallel corpus extracted from Wikipedia revisions
to pre-train their models. We also pre-train a neural
sequence-to-sequence model, but we do so solely
on synthetic data.

Although our unsupervised method for synthe-
sising parallel data by means of an (inverted)
spellchecker is novel, the idea of generating ar-
tificial errors has been explored in the literature
before, as summarized by Felice (2016). Previ-
ously proposed methods usually require a error-
annotated corpus as a seed to generate artificial
errors reflecting linguistic properties and error dis-
tributions observed in natural-error corpora (Foster
and Andersen, 2009; Felice and Yuan, 2014). Arti-
ficial error generation methods spanned conditional
probabilistic models for specific error types only
(Rozovskaya and Roth, 2010; Rozovskaya et al.,
2014; Felice and Yuan, 2014), statistical or neural
MT systems trained on reversed source and target
sides (Rei et al., 2017; Kasewa et al., 2018) or neu-
ral sequence transduction models (Xie et al., 2018).
None of these methods is unsupervised.

Other recent work focuses on improving model
inference. Ge et al. (2018a) proposed correcting
a sentence more than once through multi-round
model inference. Lichtarge et al. (2018) introduced
iterative decoding to incrementally correct a sen-
tence with a high-precision system. The multi-
round correction approach has been further ex-
tended (Ge et al., 2018b) by interchanging decod-
ing of a standard left-to-right model with a right-to-
left model. The authors claim that the two models
display unique advantages for specific error types
as they decode with different contexts. Inspired by
this finding, we adapt a common technique from
NMT (Sennrich et al., 2016, 2017) that reranks with
a right-to-left model, but without multiple rounds.
We contend that multiple rounds are only necessary
if the system has low recall.

4 System overview

4.1 Transformer models

Our neural GEC systems are based on Transformer
models (Vaswani et al., 2017) that have been re-
cently adapted to grammatical error correction with
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Word Confusion set

has Haas HS Hans hats gas had Ha ha
As as

is IRS ISO OS US us Si its
island islands Iceland slant
issued issues issue used issuers eased

sued assumed assured missed
student students strident stunt
walking talking whaling
large larger lag lake barge Lodge lodge
largest latest longest

Table 1: Examples of confusion sets generated from a
spellchecker.

very good results (Junczys-Dowmunt et al., 2018b;
Lichtarge et al., 2018).

We apply GEC-specific adaptations proposed
by Junczys-Dowmunt et al. (2018b) with some
modifications. Following the paper, we use ex-
tensive regularization to avoid overfitting to the
limited labelled data, including dropping out en-
tire source embeddings (Sennrich et al., 2016), and
additional dropout on attention and feed-forward
network transformer layers. For the sake of sim-
plicity, we replace averaging the best four model
checkpoints with exponential smoothing (Gardner,
1985). We increase the size of mini-batches as this
improved the performance in early experiments.
Parameters of the full model are pre-trained on syn-
thetic parallel data, instead of pre-training only the
decoder parameters (Ramachandran et al., 2017).
We also experiment with larger Transformer mod-
els as described in Section 5.3.

4.2 Synthetic data generation
Synthetic parallel training examples for GEC could
be generated by substituting random words in an
error-free sentence and using the pair of artificial
and original sentences as a new training example.
In a naïve approach, words can be replaced ran-
domly within a vocabulary, but this may result in
unrealistic error patterns that do not resemble those
observed in the genuine data. More accurate errors
can be generated by replacing words only within
confusion sets if such a confusion set consists of
words that are commonly confused with each other
(Rozovskaya and Roth, 2010; Rozovskaya et al.,
2014; Bryant and Briscoe, 2018).

Instead of applying a supervised probabilistic
method to learn error distributions (Felice and

Yuan, 2014; Rei et al., 2017; Xie et al., 2018;
Kasewa et al., 2018; Bryant and Briscoe, 2018),
we propose generating confusion sets with the help
of a spellchecker. For each word in the vocabulary3

that consists of only alphabetic characters, includ-
ing correct words, we extract suggestions from the
Aspell spellchecker to create the confusion set of
that word. Aspell sorts suggestion lists4 by a score
that is the weighted average of the weighted edit
distance of the proposed word to the input word and
the distance between their phonetic equivalents gen-
erated by the metaphone algorithm (Philips, 2000).
Confusion sets are limited to top 20 suggestions.
Table 1 presents examples of generated confusion
sets.

Synthetic errors are introduced into an error-free
text in the following manner. For each sentence,
we sample an error probability perr from a normal
distribution with mean 0.15, chosen to resemble
the word error rate of the development set, and arbi-
trary standard deviation 0.2. This is multiplied by
sentence length and rounded to a number of words
to change. Exactly that many words in the sentence
are chosen by sampling uniformly without replace-
ment. Next, for each chosen word, we perform
one of the following operations with a given prob-
ability: substituting wi with a random word from
its confusion set, deleting wi, inserting a random
word after wi, or swapping it with an adjacent word
wi+1. The probability for word substitution is set
arbitrarily to 0.7 and the three remaining operations
are chosen with a probability of 0.1 each.

Furthermore, to make our models more capable
of correcting spelling errors, similarly to Lichtarge
et al. (2018), we introduce additional noise in
source words. We randomly perturb characters in
10% of words using the same operations as above
for the word level operations, i.e. substitution, dele-
tion, insertion or transposition of characters, with
the same probabilities. An example of a synthetic
sentence is presented in Table 2.

The proposed method does not generate context-
aware errors, but is simple and can be applied to any
alphabetic language with existing spell-checkers.
In preliminary experiments, confusion sets gener-
ated using a spellchecker led to better performance
during pre-training than methods based on the Lev-
enshtein edit distance (Levenshtein, 1966) or word-

3We add noise into the subword-segmented texts, so the
vocabulary here is the same as the training vocabulary.

4http://aspell.net/0.50-doc/man-html/
8_How.html
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Type Output

Original input But they have left their exam rooms and come out the streets to joining hands
with the public and to fight for the country under the guidance of the monks .

+ Synthetic errors But they have lift their exam rooms end come out the streets to joining lands
with the public band to fight for country the unity the guidance of the monos .

+ Spelling errors But they have lift their exm rooms end out the streets to joining lands with the
public band to fight for counrty the unity the guidance of the monos .

Table 2: An example of an artificially generated erroneous sentence.

embedding similarities (Mikolov et al., 2013).

4.3 Model pre-training and fine-tuning
We generate synthetic errors from 100 million
sentences sampled from the English part of the
WMT News Crawl corpus (Bojar et al., 2018)
and use pairs of synthetic and authentic sentences
exclusively to pre-train transformer models. A
pre-trained model can be used with the actual in-
domain error-annotated data by fine-tuning (Hin-
ton and Salakhutdinov, 2006; Miceli Barone et al.,
2017). We experimented with two fine-tuning
strategies:

1. Initialising the neural network weights with
the pre-trained model and starting a new train-
ing run on new data. This resets learning rate
scheduling and optimizer parameters. We fur-
ther refer to this procedure as re-training.

2. Continuing training the existing model with
new data preserving the learning rate, opti-
mizer parameters and historic weights for ex-
ponential smoothing. We refer to this scheme
as fine-tuning.

The main difference between re-training and
fine-tuning is resetting the training state after pre-
training. The latter strategy worked best in our
experiments.

4.4 Ensembling
Similarly to Junczys-Dowmunt et al. (2018b), we
build a heterogeneous ensemble of independently
trained sequence-to-sequence models and a lan-
guage model (LM). Sequence-to-sequence models
are weighted equally, while the weight for the LM
is grid-searched on the development set.

4.5 Right-to-left re-ranking
A common approach to improve the performance
of NMT systems is re-ranking with right-to-left

Corpus Track Sentences

FCE Train R 28,350
NUCLE R 57,113
Lang-8 R 1,041,409
W&I Train R 34,308
W&I+LOCNESS Dev L,R 4,384
WikEd L 2,000,000

News Crawl L,R 100M

Table 3: Parallel and monolingual training data. R de-
notes datasets used to develop our restricted systems, L
— low-resource systems.

models that have been trained on the reversed word
direction (Sennrich et al., 2016, 2017). In GEC, Ge
et al. (2018b) use a right-to-left model for multi-
round error correction where models following op-
posite sequence direction are run recursively one
followed by another. The motivation is that both
models use different contexts, so can be more ca-
pable of correcting errors of different types.

We adapt the re-ranking technique. We first gen-
erate n-best lists using the ensemble of standard
left-to-right models and the language model, then
re-score sentence pairs with right-to-left models
using length-normalized scores, and re-rank the
hypotheses. We have experimented with different
weighting strategies during re-scoring, but found
that weighting all sequence-to-sequence models
equally with 1.0 and grid-searching the weight of
the language model again works best. Tuning all
ensemble weights independently with MERT (Och,
2003) lead to overfitting to the development set.

5 Experiments

5.1 Datasets

Error-annotated data The restricted models are
trained on data provided in the shared task: the
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FCE corpus (Yannakoudakis et al., 2011), NUCLE
(Dahlmeier et al., 2013), W&I+LOCNESS data
sets (Bryant et al., 2019; Granger, 1998), and a pre-
processed version of the Lang-8 Corpus of Learner
English (Mizumoto et al., 2012).

We clean Lang-8 using regular expressions5 to
1) filter out sentences with a low ratio of alphabetic
to non-alphabetic tokens, 2) clear sentences from
emoticons and sequences of repeated single non-
alphanumeric characters longer than 3 elements
e.g. repeated question or exclamation marks, and
3) remove trailing brackets with comments from
the target sentences. If a sentence has alternative
corrections, we expand them to separate training
examples.

Our final training set in the restricted setting
contains 1,953,554 sentences, assembled from the
cleaned Lang-8 corpus and oversampled remain-
ing corpora: FCE and the training portion of W&I
are oversampled 10 times, NUCLE 5 times. Ta-
ble 3 summarizes all data sets used for training.
W&I+LOCNESS Dev is used solely as a develop-
ment set in both tracks.

Monolingual data We use News Crawl6 — a
publicly available corpus of monolingual texts ex-
tracted from online newspapers released for the
WMT series of shared tasks (Bojar et al., 2018)
— as our primary monolingual data source. We
uniformly sampled 100 million English sentences
from de-duplicated crawls in years 2007 to 2018
to produce synthetic parallel data for model pre-
training. Another subset of 2 million sentences
was selected to augment the training data during
fine-tuning.

The Enchant spellchecker7 with the Aspell back-
end and a British English dictionary were used to
generate confusion sets.

Wikipedia edits In the low-resource setting, we
use a filtered subset of the WikEd corpus (Grund-
kiewicz and Junczys-Dowmunt, 2014). The orig-
inal corpus contains 56 million automatically ex-
tracted edited sentences from Wikipedia revisions
and is quite noisy.

We clean the data using cross-entropy dif-
ference filtering by Moore and Lewis (2010).
W&I+LOCNESS Dev is used as an in-domain seed
corpus. All sentence pairs in WikEd are sorted w.r.t

5Cleaning Lang-8 led to minor improvements during the
preliminary experiments when no pre-training was used.

6http://data.statmt.org/news-crawl/
7https://abiword.github.io/enchant/

an average score from two language models: an
n-gram probabilistic word-level language model
estimated from target sentences, and a simplified
operation sequence model built on edits between
source and target sentences.8 We use KenLM
(Heafield, 2011) to build 5-gram language models.
The top 2 million sentence pairs with the highest
scores are used as training data in place of the error-
annotated ESL learner data to train models for the
low-resource system.

5.2 Data preprocessing
Following the preprocessing methods of the data
provided in the shared task, we tokenize other data
sets with spaCy.9 We also normalize Unicode punc-
tuation to ASCII with a script included in the Moses
SMT toolkit10 (Koehn et al., 2007).

To handle the open vocabulary issue, we split
tokens into 32,000 subword units trained on 10
million randomly sampled sentences from News
Crawl using the default unigram-LM segmentation
algorithm (Kudo, 2018) from SentencePiece (Kudo
and Richardson, 2018).

5.3 Model architecture
We experiment with different variants of Trans-
former models (Vaswani et al., 2017). The “Trans-
former Base” architecture has 6 blocks of self-
attention/feed forward sub-layers in the encoder
and decoder, 8-head self-attention layers, and em-
beddings vector size of 512. The ReLU activation
function (Nair and Hinton, 2010) is used between
filters of size 2048. We tie output layer, decoder
and encoder embeddings (Press and Wolf, 2017).

We choose the “Transformer Big” architecture as
our final models for the restricted track. They differ
from Transformer Base by the number of heads in
multi-head attention components (16 heads instead
for 8), larger embeddings vector size of 1024 and
filter size of 4096.

The architecture of the language models cor-
responds to the structure of the decoder of the
sequence-to-sequence model, either Transformer
Base or Big.

8For example, a sentence pair („I think that the public
transport will always be in the future .”, „I think that pub-
lic transport will always exist in the future .”) is first con-
verted into the sequence „<del> the <sub> be <to>
exist”, and then a standard n-gram probabilistic language
model is built on such edit operation sequences.

9https://spacy.io/
10https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/
tokenizer/normalize-punctuation.perl
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Restricted systems Low-resource systems

W&I+LOCNESS FCE W&I+LOCNESS FCE
System P R F0.5 F0.5 P R F0.5 F0.5

Baseline 47.1 30.2 42.37 47.46 37.3 18.3 30.89 30.53
Baseline + LM pretraining 47.2 30.9 42.69 47.61 39.7 20.2 33.14 34.46

Pre-training on synthetic data 43.2 10.6 26.76 34.00 43.2 10.6 26.76 34.00
→ Re-training 53.2 35.8 48.44 51.53 44.2 20.8 36.11 35.91
→ Fine-tuning 54.8 34.2 48.92 52.69 49.6 21.0 38.97 41.79

+ 2M synthetic data 56.1 34.8 50.01 53.64 53.6 18.9 39.16 42.23

Ensemble Base×8 58.4 34.8 51.42 53.92 55.0 20.8 41.37 43.75
+ LM Base 57.3 37.7 51.88 53.33 51.1 26.5 43.11 44.04
+ LM Big 56.9 38.9 52.04 53.17 52.0 26.7 43.69 45.68

+ RL rescoring Base×4 57.7 38.3 52.42 55.03 55.0 26.0 44.95? 47.42

Ensemble Big×4 + LM Big 58.5 36.8 52.30 54.57 —
+ RL rescoring Base×4 59.1 36.8 53.00? 55.81 —

Table 4: Results for restricted and low-resource systems on W&I+LOCNESS Dev and FCE Test. Stars (?) indicate
the submitted systems.

Method P R F0.5

Ensemble×4 +LM 58.5 36.8 52.30
→ Second pass 58.2 37.3 52.36
→ Round-way right-left 55.7 40.0 51.64
→ Iterative decoding 58.3 37.2 52.37
→ Right-left rescoring 59.1 36.8 53.00

Table 5: Comparison of different methods for infer-
ence optimization for the final restricted system on
W&I+LOCNESS Dev.

5.4 Training settings

We train all models with the Marian toolkit11

(Junczys-Dowmunt et al., 2018a), and generally
follow the configuration proposed by Junczys-
Dowmunt et al. (2018b).

Transformer models are trained using Adam
(Kingma and Ba, 2014) with a learning rate of
0.0003 and linear warm-up for the first 16k updates,
followed by inverted squared decay. For the larger
models, we decrease the learning rate to 0.0002
and warm-up to 8k first updates. We train with
synchronous SGD (Adam) and dynamically sized
mini-batches fitted into 48GB GPU RAM memory
across 4 GPUs, accumulating gradients for 3 itera-
tions before making an update (Bogoychev et al.,
2018). This results in mini-batches consisting of ca.
2,700 sentences. The maximum length of a training

11https://marian-nmt.github.io/

sentence is limited to 150 subword units. Strong
regularization via dropout (Gal and Ghahramani,
2016) is used to dissuade the model from simply
copying the input: we use a dropout probability
between transformer layers of 0.3, for transformer
self-attention and filters of 0.1, and for source and
target words of 0.3 and 0.1 respectively. For source
and target words we dropout entire embedding vec-
tors, not just single neurons. We also use label
smoothing with a weight of 0.1, and exponential
averaging of model parameters with a smoothing
factor of 0.0001.

During fine-tuning, we use the the cross-entropy
training objective with edits up-weighted by a fac-
tor of Λ = 2 (Junczys-Dowmunt et al., 2018b).

The model is validated every 5000 updates on
W&I+LOCNESS Dev using the ERRANT F0.5

score. Models are trained with early stopping with
a patience of 10. Pre-training is additionally lim-
ited to 5 epochs. We decode with beam search with
a beam size of 12, and normalize scores for each
hypothesis by sentence length. The checkpoint
with the highest F0.5 score on the development set
is selected as a final model.

Right-to-left models are trained with exactly the
same settings, the only difference is the reversed
word order in source and target sentences12 with
no further data processing requirements.

12Training right-to-left models is built into Marian and can
be enabled with the -right-left option.
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Language models are trained with the same set-
tings as sequence-to-sequence models, but vali-
dated every 10,000 updates on the target side of the
development set.

6 Results on the development set

Table 4 summarizes the results of the experiments
on the W&I+LOCNESS Dev and FCE Test in the
restricted and low-resource settings.

Restricted systems We compare our models to
two Transformer-based baselines trained solely on
the original error-annotated data without and with
transfer learning from the language model. Sur-
prisingly, for the restricted system, pre-training the
decoder parameters (Baseline + LM pretraining)
does not yield much improvement. A major im-
provement is achieved, however, by pre-training
of the entire neural network on the synthetic data
(Re-training).

The fine-tuning strategy generally leads to better
results than re-training, mostly due to increased pre-
cision. Adding 2 million of synthetic sentences to
the error-annotated data — resulting approximately
in an 1:1 ratio of genuine and artificial training ex-
amples (Sennrich et al., 2017) — further improves
the performance.

Ensembling eight Transformer models with a
language model and re-ranking the n-best lists with
four right-to-left models leads to consistent im-
provements. The quality of the language model is
important as using a stronger language model (LM
Big) generally improves the scores.

The systems with bigger models (Ensemble
Big×4 + LM Big) have a higher precision and thus
perform better on both datasets. Interestingly, re-
ranking using smaller and relatively weaker right-
to-left Transformer Base models is still beneficial.
We have found that re-ranking works best for our
high-recall system, better than other methods for
multi-pass decoding as presented in Table 5.

The final system with four Transformer Big mod-
els constitutes our submission to the restricted track
for the official evaluation in the shared task.

Low-resource systems For the low-resource
task, we follow the same experiments as for the
restricted task, replacing the error-annotated train-
ing data with a subset of the filtered WikEd corpus
of comparable size. Using out-of-domain data in
place of the high-quality ESL learner data reduces
the performance substantially in the low-resource
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Figure 1: Comparison of restricted and low-resource
systems on different parts of W&I+LOCNESS Dev.

baseline, but the gap is reduced in the final systems.
Ensembling and re-ranking lead to larger relative
improvements than for the restricted systems.

Due to a tight time frame, the final system sub-
mitted to the low-resource track uses eight Trans-
former Base models.

6.1 Proficiency levels and error types

The key contribution of the BEA19 shared task is
the introduction of the W&I+LOCNESS dataset
that consists of texts written by students of dif-
ferent English skill levels (A, B and C represents
beginner, intermediate and advanced levels, respec-
tively), including native texts (N). Figure 1 com-
pares F0.5 scores of the corresponding restricted
and low-resource ensemble systems for distinct
parts of W&I+LOCNESS Dev.

Generally the higher the proficiency level of
ESL texts, the lower the advantage of the systems
trained on real error-annotated ESL learner data.
Interestingly, the performance of restricted and low-
resourcse systems on native texts is identical. It
remains to be investigated if pre-training (the com-
mon part for those systems) is responsible for this.

As can be seen in Figure 2, the restricted and low-
resource systems achieve similar performance on
specific error types, for instance, morphology and
subject-verb agreement errors, some errors within
nouns, or misspellings.

6.2 Comparison to the state of the art

To compare with the current state of the art, we
evaluate our best systems on other popular GEC
benchmarks in Table 6. We report F0.5 scores on
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Figure 2: Comparison of restricted and low-resource systems (F0.5) on a selection of error types from ERRANT
on W&I+LOCNESS Dev.

the CoNLL 2014 test set (Dahlmeier et al., 2013)
calculated with the official M2Scorer (Dahlmeier
and Ng, 2012). We also report results on the JFLEG
test set (Napoles et al., 2017) using GLEU (Napoles
et al., 2015). Following other works (Sakaguchi
et al., 2017; Junczys-Dowmunt et al., 2018b), we
correct spelling errors in JFLEG using Enchant
before decoding.

On CoNLL-2014, our best GEC system achieves
64.16 M2, which is the highest score reported on
this test set so far, including the systems trained
on non-publicly available resources (Ge et al.,
2018a,b). Although comparing to prior work, the
improvement is impressive, our submitted system
uses the public FCE corpus and the new W&I Train
sets and should not be directly contrasted with sys-
tems trained on the NUCLE and Lang-8 corpora
only. In contrastive experiments, we have trained
a system with four Transformer Base models us-
ing the NUCLE and Lang-8 data from Junczys-
Dowmunt et al. (2018b). That system achieves
61.30 F0.5, which is the state-of-the-art result for a
constrained GEC system, and it is comparable to
the results reported by Ge et al. (2018b) for their
system trained on non-public data. We expect even
higher scores if our system would consist of larger
Transformer models as in our submission.

7 Official results

The evaluation in the shared task was performed
on the blind W&I+LOCNESS test set consisting of
350 student essays and 4,477 sentences. Excerpts

System CoNLL JFLEG

Chollampatt and Ng (2018) 54.79 57.47
Junczys-Dowmunt et al.
(2018b)

55.80 59.90

Grundkiewicz and
Junczys-Dowmunt (2018)

56.25 61.50

Lichtarge et al. (2018) 58.30 62.40
Stahlberg et al. (2019) 58.40 58.63
Lichtarge et al. (2019) 60.4 63.3
Zhao et al. (2019) 61.15 61.00

Ge et al. (2018b) 61.34 62.42

Our low-resource system 52.44 58.07
Our restricted system 64.16 61.16
Constrained system 61.30 61.22

Table 6: Comparison with other works on the CoNLL-
2014 and JFLEG test sets. The results for the con-
strained system are reported for best systems according
to CoNLL-2013 and JFLEG Dev.

of the official rankings are presented in Table 7.13

Our final GEC system achieves an official re-
sult of 69.47 F-score, which ranks it first among
21 systems participating in the main track. The
top two systems perform significantly better than
the remaining systems. We outperform the second
system mainly due to higher recall and better per-
formance on non-native parts of the test set: our
system is +1.7 better on texts written by beginner
English learners and -1.1 worse on native texts.

13Full rankings with detailed results: https://www.cl.
cam.ac.uk/research/nl/bea2019st/#results
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# Team P R F0.5

1 UEdin-MS 72.28 60.12 69.47
2 Kakao&Brain 75.19 51.91 69.00
3 LAIX 73.17 49.50 66.78
4 CAMB-CLED 70.49 55.07 66.75
5 Shuyao 70.17 55.39 66.61

(a) Restricted track.

# Team P R F0.5

1 UEdin-MS 70.19 47.99 64.24
2 Kakao&Brain 63.06 46.30 58.80
3 LAIX 62.01 31.25 51.81
4 CAMB-CUED 55.58 38.03 50.88
5 UFAL 50.47 29.38 44.13

(b) Low-resource track.

Table 7: Official results for top 5 systems in the BEA19
shared task in the restricted (top) and low-resource (bot-
tom) tracks. UEdin-MS is our submission.

Our low-resource GEC system is also ranked
first among 9 participating teams achieving 64.24
F0.5 and outperforming the second best system
significantly by +5.4. Interestingly, this system
achieves the highest F-score of 72.25 on the part of
the test set written by native speakers, comparing
to the best result of 71.94 F0.5 by Kakao&Brain in
the restricted track.

We did not submit a system to the unrestricted
track, however our best system outperforms all
systems in this track.

8 Summary

We presented an unsupervised synthetic error gen-
eration method based on confusion sets generated
from an inverted spellchecker. With this method we
increased the amount of training data for a gram-
matical error correction system. The generated
synthetic parallel corpus was used to pre-train the
sequence-to-sequence model and then fine-tuned
on authentic data, which improved the performance
of the adapted Transformer model in comparison
to a model trained on authentic data alone. We also
demonstrated the effectiveness of this approach in
a scenario where little genuine error-annotated ESL
learner data is available. Our final systems14 con-
sist of ensembles of sequence-to-sequence Trans-

14Models, system configurations and outputs are avail-
able from https://github.com/grammatical/
pretraining-bea2019

former models and a Transformer-based language
model re-ranked with right-to-left models.

The presented GEC systems form our submis-
sions to the BEA19 shared task as the UEdin-MS
team. They are ranked first in the restricted and
low-resource tracks achieving 69.47 and 64.24 F0.5

score on the W&I+LOCNESS test set respectively.
On the popular CoNLL 2014 test set, we report
state-of-the-art results of 64.16 M2 for the best sub-
mitted system, and 61.30 M2 for a system trained
on the NUCLE and Lang-8 data.
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Abstract

A number of methods have been proposed to
automatically extract collocations, i.e., con-
ventionalized lexical combinations, from text
corpora. However, the attempts to evaluate
and compare them with a specific applica-
tion in mind lag behind. This paper com-
pares three end-to-end resources for colloca-
tion learning, all of which used the same cor-
pus but different methods. Adopting a gold-
standard evaluation method, the results show
that the method of dependency parsing outper-
forms regex-over-pos in collocation identifica-
tion. The lexical association measures (AMs)
used for collocation ranking perform about the
same overall but differently for individual col-
location types. Further analysis has also re-
vealed that there are considerable differences
between other commonly used AMs.

1 Introduction

Collocations, as the most common manifestation
of formulaic language, have attracted a great deal
of research in the last decade (Wray, 2012). Most
of the research on collocations has been connected
to their definition (section 2.1) and extraction (sec-
tion 2.2), but also to their acquisition, and conse-
quently teaching. Herbst and Schmid (2014) ar-
gue, “Any reflection upon what is important in the
learning and, consequently, also in the teaching
of a foreign language will have to take into ac-
count the crucial role of conventionalized but un-
predictable collocations. Any attempt by a learner
to achieve some kind of near-nativeness will have
to include facts of language such as the fact that it
is lay or set the table in English, but Tisch decken
in German, and mettre la table in French” (p. 1).

Collocation learning comes down to three main
benefits for language learners: accurate produc-
tion, efficient comprehension and increased flu-
ency of processing (e.g., Men, 2017; Durrant and

Mathews-Aydınlı, 2011). To increase their lan-
guage proficiency, beginners and advanced learn-
ers often look up for words and it’s common col-
locates online, using a mobile app or web browser
and it benefits to provide personalized items, tai-
lored to the user’s interest and proficiency. Exam-
ples of using collocations for building educational
applications include question generation (e.g., Lin
et al., 2007), distractor generation (e.g., Liu et al.,
2005; Lee and Seneff, 2007) for multiple choice
cloze items and an online collocation writing as-
sistant - Collocation Inspector (Wu et al., 2010a)
in the form of a web service.

Despite their widely recognized importance and
ubiquity in language use, collocations pose a
great challenge for language learners thanks to
their arbitrary nature and the learner’s insuffi-
cient experience with the target language (Ellis,
2012). Thus, there is a pressing need to create re-
sources for language learners to support their ex-
plicit collocation learning. Given the vast amount
of collocations and the different goals of lan-
guage learners, various methods have been pro-
posed to extract them automatically from text. Yet
it is still not conclusive which one performs the
best for language learning and “the selection of
one or another seems to be somewhat arbitrary”
(González Fernández and Schmitt, 2015) (p. 96).

This paper1 attempts to evaluate three end-
to-end resources of collocations built for lan-
guage learning: Sketch Engine2 (Kilgarriff et al.,
2014), Flexible Language Acquisition (FLAX)3

(Wu, 2010) and Elia (Bhalla et al., 2018). They
use the same British Academic Written English
(BAWE) corpus (Nesi, 2011), but different meth-

1Code, data and evaluation results are avail-
able at https://github.com/vishalbhalla/
autocoleval

2https://www.sketchengine.eu/
3http://flax.nzdl.org/greenstone3/flax
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ods for collocation identification, i.e., regex-over-
pos, n-grams combined with regex-over-pos and
dependency parsing, respectively, and also differ-
ent association measures for collocation ranking,
i.e., Log Dice, raw frequency and Formula Teach-
ing Worth (FTW). On top of that, we compare
other widely used lexical association measures of
MI, MI2, MI3, t-score, log-likelihood, Salience
and Delta P using the data from the best perform-
ing candidate identification method as a baseline.
For our evaluation, we use the expert-judged Aca-
demic Collocation List (ACL) (Ackermann and
Chen, 2013) as a reference set (section 3.1), and
calculate the recall and precision metrics sepa-
rately for collocation identification and ranking.

2 Theoretical Background

2.1 Notion of Collocation

Among the many different interpretations of collo-
cations in the literature, three leading approaches
can be distinguished: psychological, phraseologi-
cal and distributional (Men, 2017).

The psychological approach envisages colloca-
tions as lexical associations in the mental lexi-
con of language users underlying their fluent and
meaningful language use (e.g., Ellis et al., 2008).
This perspective on collocations is supported by
the evidence from psycholinguistic research using
reaction time tasks, free associations tasks, self-
paced reading and eye-tracking which suggests
that collocations are holistically stored as chunks
and thus processed faster (Wray, 2012). However,
as found out by Meara (2009), the storage of word
associations in the mental lexicon of native speak-
ers is different from that of nonnative speakers.

The phraseological approach focuses predomi-
nantly on delimiting collocations (call a meeting)
from free word combinations with a predictable
meaning (call a doctor), on the one hand, and
fixed idioms with an unpredictable meaning (call
it a day) on the other (e.g., Cowie, 1998) by defin-
ing a set of criteria related to the compositionality
of meaning and fixedness of form. Schmitt (2010)
argues that such approach is rather problematic for
the identification task as it is not clear how to op-
erationalize such criteria without making it subjec-
tive and labor-intensive.

The distributional approach, also called Firthian
or frequency-based, shifts the focus from the se-
mantic aspects of collocations to structural. As
Sinclair (1991) put it, “Collocation is the co-

occurrence of two or more words within a short
space of each other in a text. The usual mea-
sure of proximity is a maximum of four words
intervening” (p. 170). Following this definition,
various criteria have been considered for identify-
ing collocation, e.g., distance, frequency, exclusiv-
ity, directionality, dispersion, type-token distribu-
tion and connectivity (Brezina et al., 2015). How-
ever, some researchers (e.g., Bartsch, 2004) argue
that because of the little account of syntactic fea-
tures of the words, it fails to capture certain col-
locations, e.g., the collocation collect stamps in
the sentence They collect many things, but chiefly
stamps, or vice versa, captures false collocations,
such as things but.

Despite the obvious differences, there is con-
siderable overlap between the three approaches as
Durrant and Mathews-Aydnl (2011) rightly point
out, “Non-compositionality and high frequency
of occurrence can both be cited as evidence for
holistic mental storage, and non-substitutability of
parts can be evidenced in terms of co-occurrence
frequencies in a corpus” (p. 59). It is precisely this
extended notion of two-word collocations which
was adopted by the collocation references under
investigation in this study.

2.2 Automatic Extraction of Collocations

The task of collocation extraction is usually split
into two steps, that of candidate identification
which automatically generates a list of potential
collocations from a text according to some crite-
ria, and that of candidate ranking, which ranks the
list to keep the best collocations on top according
to some association measure (Seretan, 2008).

2.2.1 Candidate Identification
In the candidate identification step, four prominent
methods can be distinguished based on the prox-
imity of words and the amount of linguistic infor-
mation used: window, n-gram, regex-over-pos and
parsing. The first two are based on linear proxim-
ity whereas the other two are on syntactic proxim-
ity.

The window-based method (e.g., Brezina et al.,
2015) identifies collocations within a window of
n words before and after the target word. It be-
longs to the most commonly known and used and
directly follows the Firthian definition of colloca-
tions. Similarly, the n-gram method (e.g., Smadja
and McKeown, 1990), extracts sequences of adja-
cent n words including the target word. The appli-
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cation of these two methods can vary along sev-
eral dimensions, e.g., the nature of words consid-
ered, such as word forms, lemmas or word fam-
ilies (Seretan, 2008), the context span on the left
and right or the number of grams, part-of-speech
filtering, etc. However, due to the lack of linguis-
tic information used, these methods are prone to
many recall and precision errors (for a detailed dis-
cussion, see Lehmann and Schneider, 2009).

In contrast to the previous two methods, the
regex-over-pos method takes into account the
grammatical relations between words (e.g., Wu,
2010). It identifies collocations in text via regular
expressions over part-of-speech tags which match
a certain grammatical pattern of the collocation.
An alternative, though less frequent, method iden-
tifies collocations in a syntactic relation via pars-
ing (Seretan, 2008), and thus accounts for the syn-
tactic flexibility feature of collocations. Bartsch
and Evert (2014) found out that collocation extrac-
tion using parsing method improved the results in
comparison to the window method. However, they
also caution that the success depends on the accu-
racy of the parser and the set of grammatical rela-
tions used.

2.2.2 Candidate Ranking
The next step of candidate ranking entails mea-
suring the strength of association between the two
words, hence association measure (AMs). In prin-
ciple, AMs compare the observed and expected
frequencies of collocations in different ways, and
thus differ in how much they highlight or down-
play different features of collocations (for a de-
tailed overview, see Pecina, 2010). There is no
single best performing AM but rather the choice of
an appropriate measure depends on the particular
purpose and theoretical criteria. In language learn-
ing research and practice, the following AMs have
received most attention: raw frequency, MI, MI2,
MI3, Log Dice, t-score, log-likelihood, Salience,
FTW and Delta P.

The Mutual Information (MI) measure prior-
itizes rare exclusivity of collocations which is
strongly linked to predictability (Gablasova et al.,
2017). However, it is also biased towards low-
frequency combinations which can be circum-
vented by setting a minimum frequency threshold
or giving extra weight to the collocation frequency
by squaring (MI2) or cubing (MI3).

The Log Dice score is similar to MI2 and high-
lights the exclusivity of word combinations with-

out putting too much weight to rare combinations.
However, Log Dice, in contrast to MI2, is suitable
for comparing scores from different corpora and
has been described as a “lexicographer-friendly
association score” (Rychlỳ, 2008, p. 6-9). An-
other measure adjusted for lexicographic purposes
is Salience, the forerunner of Log Dice, which
combines the strengths of MI and log frequency
(Kilgarriff and Tugwell, 2002).

The t-score represents the strength of associa-
tion between words by calculating the probability
that a certain collocation will occur without con-
sidering the level of significance (Pecina, 2010). It
prioritizes the frequency of the whole collocation,
and hence there is a tendency for frequent colloca-
tions to rank higher.

The only measure created specifically for ped-
agogical purposes is the Formula Teaching Worth
(FTW) which is again a combined measure of MI
and the raw frequency with more weight given to
the former. It was derived from an empirical re-
search using both statistical measures and instruc-
tor judgments. Basically, the score represents “a
prediction of how instructors would judge their
teaching worth” (Simpson-Vlach and Ellis, 2010,
p. 496).

In contrast to the previous measures, log-
likelihood is a statistic which determines whether
the word combination occurs more frequently than
chance or not. In particular, the score does not
provide information on “how large the difference
is” but rather “whether we have enough evidence
in the data to reject the null hypothesis” (Brezina
et al., 2015, p. 161).

The last measure is Delta P which takes direc-
tionality into account and calculates the strength
of the attraction between two words for each word
separately. Therefore, in contrast to all the pre-
vious measures, it does not treat the collocational
relationship as symmetrical (Gries, 2013).

3 Methodology

3.1 Reference Set
The recently compiled Academic Collocation List
(ACL) (Ackermann and Chen, 2013) was selected
as the reference set (gold standard) to be compared
against the test sets. Five main considerations
drove this decision: First, it needed to be in line
with the nature of the BAWE4 corpus that was cho-

4https://www.coventry.ac.uk/
research/research-directories/
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sen as a source input for extracting collocations.
BAWE contains around 3000 good-standard stu-
dent assignments (with 6,506,995 words), evenly
distributed across four broad disciplinary areas
(Arts and Humanities, Social Sciences, Life Sci-
ences and Physical Sciences) and across four lev-
els of study (undergraduate and taught masters
level). Since BAWE is a collection of academic
writing of university students, the baseline set
should also consist of academic collocations. Sec-
ond, it should contain collocations consisting of
two words as all the three resources focus on two-
word collocations. Third, the collocations should
preferably be grouped into collocation types based
on their word classes or syntactic functions as in
the test sets. Fourth, the reference set should be
human-made or human-judged to ensure the qual-
ity of collocations. And finally, it should be com-
piled for pedagogical purposes.

The ACL comprises of 2,469 lexical colloca-
tions in written academic English and is based on a
written part of the Pearson International Corpus of
Academic English (PICAE) of around 25 million
words. It was carefully compiled using the combi-
nation of automatic computational analysis to en-
sure an adequate recall and human judgment to en-
sure the quality and relevance of the collocations
for pedagogical purposes. Consisting of the most
frequent and pedagogically relevant entries, ACL
can therefore be immediately operationalized by
English for Academic Purposes (EAP) teachers
and students. By highlighting the most impor-
tant cross-disciplinary collocations, the ACL can
help learners increase their collocational compe-
tence and thus their proficiency in academic En-
glish. The collocations are grouped into eight col-
location types: adjective + noun, noun + noun,
verb + noun, verb + adjective, adverb + verb, verb
+ adverb, adverb + verb past participle, adverb +
adjective.

To make it comparable to the test sets, we lem-
matized all its inflected word forms using an au-
tomatic lemmatization tool from SpaCy5 and then
manually checked all the errors. Next, it was orga-
nized by headwords with the POS tags noun, ad-
jective and verb, grouped by possible collocation
types, and with the respective collocates appended
resulting in a list of 1,455 headwords, 11 colloca-
tion types and 4,626 collocations as presented in

current-projects/2015/
british-academic-written-english-corpus-bawe/

5https://spacy.io/

Collocation Type Headwords Collocations
n1 n2 39 62
n2 n1 52 62
n2 v1 156 306

n2 adj1 483 1769
v1 n2 107 306

v1 adj2 8 30
v1 adv2 19 29
v2 adv1 79 139
adj1 n2 416 1769
adj2 v1 23 30

adj2 adv1 73 124
Total 1455 4626

Table 1: Reference set grouped by collocation types
starting with a headword where noun is n, adjective is
adj, verb is v, adverb is adv and the numbers 1 and 2
indicate their positions in the collocation pair.

Table 1. For example, the notation of the colloca-
tion type n2 adj1 indicates that the headword is a
noun (n) in the 2nd position in the collocation pair,
and the collocate is an adjective (adj) in the 1st po-
sition, so when the learner searches the adjectival
collocates for the word feature, it gives him the
collocate distinguishing among others.

3.2 Tests sets
3.2.1 Sketch Engine
Sketch Engine (SE) is an online corpus software
with a wide range of functions and preloaded cor-
pora which can be used for pedagogical purposes
either indirectly, in the creation of textbooks and
dictionaries, or directly in the classroom (Kilgar-
riff et al., 2014). One of its functions is the Word
Sketch for extracting collocations in a range of
grammatical patterns, and one of its corpora is
BAWE. The corpus is automatically POS-tagged
using CLAWS 76 and the collocations are identi-
fied with the help of their embedded Sketch Gram-
mar7 which is a set of regular expressions over
POS tags. The retrieved collocates are then or-
ganized based on the grammatical relation to the
headword and within each relation sorted by the
Log Dice measure (alternatively, raw frequency).

The SE collocations were extracted using web
scraping wherein, firstly, the URL was built us-

6https://www.sketchengine.eu/
english-claws7-part-of-speech-tagset/

7For a full list of Sketch Grammar, see https:
//the.sketchengine.co.uk/corpus/wsdef?
corpname=preloaded/bawe2
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ACL Sketch Engine FLAX Elia
n1 n2 modifies n-nn NOUN + NOUN
n2 n1 modifier n-nn NOUN + NOUN
n2 v1 object of n-vn VERB + NOUN

n2 adj1 modifier n-an ADJ + NOUN
v1 n2 object v-vn VERB + NOUN

v1 adj2
adj comp

np adj comp v-vppa VERB + ADJ
v1 adv2 modifier v-vr VERB + ADV
v2 adv1 modifier v-rv VERB + ADV
adj1 n2 modifies a-an ADJ + NOUN

adj2 v1
adj comp of

np adj comp of a-vppa VERB + ADJ
adj2 adv1 modifier a-ra ADV + ADJ

Table 2: Mapping of collocation types between the reference set (ACL) and test sets (Sketch Engine, FLAX, Elia)

ing the lemma and POS tag of each word and then
the eleven collocation types from the reference set
were mapped to the collocation types used at SE to
pickup the collocations of interest (Table 2). Pick-
ing up all the headwords (lemmas) from the refer-
ence set, the count and score of each collocate was
stored in an intermediate file for each lemma in
order to generate SE files8 for the final evaluation.

3.2.2 FLAX
FLAX (Flexible Language Acquisition) is an on-
line library and tool specifically created for col-
location learning (Wu, 2010). It consists of large
collections of collocations and phrases extracted
from different corpora, one of which is BAWE,
and can be used for searching collocations for a
particular word or for automatic generation of a
variety of collocation exercises and games. The
collocations are extracted using the combination
of n-gram and regex over-pos methods which in-
volved the following steps. Firstly, n-grams (n=5)
are extracted from the corpus and tagged with the
OpenNLP9 tagger. The tagged 5-grams are then
matched against a set of regular expressions based
on predefined collocation types10. Finally, the
individual collocations organized by collocation
types are then sorted by raw frequency within each
collocation type (Wu, 2010, p. 98).

For the evaluation, all FLAX collocations11

8Code and data in the ‘sketchengine’ folder of the Sup-
plementary Material.

9http://opennlp.apache.org/
10For a full list of the collocation types with examples, see

Wu et al. (2010b, p. 9).
11Code and data in the ‘flax’ folder of the Supplementary

Material.

were extracted using the same web scraping pro-
cess as for SE. However, as FLAX operates on
word forms in contrast to the reference set oper-
ating on lemmas, all lemmas from the reference
set had to be converted to their word forms using
Pattern12 (Smedt and Daelemans, 2012) to get the
corresponding collocations from FLAX for each
headword in the reference set and then remapped
back to its lemma to continue with the same eval-
uation flow as in SE.

3.2.3 Elia
Elia13 is an intelligent personal assistant for lan-
guage learning which provides immediate assis-
tance for English learners when they use English
online (Bhalla et al., 2018). One of its design fea-
tures is to provide a learner with a list of collo-
cates for a given word, which are in line with the
learner’s proficiency level. It is based on BAWE
where, firstly, all the dependency relations using
the SpaCy parser14 are extracted and mapped to a
predefined set of 15 collocation types and then run
for the Academic Vocabulary List (Gardner and
Davies, 2013) of 20,000 most frequent academic
words from the Corpus of Contemporary Ameri-
can English (COCA)15. Subsequently, the collo-
cations are organized for each headword (lemma)

12https://github.com/clips/pattern
13Elia is not available online yet, however, the code

to generate the database of collocations can be accessed
at https://drive.google.com/open?id=1FGFy_
yp797saphx8-wzcLkMxQbkCVZlp

14https://spacy.io/usage/
linguistic-features#
section-dependency-parse

15https://corpus.byu.edu/coca/
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and collocation type and ranked according to the
Teaching Worth Formula (Simpson-Vlach and El-
lis, 2010).

For the evaluation, only the collocations for the
headwords and collocation type present in the ref-
erence set were filtered out from Elia after running
the code from the link shared previously. On run-
ning this setup, intermediate files for each head-
word containing all its collocates along with the
chosen metric were generated. These are in line
with the web scraping files from Sketch Engine
and FLAX in order to generate the final evaluation
files16.

4 Results and Discussion

For the comparative evaluation of the three test
sets, the standard metric recall and precision were
calculated separately for identification and ranking
of collocations grouped into collocation types. On
top of that, additional evaluation was performed
on the best performing test set as a baseline to
compare different collocation ranking measures
introduced in section 2.2.2.

4.1 Candidate Identification

Table 3 clearly shows that the method of depen-
dency parsing used by Elia resulted in higher over-
all recall (99%) than the method of regex-over-pos
used by Sketch Engine (91%) and FLAX (84%). It
seems that some dependency parsers have reached
a sufficiently high accuracy to be used for collo-
cation extraction or other NLP tasks (Levy et al.,
2015). At the same time, there are obvious differ-
ences between Sketch Engine and FLAX, despite
using the same method (regex-over-pos), which
leads to the conclusion that manual mappings of
collocation types and syntactic patterns might be
as important as the method itself. Another plausi-
ble explanation could be the fact that FLAX used
regex patterns over 5-grams extracted from the
corpus whereas Sketch Engine over full sentences.

Turning to individual collocation types (CTs),
all of them achieved a high recall of above 80% in
all three test sets, except for v1 adj2 and adj2 v1
in FLAX with a recall of only 13% and 7% re-
spectively. Tempting as it might seem, this does
not explain the lowest overall recall for FLAX as
they account for only 7% (54 out of 710) of all
missed collocations. FLAX performed especially

16Code and data in the ‘elia’ folder of the Supplementary
Material.

SE FL EL
Collocation
Type

R P R P R P

n1 n2 89 6 82 2 98 1
n2 n1 89 5 81 1 98 0
n2 v1 94 8 88 3 99 1
n2 adj1 88 10 86 4 99 2
v1 n2 92 4 84 2 99 1
v1 adj2 90 10 13 2 100 1
v1 adv2 90 5 100 4 100 1
v2 adv1 92 9 90 5 99 2
adj1 n2 93 6 84 5 99 2
adj2 v1 90 40 7 9 100 7
adj2 adv1 87 10 89 8 99 5
Total 91 7 84 4 99 2

Table 3: Candidate identification comparison of
Sketch Engine (SE), FLAX (FL) and Elia (EL) across
collocation types with the recall (R) and precision (P)
values in percentages.

well for v1 adv2 (100%) in comparison to its other
CTs starting from 90% (v2 adv1) downwards to
7% (adj2 v1). On the other hand, the results for
Sketch Engine are rather consistent across indi-
vidual CTs ranging from 87% (adj2 adv1) to 94%
(n2 v1). The same applies for Elia ranging from
98% (n1 n2, n2 n1) to 100% (v1 adj2, adj2 v1,
v1 adv2).

Looking closer at the results for Elia, we found
out that exactly one half (19) of all the missed col-
locations (38) was due to parsing or tagging er-
rors whereas the other half was due to different
type classification; for example, the collocation
learning activity was grouped under n2 adj1 in the
reference set whereas, in Elia, it was assigned to
n1 n2, and thus missed. This might as well be the
case for some of the missed collocations in Sketch
Engine and FLAX.

The precision, on the other hand, is very low for
all (the highest 7% reached by Sketch Engine) at
the expense of high recall. This, however, is not
that important at this stage since the next step of
ranking should shift all the irrelevant collocations
to the bottom.

4.2 Candidate Ranking

For candidate ranking, recall and precision values
were calculated for three samples of n-best candi-
dates per headword for each test set: Top 4,626
where n refers to the exact number of collocates
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Top 4,626 Top 14,550 Top 29,100
SE FL EL SE FL EL SE FL EL

Collocation
Type

R=P R=P R=P R P R P R P R P R P R P

n1 n2 19 15 10 58 10 52 8 37 6 77 8 73 6 68 5
n2 n1 31 23 19 69 10 61 7 56 7 82 8 68 4 69 4
n2 v1 42 44 48 73 15 70 14 83 16 87 10 75 8 90 9
n2 adj1 36 41 39 50 18 52 19 50 18 68 13 66 12 65 12
v1 n2 37 31 35 55 16 47 14 52 15 68 10 57 8 64 9
v1 adj2 47 0 43 73 28 3 4 63 24 80 17 7 5 73 14
v1 adv2 48 34 34 86 13 86 13 83 13 90 8 97 8 86 7
v2 adv1 46 52 37 81 15 79 15 80 14 91 11 86 9 90 8
adj1 n2 36 43 44 40 18 47 21 49 20 57 13 61 14 64 14
adj2 v1 70 3 33 90 29 7 9 97 15 90 29 7 9 100 10
adj2 adv1 37 54 28 80 16 82 17 80 14 87 11 85 11 89 8
Total 37 41 40 51 17 52 17 54 17 67 12 65 11 68 11

Table 4: Candidate ranking comparison of Sketch Engine (SE), FLAX (FL) and Elia (EL) across collocation types
for three samples: Top 4,626 (n-best collocates per headword where n refers to the number of collocations per
headword in the reference set), Top 14,550 (10-best collocates per headword) and Top 29,100 (20-best collocates
per headword) with the recall (R) and precision (P) values in percentages. Note that the recall and precision results
for the top 4,626 are the same (i.e. R=P) because the number of missed collocations (false negatives) and unwanted
collocations (false positives) is the same. And this is because the number of the TOP collocations in the first test
sample (4,626) is the same as the total number of collocations in the reference set (4,626).

per each headword in the reference set, Top 14,550
to the 10-best collocates per headword, and Top
29,100 to the 20-best collocates per headword.

As illustrated in Table 4, the association mea-
sure Log Dice used by Sketch Engine performed
slightly worse (37%) overall than Elia (40%) us-
ing FTW, a combination of MI and frequency,
and FLAX (41%) using raw frequency for the Top
4,626 sample. As the sample increased to 14,550,
Elia with a recall of 54% outperformed FLAX
(52%) and Sketch Engine (51%). In the even
larger sample of 29,100, Elia was still marginally
better reaching 68% whereas Sketch Engine out-
performed FLAX with a recall of 67% and 65%
respectively. It seems that Log Dice improves
its performance as more of the data is examined
whereas raw frequency acts in quite the opposite
way. However, it should also be pointed out that
the differences between all of the scores are very
subtle, less than 4% in all the samples. This is
even more pronounced in the overall precision re-
sults which, for all three resources, are the same
(17%) in Top 14,550 and almost the same (12%,
11%, 11%) in Top 29,100.

Looking at the individual CTs, an interesting
picture of differences emerges. Sketch Engine’s

measure performed consistently better for n1 n2,
n2 n1, v1 n2 and v1 adj2 in all three samples.
Elia’s measure performs consistently better for
n2 v1 and adj1 n2. FLAX seems to perform bet-
ter only for v2 adv1 and adj2 adv1 for Top 4,626
but it is not consistent for the other samples. Vari-
ability can be found not only among individual re-
sources but also among individual CTs within one
resource. For example, in Top 4,626, Sketch En-
gine reaches a recall of 19% for n1 n2 and of as
high as 70% for adj2 v1. Recall values for Elia
range from 37% (n1 n2) to 97% (adj2 v1) and for
FLAX from 7% (adj2 v1) to 86% (v1 adv2) in Top
14,550. The syntactic structure underlying collo-
cations seems to have a great impact on the results,
and thus should always be considered and speci-
fied as already suggested in some previous studies
(e.g., Evert and Krenn, 2001; Bartsch and Evert,
2014).

To sum it up, despite the apparent similarities
in the overall recall and precision values, it would
be misleading to conclude that the three measures
are equally efficient since they had a different data
from the identification step to start with. It be-
comes clear when looking at the individual col-
location types, for example v1 adj1 where Elia
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Figure 1: Comparison of different association measures (AMs) using Elia as a baseline.

reached 43% as compared to 0% by FLAX. This
could have been caused by the low recall (13%)
of FLAX in the identification part. The issue with
credit assignment is that it is not clear how much
of the success can be attributed to the identification
method discussed in the previous section and how
much to the metric itself. To exclude the identifi-
cation method as a factor, we decided to perform
another analysis: the comparison of different AMs
using the best-performing data from the candidate
identification step, that is Elia, as a baseline to find
out the differences when all things being equal.

4.2.1 Comparison of Different AMs with Elia
as a Baseline

Using Elia collocations as a baseline, we have
computed recall and precision for ten different
ranking measures described in section 2.2.2. As
in the previous section, we have computed it sep-
arately for the three samples of Top 4,626, Top
14,550 and Top 29,100, however, this time not for
all individual CTs separately. The formulas used
to compute each of the different AMs can be found
in Brezina et al. (2015, p. 169-170).

The results on candidate ranking, arranged pro-
gressively by the best measures in Figure 1, show
that recall curves for all AMs increase whereas
precision curves decrease with the increased sam-
ple sizes as expected. In terms of coverage, the
best performing measures are t-score and log like-
lihood across all samples with the recall values
of 42%, 56%, 70% and 42%, 55%, 69% respec-
tively. They are followed by Salience and FTW
with the same values of 40%, 54%, 68%. All of
these four measures exhibit a consistent behavior
increasing by about 14% with the increased sam-
ples. On the other hand, the raw frequency mea-

sure, even though reaching similarly high scores
for Top 4,262 (41%) and Top 29,100 (70%), in-
creases only by 1% for Top 14,550. The next two
measures MI3 and Log Dice lag slightly behind
with the scores of 36%, 50%, 64% and 36%, 49%,
64% respectively, consistently increasing by about
14%. The MI2 score performs significantly worse
with a recall of 23%, 36%, 51%. The most col-
locations are missed by the measures Delta P and
MI both reaching only a recall of 3%, 10%, 21%.

The precision values defining quality of the col-
locations point to very similar tendencies with t-
score and log likelihood reaching the highest pre-
cision in all three samples with the scores of 42%,
18%, 11% and 42%, 17%, 11% respectively and
with the FTW and Salience measures right be-
hind, both with 40%, 17%, 11%. MI3 and Log
Dice performs about the same with 37%, 16%,
10% and 36%, 15%, 10% respectively. Again, the
MI2 score misses significantly more collocations
than the previous measures reaching a precision
of 23%, 11%, 8%. Surprisingly enough, MI and
Delta P, both reached the lowest precision score of
3% for all samples. Thus, it can be concluded that
the sample size does not affect the precision of the
MI and Delta P association measures which, in the
case of MI, is consistent with the previous findings
by Evert and Krenn (2001).

These results question the dominant role of MI
for collocation extraction (Gablasova et al., 2017),
at least for language learning purposes. It also
questions the assumption that Log Dice is fairly
similar to MI or MI2 as our results suggests that it
is actually more similar to MI3 (Gablasova et al.,
2017). Furthermore, Delta P did not fulfill the
expectations as expressed by Gries (2013). How-
ever, in defense of Delta P, it must be pointed out
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that the reference list did not indicate the direction
of attraction for collocations, which is the under-
lying assumption of the Delta P measure, which
might be the reason for the poor results. On the
other hand, there are only subtle differences be-
tween some of the best-performing measures, such
as log likelihood and t-score or FTW and Salience.

5 Conclusion

The aim of this study was to evaluate three collo-
cation learning resources namely Sketch Engine,
FLAX and Elia on a pedagogical reference - Aca-
demic Collocational List, where all of them use
the same corpus of academic writings of univer-
sity students but different methods for colloca-
tion identification and different lexical association
measures for collocation ranking.

The findings indicate that using dependency
parsing (Elia) for collocation identification led to
much better results than using regular expressions
over tagged corpus (Sketch Engine and FLAX).
However, the success does not depend on the spe-
cific method entirely, but also on the quality of the
set of syntactic structures. Using the same method
with differently designed collocation types might
lead to very different results, as was the case for
Sketch Engine and FLAX.

The evaluation of collocation ranking has re-
vealed that, overall, some of the association mea-
sures perform equally well, such as t-score, log-
likelihood, FTW (used by Elia) and Salience. Raw
frequency (used by FLAX) was also found to per-
form well but acting inconsistently across differ-
ent sample sizes. The Log Dice measure (used
by Sketch Engine) worked best for the majority of
individual collocation types in comparison to raw
frequency and FTW. On the other hand, the widely
used MI and newly introduced Delta P were rela-
tively poor in comparison to other AMs, but exhib-
ited consistency in precision across varying sam-
ple sizes.

It has also become apparent that there are con-
siderable differences between individual colloca-
tion types, and therefore should always be consid-
ered as a factor in collocation extraction. How-
ever, a future line of work is required to substan-
tiate the consistency of these results on different
reference lists and corpora.
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B Supplemental Material

The authors have also released the code, reference
data, evaluation results and plots with a Readme
document on Github at https://github.
com/vishalbhalla/autocoleval to
assist the incremental research in the ACL-
NLP community. It contains the code for web
scraping of both Sketch Engine and FLAX,
as well as extracting the filtered collocations
for Elia. Since, the Data and Evaluation files
for all the three test sets (Sketch Engine,
FLAX and Elia) are large, these files can be
accessed from https://drive.google.
com/open?id=17eydi0KkviG2VxB12l_
oNt5LAhuQ6FR0.
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Abstract

In this paper, we present experiments that es-
timate the impact of specific lexical choices of
people writing in a second language (L2). In
particular, we look at misspelled words that in-
dicate lexical uncertainty on the part of the au-
thor, and separate them into three categories:
misspelled cognates, “L2-ed” (in our case, an-
glicized) words, and all other spelling errors.
We test the assumption that such errors con-
tain clues about the native language of an es-
say’s author through the task of native lan-
guage identification. The results of the ex-
periments show that the information brought
by each of these categories is complementary.
We also note that while the distribution of such
features changes with the proficiency level of
the writer, their contribution towards native
language identification remains significant at
all levels.

1 Introduction
Producing an utterance in a language, be it the na-
tive, second or n-th one, relies in large part on
the vocabulary range of the speaker. When deal-
ing with a second language L2, this range may
be correctly or incorrectly expanded through com-
monalities or similarities of form with the vocab-
ulary of the native language L1. Examples of this
process are cognates, which are words that have
the same ancestors or were derived from the same
sources, that we often approximate in computa-
tional approaches as words having similar forms
and similar meaning in L1 and L2, for example,
SPA. religión and ENG. religion. Research in psy-
cholinguistics and native language identification
have shown that using cognates when producing
L2 is common and shared across native speakers
of the same L1 to the degree that a quite accurate
phylogenetic language tree can be reconstructed
(Rabinovich et al., 2018).

In this paper, we analyze in parallel three of
the phenomena responsible for the incorrect ex-
pansion of L2’s vocabulary using L1 material:
misspelled cognates, L2-ed words, and all other
spelling errors. Misspelled cognates are words
that are misspellings from the point of view of
L2, but have a very close form in L2 and L1.
L2-ed words are something like false cognates
(not in the sense of false friends): words in L1
that were “adjusted” to seem and sound like le-
gitimate L2 words. For example, a Spanish na-
tive speaker could use the incorrectly anglicized
word lentaly instead of slowly (SPA. lentamente).
From the point of view of the L2 vocabulary, L2-
ed words are spelling errors, but they are special
because they have a very similar L1 form. Chen
et al. (2017) have shown that spelling errors, rep-
resented as character n-grams, are also very in-
dicative of an author’s L1, as they may capture
language-specific sound-to-spelling mappings.

The experiments presented in this paper aim to
analyze how much each of these phenomena re-
veal about the L2 speaker’s native language. We
analyze misspelled words and split them into cog-
nates, L2-ed words or all other misspellings, and
analyze their impact through the task of native lan-
guage identification (NLI). The goal of NLI is to
identify the native language (L1) of a person based
on his/her writing in the second language (L2).
The underlying hypothesis is that the L1 influ-
ences learners’ second language writing as a result
of the language transfer effect (Odlin, 1989). NLI
is usually approached as a multi-class classifica-
tion problem of assigning class labels representing
L1s to essays written in L2. The state-of-the-art
results for this task are usually in the 80%–90%
accuracy range, depending on the number of lan-
guages being considered, amount of data, etc. NLI
is an interesting example of a task which is hard
to perform for humans: the study of human per-
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formance in NLI (Malmasi et al., 2015) showed
that automated systems significantly outperform
human annotators (73% vs. 37% accuracy, respec-
tively).

We test the impact of the three phenomena –
misspelled cognates, L2-ed words, spelling er-
rors – on the subsets of the TOEFL (Blanchard
et al., 2013) and ICLE (Granger et al., 2009)
datasets that cover languages that use the Latin
script. The results of the multi-class classification
experiments show that the role of all these phe-
nomena is significant. Higher results are achieved
when features representing each of these are com-
bined, indicating that they are complementary for
the NLI task. Experiments on data split by profi-
ciency levels show that the L2-ed based features
have a higher impact the lower the proficiency
level, while the influence of the cognates grows
with the proficiency level. This is not surprising,
but it reveals an interesting phenomenon – when
people do not know a word in a target language,
they may make a “false cognate”, and while the
vocabulary of a proficient speaker is larger, they
still resort occasionally to this incorrect lexicon
expansion. Understanding the source and effects
of lexical choice in L2 speakers, and how this
changes with proficiency levels, could have direct
applications in second language teaching.

2 Related Work

Cognates. Cognates are words that have the
same ancestor, or were derived from the same
“borrowed” sources. The “cognatehood” of
word pairs may be obscured by phonological and
spelling changes in different languages, and by the
drift in their meaning from the common source:
e.g., milk (ENG.), latte (ITA.), gala (GER.) are
all cognates despite their current different forms,
while journey (ENG.) and journeé (FRA. day)
have a common etymological ancestor but their
current meaning has lost this connection (jour-
ney used to mean a day’s travelling). Because of
the lack of computational resources on word et-
ymologies until relatively recently, cognates have
been approximated in computational linguistics as
words that have similar form and meaning. The
influence of cognates as indicators of an author’s

native language has been explored in various ways
through the task of native language identification.1

Nicolai et al. (2013) add cognate-based features
to frequently used ones (e.g., character and word
n-grams, syntax production rules, misspelling fea-
tures) for the NLI shared task 2013 (Tetreault
et al., 2013). Cognates were detected by identi-
fying misspelled words whose form is closer to
an L2 word wL2 than to wL2’s translation in L1.
The authors report that cognate features, in spite
of being extracted just for 4 out of 11 languages,
improved the accuracy by 0.7% and reduced the
relative error rate by about 4%.

Rabinovich et al. (2018) investigate the cognate
effect on lexical choice in L2 of advanced non-
native speakers. They construct a focus set of more
than 1,000 words, that have synonyms (provided
by WordNet) with different etymologies (provided
by the Etymological WordNet), thus potentially
leading to different patterns of usage for speakers
with different L1s. The influence of cognates on
lexical choice is measured through frequency of
usage with respect to this list of words. Aggre-
gated evidence for all texts belonging to the same
L1 can be used to build a relatively accurate phy-
logenetic language tree for the Indo-European lan-
guage family (31 languages).

Nastase and Strapparava (2017) did not look
specifically at cognates, but used etymological in-
formation to build etymological ancestor profiles
for sets of English essays written by different L1
speakers. This representation quantified the in-
fluence of different etymological ancestors when
producing texts in L2, and showed that these in-
fluences are different depending on L1.

From the previous studies it is hard to see the
quantitative impact of cognates on the NLI task:
in the study by Nicolai et al. (2013) cognates were
used in combination with a large number of fea-
tures (including words and word 2-grams), while
in (Nastase and Strapparava, 2017; Rabinovich
et al., 2018) the authors were mostly concerned
with reconstructing language family tree and not
with the role of cognates in the task of NLI.

Spelling errors. Spelling errors were used in
one of the first studies on NLI (Koppel et al.,
2005). The authors focused on syntax errors and
eight types of spelling errors, e.g., missing let-

1Distinguishing between actual cognates and false friends
is not being done, so when we refer to cognates in the related
literature or in our own work, we mean both.
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ters, repeated letters, double letters appearing only
once, among others. The relative frequency of
each error type to the length of the essay was used
as the corresponding feature value. When combin-
ing these with commonly used features, i.e., func-
tion words, the authors obtained 80.2% accuracy
on a 5-way subset of the ICLE dataset.

Nicolai et al. (2013) focused on the misspelled
part of a word and used pairs of correct and mis-
spelled parts as character n-gram features. Mis-
spelling features contributed 0.4% accuracy to
their NLI shared task system when used in com-
bination with other commonly used NLI features.

Chen et al. (2017) also explored spelling errors,
testing the hypothesis that spelling errors capture
L1-biased sound-to-spelling mappings. Spelling
errors were represented as character n-grams, and
added to other commonly used features (word,
lemma, and character n-grams). Including these
typo-based features leads to an increase in NLI ac-
curacy of 1.2% on the TOEFL11 test set.

Flanagan and Hirokawa (2018) classified five
L1s from the lang-8 dataset (Japanese, Chinese,
Korean, Taiwanese, and Spanish) using 15 auto-
matically identified types of writing errors, achiev-
ing higher results than when using unbiased
words.

These studies clearly show that spelling errors
are influenced by an author’s L1. The source of
such errors was not of interest though, and they
may hide interesting linguistic phenomena, like
cognates and L2-ed words.

L2-ed words. The combination of languages
within one text has been studied before, un-
der the name of code switching or code mixing,
e.g., (Solorio et al., 2014). This switching/mixing
though happens at the word level, and lexical items
in the text belong fully to one language. In the
phenomenon we study here, the switching/mixing
happens below the word level, where the word in
a language L1 is inflected or adjusted to “fit” lan-
guage L2.

3 Methodology
To investigate the impact of L2-ed words and cog-
nates, we use the native language identification
task: we perform multi-class classification of es-
says written in L2 (English in our case) by peo-
ple with different native languages (L1s) – with
L1 as the class labels – using a representation of
these essays through features that capture these

phenomena. We use two datasets – TOEFL and
ICLE – previously used for NLI, and extract the
subsets that cover languages that use a Latin script.

3.1 Datasets

We use two datasets commonly used in NLI
research:

TOEFL (Blanchard et al., 2013): the ETS Corpus
of Non-Native Written English (TOEFL11)
contains 1,100 essays in English for 11 native
languages. We used a 4-language subset of the
corpus, focusing on the languages that use the
Latin script: French, German, Italian, and Span-
ish. This subset, to which we refer as TOEFL4,
contains 1,100 essays (with an average of 353
tokens per essay) for each of the four languages.

ICLE (Granger et al., 2009): consists of es-
says written by highly-proficient non-native
college-level students of English. We used a
4-language subset of the corpus that represents the
same languages as included in TOEFL4: French
(347 essays), German (437), Italian (392), and
Spanish (251). Overall, this subset, to which we
refer as ICLE4, contains 1,427 essays with avg.
690 tokens/essay.

The four languages represented in the TOEFL4
and ICLE4 datasets have shared etymological an-
cestors and therefore shared cognates, which is a
complicating factor in the classification.

3.2 Experiment setup
We used the (pre-)tokenized version of the
TOEFL4 dataset and tokenized ICLE4 with the
Natural Language Toolkit (NLTK) tokenizer2, re-
moving metadata in pre-processing. Each essay
was represented through the sets of features de-
scribed below, using term frequency (tf) weighting
scheme and the liblinear scikit-learn (Pedregosa
et al., 2011) implementation of Support Vector
Machines (SVM) with OvR (one vs. the rest)
multi-class strategy. We report classification ac-
curacy on 10-fold cross-validation experiments.

3.3 Features
Following previous studies on NLI, e.g., (Markov
et al., 2018a,b), we evaluate the impact of L2-ed
words and cognates in combination with the part-

2http://www.nltk.org
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of-speech (POS) tag and function word (FW) rep-
resentations. POS tags and function words (FWs)
are considered core features in NLI research (Mal-
masi and Dras, 2015), not susceptible to topic bias,
unlike word and character n-grams (Brooke and
Hirst, 2011).

An essay will be represented through vari-
ous combinations of the feature sets we con-
sider: POS & FW n-grams; n-grams from POS &
FW sequences including word-level L1 informa-
tion; character n-grams that represent misspelled
words.

3.3.1 Part-of-speech tags and function words
POS features capture the morpho-syntactic pat-
terns in a text, and are indicative of the L1, es-
pecially when used in combination with other
types of features (Cimino and Dell’Orletta, 2017;
Markov et al., 2017). POS tags were obtained with
TreeTagger (Schmid, 1999), which uses the Penn
Treebank tagset (36 tags).

FWs clarify the relationships between the
content-carrying elements of a sentence, and intro-
duce syntactic structures like verbal complements,
relative clauses, and questions (Smith and Wit-
ten, 1993). The FW feature set consists of 318
English FWs from the scikit-learn package (Pe-
dregosa et al., 2011).

3.3.2 Misspelled cognates, L2-ed words and
other misspellings

We build features that gather information from
misspelled words in the essays in the data. The
information about which L1 a cognate or L2-ed
word hints to is used as an attribute of the word.

Misspelled cognates. Several studies applied
discriminative string similarity to the task of cog-
nate identification (Mann and Yarowsky, 2001;
Bergsma and Kondrak, 2007; Nicolai et al., 2013).
Following the work by Nicolai et al. (2013), we
detect cognates by identifying the cases where the
closest correctly spelled L2 word we to the mis-
spelled word wm has a translation in an L1 wf to
which it is close in form, and wm is closer to wf

than to we. Formally:

1. For each misspelled English word wm iden-
tify the intended word we using a spell-
checking tool.3

3We use the Enchant spellchecking library:
https://www.abisource.com/projects/enchant/; 14,176
unique misspelled words were identified in TOEFL4 and
6,912 in ICLE4.

2. For each L1:

(a) Look up the translation wf of the in-
tended word we in L1.4

(b) Replace diacritics in wf with the corre-
sponding Latin equivalent (e.g., “é” →
“e”).

(c) Compute the Levenshtein distance D
between we and wf .

(d) If D(we, wf )< 3 then wf is assumed to
be a cognate of we.5

(e) If wf is a cognate and D(wm, wf ) <
D(we, wf ) then consider the L1 as a
clue of the native language of the au-
thor.6

L2-ed words. To identify the L2-ed, in our case
anglicized, words we take a misspelled word and
look for forms close to it in the L1 vocabularies.
The idea is that a misspelled word may be an L1
word that got anglicized, which is a clue for the L1
of the author.

We use the freely available lists of expressions
provided by the OmegaWiki project7 and extract
vocabularies for each of the L1 languages repre-
sented in our datasets. The statistics for each lan-
guage in terms of the number of expressions and
the extracted vocabularies is provided in Table 2.

We apply the following algorithm:

1. For each misspelled English word wm iden-
tify its closest word in some L1:

2. For wf in each L1:

(a) Replace diacritics in wf with the corre-
sponding Latin equivalent (e.g., “é” →
“e”).

(b) Compute the Levenshtein distance
D(wm, wf ).

(c) Identify the L1 with the smallest
D(wm, wf ) value, and if D(wm, wf ) <
5 then take wm to be an L2-ed version

4We use Python’s translation tool:
https://pypi.org/project/translate/

5Following Mann and Yarowsky (2001) we consider a
word pair (we, wf ) to be cognate if their Levenshtein dis-
tance (Levenshtein, 1966) is less than three.

6 If D(wm, wf ) < D(we, wf ) was for several L1s, we
opted for the one with the lowest D(wm, wf ) value. If the
lowest D(wm, wf ) value was the same for several L1s, the
word was discarded.

7http://www.omegawiki.org/Meta:Main Page

278



L1 TOEFL4 ICLE4
Misspelled Ratio, % Cognates Ratio, % L2-ed Ratio, % Misspelled Ratio, % Cognates Ratio, % L2-ed Ratio, %

French 8,150 2.31 884 0.25 3,457 0.98 3,038 1.34 281 0.12 1,211 0.53
German 7,544 1.99 425 0.11 2,869 0.76 3,913 1.69 244 0.11 1,259 0.54
Italian 8,403 2.58 585 0.18 3,249 1.00 3,223 1.43 267 0.12 1,105 0.49
Spanish 10,224 2.82 617 0.17 3,988 1.10 5,899 2.96 613 0.31 2,323 1.16
Total 34,321 2.41 2,511 0.18 13,563 0.95 16,072 1.82 1,405 0.16 5,898 0.67
Unique 14,176 580 5,754 6,912 414 2,770

Table 1: Statistics (absolute number and ratio (%) to the total number of words) of misspelled words, cognates,
and L2-ed words for each language in the TOEFL4 and ICLE4 datasets.

Language No. of
expressions

No. of unique words
(vocabulary)

French 32,184 21,433
German 31,450 28,378
Italian 26,764 18,561
Spanish 39,566 27,321

Table 2: Statistics of the number of expressions and the
extracted vocabularies for each of the languages.

of wf , and consider wm as a clue for the
native language of the author. 8

Table 1 presents the statistics of misspelled
words, cognates, and L2-ed words for each lan-
guage in the TOEFL4 and ICLE4 datasets, respec-
tively. The number of L2-ed words is much larger
than the number of cognates: in both datasets
around 40% were assigned the corresponding L1
(5,754 out of the 14,176 unique misspelled words
in TOEFL4 and 2,770 out of 6,912 in ICLE4).
This could be because of the tight constraint for
“cognatehood” we followed (Mann and Yarowsky,
2001). In TOEFL4, the cognate and the L2-ed
word lists have 350 elements in common (310 of
which have the same identified L1), while there
are 230 cognates that were not identified as L2-ed
words and 5,404 L2-ed words that were not iden-
tified as cognates. In ICLE4, the cognate and the
L2-ed word lists have 266 elements in common
(231 of which have the same identified L1), while
there are 148 cognates that were not identified as
L2-ed words and 2,504 L2-ed words that were not
identified as cognates.

We combine the L1s of misspelled cognates and
L2-ed words with the POS & FW representation.
As an example consider the two phrases: have a
happy ancianity and a good inocent
man.9 The identified L2-ed words and cognates

8If the lowest D(wm, wf ) value was the same for several
L1s, the word was discarded.

9Extracted from the training essays in the data we work
with (ICLE4: SPM04022.txt and TOEFL4: 00284.txt, re-
spectively).

are ancianity (ENG. old age) → SPA. ancian-
idad → L2-ed and inocent (ENG. innocent) →
SPA. inocente → cognate. The phrases are rep-
resented through POS & FW & cognates & L2-ed
words as have a JJ SPA-L2-ed and a JJ
SPA-cognate NN, respectively. Then n-grams
(n = 1–3) from this representation are extracted.

Spelling errors. Spelling errors may capture
language specific transcriptions of sound se-
quences, as influenced by the native language
(Chen et al., 2017): e.g., Spaniards often use c
instead of q, writing cuestion instead of question.
Following (Chen et al., 2017) we represent mis-
spelled words through character n-grams (n = 1–
3). When used, these features are added as a sep-
arate subset of the feature vector representing an
essay.

4 Results and Discussion
The impact of features based on misspelled cog-
nates, L2-ed words and character n-grams from all
misspellings is evaluated using the NLI task. We
report accuracy on 10-fold cross-validation exper-
iments on the full data sets. The set-ups consist of
various combinations of these features. Tests on
the TOEFL dataset split by proficiency levels will
allow us to assess how these features change with
higher language competency.

Results on the TOEFL4 and ICLE4 datasets
We first examine only the features obtained from
misspelled words – cognates, L2-ed, spelling error
(SE) character n-grams – and verify whether they
are informative for NLI: (i) we use just the aggre-
gated information about identified L1s as features;
(ii) we use them in combination with the spelling
error character n-grams (n = 1–3). We compare
the obtained results with the majority baselines
of 25.00% and 30.62% accuracy for TOEFL4 and
ICLE4, respectively. We then use as a baseline the
POS and FW features, to which we add the cog-
nates, L2-ed words, and spelling error character
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TOEFL4 ICLE4
Features Acc.% diff No. Acc.% diff No.
Majority baseline 25.00 30.62
Cognates 37.34 12.34* 4 38.55 7.93* 4
L2-ed 36.05 11.05* 4 44.85 14.23* 4
Cognates & L2-ed 39.84 14.84* 8 46.18 15.56* 8
Cognates & L2-ed & SE 54.55 29.55* 7,347 56.33 25.71* 6,391
POS & FW 1–3-grams 74.45 231,737 80.58 189,622
POS & FW 1–3-grams & cognates 75.50 1.05* 236,716 80.72 0.14 192,572
POS & FW 1–3-grams & L2-ed 75.80 1.35* 247,814 81.56 0.98 198,469
POS & FW 1–3-grams & cognates & L2-ed 76.20 1.75* 253,175 81.77 1.19 201,623
POS & FW 1–3-grams & SE 78.23 3.78* 238,929 82.75 2.17* 195,869
POS & FW 1–3-grams & cognates & L2-ed & SE 78.80 4.35* 260,367 82.61 2.03* 207,870

Table 3: 10-fold cross-validation accuracy for cognates, L2-ed words, their combination, and when combined
with spelling error (SE) character n-grams on the TOEFL4 and ICLE4 datasets, and for POS & FW 1–3-grams
combined with the cognate and L2-ed features and in combination with SE character n-grams. Diff stands for
difference: gain/drop; ‘*’ marks statistically significant differences.

Low Medium High
Features Acc.% diff No. Acc.% diff No. Acc.% diff No.
Majority baseline 51.09 28.64 35.35
Cognates 56.49 5.40* 4 39.81 11.17* 4 40.23 4.88* 4
L2-ed 58.12 7.03* 4 38.39 9.75* 4 36.24 0.89 4
Cognates & L2-ed 59.24 8.15* 8 42.57 13.93* 8 40.18 4.83* 8
Cognates & L2-ed &SE 60.79 9.70* 3,241 55.26 26.62* 6,031 45.95 10.60* 5,366
POS & FW 1–3-grams 62.92 34,970 74.33 148,878 67.71 152,105
POS & FW 1–3-grams & cognates 62.38 –0.54 35,609 75.57 1.24* 152,158 68.08 0.37 154,318
POS & FW 1–3-grams & L2-ed 65.16 2.24 37,214 76.17 1.84* 159,508 68.03 0.32 160,025
POS & FW 1–3-grams & cognates & L2-ed 64.54 1.62 37,922 77.09 2.76* 163,057 68.55 0.84 162,419
POS & FW 1–3-grams & SE 66.09 3.17 38,114 78.14 3.81* 154,774 70.07 2.36* 157,346
POS & FW 1–3-grams & cognates & L2-ed & SE 69.13 6.21* 41,066 79.25 4.92* 168,953 71.28 3.57* 167,660

Table 4: 10-fold cross-validation accuracy for cognates, L2-ed words, their combination, and when combined with
spelling error (SE) character n-grams for each proficiency level, and for POS & FW 1–3-grams combined with the
cognate and L2-ed features and in combination with SE character n-grams. Diff stands for difference: gain/drop;
‘*’ marks statistically significant differences.

L1 Low Medium High
No. % No. % No. %

French 63 19.6 577 26.5 460 24.2
German 15 4.7 412 18.9 673 35.3
Italian 164 51.1 623 28.6 313 16.4
Spanish 79 24.6 563 25.9 458 24.1
Total 321 7.3 2,175 49.4 1,904 43.3

Table 5: Data statistics for the three English proficiency
levels in TOEFL4.

n-grams. The POS tags of the cognates and L2-ed
words are replaced by the identified L1, and we
then build n-grams from this representation. SE
character n-grams are represented through sepa-
rate feature vectors (as explained in Section 3).

The result for this experiment is shown in Ta-
ble 3. The number of features (No.) is included.
Statistically significant gains with respect to the
baseline according to McNemar’s statistical sig-

nificance test (McNemar, 1947) with α < 0.05
are marked with ‘*’.

The improvement in terms of accuracy over the
majority baselines by more than 10 percentage
points achieved when using the proposed features
in isolation confirms that these features are highly
relevant for NLI. Combining these features further
boosts the results, showing that their L1 signal is
strengthened with each additional source of infor-
mation. The combination of L2-ed words and mis-
spelled cognates provide statistically significant
improvement in the majority of cases. Spelling er-
ror character n-grams further enhance the obtained
results. Replacing the POS tags of the misspelled
words by the corresponding L1s, and using word
n-grams of such features (n = 1–3) provides im-
provement on both datasets.

On the TOEFL4 dataset, the result for the com-
bination of the proposed features is similar to
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the performance of the bag-of-words (BoW) ap-
proach, while on the ICLE4 dataset the BoW ap-
proach outperforms our representation by around
5% accuracy. The BoW approach covers a multi-
tude of linguistic particularities, while the goal of
this work is to identify which particular character-
istics skew the language production in an L2.

As mentioned above, a complicating factor in
this classification is the fact that the four languages
represented in the dataset have shared etymologi-
cal ancestors and thus shared cognates. Further-
more, three of these languages are Romance lan-
guages, and thus are even closer, and may con-
found the Levenshtein distance computation.

Proficiency-level experiments The TOEFL
dataset contains information concerning the
proficiency levels of the students (low, medium,
high). We evaluated the impact of cognates and
L2-ed words within each proficiency level. It is
expected that the impact (as well as the frequency)
of L2-ed words will decrease with an increase in
proficiency.

The statistics for the number of essays per lan-
guage within each proficiency level is shown in
Table 5. The statistics for the misspelled words,
cognates, and L2-ed words (as a percentage of the
total number of tokens) for each language within
each proficiency level is provided in Figure 1.
As all these phenomena are gathered from mis-
spelled words, it is not surprising that their over-
all frequency decreases with the proficiency level.
The number of L2-ed words is still higher than
the number of cognates throughout all proficiency
levels and L1s. Analysis of the identified L2-ed
words reveal that many of them do have a com-
mon etymological ancestor as a word from L2, but
they are written in such a way that their Leven-
shtein distance from the L2 version is greater than
their distance from the L1 version. Using informa-
tion about shared etymologies could help make the
separation between words with shared etymolo-
gies and “corrupted” L1 words clearer.

The results for each proficiency level when cog-
nates and L2-ed words are evaluated separately
and in combination with spelling error (SE) 1–3-
grams, as well as when these features are com-
bined with the POS & FW representation, are pre-
sented in Table 4.

The results presented in Table 4 indicate that,
in the majority of cases, the influence of L2-ed
words gets weaker from low to high proficiency,

while the influence of the cognates grows with
the proficiency level, despite the fact that even for
higher levels of proficiency the number of L2-ed
words is higher than the number of cognates. This
shows that even high-proficiency language users
are prone to extend their vocabulary in L2 incor-
rectly, but following cognate principles, when no
fitting lexical item is readily available to them.

High improvement achieved for medium profi-
ciency can be related to a larger number of essays
for this level.10 Moreover, it can be noted that
higher results are usually achieved when these fea-
tures are combined, regardless of the proficiency
level.

Discussion In the experiments presented above,
we exploited only misspelled words to extract
L1-indicative features. While we do not expect
to find L2-ed words among the correctly spelled
words, there will be correct cognates. In order
to detect properly spelled cognates, we used ety-
mological information obtained from the Etymo-
logical WordNet (de Melo and Weikum, 2010).
We identify “perfect” cognates if the lemma oc-
curs in the Etymological WordNet’s L1 vocabu-
lary, while “not perfect” cognates are identified
as words (lemmas) that share an etymological an-
cestor and their Levenshtein distance < 3 (diacrit-
ics removed). The Levenshtein distance was used
since the ancestor can have multiple descendants.

When the L1s of the identified correct cognates
are used as features in isolation, they perform by
around 3 percentage points above the majority
baseline, but do not enhance the results when com-
bined with misspelled cognates and L2-ed words.
This could be related to the fact that correct cog-
nates are either closest to their L1 form, or are
part of a more basic vocabulary that all learners
have to master. We design features that capture
the distance between cognates in L2 and some
L1 – for correct cognates we use the average of
the Levenshtein distances for each L1 as a numeric
feature. These features outperform the majority
baseline by around 4% on TOEFL4 and 6% on
ICLE4. When combined with L2-ed words, mis-
spelled cognates, or POS & FW 1–3 gram repre-
sentations, the improvement on ICLE4 (1%–5%
improvement depending on the setting) is higher
than on TOEFL4 (1%–3% improvement depend-
ing on the setting), which could be due to the top-

10We do not balance the dataset by proficiency levels for
this experiment, because the dataset will become too small.

281



Figure 1: Ratio (%) of the misspelled words, cognates, and L2-ed words to the total number of words for each
language within each proficiency level.

Figure 2: Average Levenshtein distances for correct and misspelled cognates for each language within each profi-
ciency level.

ics or the high proficiency level of the ICLE es-
says.

Analysis of the average Levenshtein distances
in our datasets and within each proficiency level
for correct and misspelled cognates reveal that the
average Levenshtein distance is lower for correct
cognates (Figure 2), which indicates that learn-
ers tend to correctly use cognates when they are
closer to the form they are familiar with in their
L1. This distance increases with the proficiency
level, which can be due to the fact that learners
with high proficiency use more complex vocabu-
lary, with cognates that have a form that is more
distant from the one in L1.

Another factor to consider are false friends.
Since words are judged outside of their context
and based only on their form, false friends are not

distinguished from proper cognates. The word be-
came may appear correct, unless the larger context
is taken into account: I became a letter. Such a
usage would reveal the writer to be a native Ger-
man speaker, where bekommen means to receive.
Detecting false friends though is a more difficult
problem.

Gathering all such information would provide
additional insight on how the L1 vocabularies in-
fluence lexical choice in L2, and we plan to ad-
dress some of these issues in future work.

5 Conclusions
In this paper, we analyzed misspellings for partic-
ular clues about an essay author’s native language.
In particular, we identified misspelled cognates
and L2-ed (here, anglicized) words and analyzed
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the information they provided separately and com-
bined with other misspellings. Experiments on na-
tive language identification (NLI) showed that all
three phenomena provide useful information for
identifying the native language of the author.

An analysis of these phenomena at different lev-
els showed that although the frequency of mis-
spellings in general – and of L2-ed words – de-
creases with an increase in proficiency, as ex-
pected, their contribution to the NLI task remains
strong for all levels. When combined, the results
increase in most tested scenarios, showing that the
L1 signal is boosted by considering all these phe-
nomena together. We find it particularly interest-
ing that L2-ed words are still frequent at the high
proficiency level, showing that the impulse of us-
ing cognates is so strong that people make them
when they are not available.

In future work, we plan to explore deeper the
usefulness of cognates and L2-ed words, by distin-
guishing them from false friends, which we think
may be even more telling about the author’s L1.
We also plan to examine these phenomena – cog-
nates, L2-ed words, and misspelled words – on
datasets with other L2s, and include in the anal-
ysis languages that do not use the Latin script.
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Abstract

We present a new concept prerequisite learn-
ing method for Learning Object (LO) or-
dering that exploits only linguistic features
extracted from textual educational resources.
The method was tested in a cross- and in-
domain scenario both for Italian and English.
Additionally, we performed experiments based
on a incremental training strategy to study the
impact of the training set size on the classi-
fier performances. The paper also introduces
ITA-PREREQ, to the best of our knowledge
the first Italian dataset annotated with prereq-
uisite relations between pairs of educational
concepts, and describe the automatic strategy
devised to build it.

1 Introduction

Learning Objects (LO) are digital or non-digital
educational resources deliverable over the Inter-
net that can be employed in technology–supported
learning (Wiley, 2000). According to the Learn-
ing Technology Standards Committee, being small
and re-usable educational elements (e.g. lecture
notes, multimedia content, presentations) is what
mostly distinguishes LOs form other educational
resources (IEEE, 2002). Recommendations for
creating LOs in fact suggest that, although there
is no standard LO structure, the content should
be direct, succinct and homogeneous (Thompson
and Yonekura, 2005). Grounded in the notion of
object-oriented computing and programming, LO
are designed according to the idea that combining
small chunks of knowledge is what builds up an ef-
fective learning path. In order to promote sharing
and re-usability, LO repositories were made avail-
able on the web, where LOs are stored, collected
and can be searched by means of metadata pro-
vided by their authors (Tzikopoulos et al., 2009).
Teachers and instructional designers can highly
benefit from LO repositories since they can use

them to build educational materials such as text-
books, courses or, more in general, learning paths
by combining various LOs of the same subject.

Being able to give a pedagogical meaning to
the content of a set of LOs by ordering them re-
specting their pedagogical precedence is not triv-
ial: uncovering educational relationship between
LOs is a difficult and time consuming practice usu-
ally performed by domain experts (Gordon et al.,
2017). Among all pedagogical relations, the most
fundamental is the prerequisite relation, which
best describes pedagogical precedence since it de-
fines what one needs to know before approaching
a new content.

Previous work in course and LO sequencing and
knowledge tracing infers prerequisite relation be-
tween LOs based on their metadata and/or stu-
dents’ preferences and competences (De-Marcos
et al., 2009; Vuong et al., 2011; Piech et al., 2015;
Méndez et al., 2016). Educational Data Mining
methods usually rely also on graph information
of ontologies, university programs or Wikipedia
graph structure (Scheines et al., 2014; Chen et al.,
2016).

In this paper we present a novel method based
on deep learning applied to the task of automatic
prerequisite relations identification between con-
cepts to automatically create pedagogically moti-
vated sequences of LOs. To the best of our knowl-
edge, this is the first method that exploits exclu-
sively linguistic feature extracted from textual re-
sources. Considering only textual content is pos-
sibly the most complex condition to infer relation-
ships between educational concepts since it can-
not rely on any structured information. At the
same time this is also the closest condition to a
real world scenario, hence we aim to demonstrate
that textual content can be sufficient to infer a ped-
agogically motivated ordering of LO pairs.

To verify the effectiveness of our strategy, we
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performed experiments on the AL-CPL dataset
(Liang et al., 2018b), an English dataset manu-
ally annotated with prerequisite relations between
educational concepts, and on an Italian dataset
we created. Hence, we introduce ITA-PREREQ1,
the first Italian dataset, to the best of our knowl-
edge, annotated with prerequisite relations be-
tween pairs of concepts, built completely automat-
ically.

Along the paper, we use the terms Learning Ob-
ject (LO) and Wikipedia page interchangeably: in
a broad sense, Wikipedia entries can be consid-
ered Ls (Nash, 2005), moreover previous work
in related fields represent educational units as
Wikipedia pages (Gasparetti et al., 2018). This
fits our needs since a Wikipedia page consists of
textual content pertaining to a single unit of learn-
ing. The term concept is also frequently used in
the literature referring to educational units in gen-
eral, and annotated dataset are usually described
as identifying prerequisite relations between con-
cepts. In this paper we use the term concept rely-
ing on the same sense of Liang et al. (2018b) as
equivalent to the term LO.

The remaining part of the paper is organised as
follows. First we present related work (Sec 2),
then, after briefly presenting our approach (Sec.
3), we describe in more detail the data (Sec. 3.1),
used features (3.2) and the classifier (Sec. 3.3).
We also provide an insight of feature analysis in
Sec 3.2.1. Experiments, results and incremental
training tests are described in Section 4. In Sec-
tion 5 we conclude the paper.

Our Contribution. In this paper, we present: (i)
the first system based on neural network which ex-
ploits only linguistic features extracted from LO
content and does not rely on Wikipedia graph
or LO metadata information; (ii) the first Italian
dataset annotated with prerequisite relations be-
tween pairs of concepts (ITA-PREREQ) and the
automatic strategy devised to construct it; (iii) the
first system for prerequisite relations extraction on
Italian.

2 Related Work

Identifying prerequisite relations between educa-
tional materials is a task that has recently gained
much attention both in the NLP community, aided
by the fact that it is applicable to many contexts,

1http://www.italianlp.it/resources/

such as curriculum planning (Agrawal, 2016),
course sequencing (Vuong et al., 2011), reading
list generation (Gordon et al., 2017), automatic as-
sessment (Wang and Liu, 2016) and domain on-
tology construction (Zouaq et al., 2007; Larranaga
et al., 2014).

NLP techniques usually exploit structured in-
formation (e.g. hyperlinks, citations, DBpedia
structure) combined with content-based informa-
tion extracted from educational materials, like sci-
entific literature (Gordon et al., 2016; Li et al.,
2019), knowledge units in courses (Yang et al.,
2015; Chaplot et al., 2016; Pan et al., 2017; Li
et al., 2019) or Learning Objects (Gasparetti et al.,
2018), often understood as Wikipedia pages (Gas-
paretti et al., 2015). Talukdar and Cohen (2012)
presented the first work on predicting prerequi-
site structure of concepts using Wikipedia, which
eventually became the most widely used resource
for this task. They collected a manually annotated
dataset of page pairs using crowd-sourcing and
then trained a MaxEnt classifier using Wikipedia
graph features, page content and edits to repro-
duce the prerequisite structure between pages. The
classifier was tested both in and across domains,
obtaining higher results in terms of accuracy if
compared against a random baseline. The same
dataset was used by (Liang et al., 2015) to test
the RefD metric, that models the prerequisite re-
lation by measuring how differently two concepts
refer to each other using the tf-idf measure. Re-
sults are comparable with the MaxEnt classifier
but the metric does not take into account all the
available information in the resource so we argue
that it could be improved further. The RefD metric
was also used by (Wang et al., 2016) in a method
that jointly extracts relevant concepts and prereq-
uisite structure from textbooks exploiting also ex-
ternal knowledge from Wikipedia. Relying on
textbooks but not on structured resources, Adorni
et al. (2019) describe a method to infer prerequi-
site relations between concepts using burst anal-
ysis of concept occurrences in text and patterns
based on temporal reasoning to identify possible
propaedeutic relations.

Machine and deep learning techniques have
been applied only recently to the prerequisite
learning task. In (Liang et al., 2018b,a), the au-
thors investigated the effects of integrating an ac-
tive learning strategy in automatic extraction of
prerequisites using a Random Forest classifier.
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Gasparetti et al. (2018) proposed a ML methods
based on Multilayer Perceptron exploiting LOs,
Wikipedia pages of concepts mentioned in the
LOs and Wikipedia hierarchical category struc-
ture. Roy et al. (2018) presented a supervised
learning method using a Siamese Network to pre-
dict prerequisite relations between University and
MOOC courses.

The above methods strictly rely on Wikipedia
graph information, which they report as highly in-
formative, but that is not available when applying
the method on different educational materials. We
show how comparable results can be obtained con-
sidering only textual information.

Another acknowledged limit of the above meth-
ods is the need of large annotated datasets. Man-
ual annotation by domain experts is the most com-
monly adopted strategy to build such resources,
regardless the knowledge unit considered (Wang
et al., 2016; Pan et al., 2017; Liang et al., 2017;
Alzetta et al., 2018; Fabbri et al., 2018), with the
notable exception of the crowd-sourcing strategy
of Talukdar and Cohen (2012). The dataset we
present in this paper is the first dataset annotated
with prerequisite relations between concepts for
Italian build completely automatically.

3 Our Approach

We tackle the problem of LO ordering as a task
of automatic prerequisite relationship identifica-
tion between LOs, here defined as follows: given a
pair of LOs (A, B), we predict whether or not B is a
prerequisite of A. As mentioned above, we define
a LO as a concept corresponding to a Wikipedia
page.

We trained deep learning models to predict
whether or not two concepts are in a prerequisite
relationship using a pre-trained word embedding
lexicons and a set of linguistic features extracted
from the pages of the concepts in the pair. The
model was tested on two datasets: ITA-PREREQ,
an Italian dataset annotated with prerequisite rela-
tions, and, to prove the effectiveness of the model,
also on AL-CPL, an English dataset already used
for the task of automatic prerequisite identifica-
tion. In particular, the AL-CPL dataset was used
both in its original and reduced version, as de-
scribed in the next Section.

AL-CPL
Domain Concepts Pairs Prerequisites
Data Mining 120 826 292
Geometry 89 1,681 524
Physics 153 1,962 487
Precalculus 224 2,060 699
Total 586 6,529 2,002

ITA-PREREQ / English Reduced
Domain Concepts Pairs Prerequisites
Data Mining 75 429 154
Geometry 73 1,338 430
Physics 131 1,651 409
Precalculus 176 1,504 502
Total 455 4,922 1,495

Table 1: Number of concepts, pairs, pairs show-
ing a prerequisite relation for each domain of each
dataset and total values considering all domains for
each dataset.

3.1 Dataset

For our experiments on the English language,
we relied on the AL-CPL Dataset (Liang et al.,
2018b), which is in turn based on the Wiki Con-
cept Map dataset (Wang et al., 2016).

The Wiki Concept Map dataset is a manually
constructed dataset consisting of binary-labelled
concept pairs collected from textbooks on differ-
ent educational domains: data mining, geome-
try, physics and precalculus. Concepts mentioned
in the textbooks and appearing in the title of a
Wikipedia page were considered domain concepts.
Among them, key concepts and prerequisite rela-
tionships between them were annotated by experts
for each domain, resulting in a concept map, a spe-
cific type of knowledge graph where each node is
a scientific concept and edges represent pedagog-
ical relations. Pairs not having prerequisite rela-
tion were also annotated, therefore the final dataset
consists of both positive and negative pairs.

In Liang et al. (2018b) the dataset was expanded
by adding (i) irreflexive and (ii) transitive rela-
tions: considering A, B and C as distinct concepts,
(i) add (B, A) as a negative sample of (A, B); (ii)
add (A, C) as positive sample if (A, B) and (B, C)
are positive samples.

The AL-CPL dataset was also used by us to
build ITA-PREREQ, the first Italian dataset an-
notated with prerequisite relation between pair of
concepts, which we used to test our model on
Italian. Considering the concepts of the AL-CPL
dataset, we retrieved their Italian Wikipedia pages
by matching the page title with the concept name.
If the Italian page of a concept was not available,
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the concept was excluded from the dataset. At
the end of this process, we obtained an automat-
ically constructed version of the AL-CPL dataset
for Italian with a subset of 418 concepts (77.40%
of the original dataset).

Note that the dataset only provides concept
names (i.e. page titles), which means that down-
loading the pages from Wikipedia at different
times might results in a slightly different corpus,
since Wikipedia pages are frequently edited. In
our case, we used the latest Wikipedia dump at the
time of the experiments (February 2019).

Considering such Wikipedia impact factors (i.e.
editing and differences between languages), we
created a third dataset, again generated starting
from AL-CPL. We call this version English Re-
duced since it is built excluding all those English
Wikipedia pages that do not have a correspond-
ing Italian one. Therefore, the size of English Re-
duced is the same of ITA-PREREQ. The aim of
having this dataset is to check the real impact of
languages differences by balancing the number of
pages taken into account, as we will discuss fur-
ther in the next Section.

Table 1 summarises the statistics of the three
datasets. Although ITA-PREREQ and English Re-
duced resulted in smaller datasets in terms of both
concepts and relations, their sizes are suited for
training our systems.

3.2 Features

For each concept pair, we extracted two differ-
ent sets of linguistic features: (i) lexical features,
i.e. features that pertain to a single concept/page,
and (ii) global features, i.e. features derived from
the combination of concepts in pairs. All features
were extracted for the AL-CPL, ITA-PREREQ
and English Reduced datasets.

Hereafter, we denote by A and B the content of
the Wikipedia page A or B; (A, B) is how we refer
to the concept pair, while At/Bt refers to the title
of the corresponding page.

Lexical features. The first type of feature cor-
responds to pre-trained word embeddings (WE)
computed for the first 400 words of each
Wikipedia page. Specifically, we used a WE lex-
icon with 128 dimensions built with word2vec
(Mikolov et al., 2013) both for Italian and English.
We generated the two lexicons using the itWac and
ukWac corpora, two collections of approximately
2 billion words constructed from web pages under,

respectively, the .it and .uk domains (Baroni et al.
2009, Ferraresi et al. 2008).

Global features. The second type of feature was
devised to extract linguistic information from both
A and B Wikipedia pages. Specifically, for each
pair (A, B), we extracted the following set of 16
text-based features:

• In text (#1, #2): if Bt/At appears in A/B.

• Count (#3, #4): how many times Bt/At is
mentioned in A/B.

• In first line (#5, #6): if Bt/At appears in A/B’s
first line, i.e. A/B definition.

• In title (#7): If Bt appears in At.

• Length (#8, #9): the number of words of A/B.

• Jaccard Sim. (#10): the Jaccard similarity be-
tween A and B.

• Jaccard Sim. (Nouns) (#11): the Jaccard sim-
ilarity between nouns appearing in A and B.

• RefD (#12): the RefD metric between A and
B (Liang et al., 2015).

• LDA Entropy (#13, #14): the Shannon en-
tropy of the LDA vector of A/B. Note that
we trained three different LDA (Deerwester
et al., 1990) topic models, one for each
dataset.

• LDA Cross Entropy (#15, #16): the cross en-
tropy between the LDA vector of A/B and
B/A.

Features from #1 to #6, #8, #9 and form #13
to #16 were used also in Liang et al. (2018a),
but we expanded their set of features considering
mentions in titles and Jaccard Similarities between
both whole page contents and nouns only. Our set
of linguistic features includes also the RefD met-
ric (Liang et al., 2015), a feature usually consid-
ered a graph-based feature, that we adapted in or-
der to be applicable also to those contexts where
no structured information (i.e. hyperlinks) is pro-
vided. In fact, contrary to Liang et al. (2015)
where the RefD value is computed considering hy-
perlinks between Wikipedia pages, we computed
the metric using the mention of concept B/A in the
page content of A/B, regardless the association of
an hyperlink to that mention. Specifically, we im-
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plemented RefD as follows:

RefD(A,B) =

∑N
i=1 r(ci, B) · w(ci, A)
∑N

i=1 w(ci, A)
−

∑N
i=1 r(ci, A) · w(ci, B)
∑N

i=1 w(ci, B)

where ci is a concept from our concept space C (all
the Wikipedia articles in the domain); r(ci, B) is a
binary indicator showing whether ci is mentioned
in the content of page B; w(ci, A) is a weight indi-
cator of the importance of ci to page A (measured
in terms of tf-idf).

3.2.1 Feature Analysis
In order to understand the relevance and behaviour
of the global features in different domains and lan-
guages, we decided to perform feature analysis.

Following Liang et al. (2018a), we computed
the feature importance by ”mean decrease impu-
rity” using an Extra-Trees Classifier, an imple-
mentation of a decision tree classifier. We decided
also to perform the analysis using both the ITA-
PREREQ and English Reduced dataset in order to
compare the results in a cross-lingual scenario.

As we can see in Table 2, the results obtained
from the English Reduced dataset show that, de-
spite the ranking positions, there are many fea-
tures that are common to all four domains. Specif-
ically, the top features are RefD, LDA (entropy
and cross-entropy), Length of B and Bt in first
line of A. Moreover, we can notice that, except
for graph features, our results are comparable to
those obtained by Liang et al. (2018a). Neverthe-
less, the two rankings present some differences:
e.g. Length of A/B tends to be more significant for
our dataset. This could be to the fact that, as men-
tioned, the Wikipedia version used for our exper-
iments could be different if compared to the one
used by Liang et al. (2018b). It is also important
to notice that the English Reduced dataset contains
less concept pairs with respect to the original one.

Comparing the results according to the two lan-
guages, we can notice that the most important fea-
tures tend to be quite similar. We can, however,
identify some differences. For instance, we ob-
serve that Data Mining in ITA-PREREQ is the
only domain for which RefD is not the most sig-
nificant feature. Interestingly enough, the first 4
positions in the English Reduced dataset for Ge-
ometry, Physics and Precalculus seem to be more
homogeneous when compared to the Italian ones.

Figure 1: M3 architecture. M1 roughly corresponds to
the left part of the architecture.

3.3 Classifier
For our LOs ordering experiments, we tested three
different neural network models: (M1) one that
learns to classify the binary labels using only pre-
trained WE, (M2) one that learns using the global
features automatically extracted and (M3) the last
one which merges M1 with the input of M2.

M1 is composed of two identical LSTM-based
sub-networks with 32 units, whose outputs are
concatenated and classified by the outer Dense
Layer. Each sub-network receive as input the
WE of the first 400 words of the corresponding
Wikipedia page of a given concept pair (A, B). The
two LSTM outputs are then concatenated (VA ⊕
VB) and passed to a last Dense Layer.

M2 is based on a feedforward neural network
that takes as input the global features of the pair
(A, B) and passes them to a multilayer perceptron
neural network (3 layers with ReLU activation).

M3 (represented in Figure 1) combines the pre-
vious two, joining the two sub-networks of M1
with the input of M2.

Each output layer of the three models consists
of a single dense unit with sigmoid activation
function.

The models are trained maximising the F-Score
on the validation set, which corresponds to the
30% of the training data. The training stops after
a certain number of epochs without improvement.

4 Experiments

We tested our approach predicting in-domain and
cross-domain prerequisite relationships. Since the
majority of (A, B) pairs do not present a prerequi-
site relation, we balanced the training and test sets
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ITA-PREREQ
Data Mining Geometry Physics Precalculus
Length of B RefD RefD RefD
Length of A Bt in text of A Length of B Length of B

RefD Length of B LDA entropy of B Bt in first line of A
Jaccard Sim. LDA entropy of B Length of A LDA entropy of B

Jaccard Sim. (Nouns) Bt in first line of A LDA cross-entropy of B/A Length of A
LDA entropy of B At in text of B LDA cross-entropy of A/B Jaccard Sim.
LDA entropy of A Length of A LDA entropy of A Bt in text of A

LDA cross-entropy of B/A LDA entropy of A Jaccard Sim. Jaccard Sim. (Nouns)
LDA cross-entropy of A/B LDA cross-entropy of A/B Jaccard Sim. (Nouns) LDA cross-entropy of A/B

Bt in first line of A LDA cross-entropy of B/A Bt in first line of A LDA entropy of A
English Reduced

Data Mining Geometry Physics Precalculus
RefD RefD RefD RefD

Length of B Bt in first line of A Bt in first line of A Bt in first line of A
LDA entropy of B LDA entropy of B Length of B Length of B
LDA entropy of A Length of B LDA entropy of B LDA entropy of B

LDA cross-entropy of B/A At in text of B Length of A At in first line of B
Lenght of A LDA cross-entropy of B/A LDA cross-entropy of A/B Length of A

LDA cross-entropy of A/B LDA entropy of A Count of Bt in text of A LDA entropy of A
Jaccard Sim. Bt in text of A LDA cross-entropy of B/A Jaccard Sim. (Nouns)

Jaccard Sim. (Nouns) Jaccard Sim. Jaccard Sim. (Nouns) Jaccard Sim.
Bt in first line of A Jaccard Sim. (Nouns) At in text of B LDA cross-entropy of A/B

Table 2: Rankings of the first 10 features for each domain in the ITA-PREREQ and English Reduced datasets.

by oversampling the minority class.
All experiments were performed on AL-CPL,

ITA-PREREQ and English Reduced datasets. As
baseline, we used the Zero Rule algorithm, and F-
Score as evaluation metric.

4.1 Experimental Settings

We run experiments using the three classifiers pre-
sented in Sec 3.3 on each dataset, considering each
of the four domains independently (i.e Data Min-
ing, Geometry, Physics and Precalculus). Each
classifier was tested both in a in-domain and cross-
domain scenario.

To perform in-domain experiments, we trained
and tested the classifiers on concept pairs belong-
ing to the same domain. The evaluation is per-
formed using a 5-fold cross validation. Cross-
domain experiments were performed in a leave-
one-domain-out manner: classifiers were trained
on three domains and tested on the fourth.

4.2 Results and Discussion

In-domain. As it can be noted in Table 3,
our systems performs extremely well for the in-
domain setting, achieving high scores for both En-
glish and Italian pages. Note that our results al-
ways outperform both the Zero Rule baseline and
the results obtained by Liang et al. (2018a) for all
domains. This confirms our hypothesis: it is possi-
ble to identify prerequisite relations between edu-

cational materials using linguistic information ex-
tracted from textual content alone.

Best results are obtained using M3, the classi-
fier that exploits both lexical and global features.
Interestingly, M1 model performs are constantly
better than M2, especially for the Data Mining do-
main: this suggests that lexical information from
the WE lexicon contributes significantly.

Although comparable, the AL-CPL dataset is
the one obtaining best results, with an average
F-Score of 92.21%. This is probably due to
the fact that the other two datasets are smaller
than AL-CPL in terms of number of Wikipedia
pages. However, comparing the results obtained
with ITA-PREREQ and English Reduced we no-
tice that ITA-PREREQ is the one that achieves
lower results. This could be due to differences in
the composition of the two datasets. For exam-
ple, we noticed that there is a high difference in
the average page length (number of tokens) of the
two languages: for English Wikipedia pages it is
about twice the Italian ones (2,728 and 1,073 to-
kens respectively). The impact of this characteris-
tic can be twofold, both on the lexical and global
features. For what concerns the lexical features,
since we considered WE of the first 400 tokens of
each Wikipedia page this means that if a page is
shorter then that our network can acquire less in-
formation. As proof, the number of pages shorter
than 400 tokens is higher in ITA-PREREQ (138)

290



In-domain
Data Mining Geometry Physics Precalculus Avg.

ITA-PREREQ

Baseline 66.66 67.86 75.22 66.66 69.1
M1 72.45 86.89 79.28 90.53 82.28
M2 64.25 85.27 76.26 89.02 78.7
M3 77.91 90.01 85.08 93.91 86.72

English Reduced

Baseline 66.66 67.86 75.22 66.66 69.1
M1 85.36 92.03 84.4 90.84 88.15
M2 70.78 89.05 78.52 89.62 81.99
M3 85.6 94.1 88.49 95.22 90.85

AL-CPL

Baseline 66.66 68.82 75.17 66.66 69.32
M1 88.81 92.43 83.49 92.48 89.30
M2 73.29 89.66 80.72 90.9 83.64
M3 89.66 95.69 88.54 94.95 92.21

Liang et al. (2018a) RF 76.7 89.5 69.9 88.6 81.17
Cross-domain

Data Mining Geometry Physics Precalculus Avg.

ITA-PREREQ

Baseline 66.66 67.86 75.22 66.66 69.1
M1 28.07 62.99 45.34 59.88 49.07
M2 37.09 79.53 71.56 83.66 67.96
M3 30.36 76.33 69.6 83.4 64.92

English Reduced

Baseline 66.66 67.86 75.22 66.66 69.1
M1 47.83 69.17 28.97 69.18 53.78
M2 59.91 75.8 75.05 85.81 74.14
M3 41.9 80.24 58.33 79.52 64.99

AL-CPL

Baseline 66.66 68.82 75.17 66.66 69.32
M1 37.89 70.04 39.31 71.98 54.80
M2 50.89 80.41 74.74 87.14 73.29
M3 38.78 82.53 63.67 84.41 67.34

Table 3: In- and cross-domain results in terms of F-Score obtained by the three models and the baseline on each
domain for each dataset. The in-domain setting also shows results obtained by Liang et al. (2018a) using a Random
Forest (RF) classifier.

than English Reduced (8). Additionally, global
features could be affected by the fact that English
Wikipedia pages tend to be linguistically richer
than their Italian counterparts containing more in-
formation and mentions to related concepts.

Cross-domain. Observing the results obtained
in the cross-domain setting, we notice a significant
performance drop if compared to in–domain re-
sults (see Table 3). The reason might be due to dif-
ferences in the topic coverage of some domains in
Wikipedia. Following (Wang et al., 2016), we be-
lieve that fundamental and broad subjects, such as
precalculus and geometry, have more clear learn-
ing dependencies expressed through Wikipedia,
while Data Mining, which obtained the lowest
scores with our models, being a specific and rel-
atively newer topic presents shorter pages, which
means less information. Another possible expla-
nation could be that pages belonging to the same
domain are more homogeneous internally in terms
of content structure, so it is easier for the networks
to identify regularities.

Interestingly, contrary to what happens for the
in-domain setting, Table 3 shows that the main

contribution to the cross-domain results is given
by the global features, most likely because they
can detect domain-independent properties. Word
embedding lexicon alone (M1 model) is not suf-
ficient to exceed the baseline, with the only ex-
ception of Geometry ad Precalculus. Since these
two domains share more lexicon than the others,
we assumed that our model could perform better
if trained only on a single domain that is lexically
close to the testing one.

To test this hypothesis, we computed the Jac-
card similarity between pairs of domains using all
their Wikipedia pages in order to define lexically
close pairs and use them to perform cross-domain
experiments, i.e. one domain for training and one
for testing.

Despite low results still below the baseline, we
identified a correlation between lexical similarity
between domains and obtained scores. For in-
stance, results achieved using two domains with
high Jaccard similarity (0.35) such as Precalcu-
lus and Geometry are much higher that those ob-
tained comparing two domains with low Jaccard
similarity (0.28), such as Precalculus and Physics
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Figure 2: Incremental training strategy results for ITA-PREREQ and AL-CPL compared to the respective baselines.

(70.01% and 44.49% respectively).
However, considering that cross-domain exper-

iments prove that further work needs to be done
with this respect, in the next Section (4.2.1) we
present another in-domain strategy based on incre-
mental training with the aim of studying the im-
pact of the training set size on the classifier per-
formances.

4.2.1 Incremental Training Strategy
For the purposes of this paper, we describe incre-
mental training strategy as the process of adding
incrementally new concept pairs examples into the
training set. Specifically, for each domain in the
ITA-PREREQ and AL-CPL datasets we split the
dataset in training and test set with 70% and 30%
of the total examples, respectively.

We performed 5 experiments, feeding the M3
neural network model with different runs of 10%,
20%, 25%, 50% and 100% of the training set.
All experiments, excluding the one with 100% of
training samples, were performed using a k-fold
cross validation strategy, with k equal to 10, 5, 4
and 2 according to the percentages of data samples
previously defined.

Figure 2 reports results obtained for both ITA-
PREREQ and AL-CPL datasets. As we can see,
our model achieves good results even using lim-
ited portions of the ITA-PREREQ training data.

Specifically, for Geometry and Precalculus, even
using only 10% of the training data the results we
obtained are much higher than the baseline and
they improve as the percentage of data samples in
the training set increases. In respect to the Physics
domain, we outperform the baseline by feeding
our model with 20% of the training data. Using
instead only 10% of the training data we obtained
results comparable to those obtained by the base-
line algorithm (71.78% and 71.79% respectively).

Data Mining is the only domain for which our
classifier needs more training examples in order to
obtain acceptable results. In fact, even if with 25%
of the training set we can outperform the baseline
outcomes, it is only with 100% of the examples
that we are able to achieve satisfying results. This
could be due to the fact that, as said previously,
Data Mining is a more specialised topic with less
clear prerequisite relations. Moreover, since Data
Mining contains fewer concept pairs, it could be
that a training set with only 10% or 20% of the
concept pairs (38 and 77 respectively) is not suffi-
cient for the network to identify regularities.

Results obtained for the AL-CPL dataset be-
have quite similarly, although we notice a faster
increase in performances, especially for those do-
mains that achieved lower results in the previous
experiments (Data Mining and Physics).
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5 Conclusion

In this paper we presented the results obtained
on automatic prerequisite identification between
LOs using a novel system based on neural net-
work which exploits only linguistic features and
does not rely on Wikipedia graph or LO metadata
information. We performed our experiments on
English and on a new Italian dataset, both in a in-
and cross- domain scenario for four different do-
mains.

The experiments demonstrated the effectiveness
of our deep learning model and offer important in-
sights into the exclusive use of linguistic feature
on the task. The neural network achieved very
good results for the in-domain setting, while we
noticed a significant drop in performance for the
cross-domain scenario. In the cross-domain set-
ting, lexical features proved to be not well suited
for the task, while global features obtained much
better results, despite their simplicity. We thus
think that further work needs to be done to investi-
gate whether or not complex global features could
improve the effectiveness of concept prerequisite
learning models.

In the paper we also presented ITA-PREREQ,
the first dataset annotated with prerequisite re-
lation between concepts for Italian built starting
from an English corpus (AL-CPL) with a com-
pletely automatic strategy.

The final goal would be to integrate this system
as part of a educational design process, suggest-
ing personalised learning paths, possibly in very
distant domains from those used here, such as the
humanities. We will address this lines of research
in future work.
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Abstract

Existing example retrieval systems do not in-
clude grammatically incorrect examples, or
only present a few examples, if any. Even if
a retrieval system has a wide coverage of in-
correct examples along with the correct coun-
terparts, learners need to know whether their
query includes errors. Considering the usabil-
ity of retrieving incorrect examples, our pro-
posed method uses a large-scale corpus and
presents correct expressions along with incor-
rect expressions using a grammatical error de-
tection system so that the learner does not need
to be aware of how to search for examples. In-
trinsic and extrinsic evaluations indicate that
our method improves the accuracy of example
sentence retrieval and the quality of a learner’s
writing.

1 Introduction

Grammatical error detection for learners of En-
glish as a second language (ESL) is widely stud-
ied. However, there are few studies on gram-
matical error detection for learners of Japanese as
a second language (JSL). Most studies on gram-
matical error detection in Japanese focus on a
learner’s particular error types, mainly with parti-
cles (Suzuki and Toutanova, 2006; Imamura et al.,
2012). Among others, there are studies using
phrase-based statistical machine translation (PB-
SMT), which does not limit the types of gram-
matical errors made by a learner (Mizumoto et al.,
2011). However, PBSMT-based grammatical error
detection cannot consider long-distance relation-
ships because it relies on either character or word
n-grams.

A standard method that supports the effort of
learning a second language is the use of examples.
Example retrieval systems such as Rakhilina et al.
(2016) and Kilgarriff et al. (2004) in particular
check for the appropriate use of words based on

the context in which they are written. However,
in such a system, if the query word is incorrect,
finding appropriate examples is impossible using
ordinary search engines, such as Google. Even
if learners have access to an incorrect example
retrieval system, such as Kamata and Yamauchi
(1999) and Nishina et al. (2014), they do not know
how to search for the examples because they do
not know whether their query includes errors.
Moreover, they are often unable to rewrite a com-
position in the absence of correct versions of the
incorrect examples. These systems are primarily
developed for use by Japanese teachers. As such,
they are not as helpful for learners who do not have
a strong background in Japanese.

Considering this, our study develops an ex-
ample sentence retrieval system1 with grammati-
cal error detection using the large-scale Lang-82

dataset for JSL by focusing on the usability of
automatic incorrect example retrieval. The main
contributions of this work are as follows:

• This is the first study that tackles grammati-
cal error detection in Japanese using a neural
network. It shows the state-of-the-art F score
on the Lang-8 dataset and establishes a new
baseline.

• To the best of our knowledge, our system is
the first incorrect example sentence retrieval
system using neural grammatical error detec-
tion. This function allows a user to recognize
which part of the query is wrong.

• Our system seamlessly shows the incorrect
sentences, and the corresponding sentences
corrected by a native speaker. Thus, learners

1http://cl.sd.tmu.ac.jp/sakura/v3
2Multi-lingual language learning and language exchange

social networking service. http://lang-8.com/
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Name Correct Sent. Incorrect Sent. Revised Sent. Error Detection

Learners’ Error Corpora of Japanese Searching Platform ✓ ✓ ✓ ×
Tagged KY corpus ✓ ✓ × ×
Proposed system ✓ ✓ ✓ ✓

Table 1: Features of example retrieval systems for Japanese language learners. “Correct Sent.” indicates whether
the system can display the correct sentences; “Incorrect Sent.” indicates whether the system can display the incor-
rect sentences; “Revised Sent.” indicates whether the system can display the revised sentence corresponding to the
incorrect sentence; and “Error Detection” denotes whether the system has a grammatical error detection system.

can rectify their mistakes while writing the
composition.

• Our intrinsic evaluation shows that our sys-
tem is good at correcting lexical choice and
misformation errors in a learner’s writing.
Our extrinsic evaluation also shows that our
example sentence retrieval system improves
the quality of a learner’s writing.

2 Related Works

2.1 Grammatical Error Detection

In the grammatical error detection task in English,
neural methods such as Bi-LSTM in particu-
lar have been actively used (Rei et al., 2016;
Rei and Yannakoudakis, 2016; Kaneko et al.,
2017; Kasewa et al., 2018). Most studies on gram-
matical error detection/correction in Japanese
limit the target learner’s error types, mainly to par-
ticles (Imaeda et al., 2003; Suzuki and Toutanova,
2006; Imamura et al., 2012; Oyama et al., 2013).
Among others, there are studies in Japanese gram-
matical error correction using statistical machine
translation which do not limit the type of errors
from the learner (Mizumoto et al., 2011). On the
other hand, in Japanese, there are few studies on
grammatical error detection and correction using
neural networks.

In this study, we constructed an error de-
tection system using a neural network with-
out limiting the target error type. Although
phrase-based statistical machine translation can-
not consider long-distance relationships because
it is n-gram based, neural networks using Bi-
LSTM can consider long-distance relationships
because they can maintain input history. Re-
cently, neural network-based approaches outper-
formed PBSMT-based methods in grammatical
error correction (Junczys-Dowmunt et al., 2018;
Chollampatt and Ng, 2018); they are expected to
be effective in grammatical error detection as well.

2.2 Example Retrieval System for Japanese
as a Second Language

Various Japanese example retrieval systems were
proposed in recent times. However, in practice,
learners find them difficult to use. We explain
herein the reasons why these systems are not ef-
fective when used by JSL learners.

Table 1 lists the features of each system. Our
proposed system, Sakura, employs a large-scale
Japanese JSL corpus for correct and incorrect ex-
ample sentences along with revisions for the in-
correct example.

First, the “Learner’s Error Corpora of Japanese
Searching Platform”3 was constructed by the
Corpus-based Linguistics and Language Educa-
tion at Tokyo University of Foreign Studies. This
system displays sentences in the keyword in con-
text (KWIC) format based on the learner’s infor-
mation, such as native language, age, and gen-
der. Japanese language teachers can identify the
features of the learner’s mistakes using this sys-
tem. However, this system is primarily intended
for educators rather than learners. As such, learn-
ers might find it confusing to use. In addition, this
system has few examples. Also, the users may not
know whether their query includes errors because
it does not perform grammatical error detection.
Therefore, they do not know how to search for the
examples.

Second, the “KY corpus” is a transcribed
speech corpus for JSL learners. “Tagged KY
corpus” (Kamata and Yamauchi, 1999) supersedes
the “KY corpus” with a search engine using POS.
It displays correct and incorrect examples for text
written by learners. However, it has the drawback
that often, no results are provided, even for high-
frequency words, because the number of incorrect
examples is small; therefore, it is difficult for lan-
guage learners to use the limited set of examples
as a reference.

3http://ngc2068.tufs.ac.jp/corpus ja/
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(a) incorrect (b) correct

Figure 1: User interface of our system.

sentence いま 、 ぼく は がっ く が とても いそがし です よ 。
label c c c c c i c c i c c c

Table 2: Example of incorrect and correct labels. The c indicates that the target word is correct. The i indicates
that the target word is incorrect. The meaning of this sentence is “I am very busy at school now.”

2.3 Example Retrieval System for English as
a Second Language

Web-based search engines are the most common
search systems that can be used to search for
example sentences. However, these search en-
gines are not intended to retrieve examples for lan-
guage learners; therefore, the search engines nei-
ther show example sentences nor the correct ver-
sion of a given incorrect sentence to aid learners.

Language learners can use several example re-
trieval systems. All of them provide special fea-
tures for writing assistance, but none of them of-
fers grammatical error detection and incorrect ex-
amples to support learners.

FLOW (Chen et al., 2012) is a system that dis-
plays some candidates for English words when
ESL learners write a sentence in their native lan-
guage using candidate paraphrases with bilingual
pivoting. By contrast, our system suggests incor-
rect examples and their counterparts based on cor-
rections from the learner corpus.

Another system, called StringNet
(Wible and Tsao, 2010), displays the patterns
in which a query is used, along with their
frequency. The noun and the preposition are
substituted by their parts of speech, in place of the
words themselves, to eliminate data sparseness.

The ESCORT (Matsubara et al., 2008) system
shows example sentences to learners based on the
grammatical relations of queries. The syntactic
structures of the English sentences are stored in

the database of a raw corpus. ESCORT analyzes
the dependency relations of the input queries and
only displays appropriate examples that match the
relations. Our system displays the examples in de-
scending order of the cosine similarity of the input
vector and vectors of the examples to avoid data
sparseness.

Furthermore, ESL learners can check examples
while writing an English sentence using WriteA-
head (Yen et al., 2015). This system shows pattern
suggestions based on collocation and syntax. For
example, when the user writes “We discussed,” the
system displays the patterns for the use of the word
“discussed.”

Sketch Engine (Kilgarriff et al., 2004) displays
the grammar constructs associated with words
along with the thesaurus information. As previ-
ously mentioned, our system presents incorrect ex-
amples using a learner corpus apart from the cor-
rect examples extracted from a raw corpus.

3 Incorrect Example Retrieval System
using Grammatical Error Detection for
JSL

This section describes our incorrect example re-
trieval system with grammatical error detection. It
combines grammatical error detection and exam-
ple sentence retrieval. We assume that language
learners put queries that may contain errors so that
we will perform grammatical error detection on
the users’ input. If errors are detected, it will be

298



passed to the incorrect example sentence search;
otherwise, it will be processed by the correct ex-
ample sentence search.

This section is organized as follows. Section 3.1
shows the typical use case of our system. The user
interface illustrated in Section 3.2 allows learners
to search for incorrect examples. The grammatical
error detection algorithm is explained in Section
3.3. Our example sentence retrieval algorithm is
explained in Section 3.4.

3.1 Use Case

One of the obstacle in learning Japanese as a
second language is to learn the use of parti-
cles. Particles in Japanese indicate grammat-
ical relations between verbs and nouns. For
example, the sentence, “日本語を勉強する。”,
which means “I study Japanese.” includes an
accusative case marker “を”, which introduces
the direct object of the verb. However, in
this case, Japanese learners often make mistakes,
such as “日本語が勉強する。”, which means
“Japanese language studies.” Thus, the appropri-
ate use of particles is not obvious for non-native
speakers of Japanese. Particle errors and word
choice are the most common Japanese grammat-
ical errors (Oyama et al., 2013), both of which re-
quire a sufficient number of correct and incorrect
examples to understand the usage in context. A
word n-gram search provides only a few or no
examples for a phrase because Japanese is a rel-
atively free word order language, in which a syn-
tactically dependent word may appear in a distant
position.

Ideally, Our system can deal with these particle
errors. Figure 1 (a) illustrates an example of the
search result obtained using our system. Suppose
a learner wants to view examples for the usage
of “日本語が勉強する (nihongo ga benkyousuru,
which include an incorrect usage “が”(ga))”. As
can be seen in No.2 of Figure 1, our system in-
dicates the query with “が” written in red. The
learner can recognize that “が” is wrong. As can
be seen in No.3 of Figure 1, our system displays
correct examples using “日本語を勉強する。(ni-
hongo wo benkyousuru, which is the correct eu-
phonic form of “I study Japanese”)”. The learner
can then identify that “が” is the incorrect word,
and “を” is the correct word.

If the query returns that learner input is cor-
rect, our system shows the examples that match

the query. For example, Figure 1 (b) displays
the examples using “大学で勉強する (daigaku de
benkyou suru, meaning “I study at university.”)
which is the correct sentence.

3.2 User Interface

Figure 1 shows the user interface of our system.
There are two types of user interfaces. Figure 1 (a)
and Figure 1 (b) show the example search inter-
faces used when searching for incorrect and cor-
rect examples, respectively. The components of
the user interface are explained below.

1. Query Input the words to be searched for.
The input query is assumed to be a sentence or
several words (a sequence of words).

2. Grammatical error detection The system
detects errors. If errors are detected, the part with
errors is displayed in red.

3. Retrieval result The retrieval results that
match the query are displayed. The incorrect sen-
tences written by learners are shown in the upper
part, paired with the correct examples revised by
native speakers. The revised part is represented in
bold.

3.3 Grammatical Error Detection

In this study, grammatical error detection is treated
as a sequence labeling task and each word in the
input sentence is assigned an incorrect or correct
label. Table 2 shows the example of labels. We la-
beled detection tags using dynamic programming
from incorrect sentences and correct sentences.

We used the character- and word-level Bi-
LSTM models for grammatical error detec-
tion, proposed by Rei et al. (2016). As with
Rei et al. (2016), we construct a concatenation-
based character-level Bi-LSTM and word-level
Bi-LSTM for error detection. Our code is avail-
able on GitHub4. Figure 2 is the construction of
our model. The system receives words [w1...wT ]
as input and predicts labels for each word. A
word wt is converted to word vector ewt and char-
acter vector ect using word-leve Bi-LSTM and
character-level Bi-LSTM, respectively. The char-
acter vector is created by combining the hidden
states of the beginning and the end of character-
level Bi-LSTM, which takes one character as in-
put.

4https://github.com/kanekomasahiro/japanese error detection
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Figure 2: Architecture of our grammatical error detec-
tion.

The t-th input vector x̃t is created by
combining ewt and ect . The input vector
calculates the hidden states ht as follows
using a character- and word-level Bi-LSTM
(Hochreiter and Schmidhuber, 1997):

−→
h t = LSTM(x̃t,

−→
h t−1) (1)

←−
h t = LSTM(x̃t,

←−
h t+1) (2)

ht = [
−→
h t;
←−
h t] (3)

−→
h t is forward LSTM,

←−
h t is backward LSTM, and

ht is a combination of hidden states in both direc-
tions. We calculate an additional hidden layer dt
to mitigate the dimensionality difference between
Bi-LSTM and the output layer using the full con-
nected layer:

dt = tanh(Wdht) (4)

Wd is a weight matrix. We make predictions using
the output layer and the softmax function:

P (yt|w1...wT ) = softmax(Wodt) (5)

Wo is an output weight matrix and yt is a predic-
tion label.

3.4 Example Sentence Retrieval Algorithm

The input queries can be either sentences or words.
Once the user enters a query, examples of incorrect
sentences written by language learners and their
corresponding correct sentences are retrieved from
the learner corpus and displayed in pairs. The
search strategy is described below:

1. The error detection model processes an input
query.

2. If an error is detected, the error part of the
query is searched from examples of incorrect
sentences. The incorrect examples are dis-
played along with their correct examples in
descending order of the cosine similarity5 of
the input vector and vectors of the examples
of incorrect sentences.

3. If no error is detected, the entire query is
searched among the examples of correct sen-
tences. The system displays the incorrect ex-
amples along with their correct versions in
descending order of the cosine similarity of
the input vector and vectors of the examples
of correct sentences.

4 Experiments

4.1 Dataset
In this study, we use the Lang-8 Learner Corpora
created by Mizumoto et al. (2011). The develop-
ers of the dataset used it for Japanese grammatical
error correction, whereas we used it as an example
retrieval database for JSL.

Each learner’s sentence has at least one revised
sentence. A learner’s sentence is combined with
a revised sentence to make a sentence pair. If a
learner’s sentence has more than one revised sen-
tence, each of the revised sentences is paired with
the learner’s sentence as separate sentence pairs.
Sentences with a length of more than 100 words
or with a Levenshtein distance of more than 7 are
eliminated to remove the noise in the corpus.

We extracted 1.4 million pairs of learner sen-
tences written by Japanese language learners and
revised sentences corrected by Japanese native
speakers. The total number of included Japanese
essays was 185,991.

The learner sentences and the revised sentences
were tokenized by the morphological analyzer,
MeCab (ver. 0.996)6 with UniDic (ver. 2.2.0). We
used gensim7 to create the sentence vectors.

4.2 Grammatical Error Detection
For the experiments with error detection, we use
the dataset described in Section 4.1. We split the
corpus into 720,000 sentences for training data,
1,000 sentences for development data, and 1,000

5We use word2vec (Mikolov et al., 2013) to obtain the
word vectors. The average of the word vectors is taken as
a sentence vector.

6https://github.com/taku910/mecab
7https://github.com/RaRe-Technologies/gensim
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model precision recall F-value0.5

SMT system 0.599 0.121 0.202
proposed system 0.615 0.304 0.407

Table 3: Accuracy of detection of writing errors made
by Japanese learner.

error type TP FN FP

all 294 263 106

particle choice 75 60
alternating form 16 38

lexical choice 22 77
omission 33 18

misformation 53 14
redundant 40 27

pronunciation 55 25
others 0 4

Table 4: Number of true positives, false negatives, and
false positives. “TP”, “FN”, and “FP” indicate true pos-
itive, false negative, and false positive, respectively.

sentences for test data, respectively. We used au-
tomatically converted error tags as the gold label
for grammatical error detection.

Setting For hyper parameter settings, the dimen-
sion of the word embedding and the word-level
LSTM are 300, and the dimension of the charac-
ter embedding and the character-level LSTM are
100. The Bi-LSTM models are optimized using
Adadelta with a learning rate of 1.0 and a batch
size of 64 sentences. These word and character
embeddings are updated during training.

We reimplemented the word-wise phrase-based
statistical machine translation system of Mizu-
moto et al. (2011) as a baseline system. We used
minimum error rate training (MERT) (Och, 2003)
for the model.

Result The results are shown in Table 3. It
can be seen that all of the precision, recall,
and F-values are better than the baseline. As
Nagata and Nakatani (2010) suggested, a high
precision error detection system can be used to
help learners write essays. We will verify this hy-
pothesis in the next subsection.

Table 4 lists the number of true positives and
false negatives by error type. Particle choice, pro-
nunciation, and misformation are easy to detect.
Lexical choice and alternating form are hard to de-
tect. The number of false negatives for particle
choice is large because it forms the majority of all
the errors.

Table 5 shows the example sentences detected
as true positives and false negatives by our
method. Because of the neural network, our
method can detect a long-distance error such as
the column of “true positive” in Table 5. “お願い”
(meaning, “Please.”) is at the beginning of the sen-
tence, because of which this sentence is not con-
sidered to be of future tense; instead, it is con-
sidered as expressing desire. Therefore, it can be
seen that it is appropriate to use “～たい” to mark
desire explicitly. LSTM can deal with this kind
of long-distance dependency; hence, our method
can detect such errors. On the other hand, the
column of “false negative” on Table 5 shows that
the learner has incorrectly input “家康” as “家安”.
“家康” is the name of a famous historical person-
age, and its misspelled variant, “家安”, is not in
the data. The column of “false positive” on Table
5 is an example of misdetection. “名刺” is a noun
and the corpus has only two instances of “名刺”,
which co-occur with a different particle “に” (da-
tive case marker). Such errors cannot be detected
owing to lack of data.

4.3 Incorrect Example Retrieval System

Intrinsic Evaluation We randomly extracted 55
incorrect phrases and 55 correct phrases from the
learner’s sentences in the Lang-8 dataset, which
are not included in the corpus of the retrieval sys-
tem. We classified each incorrect example into
seven types: alternating form (A), lexical choice
(L), omission (O), misformation (M), redundant
(R), pronunciation (P), and others (X). Table 6 lists
the examples of the test phrases.

Table 7 shows the frequency of each error type
and the relevance of each system per error type.
An example is judged relevant if it matches the
auto-tagged results annotated to the data; other-
wise, it is judged irrelevant. Because the user
needs to select whether to search correct exam-
ples or incorrect examples in previous work, both
the baseline correct example retrieval system (BC)
and the baseline incorrect example retrieval sys-
tem (BI) are used as the baseline systems. We
searched for these phrases in each system (BC, BI,
and ours) and counted the number of hits for each
system that led to the top-1 correct expressions to
measure relevance. The proposed system searches
either the correct or incorrect sentences including
the target phrase depending on whether the query
contains errors while it searches for the phrase cor-
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true positive incorrect おねがい、しあわせになる！
correct おねがい、しあわせになりたい！
meaning Please, I hope to be happy!

false negative incorrect 定刻になると、徳川家安が出てきます。
correct 定刻になると、徳川家康が出てきます。
meaning When the time comes, Tokugawa Ieyasu will be coming.

false positive correct これ、私の名刺でございます。
meaning This is my business card.

Table 5: Examples of true positive, false negative, and false positive.

incorrect phrase pronunciation correct phrase pronunciation BC BI Ours type

おねさん onesan おねえさん (sister) oneesan × × ✓ O
ニュージランド nyu-jirando ニュージーランド (New Zealand) nyu-ji-rando × ✓ ✓ O
みんなさん min’nasan みなさん (eveybody) minasan × ✓ ✓ R
大体に daitaini 大体 (roughly) daitai × × ✓ R
疑問をして gimonwoshite 疑問に思って (in doubt) gimon’niomotte × × ✓ M
驚い odoroi 驚き (surprise) odoroki × ✓ × M
がもらえる gamoraeru しかもらえない (only get this) shikamoraenai × × × A
稼ぐ kasegu 稼いだ (earned) kaseida × ✓ × A
ちさい chisai 少ない (few) sukunai × ✓ × L
助けられる tasukerareru できる (can) dekiru × × ✓ L
しましだ shimashida いました (there was) imashita × × × P
死んちゃう shincha 死んじゃう (will die) shinjau × ✓ ✓ P
ハウス hausu 家 (house) ie × ✓ ✓ X

Table 6: Examples of test results. The column “Incorrect phrase” contains the phrases written by the learner. These
are extracted from the Lang-8 test set. The column “Ours” shows whether our system was able to find the correct
answer for that phrase.The column “type” shows the error type of each phrase.

error type frequency relevance

BC BI Ours

incorrect all 55 0.00 0.45 0.44

alternating form 19 0.37 0.32
lexical choice 16 0.38 0.19

omission 8 0.75 0.75
misformation 6 0.40 0.67

redundant 3 0.67 1.00
pronunciation 2 0.50 0.50

others 1 1.00 1.00

correct 55 0.90 0.15 0.85

average 110 0.45 0.30 0.65

Table 7: Frequency and relevance of each system (in-
trinsic evaluation).

responding each system.

The BC system has the highest relevance for
correct phrases, but has no matches for incorrect
phrases; therefore, the relevance becomes 0.00
in the incorrect example retrieval task. BI, on
the other hand, finds almost no examples when
searching for correct phrases, while high relevance
is obtained with incorrect phrases. In our proposed
system, although the overall relevance of incorrect

phrases is little lower than that of BI, the user has
to switch between the incorrect retrieval and the
correct retrieval in the baseline systems. The pro-
posed system determines whether the query is cor-
rect by using error detection. This system gets the
highest overall relevance, including for both the
incorrect phrase and correct phrase retrieval tasks.

In contrast to the baseline system, the proposed
system can detect misformation well. Because
the erroneous expression is explicit in this error
type, the accuracy of error detection is high and it
presents relevant sentences at the top. In addition,
obvious errors such as omission and redundancy
are easily detected, so it receives a high relevance
rate.

On the other hand, searching for a lexical choice
is difficult. If the sentences written by the learner
are syntactically correct but semantically incor-
rect, the system cannot detect errors. Additionally,
because the recall of error detection is not suffi-
cient, it sometimes misses an incorrect input query
and searches through correct examples.

Extrinsic Evaluation In the extrinsic evalua-
tion, we compared the writing scores of compo-
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No. Prompt

1 Introduce the city you live in.
2 Which do you like better, summer or winter?
3 Which aspects of Japanese

do you find difficult?
4 What is the difference

between televised and printed news?
5 What would you like to experience overseas?
6 If you have free time,

what would you like to do?
7 Introduce the charm of your country.
8 Is it a good thing to tell a lie?
9 What are you doing for your health?

10 What was the most enjoyable thing
in university life?

Table 8: Prompts for extrinsic evaluation.

Learner BC BC+BI BC+BI
w/o ED w/o ED w/ ED

A 14 20 21
B 26 27 29
C 15 16 16
D 28 25 26
E 22 25 25
F 20 23 28
ave. 20.8 22.7 24.2

Table 9: Result of extrinsic evaluation.

sitions using three systems. All systems used the
data constructed in Section 4.1.

• BC w/o ED: Perform no error detection and
search correct examples only.

• BC+BI w/o ED: Perform no error detection
and search correct examples and incorrect ex-
amples according to the user’s choice.

• BC+BI w/ ED: Perform error detection and
search for correct and incorrect examples au-
tomatically.

We compare the writing score of the composi-
tion using the BC system w/o ED against the that
of the BC+BI system w/o ED to confirm the us-
ability of incorrect examples. We compare the
writing score of the composition using BC+BI sys-
tems with and without ED to check the practicality
of the error detection module.

We recruited six Japanese non-native speakers
majoring in computer science in a graduate school
in Japan to complete 10 Japanese composition ex-
ercises. The prompts of the 10 Japanese compo-
sition exercises are shown in Table 8. Chinese
was the native language of all participants. Five
of the participants had passed the N1 (advanced)

error type frequency # relevance

incorrect all 44 9 0.20

alternating form 6 1 0.17
lexical choice 14 4 0.29

omission 7 1 0.14
misformation 6 2 0.33

redundant 9 1 0.11
pronounciation 2 0 0.00

other 0 0 0.00

Table 10: Frequency and relevance of our system for
an actual learner’s composition (extrinsic evaluation).

Japanese-Language Proficiency Test, while the
other had passed the N2 (intermediate) level. We
divided the prompts into five prompts each and
asked each learner to write either of the halve us-
ing the BC system w/o ED and the other half us-
ing BC+BI system w/o ED. After that, they were
asked to use the BC+BI system w/ ED to revise the
composition. The number of sentences in each ex-
ercise was three to ensure a fair comparison. The
composition exercise was given a score by deduct-
ing points, and each participant was assigned 30
points at the beginning. One point was deducted
per error. The total score of each system was taken
over five exercises.

The results of the extrinsic evaluation are shown
in Table 9. We confirmed that the highest score
was achieved using the proposed system, and 5 out
of the 6 people achieved the highest score using
the proposed system.

Table 10 shows the ratio of errors that could be
corrected when the compositions were first writ-
ten using the BC+BI system w/o ED and then re-
vised using the BC+BI system w/ ED. We manu-
ally checked all errors and classified them as rel-
evant or irrelevant. As with intrinsic evaluation,
misformation was corrected at the highest rate.
Unlike intrinsic evaluation, lexical choice was cor-
rected well, but it can be seen from the breakdown
that function words can also be corrected at a high
rate. The relevance of suggestion of lexical choice
for content words was 0.17 whereas that for func-
tion words was 0.38. It was not clear from the in-
trinsic evaluation because function words such as
particles are not the targets of evaluation, but it is
understood that a neural grammatical error detec-
tion method can cope with lexical choice errors for
function words such as particles frequently found
in writings by learners.
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5 Conclusion

We constructed a large-scale incorrect example re-
trieval system with grammatical error detection
for JSL learners. Our proposed system switches
between incorrect example sentence retrieval and
correct example sentence retrieval automatically
by using grammatical error detection and then dis-
plays incorrect examples along with the revised
sentences and example sentences. The results of
our experiment showed that our system was useful
for JSL learners in writing Japanese compositions.
Each example includes incorrect sentences; hence,
language teachers can identify the difficulty faced
by learners and use this information for language
education.

Although this system was constructed for JSL
learners, it can easily be customized for other lan-
guages. We plan to extend our system to support
ESL learners (Tajiri et al., 2012).
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Abstract

In this study, we developed an automated al-
gorithm to provide feedback about the specific
content of non-native English speakers’ spo-
ken responses. The responses were sponta-
neous speech, elicited using integrated tasks
where the language learners listened to and/or
read passages and integrated the core content
in their spoken responses. Our models de-
tected the absence of key points considered to
be important in a spoken response to a par-
ticular test question, based on two different
models: (a) a model using word-embedding
based content features and (b) a state-of-the art
short response scoring engine using traditional
n-gram based features. Both models achieved
a substantially improved performance over the
majority baseline, and the combination of the
two models achieved a significant further im-
provement. In particular, the models were ro-
bust to automated speech recognition (ASR)
errors, and performance based on the ASR
word hypotheses was comparable to that based
on manual transcriptions. The accuracy and
F-score of the best model for the questions
included in the train set were 0.80 and 0.68,
respectively. Finally, we discussed possible
approaches to generating targeted feedback
about the content of a language learner’s re-
sponse, based on automatically detected miss-
ing key points.

1 Introduction

In this study, we propose an automated algorithm
which provides feedback about the specific con-
tent of non-native English speakers’ spoken re-
sponses. It is designed to help language learners
preparing for a speaking test that is part of an as-
sessment of English proficiency for academic pur-
poses. The speaking test includes questions elic-
iting spontaneous speech. In particular, the items
require language learners to read and/or listen to

stimulus materials and then integrate and repro-
duce the key content from the source materials into
their speaking performances (hereafter, integrated
tasks). Research in integrated task performance
(Brown et al., 2005; Cotos, 2011; Frost et al.,
2012; Xi, 2010) has shown that human raters pay
substantial attention to test-takers’ speech content.
A speaker’s performance is evaluated by the con-
tent completeness and accuracy of the reproduced
information, in addition to linguistic criteria in-
cluding fluency, pronunciation, grammar, and vo-
cabulary.

The current study investigated automated feed-
back through the dimension of content complete-
ness. This content-aspect of speech performance
refers to the degree to which an individual can pro-
cess, select, integrate, and reproduce key source
information into a subsequent oral response. The
ability to reproduce complete content represents
a critical aspect of integrated speaking task per-
formance and is evaluated by the number of key
points reproduced from the input materials (Frost
et al., 2012). Key points are brief descriptions of
content elements that test developers determine to
be important in responses to a particular test ques-
tion.

Providing feedback on content aspects of
speech can help language learners discern the
quality of their speech performance beyond lin-
guistic dimensions such as fluency or grammar.
This type of feedback is particularly relevant and
crucial when we consider integrated task perfor-
mance, because the ability to accurately and ade-
quately recreate the source materials is an essential
language skill required in real-world academic or
workplace contexts.

Despite the importance of content as a compo-
nent of speech, few studies have explored auto-
mated content feedback. To address this gap, we
aim to develop a content feedback algorithm. In
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this study, we trained automated models to detect
the absence of key points that are the core content
expected in correct answers. Next, we discussed
possible ways to generate content feedback based
on the output of the automated models.

2 Previous studies

In the past two decades, feedback has become a
central issue for second language education re-
search, and language teachers and researchers
have continued to identify guidelines and best
practices for providing learners with effective
feedback (Lyster et al., 2013). Advances in tech-
nology have led to increased research efforts in
developing automated feedback systems that can
support language learners (Xi, 2010). Automated
feedback systems can provide practical benefits,
such as making teaching and learning more in-
dividualized, efficient, and cost effective. How-
ever, research on automated feedback is still scarce
and primarily focused on aspects of learners’ writ-
ing performance, rather than speech (Cotos, 2011).
In automated feedback for spoken responses, pre-
vious studies focused on pronunciation (Franco
et al., 2010) and prosody (Eskenazi et al., 2007)
from restricted speech.

Automated scoring of, or automated feedback
generation about content in spontaneous speech is
a challenging task for a variety of reasons. First,
an automated speech recognition (ASR) system is
used to generate an automated transcription of a
spoken response as an input of the content fea-
ture generator. Errors at the ASR stage may neg-
atively affect the content features such that they
are noisy and distorted to some extent. Secondly,
and more importantly, spontaneous speech, unlike
read speech, is highly variable, and particular as-
pects of content can be expressed in many differ-
ent ways by different speakers. Consequently, rel-
atively few studies have explored content of spon-
taneous spoken responses. Xie et al. (2012) and
Cheng et al. (2014) assessed content using similar-
ity scores between test responses and highly pro-
ficient sample responses, based on content vector
analysis (CVA). Loukina and Cahill (2016) used a
content-scoring engine based on many sparse fea-
tures, such as unigrams and bigrams, trained on
a large corpus of existing responses. These stud-
ies were based on traditional character or word n-
grams. Recently, significant improvement in ASR
systems, semantic modeling technology based on

more advanced deep-neural networks (DNN), and
larger training data sets encouraged researchers
in the automated scoring field to explore content-
modeling for spoken responses. For instance,
Chen et al. (2018) and Qian et al. (2018) devel-
oped automated oral proficiency scoring models
using diverse neural models and achieved compa-
rable or superior performance to sophisticated lin-
guistic feature-based systems. In addition, Yoon
et al. (2018) and Rei and Cummins (2016) used
similarity scores between the prompt texts and test
responses based on word embeddings. Compared
to the traditional word-matching based method,
they have the advantage of capturing topical rele-
vance that is not based on specific, identical words.
However, these studies have focused only on scor-
ing, and based on our knowledge, no study has ex-
plored content feedback for spontaneous speech.

3 Overview of the approach

In order to address this gap, we developed an
automated algorithm which provides feedback
about content completeness for non-native speak-
ers’ spontaneous speech. Distinct from previous
content scoring approaches that look at correct-
ness of overall content by calculating similarity
scores with high-scoring responses, our algorithm
first determines absence of individual key points.
The absence of a key point signals an issue in
the content completeness of a spoken response.
Next, we provide a list of missing key points with
feedback about how to improve content complete-
ness to the speakers. Our approach is able to pro-
vide much more fine-grained and targeted feed-
back about the content of a response, as compared
to a traditional holistic approach.

In order to determine the absence of the key
points, we calculated similarity scores between a
spoken response and a key point using a short
response scoring engine (Heilman and Madnani,
2013) and new word-embedding based features.
The short response scoring engine generally re-
quires a sizable amount of response data for each
question to achieve a reliable performance. Col-
lecting question-specific data is a difficult task.
Thus, the word-embedding features, that do not re-
quire any sample responses for each question for
the feature training, have a strong advantage for
practical systems. We evaluated the algorithm in
two different conditions (questions in the training
data vs. questions not in the training data) and ex-
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plored the impact of a question-specific training
dataset.

4 Data

We used a collection of spoken responses from an
English proficiency assessment. 395 non-native
speakers with a wide range of proficiency lev-
els1 and from 52 different native language back-
grounds produced a total of 1, 185 responses.
Each response consisted of around one minute of
spontaneous speech. We used four forms2, and
each student responded to the questions on one
form. We collected approximately 100 speakers’
responses per form.

When producing the integrated speaking tasks
that were used for the current study, expert assess-
ment developers first generated a list of key points
to guide the creation of the reading and listen-
ing passages. These key points were provided to
and used by human raters to evaluate content com-
pleteness of the spoken responses. Six key points
were generated for each speaking task (henceforth,
Key Point 1 to Key Point 6).

Each key point generally consisted of one
complete sentence. Key Point 1 and 2 were
about the mentioning of the concepts introduced
in the source materials or the general opin-
ions voiced (i.e., agree or disagree with a situa-
tion/change/proposal). Depending on the nature
of the task questions, Key Point 3, 4, 5, and 6 in-
volved brief definitions of the concepts, reasons
provided for the opinions voiced, or detailed ex-
amples that illustrated the topics or concepts dis-
cussed. Key Point 1 and 2 were relatively straight-
forward whereas Key Point 3 to 6 contained more
elaborated content.

To give an idea of what the key points look like,
we provide one sample in Figure 1. Originally, a
question, a reading material, and a listening mate-
rial were one set, and there were three Key Points
for the reading material and three Key Points for
the listening material. Due to the page limit, we
provide only the question, the reading material,
and three Key Points relevant to the reading ma-
terial.

The human transcripts of the audio files were

1We selected approximately 100 speakers per A2, B1, B2,
and C1 levels based on Common European Framework of
Reference for Languages (CEFR).

2A form is a set of three questions, and we used four
forms. There were no question overlaps among different
forms. Thus, we used a total of 12 questions.

Figure 1: Question, reading material, and KPs

analyzed by three annotators who had back-
grounds in linguistics and language education. In
order to identify the Key Points that the students
included or omitted in their responses, a binary
scale, with 1 representing presence and 0 repre-
senting absence of each Key Point for the entire
response3, was used. The annotators paid atten-
tion to the ideas rather than the particular word-
ing in Key Points and assigned a score of 1 (pres-
ence of Key Point) when students’ conveyed the
Key Points in semantically legitimate variations,
not necessarily using identical expressions. The
three annotators went through multiple rounds of
training and calibration in order to establish inter-
rater reliability. In the initial rounds of train-
ing, when there were disagreements in the annota-
tion, the three annotators resolved the problematic
cases through discussions until exact agreements
were reached. After that, each annotator inde-
pendently annotated roughly even numbers of re-
sponses. The inter-rater agreement was relatively
strong, and Cohen’s kappa based on the 22% of
double-scored responses was 0.72. However, there
were large variations across different Key Points
and kappa ranged from 0.61 to 0.85. The number
of responses and distribution of Key Point score

3The annotators were not indicating the specific location
of the Key Points in the responses.
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are presented in Table 1.

5 Method

We used two different approaches to detect the ab-
sence of a Key Point in a spoken response. First,
we trained classifiers using a set of features that
calculate similarity scores between a student’s re-
sponse and a Key Point. Next, we trained auto-
mated models used for short response scoring.

5.1 Models based on word-embedding
features

First, both Key Points and transcriptions of stu-
dents’ responses were normalized by removing
stop words and disfluencies. After the normaliza-
tion process, the length of the Key Points and re-
sponses were reduced into 60% and 40% of the
original texts on average. After removing stop
words, the average number of words in responses
was 50.9 (based on the manual transcriptions) and
51.3 (based on the ASR hypotheses), respectively.

The number of words in the Key Point after
the normalization was 3.85 on average. In partic-
ular, Key Point 1 and Key Point 2 were shorter
than the other Key Points; the average number of
words for Key Point 1 was 2.08, while it was 5.58
for Key Point 6. For each Key Point, we first cre-
ated a word list containing all words (ALL) af-
ter the normalization. While some words (e.g.,
the topic or the concept name) appeared in mul-
tiple Key Points in the same question, some words
were unique to a particular Key Point. Under the
assumption that these unique words may be more
important for detecting the absence of the specific
Key Point, we created two additional word lists for
each Key Point: a unique word list (Unique) 4 and
a shared word list (Shared) that contained words
not in the unique list.

The response was segmented into a sequence of
word n-grams 5 with 5 words overlap between two
consecutive n-grams. For each n-gram, the sim-
ilarity with a particular Key Point was calculated
using the following three word-embedding based
metrics:

• Word Mover’s Distance (WM-distance):
This calculates a sum of the minimum dis-
tances between words in the two compared

4words unique to the particular Key Point when compar-
ing the 6 Key Points for a given question

5n = the number of words in a Key Point after the normal-
ization

strings (a key-point and an n-gram of the
response) where the distance between two
words was the Euclidean distance between
the two corresponding word vectors in the
embedding space (Kusner et al., 2015).

• Weighted word embeddings: This calcu-
lates a cosine similarity score between a Key
Point vector and a response n-gram vector.
The Key Point vector was an average of the
corresponding embedding vector with a tf-idf
weight for each word in the Key Point. The
n-gram vector was generated using the same
process.

• Query-document Similarity (QD): Re-
sponses are generally much longer than Key
Points and WM-distance may assign unfairly
low similarity scores to responses with extra
information. To address this issue, we use
metrics designed for information retrieval
(Kim et al., 2016). For each word in the
Key Point, the algorithm finds the word with
the maximum similarity from a response
n-gram, where the similarity score is the
cosine similarity between two corresponding
word embeddings. Finally, this metric uses
a sum of all maximum similarity scores
normalized by the Key Point length.

Next, we generated response-level features by
selecting the minimum and the maximum values
among all n-grams in a response. From 9 n-gram-
based features (3 Key Point word lists * 3 met-
rics), 18 values were selected for each response.
We used the publicly available word embedding
vectors trained on the Google News corpus by
Mikolov et al. (2013) for all word-embedding
based features, and WM-distance implementation
in the gensim package (Rehurek and Sojka, 2010)
for WM-distance calculation.

Finally, we trained a binary classifier us-
ing response-level features with human Key
Point scores as class labels. A total of 6 binary
classifiers (one per Key Point) were trained using
the random forest classifier algorithm6 in scikit-
learn (Pedregosa et al., 2011).

6During a pilot experiment, multiple machine learning al-
gorithms such as decision tree, Support Vector Machine, Ad-
aBoost were tested, and the random forest classifier was se-
lected based on the consistently high performance.
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CEFR # speakers # responses # ratings
Percentage of Key Point absence (score = 0)
All KP1 KP2 KP3 KP4 KP5 KP6

A2 95 285 1710 63 48 60 60 65 71 73
B1 100 300 1800 43 32 39 38 49 48 51
B2 100 300 1800 28 21 28 17 34 32 37
C1 100 300 1800 19 22 20 11 19 15 26
Total 395 1185 7110 31 37 31 42 41 47 38

Table 1: Data size and Key Point (KP) distribution by proficiency levels

5.2 Models based on the content scoring
engine

We used an automated scoring system that
achieved state-of-the-art performance in scoring
content of short text responses (Heilman and Mad-
nani, 2013) (hereafter, c-rater). This is also the
same system used in Loukina and Cahill (2016).

The system first generated sparse lexicalized
features including word and character n-gram fea-
tures and syntactic dependency features. Unlike
the word-embedding features, we used an entire
spoken response as an input for the feature gener-
ator. Finally, we trained a Support Vector Regres-
sor with a radial basis function kernel for each Key
Point, resulting in a total of 6 regression models.
Each model was a generic model that was trained
on all 12 questions7.

6 Experiment

The speakers were partitioned into two sets: train
(49%), and test sets (51%). All responses from
the same speaker belonged to one set, and thus
the train and test sets did not share any speakers.
The percentage of each form and speakers’ profi-
ciency levels were similar in each set. In order to
investigate the impact of a question-specific train-
ing dataset, we conducted 4-fold cross-validation.
As described in Section 4, the data was comprised
of four forms (with three questions on each form).
For each fold, three forms were used as the “seen
form”, and the remaining form was used as the
“unseen form”. The model was trained only on
the seen form responses in the training partition.

7We also trained a separate regression model for each
question of each Key Point, resulting in 6 × 12 = 72 mod-
els (question-specific models). Because the overall perfor-
mance of the question-specific models were not superior to
the generic models, we reported only the generic model-
based results. In a future study using a much larger numbers
of questions, we will conduct more rigorous comparisons be-
tween the generic models and the question-specific models
and select the final models.

During evaluation, the model was evaluated on
the seen form responses and the unseen form re-
sponses, separately. In the results section, we re-
port the average of the four-folds.

We used two different transcription methods:
manual transcriptions by professional transcribers
and automated transcriptions by an ASR system
trained on non-native speakers’ speech. We used a
gender-independent acoustic model (AM) trained
on 800 hours of spoken responses covering over
100 native languages across 8,900 speakers using
the Kaldi toolkit (Povey et al., 2011). A DNN-
HMM model was adapted to test takers with fM-
LLR and i-vectors. The language model (LM) was
a trigram model trained using the same dataset
used for AM training. This ASR system achieved
a Word Error Rate of 18.5% on 600 held-out re-
sponses. Detailed information about the ASR sys-
tem is provided in Qian et al. (2016). In or-
der to compare the performance of the content
features with c-rater, we trained three models:
EMB (model based on word-embedding features),
c-rater (model based on the c-rater engine), and
CMB (combination of two models). For CMB, we
averaged the probabilities generated by EMB and
c-rater with 0.5 as a decision boundary. Finally,
for each transcription mode, we trained 18 binary
classifiers.

7 Results

7.1 Performance on Seen form
Table 2 provides performance of the models on the
seen forms where all questions in the test set ap-
peared in the train set. The models were evalu-
ated in terms of accuracy, F-score, and Cohen’s
kappa for detecting absence of the Key Points.
We reported the average performance for 6 Key
Points. In this study, the accuracy of the majority
class baseline (classifying all responses as the Key
Point presented) was 64% since the proportion of
the responses without Key Point was 36% on av-
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erage.

Model accuracy F-score κ

Manual
EMB 0.77 0.65 0.47
c-rater 0.76 0.65 0.43
CMB 0.79 0.69 0.51

ASR
EMB 0.77 0.64 0.46
c-rater 0.75 0.63 0.42
CMB 0.80 0.68 0.51

Table 2: Average performance of six Key Points on
seen form

For the experiment using the manual transcrip-
tions, both the EMB and c-rater models achieved
substantial improvement over the majority base-
line. The performance of the EMB model was
comparable to the c-rater model, and the com-
bination of the two models resulted in further
improvement. The accuracy and F-score of the
CMB model were 0.79 and 0.69, respectively.

The results based on the ASR word hypothe-
ses were comparable to those based on the man-
ual transcriptions; the accuracy of the CMB model
was 0.80 (0.79 for the manual transcription-based
results) and F-score was 0.68 (0.69 for the man-
ual transcription-based results). The EMB model
achieved a slightly better performance than the c-
rater model.

7.2 Performance on Unseen form

Table 3 provides the performance of the models on
the unseen form where all questions in the test set
did not appear in the train set.

Model accuracy F-score κ

Manual
EMB 0.71 0.56 0.35
c-rater 0.61 0.56 0.23
CMB 0.71 0.61 0.37

ASR
EMB 0.71 0.54 0.33
c-rater 0.61 0.55 0.23
CMB 0.71 0.60 0.36

Table 3: Average performance of six Key Points on un-
seen form

The performance of models for the unseen
forms was substantially lower than that for the
seen forms. For the manual transcription-based
results, the accuracy and the F-score of the
CMB model were 0.71 and 0.61, respectively, ap-
proximately 0.07 ∼ 0.08 lower than the results on
the seen form. Notably, the performance drop of

the c-rater model was much larger than that of the
EMB model, and the accuracy of the c-rater model
was lower than the majority baseline. The per-
formance of the EMB model was relatively better
than the c-rater model, but it was still substantially
lower than the performance on the seen forms. Fi-
nally, the combination of the two models resulted
in a slight improvement in the F-score, but not in
accuracy. The results based on the ASR word hy-
potheses were comparable to those based on the
manual transcriptions.

The low performance of the c-rater models for
the unseen form was somewhat expected. The
models learned characteristic n-grams of specific
Key Points from the training data. The Key Points
in this study were largely different by questions,
and these characteristic n-grams for one ques-
tion may not be useful for other questions. The
EMB models, however, did not directly use the
n-gram patterns in the training data. Instead,
they calculated the similarity scores between Key
Points and responses using the word-embeddings-
based metrics and the train set was only used to de-
termine the relationships between these features.
This difference resulted in the performance differ-
ence between the two models on the unseen forms.

In summary, the models were relatively ro-
bust to the ASR errors, and performance based
on the ASR hypotheses was comparable to the
manual-transcription-based performance when us-
ing a high performing ASR system. Feedback
that relies on manual transcription may be a crit-
ical challenge, or not even a feasible option, for
automated feedback systems used for large-scale
learning programs. Therefore, the robustness to
the ASR errors is an important advantage of our
method. In contrast, unseen questions had a strong
negative impact on the models, and the perfor-
mance of the best performing model (CMB model)
decreased substantially when using the unseen
questions. This may raise an important challenge
to adding new questions in an operational learning
program; in order to add new questions without
lowering system performance, a sizable amount of
responses may need to be annotated for each ques-
tion.

8 Discussion

The proposed models achieved promising perfor-
mance in detecting missing Key Points from re-
sponses to the questions included in the training
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set. However, their performance was meaningfully
lower than the performance of human raters; the
κ between the algorithm and the human rater was
0.52, while the κ between two human raters was
0.72.

In this study, the raters did not penalize stu-
dents who did not use the exact wordings in the
Key Points; if a response contained a semantically
comparable sentence to a Key Point, then the Key
Point was considered to be present in the response.
This approach may increase the difficulty of auto-
mated detection. In order to investigate how fre-
quently students used expressions different from
Key Points, we calculated a ratio of Key Point
words that appeared in a response to all words
in a particular Key Point (hereafter, Key Point ra-
tio). For instance, if a Key Point is comprised of 5
words and only 2 words appear in a response, then
the Key Point ratio is 0.4, and it roughly suggests
that 3 words in the Key Point are realized in differ-
ent expressions. If the Key Point ratios are gener-
ally low for the Key Point-present responses, then
it suggests that students frequently use expressions
other than those in the Key Point. We calculated
Key Point ratio for each response using the manual
transcription after the normalization process. Ta-
ble 4 presents the average of the Key Point ratio.

Key Point type Proportion of Key Point
words in responses

Key Point 1 0.69
Key Point 2 0.54
Key Point 3 0.60
Key Point 4 0.49
Key Point 5 0.41
Key Point 6 0.51

Table 4: Average of the Key Point ratios for the Key
Point-present responses

The average of the ratios for Key Point-present
responses was 0.54. It ranged from 0.41 to 0.69.
This suggests that around half of the words in the
Key Points were realized in the different wordings
in these responses.

In order to understand the reason for the rela-
tively low use of the exact wordings, we selected
a subset of Key Point-present responses with low
Key Point ratio and analyzed how the Key Points
were expressed. Figure 2 shows one Key Point
and two sample responses. For the responses, we
provide only the segments that are relevant to the

specific Key Point.

Figure 2: Sample Key Point and responses

Example 1 contained 3 Key Point words
(“need”, “time”, “books”), and “reference”,
“longer” were realized in their morphological vari-
ations (“refer”, “long”). “papers”, “students”,
“use”, and “period” were replaced with contextu-
ally legitimate expressions (e.g., “research assign-
ments” for “papers”) or omitted. In example 2, the
Key Point was realized in very different wordings.
For instance, the core concepts, “use books for pa-
pers” and “need the reference”, were expressed
as “writing a paper” and “need to go back to the
book”, respectively. In particular, spontaneous
non-native speech includes frequent grammatical
or vocabulary usage errors, and this results in even
wider variations in the realization of Key Points
in their responses. The Key Point in this study
was generally short and 38 Key Point (53%) con-
tained less than 3 content word types. The short
Key Point length may increase the difficulty of au-
tomated detection further, since the impact of re-
placing one Key Point word with different word-
ings is large.

This analysis further motivates use of the word-
embedding based features. In contrast to tradi-
tional lexical similarity features, which are limited
to a reliance on exact word matching, the word
embedding features have the advantage of captur-
ing topically relevant words that are not identi-
cal. The students’ responses frequently included
semantically legitimate expressions that were not
same words with Key Points, and this has resulted
in improvements over systems using only tradi-
tional lexical similarity features.
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9 Targeted feedback based on the
missing Key Points

In this section, we will discuss our future plan
about how to generate targeted feedback based on
the automated Key Point scores. There are sev-
eral reasons that language learners may miss the
key information from the source materials. When
a student misses a key point, it may be an issue of
reading and/or listening comprehension difficulty,
or it could be an indication of lower speaking pro-
ficiency. When a language learner processes, se-
lects, and synthesizes the key information from the
source materials, the individual will need to recre-
ate the key points using their linguistic knowl-
edge to generate the speech content. If a speaker
does not possess the required linguistic knowledge
to produce a full response, a speaker may repro-
duce inaccurate or inadequate key points. In ad-
dition, previous research has suggested that read-
ing and/or listening to source materials and repro-
ducing them in an assessment context is a cogni-
tively taxing task, especially for lower-proficiency
students (Brown et al., 2005). This implies that
some learners may not have the necessary linguis-
tic working memory capacity to retain all the de-
tailed information they read or heard that would
enable them to reproduce the key information sat-
isfactorily. Thus, providing feedback about miss-
ing key points can be helpful and revealing be-
cause it indicates the gaps in spoken summaries
or responses.

To address this need, our preliminary feedback
algorithm provides targeted feedback about the
missing Key Points. Specifically, the feedback is
comprised of four parts: (a) source materials, (b)
a language learner’s response, (c) actionable in-
structions, and (d) sample responses.

The first part (source materials) provides the lis-
tening passage and/or the reading passage of the
question. The expert assessment developers an-
notate sentences relevant to each Key Point from
the source materials, and the algorithm stores this
information in advance. During feedback gener-
ation, the algorithm first automatically identifies
Key Points missing from a response and displays
the source materials relevant to the missing Key
Points.

The second part (a language learner’s response)
provides a function for the language learner to re-
play their own responses. Listening to his or her
own responses while paying attention to the miss-

ing Key Points provided in the first part may help
the test taker to understand the gaps in the re-
sponse better. Optionally, the algorithm provides
the ASR-based transcriptions of the responses.

For the third part, the algorithm first classifies a
response into a sub-group based on the automated
Key Point scores and provides feedback prepared
for the particular group. The Key Points in this
study were designed in a highly structured way,
and each Key Point was tied to specific skill ar-
eas (e.g., listening and reading) or tasks (e.g., de-
fine a concept, express his/her position about the
proposal). Thus, the combination of the Key Point
scores for each response may reveal specific weak-
nesses of the language learner. For instance, a high
proportion of missing Key Points related to the
listening passage may indicate that the language
learner has a weakness with regard to listening or
integrating information from listening into speak-
ing. The algorithm stores actionable instructions
prepared based on these language learners’ char-
acteristics for each group. In addition, when ap-
plying the feedback algorithm with an automated
proficiency scoring system, it further classifies a
response into a sub-group based on an automati-
cally detected proficiency level and provides feed-
back prepared for the particular proficiency level.
The algorithm may provide different instructions
for different proficiency levels, and this enables us
to provide simpler and easier instructions for be-
ginners while more complicated and sophisticated
instructions are provided for the intermediate or
advanced learners.

Finally, the fourth part (samples) provides rep-
resentative samples from highly proficient lan-
guage learners. The algorithm also provides ex-
planations about how Key Points are expressed in
their responses and what their strengths are. Op-
tionally, the algorithm may provide some samples
from low proficiency language learners with ex-
planations about their weaknesses.

10 Conclusions

In this study, we aim to develop an automated con-
tent feedback algorithm for spontaneous speech
from non-native English speakers. The algorithm
was designed for integrated tasks where language
learners listen to and/or read the passages and in-
tegrate the key content in their spoken responses.
Focusing on the content completeness, the algo-
rithm generated automated Key Point scores and
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provided targeted feedback about the missing Key
Points. It achieved promising performance for
questions included in the training data and also
was robust to ASR errors. In future work, we will
conduct a user study and investigate whether our
content feedback system could lead to improve-
ment in learners integrated speaking task perfor-
mance.
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Abstract

This paper provides an analytical assessment
of student short answer responses with a view
to potential benefits in pedagogical contexts.
We first propose and formalize two novel ana-
lytical assessment tasks: analytic score predic-
tion and justification identification, and then
provide the first dataset created for analytic
short answer scoring research. Subsequently,
we present a neural baseline model and report
our extensive empirical results to demonstrate
how our dataset can be used to explore new
and intriguing technical challenges in short an-
swer scoring. The dataset is publicly available
for research purposes.

1 Introduction

Short answer scoring (SAS) is the task of assess-
ing short, written, free-text student responses to a
given prompt. Typically, a prompt is a text which
either elicits recall of information that was given in
a reading passage, asks for a summary of a read-
ing passage, or asks students to draw on knowl-
edge they already have. The task is to assess the
responses based on context and writing quality, in
accordance with the criteria prespecified for each
assessment by a scoring rubric. Automation of
this process has the potential to significantly re-
duce the workload of human raters and has at-
tracted a considerable amount of attention from
both academia and industry (Riordan et al., 2017;
Zhao et al., 2017; Sultan et al., 2016; Heilman
and Madnani, 2015; Pulman and Sukkarieh, 2005;
Leacock and Chodorow, 2003; Vigilante, 1999,
etc.).

It should be emphasized that, in admissions
tests and other tests, such as writing proficiency
tests, large groups of students receive and re-
spond to the exact same set of problems, for which

∗Current affiliation: Future Corporation, mizu-
moto.tomoya.mh7@is.naist.jp

Prompt:Explain what the author means by the phrase 
“this tension has caused several different philosophical 
viewpoints in Western culture” (max: 35 words)

②

Mentions	“Western	culture”	
or	``Western’’:	2	pointsA B

Mentions	``others	have	
different	view	points	from	
oneself ’’:	3 points

justification	cue

③

C ・・・ Deduction Misspellings:	-1	point	
Minor	 flaws:	-1	point

holistic score: 4◯-1

Analytic	scoring	criteria

Student	Response:	Conflicts of interest in Western culture 
are formmed on the basis of God vs Human, …

Figure 1: Example of short answer scoring with several
analytic criteria.

rubrics have been prepared in advance. In other
words, rubrics are normally available in the SAS
setting as they are in preset paper assignments.
Additionally, at least a small amount of training
data is also available because responses are scored
by human raters in any case.

This paper examines the issue of analytical as-
sessment of short answer responses. Typically, in
a short answer setting, a scoring rubric comprises
multiple analytic criteria, each of which stipulates
different aspects of the conditions necessary for a
response to receive points, and the overall score
(referred to as the holistic score) of a given stu-
dent response is determined by some predefined
function (e.g., summation) of the score gained for
each analytic criterion (analytic score).

Consider the example illustrated in Figure 1,
where a student response is assessed according to
multiple analytic scoring rubrics (denoted by A,
B, C, etc.). The response gains two points for an-
alytic criterion A (denoted by the red circled “2”)
and three points for B (yellow circled “3”), and the
holistic score is given by the total of the analytic
scores (+2 for A, +3 for B, and −1 for the mis-
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spelling).
Assessing student responses by analytic scores

as well as holistic scores is essential in peda-
gogical contexts because (i) for teachers, analytic
scores are useful for a precise assessment of stu-
dent proficiency, and (ii) for students, analytic
scores can be used as informative feedback indi-
cating what has been achieved and what remains
to be learned next. To the best of our knowledge,
however, no prior study on automatic SAS has
ever addressed this task.

Motivated by this background, we propose and
formalize two analytical assessment tasks of SAS,
(i) analytic score prediction and (ii) justification
identification. Analytic score prediction is the task
of predicting the analytic score for each analytic
scoring criterion, whereas justification identifica-
tion is the task of identifying the justification cue
for each analytic score. By justification cue, we re-
fer to the segment of the response (a subsequence
of words) that causes the response to be awarded
points in the analytic score. In Figure 1, for ex-
ample, the phrase Western culture is identified as
a justification for criterion A, whereas the phrase
Conflicts of interest is a justification for criterion
B. Justification cues not only explain the model’s
prediction but also help students learn how to im-
prove their responses.

One crucial issue in addressing such analytical
assessment tasks is the lack of data. The datasets
that are presently available for SAS research
(Mohler et al., 2011; ASAP-SAS; Dzikovska
et al., 2013; Basu et al., 2013, etc.) are all accom-
panied by annotations of holistic scores alone. In
this study, we developed a new dataset with anno-
tated analytic scores and justification cues as well
as holistic scores. The dataset contains 2,100 sam-
ple student responses for each of six distinct read-
ing comprehension test prompts, collected from
commercial achievement tests for Japanese high
school students. The dataset is publicly available
for research purposes.1

SAS requires content-based, prompt-specific
rubrics, which means that one needs to create a
labeled dataset to train a model for each given
prompt. This nature of the task raises the issue of
how one can reduce the required labelling costs
while achieving sufficient performance. This chal-
lenge is even more critical in analytical assess-

1https://aip-nlu.gitlab.io/resources/
sas-japanese

ment because annotating student responses with
analytic scores and justification cues tends to be
much more costly than when only holistic scores
are used. This study explores several situations
with limited amounts of analytic scores and jus-
tification cues as well as large numbers of holistic
scores. We show that analytical assessment perfor-
mance for analytic score prediction and justifica-
tion identification can be improved by compensat-
ing for a lack of data with these different types of
annotations.

The contributions of this work are three-fold.
First, we propose and formalize two analytical as-
sessment tasks: analytic score prediction and justi-
fication identification. Second, we have created the
first dataset for analytic SAS and released it for re-
search. Third, we present a neural baseline model
and report some of the empirical results to demon-
strate how our dataset can be used to address new
amd intriguing technical challenges in SAS.

2 Task

2.1 Analytic criteria

We assume that each prompt is provided with a
scoring rubric which comprises several (typically
two to four) analytic criteria. Each analytic crite-
rion stipulates the conditions under which a stu-
dent response will gain an analytic score, typically
in the form of “if it includes the content 〈. . .〉, the
response gains x points. ”

A response may lose a few points owing to mis-
spellings or other minor flaws (referred to as de-
ductions). We also regard the criteria for such de-
ductions as special analytic scoring rubrics which
are allotted negative points.

The holistic (total) score of a response is as-
sumed to be the sum of all the item scores includ-
ing the deductions.

2.2 Analytic score prediction

Analytic score prediction is the task of predicting
the score of a given student response for each an-
alytic criterion. Given a student response that con-
sists of T words w1:T = (w1, · · · , wT ), the goal is
to predict the analytic score y(m) ∈ R for each cri-
terion m ∈M, whereM is a given set of analytic
criteria.

As an evaluation metric, we use quadratic
weighted kappa (QWK) (Cohen, 1968), which is
commonly used in the SAS literature.
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2.3 Justification identification

Justification identification is the task of identify-
ing a justification cue in a given student response
for each analytic score. A justification cue is the
segment of a response that causes that response
to gain points in the analytic score. For a content-
based criterion (i.e., a criterion of the form “if it
includes the content 〈. . .〉, the response gains x
points”), the fragment that explicitly expresses the
required content is a justification cue. Justification
cues not only explain the model’s prediction but
also help students learn how to improve their re-
sponses.

Formally, given a student response
w1:T = (w1, · · · , wT ), the goal is to iden-
tify the phrase w

(m)
i:j = (wi, · · · , wj), where

1 ≤ i ≤ j ≤ T , for each criterion m. As
an evaluation metric, we use precision, recall
and F1 scores based on the overlaps between
gold-standard (henceforth “gold”) and predicted
justification cues (phrases). Consider the follow-
ing example.

A carbon filament was used.
[ gold ]

[ pred ]

Here, the gold justification is A carbon filament,
and the predicted one is filament was. The number
of true positives (TP) is 1 (filament), that of false
positives (FP) is 1 (was), and that of false nega-
tives (FN) is 2 (A carbon). Thus we can calculate
the precision, 1/(1 + 1) = 0.50, and the recall,
1/(1 + 2) = 0.33. F1 score is then 2 × 0.50 ×
0.33/(0.50 + 0.33) = 0.398.

3 Dataset

This section provides an overview of our dataset.

3.1 Original dataset

Table 1 shows the statistics of our dataset. The
dataset consists of six prompts and 2,100 stu-
dent responses for each prompt. Those prompts
and their rubrics were collected from commer-
cial achievement tests provided by a long-standing
leading education company, where problems and
rubrics are carefully generated by professional ex-
perts. All the prompts are for reading comprehen-
sion tests and are of the type that requires recall of
information that has been given (either explicitly
or implicitly) in a reading passage.

Responses (6 prompts × 2,100 responses) were
originally annotated with holistic scores by profes-
sional raters employed by the education company
(not by those employed for this research). Before
the scoring, the raters were carefully instructed
about the rubrics and conducted a trial annotation
on the same sample response set for calibration.

3.2 Analytical assessment annotation

Each prompt in this dataset has three or four an-
alytic criteria. The stipulation of each criterion is
provided in the rubric. However, the responses in
the dataset were originally annotated only with
holistic scores and not with analytic scores. This
is often the case in the real-world answer scor-
ing business because (i) the manual annotation
of individual analytic scores tends to be very
costly, and (ii) proficient human assessors can ef-
ficiently grade a student response with a holistic
score taking analytic scores into account “implic-
itly”. Accordingly, we employed expert annotators
and conducted additional annotation of all the re-
sponses with analytic scores and justification cues.

Before instructing the annotators to work on the
dataset, we first investigated the difficulty of an-
notation. For each prompt, we randomly sampled
100 responses from the 2,100 responses and used
them to train and calibrate the annotators. During
this calibration process, we instructed the annota-
tors to identify analytic scores so that, for each
given student response, the sum of the analytic
scores would be equal to the holistic score given
in the original dataset. Then, using 100 additional
exclusively sampled responses, we measured the
inter-annotator agreement.

Table 2 shows the inter-annotator agreement of
analytic scores for each prompt in Kappa (Cohen,
1960) and QWK. The results are reasonably high.
This means that the annotation of analytic scores
is not too difficult for expert human annotators.
Given this observation, the remaining 1,900 re-
sponses for each prompt were annotated by a sin-
gle annotator with self-double checking. To avoid
inconsistency across annotators, we assigned all
1,900 responses to each prompt to the same an-
notator. Furthermore, if an annotator was not con-
fident about scoring a given response, the anno-
tator was instructed to discuss the response with
person who prepared the the exam to reach a con-
sensus. As a result, we obtained 12,600 student re-
sponses (6 prompts × 2,100 responses) with ana-
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Q1 Q2 Q3 Q4 Q5 Q6
Max holistic score 16 12 12 15 15 14
Average holistic score 6.8 4.0 5.3 5.5 4.6 5.5
Standard deviation 3.5 1.8 2.1 2.7 2.6 3.1
# analytic criteria 4 4 4 3 3 3
length (char.) limit 70 50 60 70 70 60
Average length (char.) 62.86 45.15 54.13 65.53 64.83 55.44

Table 1: Statistics of our dataset.

Q1 Q2 Q3 Q4 Q5 Q6 Ave.
Kappa .93 .92 .79 .70 .83 .82 .84
QWK .96 .94 .76 .84 .82 .90 .87

Table 2: Inter-annotator agreement of analytic scores in
Kappa (Cohen, 1960) and Quadratic Weighted Kappa
(QWK) (Cohen, 1968). The scores are calculated by
averaging the agreement scores for each analytic crite-
rion.

lytic scores and justification cues for each prompt.
In the future, we intend to extend the dataset

by adding a wider variety of prompts. In fact, we
have already started the annotation for three ad-
ditional prompts and plan to extend the dataset to
a far larger scale. However, our current dataset is
already as large as the biggest existing datasets
available for SAS research (ASAP-SAS), and fur-
thermore, no prior dataset has been annotated with
analytical assessment.

4 A Neural Baseline Model

The goal of the rest of the paper is to demonstrate
how our dataset can be used to address intrigu-
ing but as yet unexplored challenges in analytic
SAS. To this end, we first present our neural net-
work baseline model in this section and then report
some of the experimental results withwe have ob-
tained using the model in the next section.

4.1 Overall architecture

Figure 2 illustrates the overall architecture of our
baseline model. The idea is three-fold: (i) build a
distinct model of analytic score prediction for each
analytic criterion based on Riordan et al. (2017)’s
model for holistic SAS, (ii) train the analytic score
prediction models jointly with the holistic score
prediction model, and (iii) use supervised attention
for justification identification.

The model includes |M| analytic score models
and an addition layer. First, the input student re-
sponse w1:T = (w1, w2, · · · , wT ) is mapped to
word embeddings. Second, these embeddings are

Figure 2: Overview of the baseline model for analytic
short answer scoring.

fed to the BiLSTM layer. Third, through an atten-
tion mechanism associated with each analytic cri-
terion m ∈ M, an analytic scoring model outputs
the analytic score sm. Finally, the addition layer
sums up the analytic scores to calculate the holis-
tic score shol,

Formally, the holistic score shol is calculated by
summing all the analytic scores {sm |m ∈M}.

shol = max(
∑

m∈M
rescale(sm), 0) , (1)

sm = fm(w1:T ) . (2)

Here, we use max(·, 0) to prevent negative scoring
in the event that no scoring rubric criteria are met,
misspellings, and other minor flaws. The function
“rescale(·)” scales the analytic score back to the
original score range. As Equation 3 in Section 4.2
shows, we use the sigmoid function to compute
each analytic score. This means that each analytic
score takes a value from 0 to 1, i.e., sm ∈ [0, 1].
We thus re-scale the 0-1 ranged score to the origi-
nal scaled score. Consider a case in which the an-
alytic scoring model outputs sm = 0.7 for an ana-
lytic criterion assigned 3 points. The rescale func-

319



tion multiplies 3 by the score sm = 0.7, and the
resulting score is 2.1. This score of 2.1 is then
rounded off, and 2 is summed into the holistic
score.

One advantage of this architecture is that the
connection between the holistic and analytic scor-
ing models enables the loss of the holistic score
to back-propagate to the analytic scoring mod-
els. This means that without analytic score anno-
tations, each analytic scoring model can still be
trained with holistic score signals.

4.2 Analytic scoring model
Each analytic scoring model fm in Equation 2 is
defined as follows:

fm(w) = sigmoid(wm · om + bm) , (3)

, where wm is a parameter vector and bm is a
bias value. An attention vector om is calculated
by an attention mechanism, i.e., om = f att

m (h1:T ),
where a sequence of the hidden states h1:T =
(h1, · · · ,hT ) is output by a BiLSTM layer.

As mentioned above, owing to the use of the
sigmoid function, each analytic score takes a value
from 0 to 1, i.e., sm ∈ [0, 1]. In the training phase,
we also scale gold analytic scores to match the
scale. In the evaluation phase, the predicted scores
are re-scaled back to their original range.

4.3 Attention mechanism
An attention mechanism f att

m is defined as follows:

f att
m (h1:T ) =

T∑

t=1

αm,tht (4)

An attention value αm,t denotes the importance
weight, which represents relative importance of
the t-th word for predicting analytic score sm.

4.4 Justification identification method
The attention mechanism is used not only for an-
alytic score prediction but also for justification
identification. Specifically, based on the attention
scores α, we extract a set of justification cues C.

αmax = max
t=1,··· ,T

αt ,

C = {t ∈ [1, T ] | αmax − αt < β} .

Here, we first calculate the maximum attention
score αmax among all the attention scores. We then
extract the word indices t if the difference between

the maximum score αmax and its score αt is less
than the threshold β. As a result, we can obtain a
set of justification cues C. The threshold β is a hy-
perparameter, which is selected by using the de-
velopment set.

4.5 Training
Training with analytic scores. To train each
analytic scoring model, we minimize the mean
squared error (MSE) as the loss function,

1

N

N∑

n=1

∑

i∈I(n)

(s
(n)
i − ŝ(n)i )2 , (5)

where N is the number of training instances, and
s
(n)
i and ŝ

(n)
i are the predicted score and gold

score, respectively.

Training with holistic scores. To train the
whole network on holistic score annotations, we
minimize the MSE calculated with gold and pre-
dicted holistic scores (Equation 1) as follows:

1

N

N∑

n=1

(s
(n)
hol − ŝ

(n)
hol )

2 , (6)

where N is the number of training instances, and
s
(n)
hol and ŝ

(n)
hol are the predicted score and gold

score, respectively.

Supervised attention. We further train the at-
tention mechanism for each criterion in a super-
vised manner, called supervised attention (Mi
et al., 2016; Liu et al., 2016; Kamigaito et al.,
2017). In supervised attention, attention is learned
from the difference between the span where the
attention is focused and the given gold signal of
a justification cue. Following a previous study by
Liu et al. (2016), we add a soft constraint method
to obtain the following objective function:

∑

i∈I
{ 1
N

N∑

n=1

(s
(n)
i − ŝ(n)i )2

+
λ

N

N∑

n=1

T∑

t=1

(α
(n)
i,t − α̂

(n)
i,t )

2} (7)

where α
(n)
i,t denotes an attention weight, α̂i,t is

the supervision of attention that corresponds to
the justification cue annotated by human assessors,
and λ > 0 is a hyper-parameter. If the t-th word
is part of a gold justification cue (e.g., the phrase
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“Western culture” in Figure 1), α̂(n)
i,t is 1, otherwise

it is 0.
If an analytic score is zero, all the attention

weights {α̂(n)
i,t }Tt=1 take zero values. To solve this

problem, we explicitly encode the information that
there is no justification cue by appending a dummy
token to an input sequence. Specifically, we add
α̂i,T+1 to {α̂i,t}Tt=1 and set its value to 1 if an an-
alytic score is zero and to 0 otherwise.

5 Experiments

5.1 Settings

Dataset We first split our dataset into three sub-
sets for each prompt: 1,600 responses for train-
ing, 250 responses for development, and 250 re-
sponses for testing. To tokenize the response texts,
we employed an off-the-shelf morphological ana-
lyzer, MeCab 0.98 (Kudo et al., 2004), with de-
fault settings.

Implementation We implemented the neural
baseline model with Keras and TensorFlow. The
code will be made publicly available at an anony-
mous URL once the paper is accepted. We chose
the same hyperparameters and training settings as
in Riordan et al. (2017)’s holistic scoring model.

SVR Baseline We also implemented another
simpler baseline model based on the support vec-
tor regression model (SVR) following Sakaguchi
et al. (2015) to provide sparse feature-based base-
line results. We adopted the feature set proposed
by Sakaguchi et al. (2015), which includes word 1-
gram, word 2-gram, and predicate-argument struc-
ture features2. We used KNP 4.16 (Kawahara and
Kurohashi, 2006) to extract Japanese predicate-
argument structure features.

5.2 Experimental scenarios

As argued in Sections 1 and 3.2, one crucial issue
in analytic SAS is that the annotation of analytic
scores and justification cues is far more expensive
than holistic score annotation. One of our primary
concerns, therefore, is finding ways to reduce the
required labeling costs while achieving sufficient
performance. To explore this issue, we consider
three experimental scenarios:

2We excluded response length and character n-gram fea-
tures because the performance was worse on the development
set.

Q1 Q2 Q3 Q4 Q5 Q6 Ave.
Analytic/Justification: 25

SVR .55 .60 .20 .54 .58 .45 .486
NN base .60 .62 .19 .58 .64 .47 .516

+just. .74 .73 .29 .64 .74 .53 .610
+hol. .94 .84 .48 .72 .86 .75 .764

Analytic/Justification: 50
SVR .69 .73 .29 .64 .68 .56 .596
NN base .77 .78 .29 .68 .72 .59 .638

+just. .83 .85 .38 .71 .78 .64 .700
+hol. .95 .93 .59 .71 .87 .79 .806

Analytic/Justification: 100
SVR .77 .80 .35 .72 .73 .66 .670
NN base .87 .84 .40 .74 .79 .67 .719

+just. .90 .88 .52 .76 .81 .72 .767
+hol. .96 .93 .67 .81 .87 .82 .844

Analytic/Justification: 200
SVR .85 .87 .44 .77 .78 .71 .735
NN base .92 .91 .57 .78 .83 .76 .794

+just. .95 .92 .65 .80 .84 .78 .822
+hol. .97 .94 .72 .82 .88 .83 .859

human .96 .94 .76 .84 .82 .90 .873

Table 3: Performance in QWK for analytic score pre-
diction. “SVR” denotes the SVR baseline model de-
scribed in Section 5.1. “NN base”, “+just. ”, and “+hol.
” denote the models trained in the three hypothetical
situations, Situations (i) to (iii), described in Section
5.2., respectively.

Scenario (i): Basic setting (analytic score sig-
nals only) The first scenario assumes that we
only have analytic scores annotated to a small set
of responses. Thus we can train a model on these
annotations for each task. We consider this sce-
nario as our baseline scenario. We refer to the
model for this scenario as “NN base.”

Scenario (ii): (i) + justification signals In addi-
tion to the analytic score annotations, the second
scenario assumes that we have justification cues
annotated to the same set of responses. We can
thus train a model on both the analytic score and
justification annotations.

Scenario (iii): (ii) + holistic score signals In
addition to the analytic scores and justification
cues, the third scenario assumes that we have
holistic scores annotated to a relatively large set
of responses. In addition to implementing super-
vised learning, we can train models in a weakly
supervised manner using holistic scores.

All the reported results are the average of ten
distinct trials with the use of ten different random
seeds.
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5.3 Analytic score prediction

Scenario (i) Table 3 shows the results of each
model. Here we vary the numbers of analytic
scores and justification cues used for training each
model. “Analytic/Justification: N” denotes that
we used N ∈ {25, 50, 100, 200} analytic scores
and justification cues, respectively.3 In all the set-
tings, the base analytic scoring model (NN base)
consistently outperformed the SVR. Also, com-
pared with human performance, the analytic scor-
ing models yields reasonably strong results.

Scenario (ii) Here, we are interested in the ef-
fects of gold justification signals on analytic score
prediction. In Table 3, “+just.” denotes the mod-
els trained on N analytic scores and the same
number of justification signals. Comparing the
base model (NN base) with the justification-added
model (+just.), we observed that gold justification
signals consistently improved the base model in
all the settings. This result reveals that gold justifi-
cation signals are useful for analytic score predic-
tion.

Scenario (iii) Another issue is the effects of
holistic score signals on analytic score prediction.
In Table 3, “+hol.” denotes the models trained on
N analytic score signals, N justification signals,
and 1,600 holistic scores signals. Comparing the
justification-added model (+just) with the holistic-
score-added model (+hol.), we observed that extra
holistic score signals contributed to further per-
formance improvement. This result suggests that
holistic score signals are useful for analytic score
prediction.

Summary These results suggest that our scenar-
ios (ii) and (iii) are both worth considering in or-
der to improve the performance of analytic score
prediction. Note that the gains achieved by incor-
porating scenarios (ii) and (iii) are both statisti-
cally significant (p < 0.01 by a paired bootstrap
test (Koehn, 2004)). Specifically, the performance
of the “+just.” model was significantly better than
that of the “NN base” model for all the prompts.
The performance of the “+hol.” model was also
significantly better than that of the “+just.” model
for all the prompts.

Prec. Rec. F1
NN base (100) .332 .491 .349

+just. (100) .837 .703 .758
+hol. .807 .692 .738

Table 4: Performance of justification identification.

5.4 Justification identification
Scenario (i) Table 4 shows the results for jus-
tification identification. The “NN base” model is
trained on analytic scores of 100 responses. This
means that we used no justification signals for
training. Nevertheless, the model was able to iden-
tify some phrases that appeared in the training re-
sponses frequently and that were strongly associ-
ated with analytic scores (e.g., the phrase “West-
ern culture” in Figure 1). This result suggests that,
although this model’s performance was not very
strong, some useful information relevant to justifi-
cation identification can be exploited from the an-
alytic score signals alone.

Scenario (ii) In Table 4, “+just.” denotes the
model trained on analytic scores as well as the
justification cues of 100 responses. Naturally, the
model’s performance was drastically improved
when we fed it the gold justification signals (0.349
to 0.758 in F1).

Scenario (iii) In Table 4, “+hol.” denotes the
model trained on 100 analytic score signals, 100
justification signals, and 1,600 holistic score sig-
nals. Interestingly, the model’s performance was
not improved by the incorporation of the extra
holistic score signals (0.758 vs. 0.738 in F1). This
is in contrast to the case of analytic score predic-
tion task, which was improved by the extra holis-
tic score signals. A more in-depth analysis of this
matter is needed, but our findings do raise the non-
trivial question of which architecture is optimal to
maximize the gain that results from including jus-
tification identification from holistic score signals.

Additional analysis Another interesting ques-
tion deals with how well the accuracy of ana-
lytic score prediction correlates with the accu-
racy of justification identification. We observed
that the neural baseline models showed strong per-
formance for justification identification. These re-
sults raise the simple question of whether the sys-

3Since our dataset is entirely annotated with analytic
scores, one could conduct experiments with more training
signals.
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tem is able to correctly predict the analytic scores
for each response with the same high performance
seen in justification identification. To answer this
question, we created two subgroups from among
the responses to Q34: (i) responses with higher
precision (> .70) and (ii) those with lower pre-
cision (< .50) on the justification identification
task. We then calculated the QWK for each of
these groups. We obtained QWK values of 0.835
and 0.182 (averaged across all the criteria) for re-
sponses with higher and lower precision, respec-
tively. This strong correlation between analytic
scoring and justification empirically indicates the
feasibility of simultaneously pursuing the two ana-
lytical assessment tasks because one benefits from
the other.

5.5 Holistic score prediction

Our dataset can, of course, be used to conduct ex-
periments on holistic SAS as well. One unique
advantage of our dataset is that it contains ana-
lytic scores and justification cues, and thus one
can draw more profound insights using these new
types of annotations. For example, we can investi-
gate the effects of analytic score signals on holistic
score prediction.

Table 5 shows the results for holistic score pre-
diction. The first thing to note here is the compari-
son between the SVR model and the “hol.” model
trained on only the holistic score signals. We can
observe that the “SVR” model consistently out-
performed the “hol.” model, that the difference in
their performance was smaller with a larger train-
ing set, and that the two models have nearly com-
parable QWK (0.848 vs. 0.844) for n = 1600.
The second issue is the comparison between the
“hol.” model and the “analytic” model trained on
only the analytic score signals. In all the settings,
the “analytic” model considerably outperformed
the “hol.” model. This indicates that analytic score
signals are very informative for training a holis-
tic score prediction model as well. The third issue
is the comparison between the “NN base” model
and the “+just.” model trained on both the analytic
score and justification signals. We can observe that
using justification signals as well as analytic score
signals for training further boosts the performance
at holistic score prediction, particularly when the
training set is smaller.

4To simplify the analysis, we selected Q3, which exhib-
ited the lowest performance.

n 100 200 400 800 1600
SVR (n) .724 .772 .810 .832 .848
hol. (n) .671 .733 .782 .815 .844
NN base (n) .738 .803 .841 .869 .891

+just. (n) .776 .827 .856 .876 .892

Table 5: The performances of holistic score prediction.
n denotes the number of training instances (responses).
“hol. (n)” denotes the model trained with n holistic
score signals only. “NN base (n)” denotes the model
trained with the analytic score signals of n responses.
“+just. (n)” denotes the model trained with both ana-
lytic scores and justification signals of n responses.

Summary These results imply that, when only a
limited number of responses is available for train-
ing a holistic scoring model, it may well be worth
annotating them with analytic scores and justifi-
cation cues as well as with holistic scores. Note
that this findings regarding the correlation between
holistic and analytic score predictions has never
previously been reported in the context of SAS.
Our dataset containing analytic score and justifi-
cation annotations opens up several potential di-
rections of research in the field of SAS.

6 Related Work

Short answer scoring Previous research on
SAS has solely focused on holistic score predic-
tion. We believe that this is partly because, to date,
the publicly available datasets for SAS have con-
tained holistic scores only (Mohler et al., 2011;
Dzikovska et al., 2012, 2013; ASAP-SAS) . To the
best of our knowledge, our dataset is the first to
provide both annotated analytic scores and their
justification cues.

Analytical assessment Analytical assessment
has been studied in the context of automated es-
say scoring (Persing and Ng, 2016, 2015, etc.).
The analytic criteria adopted in essay scoring tend
to be more general, e.g., organization, clarity, and
argument strength. In contrast, analytic criteria in
SAS are typically prompt-specific as in our exam-
ples in Figure 1. Thus, the analytic criteria need
to be learned by the model separately for each in-
dividual prompt. It is an interesting open question
whether the insights gained from essay scoring re-
search can be applicable to analytic SAS research.

Interpretability of neural models In recent
years, the interpretability of neural models has re-
ceived widespread attention. Some research on in-

323



terpretability has been conducted in the image pro-
cessing field (Bach et al., 2015; Shrikumar et al.,
2017). In NLP, researchers have attempted to in-
terpret the model by analyzing the focus of at-
tention of neural networks (Ghader and Monz,
2017; Vinyals et al., 2015). In these previous stud-
ies, however, the attention was qualitatively rather
than quantitatively analyzed. In contrast, we quan-
titatively evaluated the justifications by examining
the extent to which justification cues correspond
to the span on which the system focuses to predict
the analytic score. To the best of our knowledge,
this is the first evaluation of the performance of
justifications (i.e., interpretability) in SAS.

7 Conclusion

In this paper, we have examined analytical assess-
ment for SAS. We proposed and formalized two
analytic tasks: (i) analytic score prediction and (ii)
justification identification. For these tasks, we de-
veloped a new dataset with analytic score and jus-
tification cue annotations. We then designed a neu-
ral model that predicts analytic scores simultane-
ously with a holistic score and trained the model
with only a small number of analytic score sig-
nals and a larger number of holistic score signals.
Through our extensive experiments, we have pro-
vided intriguing research scenarios and questions
on the correlations between analytic and holistic
scores.

One interesting line of future research is the
possibility of developing datasets in other lan-
guages. It is worth examining scoring models in
multilingual settings, although we plan to start
by creating and releasing an English-language
dataset. Another line of future research could in-
clude the development of more sophisticated mod-
els. In this paper, analytic scoring models calcu-
late scores independently, yet there are some inter-
dependencies between analytic score criteria. Ac-
cordingly, we plan to develop a model that incor-
porates this interdependency.
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Abstract

Visual content has been proven to be effective
for micro-learning compared to other media.
In this paper, we discuss leveraging this ob-
servation in our efforts to build audio-visual
content for young learners’ vocabulary learn-
ing. We attempt to tackle two major issues in
the process of traditional visual curation tasks.
Generic learning videos do not necessarily sat-
isfy the unique context of a learner and/or an
educator, and hence may not result in maximal
learning outcomes. Also, manual video cura-
tion by educators is a highly labor-intensive
process. To this end, we present a customiz-
able micro-learning audio-visual content cura-
tion tool that is designed to reduce the human
(educator) effort in creating just-in-time learn-
ing videos from a textual description (learn-
ing script). This provides educators with con-
trol of the content while preparing the learn-
ing scripts. As a use case, we automatically
generate learning videos with British National
Corpus’ (BNC) frequently spoken vocabulary
words and evaluate them with experts. They
positively recommended the generated learn-
ing videos with an average rating of 4.25 on
a Likert scale of 5 points. The inter-annotator
agreement between the experts for the video
quality was substantial (Fleiss Kappa=0.62)
with an overall agreement of 81%.

1 Introduction

Various studies have shown that learning with
audio-visual content leads to better retention and
engagement than just reading text or listening to
spoken content (Parkinson, 2012; Lankow et al.,
2012). The flipped-classroom model (Bishop and
Verleger, 2013) makes a case for increased use of
videos in learning, where students can use audio-
visual content to learn concepts at their own pace,
freeing up the educator’s time to prepare for other
personalized one-on-one interactions with their

students. This approach is especially attractive
for micro-learning that deals with relatively small
learning units and short-term learning activities.
As much as educators (including parents and care-
givers) desire to use audio-visual content to make
learning more engaging, customized content pro-
duction is often difficult to scale and cost pro-
hibitive. While instructors could create their own
customized content, this is labor-intensive, given
the wide variety of concepts and domain areas
children need to be exposed to. Every educator
may have a different learning-objective in mind.
To teach a vocabulary word, instructors provide
a definition of the word highlighting the impor-
tant characteristics of it along with some contex-
tual information (Beck et al., 2013). For instance,
if a teacher wants to teach about “Elephant” fo-
cusing on its habitat she may want to show Ele-
phant in Forests, and Grasslands. However, a
generic video obtained from the web may empha-
size on the different body parts of the Elephant.
Moreover, the student’s age is an important factor.
If teaching a concept to a small child, educators
would want to avoid violent or inappropriate im-
ages. Similarly, a slightly grown up learner may
not resonate with cartoons being shown for learn-
ing. Hence, the educator should have an option to
customize scripts to reflect their intended learning
objective and be able to control the appropriate-
ness of visuals. To this end, we explore a human-
augmented approach that leverages AI techniques
for creating customized content by a just-in-time
combination of contextual image content mined
from the Internet, along with appropriate voice-
over. This human-machine semi-automated ap-
proach has high potential to address the instruc-
tional needs of young learners who are in the pro-
cess of acquiring basic conceptual ideas across do-
mains for the first time, particularly in areas that
need identification and recall.
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Figure 1: Framework for Content Creation

The trade-off between the agility of content pro-
duction and content customization exposes a wide
design space (as depicted in Figure 1). Most
learner-oblivious content falls into the bottom left
quadrant, which works well when the content does
not require customization (like content including
hard facts such as the place or year an event oc-
curred, the name of an inventor etc.). Solutions
in the bottom right quadrant enable flexible and
efficient creation of content at run-time, allow-
ing for more flexibility of content presentation,
although it requires upfront planning of all the
content. Solutions in the top left quadrant re-
quire content to be curated upfront for many pos-
sible customized scenarios (which could be pro-
hibitively expensive), so that they can be just se-
lected at run-time. For young learners, especially,
high content customization is desirable, which of-
ten cannot be generated upfront since the con-
text in which a learning moment occurs cannot be
known a priori. Our ideal goal is to be able to
operate in the top right quadrant to ensure max-
imal learning outcomes. To this end, we ex-
plore a solution that enables just-in-time produc-
tion of audio-visual content for vocabulary learn-
ing when supplied with learning scripts. Our sys-
tem processes a learning script in natural language
(selected by the educator based on their learn-
ing requirements), along with an image library, to
semi-automatically generate a multi-modal learn-
ing video: with voice-over and contextual images
synchronized in a way that the video is coherent
and easily comprehended by young children. A
learning-script is the textual manuscript for the
learning-video. The voice-over is generated us-
ing a text-to-speech engine and hence can be cus-
tomized to different requirements of a friendly or
familiar speech model (e.g. that of a favourite car-

toon character) for a child to maximize engage-
ment. Using an audio-visual format, the same
concept can be presented in a multitude of ways
customized to each child’s unique learning trajec-
tory, context, and interests. Educators are familiar
with a child’s learning trajectory and areas of in-
terest, and hence our solution allows customizing
a default textual script or write a new script. The
system takes this customized textual script, uses
NLP techniques to extract relevant features and
their representative images, uses human assistance
to verify images, and finally creates a video. Since
this content is created for children, human veri-
fication process is critical to ensure that no inap-
propriate image content has inadvertently crept in
as the system automatically pulls relevant images
from the image repository based on textual fea-
tures of the script. As automatic safe image search
becomes more readily feasible, human assistance
could be reduced further. More importantly, this
approach achieves our main goal of reducing the
content creation load for educators because it is
much easier to verify created content than to cre-
ate new content from scratch.

The rest of the paper is organized as follows.
We review the related work in Section 2. In Sec-
tion 3, we explain our proposed system and all the
system components. In Section 4, we describe the
experiment and evaluation results of our model. In
Section 5, we present the future work and finally,
we conclude in Section 6.

2 Related Work

Our goal is to create just-in-time learning-videos
using textual input and an image library mined
from the Internet. In this section, we discuss prior
work related to these different aspects.

Word Concreteness: Using NLP techniques
with word-concreteness we derive meaningful
search phrases from textual scripts which help cu-
rate visuals for aptly representing the script. Many
previous studies have shown the importance of
word-concreteness as a measure and come up with
ways to compute this score (Hessel et al., 2018;
Kiela et al., 2018). Also, some work has been
done in assisting and evaluating creative writ-
ing (Roemmele and Gordon, 2018; Somasundaran
et al., 2018).

Personalized Learning: Prior work has ex-
plored various dimensions of dynamic personal-
ized learning. Jovanovic et al.(2006) demonstrate
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how semantic-web based learning objectives can
be decomposed into content units, which on re-
assembly produce content-sequence personalized
to the needs of each student. This serves as a valu-
able complimentary effort to scale our approach
based on the semantic web and learner models.
Our focus remains on generating learning-videos
by combining various available media, when pro-
vided with scripts.

Automated Visual Generation: There have
been some efforts aimed at creating slideshows
given a script, like My Simple Slideshow1. This
tool identifies keywords from the text correspond-
ing to which they have images. These image cut-
outs are brought together on the screen to create a
visual description similar to the text. However, the
combination of different individual images may
not convey the overall intended meaning of the
sentence. Hence, it is important to contextualize
the images based on the sentence context or bring
in images which represent multiple connected key-
words. Scene construction has also been con-
sidered in a project ‘Imagine This’(Gupta et al.,
2018). The authors have identified various entities
and actions present in a script, and then used those
to create a scene by combining image segments.
This is based on first training over a database con-
sisting of the constituent scene objects and actions
from a densely annotated video dataset. Since we
focus on building slideshows, and not complete
motion videos we circumvent the problem of gen-
erating continuous frames. Rather than creating or
combining images and scenes, we construct search
terms to get the most relevant images.

3 Solution Overview

We explore human-assisted just-in-time curation
of learning content for micro-learning. Our solu-
tion enables educators to generate learning videos
for vocabulary words very easily: First, we auto-
matically create sample scripts for a vocabulary
word based on definitions and usage sentences
from Simple English Wiktionary2 and allow ed-
ucators to edit them. Alternatively, they can also
write their own scripts if they are not satisfied with
the generated script. Once a script is chosen, the
system uses a set of natural language processing
(NLP) techniques to derive a list of relevant search
terms or concepts. The search terms are then used

1https://www.mysimpleshow.com/
2https://simple.wiktionary.org

Figure 2: Sample screen for Script and Image Verifica-
tion. The green boxes represent selected images.

to fetch images from an image repository (such
as Shutterstock3) and display them to the educa-
tor for validation. During the validation phase, the
educator selects the images they prefer for each
search term. With time, the educator preferences
are learned and the images presented for valida-
tion are ranked in a personalized manner.

A sample screen for script and image verifica-
tion is shown in Figure 2 for the word ‘steer’. The
available script, can be edited, and the correspond-
ing search terms drop down (top right) gets popu-
lated accordingly. The screen shows Image Verifi-
cation for the search term ‘use paddle’ extracted
from the script. The educators can simply tap
on the images which look appropriate. Once the
image validation phase is completed, the system
aligns and stitches selected images along with the
speech synthesized script. The output is a learning
video personalized to the given script. Notably, the
tasks of mining and ranking relevant visual content
(which is heavy-weight for humans) are relatively
easily done by the machine, and the tasks of veri-
fying the appropriateness of the content (which is
often heavy-weight for machines) is done by hu-
mans.

3.1 Terminology

• A learning-script is the manuscript for the
learning-video. It can be a textual/contextual
description or definition of a vocabulary
word/concept. We often refer to a learning-
script as script, and to the learning-video as
video.

3https://www.shutterstock.com
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• A vocabulary-word is the word/concept for
which given a script, the system generates a
learning-video.

• Image labels are the words or phrases as-
signed to images to describe them. Im-
age repositories often assign multiple la-
bels/keywords for every image.

• A slice is a part of the learning-script that
maps to a search term. A learning-script can
have multiple slices.

• Concreteness refers to how palpable a word is
or how much is it perceptible through senses.
The concreteness score of a word measures
its concreteness, the higher the value the
more concrete a word is.

• A concrete word is a word that has a con-
creteness score exceeding a given threshold.
We use concreteness scores from (Brysbaert
et al., 2014)

• Grammar templates are templates derived
from Dependency Parsing and Part of Speech
(POS). We construct grammar templates to
extract terms related to concrete words.

• A search tree consists of search terms. Each
child node in the tree is a substring of the par-
ent search term.

• The prioritized search terms are the Level Or-
der Traversal of the Search Tree.

Word Concreteness: Word concreteness is an
established term in the field of psychology (Paivio
et al., 1968; Kounios and Holcomb, 1994). Some
studies have relied on crowd-sourcing to com-
pute average concreteness scores for a majority
of the commonly used words in the English lan-
guage (Brysbaert et al., 2014). Multi-modal ma-
chine learning techniques also utilize concreteness
scores for improving performance (Young et al.,
2014).

3.2 System Architecture
An educator selects a vocabulary-word to be
taught. The available scripts are displayed. The
educator selects a script and optionally edits it.
The script is then passed to the NLP Layer. Fig-
ure 3 shows the system architecture and layer-wise
components, with a face indicating the compo-
nents requiring human intervention.

Figure 3: System Architecture

3.2.1 NLP Layer
The NLP layer processes the learning-script to
provide prioritized search terms on a sentence
level. First, sentence tokenization is performed.
Next, each sentence is examined, using the Con-
crete Words Processor, to identify any concrete
words present. Concrete words imply a higher
likelihood of finding appropriate images in an
image repository. However, the concrete words
by themselves might not adhere to script usage
context and therefore make for poor search terms.
For example consider the script “Many people
prefer to commute to work via public transport
as it is cheaper than having a car”. The con-
crete words obtained from the Concrete Words
Processor are shown in Figure 5. If a concrete
word like ‘work’ was solely used, it will produce
images that are not contextually appropriate to the
sentence. However, if ‘commute work’ is used, it
could yield more contextual results. Therefore, to
construct contextually appropriate search terms,
it is important that some context from the script
is used to support the concrete words. To this
end, we construct grammar templates, such as
Noun Templates and Prepositional Templates.
The expanded view of the NLP layer components
is shown in the Figure 3.

Grammar Templates Processor: The depen-
dency relations and POS are determined for the
words in the script and then the script is passed
to the Template Parser along with the Concrete
Words. Every template match is extracted and
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Figure 4: Dependency relations for a part of the script snippet for ‘commute’.

Figure 5: Script snippet processing for ‘commute’

added to the Search Terms. Each match must
include one or more of the identified Concrete
Words. Stop-words are omitted from all the
Search Terms. Figure 5 shows a detailed exam-
ple of the script for the word ‘commute’ as it is
processed through the NLP Layer.

Grammatical Relationships: We use a 3-tuple
representation of the form (arrow tail POS, depen-
dency relation, arrow head POS) for expressing
the grammatical relationship between two words
(represented by arcs in Figure 4). For instance
consider the two words ‘public’ (arrow head of the
relation arc) and ‘transport’ (arrow tail of the rela-
tion arc) from Figure 4. In this case the 3-tuple
relationship is represented as (Noun, amod, Adj).
A three word relationship is considered a combi-
nation of two two-word relationships. Therefore
we extend the notation to represent a three word
relationship using a 5-tuple representation in the
form (POS, Dependency Relation, POS, Depen-
dency Relation, POS). In this case the middle POS
is the head of the first dependency relation and the
tail of the second. Consider the example of ‘com-
mute to work’ from the Figure 4. The correspond-
ing representation becomes (Verb, prep, Adp, pobj,
Noun).

Template Parser: In this paper, we discuss two
grammar templates that we implemented, how-
ever, others can be constructed and utilized by our
framework. We construct templates in the 3-tuple
and 5-tuple format defined above. In the tuple we

fix a few elements and put ‘*’ in the rest of them
to represent an any element match. This indicates
that any value in position of ‘*’ is acceptable.

Our generic Noun Templates are (Noun,*,*) and
(*,*,Noun). If a concrete word is a noun, then
the Noun Template checks if it is part of a Noun
Phrase. If so, the Noun Phrase is added to the
Search Terms. Further, the Dependency Parser is
used to check the relations of the Noun or Noun
Phrase. A sample dependency relation is shown in
Figure 4. This was obtained using an online visu-
alization tool Displacy4.
The related terms are added along with the Noun
or Noun Phrase to the Search Terms. For ex-
ample in Figure 4, for the noun term ‘people’, a
search term constructed is ‘people prefer’. The re-
lation (Noun, nsubj, Verb) matches the template
(Noun,*,*). nsubj refers to the nominal subject
relationship. Similarly for the noun term ‘trans-
port’ the search term ‘public transport’ is added.
This acts as a noun phrase and (Noun, amod, Adj)
also matches the template (Noun,*,*). Here amod
refers to the adjectival modifier relationship. The
Search Terms coming from the Noun Templates
have been shown in Figure 5 as Noun Search
Terms.

Prep refers to the prepositional modifier depen-
dency. For Prep Templates the adjectives, verbs
and nouns having the prep relations are consid-
ered along with their corresponding object re-
lationships. If these contain a concrete word
then they are added to the Search Terms. We
define the prep templates in the 5-tuple format
(*,prep,*,obj,*) and (*,obj,*,prep,*). Words are
added to the search terms for any relations that
match these templates. For example, in the Fig-
ure 4 the relation ‘commute to work’ has the form
(Verb, prep, Adp, pobj, Noun), which passes the
first prep template. Please note that pobj (object
of preposition), belongs to the obj (object) rela-
tionship. Removing ‘to’ which is a stop word, we
add ‘commute work’ to the Search Terms. The
Search Terms contributed by the Prep Templates

4https://explosion.ai/demos/displacy
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are shown in Figure 5 as Prep Search Terms.
In Search Terms Merger (Figure 3), the Search

Terms are checked for overlap. The merged terms
are added to the Merged Search Terms. For ex-
ample, for search terms ‘commute work transport’
and ‘public transport’. In this case these would
be merged into ‘commute work public transport’
(Figure 5). Further, all the remaining concrete
words which were not part of any templates are
individually added as search terms. For example,
in the commute example, ‘car’ does not have any
matching templates and is added as such to the
Merged Search Terms. We believe that chains of
contextually related words represent the intent of a
given sentence much better than individual words.
The merged chains shape the Prioritized Search
Terms.

In Search Terms Ranker (Figure 3) the Merged
Search Terms are used to create a Search Tree,
where each child search term in the tree is a sub-
string of the parent search term. A Level Or-
der Traversal (or Breadth First Traversal) of this
tree would yield the Prioritized Search Terms.The
search terms which are substrings of other search
terms are given less priority (lower level in the
tree). These Prioritized Search Terms are provided
as the output of the NLP Layer. For example in the
Search Tree shown in Figure 5 the search terms at
L1 (Level-1) are the Search Terms which do not
have any other larger encapsulating Search Terms.
The L2 (Level-2) search terms are put after L1
search terms in the Prioritized Search List, and
similarly the later levels follow.

3.2.2 Image Selection Layer
This layer takes the Prioritized Search Terms as
its input. The search terms are used to retrieve im-
ages from the image repository. The images for
every search term are ranked in an order personal-
ized to the validator’s preferences. These ranked
images are then rendered on the tool for valida-
tion. The Image Rank Module is implemented
using a Random Forest binary classifier (classes:
accept, reject), which is trained on image labels
and whether they were approved or rejected by a
validator (human). After enough training samples
are received (for our case approx 100-200 images
across 20 vocabulary words), the recall probabil-
ity is used to rank future image search results for
each search term in descending order. The clas-
sifier learns over time and thereby improves its
ranking. With the aforementioned training set we

were able to repeatedly achieve a recall accuracy
of 0.86 or higher in identifying images which are
likely to be selected by the validator. The val-
idator looks through the images and selects the
ones which he/she thinks is appropriate consider-
ing the script and search term (Figure 2). A search
term without valid images is considered irrelevant
and is ignored. Once the validation is completed,
the verification step concludes. The output of this
layer is a mapping between the Prioritized Search
Terms and the verified images. An example map-
ping for ‘steer’ is shown in Figure 6.

3.2.3 Stitching Layer
This layer is responsible for the final production
of the learning-video (Figure 3). First, the Script
Image Alignment Module aligns the images to
the script based on the Search Terms’ script ordi-
nal positions. Second, the Script Synthesis Mod-
ule prepares a Text-to-Speech (TTS) audio for all
the Script Slices. An example of Script Slices is
shown in Figure 6. Finally, this layer combines the
synthesized audio with the image ordering, pro-
ducing a Learning Video.

Script Image Alignment Module: The sen-
tences from the script are further sliced based on
the Image-to-Search Terms Map received from the
Image Selection Layer. If a sentence has mul-
tiple slices, i.e. multiple search terms mapped
to it, this module combines the images derived
from these slices into an ordered grid (Figure 6).
This is important because when a sentence con-
tains multiple keywords, the narrative needs to
move from image to image promptly and sequen-
tially. In this scenario, maximum relevant images
are rendered/grouped together in a grid for max-
imum concept comprehension. In case there are
two search terms, and thereby two slices in a sen-
tence, two images are shown for each slice in a
2x2 grid. For example, in Figure 6, two images
are shown each for the search terms ‘use rudder
wheel’ and ‘use paddle’. If a sentence has three
or more search terms, then one image per slice is
shown in a grid. For each search term, the first
word of the search term which has not been cov-
ered by any of the preceding search terms is used
as the point to insert images (mapped to that search
term). For the first search term ‘use rudder wheel’,
the corresponding image appears on utterance of
the word ‘use’ (or the start of the sentence if it
is the first search term in a sentence). While, for
the second search term ‘use paddle’ the image ap-
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pears on utterance of the word ‘paddle’. However,
it should be noted that the exact slicing rules and
grid formation could easily be changed keeping
the overall flow intact.
Timestamps are assigned for the appearance of
each image in the grid based on the timestamps ob-
tained from the corresponding audio of the slices.
The stitching layer combines all the images based
on the timestamps. The audio obtained using TTS
is added to the video. Background music is also
added to make the experience more engaging. The
output of the stitching layer is a learning-video for
the given script.

4 Experiment and Evaluation

In this section, we first present the setup of the
experiment we conducted for evaluating our ap-
proach. The result & discussion follows in the fur-
ther subsections.

4.1 Experimental Setup

We selected ten vocabulary words from the British
National Corpus (BNC) frequently spoken list.
The words were: Barrier, Clinic, Commute, Cus-
tomer, Facility, Pedestrian, Serve, Steer, Stir, and
Weave. We obtained the definitions and usage sen-
tences from Simple English Wiktionary. These
were combined to form sample scripts. For Ex-
ample, the script for Steer derived was: “To steer
is use a rudder, wheel, or paddle to decide which
way something will travel. The driver gripped the
wheel tightly to steer the car around a corner.”

As described in the Approach Section, we de-
rived the Prioritized Search Terms from the NLP
Layer. These Search Terms were then used to
search for images from Shuterstock. These images
were sent for human verification using our author-
ing tool (Figure 2). The verified images consti-
tuted the verified image library. These were then
combined using our approach to generate learning
videos for all ten words. The layer-wise outputs
for Steer is shown in Figure 6.

4.2 Experiment Design

In our experiment, we sent out Google Forms
to participants, asking them to rate the generated
videos and provide comments. The participants
were proficient in using the English language and
included native and non-native English speakers.
The study included diverse professionals; includ-
ing educators, college students, engineers, doc-

Figure 6: Creation of learning video for ‘steer’

tors and information technology researchers. Each
form took feedback on one of the ten generated
videos. The participants were allowed to provide
feedback on as many words as they liked. We
posed the same question for every word. For ex-
ample, for the word ‘steer’ we asked ‘Would you
recommend this video to someone who does not
know “steer”?’ The responses were taken on a
Likert scale of five points, where five indicated
strong affirmation, and one indicated strong reluc-
tance.

4.3 Results and Discussion

We received a total of 210 responses from a total
of 28 unique participants. The distribution of the
scores received are in Table 1

Word Likert rating counts Total Responses
1 2 3 4 5

Weave 1 4 2 6 9 22
Facility 0 3 2 8 8 21
Clinic 1 1 5 5 11 23
Customer 0 2 3 5 10 20
Stir 0 0 3 9 9 21
Barrier 0 0 2 10 10 22
Serve 0 0 2 8 10 20
Commute 0 1 1 8 12 22
Pedestrian 0 1 1 4 14 20
Steer 0 0 1 6 12 19

Total 2 12 22 69 105 210

Table 1: Likert Score distribution for learning videos

Since our survey asked participants if they are
likely to recommend a given learning-video, we
chose to use Net Promoter Score (NPS) to mea-
sure participant satisfaction with the generated
learning-videos. NPS (Reichheld, 2003) is an
aggregate-level measure derived from scores on
likely to recommend a utility/service. NPS is
widely used in the service industries.
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We consider ratings of 4 and 5 as promoters.
The promoter ratings amount to 82.8% of the total
responses. The ratings of 1 and 2 we consider as
detractors and these amount to 6.7%. The 3 rating
is considered as neutral. Neutral rating is given by
10.4% of total responses.

NPS = %promoters−%detractors (1)

Using the Net Promoter Score (NPS) formula
above, our NPS is 76%. Per video summarized
measures have been reported in Table 2. Also,
the overall average Likert rating was 4.25 out of
5 when combined across all videos.

Word Avg. Score (Likert) #Responses SD #Images #Search Terms

Weave 3.82 22 1.30 6 3
Facility 4.00 21 1.05 3 2
Clinic 4.04 23 1.15 3 2
Customer 4.15 20 1.04 3 2
Stir 4.29 21 0.72 3 2
Barrier 4.36 22 0.66 3 2
Serve 4.40 20 0.68 6 3
Commute 4.41 22 0.80 6 3
Pedestrian 4.55 20 0.83 3 2
Steer 4.58 19 0.61 9 4
Averages 4.25 21 0.93 4.50 2.50

Table 2: Feedback on learning videos

17 unique participants gave feedback on all
words, contributing 10 responses each. For the 17
people who provided feedback on all 10 videos,
we computed the inter-annotator agreement using
Fleiss Kappa (Fleiss et al., 2013). Since the rat-
ing on the Likert scale of 5 can be subjective and
a rating of 4 may be the same as a rating of 5
for someone else, we classify the responses into
two classes ‘yes’ and ‘no’. The class ‘yes’ indi-
cates that the reviewers would indeed recommend
the video for learning a vocabulary word, and the
class ‘no’ indicates otherwise. We consider the
rating of 4, and, 5 in the ‘yes’ class and 1, and,
2 in the ‘no’ class. The responses with rating of
3 were equally distributed at random between the
two classes. The free-marginal Kappa value came
out to be 0.62, with an overall percentage agree-
ment of 81%.
An observation we make from Table 2, besides
the word weave, there is a correlation between
the number of images and the average rating; the
higher the number of images the higher the aver-
age score. The number of images is correlated to
the number of search terms identified in the script.
We plan to take this under advisement for future
work in this domain. The participants raised some
concerns about the videos. The following is a
summary of their comments regarding the scripts

and the images.
Script Related Comments: For our experiment,
we used the scripts as obtained from Simple En-
glish Wiktionary i.e. the combination of the defi-
nition and usage sentence. Hence, a common ob-
servation was that at times the usage sentence did
not coherently follow the definition sentence. This
could be addressed in one of two ways, a careful
refinement of scripts by educators or video con-
tent presentation changes. An example of the con-
tent presentation changes could be to divide the
video into two logical sections: ‘Definition’ and
‘Sample usage sentence’. Before the definition
is presented the video would explicitly say ‘Def-
inition’ and ‘Example sentence’ for sample usage
sentence(s).
Visual Related Comments: The scripts we used
for words like ‘weave’ happen to describe a pro-
cess. Processes are not easily represented by
showing a sequence of images, and rather neces-
sitate the need to have small video clips. We plan
to incorporate this suggestion, and discuss it fur-
ther in Section 5. The number of images that peo-
ple preferred for a given script were also variable.
This again, would be addressed when the educa-
tors use our tool and perform the Image Verifica-
tion task themselves. They would then simply pick
the images for the search terms they find most suit-
able for their learning environment. Accordingly
the number of images would change based on the
search terms.

5 Future Work

We believe that the problem of reducing human ef-
fort in learning content creation, and hence foster-
ing dynamic contextual content creation, is appli-
cable in multiple domains. To explore this broad
applicability, our future work will be focused on
several topics:
Personalized script recommendation: In our
current approach, we receive a learning-script as
an input from either the educator or the Simple En-
glish Wiktionary. As a continuation of this work,
we would like to use a learner model and concept-
graph to generate a personalized script targeted
at teaching a concept or a neighborhood of con-
cepts (e.g., neighborhood of conceptual words are
words related to and/or supporting a given word
in a semantic sense). The script can explore the
relationships with related words such as examples
of a higher level category (e.g. mites, spiders, and
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scorpions are relevant in teaching the concept of
arachnid). If a curriculum of vocabulary words to
be taught, is available, a recommendation system
could be leveraged for selection of the next best
video for a learner (Mbipom et al., 2018).
Visual curation: Harvesting images from the
open Web, or even a curated image repository, has
drawbacks, especially for learning and age appro-
priateness. Unless a human inspects each image,
it could be deemed inappropriate for learning or
for a particular learner age group. Utilizing work
from image scene identification (Vailaya et al.,
2001; Bosch et al., 2006) and image understand-
ing (Eakins, 2002), could help reduce the human
effort for flagging inappropriate images. Further
image scene identification could pair image con-
cepts with learning-script concepts or vocabulary
word supporting concepts (for example, Amphib-
ian and Frog).
Once labeled images are retrieved, personalizing
the selection of images based on learner likes and
dislikes is an area of interest. As humans, we in-
dividually gravitate towards certain things, which
can have an impact on learning. For example, a
student that has arachnophobia might benefit from
images of plush toy Arachnids rather than real
Arachnids (or a balance between real versus illus-
trated).
Further, knowing words a learner mastered ver-
sus words struggling with, based on learner model,
can be powerful in selecting images that link mul-
tiple concepts for the learner. For example, the
learner mastered the word spider, but is struggling
with the word arachnid. Purposefully choosing
spider image(s) as a way to explain arachnids can
help accelerate mastery. Using reading complex-
ity tests, such as Flesch-Kincaid5, script reading
complexity scores can be exposed in our tool (Fig-
ure 2) to allow the educator to select/craft age-
appropriate scripts.
Script understanding: A better understanding of
the script (by the system) can help to improve the
search and curation for visuals. Hill and Anna
have looked at concreteness as a dimension of lex-
ical meaning (2014) and have used multi-modal
models for concrete and abstract concept mean-
ings (Hill et al., 2014). Recent advances have tried
to come up with adaptive algorithms to quantify
visual concreteness of words and topics in these

5https://en.wikipedia.org/wiki/
Flesch-Kincaid_readability_tests

multi-modal datasets (Hessel et al., 2018). Adap-
tive concreteness scores for words, in context with
the scripts can help refine search terms generated
by our system. This in turn, would reduce the hu-
man effort in the validation step.

Audio: Attributes of a voice can be captivat-
ing or repulsive to the human ear. Identifying the
right voice and tone to synthesize the learning-
script with can play a significant role in learning.
Achieving this will rely on collecting learner be-
havioral data or external input sources, such as
teacher selection.

Interactive Learning: Learning videos do not
have to be a one-way street; rather they can also
be used to assess the learner’s knowledge and/or
engagement. Injecting assessment/engagement
questions can help drive a point to the learner as
well as assess the learner’s connections with the
generated content. Feedback collected can shape
creation of the next learning video. The key here
is inserting such content at the opportune moment
of the learning script.

6 Conclusion

Creating customized and just-in-time learning
content in an agile manner completely shifts the
paradigm of micro-learning. Our solution ap-
proach is generic enough to be used in any con-
tent creation scenario where it is possible to have
scripted text, and there is a repository of images
(or open Internet) to choose from. The key direc-
tion of this research is to provide the right system
in the hands of learning designers so that they can
be more efficient and agile with their essential role
of making learning effective, engaging, and fun.

References
Isabel L Beck, Margaret G McKeown, and Linda Ku-

can. 2013. Bringing words to life: Robust vocabu-
lary instruction. Guilford Press.

Jacob Lowell Bishop and Matthew A Verleger. 2013.
The flipped classroom: A survey of the research.
In ASEE National Conference Proceedings, Atlanta,
GA, volume 30, pages 1–18.

Anna Bosch, Andrew Zisserman, and Xavier Muñoz.
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Abstract 

During learning, students often have questions which 

they would benefit from responses to in real time. In 

class, a student can ask a question to a teacher. During 

homework, or even in class if the student is shy, it can 

be more difficult to receive a rapid response. In this 

work, we introduce Curio SmartChat, an automated 

question answering system for middle school Science 

topics. Our system has now been used by around 

20,000 students who have so far asked over 100,000 

questions. We present data on the challenge created by 

students’ grammatical errors and spelling mistakes, 

and discuss our system’s approach and degree of 

effectiveness at disambiguating questions that the 

system is initially unsure about. We also discuss the 

prevalence of student “small talk” not related to 

science topics, the pluses and minuses of this behavior, 

and how a system should respond to these 

conversational acts. We conclude with discussions and 

point to directions for potential future work. 

1 Introduction 

Question asking is an important part of students’ 

classroom learning. Through asking questions, 

students can clarify their confusions, address their 

doubts, and explore a topic in greater depth. 

Student questions, when framed appropriately, can 

form an important tool for learning in Science and 

other domains (Chin & Brown, 2002).  

 

However, this same type of learning support is not 

available when students are working at home. Even 

in a classroom setting, teachers may not be able to 

answer all student questions, much less to say 

about some shy students who do not even register 

their questions in class. Increasing numbers of 

students now spend class time working one-on-one 

with adaptive learning platforms (Baker, 2016), 

and in these contexts, multiple students may have 

questions at the same time, and teachers may  

not be able to answer all questions at the same time 

(Schofield, 1995).  

This challenge has led to the idea of automated 

question answering systems in education 

(Louwerse et al., 2002; Corbett et al., 2005; Milik 

et al., 2006; Jin et al., 2018), where students can 

ask questions in natural language. Different than 

simply a search engine, educational question 

answering systems attempt to provide answers 

focused on current content, set at an appropriate 

level for the student’s current stage of learning. An 

8th grader with a question about the Krebs Cycle 

needs different types of information than an 

undergraduate Biology major, for example.  

However, despite research into the possibility of 

automated question answering in education, there 

has been little effort to scale these systems, with 

considerably more energy going into tutor-led 

tutorial dialogue systems  (Wolfe et al., 2013; 

Ventura et al., 2018).  

Building such a system is non-trivial for several 

reasons, first and foremost the complexity that 

arises from handling unforeseen queries that 

represent considerable variability in the use of 

human language. Several challenges must be 

solved in order for an automated question 

answering system to be optimally effective. It must 

recognize which questions are germane and which 

are off-topic (see, for instance, Corbett et al., 

2005), and decide how to respond. It must be able 

to handle students’ grammatical errors and spelling 

mistakes (a challenge in all NLP-based learning 

systems – see Chollampatt & Ng, 2017). It must be 

able to map from often ill-formed questions to the 

content in those questions. It must provide content 

at the right educational level. 
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In this paper, we discuss our system, Curio 

SmartChat for self-paced K-12 learning through 

Question Answering as a mode and is currently 

being used by around 20,000 students, who have 

asked over 100,000 questions, in the domain of 

middle school Science. K-12 stands for 

Kindergarten through 12th grade in many countries 

while some others refer to this as “All-through-

school”. While we only present our system in 

practice for middle school which forms a part of K-

12 system, we believe the exact framework can be 

extended to serve across other grades provided the 

content is available in a similar format, as the focus 

of our system is more technology oriented 

(Question Answering) rather than content oriented.  

Within this paper, we will present data on the 

challenge created by students’ grammatical errors 

and spelling mistakes, and discuss our system’s 

approach and degree of effectiveness at 

disambiguating questions that the system is 

initially unsure about. We also discuss the 

prevalence of student “small talk” not related to 

Science topics, the pluses and minuses of this 

behavior, and how a system should respond to 

these conversational acts. We focus on our efforts 

to address these challenges, towards developing a 

system that can effectively give the right response 

to a student question, and thereby help them to 

progress rather than becoming frustrated or stuck 

(Beck & Rodrigo, 2014). 

In the next section we will describe our system 

architecture and the QA engine’s workflow in 

more detail. Section 3 will explain the challenges 

faced. Section 4 will present the discussion, 

followed by potential directions for future work.  

2 System Description  

Our system architecture comprises of three 

blocks: a semantic match engine (referred to as the 

QA engine), a content library and a web browser-

based client for user interaction. The client is a 

simple chat interface with a text input field. The 

content library is where our entire collection of 

curriculum based text documents, metadata of 

pictures and other media exist. Our QA engine 

handles all the information processing tasks.  

Let us go through a typical work flow and 

possible outcome scenarios. The user inputs his or 

her query in the text field. Based on the system’s 

understanding of the user query, it tries to retrieve 

the Answer from the content library. When the 

system encounters complex user queries which 

are difficult to comprehend, it alternates to 

offering recommendations, to try to disambiguate 

what the student is asking. Recommendations, 

unlike Answer are a list of possible questions from 

the question bank that closely matches the initial 

user query. However, when a query has no 

potential recommendations with sufficiently high 

probability, the system responds with small talk: 

off-topic exchanges such as system level 

guidance, greetings, weather, sports and so on.  

The level of our small talk content has been 

designed to suit our target users, who are around 

13-16 years old. At the moment, our small talk 

service is simple and stateless, meaning it does 

not remember the sequence of exchanges to 

respond to the query at hand. 

2.1 Content library 

The content library in this study pertains to middle 

school Science topics. The library includes a 

compilation of text documents and quick 

definitions collected based on the curriculum. This 

library also contains questions and answers tagged 

according to three levels of Bloom’s (1956) 

Taxonomy: Knowledge, Understanding and 

Application. Content such as definitions are 

labeled as Knowledge since they could be 

understood without any other prerequisite (ex: 

“What is energy?”). Understanding level content 

are those where the students can relate to what they 

learned from Knowledge (ex: “Cutting a tree with 

an axe is very easy. Why?”). Application level 

content allow the students to test their 

understanding by way of more practical scenarios 

(ex: “How do we separate oil from water?”).   

2.2 QA Engine 

Figure 1shows the architecture of the QA engine 

which is the main component of our system. When 

a user asks a questions, the engine checks for 

 

Figure 1: Architecture of QA Engine 
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spelling mistakes and does spelling correction and 

spelling normalization including replacing 

contractions in informal English. For example, 

‘What’s energy?’ is converted into ‘What is 

energy?’. As a next step the system predicts if the 

user is interested in the content or small talk. 

We have trained our own custom taggers for 

intent and entity extraction by extending SpaCy 

taggers (https://spacy.io/). The intent classifier 

decides which service will provide the response, 

small talk or content library, while the entity 

extractor will retrieve the entities the user is 

interested in. For example, if the query is “What is 

photosynthesis?”, then the tagged JSON would  

look like {“intent”: “content”, “entity”: 

[“photosynthesis”]}. There could also be more 

than one desired entity but only one intent per 

query. If the query is assessed to be content related, 

the system then will look to retrieve the answer 

from the content library through a combination of 

semantic matches. Our main search methodology 

includes a Vector Space approach to look for 

related concepts in our content library to find out 

candidate responses. 

A naive, search system would look for keywords 

(entities), however those methods suffer from out-

of-vocabulary problem and cannot detect 

paraphrases. More recent Information Retrieval 

systems have moved to employing word vectors. 

Popular word vectors such as Word2Vec (Mikolov 

et al., 2013a) and GloVe (Pennington et al., 2014) 

provide a fixed size representation for words, in a 

sense attempting to capture their meaning in the 

language space by providing synonymous words 

with similar vectors. Word vectors have been 

shown to be superior to simple keyword 

approaches towards understanding syntactic 

similarities (Mikolov et al., 2013b). However, 

there are still some shortcomings in terms of 

processing unknown words. A heuristic approach 

has been suggested to handle this problem by way 

of randomly initializing such unknown words 

(Sutskever et al., 2014). There are still concerns 

with respect to word sense disambiguation, 

however. For example, the word “mean” could be 

a Verb, Adjective or a Noun based on the sentence 

structure. Word vectors usually only offer one 

representation towards a word. To address the 

problem of polysemy, a model called sense2vec  

was trained as a deep bidirectional language model 

(Trask et al., 2015).  

 

In our work we have used sentence level encoders 

instead of word level encoders. Sentence level 

encoders, similar to word vectors, provide a fixed 

size representation for an entire sentence instead of 

individual words. In principle, the embedding of a 

sentence and its paraphrase should be vectorially 

similar in a target language space even if those two 

sentences use different words to convey the same 

idea. In our system, we use a pretrained model 

released by Google called Universal Sentence 

Encoder (Cer et al., 2018) to detect paraphrases. 

We also use a combination of hash map lookups  

besides paraphrase detection to make the retrieval 

faster and scalable.   

If the probability of our candidate response does 

not pass the confidence check, the system 

dynamically offers recommendations to the student 

that are conceptually related to that particular  

query. As our system consists of a Deep Learning 

model in production, we have made use of the 

Tensorflow framework and Docker 

containerization which are best practices in the 

industry for developing scalable, production grade 

software. 

3 Data  

Since the time of launching the service, the system 

has served over 100,000 questions from around 

20,000 students, mostly 13-16 years old. We focus 

our analyses on the quality of the served responses. 

User logs comprising the input user query, the 

response (either direct answer or small talk) and/or 

the recommendations have been collected.  

Any user query could have one of the three 

possible outcomes as shown in Figure 2; (i) A 

direct answer obtained through exact or semantic 

match, (ii) Recommendations, (iii) Small talk 

exchange.  

 

Figure 2: Distribution of Responses 

Assessing the correctness of (i) is straightforward 

and it means that the query was understood by the 

system and had passed all the necessary confidence 

checks. Given our architecture’s two-step 

19%
10%

71%

Exact+Semantic Match

Recommendations

Small talk
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winnowing approach as shown in Figure 1, a drop 

in confidence for direct answers alternates to 

recommendations and an even lower confidence 

defaults to small talk. Thanks to our carefully 

chosen parameters for checks, we have hardly ever 

found the system presented a wrong answer to the 

user. Hence we are only left with (ii) and (iii) to be 

evaluated as follows. 

To evaluate the quality of recommendations, we 

randomly chose 200 sample queries and employed 

two human raters to independently rate the  

recommendations. As for small talk analysis, we 

analyze only the misspelt queries linguistically and 

share our findings.  

3.1 Analyses of quality of recommendations 

The purpose of our analyses is to check the validity 

of our recommendations. The raters were asked to 

rate every single recommendation for each query 

as valid/ invalid depending on what was asked by 

the user. For a given user query even if one 

recommendation from the list of recommendations 

was validated by the rater, we count that as valid 

and represent the mean grouped by content 

availability in Table 1. 

The reader is required to note that 

recommendations could happen due to two 

primary reasons; either the user asked a query 

where the system lacked content about or the query 

could not be clearly disambiguated by the system. 

We have observed that the system very rarely 

responded with wrong answers when it lacked 

content, instead it responded with 

recommendation, thanks to the confidence check. 

With the above method of estimation, the average 

quality of recommendations by both raters is 

around 60% which could already offer a good level 

of user engagement. It is also important to note that 

despite human raters finding it difficult to precisely 

understand the purpose of 65 out of 200 user 

queries (32.5%), the system had offered valid 

recommendations to retain the users’ interest. Such 

a situation in class would have required the student 

having to rephrase the question until the teacher 

was confident of responding. For example, a user 

query as “as the pressure increases, the solubility 

of solids and liquids” is vague but also implies that 

the student is interested in knowing more about 

solubility and saturated solution. The system 

offered recommendations along these lines.  

3.2 Analyses of Spelling mistakes 

We present the analysis of common spelling 

mistakes our users make by manually categorizing 

at a character level. Our scheme for categorization  

follows linguistic cues such as insertion, omission, 

substitution, inversion and so on. 

We find that a majority of students tend to heavily 

depend on phonetics to spell words, with examples 

of student misspellings such as "anser", "meen", 

"wich". Among these queries, it appears that the 

silent characters have almost consistently been 

dropped such as “w” and “h” in “anser” and 

“wich” respectively. Since "a" and "e" have 

different forms of phonetic presence in the English 

language, students tend to interchangeably use 

these characters. Learning to correctly spell words 

is lacking with our users which makes serving  

Content 

Available 
Count Mean valid 

recommendation 

(count) Rater 1 

Mean valid 

recommendation 

(count) Rater 2 
No 28 0.70 (19) 0.64 (18) 
Yes 107 0.55 (59) 0.73 (78) 
Query not 
clear 

65 0.49 (31) 0.47 (29) 

 200 0.55  0.63 

Table 1: Quality of Recommendations 

 

Category User Query 

Insertion 

 

you are frome wich contry 

can you tell me what acide 

are the produce 

what is nonpoar moleculens 

Omission 

 

what is mixtur 

wate is a substsnce with a 

sour taste 

wat is meen saturated 

solution 

Substitution 

 

what is a substence 

what are the eyeglasses 
called that habe both 

concave and convex lenses 

yas i neeed halp 

Inversion 

 

waht is meen pressure 

waht maen acid ph 

Duplication 

 

can u tell me about 
definning solubility? 

wich termes deescribe a 

substance that  has an equal 
amount of hydronium and 

hydroxide ions 

Phonetic errors 

 

but i don't find the anser 

Hi. Wat your name 

were you are 

Table 2: Analyses of Spelling mistakes 
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User 1 says Curio SmartChat responds 

What is a mammal? Mammals are animals that 

give birth to babies rather than 

laying eggs and feed their 
young with milk. Examples of 

mammals include human 

beings, dogs, whales and 
bears. 

What is an animal? An animal is a living organism 

that feeds on organic matter. It 

typically has specialized sense 
organs and a nervous system, 

which makes it able to 
respond rapidly to stimuli. 

I want to just chill Please ask me about middle 

school topics in Science. 

fine Okay. 

can you explain bird A bird is a warm-blooded 

vertebrate with feathers.  

User 2 says Curio SmartChat responds 
 

Dim Dim means not shining 

brightly or clearly. 

good 
 

Let's just try again, we'll get it 
right eventually. 

:( !  You are not too nice. 

i mean :) Never mind.  Just kidding. 

what does meiosis mean The chromosome number is 
halved from diploid to 

haploid, resulting in 

genetically different cells. 
This process of reduction 

division is called meiosis. 

Table 3: Good examples episodes of small talk and 

default response 

answers a lot more challenging. In practice, 

smarter text input devices correct user input in real 

time, although depriving the users of learning from 

their mistakes. Please see Table 2 for more analyses 

on spelling mistakes. 

3.3 Analyses of small talk 

Although the primary focus of Curio SmartChat is 

to talk about content, our work follows 

recommendations from Bickmore and Cassell  

(2000) to use small talk as a means to create 

student-system rapport that ultimately builds 

student willingness to engage in learning with the 

system. While education researchers have long 

argued that off-topic conversation takes time away 

from learning (Carroll, 1963), there is evidence 

that small talk is associated with more effective 

collaboration in human-human learning (Kreijns, 

2004). Similar rapport has been created by 

conversational agents (Crossley & Kostyuk, 2017). 

In our work we employed small talk along with 

recommendations to gently nudge the user into 

content. Though users of Curio SmartChat do 

engage in small talk with the system, they have 

continued to produce content-based queries as 

well. So far we have observed that roughly one in  

User 3 says Curio SmartChat responds 

I am nicer than u I would have to agree.  
U should agree I guess I can appreciate that. 
no ur not Are we debating? 
ya we r  Please ask me about middle 

school topics in Science. 
b bbbbdjv cvmnsnv vdklv sd 

,bfvheeubrh 
Please ask me about middle 

school topics in Science. 
 

User 4 says Curio SmartChat responds 

Hello! How can I help you? Hey! That's my line! 
Hey! That's my line! Please ask me about middle 

school topics in Science. 
v Please ask me about middle 

school topics in Science. 
;vojoevjverfd Please ask me about middle 

school topics in Science. 

Table 4: Bad example episodes of small talk and 

default response 

every three queries are still content based as shown 

in Figure 2.  

As seen in systems that use wizard of oz 

approaches to generate small talk (e.g. Crossley & 

Kostyuk, 2017), students develop social 

relationships with the system, explicitly asking 

Curio SmartChat questions about its family, friends 

and hobbies. When a question is beyond the 

capacity of Curio SmartChat to answer, a default 

response- "Please ask me about middle school  

topics in Science" is provided. This default 

response has seen mixed follow-up reactions from 

the students. Some students gracefully react to this 

default response by returning to asking about the 

content (~22.97%) as shown by examples in Table 

3 while other students appear to become upset or 

respond with nonsense strings of letters  (~29.66%) 

as shown by examples in Table 4.  Given the scope 

of this paper, we will not psycho-analyze the user 

behavior, hence we simply report our findings. 

4 Challenges 

There are several technical challenges involved in 

developing and maintaining a chat service of this 

nature for students. Students do not always provide 

grammatically correct queries. Especially in the 

UAE where Curio SmartChat is primarily used, 

English is the language of instruction for Science 

but is not the native language. Hence good modules 

for spelling correction and spelling normalization 

are necessary to handle misspelt user queries. 

Every student has his or her own way of phrasing 

a question, however the response to a particular 

question has to be consistent across all students 

unless the input is irrecoverably broken. Even after 

spelling correction and normalization, there are 

still inputs that cannot be even understood by 
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human raters. Some of these appear to represent 

nonsense strings that were never intended to 

communicate (see Table 4) but others may 

represent difficulty in communicating ideas, 

sometimes due to lack of mastery in English- 

language communication, and sometimes due to 

the difficulty of the Science content and ideas. 

These utterances would be difficult for any system 

to parse accurately. It would be better to develop a 

mechanism where the students learn to properly 

spell alongside auto-correction rather than the 

system overriding the user with correct 

replacements. 

Our system as of now either offers 

recommendations or responds with small talk 

when it does not completely understand what the 

user is asking. It is not very clear as to what is the 

best way to serve more content based queries as 

against small talk between building user models or 

developing stateful dialog managers at this scale. 

As with any chat service, some users tend to use 

profanity and insults. There are still some doubts 

about how to best deal with such inputs in the 

context of an education chat agent.  

5 Conclusion 

We introduced Curio SmartChat, our Natural 

Language Question Answering system for K-12 

learning and analyzed its performance while 

serving over 100,000 queries for around 20,000 

middle school students on Science topics. Curio 

SmartChat is capable of performing both content 

based and off topic conversations with students. 

Given the scope of the system we have analyzed 

the user queries for spelling mistakes, off topic 

chats and validity of offered recommendations.  

The system is able to either directly answer or at 

the very least offer relevant recommendations to 

the users at least 60% of the time. We showed that 

even when humans were not able to precisely 

understand the queries, the system was still able to 

provide relevant recommendations 50% of the time 

thereby saving the time for both students and 

teachers alike. We only expect such benefits to 

grow with more content and better spelling 

correction mechanisms added to our system as 

future work. As we have shown the most common 

forms of spelling mistakes students make, 

developing such systems could be crucial for 

improved quality of answer retrieval. The pluses 

and minus of having a default response appear to 

be roughly similar, in other words not very 

harmful. Perhaps there are smarter ways of 

nudging the student back into content that could 

make the experience more productive.  
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Abstract

This paper discusses the computer-assisted
content evaluation of summaries. We propose
a method to make a correspondence between
the segments of the source text and its sum-
mary. As a unit of the segment, we adopt
“Idea Unit (IU)” which is proposed in Ap-
plied Linguistics. Introducing IUs enables us
to make a correspondence even for the sen-
tences that contain multiple ideas. The IU
correspondence is made based on the simi-
larity between vector representations of IU.
An evaluation experiment with two source
texts and 20 summaries showed that the pro-
posed method is more robust against rephrased
expressions than the conventional ROUGE-
based baselines. Also, the proposed method
outperformed the baselines in recall. We im-
plemented the proposed method in a GUI tool
“Segment Matcher” that aids teachers to estab-
lish a link between corresponding IUs across
the summary and source text.

1 Introduction

Summary writing is a complex task involving
various linguistic operations, and as such it is
useful for developing student linguistic profi-
ciency including text comprehension and compo-
sition (Graham and Perin, 2007). The quality of
a summary is a good indicator of language profi-
ciency. Therefore, teachers can use summaries to
evaluate a student’s proficiency. To evaluate the
quality of a summary, a teacher has to assess if
the summary conveys the important ideas of the
source text, as well as the grammatical and lexical
correctness. However, finding the corresponding
information between the summary and source text
is not an easy task for humans.

Another important aspect of summarization is
rephrasing. This practice is encouraged as it is
a core skill to master, especially for scholars, to

avoid plagiarism (Keck, 2014). Rephrasing, how-
ever, often obfuscates the bonds between the con-
tents of the source and summary texts and it repre-
sents one of the reasons why summary evaluation
is such a complex activity.

This paper proposes a support tool for eval-
uating student summaries in terms of their con-
tents by suggesting the links between the ideas of
a source text and its summary. We divide texts
into Idea Units (IUs) in order to deal with com-
plex sentences that convey multiple ideas. The
IU is defined as a minimal fragment of a text that
conveys an “idea” or “thought” coherently (Kroll,
1977). We make correspondence between IUs in-
stead of sentences across the source text and its
summary. To circumvent inaccurate IU pairing
due to rephrasing we adopt word embedding for
the calculation of IU similarity.

2 Related Work

Evaluation is one of the important aspects of the
automated text summarization research (Lin and
Hovy, 2003). BLEU (Papineni et al., 2002) de-
livers a similarity score by analyzing n-grams that
appear both in the source and summary texts in
terms of precision. ROUGE (Lin, 2004) expands
on BLEU by providing recall-oriented statistics
with n-grams and Longest Common Subsequence.
As these measures are based on string matching of
n-grams, they fail in making a correspondence be-
tween rephrased expressions.

The Pyramid approach (Passonneau, 2009) di-
vides the texts into text fragments named Sum-
mary Content Units (SCU). Assuming a set of
summaries for a source text, SCUs are weighted
based on their frequency over the summary set.
The rationale is that frequent SCUs contain im-
portant ideas. The score of a summary is calcu-
lated by summing up the weight of every SCU in
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the summary.
Automatic summary evaluation tools based on

the Pyramid approach, such as PEAK (Yang et al.,
2016) and PyrEval (Gao et al., 2018), are not suit-
able in educational environments as we cannot ex-
pect a number of reliable summaries large enough
to certify a proper weighting. In addition, the
quality of summaries is not guaranteed due to in-
sufficient student proficiency in comprehension or
composition. Their summaries might overlook ob-
scure yet paramount information. These facts lead
to imprecise SCU weighting. Lastly, writing a
Gold Standard summary is a time-consuming task;
therefore we are forced to compare the summaries
against the source text directly.

FRESA (Torres-Moreno et al., 2010) is a frame-
work for the evaluation of summaries that relies on
the Jensen-Shannon divergence between n-gram
probabilities. It scores summaries directly against
the source text without reference summaries. A
high correlation was reported between the Jensen-
Shannon divergence against the source text and
the ROUGE or Pyramid-based scores, which are
based on the reference summaries. However, as
the metric relies on n-grams, such high correlation
cannot be guaranteed when summaries use a lot of
rephrasing.

3 Segmentation

We divide the summaries and source text into Idea
Unit (IU) and make a correspondence between
them. The reason why segmentation is necessary
can be found in Keck (2014). In Keck’s study, the
level of rephrasing of student summaries was man-
ually graded by matching sentences that shared
some words. This implies that rephrased sentences
in the summary borrow at least one term from their
source text. Keck mentions that Gist statements
were particularly difficult to analyze as they ex-
pressed the information described in multiple sen-
tences in a few words. Such constructs are desir-
able, as they are an indication of an advanced un-
derstanding of the language, but finding the corre-
sponding sentences in the source text is difficult.
Shorter units than sentences would be more ver-
satile for making a correspondence between the
summaries and source text.

Foster et al. (2000) analyzed several segmenta-
tion units from the viewpoint of intonation, syntax
and semantics. For our purpose, we consider three
kinds of syntactic units: IU, T-Unit (Hunt, 1965,

1966, 1970) and C-Unit (Loban, 1963). Despite
being a popular approach, the T-Unit is too gen-
erous as it includes subordinate clauses in a sin-
gle unit. Furthermore, the T-Unit is purely a syn-
tactic unit, while IUs and C-Units also serve as a
semantic unit. Despite being readopted by mul-
tiple scholars over the years, the C-Unit is rather
vague in its definition and still retains the T-Unit
feature of allowing multiple clauses in a unit. On
the other hand, IUs tend to be shorter in length.
For instance, it separates relative clauses in dif-
ferent units (Figure 1). Moreover, its rather strict
definition suggests a smooth transition into an au-
tomatic segmentation algorithm in the future.

C-unit concerns the identification of units. The
T-unit and C-unit use orthographic sentences as
the unit of analysis. However, identifying ortho-
graphic sentences could be a problem in analyzing
student summaries, particularly those written by
second language learners, due to grammatical er-
rors and punctuation.

In Applied Linguistics, IUs have been em-
ployed for in-depth analyses of the content of
student summaries in the second language learn-
ing and assessment literature (Johns and Mayes,
1990). Accordingly, adopting the IU enables us
to interpret our study results in reference to such
previous investigations of summary content.

4 Ranking Method

To link two corresponding IUs across the sum-
mary and source text, we calculate the similarity
between the units based on word embedding. A
vector representing an IU is constructed by aver-
aging the vector representation of the words ap-
pearing in the unit. We use the GloVe word vec-
tors (Pennington et al., 2014) that have been pre-
trained with the Wikipedia + Gigaword data. We
ignored the words that are not included in the word
vector model when constructing the IU vector. We
call an IU in a summary “Summary IU” and one
in the source text “Source IU” hereafter. Given a
Summary IU, its cosine similarity to every Source
IU is calculated to create a ranking list of Source
IUs that are arranged in descending order of simi-
larity. We called this list “Prediction Ranking”.

As a baseline, we use ROUGE-1, ROUGE-
2 and ROUGE-L-based rankings. We selected
ROUGE as it has proven to be effective in eval-
uating short summaries of single documents (Lin,
2004).
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1. a subject and verb counted as one idea unit together
with (when present) a (a) direct object, (b) prepo-
sitional phrase, (c) adverbial element, (d) mark of
subordination, or (e) a combination of the above

2. full relative clauses counted as one idea unit when
the relative pronoun was present

(a) phrases that are set off by a complementizer
are counted as an Idea Unit

(b) subordinate conjunctions and relative pro-
nouns are always attached to the subordinate
clause

3. phrases which occurred in sentence initial position
followed by a comma or which were set off from
the sentence with commas were counted as separate
idea units

(a) adverbial conjunctions (e.g.: ”However,”) are
not to be split into separate Idea Units

(b) citations are counted as separeted idea units
only when they are set off from the sentence in
their entirety

4. verbs whose structure requires or allows a verbal el-
ement as object were counted with both verbal ele-
ments as one idea unit

5. reduced clauses in which a subordinator was fol-
lowed by a non-finite verb element were counted as
one idea unit

6. post-nominal -ing phrases used as modifiers counted
as one idea unit

7. other types of elements counted as idea units were
(a) absolutes, (b) appositives, and (c) verbals

8. An idea unit can be discontinuous

Figure 1: Extended definition of IU based on Kroll
(1977). Our edits are presented in italics.

5 Evaluation

5.1 Data set
Our data set is comprised of two source texts and
ten student summaries for each. The sources were
taken from the questions in the comprehension
section of the IELTS English proficiency test and
their topic is “the preservation of endangered lan-
guages” and “the impact of noise on cognitive
abilities”. The summaries were composed by ten
Ph.D. students of the University of Cambridge.
They were instructed to summarize each source
text to about one-fourth of the original length in
15 minutes while maintaining every piece of infor-
mation they deemed necessary to the correct un-
derstanding of the source text. Table 1 illustrates
the stats of the data set. The column “Summary”
shows the averaged figures of ten summaries.

Source 1 Summary Source 2 Summary

Words 996 185.5 807 204.5
IUs 111 20.6 89 24.6
Links — 18.0 — 21.3

Table 1: Statistics of data set

We manually segmented all texts into IUs accord-

ing to an extended version of Kroll (1977)’s spec-
ification. Our version includes some addenda to
define an IU as strictly and as clearly as possi-
ble (Figure 1). The extended parts are italicized
in Figure 1. Syntactical and grammatical correc-
tions were deemed out of scope and as such the
texts were left unedited.

We also manually aligned the corresponding
Summary IUs and Source IUs to make a set of cor-
rect IU links, pairs consisting of a Summary IU
and a corresponding Source IU. No link was as-
signed to a Summary IU in cases where its content
contradicts the source or was entirely fabricated
by the student. Our data set includes such link-
less IUs since the number of links is less than that
of Summary IUs as shown in Table 1. A Summary
IU can have multiple links to Source IUs as long
as it contains information from those Source IUs.
These gold IU links were used in the evaluation of
our ranking method.

5.2 Evaluation Metric
For each IU in our set of summaries, we calculated
a Prediction Ranking based on four ranking meth-
ods: the proposed Vector-based ranking and three
ROUGE-based baselines (ROUGE-1, ROUGE-2
and ROUGE-L). We then studied the precision and
recall of these rankings to evaluate the effective-
ness of our Vector-based model.

The recall and precision are calculated as fol-
lows.

Precision(n)(s) =
|PR(n)(s) ∩GL(s)|
|PR(n)(s)| , (1)

Recall(n)(s) =
|PR(n)(s) ∩GL(s)|

|GL(s)| , (2)

where s is a summary, PR(n)(s) is the Prediction
Ranking sliced at the top n links for summary s
and GL(s) is the set of Gold links for summary s.

We further averaged recall and precision val-
ues over all summaries. Figure 2 and Figure 3
show the averaged precision and the averaged re-
call against the rank threshold n.

5.3 Results
Figure 2 and Figure 3 indicate that our Vector-
based method shows comparable performance to
the three ROUGE-based baselines in terms of pre-
cision but our method outperforms the others in
recall. The difference in recall becomes larger ac-
cording to the increase of the rank threshold n.
This result is promising, as the final decision on
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Figure 3: Averaged recall at rank threshold n

what IUs should be linked is left to the end user,
i.e. we favor recall.

The recall curve for summary 4B (Figure 4) is
an example that shows a particularly big differ-
ence between our method and the others. When
the ranking threshold is 6, the recall of our model
is saturated at 0.82, which is more than the double
of the recall of other baselines.

Figure 5 shows an example of the robustness
of our method against rephrasing. The Source IU
“that its predictability is more important than how
loud it is” was linked to the Summary IU “A large
factor is not the volume” by our raters. These two
IUs share very few words, but they are close in
meaning. Our Vector-based ranking method was
able to capture this correspondence while the base-
lines could not. Indeed, the Vector model ranked
the Source IU as the 5th most probable candi-
date for the Summary IU, while ROUGE-1 and
ROUGE-L ranked it as 27th and 26th respectably.
ROUGE-2 failed altogether to match the two seg-
ments. This data is shown along with the relative

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ROUGE-1

ROUGE-2

ROUGE-L

WordVector

Figure 4: Recall at rank threshold n for summary 4B

Summary 4B

... A large factor is not the volume,\but the predictability
of a noise,\as those exposed to quiet unpredictable noises
performed worse than those listening to a loud
predictable one. ...

Source text 2
... Probably the most significant finding from research on
noise is \that its predictability is more important than
how loud it is.\We are much more able to ’tune out’
chronic, background noise, ...

Figure 5: IU samples with rephrasing.

similarities in Table 2.

6 Segment Matcher: A visual helper for
Idea Unit alignment

We built a tool named “Segment Matcher” to aid
teachers to establish links between Summary IUs
and Source IUs through a graphical user interface.
The tool consists of a front end developed entirely
in JavaScript to ensure platform independence and
a back end Python server to calculate the similarity
between IU vecors. The back end server was built
in Python inside a Docker container1 for portabil-
ity reasons.

The front end presents three different modes of
use: Match, Edit and Compare. In the Match
mode, the user firstly selects a summary file and
its source file that adhere to our data format. Each
text should presents one IU per line, with discon-
tinuous IUs having a number prefix followed by a
control character. These files are uploaded to the
server and Prediction Rankings are returned for
every Summary IUs. When the segment rankings
have been successfully received, Segment Matcher
moves to the link editor.

1https://www.docker.com/
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Figure 6: Screenshot of Segment Matcher

Vector R-1 R-2 R-L

Rank 5 27 — 26
Similarity 0.91 0.12 0 0.11

Table 2: Rank and similarity for IUs in Figure 5

Figure 6 shows a summary and the source text
side by side, with IUs encircled in balloons, sig-
nalling that they are clickable elements. The user
can link two IUs by first selecting a Summary
IU from the left panel and then clicking the rel-
evant Source IU in the right panel. To simplify
the user experience, we colored the IU balloons as
follows. When a Summary IU is firstly selected,
it turns into yellow and the top N most likely can-
didates for the Summary IU are colored in a dif-
ferent shade of red, from the darkest indicating the
most likely candidate to the lightest indicating the
least likely one. When the user clicks a Source IU
to be linked, the current Summary IU turns into
dark green and the linked Source IU turns into blue
as shown in Figure 6. The already linked Sum-
mary IUs are indicated in light green. The user can
choose how many candidates to highlight, with the
default being five.

Once the user is satisfied with their work, they
can review the alignment by listing the IU links
and save the alignment in a CSV file. This CSV
file can be modified later via the Edit mode.

The Compare mode allows users to compare
the alignments of two different raters, where two
alignment CSV files can be selected along with
their source texts to show the IU links side by side.

7 Conclusion and Future Work

In this paper, we introduced the Idea Unit
(IU) (Kroll, 1977) for the content evaluation of
student summaries and proposed a method for
aligning IUs across a source text and its sum-
maries. Our aligning method adopts the word
embedding technique to deal with rephrased ex-
pressions. The experiment with 20 summaries
for two source texts confirmed that our proposed
method is more robust against rephrasing than the
ROUGE-based baselines. The experiment also
showed that our method outperformed the base-
lines in recall. The high recall is favorable as the
final decision on the IU alignment is left to the end
user.

Adopting the proposed aligning method, we
built “Segment Matcher” to aid teachers to estab-
lish links between the IUs in a summary and the
source text through a graphical user interface. We
believe our tool contributes to making the content
evaluation of student summaries by teachers more
efficient.

In the future, we plan to further improve our
work by implementing an automatic segmentation
algorithm. This will allow teachers to evaluate
summaries without having to segment them into
IUs beforehand. We believe this to be a mission-
critical feature that has to be implemented before
the tool can be considered complete. We also plan
to conduct tests in real world scenarios before re-
leasing our tool to the public.
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Abstract

Automatic readability assessment aims to en-
sure that readers read texts that they can com-
prehend. However, computational models are
typically trained on texts created from the per-
spective of the text writer, not the target reader.
There is little experimental research on the re-
lationship between expert annotations of read-
ability, reader’s language proficiency, and dif-
ferent levels of reading comprehension. To ad-
dress this gap, we conducted a user study in
which over a 100 participants read texts of dif-
ferent reading levels and answered questions
created to test three forms of comprehension.
Our results indicate that more than readability
annotation or reader proficiency, it is the type
of comprehension question asked that shows
differences between reader responses - infer-
ential questions were difficult for users of all
levels of proficiency across reading levels. The
data collected from this study is released with
this paper1, which will, for the first time, pro-
vide a collection of 45 reader bench marked
texts to evaluate readability assessment sys-
tems developed for adult learners of English.
It can also potentially be useful for the devel-
opment of question generation approaches in
intelligent tutoring systems research.

1 Introduction

Readability assessment refers to the task of pre-
dicting the reading difficulty of a text and its suit-
ability to a target user’s reading abilities. How-
ever, a typical computational approach relies on
standard corpora that are created based on the
writer’s perception of what is difficult for a reader,
and not on the target readers’ comprehension data.
While it is difficult to create such validated cor-
pora in large samples sufficient to build automated
models, lack of such data also raises a question

1https://github.com/nishkalavallabhi/
BEA19UserstudyData

about the validity of such models (Valencia et al.,
2014; Williamson et al., 2014; Cunningham and
Mesmer, 2014). A reasonably sized corpus of
readers’ comprehension scores for texts of varying
reading levels can be a starting point in this direc-
tion, as it can enable evaluating the suitability of
an existing readability assessment system for that
target group as well as look for the validity of the
labeled dataset.

This issue then raises a question of how we
should evaluate comprehension. There is a sig-
nificant body of research on forming questions to
assess different levels of comprehension in edu-
cational and tutoring systems research (e.g., Day
and Park, 2005; Adamson et al., 2013; Mazidi and
Nielsen, 2015). Readability is not considered as
a factor in such studies. In the few user studies
that do consider readability (Rayner et al., 2006;
Crossley et al., 2014; Vajjala et al., 2016), differ-
ences between different levels of comprehension
were not considered.

In this paper, we take first steps towards under-
standing the relation between expert annotations,
reader proficiency and comprehension for auto-
matic readability assessment research by conduct-
ing a web-based reading study with over 100 par-
ticipants in a natural reading environment. Par-
ticipants read six newspaper texts, and answered
six questions on each text, covering three levels
of comprehension. We analyzed our results by
using methods from educational assessment re-
search. We are releasing the data from this study,
which for the first time, creates a freely available
reader response based dataset for evaluating read-
ability assessment systems. While it is not a large
dataset and we cannot claim to have solved the
problem of validating the readability annotations
against target user groups, we believe this study is
a first step in a much needed direction.

Our paper’s contributions can be summarized as
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follows: we conducted a user study with over 100
participants by,

• asking questions of different forms (short an-
swer, T/F) that target three levels of compre-
hension (literal, re-organization, inference)
for the first time,

• using a web-based reading setup where the
readers read the full text in a normal com-
puter based interaction setting, which can
make the results potentially more relevant to
practical, non-lab scenarios.

• using methods from educational assessment
to show the differences in user responses for
different levels of comprehension.

The rest of this paper is organized as follows:
Section 2 summarizes related research. Sections 3
and 4 describe the study and results. Section 5
summarizes the insights gained from this study.

2 Related Work

Reading is the primary means of learning and
knowing. Thus, readability or complexity of a
text affects the comprehension process. Consider-
ing its important role in learning and assessment,
text complexity has been extensively studied in the
form of user studies, theories of comprehension,
and computational approaches.

User studies on the impact of text complexity
on reading comprehension have been done in Cog-
nitive Psychology research since the 70s (Evans,
1972; Kintsch and van Dijk, 1978; Walmsley et al.,
1981; Green and Olsen, 1988; Smith, 1988; Brit-
ton and Gülgöz, 1991). Eye-tracking was also
used in the past to understand reading processes
and comprehension difficulties (Just and Carpen-
ter, 1980; Rayner, 1998; Jr et al., 2007). At-
tempting to study the problem from a second lan-
guage reading perspective, Crossley et al. (2014)
conducted a sliding-window based reading study
where participants read texts word by word, using
a collection of news articles written at three read-
ing levels by language teachers. Comprehension
was assessed by means of yes/no questions. More
recently, Vajjala et al. (2016) combined both eye-
tracking and second language reading perspectives
by doing an eye-tracking study using texts from
the same source (but not full text), asking readers
to respond to two types of questions - factual and
yes/no questions. They concluded that developing

questions that address different forms of compre-
hension may lead to a better understanding of the
text-reader interaction.

Though there has been some work on creat-
ing questions that aim at testing different levels of
comprehension (Day and Park, 2005, e.g.,), it was
not utilized in these studies. Further, eye-tracking
and sliding window approaches are closer to a
lab environment than real-world reading, which
makes it difficult to conduct larger-scale stud-
ies which can yield more reader response data,
which is needed for evaluating computational ap-
proaches.

Unrelated to such user studies, there is a large
body of research on readability assessment in the
past century. Some of the early research on assess-
ing readability relied on asking readers compre-
hension questions to evaluate text difficulty (Dale
and Tyler, 1934). Such approaches were also criti-
cized in terms of what is the right way to assess
comprehension and how the nature of questions
asked may influence readers’ performance (Lorge,
1939). However, modern day research on read-
ability assessment over the past decade largely ig-
nored this aspect in creating and evaluating read-
ability models. Since we don’t have access to the
data from such older studies, there is a need for the
creation of new reader response based corpora to
evaluate modern computational models.

Computational models of automatic readability
assessment (ARA) (Collins-Thompson, 2014) and
automatic text simplification (ATS) (Siddharthan,
2014) were proposed in the past 15 years. Un-
like early research in this direction, such ap-
proaches generally rely on the presence of cor-
pora that are either manually annotated for grade
level/readability score. These are typically written
by teachers or other experts, without a direct input
from target readers. Evaluation of ARA and ATS
systems is also typically done either automatically
by splitting the data into train-test set or, occasion-
ally, by asking a small group of human raters to
evaluate the texts in terms of their grammaticality,
and simplicity - not by actually testing for compre-
hension with target population. Except for some
systems specifically developed for addressing cer-
tain intellectual disabilities (Carroll et al., 1998;
Canning et al., 2003), there is very little research
in this direction. Considering this background, to
our knowledge, this is the first study in the re-
cent past which conducted a user study with a goal
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of supporting the development and validation of
computational models of readability assessment.

3 Methods and Experiment Procedure

Texts: We randomly selected 15 texts from the
OneStopEnglish corpus (Vajjala and Lucic, 2018),
consisting of manually simplified news articles
from The Guardian, by English teachers, to suit
beginner, intermediate, and advanced readers of
English as Second Language (ESL). This corpus
was also used in past user studies related to read-
ability assessment (Crossley et al., 2014; Vajjala
et al., 2016).2

Participants: 112 non-native English speaking
participants were recruited for this study from
among the student population of an American uni-
versity by means of an internal email advertise-
ment. Participants were compensated for their par-
ticipation with Amazon.com gift coupons.

Questions: The onestopenglish.com news
lessons included comprehension questions at the
end of each article. However, these questions
were primarily fill-in-the-blank and multiple
choice questions, and they were not the same
across all the reading levels for the same article.
Further, they did not cover different forms of
comprehension we wanted to check. Hence, the
questions (and appropriate responses) for this
study were created by an experienced language
instructor following the guidelines of (Day and
Park, 2005), and manually checked by the authors.

Questions covered three levels of comprehen-
sion: literal, re-organization, and inferential.
Literal comprehension questions require learner’s
understanding of the straightforward meaning of
the text. Therefore, the answers to such ques-
tions can be found directly and explicitly in the
text. Reorganization questions require similar un-
derstanding, but learners are required to combine
information from various portions of the text in or-
der to provide a correct answer. Inference ques-
tions require a deeper understanding of the text,
as the answer to such questions is not explicitly
stated. The correct answer requires a combination
of literal understanding of the text, learner’s back-
ground knowledge and the ability to infer from
what is written.

2An example of the degree of simplification and summary
statistics about the texts we used can be found in Appendix
in Table 8 and Table 9 respectively, and all the used texts are
provided in the supplementary material.

Questions were created such that answers are
the same for all three reading level versions of
a given text (i.e., content deleted or added be-
tween versions will not affect answering these
questions). Six questions were created per text,
covering three levels of comprehension, and two
question forms (True-False, short answer).3

Proficiency Test: All the participants completed
a free English language proficiency test provided
by the British Council4 after they completed read-
ing all the texts and answering all the questions.
The test gave a percentage score, and hence was
on a scale of 0–100.

Study Procedure: After IRB approval, the first
step involved developing a web-based application
for setting up the reading study. We developed a
Python and MySQL based web application that al-
lowed users to log in and read the displayed texts
and their responses were stored. Each reader read
6 of the 15 texts randomly chosen balancing for
reading level i.e., each user read two texts per
reading level, and without reading the same text
in multiple versions. After reading each text, they
first saw two questions dealing with factual com-
prehension. The text was not visible while an-
swering these questions. The next page had the
text along with reorganization questions and the
third page had the text along with inference ques-
tions. Reading time was calculated based on the
time taken to click on the next page but was not
used in our analysis. After finishing reading all
texts and answering questions, the participants did
the proficiency test. 5.

3.1 Data Analysis:

In order to test whether the reported comprehen-
sion scores (total and across levels) can be pre-
dicted from learner’s reading proficiency and text
readability, a variety of regression analyses were
performed using SPSS (Corp, 2013).

To compare comprehension question types and
the two question forms (T/F, short-answer) and
find possible difficulty levels among them, Multi-

3The texts, questions and participant responses will be re-
leased with this paper and are provided as supplemental ma-
terial for the submission.

4https://learnenglish.britishcouncil.
org/en/content

5The code for this web-study will be released with the pa-
per for reproducibility. It can potentially be re-used and en-
hanced to create a framework for testing larger, future studies
in this direction.
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Facet Rasch Measurement (MFRM) models were
employed using the software package FACETS
(Linacre, 2012). MFRM is typically used in psy-
chometric and educational assessment research to
examine different facets of question-answer data
and their inter-relationships (Eckes, 2011). These
relationships can include differences between par-
ticipants, texts, question difficulty etc. In our case,
the primary MFRM model used was a three facet
model. The facets of measurement included the
participants, three question types (based on com-
prehension) and two question forms (T/F and short
answer questions). Assumptions required for all
statistical analyses used were confirmed for both
the analyses.

The data collected through this study
is available on github at: https:
//github.com/nishkalavallabhi/
BEA19UserstudyData.

4 Results

Post-study, we analyzed the responses from all
the readers, and scored them manually using the
question-answer key created while forming the
questions.6 The proficiency score was obtained
automatically from the British Council test. Since
we asked two questions per level of comprehen-
sion, each individual comprehension category had
a score between 0–2 and total comprehension had
a score between 0–6. Proficiency was on a score
range 0–100. Table 1 shows descriptive statistics
about the range of scores for our data set.

Score Mean S.D
Proficiency 76.6 10.25
Literal comp. 1.47 0.61
Reorganization comp. 1.45 0.67
Inferential comp. 1.33 0.65
Total comp. 4.26 1.19

Table 1: Summary of participant responses

Purely in terms of mean scores, readers gener-
ally seemed to do poorer on inferential compre-
hension than on the other two question types. The
proficiency score was in the range of [52 − 100]
with a mean of 76.6. Table 2 shows the correla-
tion between the scores for different comprehen-
sion question types and the overall comprehension
score.

6provided in the supplementary material.

Lit. Reorg. Inf. Total
Lit. 1 -0.28 0.101 0.553
Reorg. 1 0.134 0.622
Inf. 1 0.672
Total 1

Table 2: Correlations between participant scores for
different comprehension types

Clearly, while different comprehension scores
had very low correlation among each other, they
(as expected) had a higher correlation with the
total comprehension score. This shows that the
questions were indeed different in terms of what
they are testing.

4.1 Regression Analyses

We estimated regression models to predict the
different reading comprehension scores based on
proficiency, reading level, and an interaction be-
tween proficiency and reading level. Table 3
shows the summary of a multiple regression model
to predict the total comprehension score, in terms
of the co-efficient, standard error, and the signifi-
cance of the predictor variables. The results show
that this model has a low R2 of 5.3%. This indi-
cates that proficiency and reading level can explain
only 5.3% of the variance in participants’ reading
comprehension scores. Also, only proficiency was
a significant predictor, albeit with a low unstan-
dardized coefficient (B). This is clearly not use-
ful information in a practical scenario to use as a
basis to build predictive models to recommend ap-
propriate texts for language learners based on their
proficiency and text’s complexity.

Table 3: Regression model with full data

B S.E. t Sig.
total comp. 1.902 .890 2.137 0.33
proficiency .031 .012 2.715 0.007
reading level .164 .412 .399 .690
prof. and read-
ing level inter-
action

-.002 .005 -.444 .657

R2= .053

Vajjala et al. (2016) in their eye-tracking study
with texts of two reading levels concluded that low
proficiency readers fixate more for difficult texts
compared to easy texts. To verify if that cog-
nitive effort is also reflected in their comprehen-
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sion performance, another multiple linear regres-
sion was calculated only with those participants
who scored less than the median score (75) on
the proficiency test. This additional analysis was
conducted to investigate possible specific relation-
ships of the same variables for low proficiency par-
ticipants. The results are summarized in Table 4
and do not result in a different conclusion com-
pared to the model with full data above in Table
3.

B S.E. t Sig.
total comp. 3.321 1.760 1.887 0.60
proficiency .010 .026 .375 0.708
reading level -.309 .815 -.379 .705
prof. and
reading level
interaction

.005 .012 .433 .665

R2= .014

Table 4: Regression model with low proficiency data

Regression models with these variables turned
out to be poor fits for predicting scores for the
three levels of comprehension separately as well,
explaining less than 3% of the variance for all the
three models (where literal, reorganization, and in-
ference scores were the predictor variables respec-
tively instead of total comprehension score). Pro-
ficiency had a statistically significant relation with
only the literal comprehension score, and read-
ing level was not significant in any of the models.
Therefore, we are not discussing these analyses in
further detail.

From what we see so far, it appears that we can-
not predict reader comprehension based on an ex-
pert annotated measure of text readability, and/or
a test of language proficiency. However, consid-
ering that the labels are given from the perspec-
tive of an instructor/writer and not the actual tar-
get reader, and considering that the texts did result
in different scores from users, it is possible that
there could be some other linguistic characteristics
of text beyond the manually assigned readability
label which relate to different forms of compre-
hension. One approach to explore this could be
using the feature extraction modules from exist-
ing ARA systems. These methods extract a wide
range of language features from texts, and there is
evidence that, based on these features, texts can be
successfully divided into different levels (Nelson
et al., 2012). We would leave this exploration for

future research.

4.2 MFRM Models:

To compare reader responses to different types and
forms of questions, we constructed three three-
facet MFRM models. The first model used par-
ticipants, reading levels, and comprehension types
(literal, reorganization, and inferential) as the
three facets, and it was conducted to reveal pos-
sible difficulty levels of the three question types.
The three facets for the second model were partici-
pants, reading levels, and question form (true/false
and short answer), and this analysis was used to
evaluate the comparability of the question form.
Finally, the third model combined literal and reor-
ganization comprehension into one group factual
comprehension, and had the facets as participants,
reading levels, and comprehension-question type
combinations.

MFRM model calibrations from FACETS can
be visualized by a vertical ruler known as Wright
map or variable map. The first column in this
map is the measurement scale with logits as mea-
surement units. The second column shows the es-
timates of the participants’ scores on the reading
comprehension questions. This facet is positively
oriented, so higher scoring participants appear on
the upper portion of the ruler, while lower scoring
participants appear at the bottom. The third col-
umn compares the reading levels in terms of dif-
ficulty. This facet is negatively oriented, and that
means that more difficult levels would appear on
the top of the ruler, while less difficult ones would
appear at the bottom. The fourth column is dis-
cussed in more detail in paragraphs below for each
model, and the fifth column maps the rating scale
to the logit scale (first column).

In the associated summary tables for these three
models (Tables 5–7), the reliability statistic is the
ratio of true to observed variance for the elements
of a given facet. It has a value between 0 to 1
(values closer to 1 are preferred) and this shows
how reproducible is the ordering, and how reliably
different are the values on the scale.

MFRM for levels of comprehension: Figure 1
shows the MFRM summary showing the distance
between reading levels and comprehension levels.

As seen in the figure, the ”levels” column does
not show any differences between the reading lev-
els. All the three levels are placed horizontally,
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Figure 1: MFRM variable map comparing different
types of comprehension

indicating there are no differences in terms of
comprehension difficulty per reading level. The
”Question Type” column in the ruler displays dif-
ficulty information about question type, and it
is negatively oriented. This means that infer-
ential comprehension questions were somewhat
harder than literal and reorganization comprehen-
sion questions which seem to be the same level of
difficulty.

The difference in logits (Table 5) is at 0.38,
which is about 10% of the logit spread ob-
served for the participants’ reading comprehen-
sion. Small standard errors associated with the
logit values indicate less variation from the mean.
These values, along with other score averages for
each comprehension type, are presented in Ta-
ble 5.

comp.
type

observed
raw score
average

average
proficiency
measure
(logits)

S.E.

lit. 1.48 -0.13 0.07
reorg. 1.48 -0.12 0.07
inf. 1.33 0.25 0.06
Mean 1.43 0.00 0.06
S.D. 0.09 0.22 0.00

Separation = 3.26, Reliability = 0.91

Table 5: MFRM for types of comprehension

The reliability statistic (given by

= separation2/(1 + separation2) for this
model is 0.91, which indicates that there is a good
separation between the two levels of questions -
literal and reorganization grouped at one level,
and inferential comprehension at the other level.
Since literal and re-organization are two forms of
factual comprehension, we can interpret this result
as supporting evidence for inference questions
being more difficult than factual questions.

MFRM for question types: The second MFRM
model checked for the differences in comprehen-
sion scores between the two forms of questions -
T/F and short answer. Figure 2 shows the sum-
mary of this model. The ”question form” column
in this summary indicates that short answer ques-
tions are more difficult to answer than true/false
questions.

The difference in logits, presented in Table 6, is
about 10% (0.42 logits) of the logit scale spread
observed for the participants’ reading comprehen-
sion. Again, small standard errors are observed.
In terms of the reading level, as seen in column
3 of Figure 2, there are negligible differences be-
tween the three reading levels, with intermediate
level being slightly more difficult than the other
two. Table 6 shows the reliability statistic as 0.97,
indicating that the participants showed a good de-
gree of differences between the two forms of ques-
tions.

ans.
type

observed
raw score
average

average
proficiency
measure
(logits)

S.E.

short 2.03 0.21 0.05
T/F 2.25 -0.21 0.05
Mean 2.14 0.00 0.05
S.D. 0.16 0.30 0.00
Separation = 5.41, Reliability = 0.97

Table 6: MFRM for forms of questions

MFRM for question types and forms: Since
we saw two levels of difficulty among three levels
of comprehension in the first MFRM model (Fig-
ure 1) and two levels of difficulty between ques-
tion types, we evaluated a third MFRM model to
understand the interaction between question form
and the level of comprehension. Figure 3 shows
the vertical ruler for this model, where literal
and reorganization comprehension are grouped to-
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Figure 2: MFRM variable map comparing the two
forms of questions

gether into one (i.e., factual comprehension). The
”Tasks” column in this summary shows that both
types short answer and T/F inference questions
were more difficult than Literal/Reorganization
questions of both forms. This is further demon-
strated by a pretty large difference in logit values
which is presented in Table 10 7.

ques.
type/form

observed raw
score average

average pro-
ficiency mea-
sure (logits)

S.E.

T/F,
fact.

1.56 -1.83 0.08

short,
fact.

1.39 -1.16 0.08

T/F,
inf.

0.69 1.42 0.07

short,
inf.

0.65 1.57 0.07

Mean 1.43 0.00 0.06
S.D. 0.09 0.22 0.00
Separation = 23.08, Reliability = 1.00

Table 7: MFRM for forms of questions and factual ver-
sus inferential comprehension

The difference between the lowest point of in-
ference (T/F) and the highest point of literal and
reorganization comprehension (short-answer), as
displayed on the ruler (Figure 3), is 2.58 logits,

Figure 3: MFRM variable map comparing 2 forms of
questions with respect to factual and inferential com-
prehension

which is 64.5% of the total logit spread. This
means that the difference in difficulty is com-
pelling. Additionally, within a given level of com-
prehension, short answer questions are more dif-
ficult to answer compared to T/F questions. For
factual comprehension the difference in logits is
0.67, and for inferential comprehension, this dif-
ference is much lower at 0.15 logits. This accounts
for 16.75% and 3.75% of the logit spread, respec-
tively. This model shows that short answer ques-
tions are more difficult than T/F questions within
a given level of comprehension.

5 Conclusions and Discussion

In this paper, we started out with the goal of under-
standing the relationship between expert annota-
tions of readability, reader’s language proficiency,
and their reading comprehension, while also aim-
ing to create a dataset which is useful for bench-
marking computational models of readability as-
sessment. To achieve this, we conducted a user
study, and built a range of models on the data from
this study.

The initial regression models were built to
understand how much of reader comprehension
scores can be explained by text’s reading level,
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and the reader’s language proficiency. These re-
sulted in a poor fit for the data with neither reading
level, nor proficiency score contributing much to
predicting reader comprehension. As it was seen
in related studies, reader proficiency had a statis-
tically significant correlation with the comprehen-
sion score. However, it did not convert into ac-
tual predictive power despite the fact that we had
over 100 users and almost 700 data points for the
regression model. This result, while questioning
the validity of expert annotations to target popu-
lation’s comprehension, also leads us to speculate
that single measures of readability level and user
proficiency by themselves may not be sufficient to
match texts to readers in terms of predicted com-
prehension. We may have consider a broader set
of linguistic features, and go beyond a single pro-
ficiency measure.

The results of first MFRM model (Figure 1 and
Table 5) lead us to a conclusion that the partici-
pants had difficulty answering inference questions
compared to literal and re-organization questions,
irrespective of the reading level. There are no dif-
ferences between the scores for responses to lit-
eral and reorganization questions though, indicat-
ing that the separation is between factual (which
includes both literal and reorganization) and infer-
ential comprehension, rather than the three levels.
The results from the second MFRM model (Fig-
ure 2 and Table 6) show that there are differences
between question types with or without consider-
ing comprehension levels separately. Short answer
questions were generally difficult to answer cor-
rectly compared to T/F questions. As the results
from the third MFRM model (Figure 3 and Ta-
ble 7) showed, even within a given level of com-
prehension, short answer questions remained more
difficult than T/F questions.

5.1 Discussion

Overall, the results from our study are mixed.
It did not provide any evidence in the direction
of using expert annotation of text readability and
reader’s language proficiency information to be
able to predict reader comprehension and recom-
mend linguistically appropriate texts to language
learners. On one hand, this may indicate that the
level of simplification performed in the texts is not
substantial enough to merit differences in compre-
hension, and such an experiment may hold more
value in scenarios that aim at content simplifica-

tion, along with form. On the other hand, it may
also question the validity of expert annotations of
text readability.

However, we know it is possible to automati-
cally distinguish between these levels in this cor-
pus using machine learning models (Ambati et al.,
2016; Vajjala and Meurers, 2016; Vajjala and Lu-
cic, 2018). Whether the variation between texts
of any specific linguistic property (e.g., lexical
richness, syntactic complexity, coherence) can be
correlated with the differences in comprehension
scores instead of ”reading level” assigned by the
teachers should be explored as a part of future
work.

The MFRM results provide evidence in the di-
rection of different questions resulting in different
responses, and hence, call for the need to focus on
methods to automatically generate questions that
target multiple levels of comprehension. Asking
the right kind of questions is important in various
scenarios that relate to the application of Artificial
Intelligence in education such as - learning support
in tutoring systems, and the assessment of compre-
hension in both self-learning and test taking sce-
narios.

Limitations: The study has been conducted in
a relatively less-controlled manner compared to,
say, an eye-tracking study, so there is no way to
know whether the participants actually read the
texts. Additionally, the study did not consider how
much the readers’ background knowledge helped
them in answering the questions. While these fac-
tors may have affected the outcome of this study
(as they will for most studies of this nature), it
would not also be possible to conduct a study with
over 100 participants while controlling for both
these aspects. One aspect that was not considered
in this analysis was the variation within different
texts used in the study (random variation). This
can perhaps be addressed in future considering it
as another facet that affects the outcome.

Finally, the results of this study could be spe-
cific to the texts or the proficiency test or the ques-
tions used. Consequently, we believe more such
studies are needed in future to establish the rela-
tion between expert annotations and reader com-
prehension in the context of readability assess-
ment. Conducting such studies with texts from
different sources, and with texts that are validated
more thoroughly (e.g., pedagogical texts, which
are perhaps created with increasing levels of com-
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prehension in mind) will be a useful direction to
pursue to overcome this limitation.

Outlook: As mentioned earlier, an immediate
extension to this work would be to study what
linguistic properties that differ across reading lev-
els (if any) correlate with reader comprehension
of the text. Additionally, expanding the study to
other forms of comprehension, collecting informa-
tion about more than one form of proficiency as
was done in (Crossley et al., 2014), and evaluating
different readability assessment systems using this
data could lead us in the right direction in terms of
matching texts to target readers in future.
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Table 8: Example texts for three reading levels

Reading Level Example
Advanced Amsterdam still looks liberal to tourists, who were recently as-

sured by the Labour Mayor that the city’s marijuana-selling cof-
fee shops would stay open despite a new national law tackling
drug tourism. But the Dutch capital may lose its reputation for
tolerance over plans to dispatch nuisance neighbours to scum vil-
lages made from shipping containers.

Intermediate To tourists, Amsterdam still seems very liberal. Recently the
city’s Mayor assured them that the city’s marijuana-selling coffee
shops would stay open despite a new national law to prevent drug
tourism. But the Dutch capitals plans to send nuisance neigh-
bours to scum villages made from shipping containers may dam-
age its reputation for tolerance.

Elementary To tourists, Amsterdam still seems very liberal. Recently the city’s
Mayor told them that the coffee shops that sell marijuana would
stay open, although there is a new national law to stop drug
tourism. But the Dutch capital has a plan to send antisocial
neighbours to scum villages made from shipping containers, and
so maybe now people wont think it is a liberal city any more.

Table 9: Summary Statistics for Texts

Elementary Intermediate Advanced
WC AWL ASL WC AWL ASL WC AWL ASL

Text 1 474 4.57 20.22 482 4.80 22.55 484 4.88 23.74
Text 2 607 4.11 16.46 660 4.13 20.32 661 4.19 21.03
Text 3 589 4.19 16.88 641 4.21 19.47 657 4.27 20.03
Text 4 662 4.73 16.44 681 4.8 18.72 736 4.89 20.37
Text 5 527 4.5 17.53 561 4.6 19.31 599 4.72 20.68
Text 6 691 4.51 17.08 707 4.66 19 769 4.8 19.5
Text 7 627 4.65 20.7 646 4.82 22.07 714 4.9 23.9
Text 8 273 4.21 18.71 327 4.28 22.57 376 4.33 26.77
Text 9 596 4.58 17.26 658 4.71 19.63 703 4.74 21.71
Text 10 500 4.65 21.57 580 4.76 25.13 609 4.75 25.65
Text 11 445 4.40 18.27 536 4.54 20.28 554 4.61 22.86
Text 12 578 4.46 16.03 655 4.67 24.97 690 4.76 27.35
Text 13 472 4.55 19.13 552 4.73 22.54 586 4.77 23.17
Text 14 535 4.38 12.71 610 4.52 14.24 673 4.57 16.38
Text 15 437 3.97 17.52 547 4.01 19.83 599 4.09 20.9
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Abstract
The selection of texts for second language
learning purposes typically relies on teach-
ers’ and test developers’ individual judgment
of the observable qualitative properties of a
text. Little or no consideration is generally
given to the quantitative dimension within an
evidence-based framework of reproducibility.
This study aims to fill the gap by evaluating the
effectiveness of an automatic tool trained to as-
sess text complexity in the context of Italian as
a second language learning. A dataset of texts
labeled by expert test developers was used to
evaluate the performance of three classifier
models (decision tree, random forest, and sup-
port vector machine), which were trained us-
ing linguistic features measured quantitatively
and extracted from the texts. The experimen-
tal analysis provided satisfactory results, also
in relation to which kind of linguistic trait con-
tributed the most to the final outcome.

1 Introduction

The task of automatically classifying a text ac-
cording to its different levels of complexity has
had various applications in a number of different
fields. It is key in mood and sentiment analysis,
in the detection of hate speech, in text simplifica-
tion, and also in the assessment of text readability
in relation to both native and non-native readers.

Being able to select a text and compare it with
others is a central concern in the field of second
language learning. When choosing a text to be
used in a lesson or as part of a language test, a
teacher and/or language test developer will gener-
ally assess the suitability of that text on the basis
of several aspects: the need to adhere to a specific
syllabus and curriculum, as well as general guide-
lines and test specifications. Other aspects that are
considered include learner-related variables such

as their linguistic needs, their educational back-
ground, and their age, all elements involving other
aspects such as text genre, text type, tasks to be
assigned to the text, and so on.

According to the literature, there is wide con-
sensus on specific characteristics that can influ-
ence the difficulty of a text in the context of a
reading comprehension task. These characteris-
tics have a role in terms of the cognitive demands
that a text will impose on its reader (Bachman
and Palmer, 2010)(Purpura, 2014). These char-
acteristics are text length, grammatical complex-
ity, word frequency, cohesion, rhetorical organiza-
tion, genre, text abstractness, subject knowledge
and cultural knowledge. All these aspects relate
to readability, and are often evaluated intuitively
and subjectively by individual experienced teach-
ers, who will then use a given text deemed to be
representative of a certain proficiency level in a
lesson or as part of a test.

Although this kind of sensitivity to the text is
extremely valuable, especially when adapting a
lesson or test item to the specific needs of a group
of learners, its limitations are evident for at least
two reasons: the evaluation is performed by sin-
gle teachers or test developers at the one time and
it is not reproducible; the evaluation is conducted
solely on the basis of observable qualitative fea-
tures of a text.

In the context of language assessment, text se-
lection for the purposes of a reading comprehen-
sion task has considerable implications with re-
gard to the interpretation of test scores: a text sub-
jectively deemed suitable for a given proficiency
level, which would have objectively been deemed
otherwise, will inevitably hinder the validity of the
overall testing process. The same can be argued
for text selection aimed at lesson planning: an in-
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adequate text chosen for a given class will hinder
the whole learning process.

As a result, an automatic system able to used ex-
tract objective and reproducible information about
a text, combining qualitative and quantitative data,
is highly desirable in the field of second language
learning, though still largely lacking, especially
for the Italian language and in relation to differ-
ent proficiency levels. The Common European
Framework of Reference for Languages (CEFR)
descriptors are unable to provide this kind of sup-
port in relation to the readability of a text.

In this study, we assess the effectiveness of an
automatic classification tool for the evaluation of
text complexity in Italian. We used a dataset of
texts used at CVCL, Centro Valutazione Certifi-
cazioni Linguistiche, one of the main Italian lan-
guage testing centres with sections all over the
world, based at the University for Foreigners of
Perugia. Each text in the dataset was labeled by
test development experts according to the CEFR
descriptors. The dataset was used to train a clas-
sification model, enabling it to automatically pre-
dict the proficiency level of any text in input. The
dataset was used to test three different classifiers:
decision tree, random forest and support vector
machine. The main difference between this study
and the related work in the field that will be de-
scribed in the following paragraph is that a set
of linguistic features is used to distinguish texts
from the perspective of CEFR levels. Therefore,
linguistic features measured quantitatively and ex-
tracted from the texts are used to train the classi-
fication models that, in turn, allow to predict the
proficiency level of an unseen text.

The rest of the article is organized as follows.
The literature related to this work is described in
Section 2. The architecture of the system is intro-
duced in Section 3, while the definitions of the lin-
guistic features adopted in the study are provided
in Section 4. Experiments are discussed in Sec-
tion 5, while the conclusions are drawn in Section
6 together with future lines of research.

2 Related Work

The assessment of text readability in relation to
its complexity has been a central research topic
for many decades now. In particular, advances
in computational linguistics and the development
of corpora, along with the availability of sophis-
ticated language technologies, allow the capturing

of a wide variety of increasingly complex linguis-
tic features that are able to affect the readability of
a text.

A number of studies aimed at developing au-
tomatic readability measures have focused on the
English language, both for the simplification of
administrative texts and for the purposes of first
and second language learning. In more recent
years, these studies have also involved other lan-
guages, such as French, Swedish, Dutch, German
and Portuguese.

The texts used as a gold standard to train the
classification models vary. For French, the corpus
of texts was a second language coursebook corpus,
containing texts developed by expert teachers and
materials’ designers (François and Fairon, 2012).
A similar approach has been used for Swedish
(Pilán et al., 2016), with the subsequent addition
of a corpus of texts produced by second language
learners (Pilán and Volodina, 2018). Other stud-
ies have used exams texts (Branco et al., 2014) or
a combination of exam texts and native texts (Xia
et al., 2011). One study on the readability of Dutch
texts (Velleman and Van der Geest, 2014) uses a
set of reference texts calibrated in order to repre-
sent a range of reading skills, while another one
tailored for English (Vajjala and Meurers, 2016)
includes a wide range graded corpora to cater for
both natives’ and learners’ reading skills in both
general and specialist language needs.

In terms of features, a number of systems have
been developed, such as the Flesch-Kincaid (Kin-
caid and Lieutenant Robert, 1975), Coh-metrix
(Graesser et al., 2004) and CTAP (Xiaobin and
Meurers, 2016). In relation to the Italian lan-
guage, three main approaches have been ex-
plored: the Flesch-Vacca formula, an adapta-
tion of the Flesch-Kincaid formula for English
(Franchina and Vacca, 1986), the GulpEase index
(Lucisano and Piemontese, 1988), and READ-IT
(Dell’Orletta et al., 2011).

In the Flesch-Kincaid formula, and its Italian
counterpart, text complexity is measured with ref-
erence to the average length of words, based on
syllables, and the average length of sentences,
based on words. In addition to this, the for-
mula provides an output indicating the approxi-
mate number of years spent in the education sys-
tem that are necessary to comprehend a given text.
The GulpEase index provides information that is
similar to the Flesch-Kincaid formula, though it
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is based on considerably different characteristics.
First, it is created directly on and for the Italian
language. Second, though it includes the average
length of words as well as the average length of
sentences, the former is calculated on the basis
of letters, not syllables, which aids the automatic
treatment of the text.

For both of these measures, values range from 1
to 100, namely the highest and lowest textual com-
plexity levels respectively. READ-IT, on the other
hand, is based on a number of raw text, lexical,
morpho-syntactic, and syntactic features, based on
Support Vector Machines. This set of features is
used together with a training corpus in order to de-
velop a statistical model that is able to assess the
complexity of newly inputted texts. The training
corpus is formed by newspaper articles and a sim-
plified reader of newspaper articles.

The aim of these measures developed for the
Italian language have so far concerned the require-
ments of text simplification of administrative texts
or other typically complex texts, in order to meet
the needs of people with low literacy levels or with
mild cognitive disorders. To the best of our knowl-
edge, this study represents the first attempt to au-
tomatically classify Italian texts on the basis of a
wide set of linguistic features, and in relation to
the CEFR levels. In this respect, it lays the ground-
work for a new resource in the context of Italian as
a second language learning and teaching.

3 The System’s Architecture

The problem of automatically measuring text
complexity through the CEFR proficiency levels
has been cast to a supervised classification prob-
lem.

We collected a dataset of texts labeled by the
experts of the CVCL center of the University for
Foreigners of Perugia. This dataset is used to train
a classification model that, in turn, allows to auto-
matically predict the proficiency level of any text
in input.

As it is possible to see from the system’s ar-
chitecture depicted in Figure 1, the classification
model does not directly work with the texts in their
pure form. Indeed, any text is converted to a vec-
tor of numeric features and then passed on to the
classification model (both for training or level pre-
diction).

This scheme allows, on the one hand to adopt
the most common classification models available

in the machine learning literature (Shalev-Shwartz
and Ben-David, 2014) and, on the other hand, to
build a classification model based only on the lin-
guistic features of the text that, we think, are what
discriminate texts from the point-of-view of profi-
ciency classes.

Therefore, the most important part of our sys-
tem is the component performing the ”Linguis-
tic Features Extraction” phase. This component
has been implemented on top of Natural Language
Processing (NLP) tools for the Italian language. In
particular, we have adopted the NLP pipeline tools
provided by Tint (Palmero Aprosio and Moretti,
2016), i.e., the Italian counterpart of the widely
known Stanford CoreNLP tool (Manning et al.,
2014). The linguistic features used in this work
are detailed in Section 4.

Although most of the recently proposed works
in NLP use semantically based features (Santucci
et al., 2018), such as the well known word embed-
dings system introduced in (Mikolov et al., 2013)
and (Bojanowski et al., 2016), it is worthwhile to
note that here we chose lexical and syntactic fea-
tures because they are the key linguistic traits for
distinguishing different CEFR levels.

Regarding the classification model, we ran ex-
periments on our system with three widely known
models: decision tree (DT), random forest (RF),
and support vector machine (SVM)1. While DT
and RF provide more interpretable models, that
can be analyzed ex post by linguistic scholars, we
expect that SVM should reach a larger accuracy.

In our prototypical system, we have used the
implementations of DT, RF and SVM available in
the widely adopted ”Sci-Kit Learn” library (Pe-
dregosa et al., 2011).

4 Linguistic Features

The features used for predicting the text level are
inspired by those adopted in (Dell’Orletta et al.,
2011). These linguistics features have been di-
vided into four main categories, and are described
as follows.

4.1 Raw text features

Raw text features are the most elementary type of
features considered here and they were computed
through the tokenization of the text in input. In
particular, they are:

1See (Shalev-Shwartz and Ben-David, 2014) for a de-
scription of the models employed here
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Figure 1: Architecture of the System

• Word Length, computed as the average num-
ber of characters per word, and

• Sentence Length, i.e., the average number of
tokens per sentence.

4.2 Lexical Features

Lexical features are mainly computed through the
lemmatization of the text’s tokens and with refer-
ence to the New Basic Italian Vocabulary (NBIV)
(De Mauro and Chiari, forthcoming) which in-
cludes the following three reference wordlists:

• fundamental (F) words (i.e.: the first 2000
most frequent words), such as cane, gatto;

• high usage (HU) words (i.e: occurring be-
tween frequency ranks 2000 and 4300) , such
as accademia, incapace, orribile;

• high availability (HA) words (i.e.: identi-
fied in De Mauro and Chiari (forthcoming)
through a native speaker judgment question-
naire), such as affannato, mandarino, sal-
vadanaio.

Therefore, the considered lexical features are:

• Lemmas in NBIV, i.e., the percentage of text’s
lemmas belonging to NBIV;

• Lemmas’ distribution with respect to NBIV,
i.e., the distribution of the text’s lemmas in
the previous point among the three subsets F,
HU and HA of NBIV (this feature is a vector
of three numbers);

• Type Token Ratio (TTR), computed as the ra-
tio between the number of different lemmas
and the number of tokens in the text; how-
ever, since TTR is highly influenced by the
text length, we restricted the computation to
the first 100 tokens of every text in input.

4.3 Morpho-syntactic features
Morpho-syntactic features are computed basing on
the Part-of-speech (POS) tagging and the morpho-
logical analysis performed on the text in input. In
particular, we have considered the following fea-
tures:

• POS Tags Distribution, i.e., for each POS tag
p, it is computed the ratio between the num-
ber of tokens with type p and the total number
of tokens in the text;
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• Lexical Density, computed as the ratio be-
tween the number of content words (i.e.,
words tagged as nouns, adjectives, adverbs or
verbs) and the total number of tokens in the
text;

• Verbal Moods Distribution, i.e., the distribu-
tion of the seven verbal moods among the
verbal tokens of the text.

4.4 Syntactic Features
The text in input is syntactically parsed by Tint
and, for each sentence of the text, a dependency
parse tree is produced. The syntactic features,
described in the following, are then computed
through dependency trees.

• Dependency Types Distribution, i.e., for each
possible dependency type d, we computed
the ratio between the number of dependen-
cies with type d and the total number of de-
pendencies, considering all the parse trees.

• Depth of the Parse Trees, computed as the
maximum depth among all the parse trees.

• Length of non-Verbal Chains, i.e., the aver-
age length of the paths without verbal nodes
in the parse trees.

• Verbal Roots, i.e., the percentage of parse
trees with a verbal root.

• Average Verbal Arity, where the verbal arity
of a verbal node v is the number of depen-
dency links with v as a head.

• Subordinates, i.e., the number of subordinate
clauses in the parse trees.

• Average Length of the Dependency Links,
where the length of a dependency link be-
tween two tokens t1 and t2 is the distance, in
terms of number of tokens, between t1 and t2
in the syntagmatic dimension of the sentence.

5 Experiments

Experiments have been held in order to: analyze
the effectiveness and the robustness of the pro-
totypical classification system here proposed, and
gain useful insights about which features discrim-
inate more the texts.

The rest of the section is organized as follows.
Section 5.1 describes the corpus of texts and the

B1 B2 C1 C2 Total
2C 0 129 0 97 226
4C 194 129 103 97 523

Table 1: Distribution of proficiency levels across
datasets 2C and 4C.

datasets used in our experimentation. The exper-
imental design is described in Section 5.2. The
effectiveness of our system is analyzed in Sec-
tion 5.3, while its robustness is discussed in Sec-
tion 5.4. Finally, Section 5.5 analyzes the con-
tribution of the different features selected for this
work.

5.1 Corpus and Datasets
An important preliminary step to the experiments
was the creation of a reliable corpus of labeled
texts. In regard to this, we collected 523 texts with
CEFR levels manually marked by expert language
test developers. The corpus contains texts for the
four CEFR levels B1, B2, C1 and C2.

Two different datasets, namely 4C and 2C, have
been extracted from the corpus. While 4C (i.e.,
four classes) corresponds to the whole corpus, the
smaller dataset 2C (i.e., two classes) contains the
subset of 226 texts belonging to the levels B2 and
C2. Table 1 provides the distribution of the differ-
ent levels for both datasets.

Two main reasons motivated the introduction of
the smaller dataset 2C. First, the distribution of
the proficiency levels in 4C is unbalanced, there-
fore a smaller and more balanced dataset such as
2C can be more reliable in terms of representative-
ness. Second, as the classification models do not
treat the four levels as part of an ordinal scale, thus
ignoring the natural ordering characterizing them,
choosing two levels instead of four eliminates this
issue.

5.2 Experimental Design
We tested three classifier models, namely, Deci-
sion Tree (DT), Random Forest (RF) and SVM,
on both the datasets 2C and 4C.

For each dataset, the effectiveness and ro-
bustness of each model was evaluated using the
nested cross-validation scheme (Varma and Si-
mon, 2006). Two nested cross-validation loops
were performed: the outer loop aims at estimat-
ing the effectiveness of the model setting which is
calibrated in the inner loop. Both loops use 5 strat-
ified folds. The inner loop performs an exhaustive
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Parameters Name Values

Feature-wise normalization
NN, SS, L2,
RS

Split quality measure
(criterion)

GI, IE

Min. impurity decrease
(min impurity decrease)

0, 2

Min. samples to split
(min samples split) 2, 10,

NS

10

Min. samples per leaf
(min samples leaf)

1, 5, 10

Max. number of features
(max features)

√
NF , NF

Max. number of leaf nodes
(max leaf nodes)

2, 5

Weights associated with classes
(class weight)

1,
NS

NC · nk

Table 2: Parameters space for the Decision Tree and the
Random Forest classifiers. The original name of each
parameter in the Sci-Kit documentation is in typewriter
font within brackets. The function used to measure the
quality of a split can either be the Gini impurity (GI)
or the Information entropy (IE). NF is the number of
features, NS and NC are the number of samples and
the number of classes in the dataset, respectively; nk is
the number of samples in the k-th class of the dataset.

grid search on the hyper-parameters space, cross-
validated on the training and validation sets ob-
tained by the outer loop. Every grid search returns
the setting of hyper-parameters which maximizes
the (macro-averaged) F1-score. Then, the general-
ization ability of the selected model setting is as-
sessed on the test sets generated by the outer loop
and using the classic metrics accuracy, precision,
recall and F1-score.

The linguistic features described in Section 4
may have different scales, hence we introduced a
preprocessing step to normalize them. Four nor-
malization methods were considered: no normal-
ization at all (NN), L2 normalization (L2), stan-
dardization (SS), and robust standardization (RS)
(which, with respect to SS, do not consider the out-
lier values). Hence, the choice of the normaliza-
tion method is a further hyper-parameter which is
tuned by the grid search.

The calibrated hyper-parameters and their
ranges are provided in Table 2 for DT and RF, and
Table 3 for SVM.

Finally, in order to reduce the computational ef-

Parameters Name Values

Penalty parameter (C)
0.5, 0.75,
1.0, 1.25,
1.5

Kernel coefficient γ (gamma) 10−3, 10−4

One-vs-rest or one-vs-one
(decision function shape)

OvO, OvR

Weights associated with classes
(class weight)

1,
NS

NC · nk

Table 3: Parameters space for the SVM classifier. The
original name of each parameter in the Sci-Kit docu-
mentation is in typewriter font within brackets.

2C A P R F1

DT 0.9292 0.9265 0.9303 0.9281
RF 0.9292 0.9278 0.9278 0.9278

SVM 0.9336 0.9355 0.9291 0.9318

4C A P R F1

DT 0.7189 0.6908 0.6888 0.6885
RF 0.7495 0.7136 0.7186 0.7130

SVM 0.7725 0.7400 0.7407 0.7398

Table 4: Accuracy A, precision P , recall R and F1-
score for Decision Tree (D.T.), Random Forest (R.F.)
and Support Vector Machine (SVM) on 2C (upper ta-
ble) and 4C (lower table). Such measures are first com-
puted for each class, then their unweighted mean is
computed.

fort, we fixed the following hyper-parameters:

• the maximum tree depth of DT and RF has
been set to

⌊√
NF

⌋
, where NF is the number

of features;

• the number of trees in RF has been set to 100;

• the SVM uses the radial basis function as ker-
nel type.

5.3 Results

For each dataset we tested all three classifiers, and
we report the results, in terms of accuracy, preci-
sion, recall and F1-score, in Table 4 for datasets
2C and 4C.

For the 2C dataset the differences between De-
cision Trees and Random Forests are irrelevant,
indeed the precision slightly increases, the recall
decreases comparably, and the F1-score conse-
quently remains pretty much the same. SVMs

365



Actual
Predicted B1 B2 C1 C2

B1 174 20 0 0
B2 13 95 20 1
C1 0 29 45 29
C2 0 3 16 78

Table 5: Confusion Matrix for Random Forests on 4C.

achieve better results, although the performances
are satisfactory for all classifiers.

For the 4C dataset the situation is different:
there is an improvement switching from Decision
Trees to Random Forests, as is expected, and also
from these ones to SVMs, that outperform the
other models by 2.3% in terms of accuracy. How-
ever, as can be expected, the performances ob-
tained on the 2C dataset are generally better than
those obtained on 4C.

As previously reported, our models do not take
into account the levels’ ordering. Hence, we ana-
lyze how much this aspect influenced the perfor-
mances. In particular, we analyze the results ob-
tained by the RF model on the 4C dataset. With
this aim, Table 5 shows the confusion matrix (for
RF on 4C) with the levels ordered according to
their natural ordering. From these data, it is ev-
ident that only four misclassified texts are two
classes away from the actual class. Therefore, the
classifier model does not seem to be very sensitive
to the levels’ ordering.

5.4 Robustness Analysis

Here we analyze the robustness of the RF model
by considering the differences among the five set-
tings of hyper-parameters obtained by the calibra-
tions performed in the outer-loop of the nested
cross-validation.

Most notably, every setting has the
same assignment for the hyper-parameters
criterion, min impurity decrease
and max leaf nodes. Moreover,
the hyper-parameters class weight,
min samples leaf, max features and
min samples split have been assigned to the
same value in three settings out of five. The only
unstable parameter is the normalization method
which assumes all the possible values.

These results, despite some minor differences,
shows the robustness of the proposed approach.

5.5 Analysis of Linguistic Features

The choice of Random Forests classifiers come in
handy when we want to analyze how the classi-
fier works internally, how the linguistic features
are used and how they contribute to the final re-
sult.

The importance of a feature used by the Ran-
dom Forests classifier can be quantified by means
of the loss of Gini impurity due to each node where
the splitting is performed according to that feature.

As already pointed out, a single run of nested
cross-validation for Random Forests provides 5
different sets of parameters for each dataset; we
analyzed them all separately, however, due to
space constraints, in Figure 2, we only show the
features’ importance for one of them. The impor-
tance of linguistic features remains quite steady
across the different 5 folds of the nested cross-
validation both for 2C and 4C, thus proving the ro-
bustness of our architecture, and providing a sound
assessment of the contribution of a feature to the
final outcome.

6 Conclusion and Future Work

In this work we introduced an automatic classifi-
cation system for assessing the proficiency level of
an Italian text used for second language learning
purposes.

A dataset of texts labeled by expert test develop-
ers was used to evaluate the performance of three
classifier models (decision tree, random forest,
and support vector machine), which were trained
using linguistic features measured quantitatively
and extracted from the texts.

Experiments were held in order to analyze the
effectiveness and robustness of the proposed pro-
totypical classification system, and to gain useful
insight about which features contribute the more
to discriminate the texts from the point of view of
CEFR levels.

Overall, considering the preliminary nature of
the work, the classification accuracy we obtained
is satisfactory. Moreover, we derived interesting
indications about the contribution of the different
linguistic features we considered.

This work can be extended along several future
research avenues: integrating more linguistic fea-
tures, considering the natural ordering among the
proficiency levels, including more classification
models, and artificially augmenting the dataset of
texts.
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Figure 2: Relative importance of the features used by the Random Forest classifier trained on 2C (top plot) and 4C
(bottom plot), in logarithmic scale.
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Abstract

We present a machine foreign-language
teacher that takes documents written in a
student’s native language and detects situations
where it can replace words with their foreign
glosses such that new foreign vocabulary can
be learned simply through reading the resulting
mixed-language text. We show that it is possi-
ble to design such a machine teacher without
any supervised data from (human) students. We
accomplish this by modifying a cloze language
model to incrementally learn new vocabulary
items, and use this language model as a proxy
for the word guessing and learning ability of
real students. Our machine foreign-language
teacher decides which subset of words to
replace by consulting this language model.

We evaluate three variants of our student
proxy language models through a study on
Amazon Mechanical Turk (MTurk). We find
that MTurk “students” were able to guess
the meanings of foreign words introduced by
the machine teacher with high accuracy for
both function words as well as content words
in two out of the three models. In addition,
we show that students are able to retain their
knowledge about the foreign words after they
finish reading the document.

1 Introduction

Proponents of using extensive reading for language
acquisition, such as Krashen (1989), argue that
much of language acquisition takes place through in-
cidental learning , where a reader infers the meaning
of unfamiliar vocabulary or structures using the sur-
rounding (perhaps more familiar) context. Unfortu-
nately, when it comes to learning a foreign language
(L2), considerable fluency is required before seeing
the benefits of incidental learning. But it may be pos-
sible to use a student’s native language (L1) fluency
to introduce new L2 vocabulary. The student’s L1
fluency can provide sufficient “scaffolding” (Wood

et al., 1976), which we intend to exploit by find-
ing the “zone of proximal development” (Vygotskiı̆,
2012) in which the learner is able to comprehend
the text but only by stretching their L2 capacity.

As an example of such mixed-language incidental
learning, consider a native speaker of English (learn-
ing German) presented with the following sentence:
Der Nile is a Fluss in Africa. With
a little effort, one would hope a student can infer
the meaning of the German words because there
is sufficient contextual information. Perhaps with
repeated exposure, the student may eventually learn
the German words. Our goal is to create a machine
teacher that can detect and exploit situations where
incidental learning can occur in narrative text (sto-
ries, articles etc.). The machine teacher will take a
sentence in the student’s native language (L1) and re-
place certain words with their foreign-language (L2)
translations, resulting in a mixed-language sentence.
We hope that reading mixed-language documents
does not feel like a traditional vocabulary learning
drill even though novel L2 words can be picked
up over time. We envision our method being used
alongside traditional foreign-language instruction.

Typically, a machine teacher would require super-
vised data, meaning data on student behaviors and
capabilities (Renduchintala et al., 2016; Labutov
and Lipson, 2014). This step is expensive, not
only from a data collection point of view, but also
from the point of view of students, as they would
have to give feedback (i.e. generate labeled data)
on the actions of an initially untrained machine
teacher. However, our machine teacher requires
no supervised data from human students. Instead,
it uses a cloze language model trained on corpora
from the student’s native language as a proxy for
a human student. Our machine teacher consults this
proxy to guide its construction of mixed-language
data. Moreover, we create an evaluation dataset that
allows us to determine whether students can actually
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Sentence The Nile is a river in Africa

Gloss Der Nil ist ein Fluss in Afrika

Mixed-Lang Der Nile ist a river in Africa
Configurations The Nile is a Fluss in Africa

Der Nil ist ein river in Africa

Table 1: An example English (L1) sentence with Ger-
man (L2) glosses. Using the glosses, several possible
mixed-language configurations are possible. Note that
the glosses do not form fluent L2 sentences.

understand our generated texts and learn from them.
We present three variants of our machine teacher,

by varying the underlying language models, and
study the differences in the mixed-language doc-
uments they generate. We evaluate these systems
by asking participants on Amazon Mechanical Turk
(MTurk) to read these documents and guess the
meanings of L2 words as and when they appear (the
participants are expected to use the surrounding
words to make their guesses). Furthermore, we
select the best performing variant and evaluate if
participants can actually learn the L2 words by
letting participants read a mixed-language passage
and give a L2 vocabulary quiz at the end of passage,
where the L2 words are presented in isolation.

2 Approach

Will a student be able to infer the meaning of the L2
tokens I have introduced? This is the fundamental
question that a machine teacher must answer when
deciding on which words in an L1 sentence should
be replaced with L2 glosses. The machine teacher
must decide, for example, if a student would
correctly guess the meanings of Der, ist, ein, or
Flusswhen presented with this mixed-language
configuration: Der Nile ist ein Fluss
in Africa.1 The machine teacher must also ask
the same question of many other possible mixed-
language configurations. Table 1 shows an example
sentence and three mixed-language configurations
from among the exponentially many choices. Our
approach assumes a 1-to-1 correspondence (i.e.
gloss) is available for each L1 token. Clearly,
this is not true in general, so we only focus on
mixed-language configurations when 1-to-1 glosses
are possible. If a particular L1 token does not have
a gloss, we only consider configurations where that
token is always represented in L1.

1By “meaning” we mean the L1 token that was originally
in the sentence before it was replaced by an L2 gloss.

2.1 Student Proxy Model
Before we address the aforementioned question,
we must introduce our student proxy model. Con-
cretely, our student proxy model is a cloze language
model that uses bidirectional LSTMs to predicts
L1 words from their surrounding context (Mousa
and Schuller, 2017; Hochreiter and Schmidhuber,
1997). We refer to it as the cLM (cloze language
model). Given a L1 sentence [x1,x2, ... ,xT ], the
model defines a distribution p(xt | [hf : hf ]) at
each position in the sentence. Here, hf and hb are
D−dimensional hidden states from forward and
backward LSTMs.

hf
t=LSTMf ([x1,...,xt−1];θf ) (1)

hb
t=LSTMb([xt+1,...,xT ];θ

b) (2)

The cLM assumes a fixed L1 vocabulary of size
V , and the vectors xt above are embeddings of
these word types, which correspond to the rows of a
matrix E∈RV×D. The output distribution (over V
word types) is obtained by concatenating the hidden
states from the forward and backward LSTMs and
projecting the resulting 2D-dimensional state down
to D-dimensions using a projection layer h(·;θh).
Finally, a softmax operation is performed:

p(· | [hf :hb])=softmax(E·h([hf :hb];θh)) (3)

Note that the softmax layer also uses the word
embedding matrix E when generating the output
distribution (Press and Wolf, 2017). This cloze
language model encodes left-and-right contextual
dependence rather than the typical sequence depen-
dence of standard (unidirectional) language models.

We train the parameters θ = [θf ; θb; θh; E]
using Adam (Kingma and Ba, 2014) to maximize∑

xL(x), where the summation is over sentences
x in a large L1 training corpus.

L(x)=
∑

t

logp(xt | [hf
t :h

b
t]) (4)

We assume that the resulting model represents the
entirety of the student’s L1 knowledge, and that the
L1 parameters θ will not change further.

2.2 Incremental L2 Vocabulary Learning
The model so far can assign probability to an
L1 sentence such as The Nile is a river
in Africa, (using Eq. (4)) but what about a
mixed-language sentence such as Der Nile ist
ein Fluss in Africa? To accommodate the
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new L2 words, we use another word-embedding
matrix, F ∈ RV ′×D and modify Eq 3 to consider
both the L1 and L2 embeddings:

p(· | [hf :hb])=softmax([E;F]·h([hf :hb];θh))

We also restrict the softmax function above to
produce a distribution not over the full bilingual
vocabulary of size |V | + |V ′|, but only over the
bilingual vocabulary consisting of the V L1 types
together with only the v′⊂V ′ L2 types that actually
appear in the mixed-language sentence x. In the
above example mixed-language sentence, |v′| is 4.
We initialize F by drawing its elements IID from
Uniform[−0.01,0.01]. Thus, all L2 words initially
have random embeddings [−0.01,0.01]1×D.

These modifications lets us compute L(x) for a
mixed-language sentence x. We assume that when
a human student reads a mixed-language sentence
x, they update their L2 parameters F (but not their
L1 parameters θ) to increaseL(x). Specifically, we
assume that F will be updated to maximize

L(x;θf ,θb,θh,E,F)−λ‖F−Fprev‖2 (5)

Maximizing Eq. (5) adjusts the embeddings of each
L2 word in the sentence so that it is more easily pre-
dicted from the other L1/L2 words, and also so that it
is more helpful at predicting the other L1/L2 words.
Since the rest of the model’s parameters do not
change, we expect to find an embedding for Fluss
that is similar to the embedding for river. How-
ever, the regularization term with coefficient λ>0
prevents F from straying too far from from Fprev,
which represents the value of F before this sentence
was read. This limits the degree to which our sim-
ulated student will change their embedding of an
L2 word such as Fluss based on a single example.
As a result, the embedding of Fluss reflects all of
the past sentences that contained Fluss, although
(realistically) with some bias toward the most recent
such sentences. We do not currently model spacing
effects, i.e., forgetting due to the passage of time.

In principle, λ should be set based on human-
subjects experiments, and might differ from human
to human. In practice, in this paper, we simply took
λ=1. We (approximately) maximized the objective
above using 5 steps of gradient ascent, which gave
good convergence in practice.

2.3 Scoring L2 embeddings
The incremental vocabulary learning procedure
(Section 2.2) takes a mixed-language configuration

and generates a new L2 word-embedding matrix
by applying gradient updates to a previous version
of the L2 word-embedding matrix. The new matrix
represents the proxy student’s L2 knowledge after
observing the mixed-language configuration.

Thus, if we can score the new L2 embeddings,
we can, in essence, score the mixed-language
configuration that generated it. The ability to
score configurations affords search (Sections 2.4
and 2.5) for high-scoring configurations. With this
motivation, we design a scoring function to measure
the “goodness” of L2 word-embeddings, F.

The machine teacher evaluates F with reference
to all correct word-gloss pairs from the entire
document. For our example sentence, the word
pairs are {(The, Der), (is,ist), (a,ein),
(river,Fluss)}. But the machine teacher also
has access to, for example, {(water,Wasser),
(stream, Fluss) . . . }, which come from
elsewhere in the document. Thus, ifP is the set of
word pairs,{(x1,f1),...(x|P|,f|P|)}, we compute:

r̃p=R(xp,cs(Ffp ,E)) (6)

rp=

{
r̃p if r̃p<rmax

∞ otherwise

MRR(F,E,rmax)=
1

|P|
∑

p

1

rp
(7)

where cs(Ff ,E) denotes the vector of cosine simi-
larities between the embedding of an L2 word f and
the entire L1 vocabulary. R(x,cs(E,Ff )) queries
the rank of the correct L1 word x that pairs with f .
r can take values from 1 to |V |, but we use a rank
threshold rmax and force pairs with a rank worse
than rmax to∞. Thus, given a word-gloss pairing
P , the current state of the L2 embedding matrix
F, and the L1 embedding matrix E, we obtain the
Mean Reciprocal Rank (MRR) score in (7).

We can think of the scoring function as a
“vocabulary test” in which the proxy student gives
(its best) rmax guesses for each L2 word type and
receives a numerical grade.

2.4 Mixed-Language Configuration Search
So far we have detailed our simulated student
that would learn from a mixed-language sentence,
and a metric to measure how good the learned L2
embeddings would be. Now the machine teacher
only has to search for the best mixed-language
configuration of a sentence. As there are exponen-
tially many possible configurations to consider,
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exhaustive search is infeasible. We use a simple
left-to-right greedy search to approximately find the
highest scoring configuration for a given sentence.
Algorithm 1 shows the pseudo-code for the search
process. The inputs to the search algorithm are
the initial L2 word-embeddings matrix Fprev, the
scoring function MRR(), and the student proxy
model SPM(). The algorithm proceeds left to right,
making a binary decision at each token: Should the
token be replaced with its L2 gloss or left as is? For
the first token, these two decisions result in the two
configurations: (i) Der Nile... and (ii) The
Nile... These configurations are given to the
student proxy model which updates the L2 word
embeddings. The scoring function (section 2.3)
computes a score for each L2 word-embedding
matrix and caches the best configuration (i.e. the
configuration associated with the highest scoring
L2 word-embedding matrix). If two configurations
result in the same MRR score, the number of L2
word types exposed is used to break ties. In Algo-
rithm 1, ρ(c) is the function that counts the number
of L2 word types exposed in a configuration c.

Algorithm 1 Mixed-Lang. Config. Search
Require: x=[x1,x2,...,xT ] . L1 tokens
Require: f =[f1,f2,...,fT ] . L2 glosses
Require: E . L1 emb. matrix
Require: Fprev . initial L2 emb. matrix
Require: SPM . Student Proxy Model
Require: MRR,rmax . Scoring Func., threshold
1: function SEARCH(x,f ,Fprev)
2: c←x . initial configuration is the L1 sentence
3: F←Fprev

4: s=MRR(E,F,rmax)
5: for i=1;i≤T ;i++ do
6: c′←c1···ci−1 fixi+1···xT
7: Φ′=SPM(Fprev,c′)
8: s′=MRR(E,Φ′,rmax)
9: if (s′,−ρ(c′))≥(s,−ρ(c)) then

10: c←c′,F←F′,s←s′

11: end if
12: end for
13: return c,F .Mixed-Lang. Config.
14: end function

2.5 Mixed-Language document creation
Our idea is that a sequence of mixed-language con-
figurations is good if it drives the student proxy
model’s L2 embeddings toward an MRR score close
to 1 (maximum possible). Note that we do not
change the sentence order (we still want a coher-
ent document), just the mixed-language configura-
tion of each sentence. For each sentence in turn, we
greedily search over mixed-language configurations
using Algorithm 1, then choose the configuration

that learns the best F, and proceed to the next sen-
tence with Fprev now set to this learned F.2 This
process is repeated until the end of the document.
The pseudo-code for generating an entire document
of mixed-language content is shown in Algorithm 2.

Algorithm 2 Mixed-Lang. Document Gen.
Require: D=[(x1,f1),...,(xN,fN)] .Document
Require: E . L1 emb. matrix
Require: F0 . initial L2 emb. matrix
1: function DOCGEN(D,F0)
2: C=[] .Configuration List
3: for i=1;i≤N ;i++ do
4: xi,fi=D[i]
5: ci,Fi=SEARCH(xi,fi,Fi−1)
6: C←C+[ci]
7: end for
8: return C .Mixed-Lang. Document
9: end function

In summary, our machine teacher is composed
of (i) a student proxy model which is a contextual
L2 word learning model (Sections 2.1 and 2.2)
and (ii) a configuration sequence search algorithm
(Sections 2.4 and 2.5), which is guided by (iii) an
L2 vocabulary scoring function (Section 2.3). In
the next section, we describe two variations for the
student proxy models.

3 Variations in Student Proxy Models

We developed two variations for the student proxy
model to compare and contrast the mixed-language
documents that can be generated.

3.1 Unidirectional Language Model
This variation restricts the bidirectional model
(from Section 2.1) to be unidirectional (uLM ) and
follows a standard recurrent neural network (RNN)
language model (Mikolov et al., 2010).

logp(x)=
∑

t

logp(xt |hf
t) (8)

hf
t=LSTMf (x0,...,xt−1;θf ) (9)

p(· |hf )=softmax(E·hf ) (10)

Once again, hf ∈ RD×1 is the hidden state of the
LSTM recurrent network, which is parameterized
by θf , but unlike the model in Section 2.1, no
backward LSTM and no projection function is used.

The same procedure from the bidirectional model
is used to update L2 word embeddings (Section 2.2).
While this model does not explicitly encode context

2For the first sentence, we initialize Fprev to have values
randomly between [−0.01,0.01].
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from “future” tokens (i.e. words to the right of xt)
, there is still pressure from right-side tokens xt+t:T

because the new embeddings will be adjusted to
explain the tokens to the right as well. Fixing all
the L1 parameters further strengthens this pressure
on L2 embeddings from words to their right.

3.2 Direct Prediction Model
The previous two models variants adjust L2
embeddings using gradient steps to improve the
pseudo-likelihood of the presented mixed-language
sentences. One drawback of such an approach
is computation speed caused by the bottleneck
introduced by the softmax operation.

We designed an alternate student prediction
model that can “directly” predict the embeddings for
words in a sentence using contextual information.
We refer to this variation as the Direct Prediction
(DP ) model. Like our previous student proxy mod-
els, the DP model also uses bidirectional LSTMs
to encode context and an L1 word embedding ma-
trix E. However, the DP model does not attempt to
produce a distribution over the output vocabulary;
instead it tries to predict a real-valued vector using
a feed-forward highway network (Srivastava et al.,
2015). The DP model’s objective is to minimize the
mean square error (MSE) between a predicted word
embedding and the true embedding. For a time-step
t, the predicted word embedding x̂t, is generated by:

hf
t=LSTMf ([x1,...,xt−1];θf ) (11)

hb
t=LSTMb([xt+1,...,xT ];θ

b) (12)

x̂t=FF([xt :h
f
t :h

b
t];θ

w) (13)

L(θf ,θb,θw)=
∑

t

(x̂t−xt)
2 (14)

where FF (.;θw) denotes a feed forward highway
network with parameters θw. Thus, the DP model
training requires that we already have the “true em-
beddings” for all the L1 words in our corpus. We use
pretrained L1 word embeddings from FastText as
“true embeddings” (Bojanowski et al., 2017). This
leaves the LSTM parametersθf ,θb and the highway
feed-forward network parameters θw to be learned.
Equation 14 can be minimized by simply copying
the input xt as the prediction (ignoring all context).
We use masked training to prevent the model itself
from trivially copying (Devlin et al., 2018). We
randomly “mask” 30% of the input embeddings
during training. This masking operation replaces
the original embedding with either (i) 0 vectors,
or (ii) vectors of a random word in vocabulary, or

(iii) vectors of a “neighboring” word from the vo-
cabulary. 3 The loss, however, is always computed
with respect to the correct token embedding.

With the L1 parameters of the DP model
trained, we turn to L2 learning. Once again the L2
vocabulary is encoded in F, which is initialized to
0 (i.e. before any sentence is observed). Consider
the configuration: The Nile is a Fluss
in Africa. The tokens are converted into a
sequence of embeddings: [x0 = Ex0 , ... , xt =
Fft ,...,xT =ExT ]. Note that at time-step t the L2
word-embedding matrix is used (t=4,ft=Fluss
for the example above). A prediction x̂t is generated
by the model using Equations 11-13. Our hope
is that the prediction is a “refined” version of the
embedding for the L2 word. The refinement arises
from considering the context of the L2 word. If
Flusswas not seen before, xt=Fft =0, forcing
the DP model to only use contextual information.
We apply a simple update rule that modifies the L2
embeddings based on the direct predictions:

Fft←(1−η)Fft+ηx̂t (15)

where η controls the interpolation between the old
values of a word embedding and the new values
which have been predicted based on the current
mixed sentence. If there are multiple L2 words in a
configuration, say at positions i and j (where i<j),
we can still follow Eq 11–13. However, to allow the
predictions x̂i and x̂j to jointly influence each other,
we need to execute multiple prediction iterations.

Concretely, let X = [x0,...,Ffi ,...,Ffj ,...,xT ]
be the sequence of word embeddings for a
mixed-language sentence. The DP model generates
predictions X̂= [x̂0,...,x̂i,...,x̂j ,...,x̂T ]. We only
use its predictions at time-steps corresponding to
L2 tokens since the L2 words are those we want to
update (Eq 16).

X1=DP(X0)

Where,X0=[x1,...,Ffi ,...,Ffj ,...,xT ]

X1=[x1,...,x̂
1
i ,...,x̂

1
j ,...,xT ] (16)

Xk=DP(Xk−1) ∀0≤k<K−1 (17)

where X1 contains predictions at i and j and the
original L1 word-embeddings in other positions.
We then pass X1 as input again to the DP model.
This is executed for K iterations (Eq 17). With

3We precompute 20 neighboring words (based on cosine-
similarity) for each word in the vocabulary using FastText
embeddings before training.
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Figure 1: A screenshot of a mixed-language sentence
presented on Mechanical Turk.

Metric Model rmax =1 rmax =4 rmax =8

cLM 0.25 0.31 0.35
Replaced uLM 0.20 0.25 0.25

DP 0.19 0.22 0.21

cLM 86.00(±0.87) 74.00(±1.10) 55.13(±2.54)
Guess
Accuracy uLM 84.57(±0.56) 73.89(±1.72) 72.83(±1.58)

DP 88.44(±0.73) 81.07(±1.03) 70.85(±1.49)

Table 3: Results from MTurk data. The first section
shows the percentage of tokens that were replaced
with L2 glosses under each condition. The Accuracy
section shows the percentage token accuracy of MTurk
participants’ guesses along with 95% confidence
interval calculated via bootstrap resampling.

each iteration, our hope is that the DP model’s
predictions x̂i and x̂j get refined by influencing
each other and result in embeddings that are
well-suited to the sentence context. A similar style
of imputation has been studied for one dimensional
time-series data by Zhou and Huang (2018). Finally,
afterK−1 iterations, we use the predictions of x̂i

and x̂j fromXK to update the L2 word-embeddings
in F corresponding to the L2 tokens fi and fj . η
was set to 0.3 and the number of iterationsK=5.

Ffi←(1−η)Ffi+ηx̂
K
i

Ffj←(1−η)Ffj+ηx̂
K
j (18)

4 Experiments

We first investigate the patterns of word replace-
ment produced by the machine teacher under the
influence of the different student proxy models
and how these replacements affect the guessability
of L2 words. To this end, we used the machine
teacher to generate mixed-language documents
and asked MTurk participants to guess the foreign
words. Figure 1 shows an example screenshot of our
guessing interface. The words in blue are L2 words
whose meaning (in English) is guessed by MTurk
participants. For our study, we created a synthetic
L2 language by randomly replacing characters from
English word types. This step lets us safely assume
that all MTurk participants are “absolute beginners.”
We tried to ensure that the resulting synthetic words

are pronounceable by replacing vowels with vowels,
stop-consonants with other stop-consonants, etc.
We also inserted or deleted one character from some
of the words to prevent the reader from using the
length of the synthetic word as a clue. While our
evaluation required use of a synthetic foreign lan-
guage, we provide as an example mixed-language
documents with real L2 languages in Appendix A.1.

We studied the three student proxy models
(cLM , uLM , and DP ) while keeping the rest of
the machine teacher’s components fixed (i.e. same
scoring function and search algorithms). All three
models were constructed to have roughly the
same number of L1 parameters (≈ 20M ). The
uLM model used 2 unidirectional LSTM layers
instead of a single bidirectional layer. The L1
and L2 word embedding size and the number of
recurrent units D were set to 300 for all three
models (to match the size of FastText’s pretrained
embeddings). We trained the three models on the
Wikipedia-103 corpus (Merity et al., 2016).4 All
models were trained for 8 epochs using the Adam
optimizer (Kingma and Ba, 2014). We limit the L1
vocabulary to the 60k most frequent English types.

4.1 MTurk Setup

We selected 6 documents from Simple Wikipedia to
serve as the input for mixed-language content.5 To
keep our study short enough for MTurk, we selected
documents that contained 20 − 25 sentences. A
participant could complete up to 6 HITs (Human In-
telligence Tasks) corresponding to the 6 documents.
Participants were given 25minutes to complete each
HIT (on average, the participants took 12 minutes
to complete the HITs). To prevent typos, we used a
20k word English dictionary, which includes all the
word types from the 6 Simple Wikipedia documents.
We provided no feedback regarding the correctness
of guesses. We recruited 128 English speaking
MTurk participants and obtained 162 responses,
with each response encompassing a participant’s
guesses over a full document.6 Participants were
compensated $4 per HIT.

4.2 Experiment Conditions

We generated 9 mixed-language versions (3 models
{cLM ,uLM ,DP } in combination with 3 rank

4FastText pretrained embeddings were trained on more data.
5https://dumps.wikimedia.org/simplewiki/20190120/
6Participants self-reported their English proficiency, only

native or fluent speakers were allowed to participate. Our HITs
were only available to participants from the US.
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Model rmax =1 rmax =8

cLM Hu Nile (‘‘an-nīl’’) ev a river um Africa. Up
is hu longest river iñ Earth (about 6,650 km
or 4,132 miles), though other rivers carry
more water...
Many ozvolomb types iv emoner live in or near
hu waters iv hu Nile, including crocodiles,
birds, fish ñb many others. Not only do
animals depend iñ hu Nile for survival, but
also people who live there need up zi everyday
use like washing, as u jopi supply, keeping
crops watered ñb other jobs...

Hu Nile (‘‘an-nīl’’) ev u river um Africa. Up
ev the longest river on Earth (about 6,650 km
or 4,132 miles), though other rivers carry
more water...
Emu ozvolomb types of emoner live um or iul
the waters of hu Uro, including crocodiles,
ultf, yvh and emu others. Ip only do animals
depend iñ the Nile zi survival, but also daudr
who live there need up zi everyday use like
washing, ez a jopi supply, keeping crops
watered ñb other jobs...

uLM The Nile (‘‘an-nīl’’) ev a river um Africa.
It ev hu longest river on Earth (about 6,650
km or 4,132 miles), though other rivers carry
more jopi...
Many different pita of emoner live in or near
hu waters iv hu Nile, including crocodiles,
ultf, fish and many others. Not mru do emoner
depend iñ hu Nile for survival, but also
people who live there need it for everyday
use like washing, as a jopi supply, keeping
crops watered ñb other jobs...

Hu Nile (‘‘an-nīl’’) ev u river um Africa. Up
ev the longest river iñ Earth (about 6,650 km
or 4,132 miles), though other rivers carry
more jopi...
Many different pita of emoner live um or near
hu waters iv hu Nile, including crocodiles,
ultf, fish and many others. Not mru do emoner
depend on the Nile for survival, id also
people who live there need it zi everyday use
like washing, as u water supply, keeping crops
watered ñb other jobs...

DP Hu Nile (‘‘an-nīl’’) ev a river um Africa. Up
ev hu longest river on Earth (about 6,650 km
or 4,132 miles), though other rivers carry
more water...
Many different types iv animals live in
or near hu waters iv hu Nile, including
crocodiles, birds, fish and many others.
Not only do animals depend iñ hu Nile for
survival, but also people who live there
need it for everyday use like washing, as u
water supply, keeping crops watered and other
jobs...

Hu Nile (‘‘an-nīl’’) ev a river um Africa. Up
ev hu longest river on Earth (about 6,650 km
or 4,132 miles), though udho rivers carry more
water...
Many different pita of animals live in or near
hu waters of hu Nile, including crocodiles,
birds, fish and many others. Not mru do
animals depend iñ hu Nile zi survival, id also
people who live there need it zi everyday use
like washing, ez a water supply, keeping crops
watered and udho jobs...

Table 2: Portions of one of our Simple Wikipedia articles. The document has been converted into a mixed-language
document by the machine teacher using the three student proxy models. Our experiments use a synthetic L2
language, see Appendix A.1 for examples with real L2 language (German and Spanish) on two stories. The two
columns show the effect of the rank threshold rmax. Note that this mixed-language document is 25 sentences long;
here, we only show the first 2 sentences and another middle 2 sentences to save space.

thresholds rmax∈{1,4,8}) for each of the 6 Simple
Wikipedia documents. For each HIT, an MTurk
participant was randomly assigned one of the 9
mixed-language versions. Table 2 shows the output
at two settings of rmax for one of the documents. We
see that rmax controls the number of L2 words the
machine teacher deems guessable, which affects
text readability. The increase in L2 words is most
noticeable with the cLM model. We also see that
the DP model differs from the others by favoring
high frequency words almost exclusively. While the
cLM and uLM models similarly replace a number
of high frequency words, they also occasionally
replace lower frequency word classes like nouns
and adjectives (emoner, Emu, etc.). Table 3
summarizes our findings. The first section of 3
shows the percentage of tokens that were deemed
guessable by our machine teacher. The cLM model
replaces more words as rmax is increased to 8, but
we see that MTurkers had a hard time guessing
the meaning of the replaced tokens: their guessing
accuracy drops to 55% at rmax = 8 with the

cLM model. The uLM model, however, displays a
reluctance to replace too many tokens, even as rmax
was increased to 8.

We further analyzed the replacements and MTurk
guesses based on word-class. We tagged the L1
tokens with their part-of-speech and categorized
tokens into open or closed class following Universal
Dependency guidelines (Nivre et al.).7 Table 4
summarizes our analysis of model and human
behavior when the data is separated by word-class.
The pink bars indicate the percentage of tokens
replaced per word-class. The blue bars represent the
percentage of tokens from a particular word-class
that MTurk users guessed correctly. Thus, an
ideal machine teacher should strive for the highest
possible pink bar while ensuring that the blue bar is
as close as possible to the pink. Our findings suggest
that the uLM model at rmax=8 and the cLM model
at rmax = 4 show the desirable properties – high
guessing accuracy and more representation of L2
words (particularly open-class words).

7 https://universaldependencies.org/u/pos/
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Table 4: Results of MTurk results split up by word-class. The y-axis is percentage of tokens belonging to a
word-class. The pink bar (right) shows the percentage of tokens (of a particular word-class) that were replaced
with an L2 gloss. The blue bar (left) and indicates the percentage of tokens (of a particular word-class) that were
guessed correctly by MTurk participants. Error bars represent 95% confidence intervals computed with bootstrap
resampling. For example, we see that only 5.0% (pink) of open-class tokens were replaced into L2 by the DP model
at rmax=1 and 4.3% of all open-class tokens were guessed correctly. Thus, even though the guess accuracy forDP at
rmax=1 for open-class is high (86%) we can see that participants were not exposed to many open-class word tokens.

Metric Model Closed Open

Types Repl-
aced

random 59 524
cLM 33 149

Guess Acc-
uracy

random 62.06(±1.54) 39.36(±1.75)
cLM 74.91(±0.94) 61.96(±1.24)

Table 5: Results comparing our student proxy based
approach to a random baseline. The first part shows
the number of L2 word types exposed by each model
for each word-class. The second part shows the
average guess accuracy percentage for each model and
word-class. 95% confidence intervals (in brackets)
were computed using bootstrap resampling.

4.3 Random Baseline

So far we’ve compared different student proxy
models against each other, but is our student proxy
based approach required at all? How much better
(or worse) is this approach compared to a random
baseline? To answer these questions, we compare
the cLM with rmax = 4 model against a randomly
generated mixed-language document. As the name
suggests, word replacements are decided randomly
for the random condition, but we ensure that the

number of tokens replaced in each sentence equals
that from the cLM condition.

We used the 6 Simple Wikipedia documents from
Section 4.1 and recruited 64 new MTurk partipants
who completed a total of 66 HITs (compensation
was $4 per HIT). For each HIT, the participant
was given either the randomly generated or the
cLM based mixed-language document. Once again,
participants were made to enter their guess for each
L2 word that appears in a sentence. The results are
summarized in Table 5.

We find that randomly replacing words with
glosses exposes more L2 word types (59 and 524
closed-class and open-class words respectively)
while the cLM model is more conservative with
replacements (33 and 149). However, the random
mixed-language document is much harder to
comprehend, indicated by significantly lower
average guess accuracies than those with the
cLM model. This is especially true for open-class
words. Note that Table 5 shows the number of word
types replaced across all 6 documents.
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Model Closed Open

random 9.86(±0.94) 4.28(±0.69)
cLM 35.53(±1.03) 27.77(±1.03)

Table 6: Results of our L2 learning experiments
where MTurk subjects simply read a mixed-language
document and answered a vocabulary quiz at the end
of the passage. The table shows the average guess
accuracy percentage along with 95% confidence
intervals computed from bootstrap resampling.

4.4 Learning Evaluation

Our mixed-language based approach relies on
incidental learning, which states that if a novel word
is repeatedly presented to a student with sufficient
context, the student will eventually be able to learn
the novel word. So far our experiments test MTurk
participants on the “guessability” of novel words
in context, but not learning. To study if students
can actually learn the L2 words, we conduct an
MTurk experiment where participants are simply
required to read a mixed-language document (one
sentence at a time). At the end of the document an
L2 vocabulary quiz is given. Participants must enter
the meaning of every L2 word type they have seen
during the reading phase.

Once again, we compare our cLM (rmax = 4)
model against a random baseline using the 6 Simple
Wikipedia documents. 47 HITs were obtained
from 45 MTurk participants for this experiment.
Participants were made aware that there would be
a vocabulary quiz at the end of the document. Our
findings are summarized in Table 6. We find the ac-
curacy of guesses for the vocabulary quiz at the end
of the document is considerably lower than guesses
with context. However, subjects still managed
to retain 35.53% and 27.77% of closed-class and
open-class L2 word types respectively. On the other
hand, when a random mixed-language document
was presented to participants, their guess accuracy
dropped to 9.86% and 4.28% for closed and open
class words respectively. Thus, even though more
word types were exposed by the random baseline,
fewer words were retained.

5 Related Work

Our work does not require any supervised data
collection from students. This departure makes
our work easier to deploy in diverse settings
(i.e. for different document genres, and different
combinations of L1/L2 languages etc). While

there are numerous self-directed language learning
applications such as Duolingo (von Ahn, 2013),
our approach uses a different style of “instruction”.
Furthermore, reading L2 words in L1 contexts is
also gaining popularity in commercial applications
like Swych (2015) and OneThirdStories (2018).

Most recently, Renduchintala et al. (2016)
attempt to model a student’s ability to guess the
meaning of foreign language words (and phrases)
when prompted with a mixed language sentence.
One drawback of this approach is its need for large
amounts of training data, which involves prompting
students (in their case, MTurk users) with mixed lan-
guage sentences created randomly. Such a method is
potentially inefficient, as random configurations pre-
sented to users (to obtain their guesses) would not
reliably match those that a beginner student would
encounter. Labutov and Lipson (2014) also use a
similar supervised approach. The authors required
two sets of annotations, first soliciting guesses of
missing words in a sentences and then obtaining
another set of annotations to judge the guesses.

6 Conclusion

We are encouraged by the ability to generate
mixed-language documents without the need of
expensive data collection from students. Our
MTurk study shows that students can guess the
meaning of foreign words in context with high
accuracy and also retain the foreign words.

For future work, we would like to investigate
ways to smoothly adapt our student proxy models
into personalized models. We also recognize that
our approach may be “low-recall,” i.e., it might
miss out on teaching possibilities. For example, our
machine teacher may not realize that cognates can
be replaced with the L2 and still understood, even if
there are no contextual clues (Afrika can likely be
understood without much context). Incorporating
spelling information into our language models (Kim
et al., 2016) could help the machine teacher identify
more instances for incidental learning. Additionally,
we would like to investigate how our approach
could be extended to enable phrasal learning (which
should consider word-ordering differences between
the L1 and L2). As the cLM and uLM models
showed the most promising results in our experi-
ments, we believe these models could serve as the
baseline for future work.
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Sense y Sensibility
CHAPTER 1

La family de Dashwood llevaba long been
settled en Sussex. Their estate era large,
and their residence was en Norland Park,
en el centre de their propiedad, where,
por many generations, ellos had lived en
so respectable a manner as a engage the
general buena opinion of their surrounding
acquaintance. El late owner de esta estate
was a single man, who lived to una very
advanced age, and who for many años de su life,
had una constant companion y housekeeper in
su sister. But her death, which happened
ten años before su own, produced a great
alteration en his home; for para supply her
loss, he invited y received into his house
the family of his nephew Mr. Henry Dashwood,
the legal inheritor de the Norland estate, y
the person to whom se intended to bequeath
it. En la society of his nephew and niece,
and their children, el old Gentleman’s days
fueron comfortably spent. Su attachment a
them all increased. La constant attention
de Mr. y Mrs. Henry Dashwood a sus wishes,
which proceeded not merely from interest, but
from goodness de heart, dio him every degree
de solid comfort which his age could receive;
y la cheerfulness de los children added un
relish to his existence.

Por a former marriage, Mr. Henry Dashwood
had one hijo: by su present lady, tres
daughters. El son, un steady respectable
young man, tenı́a amply provided for by la
fortune de su mother, which habı́a been large,
y half de which devolved on him on su coming
de age. Por his own marriage, likewise,
which happened soon afterwards, he added a su
wealth. Para him therefore la succession a la
Norland estate era not so really important
como para his sisters; para su fortune,
independent of what might arise a them de su
father’s inheriting that propiedad, could ser
but small. Su madre had nothing, and their
father only seven thousand pounds en su own
disposal; porque the remaining moiety of su
first wife’s fortune era also secured a su
child, y he had only a life-interest en it.

Table 7: Example of mixed-language output for
Jane Austen’s “Sense and Sensibility”. We used the
uLM with rmax=8.

A Appendices

A.1 Mixed-Language Examples

While our experiments necessitated use of synthetic
L2 words, our methods are compatible with real
L2 learning. For a more “real-world” experience
of how our methods could be deployed, we present
the first few paragraphs of mixed-language novels
generated using the uLM model with rmax = 8.
First example is from Jane Austin’s “Sense and
Sensibility” (Table 7), and for the second example,
as we are transforming text from one language into
a “strange hybrid creature” (i.e mixed-language) it
seems appropriate to use Franz Kafka’s “Metamor-
phosis”(Table 8). For these examples, glosses were
obtained from a previous MTurk data collection
process from bilingual speakers. Glosses for

Metamorphosis
I

One morning, when Gregor Samsa woke from
troubled dreams, er found himself transformed
in his bed into einem horrible vermin. Er lay
auf his armour-like back, und if er lifted
seinen head a wenig he could see his brown
belly, slightly domed und divided von arches
into stiff sections. das bedding was hardly
able zu cover it and seemed ready to slide
off any moment. His many legs, pitifully
thin compared mit der size of dem rest of him,
waved about helplessly als he looked.

‘‘What’s happened mit me?’’ er thought.
His room, ein proper human room although a
wenig too small, lay peacefully between seinen
four familiar walls. Eine collection of
textile samples lay spread out on dem table -
Samsa was ein travelling salesman - und above
it there hung ein picture that er had recently
cut out von an illustrated magazine and housed
in a nice, gilded frame. It showed eine lady
fitted out with einem fur hat und fur boa who
sat upright, raising einen heavy fur muff that
covered the whole of her lower arm towards dem
viewer.

Gregor dann turned to look out the window
at the dull weather. Drops of rain could sein
heard hitting the pane, which machte him feel
quite sad. ‘‘How about if I sleep ein little
bit longer and forget all this nonsense,’’
er thought, but that war something er war
unable zu do because he war used zu sleeping
on seiner right, und in seinem present state
couldn’t get into diese position. However
hard he threw himself onto seine right, er
always rolled zurück to where he was. Er must
haben tried it ein hundred times, shut seine
eyes so dass er wouldn’t have to look at die
floundering legs, und only stopped when er
began to feel einen mild, dull pain there that
er had nie felt before.

‘‘Oh, God,’’ er thought, ‘‘what a
strenuous career it ist that I’ve chosen!
Travelling day in und day out. Doing business
like diese takes much mehr effort than doing
your own Geschäft at home, und auf top of that
there’s der curse des travelling, worries
about making train connections, bad and
irregular food, contact with verschiedenen
people all die time so das you kannst never
get to know anyone or become friendly mit
them. es can all gehen to Hell!’’ Er felt
a slight itch up auf seinem belly ; pushed
himself slowly up on seinen back towards the
headboard so dass he konnte lift seinen head
better ; found where das itch was, und saw
dass it was besetzt with lots of little white
spots which er didn’t know what to make of ;
und when er tried to feel die place with one
of his legs er drew es quickly back because as
soon as he touched it er was overcome by einem
cold shudder.

Table 8: Example of mixed-language output for the
English translation (by David Wyllie) of Franz Kafka’s
“Metamorphosis”. We used the uLM with rmax=8.

each English (L1) token was obtained from 3
MTurkers, if a majority of them agree on the gloss it
is considered by our machine teacher as a possible
L2 gloss. If no agreement was obtained we restrict
that token to always remain as L1.
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Abstract
We track the development of writing complex-
ity and accuracy in German students’ early
academic language development from first to
eighth grade. Combining an empirically broad
approach to linguistic complexity with the
high-quality error annotation included in the
Karlsruhe Children’s Text corpus (Lavalley
et al., 2015) used, we construct models of Ger-
man academic language development that suc-
cessfully identify the student’s grade level. We
show that classifiers for the early years rely
more on accuracy development, whereas de-
velopment in secondary school is better char-
acterized by increasingly complex language in
all domains: linguistic system, language use,
and human sentence processing characteris-
tics. We demonstrate the generalizability and
robustness of models using such a broad com-
plexity feature set across writing topics.

1 Introduction

We model the development of linguistic com-
plexity and accuracy in German early academic
language and writing acquisition from first to
eighth grade. Complexity and Accuracy are well-
established notions from Second Language Ac-
quisition (SLA) research. Together with Fluency,
they form the CAF triad that has successfully
be used to characterize second language develop-
ment (Housen et al., 2012). Accuracy here is de-
fined as a native-like production error rate (Wolfe-
Quintero et al., 1998) and Complexity as the elab-
orateness and variation of the language which may
be assessed across various linguistic domains (El-
lis and Barkhuizen, 2005).

While there has been substantial research on the
link between linguistic complexity analysis and
second language proficiency and writing devel-
opment for English (cf., e.g., Bulté and Housen,
2014; Kyle, 2016), much less is known about aca-
demic language development for other languages,

such as the morphologically richer German. In
this article, we target this gap with three contri-
butions. We build classification models for early
academic language development in German from
first to eighth grade, based on a uniquely broad
set of linguistically informed measures of com-
plexity and accuracy. Our results indicate that two
phases of academic language development can be
distinguished: Initial academic language and writ-
ing acquisition focusing on the writing process it-
self, best characterized in terms of accuracy devel-
opment, with little development in terms of com-
plexity. A second stage is characterized by the
increasing linguistic complexity, in particular in
the domains of lexis and syntactic complexity at
the phrasal level. We demonstrate the robustness
and generalizability of the models informed by the
broad range of linguistic characteristics – a major
concern not only for obtaining practically relevant
approaches for real-life use, but also for charac-
terizing machine learning going beyond focused
task to approaches capable of capturing general
language characteristics.

The article is structured as follows: We first give
a brief overview of research on writing develop-
ment in terms of complexity and accuracy. We
then present the Karlsruhe Children’s Text corpus
used as empirical basis of our work. In Section 4,
we spell out our approach to assessing writing
in terms of complexity and accuracy, before sec-
tions 5, 6, and 7 report on three studies designed
to address the research issues introduced above.

2 Related Work

The main strand of research analyzing the com-
plexity and accuracy constructs targets the assess-
ment of second language development. Linguis-
tic complexity measures have been successfully
used to model the language acquisition of English
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as a Second Language (ESL) learners (Bulté and
Housen, 2014; Crossley and McNamara, 2014).
Work on first language writing development for
English has also been conducted, but it is less
common (Crossley et al., 2011) The same holds
for the development of accuracy (Larsen-Freeman,
2006; Yoon and Polio, 2016). Most studies focus
on adult ESL learners’ development during peri-
ods of instruction. Vercellotti (2015) finds an in-
crease in syntactic and lexical complexity, overall
accuracy, and fluency in adult ESL speech over the
course of several months. Crossley and McNa-
mara (2014) find that advanced adult ESL learn-
ers phrasal and clausal complexity significantly in-
creases over the course of one semester of writ-
ing instruction in particular with regard to nominal
modification and number of clauses. These find-
ings are corroborated by Bulté and Housen (2014).
For uninstructed settings, however, this does not
hold. Knoch et al. (2014, 2015) study university
students’ ESL development over 12 months and
three years without instruction in an immersion
context and found that only fluency but not gram-
matical and lexical complexity developed.

Research on languages other than English is
starting to appear (Hancke et al., 2012; Velle-
man and van der Geest, 2014; Pilán and Volod-
ina, 2016; Reynolds, 2016). As for English, re-
search on German writing development has pre-
dominantly focused on German as a Second Lan-
guage (GSL) in instructed settings (Byrnes, 2009;
Byrnes et al., 2010; Vyatkina, 2012). Their find-
ings suggest that as for ESL learners’ writing,
clausal complexity progressively increases. For
lexical complexity results have been more mixed
depending on the proficiency of GSL learners’
proficiency level. The development of writing
accuracy has also been assessed in some corpus
studies using automated or manual error annota-
tion (Lavalley et al., 2015; Göpferich and Neu-
mann, 2016). In Weiss et al. (2019) we analyze
the impact of linguistic complexity and accuracy
on teacher grading behavior.

One challenge for the assessment of language
performance in terms of complexity that is start-
ing to receive attention is the influence of the task.
Alexopoulou et al. (2017) demonstrate task ef-
fects, specifically task complexity and task type,
on the complexity of English as a Second Lan-
guage writers in the EF-Cambridge Open Lan-
guage Database (EFCAMDAT) and show mixed

results for accuracy. This is in line with findings
by Yoon and Polio (2016), who investigate the ef-
fect of genre differences on CAF constructs. Yoon
(2017) focuses on the effect of topic on the syn-
tactic, lexical, and morphological complexity of
ESL learners’ writings and shows a significant in-
fluence on the complexity of writings of the same
learners, similar to findings in Yang et al. (2015).
Such task effects have mostly been discussed from
a theoretical perspective, considering their impli-
cations for the development of CAF constructs and
the two main task frameworks (Robinson, 2001;
Skehan, 1996). From a more practical perspec-
tive, task, genre, and topic effects have been rec-
ognized as an important issue for machine learn-
ing for readability assessment or Automatic Es-
say Scoring (AES). For the real-world applica-
bility of such approaches it is crucial for them
to account for differences due to genre or topic.
In their readability assessment system READ-IT
for Italian, Dell’Orletta et al. (2014) use this is-
sue to motivate favoring a ranking-based over a
classification-based approach. A recent AES ap-
proach discussing the issue is the placement sys-
tem for ESL by Yannakoudakis et al. (2018).

3 Data

Our studies are based on the Karlsruhe Children’s
Text (KCT) corpus by Lavalley et al. (2015).1 It
is a cross-sectional collection of 1,701 German
texts produced by students in German elementary
and secondary school students from first to eighth
grade. The secondary school students in the cor-
pus attended one of two German school tracks, ei-
ther a basic school track (Hauptschule) or an inter-
mediate school track (Realschule). The texts were
written on a topic chosen by the students from a
set of age-appropriate options: Elementary school
students were asked to continue one of two sto-
ries, one about children playing in a park, and the
other about a wolf who learns how to read. Sec-
ondary school students wrote about a hypothetical
day spent with their idol or their life in 20 years.
All student texts in the corpus are made available
in the original, including all student errors, and a
normalized version, where errors and misspellings
were corrected. The data is enriched with error an-
notations covering word splitting, incorrect word
choices and repetitions, grammar, and legibility.

For our studies analyzing writing development
1https://catalog.ldc.upenn.edu/LDC2015T22
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in terms of development across the grade levels,
we made use of the normalized texts and the error
annotation. Some grade levels in the corpus in-
clude only few texts, such as the 42 cases of first
grade writings compared to the other grade levels
with 189 to 283 writings. We thus grouped ad-
jacent grade levels, i.e., grades 1 and 2 together,
grades 3 and 4, etc., to obtain a data set with a
substantial number of instances for each class.

4 Assessment of Writing Performance

To assess writing performance in terms of com-
plexity and accuracy, we operationalized these
SLA concepts in terms of several features which
we automatically computed or derived from the er-
ror annotation of the KCT corpus.

4.1 Complexity

The analysis of complexity is based on our im-
plementation of a broad range of complexity fea-
tures for German (Weiss, 2017; Weiss and Meur-
ers, 2018, in press). The features cover clausal
and phrasal syntactic complexity, lexical complex-
ity, discourse complexity, and morphological com-
plexity. Complementing the measures of complex-
ity of the linguistic system, we also compute two
cognitively-motivated features: a characterization
of language use based on word frequencies, and
measures of human language processing (HLP).
Table 1 summarizes the features designed to cap-
ture the elaborateness and variability in the respec-
tive domain, with more details provided in Weiss
(2017) and Weiss and Meurers (in press). Overall,
the studies in the current paper make use of a com-
prehensive set of 308 complexity features for the
assessment of academic language development.2

4.2 Accuracy

The second dimension of language performance
that we are interested in is writing accuracy. In
SLA research accuracy has predominantly been
assessed in terms of types of error rates or error-
free T-units (Wolfe-Quintero et al., 1998; Verspoor
et al., 2012). We exploited the KCT corpus’ elabo-
rate error annotation to extract a broad range of ac-
curacy measures. Annotations on the level of indi-
vidual letters and words mark (ill)legibility, word
splitting errors, repetition errors, foreign words,

2We are making the complexity code available as part of
a multilingual version of CTAP: https://github.com/
zweiss/multilingual-ctap-feature

and grammatical errors. Annotations at the sen-
tence level mark content deletions, insertions, and
incorrect word choices. In addition, we developed
an approach to automatically derive additional er-
ror types by comparing the original student writ-
ings with their normalized sentence-aligned target
hypotheses. This procedure allowed us to extract
counts for punctuation errors, incorrect quotation
marks, spelling mistakes, and word capitalization
errors. The last item is a particular challenge of
German orthography, given that capitalization in
German is governed by a complex set of rules and
conventions relating to syntactic structure.3

Overall, we extracted 20 accuracy counts which
we aggregated and normalized by the total number
or errors or the total number of words in the text
as counted by the complexity analysis described
in the previous subsection. The feature set mea-
suring writing accuracy and an example feature is
included as the last row in Table 1.4

5 Study 1: Predicting Grade-Levels
across School Types

5.1 Set up
We extracted the text data from the KCT corpus,
removing all texts containing less than ten words
and excluding texts written by children younger
than seven years and older than 15 years. This re-
sulted in a corpus of N=1, 633 texts, for which we
computed the features of linguistic complexity and
error rates. Table 2 shows the distribution of texts
across grade levels and school tracks.

From the analyzed data set, we eliminated all
complexity and error rate features that did not ex-
hibit enough variability to be of interest for the
analysis. Specifically, we excluded all features
whose most common value occurred more than
90% of the time. For the remaining 262 features,
we computed their z-score, centered around zero.

On this data, we performed ten iterations of
10-fold cross-validation (CV) generating different
splits each time, i.e., 100 training and testing runs
in total, using an SMO classifier with a linear ker-
nel (Platt, 1998). This outperformed models using
random forests or linear regression. Similarly, in-
troducing non-linearity did not improve the clas-

3The Python script used to identify accuracy features in
the KCT annotation is available at https://github.
com/zweiss/KCTErrorExtractor

4Here and in the following, we will refer to this feature set
as the error rate measures to avoid confusion with the term
accuracy used as a classification performance metric.
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Feature Set Size Description

Lexical complexity 31 measures vocabulary range (lexical density and variation) and
sophistication, measures of lexical relatedness;
e.g., type token ratio

Discourse complexity 64 measures the use of cohesive devices such as connectives;
e.g., connectives per sentence

Phrasal complexity 47 measures of phrase modification;
e.g., NP modifiers per NP

Clausal complexity 27 measures of subordination or clause constituents;
e.g., subordinate clauses per sentence

Morphological complexity 41 measures inflection, derivation, and composition;
e.g., average compound depth per compound noun

Language Use 33 measures word frequencies based on frequency data bases;
e.g., mean word frequency in Subtlex-DE (Brysbaert et al., 2011)

Human Language Processing 24 measures of cognitive load during human sentence processing,
mostly based on Dependency Locality Theory (Gibson, 2000)
e.g., average total integration cost at the finite verb

Error Rate 41 measures ratios of error types per error or word;
e.g., spelling mistakes per word

Table 1: Overview over the feature sets used to capture linguistic complexity and accuracy

1/2 3/4 5/6 7/8 all

Elementary 203 524 0 0 727
Realschule 0 0 297 236 533
Hauptschule 0 0 165 208 373
all 203 524 462 444 1633

Table 2: Text distribution across grades & school tracks

sification. For each feature set introduced in Sec-
tion 4, we trained a separate classifier to support
a comparison of the different complexity and er-
ror feature sets. In addition, we built one classifier
based on the combination of all complexity feature
sets and one combining all feature sets including
error rate. Finally, we built a classifier also includ-
ing the meta information about the school track
and topic chosen, to investigate their influence on
the complexity features and the comparability of
grade-levels across school types.

As reference for evaluating classifier perfor-
mance, we use a majority baseline assigning al-
ways the most common grade level, and a second
baseline inspired by traditional readability formu-
las, for which we trained a classifier using text
length and average word length features.

5.2 Results & Discussion

Table 3 shows the performance of the classifiers
in terms of mean accuracy and standard devia-
tion across iterations and folds, and the feature
set size. The majority baseline and the tradi-

tional readability feature baseline displayed above
the dashed line are both around 32%. All lin-
guistically informed classifiers clearly outperform
these two baselines. The best performing model
with an accuracy of 72.68% combines linguis-
tic complexity features and error rate with infor-
mation on topic and school track.5 Adding this
meta-information, which in most real-life appli-
cation contexts is readily available, accounts for
an 1.72% increase in accuracy. But also without
this meta-information, the combination of linguis-
tic complexity features and error rate is highly suc-
cessful with an accuracy of 70.96%.

Let us take a look at the individual contribu-
tions of the different feature sets. The overall lin-
guistic complexity classifier clearly outperforms
the one informed by the error rate features. This
comparison may be biased towards the linguistic
complexity classifier because it is informed by six
times more features. However, the impression that
complexity features are more indicative for writ-
ing development as a function of grade level is
supported by the classifiers based on individual
domains of linguistic complexity, which are more
comparable in size to the error rate based classi-
fier. The lexical complexity, discourse complexity,
and phrasal complexity classifiers all clearly out-
perform the classifier informed by error rate with
accuracies between 60.10% and 61.29% compared
to 54.47%. The same holds for morphological

5 The confusion matrix for all ten iterations of the 10-CV
may be found in Table 10 in the Appendix.

383



Size µ-Acc. SD-Acc.

Majority baseline 1 32.08 0.14
Traditional baseline 2 32.56 0.80
All Features + Meta 264 72.68 1.94
All Features 262 70.96 2.01
Complexity 225 68.35 2.25
Error Rate 37 54.47 2.11
Lexical 31 60.10 1.69
Discourse 48 60.10 1.66
Phrasal 41 61.29 1.73
Clausal 26 52.95 1.56
Morphological 27 56.45 1.47
Language Use 30 45.45 1.28
Human processing 20 42.18 1.55

Table 3: Grade-level classification of elementary &
secondary school texts, ten iterations of 10-fold CV,
distinguishing levels 1st/2nd, 3rd/4th, 5th/6th, 7th/8th

complexity (56.45%), although the difference is
less pronounced. However, not all dimensions of
linguistic complexity outperform error rate. This
holds only for features measuring the linguistic
system. While psycho-linguistic measures of lan-
guage use and human language processing clearly
outperform the baselines, they are performing sig-
nificantly worse than the error rate features. Lan-
guage experience and cognitive measures of the
complexity in processing language does not seem
to be the factor limiting academic writing perfor-
mance, which is intuitively plausible considering
that, especially in the early school years, the lan-
guage experience and language processing will be
mostly shaped by spoken language interaction.

6 Study 2: Writing Development in
Elementary vs. Secondary School

6.1 Set-Up
Having established that linguistic complexity and
error rate successfully predict writing performance
across academic writing development, let us com-
pare the development in early writing with that in
secondary school. For this, we split the KCT data
into two subsets: one containing only elementary
school writing (N = 727), the other the secondary
school writing from the different school tracks
(N = 906). We applied the same pre-processing
steps described in Section 5.1 including feature re-
duction and scaling of all predictor variables, ob-
taining 256 features for the elementary school and
255 for the secondary school data set (with num-

bers differing slightly since the feature reduction
is performed separately on each data set).

We then followed a two-fold approach: First,
we again tested and trained the same SMO clas-
sifiers as in Study 1 with linear kernels and 10 it-
erations of 10-fold CV (Section 6.2). Although
the classifiers were informed by the same feature
sets, due to the reduction of the sample size some
sets were reduced more in the aforementioned pre-
processing step which may result in slightly devi-
ating feature set sizes across tables. For the ele-
mentary school data set, only topic was added as
meta information, because there are no different
elementary school tracks in Germany.

Then, for both data sets we selected the most
informative features of each feature set in order
to zoom in on how they differ across grade-levels
(Section 6.3). This more fine grained analysis al-
lows us to complement the broader perspective
gained form the classification experiments with a
more concrete sense of which features matter and
how they change. For the selection, we ranked
all features by their information gain for the dis-
tinction of grade-levels in the respective data set
and selected the most informative feature of each
feature set resulting in overall 16 features cho-
sen for closer inspection. We then conducted
two-tailed t-tests to test for significant differences
across grade-levels in both data sets. To avoid re-
dundancy in our comparison, if the most informa-
tive feature for a given feature set in both data sub-
sets assessed the same concept, we chose the next-
most informative feature.6

6.2 Results & Discussion

Table 4 shows the classifiers performance on the
elementary school data subset.

Unlike in the previous study, the majority base-
line for this binary classification task is relatively
high with 71.72% given that there is less data
for the first and second grade. As in the first
study, the second baseline using the traditional
readability formula features text length and aver-
age word length performs only at the level of the
majority baseline. The classifier combining evi-

6 For example, the most informative feature of lexical
complexity is in both subsets a measure of lexical diversity
(Yule’s k and root type-token ratio). Due to its higher rank-
ing (overall most informative for secondary school) and its
reduced sensitivity to text length, we chose to keep Yule’s k
and included the second most informative lexical complexity
feature for elementary school: corrected verb variation (mea-
suring lexical variation).
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Size µ-Acc. SD-Acc.

Majority baseline 1 71.72 0.35
Traditional baseline 2 71.72 0.35
All Features + Meta 256 82.81 2.11
All Features 255 82.60 1.97
Complexity 218 77.93 2.42
Error Rate 37 81.56 1.27
Lexical 31 77.32 1.92
Discourse 46 75.18 1.71
Phrasal 39 76.77 2.18
Clausal 26 72.44 0.49
Morphological 27 71.72 0.35
Language Use 30 71.72 0.35
Human processing 19 71.72 0.35

Table 4: Grade-level classification of elementary
school texts, ten iterations of 10-fold CV, distinguish-
ing levels 1st/2nd and 3rd/4th

dence from linguistic complexity features and er-
ror rate clearly outperforms the baselines with an
accuracy of 82.60%.7 Adding meta-information,
which here means adding the writing topic, does
not make a significant contribution.

Looking at the classifiers for the subsets of fea-
tures, we see that error rate features make a signif-
icant contribution. While the difference in perfor-
mance still is significant,8 the classifier informed
only by error rate features with an accuracy of
81.56% performs close to the combined model
with an accuracy of 82.60%. The classifier us-
ing only complexity features performs worse, with
an accuracy of 77.93%, even though this classi-
fier is informed by considerably more features.
When looking at the individual domains of lin-
guistic complexity, again lexical complexity, dis-
course complexity, and phrasal complexity are the
most informative features, but they perform signif-
icantly lower than the error rate features. The other
domains of linguistic complexity seem to be unin-
formative for the grade level distinction in elemen-
tary school student writings – clausal and morpho-
logical complexity, language use, and human lan-
guage processing all perform at baseline level.

Our findings show that early writing and aca-
demic language development predominantly fo-
cuses on establishing writing correctness rather
than language complexification. However, in cer-

7 The confusion matrix for all ten iterations of the 10-CV
may be found in Table 11 in the Appendix.

8One-sided t-test: t =−4.3978, df = 169.34, p = 9.63e-06

tain domains writing performance also advances
in terms of complexity, namely the lexicon, dis-
course, and phrase complexity. Systematic im-
provements in the domains of clausal and mor-
phological complexity or language use and human
language processing, however, do not take place.

Turning to the secondary school data set, Table
5 shows the classification results for that subset.

Size µ-Acc. SD-Acc.

Majority baseline 1 51.15 0.27
Traditional baseline 2 51.56 1.75
All Features + Meta 258 65.66 2.13
All Features 255 63.71 1.82
Complexity 220 64.16 1.63
Error Rate 35 54.34 2.48
Lexical 30 62.74 1.58
Discourse 45 57.13 1.75
Phrasal 41 57.64 2.10
Clausal 25 58.70 2.37
Morphological 27 54.31 2.39
Language Use 30 55.73 2.34
Human processing 18 52.67 1.90

Table 5: Grade-level classification on secondary school
texts, ten iterations of 10-fold CV, distinguishing lev-
els: 5th/6th and 7th/8th

The data set is more balanced across grouped
grade levels, with a majority baseline of 51.15%.
Traditional readability features again perform at
the same level as the majority baseline. The best
performing classifier again combines the features
encoding linguistic complexity and error rate with
information on topic and school track. It reaches
an accuracy of 65.66%, performing nearly 2% bet-
ter than the model without the meta-information.9

Different from the elementary school data classi-
fier, we here also distinguish the two secondary
school tracks, which apparently differ in the com-
plexity of the texts written in a given grade level.

A comparison of the classifiers based on error
rate features versus the complexity features shows
that for secondary school grade levels linguistic
complexity is more indicative for differentiating
grade levels. The classifiers differ in terms of their
accuracy by nearly 10%. When comparing the
performance of error rate features with the indi-
vidual domains of linguistic complexity, we see
that this difference cannot merely be explained by

9 The confusion matrix for all ten iterations of the 10-CV
may be found in Table 12 in the Appendix.
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the difference in feature set size. Lexical complex-
ity, in particular, but also discourse complexity,
phrasal complexity, and clausal complexity signif-
icantly outperform error rate features. This clear
development of clausal complexity in secondary
school writing is another difference to the devel-
opment of writing of elementary school students.
Language use and morphological complexity also
show more development and significantly outper-
form the baselines. Human language processing
features do not show a significant development.

Summarizing the findings from Table 4 and Ta-
ble 5, we saw that the early writing and academic
language development seemed to predominantly
focus on establishing writing correctness rather
than complexification. However, despite this focus
on correctness, writing performance exhibits also
in early stages of writing acquisition advances in
terms of linguistic complexity in the domains of
lexicon, discourse, and phrasal complexity. Sys-
tematic improvements in the other domains of lin-
guistic complexity only take place at later stages
of writing development. The beginning of this
trend may be seen in the evidence from secondary
school writings, for which clausal complexity and
to some extent also morphological complexity and
language use become increasingly relevant. Lexi-
cal complexity, phrasal complexity, and discourse
complexity develop throughout all stages of writ-
ing acquisition.

6.3 Zooming in on Individual Features

Table 6 shows the most informative features from
each feature set, their group means across grade-
levels in elementary and secondary school, and
the results of the t-tests.10 In the first step (Sec-
tion 6.2), we found that error rate as well as lexi-
cal, phrasal, and discourse complexity develop in
both, elementary and secondary school writing.
Zooming in on these domains, we see that some
features systematically develop throughout grade-
levels. Overall error rate and capitalization errors
are highly informative in both data sets and de-
crease significantly across all grade-levels. Simi-
larly, for lexical complexity, lexical diversity mea-
sured by Yule’s k significantly decreases with pro-
gressing grade-levels (from 217 in grade-level 1/2
to 128 in grade-level 7/8). However, not in all

10 The appendix contains the information gain ranking for
the 16 most informative features for both data sets, see Ta-
bles 15 and 16 as well as boxplots visualizing of all features
across grade-levels, see Figures 2 to 1.

cases the results are as clear. Lexical variation
measured as corrected verb ratio significantly in-
creases from grade-levels 1/2 to 3/4 and 5/6 to 7/8.
Yet, the lexical variation of grade-level 7/9 writing
is closer to that of grade-level 3/4 than 5/6, leaving
unclear to which extent we see systematic devel-
opment in this subdomain of lexical complexity.

For discourse complexity, the transition proba-
bility of dropping the subject in a following sen-
tence, i.e., not repeating it as, e.g., the subject
or object, significantly decreases with increasing
grade-level in elementary school, i.e., the dis-
course becomes more coherent. The probabil-
ity remains stable at a low level in secondary
school. There, discourse complexity seems to de-
velop rather in terms of use of connectives such
as temporal connectives which significantly in-
crease with progressing grade-level, while show-
ing inconclusive results for elementary school.
The two most informative features from the do-
main of phrasal complexity behave similarly: The
coverage of noun phrase modifiers for elementary
school which significantly increases from grades
1/2 to grades 3/4 from 0.31 to 0.42 but stagnates
around 0.52 in secondary school. For secondary
school, it is represented by the ratio of verb modi-
fiers per verb, which significantly increases across
all grade-levels from 0.29 to 0.65.

In contrast to phrasal complexity, clausal com-
plexity represented by conjunction clauses per
sentence and verbs per t-unit does not significantly
change throughout elementary school. However,
it significantly increases in secondary school from
0.13 conjunction clauses per sentence to 0.18 and
from 1.69 verbs per t-unit to 1.8. This is in
line with our previous observation that elementary
school writing rather develops in terms of phrasal
but not clausal complexity, while clausal complex-
ity gains importance in secondary school.

The same holds for morphological complexity
and language use, which we found to only play
a role in the development of secondary school
writing. Accordingly, we do not see a signifi-
cant difference in either across elementary school
grade-levels for the most informative features
of these domains. For secondary school writ-
ing, however, the number of derived nouns per
noun significantly increases, indicating a stronger
nominal style in students writing and we see a
significant increase in vocabulary overlap with
dlexDB, which consists of frequencies from news
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Feature name Set Elementary school Secondary school
1/2 3/4 t p 5/6 7/8 t p

Overall errors / W Error Rate 0.68 0.37 11.53 .000 0.28 0.22 5.60 .000
Corrected verb variation Lexical 1.62 2.13 -11.55 .000 1.88 2.01 -3.03 .003

P(Subject→ Nothing) Discourse 0.15 0.10 3.40 .001 0.05 0.06 -1.35 .177
Avg. NP modifier types Phrasal 0.31 0.42 -8.93 .000 0.52 0.52 -0.21 .831
Conjunction clauses / S Clausal 0.11 0.13 -0.96 .339 0.13 0.18 -3.47 .001

Finite verbs / verb Morph. 0.82 0.81 1.63 .105 0.71 0.70 0.88 .381
Pct. LW in Subtlex Language Use 0.04 0.05 -1.71 .089 .085 .077 1.82 .069

DLT-IC (M) / finite verb Human Processing 1.09 1.11 -1.96 .051 1.22 1.25 -1.65 .099
Capitalization errors / W Error Rate 0.15 0.07 9.87 .000 0.05 0.04 5.61 .000

Yule’s K Lexical 217. 153. 7.21 .000 152. 128. 5.60 .000
Temp. connectives / S Discourse 0.73 0.63 1.85 .066 0.47 0.62 -4.10 .000

Verb modifiers / VP Phrasal 0.29 0.49 -4.85 .000 0.55 0.65 -2.86 .004
Verbs / t-unit Clausal 1.67 1.57 -0.97 .333 1.69 1.81 -3.18 .002

Derived nouns / noun Morph. 0.02 0.02 -0.38 .708 0.04 0.05 -2.66 .008
Pct. LW in dlexDB Language Use 0.62 0.60 1.60 .111 0.60 0.63 -3.27 .001
(
∑

max. dep.) / S Human Processing 5.12 5.60 -2.64 .009 6.30 6.97 -4.59 .000

Table 6: Across-grade level group means of the most informative features of each feature set for distinguishing
grade-levels in elementary school (above dashed line) and secondary school (below dashed line).

texts. This might indicate that language use be-
comes more similar to news language in secondary
school, as dlexDB is based on news paper data.

Interestingly, for human language processing,
there seems to be a marginally significant increase
in DLT processing costs at the finite verb (with de-
creased modifier weight as defined in Shain et al.
2016) and a significant increase in the mean max-
imal dependency length per sentence across all
grade-levels in elementary and secondary school.

7 Study 3: Cross-Topic Testing of
Academic Language Development
Across Topics

7.1 Set Up

In our final study, we want to test whether the
results we obtained generalize across topics. El-
ementary school and secondary school students
were both allowed to freely choose from two dif-
ferent topics for their writing as spelled out in Sec-
tion 3. We used the two data subsets from Study
2, but additionally split them by topics, obtaining
four data sets: i) elementary school: Wolf topic,
ii) elementary school Park topic, iii) secondary
school: Future topic, and iv) secondary school
Idol topic. Table 7 shows the distribution of texts
across grade levels and topics.

We used the data sets of Wolf topic writings
and Future topic writings as training data sets and
tested the resulting model on Park topic and Idol

1/2 3/4 5/6 7/8 all

Wolf 133 353 0 0 466
Park 90 171 0 0 261
Future 0 0 332 333 665
Idol 0 0 130 111 241
all 203 524 462 444 1,663

Table 7: Distribution of grade levels across topics

topic texts, respectively. We chose this set-up
since the two test data sets are too small to al-
low for training and testing with reversed data sets.
We do not use cross-validation here, because we
specifically want to study transfer across differ-
ent topics rather than just different folds. In the
new set-up, we cross-topic trained and tested the
SMO classifiers based on the combination of com-
plexity and error rate features and separately for
the error rate and for the complexity features. We
compared the results against the majority baseline
and the traditional readability baseline containing
measures of text and word length. For the sec-
ondary school data, we trained one model with and
one without meta information on school tracks.

7.2 Results & Discussion

Table 8 shows the cross-topic classification perfor-
mance on elementary school students’ writings.
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Feature Set Train Test Acc.

Majority baseline n.a. Park 65.52
Traditional baseline Wolf Park 65.52
All Features Wolf Park 76.63
Complexity Wolf Park 68.58
Error Rate Wolf Park 81.61

Table 8: Cross-topic results for elementary school data

The majority baseline for elementary school
writings’ on the Park topic is more balanced than
the one for the Wolf topic. For both topics, 3rd/4th
grade was the most common grade-level. Train-
ing on Wolf texts and testing on Park texts with
the SMO classifier yields an accuracy of 76.63%.
While this does constitute a drop in accuracy as
compared to Study 2, which may at least partially
be explained by the reduced size of the training
data set, the model clearly generalizes across top-
ics. When taking a closer look at the difference be-
tween the purely error rate-based informed classi-
fier and the complexity feature based classifier, we
see that both generalize across topics. However,
error rate clearly outperforms the complexity fea-
tures and in fact hardly drops in performance when
compared to the results obtained in Study 2.11

The better performance of the classifier informed
by error rate compared to both complexity-based
classifiers indicates that error rate is more robust
across topics than complexity. It also further cor-
roborates the particular importance of writing cor-
rectness for early writing and academic language
development.

Table 9 shows the results of the classifiers for
the secondary school writing.

Feature Set Train Test Acc.

Majority baseline n.a. Idol 50.01
Traditional baseline Future Idol 43.15
All Features + Meta Future Idol 62.66
All Features Future Idol 59.33
Complexity Future Idol 59.34
Error Rate Future Idol 55.19

Table 9: Cross-topic results for secondary school data

Unlike for the elementary school data, grade-
levels are more or less balanced across topics for

11 The confusion matrix for all ten iterations of the 10-CV
may be found in Table 13 in the Appendix.

this data set, leading to a majority baseline around
50%. As before, we see that all SMO classi-
fier generalize across topics when training on the
larger data set (Future) and testing on the smaller
one (Idol). In line with their relative importance
for this school level established in the second
study, the complexity features play more of a role
and interestingly generalize well, while the error
rate measures known to play less of a role at this
level of development are also less robust.12

8 Conclusion and Outlook

We presented the first approach modeling the lin-
guistic complexity and accuracy in German aca-
demic language development across grades one to
eight in elementary and secondary school. Our
models are informed by a conceptually broad fea-
ture set of linguistic complexity measures and ac-
curacy features extracted from error annotations.
The computational linguistic analysis made it pos-
sible to empirically identify a shift in the devel-
opmental focus from accuracy as the primary lo-
cus of development in elementary school to the
increasing complexity of the linguistic system in
secondary school. Our results also show where
both domains advance in parallel, in particular in
the lexical complexity domain, which plays an im-
portant role throughout. Despite the emerging fo-
cus on complexity throughout secondary school,
accuracy also continues to play a role. Investigat-
ing the generalizability of our results and the ap-
proach to complexity and accuracy development,
we demonstrated the cross-topic robustness of our
classifiers. The use of cross-topic testing to es-
tablish the robustness of machine learning models
thus supports the applicability of language devel-
opment modeling in real life.

These first results provide insights into the com-
plexity and accuracy development of academic
writing across the first eight years in German. Yet,
they are based on the quasi-longitudinal opera-
tionalization of writing development as a function
of grade level. Tracking genuine longitudinal de-
velop of individual students across extended pe-
riods of time is a natural next step, which will
make it possible to study individual differences
and learning trajectories rather than overall group
characteristics. We plan to follow up on this in
future work.

12 The confusion matrix for all ten iterations of the 10-CV
may be found in Table 14 in the Appendix.
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A Appendices

↓Obs/Pred→ 1/2 3/4 5/6 7/8
∑

1/2 1217 813 0 0 2030
3/4 430 4810 0 0 5240
5/6 0 0 3029 1591 4620
7/8 0 0 1590 2850 4440∑

1647 5623 4619 4441 16330

Table 10: Confusion matrix for the best model in study 1 (all feat. + meta) summed across iterations

↓Obs/Pred→ 1/2 3/4
∑

1/2 1232 798 2030
3/4 449 4791 5240∑

1681 5589 7270

Table 11: Confusion matrix for best elementary school model in study 2 (all feat. + meta) summed across iterations

↓Obs/Pred→ 5/6 7/8
∑

5/6 3049 1571 4620
7/8 1497 2943 4440∑

4546 4514 9060

Table 12: Confusion matrix for best secondary school model in study 2 (all feat. + meta) summed across iterations

↓Obs/Pred→ 1/2 3/4
∑

1/2 51 39 90
3/4 9 162 171∑

60 201 261

Table 13: Confusion matrix for the best model for elementary school in study 3 (Error rate)

↓Obs/Pred→ 5/6 7/8
∑

5/6 91 39 130
7/8 51 60 111∑

142 99 241

Table 14: Confusion matrix for the best model for secondary school in study 3 (all feat. + meta)
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Feature name Set Merit

Overall errors / W Error rate .166
Root type-token ratio Lexical .150

Corrected type-token ratio Lexical .150
Number of words Clausal .137

Capitalization errors / W Error rate .128
HDD Lexical .124

Corrected verb variation Lexical .110
Squared verb variation Lexical .110

Word splitting + hyphenation errors / W Error rate .108
P(Subject→Nothing) Discourse .106

P(Nothing→Nothing) Discourse .104
P(Nothing→Subject) Discourse .099
Number of sentences Clausal .094
P(Nothing→Object) Discourse .093

Yule’s K Lexical .091
MTLD Lexical .088

Table 15: Top features in information gain ranking for grade-level distinction in elementary school

Feature name Set Merit

Yule’s K Lexical .030
Capitalization errors / W Error rate .029

(
∑

max. dep.) / S Human processing .026
MTLD Lexical .023

Verbs / t-unit Clausal .023
Verbs / S Clausal .023

HDD Lexical .022
Overall errors / W Error rate .022

Nouns / W Lexical .021∑
Non-terminal nodes / tree Clausal .021

W / S Clausal .021
to infinitives / S Lexical .020

Uber index Lexical .020
Temporal connectives / S Discourse .019∑
Non-terminal nodes / W Clausal .019

Clauses / S Clausal .017

Table 16: Top features in information gain ranking for grade-level distinction in secondary school
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(a) DLT integration cost (m) (b) Max. dependency / S

Figure 1: Most informative human processing features

(a) Capitalization errors (b) Overall errors

Figure 2: Most informative error rate features

(a) Corrected verb variation (b) Yule’s K

Figure 3: Most informative lexical features

(a) Subject transitions (b) Temporal connectives

Figure 4: Most informative discourse features.

(a) NP modifier coverage (b) Verb modifiers / VP

Figure 5: Most informative phrasal features.

(a) Conjunction clauses / S (b) Verbs / t-unit

Figure 6: Most informative clausal features.

(a) Finite verbs / verb (b) Derived nouns / noun

Figure 7: Most informative morphology features.

(a) Words in Subtlex-DE (b) Words in dlexDB

Figure 8: Most informative language use features
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Abstract

We developed an automated oral proficiency
scoring system for non-native English speak-
ers’ spontaneous speech. Automated systems
that score holistic proficiency are expected to
assess a wide range of performance categories,
and the content is one of the core performance
categories. In order to assess the quality of the
content, we trained a Siamese convolutional
neural network (Siamese CNN) to model the
semantic relationship between key points gen-
erated by experts and a test response. The cor-
relation between human scores and Siamese
CNN scores was comparable to human-human
agreement (r = 0.63), and it was higher than
the baseline content features. The inclusion
of Siamese CNN-based feature to the exist-
ing state-of-the-art automated scoring model
achieved a small but statistically significant
improvement. However, the new model suf-
fered from score inflation for long atypical re-
sponses with serious content issues. We in-
vestigated the reasons of this score inflation by
analyzing the associations with linguistic fea-
tures and identifying areas strongly associated
with the score errors.

1 Introduction

We developed an automated scoring model for
an oral proficiency assessment of non-native En-
glish speakers. In particular, the system was de-
signed to score spontaneous speech, elicited us-
ing questions where the test takers summarized
the core content of a reading and/or listening pas-
sages. A system for scoring holistic proficiency of
spontaneous speech is expected to assess a wide
range of areas such as fluency (Cucchiarini et al.,
2000; Zechner et al., 2009), pronunciation (Witt
and Young, 1997), prosody, grammar (Chen and
Zechner, 2011; Yoon and Bhat, 2018) and vocab-
ulary (Yoon and Bhat, 2012). Content is also one
of the core performance categories in holistic oral

proficiency scoring. In particular, automated scor-
ing systems without content scoring capabilities
may show sub-optimal performance when scor-
ing responses with mismatched proficiency levels
between content and other areas. For instance,
some responses have critical content issues but
good delivery skills, while some responses have
good content but issues in other areas. Further-
more, in large-scale oral proficiency assessments,
some responses may have sub-optimal character-
istics. The types of these problematic responses
(hereafter, atypical responses) for the tests elic-
iting spontaneous speech frequently have severe
content issues. For instance, some test takers may
try to game the system by citing memorized re-
sponses for unrelated topics (e.g., off-topic re-
sponses). Even state-of-the-art automated scoring
systems face challenges in scoring these atypical
responses, and automated scoring systems without
content scoring capability may assign inaccurate
scores for these responses. To address these is-
sues, more researchers started to actively explore
content scoring in the context of oral proficiency
scoring (Xie et al., 2012; Evanini et al., 2013;
Yoon et al., 2018).

Recently, deep neural networks (DNN) and
word embeddings have been applied successfully
to various natural language processing tasks. In
the automated scoring area, several researchers
have explored the use of diverse neural networks
for essay scoring (Farag et al., 2018; Alikaniotis
et al., 2016; Dong and Zhang, 2016) and spon-
taneous speech scoring (Chen et al., 2018a; Qian
et al., 2018a,b) and they achieved comparable or
superior performance to the sophisticated linguis-
tic feature-based system. In particular, Qian et al.
(2018b) trained an automated scoring model cov-
ering the content aspect and achieved a further im-
provement over the generic model without content
modeling.
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The content relevance of a response is a concept
relative to the question, and thus, it is important
that the neural network learns the semantic rele-
vance between a question-response pair. Siamese
networks are characterized by shared weights be-
tween two subnetworks modeling inputs and are
effective in calculating semantic similarity be-
tween sentence pairs (Mueller and Thyagarajan,
2016; Yin et al., 2015; Hu et al., 2014).

In order to address the strong need for content
scoring and based on the promising performance
of the Siamese CNN in the semantic relevance
modeling, we developed a Siamese CNN-based
content model. In particular, we make the follow-
ing two contributions:

• We developed a new feature, based on the
Siamese CNN by modeling the semantic dis-
tance between the core content and the test
takers’ responses. The new Siamese CNN-
based feature outperformed the baseline con-
tent features, and the inclusion of the new
feature further improved the performance of
a state-of-the-art automated speech scoring
model.

• We examined whether the automated scor-
ing model including the new Siamese CNN-
based feature could assign accurate scores
for atypical responses. Differing from pre-
vious studies (Higgins and Heilman, 2014;
Yannakoudakis and Briscoe, 2012; Lee et al.,
2017) using synthesized atypical responses in
their evaluations, we used authentic atypical
responses collected from a large number of
test administrations.

2 Data

We used a large collection of spoken responses
from an English proficiency assessment. It was
composed of 109, 894 responses from 37, 830
speakers. For each question, test takers read
and/or listened to a passage and then provided an-
swers consisting of around one minute of spon-
taneous speech based on the given passage. We
used 80 questions, covering a wide range of topics
such as education, entertainment, health, and poli-
cies. For each question, the data included 1, 374
responses on average, but there were large varia-
tions ranging from 305 to 3, 013.

During the question generation, expert assess-
ment developers first generated a list of key points

to guide the creation of the reading and listening
passages. These key points were provided to and
used by human raters to evaluate content of the
spoken responses. Three key points were gener-
ated for each question, and the responses with the
perfect content coverage were expected to include
all three key points. We concatenated three key
points into one text and used it during the content
model building. The key points contained on av-
erage 93 words.

All responses were scored by the trained raters
using a 4-point scoring scale from 1 to 4 with
4 indicating the highest proficiency. In addition,
raters provided a score of 0 when test takers did
not show any intention of directly responding to
the question. The rubrics consisted of three ma-
jor performance categories: delivery (pronuncia-
tion, prosody, and fluency), language use (vocabu-
lary and grammar), and topic development (con-
tent and coherence). Both the Pearson correla-
tion and quadratic weighted kappa between two
human raters based on 10% double-scored data1

were 0.61.
The average of the human scores was 2.58, and

the most frequent score was 3 (48%), followed
by 2 (39%), 4 (8%), 1 (4%), and 0 (1%). The
number of words in the transcriptions generated
by an automated speech recognition (ASR) system
(numwds) ranged from 11 to 248 (129 on average).

The characteristics of responses with score of 0
were widely varied, but some of the most frequent
categories included (a) response in a non-target
language; (b) off-topic; (c) canned responses2; (d)
no-response including no speech other than fillers
or simple sentences (e.g., “I don’t know”); and (e)
repetition of the question. These responses had se-
rious problems in content. We used the responses
with score of 0 as atypical responses and used
them for an additional evaluation.

However, due to the low percentage of the score
0 responses, it was difficult to analyze the model
accuracy for them. In order to address this issue,
we constructed a separate atypical dataset by ex-
tracting a large number of responses with a score
of 0 from the same English proficiency assess-
ment, but much larger administrations. The size
of dataset is presented in Table 1.

1The double-scored data included responses with scores
of 1 to 4.

2Responses that only included memorized segments from
external sources. The sources were irrelevant to the question,
and the responses were likely to be off-topic.
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Partition Purpose N. of re-
sponses

Train Training of con-
tent features
and a Siamese
CNN model

54,051

LR Train Training of linear
regression models

25,706

Test Evaluation 28,497
Atypical
responses

Evaluation 1,640

Table 1: Number of responses for each partition

3 Method

3.1 Siamese Convolutional Neural Network
(Siamese CNN)

We used a Siamese convolutional neural network
(CNN) consisting of an input modeling step us-
ing two weight-sharing CNNs (one CNN was for
modeling the key points and the other was for
modeling responses), a similarity distance calcu-
lation layer, and a neural network layer. Figure 1
illustrates the overall architecture of our Siamese
CNN.

Figure 1: Diagram of Siamese Convolutional Neural
Network

An input, a pair of a response and a text com-
posed of three key points, was converted into a 2D
tensor with a shape of L × d0, where L = 1003

and d0 = 300. d0 was the dimension of the word
embedding vector, and we used Google word em-

3Typically, L is the maximum length of the input, but we
used L = 100 due to the consistently superior performance
in the pilot experiments using varying L. For key points or
responses shorter than 100 words, we added zeros to the end.
On the contrary, for key points or responses longer than 100,
we selected the initial 100 words.

bedding vectors (Mikolov et al., 2013) with 300
dimensions.

The converted vector was fed into the convo-
lution layer with the filter numbers d1 and filter
width w; each filter created concatenated embed-
ding vectors of w consecutive words. We trained
models using different d1 (16, 64, 128, 256) and
w (3, 4, 5, 6), and they were optimized using hy-
peropt software (Bergstra et al., 2013). This was
followed by an averaging pooling layer, and two
vectors (one for the key points and one for the re-
sponse) were generated.

Next, a cosine similarity between the two vec-
tors was calculated at the similarity layer. Finally,
we stacked a neural network as the output layer,
and it generated a score. The mean squared er-
ror (MSE) between the output scores and human
scores was the learning metric and Adaptive Grad
Optimizer was the optimizer. The model had a
similar architecture to the ‘basic Bi-CNN’ model
in Yin et al. (2015) with the final layer and differ-
ent learning metric for the regression task.

3.2 Features from an automated proficiency
scoring system

We used 38 features generated by a state-of-the-
art automated proficiency scoring system for non-
native speakers’ spontaneous speech (Chen et al.,
2018b). For a given spoken response, the system
performed speech processing including speech
recognition and forced-alignment and generated
38 features in five groups: (a) speech rate features,
(b) pronunciation quality features4, (c) pause pat-
tern features, (d) prosody features5, and (e) con-
tent features.

In particular, we generated 3 content features
to assess the content accuracy and completeness.
The first feature was designed to assess lexical
similarity with high-scoring responses. It cal-
culated a term frequency-inverse document fre-
quency (tf-idf) weighted cosine similarity score
between a test response vector and the question-
specific tf vector. The question-specific tf vector
was a vector whose elements were the frequency
of each word in the entire sample responses with
a score of 4 that answered the same question. The
question-specific vector was trained on the Train
partition.

4This group of features measures how much the test tak-
ers’ pronunciation deviates from the native norms.

5This group of features measures patterns of variation in
time intervals between syllables or phonemes.
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The remaining two features were designed to
measure similarity with the key points created by
the assessment developers. We created an aver-
age embedding vector and an idf weighted aver-
age embedding vector for the key-points. Next,
we created two vectors for a test response using
the same process. Finally, we calculated two co-
sine similarity scores between the key-point em-
bedding vector and response embedding vector:
one score for the average embedding vectors and
one score for the idf weighted average embedding
vectors. The detailed description of features used
in this study is provided in Yoon et al. (2018).

3.3 Scoring Model Training

We trained linear regression models to generate a
proficiency score for each response. In order to
evaluate the impact of the Siamese CNN based
feature, we classified features into 4 groups:

• content: three content features in Section 3.2

• all-features: all 38 features in Section 3.2

• Siamese CNN: output score of the Siamese
CNN model

• CMB: combination of all-feature and the out-
put score of the Siamese CNN model

Finally, we trained 4 linear regression models
(one model for each feature group) using a human
score as a dependent variable using the RSMTool
(Madnani and Loukina, 2016).

4 Experiment

We generated transcriptions of a spoken response
using an ASR system composed of a gender-
independent acoustic model and a trigram lan-
guage model trained on 800 hours of spoken re-
sponses extracted from the same English profi-
ciency test using the Kaldi toolkit (Povey et al.,
2011). The ASR system achieved a Word Error
Rate of 23% on 600 held-out responses (Tao et al.,
2016).

Next, we normalized both key points and ASR-
based transcriptions by tokenizing and removing
stop words and disfluencies. After the normal-
ization process, the length of the key points and
responses were reduced to 60% and 40% of the
original texts.

We trained a Siamese CNN model using the
normalized texts of the Train partition and the key-
points. The model was implemented using Tensor-
flow (Abadi et al., 2015). The parameters were op-
timized using the hyperopt software, and the final
model used L = 100, d = 300, d1 = 256, w = 4,
and the learning rate l = 0.0001. In addition, the
automated scoring system using the same ASR en-
gine generated 38 features. Finally, we trained lin-
ear regression models on the LR Train partition.

5 Results

5.1 Scoring of normal responses

We first evaluated the performance of the auto-
mated scoring models on the Test partition in
terms of its strength in the associations with pro-
ficiency scores assigned by human raters. Table 2
presents the agreement between the human scores
and the automated scores for each model.

Correlation κ RMSE
Siamese
CNN

0.634 0.588 0.601

content 0.452 0.499 0.663
all-feature 0.672 0.620 0.565
CMB 0.686 0.631 0.555

Table 2: Correlations, quadratic weighted kappas (κ),
and root mean squared error (RMSE) between the au-
tomated scores and human scores

The performance of the Siamese CNN model
was substantially better than the content feature-
based model; the correlation and quadratic
weighted kappa increased approximately 0.18 and
0.09, respectively. On the contrary, the perfor-
mance of the Siamese CNN model was signif-
icantly lower than the performance of the all-
feature model, and this difference was also statis-
tically significant (p < 0.01) based on the Steigers
Z-test for dependent correlations.

The combination of the Siamese CNN and
all-feature achieved a small improvement. The
correlation and quadratic weighted kappa of the
CMB model were 0.686 and 0.631, respec-
tively. There was approximately 0.01 increase
over the best performing individual model (all-
feature model). This improvement was statisti-
cally significant at 0.01 level (p < 0.01).
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5.2 Scoring of the atypical responses

Next, we evaluated whether the automated scor-
ing models assign accurate scores for atypical re-
sponses using the Atypical response set. Table 3
compares the mean and standard deviation (STD)
of the automated scores for each model. In gen-
eral, the models with the lower average score are
more accurate than those with the higher average
score because the human scores for all responses
in this set were 0.

Mean STD
Siamese CNN 1.129 0.344
content 0.545 0.500
all-feature 0.969 0.845
CMB 0.732 0.490

Table 3: Comparison of the automated scores for the
atypical responses

In general, the average scores of the auto-
mated models were low. The average scores of
the feature-based models (both content and all-
feature) were lower than 1.0, and this was lower
than the lowest scale score for the normal re-
sponses; our scoring scale for normal responses
(excluding atypical responses) ranged from 1 to
4 with 1 indicating the lowest proficiency. The
average score of the Siamese CNN model was
slightly higher, at 1.13. Finally, the average score
of the CMB model was lower than both Siamese
CNN and all-feature models. The combination of
the two groups of features resulted in assigning
more accurate scores for the atypical responses
and improved the robustness of the automated
scoring system.

In general, automated scoring models tend to
assign high scores for long responses, and thus the
automated models in this study may assign even
higher scores for the long atypical responses. In
the Atypical response set, the percentage of short
responses was high (atypical responses with less
than 20 words was 59%). Therefore, despite the
low average score, there was a possibility that the
automated models assigned high scores for a sub-
set of atypical responses. Figure 2 presents the
average automated scores by the response length.

The automated scores for the Siamese
CNN model were relatively low for the short
responses, and they increased substantially as the
response length increased; it sharply increased

Figure 2: Average score predicted by the scoring mod-
els.

when the responses contained more than 60
words. The average Siamese CNN score for the
responses longer than 120 words was 2.84. In
contrast, the automated scores for the content
model were consistently lower than 1.0.

The all-feature model also showed a similar
trend to the Siamese CNN model; as the re-
sponse length increased, the automated scores in-
creased substantially. However, the average scores
were substantially lower than those of the Siamese
CNN model. Finally, the combination of the
Siamese CNN and the all-feature (CMB model)
resulted in the improvement in the short atypical
responses; the average score of the responses con-
taining 0-20 words was 0.64, and it was 0.4 lower
than the all-feature model. However, no large dif-
ference was found from the longer atypical re-
sponses.

6 Discussion

From the atypical response scoring experiment,
we found that the Siamese CNN model had a
tendency to inflate scores for the long atypical
responses. The long atypical responses in this
study tended to be associated with the salient con-
tent issues such as off-topic responses from the
test takers who cited answers for unrelated top-
ics. The score inflation of these responses sug-
gested that the Siamese CNN model may not have
strong power in identifying responses with the se-
vere content abnormality.

In order to get better understanding about which
performance areas (e.g., content, fluency, vocabu-
lary) the Siamese CNN model assessed mainly, we
analyzed the relationships between the Siamese
CNN score and three features from the automated
proficiency scoring system: (a) speaking rate (flu-
ency), (b) an average of the frequencies of the
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words used in a response (vocabulary), and (c) a
cosine similarity score between a question-specific
content vector and a response (content). These
features assess fluency, vocabulary, and content
skills. Table 4 presents the correlation analysis
calculated from the Atypical response set.

vocabulary content fluency
r 0.395 0.430 0.706

Table 4: Correlation of the Siamese CNN score with
the features from the oral proficiency scoring system:
Pearson correlation coefficients in absolute values

All human scores in this set were 0. There-
fore, the associations between the features and the
holistic proficiency had no effect on the correla-
tions showed in Table 4.

All correlations were statistically significant at
0.01 level. However, the Siamese CNN score
showed the strongest correlation with the fluency
feature, and the correlation with the content fea-
ture was much weaker than that with the fluency
feature.

Next, we randomly selected an atypical re-
sponse with a high Siamese CNN score; the
Siamese CNN score was 3.3 while the score of
the all-feature model was 2.2. Thus, the Siamese
CNN model showed a stronger score inflation than
the all-feature model. The response included 53
words after the text normalization. The response
was clearly off-topic; the question was in the “en-
tertainment life at the university” domain, while
the answer was about “science, nature.” Similar
to Zeiler and Fergus (2014)’s occlusion experi-
ment, we systematically removed n-words (n =
1, 2, ..., 5) from the response and generated scores
for the new responses by the Siamese CNN model
to identify the areas associated with high score in-
flation. Figure 3 presents the relationship between
the score changes and the removed n-words.

There were approximately 5 points with sub-
stantial score drops (marked with red square in the
Figure). The words at these points were “plank-
ton,” “swam,” “microsoft,” “semester,” and “nice.”
These words were strongly associated with the
score inflation and removal of these words resulted
in substantially lower scores. Among them, first
three words were relatively low frequency words
but not topically relevant. The word frequencies
in language learners’ responses have been consis-
tently identified as one of the strong predictors of

vocabulary skill. These analyses supported the no-
tion that the current Siamese CNN model might be
paying strong attention to the fluency and vocabu-
lary aspect.

7 Conclusion

We trained a Siamese CNN to model the seman-
tic distance between the key points generated by
the experts and the test takers’ responses. The
Siamese CNN model achieved a high performance
without sophisticated feature engineering. For
scoring normal responses, it achieved substantially
better performance than the model using the con-
tent features from the existing automated speech
scoring system. The inclusion of the Siamese
CNN based feature to the existing state-of-the-
art automated speech scoring system resulted in
a small but statistically significant improvement.
Furthermore, it improved the validity and robust-
ness of the automated scoring system by assigning
more accurate scores for short atypical responses.
However, the Siamese CNN model suffered from
score inflation during scoring long atypical re-
sponses. In the current human scoring scenario,
the percentage of these long atypical responses
was extremely low and they were correctly scored
by human raters. However, this may be an impor-
tant challenge that we need to overcome for the use
of an automated scoring model as a sole scorer.

In this study, we explored the linear combina-
tion of the Siamese-CNN and linguistic features.
The reviewers commented that there may be a fur-
ther improvement by using non-linear algorithms
to combine them. In particular, one of the reviewer
suggested a possibility to train a Siamese CNN
with linguistic features as additional inputs. In a
future study, we will explore these points. In addi-
tion, we will also explore developing separate bi-
nary classifiers to filter out atypical responses and
prevent an automated scoring model from gener-
ating erroneous scores.
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Figure 3: Siamese CNN scores for the responses excluding n-words by 1-word (green), 2-words (orange), 3-words
(grey), 4-words (yellow), and 5-words (blue)
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Abstract

A typical medical curriculum is organized in
a hierarchy of instructional objectives called
Learning Outcomes (LOs); a few thousand
LOs span five years of study. Gaining a thor-
ough understanding of the curriculum requires
learners to recognize and apply related LOs
across years, and across different parts of the
curriculum. However, given the large scope of
the curriculum, manually labeling related LOs
is tedious, and almost impossible to scale. In
this paper, we build a system that learns rela-
tionships between LOs, and we achieve up to
human-level performance in the LO relation-
ship extraction task. We then present an appli-
cation where the proposed system is employed
to build a map of related LOs and Learning
Resources (LRs) pertaining to a virtual pa-
tient case. We believe that our system enables
building educational tools to help medical stu-
dents grasp the curriculum better, within class-
room and Intelligent Tutoring Systems (ITS)
settings.

1 Introduction
Learning Outcomes (LOs) encapsulate discrete
knowledge components and provide a framework
for curriculum planning, teaching, learning, and
assessment. In this work, we study the curricu-
lum of the Lee Kong Chian School of Medicine,
Nanyang Technological University, Singapore. At
the highest level, their curriculum is organized into
major Themes, which branch into Fundamentals,
and further into Fundamental Units. A Fundamen-
tal Unit is comprised of multiple related Topics,
and each topic constitutes several LOs. Thus, re-
lated LOs get grouped together at multiple levels
of increasing granularity. This hierarchy is hand-
curated by medical experts and represents a well-
formed, well-understood body of knowledge.

However, qualitative evidence suggests that sig-

Figure 1: Related Learning Outcomes placed far apart
in the expert-curated curriculum hierarchy.

nificant relationships exist between LOs placed far
apart in the curriculum; these relationships can-
not be uncovered without explicit expert interven-
tion. Figure 1 illustrates one such instance, where
LOs drawn from disjoint sections of the curricu-
lum hierarchy are related as they address multiple
aspects of HIV treatment.

Our main motivation in this work is to auto-
matically discover LO relationships that cannot be
accessed by a straightforward navigation of the
curriculum. Extracting such LO relationships can
help build a knowledge-base that can be founda-
tional to various educational tools. To this end, we
propose looking into the semantic content of dis-
parate LOs, in addition to their relatedness spec-
ified by the curriculum hierarchy. We formulate
this as a three-class classification task. Given a
pair of LOs, they are categorized as being either
strongly related or weakly related, or unrelated.

Although the current study is limited to a med-
ical curriculum, our approach is general. Tech-
niques reported in this paper would extend to
any curricula that take a ‘design down’ approach
(Harden, 2002), where related LOs are nested in
a hierarchical order. An LO-relationship extrac-
tion tool that utilizes both semantic and curricu-
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lum cues, can be exploited by Intelligent Tutor-
ing Systems (ITS) to suggest useful interventions
to both learners and instructors. Potential appli-
cations include: a) improved content recommen-
dation, by proactively suggesting pre-requisites or
guiding the learner to discover LOs that are re-
lated across disjoint sections of the curriculum;
b) designing better assessment items which test
a learner on closely related LOs; and c) accurate
learner modeling, by taking into account all re-
lated LOs when tracking the progress of a learner’s
mastery of an LO. Building upon these motiva-
tions, this work documents our efforts to answer
the following research questions :
RQ1: Which features determine relatedness be-
tween LOs? Information available to us is both
structured (by way of a well-defined curriculum
hierarchy), as well as unstructured (by way of free
text descriptions of LOs). We aim to devise a
method to appropriately integrate the two in order
to compare two LOs.
RQ2: By design, LOs are crisp and compact. A
drawback of their conciseness is that they do not
provide enough information to ascertain related-
ness with other, similarly concise LOs. So, we ask,
can the resources linked to LOs be suitably lever-
aged to improve the quality of LO-relationship ex-
traction?
RQ3: Are there any latent factors beyond curricu-
lum and semantic similarity establishing related-
ness among LOs? If so, are they exploited by the
proposed approach?
RQ4: Can LO relatedness be used to understand
a virtual patient case? Disparate LOs of disease
and symptoms could be related in the context of a
case. We leverage the LO relationship extraction
system to understand the context of a case, and
build a case map from relevant concepts.

2 Related Work
Intelligent Tutoring Systems (ITS) greatly im-
prove students’ user experience, even in compar-
ison to human tutors (Aleven et al., 2004; Van-
Lehn, 2011). Automated methods for creating do-
main ontology from text have been explored in
(Zouaq and Nkambou, 2008). While most previ-
ous work employ semantic networks with frames
and production rules (Stankov et al., 2008), we
tap into state-of-the-art AI - based techniques to
learn semantic relationship between LOs, as op-
posed to enumerating rules to generate them. Our
work comes close in spirit to that of (John et al.,

2015), that seek to generate knowledge graphs for
closely related math word problems. They employ
a random-walk paradigm on a graph whose edges
are weighed by tf-idf based cosine similarity. Un-
like them, we exploit the existing medical curricu-
lum hierarchy, and use a suite of semantic features
extending beyond tf-idf.

Graphs have been widely used to establish pre-
requisite relationships between domain knowl-
edge concepts (Chen et al., 2015; Käser et al.,
2014), where a link between concepts indicates a
prerequisite-outcome relation. Guerra et al. (2015)
represent a student model as a graph where links
are gradually added between pairs of knowledge
concepts when a student is able to work with
aforementioned pairs in the same context. Sim-
ilarly, Rihák and Pelánek (2017) group similar
knowledge concepts using learners’ performance
data and response time metadata. However, miss-
ing here are relations between knowledge concepts
already encoded in the curriculum and its textual
content.

There is a parallel thread of work on Semantic
Textual Similarity (STS), which measures the de-
gree of equivalence in the underlying semantics of
paired snippets of text (Agirre et al., 2015, 2016,
2012). This aligns with our work since it is also
posed as a natural language understanding prob-
lem. However, techniques explored within the am-
bit of STS are agnostic to any domain specific on-
tology. This is a major drawback for our applica-
tion, as the medical curriculum embodies pertinent
domain information, which, as we later show, goes
a long way in establishing accurate relationships
between LOs.

To the best of our knowledge, we are the
first to exploit expert-annotated data from an
extensively detailed medical curriculum for the
LO-relationship extraction task. By establish-
ing semantic relationships among the curricu-
lum concepts, we bridge the gulf between hand-
curated domain-specific ontologies and state-of-
the-art data driven textual similarity measures, and
show its utility in understanding a patient case.

3 Curriculum and Problem Statement
In this section, we briefly describe the organiza-
tion of LOs in the medical curriculum, and formu-
late the problem statement.
Medical Curriculum : The curriculum content
is designed around 3 Themes that run throughout
the programme: 1) Scientific Basis of Medicine,
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Relation
with
Ref. LO

LO Fundamental
unit Fundamental

- Reference LO: Explain the normal
development of the embryonic heart

Embryology
Human Structure

& Function

Strong
LO1: Explain how the pulmonary and systemic
circulations are linked in fetal life

Embryology
Human Structure

& Function

Weak
LO2: Explain the mechanisms underlying
Starling’s Law of the Heart

Anatomy/
Physiology

Human Structure
& Function

None LO3: List the clinical uses of pulse oximetry
History, Exam.

and MSE
Integrated

Clinical Practice

Table 1: Example LO relationships along with their placement in curriculum hierarchy.

2) Clinical Management and Patient Centred Care,
and 3) Healthcare Delivery and Professional Stan-
dards. The themes correspond to cognition, atti-
tude, and skills of the spiral curriculum, as sug-
gested by Harden (1999).

Figure 1 depicts the organization of LOs into
themes that consist of Fundamentals, branching
in order into Fundamental Units and Topics. Ad-
ditionally, an LO is not constrained to belong to a
unique fundamental unit, and may span a small set
of relevant themes, fundamentals and fundamen-
tal units. Overall, our curriculum contains 4, 251
LOs, organized into 670 Topics, 81 Fundamental
Units, and 16 Fundamentals.
Learning Outcomes and Resoures : In addition,
curriculum designers have manually linked a ma-
jority of the LOs to relevant study material, termed
Learning Resource (LR). These LRs could be se-
lected pages from textbooks, transcripts of video
lectures, links to online reading material, or ex-
tracts from presentations. In this work, we restrict
ourselves to LRs that are well-curated slide decks,
in the form of pdf files. We also note that all LOs
and corresponding LRs are authored in English.

3.1 Problem Statement

Since our goal is to predict the degree of related-
ness between a pair of LOs, we define our problem
statement as follows: Given two LOs and their po-
sitions in the curriculum, classify the relationship
between them as Strong, Weak, or None. More
precisely, we seek to learn a function that, for a
pair of LOs p and q, maps them to one of three
possible classes, i.e.,

f : (p, q)→ {Strong, Weak, None}
Such a function could then be employed to predict
relationships between any unseen pair of LOs.

Figure 2: Proposed approach to classify an LO pair.

Expert-annotated Data : Annotations are ob-
tained from Subject Matter Experts (SMEs), who
are both doctors and faculty. The annotated data
consists of pairs of LOs, each pair labeled as
Strong, Weak, or None. Additionally, SMEs
were requested to provide guided comments to
help us understand their mechanism for coping
with ambiguity. For a subset of LO-pairs, anno-
tations were obtained separately from two SMEs
to ascertain inter-annotator agreement.

4 Proposed Solution

Our approach for LO-relationship extraction is
summarized in the block diagram in Figure 2.
The pipeline involves choosing features meaning-
ful for the task, followed by a cascaded classifier
design. In sections that follow, we detail and mo-
tivate individual components of the pipeline. Sub-
sequently, we investigate the benefit of employing
LRs and additional metadata in our task.

4.1 Features

Observations from data indicate that two classes
of features, curriculum and semantic, are critical
for LO-relationship extraction. Thus, final repre-
sentation for a pair of LOs is the concatenation of
their curriculum and semantic features.
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4.1.1 Curriculum-based Features

Curriculum-based features characterize the rela-
tive position of LOs within the curriculum hier-
archy, which is used to obtain spatial and temporal
proximity estimates, as follows:
Spatial Proximity: We hypothesize that the
closer LOs are located in the curriculum hierar-
chy, the more likely they are to be related. In Ta-
ble 1, we compare a reference LO against LOs
that are placed gradually farther in the curricu-
lum (same fundamental unit, separate fundamen-
tal units within the same fundamental, and sepa-
rate fundamentals, respectively). In this specific
example, we note that the degree of relatedness de-
creases with decreasing spatial proximity from the
reference LO.

As discussed in previously, each LO may span
multiple fundamentals, fundamental units, and
themes. For LOs p and q, let their set of themes,
fundamentals, and fundamental units be Ti∈{p,q},
Fi∈{p,q}, and Ui∈{p,q}, respectively. Proximity of
the LO pair is represented as:

SP (p, q) = [J(Tp, Tq), J(Fp, Fq), J(Up, Uq)]

where Jaccard similarity J between sets A and
B is defined as J(A,B) = |A ∩B|/|A ∪B|.
Temporal Proximity: Related concepts are
taught successively within a course curriculum,
hence, the time of delivery of LOs is an indicator
of their relatedness. For LOs p and q, let yi∈{p,q}
and wi∈{p,q} be their year and week of delivery,
respectively. Temporal proximity is then encoded
as

TP (p, q) = [|yp − yq|, |wp − wq|]
The year information is encoded separately since
curriculum focus differs year-wise, i.e., content
taught in the last week of year 1 may not always
be related to first week of year 2.

4.1.2 Semantic Features

While curriculum hierarchy encodes one paradigm
for grouping related LOs, it misses the rich seman-
tic information contained in the text of the LO. Re-
visiting our example, consider the LOs : 1) Iden-
tify the particular ethical and legal issues perti-
nent to HIV testing. and 2) List some of the com-
mon HIV indicator conditions and HIV-related op-
portunistic infections. They are far apart in the
hierarchy, however there exists a Strong rela-
tionship between them as they are related in the
context of treating an HIV-infected patient. Thus

we explore features that encode semantic similar-
ity between LOs.
Embedding based Features: Semantic related-
ness between LOs is often encapsulated by the
similarity of their constituent tokens. As an ex-
ample, the LOs : 1) List the common symptoms
of sudden cardiac arrest, and 2) List the com-
mon symptoms of myocardial infarction, are re-
lated since term pairs (cardiac, myocardial) and
(arrest, infarction) refer to similar entities. Since
exact token matching (as in Eq. 2) is deficient in
modelling such semantic overlap, we utilize word
embeddings (Chiu et al., 2016) to represent indi-
vidual tokens, which are further used to compute
the following similarity measures.
• Word Overlap: Each LO text is treated as a
bag-of-words. We define that a word wi in LO p
overlaps with a word wj in LO q, if their cosine
similarity in the word embedding space exceeds a
certain threshold δ. Based on this soft matching
of words, we define semantic word overlap to be
the fraction of matching word pairs across the two
bags-of-words, as:

WO(p, q) =

∑
wi∈p

∑
wj∈q 111 [cos(wi,wj) ≥ δ]
|p||q| (1)

where 1 [·]1 [·]1 [·] is an operator that evaluates to 1 if cor-
responding condition is True, and 0 otherwise.
• Histogram of Partial Similarities (HoPS):
We employ HoPS (Saha et al., 2018) to model the
similarity profile between two LOs. For each word
wi in LO p, first its similarity score is computed
with respect to LO q as:

S(wi, q) = max
wj∈q

cos (wi,wj), where wi ∈ p

This strategy pairs each word in LO pwith its clos-
est matching counterpart in LO q. These similarity
scores are then partitioned into N bins and nor-
malized, resulting in a histogram of scores for p.
We obtain another normalized histogram by bin-
ning the similarity scores for each word in q with
respect to p.

HoPS(p, q) = [Histogram ({S(wi, q)|wi ∈ p}) ,

Histogram ({S(wj , p)|wj ∈ q})]

Unlike word overlap, HoPS considers all tokens
in the LO text without thresholding on a similarity
score, and hence provides a more granular similar-
ity profile between LOs.
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Figure 3: Distribution of the length of LO and LR texts
on a logarithmic scale.

TF-IDF based Feature: For LOs p and q, let
p ∈ R|v| and q ∈ R|v| be their respective rep-
resentations as tf-idf vectors (Ramos et al., 2003);
where v is the vocabulary set. Then tf-idf based
similarity is encoded as their absolute difference
and Hadamard product

TI(p, q) = [|p− q|,p ◦ q] (2)

Essentially, our representation encodes the infor-
mation gap between LOs in a pair, in terms of their
exact token overlap weighed by importance of said
token in the LO corpus.

The final feature representation for an LO pair
is the concatenation of spatial proximity, temporal
proximity, word-overlap, and HoPS features. As
explained in Section 5, we drop the tf-idf based
feature owing to its poor performance. Instead,
it serves as a useful baseline for comparison with
word-overlap and HoPS based semantic features.

4.2 Learning Resources

What makes “understanding” the curriculum par-
ticularly challenging is the diversity of curricu-
lum documents. The length of an LO text varies
considerably, as does the scope of its underpin-
ning concept. While a few LOs are independent,
most are better understood in the context of their
LRs, which elaborate on the dense information
contained in the LO. In fact, Figure 3 depicts that
most LOs are pithy, comprising fewer than 50 to-
kens (median token length = 6). In sharp contrast,
LRs are lengthy documents with extensive detail
(median token length = 578).

Whenever an LO is linked to an LR, we can ob-
tain features from both of them. As mentioned in
Section 3, LRs are well-curated slide decks. In-
spired from Query Expansion (Vechtomova and
Wang, 2006), we append the bold text from all
slides of the linked LR to the LO text. Various
semantic features, as detailed in Section 4.1.2, are

• Inflammatory / 
Autoimmune

• Infections

Learning Outcome

• Small intestine, 
peritoneum and 
vermiform appendix

• Large intestine, 
rectum and anus

Physiologic State

Pathologic State

Understand the 
pathophysiology of 
diarrhea and fever.

Figure 4: An LO annotated with relevant Physiologic
and Pathologic states.

then extracted from the expanded LO text and uti-
lized in the proposed pipeline.

4.3 Expert Medical Codes (EMC)

To further enrich the feature space, we incorporate
additional domain specific knowledge. For each
LO, SMEs added a medical code indicating its 1)
location or physiologic (Phys.) state, and/or 2) dis-
ease or pathologic (Patho.) state.

The physiologic code of an LO indicates the or-
gan system it deals with, whereas the pathologic
code specifies the nature of the disease or dysfunc-
tion covered by the LO. Experts hand-curated a to-
tal of 13 distinct physiologic states and 7 distinct
pathologic states. Each LO could pertain to multi-
ple physiologic and pathologic states, as depicted
in Figure 4. Overlap between the EMCs of an LO
pair is encoded as:
Categorical Similarity: Jaccard indices are ob-
tained between 1) pathologic states and 2) physio-
logic states of the LOs in a pair, to ascertain over-
lap between their respective medical codes.
Semantic Similarity: While categorical similar-
ity treats each physiologic and pathologic code
as a distinct label, closer inspection reveals that
there is inherent relatedness among the codes. For
instance, the physiologic state “Pulmonary/Lung
and Pleura” is closer in meaning to the state “Lar-
ynx, trachea, bronchi and alveoli”, than it is to the
state “Renal/Kidney”. Thus, while comparing two
LOs, we encode the word overlap of their respec-
tive medical codes as detailed in Eq. 1.

The final representation for the EMCs of an LO-
pair is the concatenation of categorical similarity
and semantic similarity features of the codes.

4.4 Cascaded Classification

A crucial aspect of this dataset is its extreme class
imbalance. As Tables 2 and 3 demonstrate, LO
pairs with None relationship vastly outnumber
Strong or Weak pairs. This is to be expected,
since the medical curriculum is extensive, and a
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Confusion Matrix Annotator 1
Strong Weak None Total

Annotator 2
Strong 54 24 1 79
Weak 38 64 25 127
None 1 22 323 346
Total 93 110 349 552

Macro-Average F1= 69.9, Accuracy= 79.9

Table 2: Inter-Annotator agreement between two ex-
perts on the test set (note the substantial disagreement
in annotating LO pairs as Strong and Weak).

Dataset Strong Weak None Total
Train 235 (14%) 344 (20%) 1,145 (66%) 1,724
Test 79 (14%) 127 (23%) 346 (63%) 552
Total 314 (14%) 471 (21%) 1,491 (65%) 2,276

Table 3: Train-Test splits. Note the class imbalance.

particular LO is likely to be related only to a small
number of other LOs scattered in the curriculum.

While the priors of Strong and Weak classes
are low, the risk in missclassifying them is high.
Failure to identify a Strong LO pair is more
detrimental than failure to identify a None pair.
When we fail to recommend an LO strongly re-
lated to the one that a student is currently pursu-
ing, it leads to a gap in their knowledge acqui-
sition, whereas recommending an unrelated LO
only leads to a degradation in user experience.

Additionally, we believe that the semantic gap
between the three class labels is not identical.
While it is relatively easier to distinguish None
from Strong or Weak, the separation between
Strong and Weak pairs is not as discernible.
This is borne out further by the inter-annotator
agreement in Table 2; for a large number of
LO pairs, expert annotators disagree between
Strong and Weak labels.

Aforementioned factors prompt us to split the 3-
way classification task into two sequential binary
classification tasks, as illustrated in Figure 2. The
first classifier is trained on all input LO pairs, and
classifies them as Related or Unrelated. In
the next step, Related LO pairs are passed to the
second classifier, which learns the degree of the re-
lationship and further classifies them as Strong
or Weak. LO pairs classified as Unrelated by
the first classifier are directly labeled as None.

5 Experiments and Results
In all our experiments, we use NLTK for stop-
word removal and scikit-learn for the classifiers.
We use N = 20 bins for HoPS features and set
similarity threshold δ = 0.6 for embedding-based
features. We trained an SVM and Random For-

est model for our task. Owing to space constraints
and sub-par performance of the SVM, we report
results for a Random Forest classifier with 100
estimators; all other parameters of the model are
tuned using 5-fold cross validation on the training
data. We use macro-F1 of the classifier on held out
test data as our metric. Mean and standard devia-
tions of macro-F1 are reported over 10 runs of the
random forest. We use BioNLP(Chiu et al., 2016)
word-embeddings.

For a subset of 552 LO-pairs, we obtain separate
annotations from two SMEs. Inter-annotator per-
formance (Table 2) on this held-out test set serves
as a skyline for comparative evaluation. Owing
to data-labeling constraints, only a subset of LOs
could be linked to respective LRs by the SMEs.
Similarly, tagging LOs with one of several pos-
sible physiologic/pathologic states entails signif-
icant cognitive engagement, and could be done
only for a subset of LOs. For uniformity, we en-
sured that both subsets have a class label distribu-
tion identical to the total distribution in Table 3.

We perform three sets of experiments to 1) eval-
uate the effectiveness of the proposed approach, 2)
evaluate the utility of LRs, and 3) evaluate utility
of expert medical codes (EMC).

5.1 Evaluation

We compare five feature variants in an ablated
study. Since the proposed approach stipulates cur-
riculum and semantic features (CR+SM), we per-
form a comparison when individual curriculum
(CR) or semantic features (SM) are used. To gauge
the efficacy of tf-idf based features, experiments
are performed using these features alone (TF), and
along with curriculum features (CR+TF). For each
feature variant, we contrast results obtained with a
baseline 3-way monolithic classifier, and the pro-
posed cascaded classifier. In the monolithic clas-
sifier, we ensure that the misclassification penalty
for each class is inversely proportional to its fre-
quency in the training data. This accounts for class
imbalance, and ensures fair comparison against
the cascaded classifier. Results of experiments are
reported in Table 4. Our the key observations are :
Exact vs Embedding-based Features: Tf-idf
features (TF) perform exact token matching which
gets derailed whenever similar concepts are ad-
dressed differently (such as myocardial and car-
diac). Instead, embedding-based features (SM)
are more adept at capturing semantic relatedness
as by construction, context vectors for related con-
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Features Classifiers
Baseline Cascaded

CR 57.6±2.5 58.8±2.9
TF 43.1±0.9 49.8±1.2

CR+TF 53.2±1.3 55.9±2.0
SM 58.4±2.0 59.9±1.8

CR+SM 63.6±1.1 66.1±2.3
Inter-annotator agreement: 69.9

Table 4: Macro-F1 (mean±std) values on the test set
for two classifier variants and different features.

Features Classifiers
Baseline Cascaded

CR+SM without LR 63.3±1.5 65.9±1.3
CR+SM with LR 65.1±2.2 67.2±1.7

Inter-annotator agreement: 70.0

Table 5: Macro-F1 (mean±std) on LR-linked test set.

cepts are closely located in the embedding space.
Similarly, CR+SM outperforms CR+TF.
Importance of Feature Concatenation: A com-
bination of both curriculum and semantic features
(CR+SM) significantly outperforms their individ-
ual performance. Answering RQ1, we conclude
that curriculum and semantics encode distinct as-
pects of an LO-pair’s relatedness, and our system
improves when information encoded in each fea-
ture class is jointly represented.
Effectiveness of Cascaded Classifier: For all
feature combinations, the cascaded classifier out-
performs the monolithic baseline. This sup-
ports our hypothesis that the decision boundary
between Related (Strong + Weak) and
Unrelated pairs is more discernible than the de-
cision boundary between Strong and Weak.

For the rest of our experiments, we utilize
CR+SM features with a cascaded classifier, since
this combination yields best results, and ap-
proaches near human performance (refer Table 4).
The proposed pipeline can now be used to es-
tablish LO relationships on the whole curricu-
lum. This effectively circumvents the scale prob-
lem that manual annotation of all LO-pairs (∼1
million) in the curriculum entails, while maintain-
ing the accuracy of an expert.

5.2 Utility of Learning Resources

As reported in Table 5, it is clear that using LR text
along with LO text improves LO-relationship ex-
traction. This satisfactorily answers the question
raised in RQ2. The dearth of adequate informa-
tion and context in a concise LO poses a challenge
for data-driven methods to ascertain semantic re-
latedness. LRs help plug this gap since they are

Features Classifiers
Baseline Cascaded

CR 65.8±2.3 68.1±2.1
SM 64.8±3.2 68.3±2.9

CR+SM 70.5±2.4 72.6±2.0
CR+SM+EMC 69.9±2.5 72.9± 2.3

Table 6: Macro-F1 (mean±std) values on ten random
splits comparing the baseline, and inclusion of EMCs.

more detailed and help expand the scope of both
of our algorithms.

5.3 Utility of EMCs

Using features extracted from EMCs (detailed in
Section 4.3), we compare the following combi-
nations : curriculum (CR), semantic (SM), pro-
posed concatenation of both (CR+SM), and sub-
sequent concatenation with features from EMCs
(CR+SM+EMC). Table 6 reports comparative re-
sults over 10 random 75-25% train-test splits.

We note that contrary to expectation, inclusion
of EMC features (CR+SM+EMC) does not im-
prove over CR+SM. We hypothesize that this may
be because the classifier trained over CR+SM fea-
tures learns an intermediate representation that
correlates closely with the patho and physio states,
thus their explicit inclusion provides no additional
information to the classifier. While we may not
know precisely what form the internal representa-
tion takes, it is interesting to note that our hand-
crafted features (CR+SM) and cascaded classifier
design are both powerful enough to uncover un-
derlying patterns of similarity between LOs. To
answer RQ3, our approach does exploit latent pat-
terns in the data.

6 Case Map Generation
The LO relationship extraction system can be ap-
plied to uncover LOs relevant to a virtual patient
case (thus addressing RQ4). A virtual patient
case describes a real-life scenario where a patient
presents at the clinic with certain symptoms, and
is administered specific tests. The medical student
is expected to assume the role of a health-care pro-
fessional and develop clinical skills such as mak-
ing diagnoses and therapeutic decisions.

Figure 5 depicts part of a clinical case that has
been annotated by SMEs. Crucial aspects of the
case are highlighted as clinical factors, which may
be symptoms (fever, hypotension, etc.) as well as
diagnostic and screening tests. Each clinical fac-
tor is further linked to few pertinent anchor LOs.
Successfully addressing a virtual patient case in-
volves understanding these LOs, which may be
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Clinical Case

28 year old male resident in Singapore presents with 6 day history of sweats, hot and 
cold spells, lethargy, headache, eye pain, epigastric pain and pain everywhere,
persistent daily vomiting (4x/day), tiredness affecting work and dormitory life. No travel
abroad in last 2 years. No contact with animals/ persons ill. He does not smoke and
does not take alcohol. He does not think there are any illnesses in the family.

Blood tests showed NS1 dengue screen positive, Hb17.1, WCC 3.3, Platelets 20, Na 130,
K 4.4, Urea 6.3, Cr 67, CXR clear. Examination showed vitals T38, HR120, BP 97/80,
respiratory rate 20/min, oxygen saturations 98% on air. Malaria films were negative.
Blood cultures were negative.

Patient deteriorated with nausea, hypotension, respiratory distress; and was transferred
to ICU for supportive care including intubation and inotropic support. Bedside OGD
showed 5 antral ulcers.

Clinical Factors

§ Fever
§ Abdominal Pain / GI Bleed
§ Nausea / Vomiting

§ Hypotension
§ Diagnostic Tests and Screens

Figure 5: Annotated clinical case.

Disease 
LOs

Symptom 
LOs

Disease

Symptom
Symptom LO x All LOs 

Relationship Extraction

Disease LO x All LOs 
Relationship Extraction

Expanded
Disease 

LOs

Expanded
Symptom 

LOs

Keyword-overlap  b/w
Disease-Symptom LO pair

keywords

keywords

Top-k
Selection

LO ExpansionLo Anchoring
By Experts

Disease-Symptom Relatedness Truncation

Figure 6: An approach to generate case map based on
proposed LO-relationship extraction.

drawn from different years and disjoint sections
of the curriculum. We aim to construct a case map
that provides learners with a comprehensive view
of the clinical case, in terms of its constituent LOs
and their relationships. The map is envisioned as a
graph, where nodes represent LOs, and edges es-
tablish relationships between them.

In attempting this, we encounter two primary
challenges: 1) While SMEs can annotate a few
anchor LOs, it is not feasible to manually enu-
merate all LOs related to the virtual patient case.
This calls for an accurate LO-relationship extrac-
tion system that does not rely on expert interven-
tion. 2) We must guarantee that these LOs are re-
lated within the context of the case. Since LOs by
themselves do not provide enough textual content,
we must look to LRs to ascertain whether LOs pro-
posed by the system are appropriate in the context
of the case at hand.

Given a disease, its symptoms, and diagnostic
tests, we assume the availability of anchor LOs
pertaining to each of them, and propose an ap-
proach outlined in Figure 6.
LO Expansion: The LO-relationship extraction
system sequentially pairs an anchor LO with ev-
ery LO in the curriculum, and classifies the rela-

LO ID LO Text

LO 6704
Recall the clinical presentation and management of Dengue fever and
Chikungunya infection

LO 4880
Describe how the presence of a viral infection may trigger off production
of endogenous pyrogens leading to development of fever

LO 4881
Describe how bacterial infections may produce exogenous pyrogens
resulting in the development of fever

LO 4882 Briefly describe how fever complements the immune response in infection

LO 6170 List the other abdominal organs that maybe responsible for abdominal pain

LO 6174 Explain the pathways controlling vomiting and nausea

LO 6175 Recall the use of vomiting patterns in differential diagnosis

LO 7793

Describe the role of relevant investigations for fever, including: Blood
tests - hematology, chemistries, serology; Clinical samples - blood,
respiratory, stool, urine, body fluids; Microbiology tests - cultures, PCR,
serology; Imaging - Xrays, CT, MRI, ultrasound

LO 7794
Describe the role of relevant investigations for common infections,
specific pathogens including dengue, malaria, typhoid, HIV, TB, MRSA

LO 7834
Define (and perform if relevant) appropriate resuscitation , immediate life
support and acute management of: septic shock, neutropenic sepsis,
dengue shock syndrome, severe malaria, acute bacterial meningitis

Table 7: Identifiers and text of the LOs that are part of
the generated case graph in Figure 7 .

LO_6704
Dengue

pg. [19,20,22] 

LO_4880
Fever pg. [21-25] 

LO_4882
Fever pg. [21-25] 

LO_4881
Fever pg. [21,23,24] 

LO_7793
Screens

pg. [35] 

LO_7794
Screens

pg. [67,69-71,78] 

LO_7834
Hypotens

ion
pg. [22-24] 

LO_6170
Abdomin

al Pain, GI
pg. [3,5,15]       

LO_6174
Nausea

pg. [3-5] 

LO_6175
Nausea

pg. [9,15,16] 

Figure 7: Case map extracted using proposed approach
(see Table 7 for LO text corresponding to the LO IDs).

tionship between them. For our purpose, we retain
LOs that are labeled Strong, and disregard the
rest. Thus, starting with a small set of anchor LOs,
we obtain an expanded set of LOs that is strongly
related to them.
Disease-Symptom Relatedness: We pair a
disease-specific LO with a symptom (or diagno-
sis) specific LO, and measure the semantic over-
lap between their linked LRs. Higher the overlap,
more relevant is the symptom (or diagnosis) LO
to the disease LO. Thus, for each symptom (or di-
agnosis), their LOs are ranked by relevance to the
disease LOs.
Truncation: The ranked list can be pruned to se-
lect the topmost k symptom (or diagnosis) LOs.
Truncation ensures that for each symptom (or di-
agnosis), we select high-precision relationships
with the disease specific LOs (characterized by
overlap between their LRs). In the case map, this
translates to at most k edges between a disease and
each of its symptoms.

Figure 7 depicts the constructed case map for
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the dengue clinical case presented in Figure 5. Of
the five clinical factors, four correspond to symp-
toms, namely : 1) Fever, 2) Abdominal Pain and
GI bleed, 3) Nausea and Vomiting, and 4) Hy-
potension. The last factor corresponds to diagnos-
tic tests and screens for dengue. We set k = 3,
permitting at most 3 edges between dengue and
each clinical factor. The generated case map was
evaluated by an SME; one LO (LO 4881) is found
to be spuriously a part of the map, whereas rest of
the connections are deemed valid, thus establish-
ing the efficacy of our approach.

7 Conclusion and Future Work
This work summarizes our effort to extract LO
relationships using both semantic and curriculum
cues. Owing to its human-level performance, our
system serves as a reliable building block in con-
structing a case map from a virtual patient case.

Going forward, we would like to generate a con-
cept map for all five years of the curriculum. We
could then employ network analysis tools to un-
cover central LOs that drive most of the linkages.
Secondly, we would like to characterize relation-
ships between edges. Given a pair of related LOs,
a simple characterization would be to assert if one
of them is a pre-requisite to the other. Besides,
we have observed that the classifier learns an in-
termediate representation that corresponds closely
to EMCs. We could investigate if this can be har-
nessed to predict the states, thereby enriching cur-
riculum metadata.
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Abstract

This article studies the relationship between
text readability levels and automatic machine
understanding systems. Our hypothesis is that
the simpler a text is, the better it should be
understood by a machine. We thus expect a
strong correlation between readability levels
on the one hand, and performance of auto-
matic reading systems on the other hand. We
test this hypothesis with several understanding
systems based on language models of varying
strengths, measuring this correlation on two
corpora of journalistic texts. Our results sug-
gest that this correlation is quite small and that
existing comprehension systems are far to re-
produce the gradual improvement of their per-
formance on texts of decreasing complexity.

1 Introduction

The automatic evaluation of the readability of
texts is an old subject (see, for example, (DuBay,
2007) for an historical account), which continues
to arouse great interest from the Natural Language
Processing (NLP) community; a recent analysis of
the state-of-the-art is given by Collins-Thompson
(2014). Checking that a written document is ex-
pressed in a language that is accessible to its tar-
get audience is essential in many situations: for
instance to ensure that the information conveyed
by the text is properly understood or to allow suf-
ficient engagement of the reader in the reading ac-
tivity (Dietrich, 2004). These issues are relevant
both for the dissemination of general purpose in-
formation (e.g. news articles) and more targeted
information such as drug leaflets, administrative
texts or legal documents. They apply to various
readerships: children in first or second language
learning situations, adults with varying levels of
education or with disabilities, etc.

The classical measures of readability are based
on crude approximations of the syntactic complex-

ity (using the average sentence length as a proxy)
and lexical complexity (average length in charac-
ters or syllables of words in a sentence). One of
the most well-known measure along these lines
is the Flesch-Kincaid readability index (Kincaid
et al., 1975), which combines these two measures
into a global score. This approach has recently
been renewed by the use of supervised statistical
learning methods capable of integrating into the
prediction of readability a very large number of
linguistic characteristics (Schwarm and Ostendorf,
2005; Petersen and Ostendorf, 2009; Vajjala and
Meurers, 2012; François and Fairon, 2012; Vajjala
and Meurers, 2014; Brunato et al., 2018) aimed at
capturing readability indices at the lexical, syntac-
tic, semantic and even discursive levels. It can be
argued that these enhanced feature sets are able to
take into account so-called cognitive factors (Feng
et al., 2009).

However, these approaches depend on the avail-
ability of texts annotated with their difficulty lev-
els, which are often defined in relation to a partic-
ular task or readership. The elicitation of these an-
notations is a complex operation, which requires
either the implementation of understanding mea-
surement protocols on controlled populations, us-
ing for example cloze tests to evaluate understand-
ing (Taylor, 1953; Oller Jr., 1973); or the work of
highly qualified experts, at the risk of observing
disagreements between annotators (Petersen and
Ostendorf, 2009). They also require automatically
extracting linguistic features from texts, which ex-
isting NLP tools only partially achieve, for a lim-
ited number of languages.

In this paper, we study an alternative method
that could help assess the readability level of texts
in an unsupervised manner. Our main hypothe-
sis, developed in § 2, is that automatic text under-
standing systems (machine reading) having made
remarkable progress (Hermann et al., 2015; Dhin-
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gra et al., 2017; Yu et al., 2018),1 it might become
possible to use them to assess the readability of
texts. The preliminary question of interest here is
therefore whether the ability of automatic compre-
hension systems to respond to gap-filling questions
correlates with the difficulty of the text, and can be
help to measure readability. To answer this ques-
tion, we study several simplistic machine under-
standing systems, described in § 2.4 and empir-
ically examine the correlation between their per-
formance and the actual complexity of texts, mea-
sured by humans (see § 3). Our main findings are
that when comprehension is evaluated using cloze
tests, all the systems make very little difference,
if any, between texts of varying complexities, sug-
gesting that we should reconsider our evaluation
scheme, or our set of comprehension systems, or
both, to achieve a behavior that would be more
similar to human’s performance.

2 Simulating human comprehension

2.1 The design of readability scores
From a bird’s eye view, the construction of
measures of text readability involves two steps:
(a) having human subjects perform controlled
comprehension tests on texts of interest, which
determine the empirical readability of the texts
for the concerned population of readers (typically
characterized by a level of education, or a level of
language proficiency for second language learn-
ers); (b) measuring a set of indices in texts that
effectively predict empirical readability values and
learning the parameters of a function relating these
surface cues with difficulty.

The approach we explore relies on the assump-
tion that automatic comprehension systems having
greatly improved, it should become possible to use
them to simulate step (a) above, and thus to use the
results of machine comprehension tests on a given
text to directly evaluate its empirical readability,
dispensing with the need to perform step (b).

As a first step in this direction, we need to check
whether that performance of machine comprehen-
sion systems should exhibit a form of dependency
to the actual readability of the text: the simpler
the text, the better they should be understood by a

1See however the work of Jia and Liang (2017) or
Kaushik and Lipton (2018), who claim that quantitative pro-
gresses, measured on standard question answering tasks,
mainly reflect an improvement in the ability of these systems
to perform surface matches between questions and answers.

machine. This is the main question that we em-
pirically address below, using an automatic un-
derstanding architecture based on statistical Lan-
guage Models (LMs), and evaluating the task of
automatic comprehension using cloze tests.

A second important question will concern our
ability to build comprehension systems that accu-
rately simulate the understanding ability of a tar-
get population (of children, of language learners,
of people with disabilities, etc). We delay the sys-
tematic study of this question for further work, but
contend that our methodology is compatible with
this objective, as it can handle, as will be seen,
the design of comprehension systems of varying
strengths.

To reiterate, our objective is to study the per-
formance of comprehension systems as a possible
measure of text readability: our final goal is not
so much to improve comprehension systems but
to see how they could be used as proxies of human
comprehension.

2.2 Testing machine comprehension

The measurement of automatic comprehension
of texts is an old and difficult issue. By anal-
ogy with measures of human understanding, two
main methods are commonly used: comprehen-
sion questions (Richardson et al., 2013; Rajpurkar
et al., 2016) and cloze tests.

The use of cloze tests to assess the performance
of comprehension systems has for instance been
proposed by Hill et al. (2016), which studies the
ability of various neural models to fill in blanks in
sentences from children’s stories, introducing the
CBT (Children Book Tests) corpus.

This technique has also been used in several
previous studies (Bimbot et al., 2001; Zweig and
Burges, 2012) to evaluate language models: the
former reference establishes a direct link between
perplexity and filling-the-gap tests; the latter in-
troduces the Sentence Completion Challenge in
which gaps and distractors are carefully selected.

One of the challenges of recent work on this is-
sue is the development of realistic test sets, which
can only be answered by a deep understanding of
the text (Paperno et al., 2016; Xie et al., 2018), us-
ing for instance information regarding words part-
of-speech or syntactic role of the deleted word.
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Cloze test Prediction Ground truth
Herring is a type of fish it swims closer to San Francisco
than before. Herring is a favorite food of sea , so they might
have followed those fish to . Sea lions might also like the
pier because ...

, ,
otters lions

San shore

They have twin daughters named Barbara and Jenna The
family has a dog Barney and a named India.

. .
named named

cat cat
Neil Armstrong was the first man to step onto the moon . put
an American flag up on the moon . brought moon rocks back
to .

. He
He He

Earth Earth

Table 1: Cloze test examples filled with a GPT-2 language model.

2.3 Cloze test generation, completion and
evaluation

We stick here to a much simpler form of cloze test-
ing, based on a uniform random strategy to select
the deleted words. We leave for future work the
use of more sophisticated methods specifically de-
signed to generate difficult tests.

In practice, each test document is automatically
divided into N passages of the same size; in each
passage, M positions are randomly selected uni-
formly and correspond to the words that will be
blanked out. These words will have to be recov-
ered by the comprehension system, which has ac-
cess to the complete left context of the gap since
the beginning of the passage. In our experiments,
we use N = 5 and M = 3.

One interesting property of cloze tests is that
they provide ways to analyze the complexity of
gap fillings with respect to arbitrary linguistic lexi-
cal descriptors; they also provide ways to compute
difficulty levels separately for each sentence and
check for instance its dependency with respect to
the length of the context. Table 1 shows examples
of Cloze tests given to our language models.

Gap filling performance is measured as the av-
erage number of words that are correctly predicted
in a text (noted p@1) in the tables below. This
metric being very strict, we also report the num-
ber of times the correct word appears in the first
5, 25, and 50 candidates. Many other techniques
could be entertained to weaken the p@1 metric,
for example by considering the similarity (formal
or distributional) between the predicted word and
the reference. Again, we leave the study of these
alternative metrics to future work.

2.4 A comprehension architecture based on
language models

Our comprehension systems are neural language
models based on recurrent structures (RNN) (El-
man, 1990; Mikolov et al., 2010) with LSTM cells
(Hochreiter and Schmidhuber, 1997), which con-
tinue to deliver (near) state-of-the-art results for
statistical language modelling (Melis et al., 2018).
Once trained, the prediction of a missing word is
performed by only looking at its left context, or-
dering the candidate words w at position t accord-
ing to P (wt = w|w<t).2

Among all the degrees of freedom of the
method, we simply varied (a) the quality of mod-
els using the same architecture, and (b) the training
data. We acknowledge that it would also be possi-
ble to use other architectures for language mod-
els (e.g. n-grams models (Chen and Goodman,
1999)); to use character-based models (Sutskever
et al., 2011; Kim et al., 2016) or subword-based
models that could accommodate open vocabular-
ies; or to train more sophisticated RNN models
(Yang et al., 2018).

It would likewise be possible to use more com-
plex algorithms to predict missing words (e.g. by
using left and right contexts), or even by testing
text understanding systems that are more represen-
tative to the current state of-the-art (Dhingra et al.,
2017; Yu et al., 2018).

As a first step in this direction, we also exper-
iment with a self-attentional language-model (Al-
Rfou et al., 2018; Liu et al., 2018) using the Trans-
former architecture (Vaswani et al., 2017), from

2In this respect, our use of LMs for readability continues
the work of Collins-Thompson and Callan (2004); Petersen
and Ostendorf (2009) and many others who used LM scores
as a predictor of the complexity level.
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WikiText-2 WikiText-103 Wiki-Simple
#params #epochs ppl #params #epochs ppl #params #epochs ppl

RNN 19M 100 90 113M 3 87 44M 50 51
AWD 19M 100 78 113M 3 137 44M 50 65

Table 2: Basic statistics regarding language models

the implementation of Radford et al. (2019). Such
models are capable to effectively handle very long
range dependencies and have been able to achieve
good performance on some recent machine com-
prehension benchmarks.

3 Experiments

In this section, we compare the automatic compre-
hension measures produced by our language mod-
els with readability scores produced by humans,
as well as with other automatic standard indices
of readability. We start with details regarding the
implementation of our language models.

3.1 Language Model Training
3.1.1 Corpora
To train our language models, we use two standard
corpora of articles from the English Wikipedia:3

WikiText-2 and WikiText-103, that have
already been used as benchmarks in language
modeling tasks (Merity et al., 2017). As can be
seen from the statistics in Table 3, these corpora
mostly differ in their size and vocabulary.

We also use an additional set of articles from
the English version of the simplified Wikipedia:4

Wiki-Simple.5 Following Merity et al. (2017),
this ”simple” dataset is pre-processed as follow:
tokens with less than 3 occurrences are replaced
by the ”<unk>” token as in WikiText-2 and
WikiText-103.

Source Docs Tokens Types
Wiki-2 720 2.5M 33K
Wiki-103 28 591 103M 260K
Wiki-Simple 60K 7.9M 96K

Table 3: Language model training corpora

All language modelling corpora in Table 3 are
tokenized by splitting text for each space separator

3https://en.wikipedia.org
4https://simple.wikipedia.org/
5Version 2.0 http://www.cs.pomona.edu/

˜dkauchak/simplification/

(” ”) encountered. It is expected that training mod-
els on the Wiki-Simple corpora should yield
poorer gap-filling systems than the other two cor-
pora, as these systems will be exposed to simpler
sentence structures and a more basic vocabulary.

3.1.2 LM Implementation issues
Our own RNN language models use the follow-
ing architecture: 3 hidden layers, each contain-
ing 512 recurrent cells. Training starts with ran-
domly initialized embeddings, and is performed
using SGD (Robbins and Monro, 1951), dividing
by 4 the learning rate (initialized to 30) every 5
epochs if the loss does not decrease. We use a
drop-out of 0.1 for the embedding layer, 0.3 for
the LSTM layers and 0.4 for the output layer ; the
batch size is 64, and backpropagation context is
64. We borrow two additional techniques from
Merity et al. (2018): the use of variable-length
backpropagation sequences and the use of two reg-
ularization terms penalizing the parameters of the
output layers: activation regularization and tempo-
ral activation regularization (see reference for de-
tails). The weight matrices at the output of LSTM
after the linear projection and the word embedding
are shared to avoid overfitting (Inan et al., 2017;
Press and Wolf, 2017) and to reduce the number
of parameters. This implementation is referred to
as RNN below.

We contrast our implementation with that of
Merity et al. (2018)6 trained with the same pa-
rameter values as our RNN implementation, ran-
dom seed value is 1882. This implementation is
referred to as AWD below. Basic statistics regard-
ing these models (size, test set perplexity) are in
Table 2, suggesting that we were able to have a
diverse set of models of varying strengths7.

Last, we also report results obtained with a self-
attentional architecture, directly using the smaller
version (context size is 768 and number of param-

6https://github.com/salesforce/
awd-lstm-lm

7Note that the perplexity score do not directly com-
pare across training corpus, as the underlying event space is
slightly different for each training corpus.
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Figure 1: Distribution of the Flesch-Kincaid index by complexity level

eters 117M against a context size of 1600 units
and 1.5B parameters for the largest and closed
source version) of the trained models of Radford
et al. (2019)8, referred to as GPT-2 in the Tables
below. This model uses a vocabulary of 50K vari-
able length subword units (Sennrich et al., 2016)
and is trained on a corpus of 8M documents; ac-
cording to its authors, it achieves a perplexity
of respectively 29 and 37 on WikiText-2 and
WikiText-103. As this model is based on
sub-word units, it can not directly be used to fill
gaps. Our greedy heuristic gap-filling procedure
is the following: (a) first generate a list of K most
likely subword units; (b) greedily expend right-
wards these K hypotheses until one word is gen-
erated for at most t time steps. We use t = 10 in
our experiments.

3.2 Test data and evaluation
The reference annotations used to validate
our method mostly come from two sources:
Weebit (Vajjala and Meurers, 2012) and
OneStopEnglish (OSE for short) (Vajjala and
Lucic, 2018). The first identifies 5 levels of com-
plexity in educational news articles published on-
line (on the WeeklyReader and BBC-Bitesize Web
sites), covering learners aged from 7 to 16. As
a merger of two sources, the distribution of cate-
gories is quite unbalanced, with more texts for the
fifth level than for all the other categories taken
together.

8Taken with their associated API from
https://github.com/huggingface/
pytorch-pretrained-BERT

The second test set9 also contains extracts of
journalistic texts originally from the newspaper
The Guardian. Each document has been rewrit-
ten twice by experts to correspond to two less ad-
vanced reading levels, and thus distinguishes three
levels of readability. Statistics on these test cor-
pora are in Table 4.

Source Docs Tokens Gaps Levels
Weebit 10 486 3.9M 157K 5
OSE 567 450K 8.5K 3

Table 4: Basic statistics of test corpora

Figure 1 displays the distribution of the Flesch-
Kincaid Grade Level (FKGL) for these two cor-
pora. Complexity levels are distributed nearly as
expected for the Weebit corpus apart from lev-
els 3 and 4 where the latter seems simpler than
foreseen, with large overlapping spans. It was al-
ready noted by (Vajjala and Meurers, 2012) that
the actual readability level of each test was diffi-
cult to predict accurately based on the sole FKGL.
OSE complexity levels are also in agreement with
the Flesch-Kincaid index, and in agreement with
the numbers reported in (Vajjala and Lucic, 2018);
again we see a large overlap between levels for
this index. Overall, OSE texts are somewhat more
complex than Weebit’s, with OSE level 1 compa-
rable in difficulty to Weebit level 4.

Both sources were pre-processed with regular
expressions to discard bits of text that were recur-
rent such as advertisement footers for companies
(BBC, WeeklyReader, MetaMetrics) and material

9See https://zenodo.org/record/1219041.
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WikiText-2 WikiText-103 Wiki-Simple
p@... 1 5 25 50 1 5 25 50 1 5 25 50
RNN(1) 0.10 0.21 0.33 0.39 0.12 0.24 0.37 0.44 0.12 0.27 0.40 0.47
RNN(2) 0.09 0.20 0.29 0.35 0.11 0.23 0.34 0.41 0.11 0.23 0.36 0.43
RNN(3) 0.08 0.19 0.28 0.34 0.10 0.22 0.33 0.39 0.10 0.22 0.33 0.39
RNN(τ) 0.05 0.06 0.11 0.12 0.06 0.06 0.09 0.10 0.11 0.13 0.17 0.19

AWD(1) 0.11 0.22 0.34 0.40 0.12 0.23 0.35 0.42 0.12 0.25 0.36 0.43
AWD(2) 0.10 0.20 0.31 0.37 0.11 0.21 0.32 0.37 0.11 0.22 0.32 0.38
AWD(3) 0.09 0.19 0.30 0.35 0.10 0.21 0.31 0.37 0.10 0.21 0.30 0.36
AWD(τ) 0.05 0.08 0.09 0.11 0.06 0.07 0.09 0.11 0.11 0.11 0.15 0.17

Table 5: Completion rates broken down per readability level for gap filling systems of variable strength tested on
the OSE dataset. Kendall tau-b correlation is reported as τ .

WikiText-2 WikiText-103 Wiki-Simple
p@... 1 5 25 50 1 5 25 50 1 5 25 50
RNN(1) 0.07 0.18 0.28 0.34 0.10 0.23 0.34 0.40 0.15 0.28 0.40 0.46
RNN(2) 0.08 0.21 0.33 0.39 0.11 0.24 0.36 0.43 0.13 0.27 0.38 0.46
RNN(3) 0.09 0.21 0.33 0.39 0.12 0.25 0.36 0.43 0.13 0.26 0.39 0.45
RNN(4) 0.05 0.15 0.26 0.31 0.08 0.18 0.28 0.35 0.09 0.20 0.32 0.40
RNN(5) 0.06 0.15 0.24 0.29 0.09 0.19 0.28 0.33 0.10 0.20 0.31 0.37
RNN(τ) 0.07 0.11 0.11 0.12 0.07 0.12 0.15 0.14 0.15 0.19 0.16 0.16

AWD(1) 0.09 0.21 0.30 0.35 0.11 0.22 0.32 0.38 0.15 0.27 0.37 0.43
AWD(2) 0.09 0.22 0.33 0.40 0.12 0.23 0.35 0.41 0.13 0.25 0.36 0.42
AWD(3) 0.10 0.22 0.34 0.40 0.12 0.24 0.35 0.41 0.13 0.24 0.35 0.41
AWD(4) 0.06 0.17 0.27 0.33 0.08 0.18 0.26 0.31 0.09 0.19 0.27 0.34
AWD(5) 0.08 0.17 0.26 0.31 0.09 0.18 0.27 0.31 0.10 0.19 0.28 0.34

AWD(τ) 0.06 0.12 0.10 0.11 0.10 0.12 0.14 0.16 0.15 0.17 0.19 0.18

Table 6: Completion rates broken down per readability level for gap filling systems of variable strength tested on
the Weebit dataset. Kendall tau-b correlation is reported as τ .

from automatic scraping (e.g. ”Your web browser
does not have JavaScript switched on at the mo-
ment.”). Empty and duplicate documents were
removed (around 400 texts), moreover, we used
spacy-cld10 (which uses CLD2 from Google)
to detect the main language of a document and get
rid of documents that were not written in English
(around 60 texts in French, German, Spanish and
Gaelic). In all our test and evaluation datasets,
word tokenization and POS tags inference are per-
formed with SpaCy.11 Following this processing
and as described in Section 2.3, passages and cloze
positions are selected and fixed for all experiments
to have a deterministic experimental setup. All the
results presented below are computed using 500
randomly chosen texts for each readability level.

Since our objective is to study the correlation
between gap filling performance and readability
level, we compute two main metrics for each of
the experimental conditions below: (a) the preci-
sion of comprehension systems broken down by

10https://github.com/nickdavidhaynes/
spacy-cld

11http://spacy.io

complexity group; (b) the correlation (Kendall’s
Tau) between complexity classes and completion
rates.12

3.3 Results
Our main results are presented in Table 5, 6 and 7
where we report the completion rates and correla-
tions for all the systems compared in our experi-
ments.

A first observation is that completion rates
(especially p@1) are overall distributed as ex-
pected across models/training corpora. Training
on WikiText-2 yields results that are consis-
tently worse than for the other two corpora; for
both RNN implementations, the average success
rate for WikiText-2 and WikiText-103 are
very comparable. Interestingly, results for the eas-
iest readability levels (Weebit 1 and 2) are higher
for models trained on Wiki-Simple than on
WikiText-103 and WikiText-2. Regarding
models, for WikiText-2 and WikiText-103
the RNN implementation of (Merity et al., 2018)

12We use the Tau-b statistic which makes adjustments for
ties (documents in the same complexity class).
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is slightly better than ours, while our model per-
formance is better for Wiki-Simple, which is
consistent with the perplexity scores in Table 2

WebText
p@... 1 5
OSE(1) 0.22 0.42
OSE(2) 0.21 0.42
OSE(3) 0.20 0.40
OSE(τ) 0.05 0.04

Weebit(1) 0.18 0.35
Weebit(2) 0.18 0.37
Weebit(3) 0.21 0.39
Weebit(4) 0.13 0.27
Weebit(5) 0.13 0.29
Weebit(τ) 0.13 0.14

Table 7: Completion rates broken down per readability
level for the GPT-2 gap filling system pre-trained on
WebText and tested on the Weebit and OSE datasets.
Kendall tau-b correlation is reported as τ .

As expected, GPT-2 scores in Table 7 vastly
outperform all RNN-based approaches, with com-
pletion rates (p@1 / p@5) that approximately dou-
ble the completion rates of the other systems.

We can conclude that our set of models is quite
diverse, even though we would have expected to
get more diversity across training corpora from our
RNNs, suggesting that we may have to move away
from the Wikipedia domain in future experiments.

If we now look at the variance of completion
rates across difficulty levels, the overall picture is
less clear. Overall, the most consistent results are
obtained with OSE than with Weebit: for the for-
mer we almost always see better completion rates
for simpler texts, across systems, training corpus
and metrics, even though the differences are often
small. Results for Weebit are more difficult to an-
alyze: all RNN models seem to achieve their best
completion rates for Weebit level 3, which is con-
sistently higher than levels 4 and 5 (which is fine),
but also higher than for level 1 and 2 (which is
contradictory to our expectations). In fact, these
easiest texts seem difficult to predict for all mod-
els; as mentioned above, for RNNs, training on the
simpler Wiki-Simple gives a slight hedge over
the other language models, which we also see as a
positive sign. Overall however, the observed cor-
relation scores remain small and insignificant, for
all systems and metrics. Our best results are in the
region [0.1, 0.2] for OSE and Weebit. In compar-
ison, the correlation for Flesh-Kincaid grade level
score is 0.48 for OSE and 0.61 for Weebit.

A first conclusion is that with current machine

comprehension systems, as implemented in this
study, we show gap filling performances that are
not significantly impacted by the actual readabil-
ity level of texts. Therefore, their performance in
cloze tests can not reliably be used to infer the dif-
ficulty of a text.

4 Discussion

4.1 Cloze tests and morphological tags
The results in Section 3 were obtained with a naive
cloze test generation strategy, where deleted to-
kens are selected uniformly at random. There are
several ways in which this approach can be prob-
lematic. Indeed, it is already a well documented
fact that RNNs are far better at correctly predict-
ing determiners, prepositions, or even verbs, than
at predicting nouns (common or proper) that often
require a much larger textual context (Hill et al.,
2016).

This is also what we observe in Table 8 where
we give the completion rate averaged over all texts
in OSE corpora, broken down by part-of-speech
(POS),13 for all our models.

verb noun punct det
RNN-WT2(λ) 0.03 0.08 0.76 0.61
RNN-WTSIMPLE(λ) 0.05 0.14 0.81 0.66
RNN-WT103(λ) 0.04 0.11 0.82 0.59
RNN-WT2(τ) 0.02 0.06 0 0
RNN-WTSIMPLE(τ) 0.03 0.08 0.04 0.05
RNN-WT103(τ) 0.01 0.03 0.01 0
AWD-WT2(λ) 0.02 0.08 0.81 0.61
AWD-WTSIMPLE(λ) 0.05 0.1 0.81 0.66
AWD-WT103(λ) 0.05 0.09 0.81 0.6
AWD-WT2(τ) -0.01 0.06 0.02 0.01
AWD-WTSIMPLE(τ) 0.03 0.07 0.03 0.01
AWD-WT103(τ) -0.03 0.06 0.02 -0.03
GPT2(λ) 0.24 0.39 0.87 0.64
GPT2(τ) 0.04 0 0.01 -0.02

Table 8: Completion rates (λ with p@5) broken down
per model and POS tag and Kendall-Tau (τ ) correlation
between completion rates and their respective level on
the OSE dataset.

A first consequence is that easy-to-predict to-
kens, such as punctuations or determiners, will
artificially increase the completion rate, even for
texts that should be difficult to complete.

This would not be so much of a problem if the
distribution of POS was constant across readabil-
ity levels, an assumption that is also well known to
be unrealistic - in fact, POS ratios have repeatedly

13Again, we use SpaCy to compute part-of-speech tags.
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Level Title CR
K0 Goldlilocks and the Three Bears 0
K1 The Courage of Sarah Noble 0
K1 Flat Stanley 0
K2 The Velveteen Rabbit 0.07
K2 Ribsy 0.07
K3 Stuart Little 0.20
K3 Peter Pan 0.33
K4 Prince Caspian 0.07
K4 Alice’s Adventures in Wonderland 0.07
K5 Robinson Crusoe 0.13
K5 The Voyage of the Dawn Treader 0.07
K6 The Red Badge of Courage 0.13
K6 The Last Battle 0.07
K7 The Count of Monte Cristo 0.07
K7 The Black Arrow 0.27
K8 Hamlet 0
K8 The Sword in the Stone 0.07
K+ The Art of War 0.07

Table 9: A literary test set with completion rates from
our RNN implementation trained on WikiText-2 using
p@1 and 5 chunks of text per document.

been found to yield useful features when predict-
ing readability (e.g. François and Fairon (2012)).
The main consequence for our argument is that
randomly selecting gaps will yield uneven POS
distribution across readability levels, therefore bi-
aising the overall result.

As suggested by the variance of the results in
Table 8, this confounding factor cannot be ig-
nored. Part-of-speech tags with the best rank cor-
relation between their completion rate and their
text’s level are nouns and verbs; their occurrences
are however lesser than punctuations and deter-
miners, which means that an uniformly random
gap selection strategy is biased by morphological
tags that are worse predictors of text readability
for our models.

4.2 Experiment with literary texts
The test datasets used in this study are quite simi-
lar in content, and all correspond to news articles
intended for readers with variable levels of pro-
ficiency. In this subsection, we run a small con-
firmation study with an alternative test set based
on literary texts. We use extracts from classical
fictional books (see list in Table 9 where we also
report the associated readability level and comple-
tion rate).

Kendall rank coefficient between these rates and
their respective levels is equal to −0.28.

Here again, levels are not distinguishable based
on the observed completion rates. However, as
seen above in section § 3.3 our systems perform
better when we release the exact match constraint

for the precision@N metrics. We expect to in-
crease the Kendall rank metric on larger experi-
ments with this dataset in our future work.

5 Conclusion and outlook

In this paper, we have ran a preliminary study re-
garding the ability of basic reading comprehen-
sion systems, here implemented as mere neural
language models, to recognize variance in the dif-
ficulty of their input texts. Using randomly uni-
formly generated cloze tests to measure compre-
hension, we found that completion rates seem to
deliver a small, yet insufficient, signal regard-
ing the readability level of a text. Our strongest
comprehension system, based on the recent GPT-
2 model, is the worst of all, and does not help
to distinguish between simple and more complex
texts. Complementary experiments show that bet-
ter controlling for POS distribution across corpora
is likely to improve, albeit by a small margin our
results: and that testing with other genre of texts
might yield similar conclusions.

This pilot study only scratches at the surface
of the problem, and we intend to continue this
research in several directions. First, we need to
continue the exploration of comprehension sys-
tems of controllable strength, using either more
sophisticated language modelling architectures, or
even considering full-fledge machine comprehen-
sion systems. A second line of study will con-
sider alternative procedures for generating and fill-
ing cloze tests: generation could for instance re-
strict to specific gap types, based on their morpho-
syntactic properties or blank word parts instead of
complete words; filling could for instance increase
the context rightwards. Finally, we feel that it will
also be crucial to make more direct experiments
of the ability of automatic system to consistently
reproduce the performance of human subjects, no-
tably in the context of the evaluation of educa-
tional material, and we aim to develop experimen-
tal protocols involving controlled populations of
language learners.
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Abstract

We present an analysis of metaphors in news
text simplification. Using features that cap-
ture general and metaphor specific character-
istics, we test whether we can automatically
identify which metaphors will be changed or
preserved, and whether there are features that
have different predictive power for metaphors
or literal words. The experiments show that
the Age of Acquisition is the most distinc-
tive feature for both metaphors and literal
words. Features that capture Imageability and
Concreteness are useful when used alone, but
within the full set of features they lose their
impact. Frequency of use seems to be the best
feature to differentiate metaphors that should
be changed and those to be preserved.

1 Introduction

Metaphor is ubiquitous in everyday language and
central to human thought (Lakoff and Johnson,
1980). We find manifestations of it in collo-
quial and academic discourse, newspaper, school
textbooks, political discourse and probably any-
where language is used. There are conflicting
views though on whether metaphors are a useful
communication device. Golden (2010) found that
metaphors present in school textbooks can make
the overall content comprehension more difficult.
On the other hand, the essence of metaphor is to
make abstract concepts, which are often hard to
grasp, more easily understandable through con-
crete descriptions (e.g. Kövecses, 2017).

In this paper we investigate metaphors in the
context of news texts simplification. On a cor-
pus of parallel sentences from news articles and
their simplified version (to grade 4 level, which
corresponds to 9-10 years of age), we analyze
metaphors that are kept, changed or added in
the simplified version. Our aim is to verify

whether we can characterize and automatically de-
tect metaphors that help or do not help text under-
standing in the context of news articles.

The task of automatic text simplification has re-
ceived a considerable amount of attention within
NLP research. The proposed systems have, for the
most part, addressed lexical and syntactic trans-
formations, such as substitution of difficult words
with simpler equivalents or altering the struc-
ture of sentences to make them more easily un-
derstandable (e.g. Barlacchi and Tonelli, 2013;
De Belder and Moens, 2010; Drndarević and Sag-
gion, 2012; Torunoğlu-Selamet et al., 2016; Vu
et al., 2014).

The automatic handling of metaphorical lan-
guage has also been researched extensively. How-
ever, the studies have mainly investigated the
possibilities of automatic metaphor identification.
Simplification of metaphorical language has not
been explicitly addressed yet. This could be at-
tributed to the fact that metaphor simplification
is a challenging task for automatic implementa-
tion (cf. Drndarević and Saggion, 2012). Some
approaches have considered the problem of au-
tomatic metaphor interpretation (e.g. Bollegala
and Shutova, 2013; Shutova, 2013), which aims
to find literal paraphrases for metaphorical expres-
sions. It is not clear though whether the literal
version is easier to understand than the original
metaphor. Sometimes lexical simplifications for
complex words can be too basic to convey the orig-
inal meaning (cf. Vu et al., 2014).

We take a step towards filling the gap in
metaphor simplification research. We combine in-
formation (in the form of features) from text sim-
plification, and characteristics of metaphors to in-
vestigate whether there are specific features that
can predict whether metaphors should be changed,
and if these are different from features that are pre-
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dictive of lexical simplification in general. We use
parallel versions (“raw” and simplified) of news
data from Newsela1, a company that produces
professionally simplified news texts, in which we
annotate metaphors. In experiments that predict
whether a target word will be changed or not, we
analyze the performance of the features used w.r.t.
the type of the target word – metaphoric or lit-
eral (the full set of features is described in Section
4.2). We find that the Age of Acquisition is the
strongest feature overall, for both metaphoric and
literal words. Imageability, Familiarity and Con-
creteness are useful when used alone, but within
the context of the full set of features they lose
their impact. Frequency of use is an important fea-
ture for distinguishing metaphors that should be
changed from those to be preserved.

2 Related work

Text simplification has numerous facets, and can
be approached from different angles. The general
need for simplification can be predicted based on
the readability of a text, from the point of view
of sentence complexity (Štajner et al., 2017) or a
combination of lexical, syntactic and semantic text
characteristics (De Clercq and Hoste, 2016). Sim-
plification can be targeted by identifying complex
words (e.g. Paetzold and Specia, 2016; Yimam
et al., 2018), and then performing lexical simplifi-
cation (e.g. Glavaš and Štajner, 2015; Glavaš and
Vulić, 2018; Horn et al., 2014; Kriz et al., 2018).

Lexical simplification systems often build on
sentence-aligned simplification corpora and pro-
pose substitutes for complex words from a num-
ber of synonyms based on the words’ frequency,
length and suitability for the original context
(De Belder and Moens, 2010; Drndarević and Sag-
gion, 2012; Vu et al., 2014). Approaches influ-
enced by machine translation have also been ex-
plored, as lexical simplification can be viewed as
monolingual translation (e.g. Nisioi et al., 2017;
Xu et al., 2016; Zhu et al., 2010). Other neural
based models have also been developed, which ex-
ploit word embeddings and their closeness in the
vector space as clues for substitution candidates.
Glavaš and Štajner (2015) produce word simpli-
fications in a large regular corpus using word em-
beddings to perform lexical substitution tasks. The
simplification candidates are ranked based on fea-
tures such as semantic and context similarity, and

1https://newsela.com/

information load.
Our focus in this paper is narrower. We aim

to explore metaphors in text simplification, and
check if there are specific features that predict
whether a metaphor should be changed or not. To
represent the instances in our data we use fea-
tures that previous work on text simplification
have shown to be beneficial, as well as features
useful in metaphor identification tasks.

3 Data

The data for this study comes from Newsela, a
company that provides professionally simplified
news texts for school reading activities. The ed-
itors follow simplification guidelines and are as-
sisted by a tool in detecting difficult words. There
is no description of the criteria used by the tool
to detect such words. Regarding metaphors, the
instructions are brief and seem to draw attention
to idioms rather than metaphors: “be literal in
lower versions. No straight out metaphors, as in
no ‘paint into a corner’ in 5th grade or below.”.

Each Newsela article has five versions of differ-
ent difficulty levels determined based on the Lex-
ile2 readability scores, which are used to measure
the complexity of texts and assign them to ap-
propriate grade levels. Using these parallel news
texts allows for the quick identification of changed
items to produce a dataset to which metaphor in-
formation is then added (Wolska and Clausen,
2017).

3.1 The dataset
We use a parallel corpus of 1,130 Newsela arti-
cles by Xu et al. (2015), where each original arti-
cle has been aligned with its four simplified ver-
sions at the sentence level based on Jaccard simi-
larity. For our study we look at the original (V0)
and the most simplified (V4) versions, as between
them we expect the most differences w.r.t. simpli-
fication strategies. From this corpus, we automat-
ically sampled original sentences along with their
equivalents from the chosen simplified version.

Each Newsela version covers several, unevenly
distributed, grade levels. Because of the potential
differences between the grade levels within ver-
sions, we sampled only articles at grade level 12
from the original version and grade level 4 from
the most simplified version. The selected grade
levels correspond to the largest subsets within the

2https://lexile.com/
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respective versions. The sampling was random-
ized across documents to counter author and edi-
tor bias. The final dataset contains 582 documents,
each consisting of one original sentence and one
or more sentences in the corresponding simplified
version.3 All alignments were manually checked
and corrected where necessary either by inserting
missing sentences or by replacing wrong align-
ments with the correct ones. This resulted in 278
corrections, exemplified below (“m” indicates the
manually inserted sentence, initially missing from
the alignment):

V0 A year ago, [Shaw] Mychal suffered a
concussion in a game that rendered him
temporarily unable to walk or speak.

V4 Shaw suffered a concussion in a game last
year.

V4-m Shaw could not walk or speak for a while.

3.2 Metaphor annotation
We focus on the two most common word classes
– nouns and verbs. In the sampled documents,
we annotated their occurrences in the original sen-
tences as either metaphoric or not by following
the guidelines of the metaphor identification pro-
cedure MIPVU (Steen et al., 2010).4

The annotation in this study builds on Wolska
and Clausen (2017), where it was carried out as
follows: one author initially identified metaphoric
items in a smaller subset of the data. All unclear
cases were then discussed with the second author
and either resolved or left unannotated. The anno-
tation was completed by the initial annotator. In
this study, we use a version of the dataset with ex-
panded annotations – every noun/verb left unan-
notated in the previous study was annotated for
metaphoricity by the same annotator as in the ini-
tial study.

In MIPVU, metaphoricity is identified by exam-
ining a text on a word-for-word basis and deter-
mining the context and the basic senses of each
word. “Words” are considered to be lexical units
provided with separate part of speech tags.5 A
word is used metaphorically if its context sense

3Documents where original and simplified versions were
identical based on string comparison were excluded.

4The annotation was done with the tool BRAT (Stenetorp
et al., 2012): http://brat.nlplab.org/

5In MIPVU, phrasal verbs and compound nouns are re-
garded as single lexical units. Although we annotated them,
in this paper we experiment only with the single words due to
the non-availability of various features for multi-item words.

can be sufficiently contrasted to and understood
in comparison with its basic sense. The context
sense of a word is “the meaning it has in the situa-
tion in which it is used”, whereas the basic sense is
taken to be “more concrete, specific, and human-
oriented” (Steen et al., 2010, p. 33-35).

The senses are determined by means of a dic-
tionary; we consult the Macmillan Dictionary6,
which is a standard reference used by the authors
of the procedure. Different senses of a word cor-
respond to separate, numbered descriptions within
its grammatical category in a dictionary.

In an example from our dataset, given in (1),
the verb struggling is used metaphorically, as there
exists a more basic sense (“to use your strength
to fight against someone or something”), which
is contrasted to and compared with the contextual
sense (“to try hard to do something that you find
very difficult”).7

(1) But now she’s struggling to obtain
documents required by the new law.

The quantitative information on the annotated
dataset is summarized in Table 1.

Measure Count
No. of sentences 566
No. of sentences containing metaphors 350
Mean No. of metaphors per sentence 1.7
No. of annotated metaphors 587

Verbs 354
Nouns 233

No. of annotated non-metaphors 2,952
Verbs 852

Nouns 2,100
No. of unique lexemes 2,261

Metaphoric 433
Non-metaphoric 1,828

Table 1: Statistics on the annotated dataset.

3.3 Simplification types
For each annotated word we marked its equiva-

lent in the simplified version and determined the
simplification type chosen by an editor.8 There

6https://www.macmillandictionary.com/
7The definitions of the basic and contextual senses:

https://www.macmillandictionary.com/
dictionary/american/struggle_1

8We encountered cases of clauses, such as coordinate and
subordinate, not retained in the simplified version. These
clauses were not annotated, as they might have been removed
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Simplification Original sentence Simplified sentence
m

et
ap

ho
ri

c
same
metaphor

. . . like the magnetized nails, unable to resist a pow-
erful magnetic force in the galactic bulge . . .

Like the magnetized nails, they would have been un-
able to resist a powerful magnetic force in the galac-
tic bulge . . .

other
metaphor

Obama also has grappled publicly with reconciling
King’s teachings on nonviolence . . .

Obama has wrestled publicly with living up to King’s
teachings on nonviolence . . .

changed to
non-
metaphor

In exchange for a 4 percent piece of their companies,
entrepreneurs in the program will gain access . . .

. . . people in the program will give up a 4 percent
share of their companies. In exchange they will get
. . .

phrase with
metaphor(s)

But now she’s struggling to obtain documents re-
quired by the new law.

But now she’s having a hard time getting the papers
that the new law requires.

phrase w/o
metaphor(s)

Utah officials say that since 2008, highway crashes
have dropped annually on stretches of rural Inter-
state . . .

They say there have been fewer accidents where the
speed limit was raised.

word
removed

Our goal is to provide Internet service to people in
areas that can’t afford to throw down fiber lines . . .

Our goal is to provide Internet service to people in
areas that can’t afford Ø usual Internet lines . . .

no
n-

m
et

ap
ho

ri
c

same non-
metaphor

“In the past several hundred years, people have cul-
tivated the habit of smoking wherever they want,” she
said.

“In the past several hundred years, people have “got-
ten used to” smoking wherever they want,” she said.

other non-
metaphor

With nothing less at stake than the future of planet
Earth, NASA has decided to crowdsource ideas to de-
tect and track asteroids . . .

NASA wants to find and track asteroids, but it needs
help. It is asking people around the world for ideas
. . .

changed to
metaphor

That information could help the team’s trainers im-
plement practice plans that keep him spry the rest of
the season.

That could help the team’s trainers make plans that
keep him healthy for the season.

phrase with
metaphor(s)

“Even after the Holocaust, our minority still encoun-
ters racism and discrimination,” he said, noting that
they are Europe’s last hired, first fired.

His people still suffer unfair and insulting treatment,
he said. They are the last in Europe to get jobs. They
are also the first to be fired.

phrase w/o
metaphor(s)

On Thursday, the snowpack was a paltry 25 percent
of average for this time of year.

The snowpack was just one-quarter of what it usually
is for this time of year.

word
removed

SnapDragon is a cross of Honeycrisp with a
Jonagold-like hybrid that’s easier for farmers to
manage.

SnapDragon is a cross of the tasty Honeycrisp apple
and another kind that’s easier Ø to grow.

Table 2: Simplification types for metaphoric and non-metaphoric lexical items.

are six simplification options that were identi-
fied for metaphoric items in Wolska and Clausen
(2017), which we now apply to non-metaphoric
items as well. A word can be preserved (same
metaphor/same non-metaphor)9, replaced by an-
other word of the same metaphorical status (other
metaphor for metaphoric items and other non-
metaphor for literal items), replaced by a word
of opposite metaphorical status (changed to non-
metaphor for metaphors and changed to metaphor
for literal items), rephrased with metaphorical lan-
guage (phrase with metaphors) or without (phrase
without metaphors), or removed (word removed).
See Table 2 for an overview with examples.

The annotation of the simplification types in
Wolska and Clausen (2017) was done as fol-
lows: on a smaller subset of sentences annotated
for metaphoricity, two authors identified and dis-
cussed the simplification choices. Once these were
finalized, one author annotated the remainder of

due to various reasons, e.g. complex syntactic structure. This
is to be differentiated from the option word removed, where
the changes are performed on the word level and which we
annotate.

9Morphological deviations are considered the same word.

the dataset and the second author 99 instances.10

Inter-annotator agreement on the common subset
was κ = .87. In the present study, one author ex-
tended the annotations.

The quantitative information on the annotated
simplification types is summarized in Table 3.11

The statistics show that metaphors can be both
useful and confusing for communication: 62% of
the phrases that contained metaphors in the orig-
inal article version contain a metaphor (the same
or another one) in the simplified version. A small
number of non-metaphors (2.3%) were replaced
with metaphors in the simplified version.

With respect to the two word classes – nouns
and verbs – we note considerable variation in
the dataset (see Table 4). 93% of the verbs
(186 metaphoric and 368 literal) appear less than
five times; 67% (143 metaphoric and 256 literal)
only once. The most frequent verbs annotated
as metaphoric are have (22), make (18) and take

10One erroneous instance had to be excluded.
1130 of the annotated words are not included in the counts;

they were excluded from the experiment part, as most of the
features we use were not available for them.
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Simplification type Count
Metaphoric 584

same metaphor 299
other metaphor 43
changed to non-metaphor 101
phrase with metaphor(s) 20
phrase without metaphor(s) 14
word removed 107

Non-metaphoric 2,925
same non-metaphor 1,933
other non-metaphor 418
changed to metaphor 34
phrase with metaphor(s) 32
phrase without metaphor(s) 77
word removed 431

Table 3: Distribution of the simplification types.

(13). The verbs say (86) and use (16) are mostly
used literally. Nouns behave similarly: 95% (167
metaphoric and 1,049 literal) appear less than five
times; 68% (131 metaphoric and 746 literal) with
frequency 1. The most frequent nouns are drone
(9) (metaphoric), and year (47) and school (22)
(literal). About 10% (65) verb types and 4% (56)
noun types are used both metaphorically and lit-
erally, indicating that features that combine infor-
mation about the word and its context are needed.

Metaphoric Literal
V N V N

Min 1 1 1 1
Max 22 9 86 47
Mean 1.8 1.37 2.12 1.86
No. of types 196 169 401 1118

Table 4: Frequency distribution of metaphoric and lit-
eral verb/noun types.

4 Experiments

The purpose of these experiments is to test
whether there are distinguishable characteristics
that indicate whether a metaphoric/literal word
should/should not be changed to make the text
easier to understand, and also whether there are
features that are particular to metaphoric or lit-
eral words with respect to simplification. We
conducted two sets of experiments: on the full
dataset (metaphoric and literal items), and on the
metaphoric part of the data. Through the exper-
iments on the full dataset we investigate whether

there are different features indicative of metaphor
and literal word simplification, respectively. In
the second set of experiments we perform a more
in depth exploration of the metaphoric part of
the data and look at the changes within the fine-
grained simplification types.

4.1 Experimental setup
For the first set of experiments, we group the sim-
plification types in two classes: preserved and
changed. Unchanged items (i.e. same metaphor
and same non-metaphor) were assigned the pre-
served class. All other simplification types were
combined as changed. The quantitative informa-
tion on the items used in the experiments is pro-
vided in Table 5.

Simplification type Count
Preserved 2,232

metaphoric 299
non-metaphoric 1,933

Changed 1,277
metaphoric 285
non-metaphoric 992

Table 5: Statistics on the coarse-grained simplification
types.

The experiments were done with a Linear Sup-
port Vector Machine classifier using 10-fold cross-
validation startegy.12 The feature values were
standardized prior to the experiments.13 We report
the results of the random baseline, and the distri-
bution of the different phenomena in the data.

4.2 Features
Data analysis has shown that both metaphors and
literal words can be changed to help comprehen-
sion, and either can be replaced with metaphoric
or literal expressions. To determine whether there
are identifiable characteristics that could make this
distinction automatable, we compile a number of
features that have been shown to be useful for text
simplification and metaphor identification. The
metaphor-sensitive features are Imageability, Con-
creteness, WordNet senses and word’s context; the

12We use the SVM implementation in scikit-learn (Pe-
dregosa et al., 2011): https://scikit-learn.org/
stable/modules/generated/sklearn.svm.
LinearSVC.html

13Standardization was performed with the Standard-
Scaler in scikit-learn: http://scikit-learn.
org/stable/modules/generated/sklearn.
preprocessing.StandardScaler.html
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general features are part of speech, vector space
word representations, Age of Acquisition, word
frequency and Familiarity. The feature types used
and their coverage in our dataset are described be-
low.

Part of speech: The part of speech (POS) tag-
ging was done using the NLTK toolkit14 (Bird
et al., 2009). The POS tags were then manually
corrected where necessary. The two possible val-
ues are noun and verb.

Vector space word representations: We ob-
tained vector space representations for each an-
notated word using Google’s pre-trained word2vec
model (Mikolov et al., 2013).15

Word embeddings have been successfully used
in metaphor identification (e.g. Dinh and
Gurevych 2016; Gutiérrez et al. 2016) as well as
in lexical simplification tasks (e.g. Glavaš and
Štajner 2015; Glavaš and Vulić 2018).

Age of Acquisition: Age of Acquisition (AoA)
ratings were obtained from the AoA norms
database of 51,715 English words (Kuperman
et al., 2012). AoA denotes the approximate age
at which a word is learned. The simplified news
articles used in this study are intended for class-
room use by 9-10 year old children. Words usu-
ally acquired after this age should be more readily
changed/removed in the simplified version.

We extracted the AoA ratings by matching both
word forms and lemmas (e.g. noun testing/testing
vs. verb testing/test).

Imageability, Familiarity and Concreteness:
Imageability stands for the ability of a word to
evoke mental images; Familiarity refers to the fre-
quency of exposure to a word; Concreteness de-
scribes the level of abstraction associated with the
concept a word represents. The connection of
these variables to metaphor comprehension has
been shown in multiple studies (e.g. Marschark
et al. 1983; Paivio et al. 1968; Ureña and Faber
2010). Concrete words are more easily learned,
processed and remembered than the abstract ones
(Paivio et al., 1968). It is quite likely then that ab-
stract words will be discarded during simplifica-
tion. Marschark et al. (1983) found a link between
high imageability and easier processing for certain

14https://www.nltk.org/
15The model can be downloaded from here: https://

code.google.com/archive/p/word2vec/

metaphor types. These features were successfully
used in lexical simplification (e.g. Jauhar and Spe-
cia 2012; Vajjala and Meurers 2014).

Imageability and Familiarity ratings were ob-
tained from the MRC Psycholinguistic Database
(Wilson, 1988). This database contains up to 26
(psycho)linguistic attributes for 150,837 words.
Concreteness ratings were extracted from a collec-
tion of English Abstractness/Concreteness ratings
(Köper and Schulte im Walde, 2017).

We extracted the values for the word forms if
present in the databases and for the respective lem-
mas otherwise. For a number of words, the values
are missing (see Table 6). De Hertog and Tack
(2018) use the third and first quartile values for
Imageability and Concreteness, respectively, fol-
lowing an assumption that rarer words tend to have
lower imageability and concreteness, while Good-
ing and Kochmar (2018) use the null value. We
decided to assign instead a “neutral” value: the
median value for each feature based on the ratings
in the MRC.

Available Missing
Imag 2,288 1,221 (35%)
Fam 2,293 1,216 (35%)
Concr 3,509 0 (0%)

Table 6: Counts for Imageability, Familiarity and Con-
creteness ratings.

Word frequency: In lexical simplification sys-
tems, it is common to substitute infrequent words
with their more frequent synonyms (e.g. De Belder
and Moens, 2010). As Kriz et al. (2018), we as-
sume that highly frequent words are easier to un-
derstand, whereas infrequent words are more diffi-
cult and therefore will be removed/changed in the
process of simplification.

We use word frequency counts from the
SUBTLEXUS database (Brysbaert and New,
2009), a corpus of subtitles for American English
of 51M words. The frequencies are given per mil-
lion words. We extracted the values based on the
word forms in our data (3,503 words); 6 words
(.2%) have frequency 0.

WordNet sense: The WordNet (Fellbaum,
1998) sense feature approximates a word’s
meaning in context. The values are the synset
numbers representing the sense of a word in the
original sentence. MIPVU uses sense information
and comparison with a “basic” sense of a word
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to assign metaphoricity. The WordNet sense
number could be an indication whether a word
is metaphoric or not: the first sense is the more
frequent, and could thus be considered basic,
while the higher the sense number, the more likely
it could be that the word is used metaphorically.

We use a Lesk-like (Lesk, 1986) method to dis-
ambiguate a target word relative to WordNet: a
vector representation of the context of an anno-
tated word (i.e. V0 sentence) is compared to a
representation for each of the word’s definitions in
WordNet. The representations are generated us-
ing Google’s pre-trained word2vec model. The
context and each definition are compared using
Word Mover’s Distance (Kusner et al., 2015).16

We chose the synset number whose definition is
most similar to the word’s context. The lookup in
WordNet was done based on the word forms and
matching POS tags. For 9 words (.3%) not found
in WordNet the values are missing.

Word’s context: This feature reflects the dis-
crepancy between the level of abstractness of a
metaphoric word and its context. It was oper-
ationalized with ratings of Concreteness (Köper
and Schulte im Walde, 2017) and Imageability
from the MRC database.

Turney et al. (2011) have shown that a word’s
degree of abstractness, relative to the context it ap-
pears in, can be successfully used to distinguish
between literal and metaphoric meanings. Broad-
well et al. (2013) used Imageability ratings to dis-
cover metaphors based on the assumption that they
stand out of their context as being highly image-
able.

We considered a symmetrical seven-word win-
dow centered on the target word. A wordw’s Con-
creteness context (CC) value is computed as:

CCw = C dn/2e −
(
bn/2c∑
i=1

Ci +
n∑

i=dn/2e+1
Ci

)

where n is the size of the window. The Imageabil-
ity context (IC) is calculated in the same way.

In the computation we used the context words
with available Concreteness and Imageability
scores in the database. If ratings for the target
word itself or for all context words were not found,
the value for the feature was set to missing. The
overview of the value counts is given in Table 7.

16We used the implementation in Gensim Python library
(Řehůřek and Sojka, 2010).

Available Missing
IC 2,258 1,251 (36%)
CC 3,503 6 (.2%)

Table 7: Counts for the words’ context features: Im-
ageability context (IC) and Concreteness context (CC).

4.3 Experiment 1: Metaphoric vs. literal
words

To assess the impact of the different features on
predicting whether a word should or should not be
changed, we group the features based on the type
of information they capture:

• IFC (Imageability + Familiarity + Concrete-
ness) – informative for metaphoric words

• WN+IC/CC (WordNet sense + word’s con-
text) – different aspect of metaphor relevance

• Freq+AoA (word frequency + Age of Acqui-
sition) – relevant for both metaphoric and lit-
eral items

The F-score results on the full dataset (1,277
changed, 2,232 preserved instances) for different
feature combinations are presented in Figure 1.17

AoA has the highest Precision for the class
changed in both metaphoric and literal cases. This
shows that whereas this feature might be good
in accurately detecting items that need simplifica-
tion, it does not differentiate between metaphoric
and literal usages in the current setting. Previ-
ous studies have shown that some correlation ex-
ists between the AoA and frequency of usage (e.g.
Ghyselinck et al., 2004), but in this case the AoA
feature and the Frequency feature have different
effects when used alone (see Figure 1). In partic-
ular, the Frequency feature is not useful to deter-
mine whether a word should be changed or not,
contrary to our expectations.

We expected the “metaphor-specific” features
(IFC) to have a higher impact on the metaphoric
than on the literal words. When used alone they do
lead to better prediction for changing metaphoric
words compared to literal ones, but within the con-
text of the full feature set, their impact is mini-
mal (all, all-IFC/I/F/C). The imbalance in the data
set could explain why, when using other features
which can pick up on characteristics of literal

17We report only the F-scores for this experiment due to
space limitations.
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Figure 1: F-scores on learning changed vs. preserved on the full dataset, with results on all data and the metaphoric
and literal subsets when using different feature combinations.

words (or both), the effect of Familiarity, Con-
creteness and Imageability is lost.

The WN and context features also behave in an
interesting manner. Alone, neither of these has
much impact on distinguishing words that should
be changed or not (WN/CC/IC). But when com-
bined, their predictive power grows, particularly
considering the approximate 1:5 ratio between
metaphoric and literal target words. We tested a
binary representation of the WN feature: is the dis-
ambiguated sense the first one (the “basic” one) or
not. This set-up led to worse results. This could
mean that assuming that the first sense in WordNet
is the “basic” sense is erroneous, even though it is
the most frequent one.

Changed Preserved
Feature(s) Verbs Nouns Verbs Nouns
all .562 .515 .784 .770
IFC .199 .175 .766 .779
WN+CC .206 .093 .752 .780
WN+IC .004 .000 .771 .779
WN+CC+IC .220 .107 .750 .780
Freq+AoA .480 .482 .803 .777
random .424 .408 .523 .556
majority .000 .000 .773 .780

Table 8: F-scores: changed vs. preserved on the full
dataset, for nouns (833 changed, 1474 preserved) and
verbs (444 changed, 758 preserved).

Looking at the results on the subsets corre-
sponding to nouns and verbs (see Table 8), we
note that there are differences in terms of the use-
ful features. Predicting that nouns should be pre-
served is consistent w.r.t. the features used, and
close to the majority baseline. Using all features
leads to the best results overall, for both nouns
and verbs, whether they should be changed or pre-

served. Metaphor-relevant features (IFC and con-
textual information) are not helpful in predicting
verbs and nouns that need to be changed. How-
ever, they appear to be more relevant for verbs.
The Frequency and Age of Acquisition combina-
tion seems to be more important for verbs than for
nouns.

4.4 Experiment 2: Metaphoric words
We use the subset of 285 changed and 299 pre-
served metaphors to test the impact of different
subsets of features for predicting change/preserve
for metaphoric target words. The results are given
in Table 9 for the complete metaphoric dataset.

We further analyze the results of classifying
originally metaphoric words as changed or pre-
served in the simplified texts. We look into
the data subsets corresponding to the different
metaphor simplification phenomena, and produce
the recall results shown in Table 10. We cannot
compute precision because all instances in each
subset belong to one class (i.e. either changed or
preserved).

The results for the metaphoric data preserve
some of the tendencies seen on the complete
dataset, and they also reveal some new insights.
AoA leads to the highest Precision score for the
class changed and has high Recall and F-score
for the class preserved. Frequency of use appears
to be the most useful in distinguishing between
metaphors that should be changed or preserved.
This is quite intuitive, as metaphors that are less
common are more difficult to understand. Con-
trary to its impact in the first experiment – classi-
fying whether a word should be changed or not,
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Changed Preserved
Feature(s) P R F1 P R F1

all .573 .561 .567 .590 .602 .596
all-IFC .568 .558 .563 .586 .595 .590
all-I .568 .554 .561 .585 .599 .592
all-F .571 .561 .566 .589 .599 .594
all-C .573 .561 .567 .590 .602 .596
IFC .576 .519 .546 .581 .635 .607
WN+CC .522 .505 .513 .542 .559 .550
WN+IC .513 .540 .526 .539 .512 .525
WN+CC+IC .540 .519 .530 .558 .579 .568
WN .497 .554 .524 .523 .465 .492
CC .495 .319 .388 .515 .689 .589
IC .438 .186 .261 .499 .773 .606
AoA .602 .530 .563 .598 .666 .630
Freq .548 .884 .677 .734 .304 .430
Freq+AoA .594 .586 .590 .611 .619 .615
w2v .576 .572 .574 .595 .599 .597
random .489 .463 .476 .513 .538 .525
majority .000 .000 .000 .512 1.00 .677

Table 9: Results on learning changed vs. preserved
on the subset of metaphoric items (285 changed / 299
preserved instances). Best results are given in bold.

regardless of whether it is metaphoric or literal
– when analyzing metaphoric words and classi-
fying them into changed/preserved, Frequency is
the best feature. This effect is apparent also when
looking at the subsets corresponding to the differ-
ent simplification types (see Table 10).

Changed to Pres.

Feature(s) other
met

phr.
with
met

lit.
phr.
no
met

rem. same

all .651 .600 .515 .500 .570 .602
all-IFC .674 .600 .515 .500 .551 .595
all-I .651 .600 .505 .500 .651 .599
all-F .698 .600 .505 .500 .561 .599
all-C .585 .560 .582 .500 .570 .602
IFC .535 .850 .545 .286 .548 .635
WN+CC .581 .500 .525 .500 .458 .559
WN+IC .605 .550 .515 .571 .533 .512
WN+CC+IC .488 .650 .545 .500 .486 .579
WN .581 .450 .545 .643 .561 .465
CC .326 .450 .327 .286 .290 .689
IC .186 .200 .188 .143 .187 .773
w2v .674 .600 .495 .571 .598 .599
w2v+IFC .674 .600 .495 .571 .589 .605
AoA .605 .600 .535 .571 .477 .666
Freq .884 .950 .931 .929 .822 .304
Freq+AoA .651 .650 .604 .643 .523 .619
random .419 .450 .475 .357 .514 .518

Table 10: Recall: changed vs. preserved on the subset
of metaphoric items (285 changed / 299 preserved in-
stances) for each fine-grained simplification type. Best
results are given in bold.

The word’s context features (IC/CC) have the
highest Recall scores for the preserved cases, but
in combination with the WordNet senses feature
they stop being useful for differentiating between

the two classes. Just as in the first experiment,
when used alone the IFC features are clearly use-
ful, but within the full set of features they lose their
predictive power. For the preserved items, the con-
text features (IC/CC) show the best results. Those
metaphors that were rephrased with metaphorical
content are best described with the IFC features,
whereas the WN senses feature is good when iden-
tifying paraphrases without metaphors.

5 Conclusion

The analysis of metaphor usage in original and
simplified versions of the same news texts has
shown that not all metaphors are alike, from the
point of view of text comprehension. A large
percentage of metaphors in our dataset were ei-
ther preserved or replaced using metaphorical lan-
guage, while a (much) smaller number of literally
used words was replaced with a metaphoric ex-
pression.

The evaluation of the features most frequently
used in literature for text simplification and
metaphor identification has shown that for both
metaphors and literal words, the most informa-
tive feature is the Age of Acquisition. Features
that capture the imageability, familiarity and con-
creteness of a word have similar performance in
predicting change/no change for both metaphori-
cal and literal words when used alone. When used
together with our other features, their predictive
power diminishes. While not useful to separate
changed and preserved words in the full dataset,
for metaphoric words the frequency of usage is a
telling feature, even at a fine-grained level.

One factor that could have influenced the results
of these experiments is the incomplete coverage
provided by the Imageability and Familiarity fea-
tures. In future work we plan to improve the as-
signment of missing values by deriving a value us-
ing the scores assigned to the most similar words.
We will further explore features that capture the
interaction between a target word and its context,
including contextual embeddings and the word’s
syntactic role.

Acknowledgements

We thank the reviewers for the interesting com-
ments. Yulia Clausen’s research was partially
funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – project
number 317633480 – SFB 1287, project A03.

431



References
G. Barlacchi and S. Tonelli. 2013. ERNESTA: A sen-

tence simplification tool for children’s stories in ital-
ian. In Proceedings of the 14th International Con-
ference on Computational Linguistics and Intelli-
gent Text Processing - Volume 2, CICLing’13, pages
476–487, Berlin, Heidelberg. Springer-Verlag.

S. Bird, E. Klein, and E. Loper. 2009. Natural Lan-
guage Processing with Python, 1st edition. O’Reilly
Media, Inc.

D. Bollegala and E. Shutova. 2013. Metaphor inter-
pretation using paraphrases extracted from the web.
PLoS ONE, 8(9):e74304.

G. A. Broadwell, U. Boz, I. Cases, T. Strzalkowski,
L. Feldman, S. Taylor, S. Shaikh, T. Liu, K. Cho,
and N. Webb. 2013. Using imageability and topic
chaining to locate metaphors in linguistic corpora.
In Proceedings of the 6th International Conference
on Social Computing, Behavioral-Cultural Model-
ing and Prediction, SBP’13, pages 102–110, Berlin,
Heidelberg. Springer-Verlag.

M. Brysbaert and B. New. 2009. Moving beyond
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adou, and J. Tsujii. 2012. brat: a web-based tool for
NLP-assisted text annotation. In Proceedings of the
Demonstrations at the 13th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 102–107.
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Abstract

This study aims to build an automatic sys-
tem for the detection of plagiarized spoken
responses in the context of an assessment of
English speaking proficiency for non-native
speakers. Classification models were trained
to distinguish between plagiarized and non-
plagiarized responses with two different types
of features: text-to-text content similarity
measures, which are commonly used in the
task of plagiarism detection for written doc-
uments, and speaking proficiency measures,
which were specifically designed for spon-
taneous speech and extracted using an auto-
mated speech scoring system. The experi-
ments were first conducted on a large data set
drawn from an operational English proficiency
assessment across multiple years, and the best
classifier on this heavily imbalanced data set
resulted in an F1-score of 0.761 on the plagia-
rized class. This system was then validated on
operational responses collected from a single
administration of the assessment and achieved
a recall of 0.897. The results indicate that
the proposed system can potentially be used
to improve the validity of both human and au-
tomated assessment of non-native spoken En-
glish.

1 Introduction

Plagiarism of spoken responses has become a vex-
ing problem in the domain of spoken language
assessment, in particular, the evaluation of non-
native speaking proficiency, since there exists a
vast amount of easily accessible online resources
covering a wide variety of topics that test tak-
ers can use to prepare responses prior to the test.
In the context of large-scale, standardized as-
sessments of spoken English for academic pur-
poses, such as the TOEFL iBT test (ETS, 2012),
the Pearson Test of English Academic (Long-
man, 2010), and the IELTS Academic assessment

(Cullen et al., 2014), some test takers may uti-
lize content from online resources or other pre-
pared sources in their spoken responses to test
questions that are intended to elicit spontaneous
speech. These responses that are based on canned
material pose a problem for both human raters and
automated scoring systems, and can reduce the va-
lidity of scores that are provided to the test takers;
therefore, research into the automated detection of
plagiarized spoken responses is necessary.

In this paper, we investigate a variety of features
for automatically detecting plagiarized spoken re-
sponses in the context of a standardized assess-
ment of English speaking proficiency. In addition
to examining several commonly used text-to-text
content similarity features, we also use features
that compare various aspects of speaking profi-
ciency across multiple responses provided by a
test taker, based on the hypothesis that certain as-
pects of speaking proficiency, such as fluency, may
be artificially inflated in a test taker’s canned re-
sponses in comparison to non-canned responses.
These features are designed to be independent of
the availability of the reference source materials.
Finally, we evaluate the effectiveness of this sys-
tem on a data set with a large number of control
(non-plagiarized) responses in an attempt to sim-
ulate the imbalanced distribution from an opera-
tional setting in which only a small number of the
test takers’ responses are plagiarized. In addition,
we further validate this system on operational data
and show how it can practically assist both human
and automated scoring in a large scale assessment
of English speaking proficiency

2 Previous Work

Previous research related to automated plagia-
rism detection for natural language has mainly
focused on written documents. For example, a
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series of shared tasks has enabled a variety of
NLP approaches for detecting plagiarism to be
compared on a standardized set of texts (Potthast
et al., 2013), and several plagiarism detection ser-
vices are available online.1 Various techniques
have been employed in this task, including n-
gram overlap (Lyon et al., 2006), document finger-
printing (Brin et al., 1995), word frequency statis-
tics (Shivakumar and Garcia-Molina, 1995), in-
formation retrieval-based metrics (Hoad and Zo-
bel, 2003), text summarization evaluation met-
rics (Chen et al., 2010), WordNet-based features
(Nahnsen et al., 2005), stopword-based features
(Stamatatos, 2011), features based on shared syn-
tactic patterns (Uzuner et al., 2005), features based
on word swaps detected via dependency parsing
(Mozgovoy et al., 2007), and stylometric features
(Stein et al., 2011), among others. In general,
for the task of monolingual plagiarism detection,
these methods can be categorized as either ex-
ternal plagiarism detection, in which a document
is compared to a body of reference documents,
or intrinsic plagiarism detection, in which a doc-
ument is evaluated independently without a ref-
erence collection (Alzahrani et al., 2012). This
task is also related to the widely studied task of
paraphrase recognition, which benefits from sim-
ilar types of features (Finch et al., 2005; Mad-
nani et al., 2012). The current study adopts sev-
eral of these features that are designed to be ro-
bust to the presence of word-level modifications
between the source and the plagiarized text; since
this study focuses on spoken responses that are
reproduced from memory and subsequently pro-
cessed by a speech recognizer, metrics that rely on
exact matches are likely to perform sub-optimally.

Little prior work has been conducted on the
task of automatically detecting similar spoken re-
sponses, although research in the field of Spoken
Document Retrieval (Hauptmann, 2006) is rele-
vant. Due to the difficulties involved in collecting
corpora of actual plagiarized material, nearly all
published results of approaches to the task of pla-
giarism detection have relied on either simulated
plagiarism (i.e., plagiarized texts generated by ex-
perimental human participants in a controlled en-
vironment) or artificial plagiarism (i.e., plagia-
rized texts generated by algorithmically modifying

1For example, http://turnitin.com/en_
us/what-we-offer/feedback-studio,http:
//www.grammarly.com/plagiarism, and http:
//www.paperrater.com/plagiarism_checker.

a source text) (Potthast et al., 2010). These results,
however, may not reflect actual performance in a
deployed setting, since the characteristics of the
plagiarized material may differ from actual plagia-
rized responses.

In previous studies (Evanini and Wang, 2014;
Wang et al., 2016), we conducted experiments
on a simulated data set from an operational,
large-scale, standardized English proficiency as-
sessment and obtained initial results with an F1-
measure of 70.6% using an automatic system to
detect plagiarized spoken responses (Wang et al.,
2016). Based on these previous findings, we ex-
tend this line of research and contribute in the fol-
lowing ways: 1) an improved automatic speech
recognition (ASR) system based on Kaldi was in-
troduced, and an unsupervised language model
adaptation method was employed to improve the
ASR performance on spontaneous speech elicited
by new, unseen test questions; 2) an improved set
of text-to-text content similarity features based on
n-gram overlap and Word Mover’s Distance was
investigated; 3) in addition to evaluating the sys-
tem on a simulated imbalanced data set, we also
validated the developed automatic system using all
of the responses from a single operational admin-
istration of the English speaking assessment in or-
der to obtain a reliable estimate of the system’s
performance in a practical deployment.

3 Data

The data used in this study was drawn from a
large-scale, high-stakes assessment of English for
non-native speakers, which assesses English com-
munication skills for academic purposes. The
Speaking section of this assessment contains six
tasks designed to elicit spontaneous spoken re-
sponses: two of them require test takers to provide
an opinion or preference based on personal expe-
rience, which are referred to as independent tasks;
and the other four tasks require test takers to sum-
marize or discuss material provided in a reading
and/or listening passage, which are referred to as
integrated tasks.

In general, the independent tasks ask questions
on topics that are familiar to test takers and are not
based on any stimulus materials. Therefore, test
takers can provide responses containing a wide va-
riety of specific examples. In some cases, test tak-
ers may attempt to game the assessment by mem-
orizing canned material from an external source
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and adapting it to the questions presented in the
independent tasks. This type of plagiarism can af-
fect the validity of a test taker’s speaking score and
can be grounds for score cancellation. However, it
is often difficult even for trained human raters to
recognize plagiarized spoken responses, due to the
large number and variety of external sources that
are available to test takers.

In order to identify the plagiarized spoken re-
sponses from the operational test, human raters
need to first flag spoken responses that contained
potentially plagiarized material, then trained ex-
perts subsequently review them to make the fi-
nal decision. In the review process, the re-
sponses were transcribed and compared to external
source materials obtained through manual internet
searches; if it was determined that the presence of
plagiarized material made it impossible to provide
a valid assessment of the test taker’s performance
on the speaking task, the response was labeled as
a plagiarized response and assigned a score of 0.
In this study, a total of 1,557 plagiarized responses
to independent test questions were collected from
the operational assessment across multiple years.

During the process of reviewing potentially pla-
giarized responses, the raters also collected a data
set of external sources that appeared to have been
used by test takers in their responses. In some
cases, the test taker’s spoken response was nearly
identical to an identified source; in other cases,
several sentences or phrases were clearly drawn
from a particular source, although some modifi-
cations were apparent. Table 1 presents a sam-
ple source that was identified for several of the
responses in the data set along with a sample
plagiarized response that apparently contains ex-
tended sequences of words directly matching id-
iosyncratic features of this source, such as the
phrases “how romantic it can ever be” and “just
relax yourself on the beach.” In general, test tak-
ers typically do not reproduce the entire source
material in their responses; rather, they often at-
tempt to adapt the source material to a specific test
question by providing some speech that is directly
relevant to the prompt and combining it with the
plagiarized material. An example of this is shown
by the opening and closing non-italicized portions
of the sample plagiarized response in Table 1. In
total, human raters identified 224 different source
materials while reviewing the potentially plagia-
rized responses, and their statistics information is

as follows: the average number of words is 95.7
(std. dev. = 38.5), the average number of clauses
is 10.3 (std. dev. = 5.1), and the average number
of words per clause is 9.3 (std. dev. = 7.1).

In addition to the source materials and the
plagiarized responses, a set of non-plagiarized
control responses was also obtained in order to
conduct classification experiments between pla-
giarized and non-plagiarized responses. Since
the plagiarized responses were collected over the
course of multiple years, they were drawn from
many different test forms, and it was not practi-
cal to obtain control data from all of the test forms
that were represented in the plagiarized set. So,
only the 166 test forms that appear most frequently
in the canned data set were used for the collec-
tion of control responses, and 200 test takers were
randomly selected from each form, without any
overlap with speakers in the plagiarized set. The
two spoken responses from the two independent
questions were collected from each speaker; in to-
tal, 66,400 spoken responses from 33,200 speak-
ers were obtained as the control set. Therefore,
the data set used in this study is quite imbalanced:
the number of control responses is larger than the
number of plagiarized responses by a factor of 43.

4 Methodology

This study employed two different types of fea-
tures in the automatic detection of plagiarized spo-
ken responses: 1) similar to human raters’ behav-
ior in identifying the canned spoken responses, a
set of features is developed to measure the content
similarities between a test response and the source
materials that were collected; 2) to deal with this
particular task of plagiarism detection for sponta-
neous spoken responses, a set of features is intro-
duced based on the assumption that the produc-
tion of spoken language based on memorized ma-
terial is expected to differ from the production of
non-plagiarized speech in aspects of a test taker’s
speech delivery, such as fluency, pronunciation,
and prosody.

4.1 Content Similarity

Previous work (Wang et al., 2016; Evanini and
Wang, 2014) has demonstrated the effectiveness
of using content-based features for the task of
automatic plagiarized spoken response detection.
Therefore, this study investigates the use of im-
proved features based on the measurement of text-
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Table 1: A sample source passage and the transcription of a sample plagiarized spoken response that was appar-
ently drawn from the source. The test question/prompt used to elicit this response is also included. The overlapping
word sequences between the source material and the transcription of the spoken response are indicated in italics.

Sample source passage: Well, the place I
enjoy the most is a small town located in
France. I like this small town because it has
very charming ocean view. I mean the sky
there is so blue and the beach is always full of
sunshine. You know how romantic it can ever
be, just relax yourself on the beach, when the
sun is setting down, when the ocean breeze
is blowing and the seabirds are singing. Of
course I like this small French town also be-
cause there are many great French restau-
rants. They offer the best seafood in the world
like lobsters and tuna fishes. The most impor-
tant, I have been benefited a lot from this trip
to France because I made friends with some
gorgeous French girls. One of them even gave
me a little watch as a souvenir of our friend-
ship.

Prompt: Talk about an activity you enjoyed
doing with your family when you were a kid.
Transcription of a plagiarized response:
family is a little trip to France when I was in
primary school ten years ago I enjoy this ac-
tivity first because we visited a small French
town located by the beach the town has very
charming ocean view and in the sky is so blue
and the beach is always full of sunshine you
know how romantic it can ever be just relax
yourself on the beach when the sun is settling
down the sea birds are singing of course I en-
joy this activity with my family also because
there are many great French restaurants they
offer the best sea food in the world like lob-
sters and tuna fishes so I enjoy this activity
with my family very much even it has passed
several years

to-text content similarity. Given a test response, a
comparison is made with each of the 224 reference
sources using the following two content similarity
metrics: word n-gram overlap and Word Mover’s
Distance. Then, the maximum similarity or the
minimum distance is taken as a single feature to
measure the content relevance between the test re-
sponses and the source materials.

4.1.1 N -gram Overlap

Features based on the BLEU metric have been
proven to be effective in measuring the content ap-
propriateness of spoken responses in the context
of English proficiency assessment (Zechner and
Wang, 2013) and in measuring content similarity
in the detection of plagiarized spoken responses
(Wang et al., 2016; Evanini and Wang, 2014). In
this study, we first design a new type of feature,
known as n-gram overlap, by simulating and im-
proving the previous BLEU-based features. Word
n-grams, with n varying from 1 word to 11 words,
are first extracted from both the test response and
each of the source materials, and then the number
of overlapping n-grams are counted, where both
n-gram types and tokens are counted separately.
The intuition behind decreasing the maximum or-
der is to increase the classifier’s recall by evalu-
ating the overlap of shorter word sequences, such

as individual words in the unigram setting. On the
other hand, the motivation behind increasing the
maximum order is to boost the classifier’s preci-
sion, since it will focus on matches of longer word
sequences. Here, the maximum order of 11 was
experimentally decided in consideration of the av-
erage number of words per clause in source mate-
rials, which is 9.3 as described in Section 3.

In order to calculate the maximum similarity
across all source materials, the 11 n-gram over-
lap counts are combined together to generate one
weighted score between a test and each source as
in Equation 1, and then the maximum score across
all sources is calculated as a feature to measure the
similarity between a test and the set of source ma-
terials. Meanwhile, the 11 n-gram overlap counts
calculated using the source with the maximum
similarity score are also taken as features.

n∑

i=1

i

(n · (n+ 1)/2)
count overlap(i-gram) (1)

Furthermore, the n-gram based feature set can
be enlarged by: 1) normalizing the n-gram counts
by either the number of n-grams in the test re-
sponse or the number of n-grams in each of the
sources; 2) combining all source materials to-
gether into a single document for comparison (11
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features based on n-gram overlap with the com-
bined source), which is designed based on the as-
sumption that test takers may attempt to use con-
tent from multiple sources. Similarly, this type of
features can be further normalized by the number
of n-grams in the test response. Based on all of
these variations, a total of 116 n-gram overlap fea-
tures is generated for each spoken response.

4.1.2 Word Mover’s Distance
More recently, various approaches based on deep
neural networks (DNN) and word-embeddings
trained on large corpora have shown promis-
ing performance in document similarity detec-
tion (Kusner et al., 2015). In contrast to tradi-
tional similarity features, which are limited to a
reliance on exact word matching, as the above
n-gram overlap features, these new approaches
have the advantage of capturing topically relevant
words that are not identical. In this study, we
employ Word Mover’s Distance (WMD) (Kusner
et al., 2015) to measure the distance between a
test response and a source material based on word-
embeddings.

Embeddings of words are first represented as
vectors, and then the distance between each word
appearing in a test response and each word in a
source can be measured using the Euclidean dis-
tance in the embedding space. WMD represents
the sum of the minimum values among the Eu-
clidean word distances between words in the two
compared documents. This minimization problem
is a special case of Earth Mover’s Distance (Rub-
ner et al., 1998), for which efficient algorithms are
available. Kunsner et al. (Kusner et al., 2015)
reported that WMD outperformed other distance
measures on document retrieval tasks and that the
embeddings trained on the Google News corpus
consistently performed well across a variety of
contexts. For this work, we used the same word
embeddings used in weighted embedding features
as the input for the WMD calculation.

4.2 Difference in Speaking Proficiency

The performance of the above content similarity
features greatly depends on the availability of a
comprehensive set of source materials. If a test
taker uses unseen source materials as the basis for
a plagiarized response, the system may fail to de-
tect it. Accordingly, a set of features that do not
rely on a comparison with source materials has
been proposed previously (Wang et al., 2016). The

current study also examined this type of features.

As described in Section 3, the Speaking section
of the assessment includes both independent and
integrated tasks. In a given test administration, test
takers are required to respond to all six questions;
however, plagiarized responses are more likely to
appear in the two independent tasks, since they
are not based on specific reading and/or listening
passages and thus elicit a wider range of variation
across responses. Since the plagiarized responses
are mostly constructed based on memorized ma-
terial, they may be delivered in a more fluent and
proficient manner compared to the responses that
contain fully spontaneous speech. Based on this
assumption, a set of features can be developed
to capture the difference between various speak-
ing proficiency features extracted from the canned
and the fully spontaneous speech produced by the
same test taker, where an automated spoken En-
glish assessment system, SpeechRater R© (Zechner
et al., 2007, 2009), can be used to provide the
automatic proficiency scores along with 29 fea-
tures measuring fluency, pronunciation, prosody,
rhythm, vocabulary, and grammar. Since most pla-
giarized responses are expected to occur in the
independent tasks, we assume the integrated re-
sponses are based on spontaneous speech. A mis-
match between the proficiency scores and the fea-
ture values from the independent responses and
the integrated responses from the same speaker
can potentially indicate the presence of both pre-
pared speech and spontaneous speech, and, there-
fore, the presence of plagiarized spoken responses.

Given an independent response from a test
taker, along with the other independent response
and four integrated responses from the same test
taker, 6 features can be extracted according to each
of the proficiency scores and 29 SpeechRater fea-
tures. First, the difference of score/feature val-
ues between two independent responses was cal-
culated as a feature, which was used to deal with
the case in which only one independent response
was canned and the other one contained sponta-
neous speech. Then, basic descriptive statistics,
including mean, median, min, and max, were ob-
tained across the four integrated responses. The
differences between the score/feature value of the
independent response and these four basic statis-
tics were extracted as additional features. Finally,
another feature was also extracted by standardiz-
ing the score/feature value of the independent re-
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sponse with the mean and standard deviation from
the integrated responses. In total, a set of 180 fea-
tures were extracted, referred as SpeechRater in
the following experiments.

5 Experiments and Results

5.1 ASR Improvement

In this study, spoken responses need to be tran-
scribed into text so that they can be compared
with the source materials to measure the text-to-
text similarity. However, due to the large amount
of spoken responses considered in this study, it is
not practical to manually transcribe all of them;
therefore, a Kaldi2-based automatic speech recog-
nition engine was employed. The training set used
to develop the speech recognizer consists of simi-
lar responses (around 800 hours of speech) drawn
from the same assessment and do not overlap with
the data sets included in this study.

When using an ASR system to recognize spo-
ken responses from new prompts that are not seen
in the ASR training data, a degradation in recog-
nition accuracy is expected because of the mis-
match between the training and test data. In this
study, we used an unsupervised language model
(LM) adaptation method to improve the ASR per-
formance on unseen data. In this method, two
rounds of language model adaptation were con-
ducted with the following steps: first, out-of-
vocabulary (OOV) words from the prompt mate-
rials were added to the pronunciation dictionary
and the baseline models were adapted with the
prompts; second, the adapted models were ap-
plied to spoken responses from these new prompts
to produce the recognized texts along with con-
fidence scores corresponding to each response;
third, automatically transcribed texts with confi-
dence scores higher than a predefined threshold
of 0.8 were selected; finally, these high-confident
recognized texts were used to conduct another
round of language model adaptation. We evalu-
ated this unsupervised language model adaptation
method on a stand-alone data set with 1,500 re-
sponses from 250 test speakers, where the prompts
used to elicit these responses were unseen in the
baseline recognition models. In this experiment,
supervised language model adaptation with human
transcriptions was also examined for comparison.
As shown in Table 2, the overall word error rate

2http://kaldi-asr.org/

Table 2: Word error rate (WER %) reduction with
an unsupervised language model adaptation method,
where the WERs on Independent items (IND), Inte-
grated items (INT), as well as all items (ALL), are
reported. The WER with the supervised adaptation
method based on human transcriptions is also listed for
comparison.

ASR Systems IND INT ALL
Baseline 22.5 26.6 25.5
Unsupervised 21.5 23.5 22.9
Supervised 21.2 22.1 21.8

(WER) is 25.5% for the baseline models. By ap-
plying the unsupervised LM adaptation method,
the overall WER can be reduced to 22.9%; in com-
parison, the overall WER can be reduced to 21.8%
by using supervised LM adaptation. The unsuper-
vised method can achieve very similar results to
the supervised method especially for responses to
the independent prompts, i.e., with WER of 21.5%
(unsupervised) vs 21.2% (supervised). These re-
sults indicate the effectiveness of the proposed
unsupervised adaptation method, which was em-
ployed in the subsequent automatic plagiarism de-
tection work.

5.2 Experimental Setup

Due to ASR failures, a small number of responses
were excluded from the experiments; finally, a to-
tal of 1,551 canned and 66,257 control responses
were included in the simulated data. Since this
work was conducted on a very imbalanced data
set and only 2.3% of the responses in the simu-
lated data are authentic plagiarized ones confirmed
by human raters, 10-fold cross-validation was per-
formed first on the simulated data. Afterward, the
classification model built on the simulated data set
was further evaluated on a corpus with real opera-
tional data.

We employed the machine learning tool of
scikit-learn3 (Pedregosa et al., 2011), for train-
ing the classifier. It provides various classifica-
tion methods, such as decision tree, random for-
est, AdaBoost, etc. This study involves a variety of
features from two different categories, and prelim-
inary experiments demonstrated that the random
forest model can achieve the overall better perfor-

3SKLL, a python tool making the running of scikit-learn
experiments simpler, was used. Downloaded from https:
//github.com/EducationalTestingService/
skll.

440



mance. Therefore, the random forest method is
used to build classification models in the follow-
ing experiments, and the precision, recall, as well
as F1-score on the positive class (plagiarized re-
sponses) are used as the evaluation metrics.

5.3 Experimental Results

First, in order to verify the effectiveness of the
newly developed n-gram overlap features, a pre-
liminary experiment was conducted to compare
this set of features with BLEU-based features,
since they had been shown to be effective in pre-
vious research (Wang et al., 2016). The results as
shown in Table 3 indicate that the F1-Measure of
the n-gram features outperforms the BLEU fea-
tures (0.761 vs. 0.748), and the recall of the n-
gram features is higher than the BLEU features
(0.716 vs. 0.683); inversely, the BLEU features
result in higher precision (0.83 vs. 0.814). Ac-
cordingly, the n-gram features are used to replace
the BLEU ones, since it is more important to re-
duce the number of false negatives, i.e., improve
the recall, for our task.

Table 3: Comparison of n-gram and BLEU features.

Features Precision Recall F1
BLEU 0.83 0.683 0.748
n-gram 0.814 0.716 0.761

Furthermore, each individual type of feature
and their combinations were examined in the clas-
sification experiments described above. As shown
in Table 4, each feature set alone was used to build
classification models. The n-gram overlap fea-
tures result in the best performance with an F1-
score of 0.761, and the WMD features capturing
the topical relevance between word pairs result in
a much lower F1-score of 0.649. Furthermore,
the combination of both types of content similarity
features, i.e., n-gram and WMD, slightly reduces
the F1-score to 0.76. These results indicate that for
this particular task, the exact match of certain ex-
pressions appearing in both the test response and a
source material plays a critical role.

As to the speaking proficiency related features,
they can lead to a promising precision of 0.8 but
with a very low recall of 0.009. After reexamining
the assumption that human experts may be able
to differentiate prepared speech from fully spon-
taneous speech based on the way how the speech
is delivered, it turns out that it is quite challenging

Table 4: Classification performance using each individ-
ual feature set and their combinations.

Features Precision Recall F1
1. n-gram 0.814 0.716 0.761
2. WMD 0.663 0.636 0.649
3. SpeechRater 0.8 0.009 0.018
1 + 2 0.812 0.716 0.76
1 + 2 + 3 0.821 0.696 0.752

for human experts to make a reliable judgment of
plagiarism just based on the speech delivery with-
out any reference to the source materials, in par-
ticular, within the context of high-stakes language
assessment. Accordingly, the features capturing
the difference in speaking proficiency of prepared
and spontaneous speech can be used as contrib-
utory information to improve the accuracy of an
automatic detection system, but they are unable
to achieve promising performance alone. Also as
shown in Table 4, By adding the speaking profi-
ciency features, the precision can be improved to
0.821, but the recall is reduced; finally, the F1-
score is reduced to 0.752.

6 Employment in Operational Test

6.1 Operational Use
In order to obtain a more accurate estimate of how
well the automatic plagiarism detection system
might perform in a practical application in which
the distribution is expected to be heavily skewed
towards the non-plagiarized category, all test-taker
responses to independent prompts were collected
from a single administration of the speaking as-
sessment. In total, 13,516 independent responses
from 6,758 speakers were extracted for system
evaluation. We collected 39 responses confirmed
as plagiarized through the human review process,
which represents 0.29% of the data set.

In this particular task, automatic detection sys-
tems can be applied to support human raters,
where all potentially plagiarized responses can be
first automatically identified and then human ex-
perts can be involved to review flagged responses
and make the final decision about potential in-
stances of plagiarism. In this scenario, it is more
important to increase the number of true positives
flagged by the automated system; thus, recall of
plagiarized responses was used as the evaluation
metric, i.e., how many responses can be success-
fully detected among these 39 confirmed instances
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of plagiarism.

6.2 Results and Discussion

In order to maximize the recall of plagiarized re-
sponses for this review, several models were built
with either different types of features or different
types of classification models, for example, ran-
dom forest and Adaboost with decision tree as
the weak classifier, and then they were combined
in an ensemble manner to flag potentially plagia-
rized responses, i.e., a response is flagged if any
of the models detects it as a plagiarized response.
This ensemble system flagged 850 responses as in-
stances of plagiarism in total and achieved a recall
of 0.897, i.e., 35 of the confirmed plagiarized re-
sponses were successfully identified by the auto-
matic system and 4 of them were missed.

These results prove that the developed sys-
tem can provide a substantial benefit to both hu-
man and automated assessment of non-native spo-
ken English. Manual identification of plagia-
rized responses can be a very difficult and time-
consuming task, where human experts need to
memorize hundreds of source materials and com-
pare them to thousands of responses. By apply-
ing an automated system, potentially plagiarized
responses can first be filtered out of the standard
scoring pipeline; subsequently, experts can review
these flagged responses to confirm whether they
actually contain plagiarized material. Accord-
ingly, instead of reviewing all 13,516 responses
in this administration for plagiarized content, hu-
man effort is required only for the 850 flagged
responses, thus substantially reducing the overall
human effort. Thus, optimizing recall is appro-
priate in this targeted use case, since the number
of false positives is within an acceptable range for
the expert review. In addition, the source labels in-
dicating which source materials were likely used
in the preparation of each response are automati-
cally generated by the automatic system for each
suspected response; this information can help to
accelerate the manual review process.

7 Conclusion and Future Work

This study proposed a system which can bene-
fit a high-stakes assessment of English speaking
proficiency by automatically detecting potentially
plagiarized spoken responses, and investigated the
empirical effectiveness of two different types of
features. One is based on automatic plagiarism

detection methods commonly applied to written
texts, in which the content similarity between a
test response and a set of source materials col-
lected from human raters were measured. In addi-
tion, this study also adopted a set of features which
do not rely on the human effort involved in source
material collection and can be easily applied to un-
seen test questions. This type of feature attempts
to capture the difference in speech patterns be-
tween prepared responses and fully spontaneous
responses from the same speaker in a test. Finally,
the classification models were evaluated on a large
set of responses collected from an operational test,
and the experimental results demonstrate that the
automatic detection system can achieve an F1-
measure of 0.761. Further evaluation on the real
operational data also shows the effectiveness of
the automatic detection system.

The task of applying an automatic system in a
large-scale operational assessment is quite chal-
lenging since typically only a small number of pla-
giarized responses are distributed among a much
larger amount of non-plagiarized responses to a
wide range of different test questions. In the fu-
ture, we will continue our research efforts to im-
prove the automatic detection system along the
following lines. First, since deep learning tech-
niques have recently shown their effectiveness in
the fields of both speech processing and natural
language understanding, we will further explore
various deep learning techniques to improve the
metrics used to measure the content similarity be-
tween test responses and source materials. Next,
further analysis will be conducted to determine the
extent of differences between canned and sponta-
neous speech, and additional features will be ex-
plored based on the findings. In addition, another
focus is to build automatic tools to regularly up-
date the pool of source materials. Besides internet
search, new sources can also be detected by com-
paring all candidate responses from the same test
question, since different test takers may use the
same source to produce their canned responses.

References
S. M. Alzahrani, N. Salim, and A. Abraham. 2012.

Understanding plagiarism linguistic patterns, textual
features, and detection methods. IEEE Transaction
on Systems, Man, and Cybernetics-Part C: Applica-
tions and Reviews, 42(2):133–149.

S. Brin, J. Davis, and H. Garcia-Molina. 1995. Copy

442



detection mechanisms for digital documents. In
Proceedings of the ACM SIGMOD Annual Confer-
ence, pages 398–409.

C. Chen, J. Yeh, and H. Ke. 2010. Plagiarism detection
using ROUGE and WordNet. Journal of Computing,
2(3):34–44.

P. Cullen, A. French, and V. Jakeman. 2014. The Of-
ficial Cambridge Guide to IELTS. Cambridge Uni-
versity Press.

ETS. 2012. The Official Guide to the TOEFL R© Test,
Fourth Edition. McGraw-Hill.

Keelan Evanini and Xinhao Wang. 2014. Automatic
detection of plagiarized spoken responses. In Pro-
ceedings of the Ninth Workshop on Innovative Use of
NLP for Building Educational Applications, pages
22–27.

A. Finch, Y. Hwang, and E. Sumita. 2005. Using ma-
chine translation evaluation techniques to determine
sentence-level semantic equivalence. In Proceed-
ings of the Third International Workshop on Para-
phrasing, pages 17–24.

A. Hauptmann. 2006. Automatic spoken document re-
trieval. In Ketih Brown, editor, Encylclopedia of
Language and Linguistics (Second Edition), pages
95–103. Elsevier Science.

T. C. Hoad and J. Zobel. 2003. Methods for identi-
fying versioned and plagiarised documents. Journal
of the American Society for Information Science and
Technology, 54:203–215.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian
Weinberger. 2015. From word embeddings to doc-
ument distances. In Proceedings of the 32nd In-
ternational Conference on Machine Learning, vol-
ume 37 of Proceedings of Machine Learning Re-
search, pages 957–966, Lille, France.

P. Longman. 2010. The Official Guide to Pearson Test
of English Academic. Pearson Education ESL.

C. Lyon, R. Barrett, and J. Malcolm. 2006. Plagiarism
is easy, but also easy to detect. Plagiary, 1:57–65.

N. Madnani, J. Tetreault, and M. Chodorow. 2012.
Re-examining machine translation metrics for para-
phrase identification. In Proceedings of the 2012
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 182–190, Montréal,
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Abstract

There is a long record of research on equity
in schools. As machine learning researchers
begin to study fairness and bias in earnest, lan-
guage technologies in education have an un-
usually strong theoretical and applied foun-
dation to build on. Here, we introduce con-
cepts from culturally relevant pedagogy and
other frameworks for teaching and learning,
and identify future work on equity in NLP. We
present case studies in a range of topics like
intelligent tutoring systems, computer-assisted
language learning, automated essay scoring,
and sentiment analysis in classrooms, and pro-
vide an actionable agenda for research.

1 Introduction

Researchers across machine learning applications
are finding unintended outcomes from their sys-
tems, with inequitable or even unethical impacts
(Barocas and Selbst, 2016). We are at an inflec-
tion point in the study of fair machine learning;
popular science publications are shedding light on
the widespread impacts of algorithmic bias (No-
ble, 2018; Eubanks, 2018; Angwin et al., 2016)
and specialized technical conferences like ACM
FAT*1 and FATML2 now provide methods and
examples of research addressing ethics in model
bias, the design of datasets, and user interfaces for
algorithmic interventions. “Impact” investing in
educational technology3 has grown (Gates Foun-
dation and Chan Zuckerberg Initiative, 2019) and
these machine learning tools are now pervasive in
educational decision-making (Wan, 2019). Yet in
recent literature reviews of NLP in edtech, the fo-
cus has been on narrowly scoped technical topics,
like speech (Eskenazi, 2009) or text and chat data
(Litman, 2016), but crucially, do not address eq-
uity issues more broadly. NLP applications are

1https://fatconference.org/2019/
2http://www.fatml.org/
3From this point forward, abbreviated as “edtech.”

mainstays in schools and have great reach, a trend
poised to accelerate with the adoption of interac-
tive, language-enabled devices like Alexa, both at
home and in the classroom (Ziegeldorf et al., 2014;
Horn, 2018; Boccella, 2019). As a field, we risk
unwittingly contributing to harm for learners if we
don’t understand the ethical consequences of our
research – but we don’t have to start from scratch.

Education philosophers have long advocated for
equity in schooling for all learners (Dewey, 1923;
Freire, 1970), and over decades, have built rich
pedagogies to accomplish goals of social justice
for students (Ladson-Billings, 1995); this work
has flourished in progressive schools (Morrell,
2015; Paris and Alim, 2017). Developers of edtech
have already moved from technological innova-
tion for its own sake, to a focus on efficacy and
learning analytics, tying educational data mining
to specific student outcomes (Baker and Inven-
tado, 2014). This paper presents a roadmap for
now incorporating equity into the design, evalua-
tion, and implementation of those systems.

In sections 2 and 3 we give overviews of exist-
ing research, first on fair machine learning, then on
social justice pedagogies in education. The bulk of
our new contributions are in section 4-7, where we
describe key problem areas for NLP researchers in
education. We conclude with practical recommen-
dations in section 8.

2 Primer on Fair Machine Learning

The topic of ethics in technology dates back to
decades ago (Winner, 1989); but uptake of conver-
sations about building equitable algorithmic sys-
tems is fairly recent. The existing literature pri-
oritizes topics of bias and fairness, mostly based
on what some have called “allocational harm”
(Crawford, 2017). Researchers measure the dis-
tribution of outcomes produced by automated
decision-making, and evaluate whether subgroups
received proportional shares of a resource being
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distributed - bail release recommendations, ap-
proval for a mortgage, high test scores, and so on.
Over and over, differential outcomes have been
tied to biased modeling along demographic lines
like gender, race, and age (Friedler et al., 2019).

Some have questioned the value of fairness re-
search, arguing that machine learning may simply
reproduce existing distributions, rather than cause
harm in itself (see Mittelstadt et al. (2016) for an
overview of this debate). But high-profile research
has repeatedly shown an amplifying effect of ma-
chine learning on concrete real-world outcomes,
like racial bias in recidivism prediction in judicial
hearings (Corbett-Davies et al., 2017), or dispro-
portionate error from facial recognition for dark
skin tones, particularly among individuals identi-
fying as female (Buolamwini and Gebru, 2018).

Fairness work in NLP has focused particularly
in dense semantic representations at the lexical or
sentence level. In learned embeddings of meaning,
bias exists along race and gender lines (Caliskan
et al., 2017; Garg et al., 2018) and is passed
downstream, producing biased outcomes for tasks
like coreference resolution (Zhao et al., 2018a),
sentiment analysis (Kiritchenko and Mohammad,
2018), search (Romanov et al., 2019), and dia-
logue systems (Voigt et al., 2018; Henderson et al.,
2018). Research beyond metrics, analyzing the
broader social impact of biased NLP, has also be-
gun (Hovy and Spruit, 2016).

Many of these problems stem from training data
selection; models trained on standard written pro-
fessional English, like the Penn Treebank (Mar-
cus et al., 1993), fail to transfer to other writ-
ing styles, especially online where research sug-
gests that NLP performance is degraded for under-
represented language groups, like African Ameri-
can English (Petrov and McDonald, 2012; Blod-
gett et al., 2017). Early work on “de-biasing”
NLP has begun, seeking to reduce the amplifica-
tion of bias in dense word embeddings (Boluk-
basi et al., 2016; Zhao et al., 2017, 2018b); but
early results still leave room for improvement (Go-
nen and Goldberg, 2019). Accounting for dialects
and other language variation has been moderately
more successful, with examples in speech recog-
nition (Kraljic et al., 2008), parsing (Gimpel et al.,
2011), and classification (Jurgens et al., 2017).

There are many open questions. Chouldechova
(2017) and Corbett-Davies and Goel (2018) work
to even define fairness, giving several proposals;

but related research has shown these definitions
are brittle. Classifiers may trivially fail to main-
tain fairness properties when the output from one
classifier is used as input for another, for instance
(Dwork and Ilvento, 2018), or even worsen dis-
parate outcomes after iterating on algorithmic pre-
dictions over time (Liu et al., 2018). Research
in computational ethics (Hooker and Kim, 2018)
may give some guidelines for the NLP commu-
nity broadly, and work on richer formal systems of
guarantees on fairness is underway (Kearns et al.,
2019); but while this research is ongoing, devel-
opers continue to build systems. For NLP re-
searchers working in education, specifically, a key
resource will be the long tradition of educational
equity research and praxis that exists today, and is
being practiced in schools already.

3 Equity in Education Research

Machine learning research in general tends to fo-
cus on recent publication; to counteract this and
set a longer-term context, in the following section
we explain the historical background on learning
science research that considers socio-cultural di-
mensions of learning and their implications for eq-
uity, work that motivates our recommendations for
technologists building educational interventions.

3.1 Sociocultural and Critical Perspectives

While much of the earliest work on learning sci-
ence was purely behaviorist, the field’s expansion
into sociocultural factors that affect learning is old,
beginning nearly a century ago. Driven by Marxist
philosopher and psychologist Lev Vygotsky, the
gaze of research shifted from inner processes of
the mind to interactions between students and their
cultural context and practices (Moll, 1992). This
tradition drove research into individual develop-
ment via socially-mediated processes of learning
(Chaiklin, 2003). The mediated learning experi-
ence is done via a process of scaffolding what the
learner knows and what they need help on, in their
“zone of proximal development” (Hammond and
Gibbons, 2005). This work also acknowledged
the connection between formal school education
and informal education in the world (Scribner and
Cole, 1973), and introduced the idea of learning
as a social process in which students build identity
(Wenger, 2010). This conceptual framework now
dominate the scientific discourse on sociocultural
research in edtech systems (Aleven et al., 2016).
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The sociocultural paradigm from Vygotsky has
humanized education compared to purely behav-
iorist approaches; meanwhile, parallel work in the
emerging field of critical pedagogy was taking
more aggressive steps. Led by Brazilian educa-
tional and social philosopher Freire (1970), this
work argued that formal schooling was an ideo-
logical system for preserving existing power struc-
tures, that treats students as receptacles to be filled
with culturally dominant views (i.e. a “banking”
model), rather than giving students the opportu-
nity to learn topics of intrinsic meaning to them.
This alternate approach led to unprecedented gains
in adult literacy during the twentieth century, par-
ticularly in Brazil (Kirkendall, 2010) and in Cuba
(Samuel and Williams, 2016), demonstrating what
pedagogical theorists described as liberatory ed-
ucation and critical consciousness (Freire, 1985).
This, and later work by critical theorists like hooks
(2003), critiqued the banking model where learn-
ing is viewed as providing neutral information to
students. Critical pedagogy instead views teach-
ing as a fundamentally political process, where
students may engage with topics from their life,
ask questions about their contexts, and identify
systemic power relations and institutions. When
applied in school contexts, this approach success-
fully reaches students typically left behind in more
mainstream pedagogies (Morrell, 2015).

Multiculturalist approaches to education build
on this, drawing from cultural, ethnic, and wom-
ens studies to teach by drawing on students’ own
cultural history and practices. The goal is to
promote equity through learning within a stu-
dent’s community and culture, producing a cultur-
ally sustaining pedagogy (Ladson-Billings, 1995).
This approach necessitates educators who come
from, or are deeply competent in, the cultural
norms and expressions of their students, creating
content and opportunities that allow students to
connect with learning in an affirming way. By giv-
ing students tools to engage with and critique soci-
ety, the most recent approaches continue to enable
student growth (Paris and Alim, 2017).

3.2 Application to Algorithms in Edtech

These perspectives can be hard to align with
technological interventions. As direct critiques
of dominant ideologies and institutions that le-
gitimate and maintain inequality for students,
their language is more forceful than most ma-

chine learning research. Unlike fairness liter-
ature in computer science venues, these works
explicitly describe existing practices as based in
white supremacist patriarchy, heteronormativity,
and colonialism. This makes these pedagogies
more expressive, capable of defining a path for-
ward for equitable technologies; but it also makes
them more suspicious of interventions that scale
without local context and cultural knowledge.

However, educators have successfully applied
these principles in technology-oriented work.
Mislevy et al. (2009) shows how critical analy-
sis can support and define assessment; Morris and
Stommel (2018) uses them to develop a digital
pedagogy. The Gordon Commission shows how
critical work can be a basis for development of
adaptive learning systems (Armour-Thomas and
Gordon, 2013). Across these and other applica-
tions, some principles are immediately clear:

• A shift in the goal of assessment, from mea-
suring static knowledge to assessing forma-
tive process, acknowledging student growth
at least as much as facts they have “banked.”

• A vocabulary and willingness to describe ex-
isting systems as oppressive for students, on
lines of race, economic class, gender, physi-
cal abilities, and other aspects of identity.

• A demand for cultural competence from the
teachers and designers of learning systems,
aligning the creators of educational environ-
ments with the students they teach.

The remainder of our paper summarizes key
recommendations that lead from these principles.
We reference them in the hope that researchers
will move their conversations about equity in ma-
chine learning beyond model bias and allocational
harm for subgroups. Such work is vital and the
task of bias measurement is not solved yet, but
researchers are already racing to build tools for
these problems. Madnani et al. (2017), for in-
stance, presents a capable tool for evaluating fair
outcomes in automated essay scoring. It would
be a mistake to focus on bias alone Given exist-
ing pedagogical work on equity and its focus on
learning through dialogue, critical discourse, and
action, we can propose broader mindset shifts for
researchers. Our goal is to avoid harm to students
and prevent expenditure of resources on research
that maintains inequity rather than closing gaps in
achievement across student populations.
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4 Avoiding Representational Harms

First, beyond allocational harm, there are “rep-
resentational harms” in machine learning (Craw-
ford, 2017). This class of issues includes the ways
in which technologies represent groups of people
or cultures. This may take the form of search
results returning stereotypical images of minori-
ties (Noble, 2018) or other algorithmic stereotyp-
ing (Abbasi et al., 2019); much of the work in
word embeddings falls into this category (Caliskan
et al., 2017), though research on downstream tasks
and outcomes often have more allocational focus.
Machine learning may also marginalize groups
by simply not representing their culture, resulting
in educational systems where learners do not see
themselves in the texts selected by instructors.

These harms can exist even when no disparate
outcomes are observed, and even if there is no
measured gap in predictive accuracy of models
(Binns, 2018). Students whose cultural back-
ground is in the minority in a classroom are less
prone to participate in teacher-student interactions
(Tatum et al., 2013) and in student group dis-
cussion (White, 2011); these variations are pre-
dictable by gender, race, and nationality (Eddy
et al., 2015). We also know that instructor credibil-
ity is tied to demographics (Bavishi et al., 2010),
as are student evaluations of a teacher’s trustwor-
thiness and caring (Finn et al., 2009).

4.1 Case Study: Agent-based Intelligent
Tutoring Systems

In intelligent tutoring systems (ITS), a human-
like agent or visual avatar engages with students
through text or speech. These systems now pair
natural language instruction with parasocial fea-
tures (Lubold et al., 2018) and mimicking nu-
anced human behaviors like finding “teachable
moments” (Nye et al., 2014). They are used indi-
vidually or with groups of students (Kumar et al.,
2007) and to provide narrowly targeted support for
Autistic students (Nojavanasghari et al., 2017) and
deaf students (Scassellati et al., 2018).

When these pedagogical agents are used with
students, regardless of if they play the role of tu-
tors, coaches, or peers (Baylor and Kim, 2005),
representation matters. Decisions for agents’ ap-
pearance, language, and behavior may impact
learners’ perceptions of the cultural identity of the
agents (Haake and Gulz, 2008), and may impact
learners perceptions of their own belongingness

and identity (cf. (Fordham and Ogbu, 1986)). Past
work on agent representation also lacks alignment
with modern understanding of identity, relying on
binary definitions of gender (West and Zimmer-
man, 1987; Keyes, 2018) and failing to account for
identities at the intersection of multiple marginal-
ized groups (Crenshaw, 1990), especially in less
developed countries (Wong-Villacres et al., 2018).

Incorporating representation improves embod-
ied tutors, with improved student outcomes
(Finkelstein et al., 2013). One of the simplest,
most valuable steps for developers of ITS agents is
to view the choice of the agent’s identity presen-
tation (identity factors such as race, appearance,
voice, language, gender) as a non-neutral, polit-
ical choice. The agents designed by researchers
express to students beliefs about what a “model
teacher” or “model student” look and sound like.
Pracitioners and researchers alike often have great
flexibility, at no additional expense, to intention-
ally design of the characters and content of the ap-
plications they create. This is different from the
models themselves in a machine learning system,
which rely on expensive training data, and which
are often pretrained before development even be-
gins, making it an attractive and high-leverage
point for technologists to intervene.

5 Culturally Relevant Pedagogy

A lack of representation more broadly has con-
tributed to an educational curriculum that privi-
leges dominant cultures and which actively harms
student engagement. The consequences are con-
crete - for instance, in recent bans on Chicano
texts in the Southwest United States (Wanberg,
2013). One can draw a straight line back to his-
torical policies that have devalued cultures, partic-
ularly for indigenous populations (Adams, 1995)
and descendants of Black slaves (Alim et al., 2016;
Lanehart, 1998). Historically, students coming
from marginalized cultures have been measured
by a “deficit model” (Brannon et al., 2008), where
their home culture was viewed merely as a lack of
knowledge about the dominant majority culture.

But there are alternatives in the existing peda-
gogy literature, like Moll et al. (2005)’s “funds of
knowledge” model. This approach defines the ac-
cumulated and culturally developed bodies of in-
formation and skills that students learn at home
and in their communities, essential to their func-
tioning and well-being. An equitable approach
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treats cultural knowledge instead as an asset, and
allows students to build on what they know. This
extends to technologies used in the everyday lives,
homes, and communities of students - influencing
their ability to impact student learning outcomes.

5.1 Case Study: Reading Comprehension

For early readers, speech recognition systems have
been developed for children’s voice and language
(Gerosa et al., 2009) and are used to improve stu-
dents’ early reading skills (Mostow et al., 2003),
or for speech-based vocabulary practice (Kumar
et al., 2012). Yet these systems are often unable
to generate questions for texts from nonstandard
linguistic groups (e.g. with the syntactic and mor-
phological transformations in African-American
English (Siegel, 2001)). Systems today may also
fail to recognize speech from students speaking
certain dialects or accents, though progress in
recognition for marginalized language variation is
improving rapidly (Blodgett et al., 2016; Stewart,
2014; Jørgensen et al., 2015).

After basic literacy skills are acquired, NLP
tools for language understanding are widely
used to generate reading comprehension questions
(Heilman and Smith, 2010). NLP is also used in
related tasks like the measurement of readability
(Aluisio et al., 2010; Vajjala and Meurers, 2012),
and generation of simplified texts to differenti-
ate homework based on student ability (Xu et al.,
2015). But from a pedagogy perspective, content
from these systems may be inappropriate - for in-
stance, the questions generated are often factual
rather than encouraging critical thinking (Rick-
ford, 2001). This format does not measure stu-
dent skills equally across cultures, and particularly
under-reports progress in students of color, who
tend to thrive when assessed through naturalistic
narrative (Fagundes et al., 1998).

In pursuit of more reliable automated assess-
ment, comprehension tasks may also fail to prior-
itize growth in student ability. Struggling readers
understand texts more effectively when they are
given chances to initiate dialogues and ask ques-
tions about texts, with teachers acting as listen-
ers rather than ask their own questions about texts
(Yopp, 1988). Teachers have difficulty creating
these interactions (Allington, 2005), and intelli-
gent agents have at least the potential for scaffold-
ing tasks through real-time support for students
as they perform their own tasks (Adamson et al.,

2014). But to date, work has primarily focused
on factoid assessment (Mostow and Jang, 2012;
Zesch and Melamud, 2014; Wojatzki et al., 2016).
This is an opportunity for future equitable NLP re-
search at the intersection of ITS agents and read-
ing comprehension. Additionally, coaching teach-
ers to perform these dialogues has potential to fill
in gaps in professional development and preser-
vice training (Gerritsen et al., 2018), further in-
centivizing development of culturally responsive
reading comprehension.

5.2 Case Study: Automated Writing
Feedback and Scoring

Algorithmic assessment of student writing has
taken many forms, from summative use in stan-
dardized testing (Shermis and Hamner, 2012) and
the GRE (Chen et al., 2016) to formative use for
classroom feedback (Woods et al., 2017; Wilson
and Roscoe, 2019). This trend has led to so-
phisticated NLP analyses like argument mining
(Nguyen and Litman, 2018) and rhetorical struc-
ture detection (Fiacco et al., 2019). Automated
scoring has seen some more limited use in higher
education, as well (Cotos, 2014; Johnson et al.,
2017). For writers who are proficient or already
working in professional settings, language tech-
nologies provide scaffolds like grammatical error
detection and correction (Ng et al., 2014). These
systems are enabled by rubrics, which give con-
sistent and clear goals for writers (Reddy and An-
drade, 2010). Rubric-based writing has drawbacks
like rigid formulation of tasks (Warner, 2018),
and many applications of rubrics are rooted in a
racialized history difficult for technology to escape
(Dixon-Román et al., 2019).

Bias creeps into rubric writing and scoring of
training data, unless extensive countermeasures
are taken to maintain reliability across student
backgrounds and varied response types (Loukina
et al., 2018; West-Smith et al., 2018). It also limits
flexibility in task choice and response type from
students, limiting students to writing styles that
mirror the norms of the dominant school culture.
Developers have an opportunity for equity work
here, to the extent that they have leverage over
task definition and training data collection (Lehr
and Ohm, 2017; Holstein et al., 2018). Automated
feedback systems may be improved through tasks
that are flexible, and give culturally aligned oppor-
tunities for topic selection and choice; feedback

448



on rubrics that align to student “funds of knowl-
edge” rather than the often-racialized language of
deficits; and collaborative opportunities to share
their work, receiving feedback that extends be-
yond algorithmic response.

6 Avoiding Linguistic Imperialism

Beyond selection of which content to teach, a
broader issue is the focus of most language edu-
cation globally on English and other prestige lan-
guages. This creates a privileged medium of com-
munication and learning, and is rooted in colonial-
ism; see for instance English’s position over re-
gional languages in India (Hornberger and Vaish,
2009) and the similar role of Afrikaans in South
Africa (Heugh, 1995; Alim and Haupt, 2017); as
well as how this extends to modern geopolitics in
regions like Asia, with Han Chinese (He, 2013). In
presumed-monolingual environments where stu-
dents already speak the dominant language at
home, this same effect plays out in dialects; ex-
amples include the privileging of white American
or British dialects over stigmatized dialects like
African-American Vernacular English in Amer-
ica (Henderson, 1996; Siegel, 2001), or the role
of Classical Arabic as a prestige language over
regional variants across the Arab world (Haeri,
2000). In language policy, this privileged position
of a dominant language has been described as “lin-
guistic imperialism” (Phillipson, 1992).

This dominant position of specific languages,
especially English, comes despite cognitive
science findings that bilingualism and code-
switching ability has a marked positive effect on
cognitive function (Petitto et al., 2012; Kroll and
Bialystok, 2013) and may even have a positive
economic effect on lifetime earnings (Agirdag,
2014). Moreover, language learning can promote
new language acquisition while preserving respect
for the learner’s home language (or “heritage”
language), helping learners to selectively choose
when and how to communicate in each. Peda-
gogies exist which value pragmatic, socially con-
scious use of code-switching in mixed linguistic
environments (Wang and Mansouri, 2017); these
techniques are applicable to NLP.

6.1 Case Study: Computer-Assisted
Language Learning

Computer-Assisted Language Learning, or CALL
(Thomas et al., 2012), is an effective use of lan-

guage technologies for vocabulary-building, pro-
nunciation training, and practice through speech
recognition, and other less common tasks (Witt,
2012; Levy and Stockwell, 2013). Language
learning is a convenient fit for quantification,
rapid experimentation (Presson et al., 2013),
large dataset collection through “learner corpora”
(Meurers, 2015), and fine-grained descriptions
of progress through second language acquisition
modeling (Settles et al., 2018). For second lan-
guage teachers, NLP can improve their language
awareness and skills (Burstein et al., 2014); for
individual learners, language learning is highly
personalizable and can be gamified for motiva-
tion and engagement (Munday, 2016). Machine
learning models are also a good fit for summa-
tive assessment of student skill, and is used both
in speech (Chen et al., 2018) and writing (Ghosh
et al., 2016), including on high-stakes exams like
the TOEFL (Chodorow and Burstein, 2004).

These systems make numerous design choices
to implicitly or explicitly reject the grammar and
lexicon of minority dialects. Typically, code-
switching is neither taught as a skill nor supported
as input. The relative sparsity of data for these
variations may have resulted in unacceptable mod-
eling accuracy in the past (Blodgett et al., 2016),
but we are now closing that gap (Dalmia et al.,
2018; Sitaram et al., 2019). For this field, an equi-
table language technologies agenda would seek to
support rather than penalize these pragmatic skills.
Such work can take place at multiple levels, be-
ginning in early vocabulary work but particularly
excelling in more sophisticated, scenario-driven
practice for intermediate and advanced learners.

7 Surveillance Capitalism in Edtech

If we accept the premise that dominance hierar-
chies play a key role in education, it follows to
acknowledge large-scale edtech that tracks stu-
dents’ activity in real time as one instantiation
of “surveillance capitalism” in schools (Zuboff,
2015). Recent evaluations suggest that when stu-
dents are aware of such systems in use, they re-
port being anxious, paranoid, and afraid of long-
term repercussions for undesirable behavior (Yu-
jie, 2019). This may lead to short-term undesir-
able changes in students’ behavior or expression
to “game” algorithmic systems (cf. (Baker et al.,
2008)). Effects may be greater in the long-term,
with potential consequences to students’ mental
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health from always-on affect monitoring.
This presents an intersection for NLP to col-

laborate with information security and privacy re-
searchers. Those fields are active in education,
and the field has developed deep protections for
students’ personally identifiable data, enforced in
America through laws like COPPA and FERPA
(Regan and Jesse, 2018). While these laws do
have gaps (Parks, 2017), they are largely robust
and respected by technologists. More recent ac-
tions like the EU General Data Protection Regu-
lation (GDPR) have also had meaningful impact
on NLP research and data collection (Lewis et al.,
2017). Legally, aggregating student data in order
to develop and improve edtech provides a bene-
fit to students and thus does not violate any law
(Brinkman, 2013) — but scholars continue to ask
ethical questions on how to account for student
privacy and control (Morris and Stommel, 2018),
and what data is being collected (Mieskes, 2017).

As always-on systems monitor students
throughout their school day and beyond, these
questions of student privacy and control become
compounded in scope and complexity. Addition-
ally, continuous monitoring impacts students’
behavior and well-being: behavioral science has
established that people change their actions when
they are being observed (Harris and Lahey, 1982).
Now, we must understand the impact when the
observer is algorithmic.

7.1 Case Study: Student Engagement and
Sentiment Analysis

One of the most common tasks in NLP research,
for education and elsewhere, is sentiment and
emotion recognition. This is important for educa-
tion, both for design of affect-oriented curriculum
(Taylor et al., 2017) and funding for socioemo-
tional skills (Chan Zuckerberg Initiative, 2018).
This recent turn is driven by promising initial re-
sults of efficacy from socioemotional interventions
in schools (Dougherty and Sharkey, 2017). Mea-
suring instantaneous student affective states is not
only possible to reliably annotate, but also appears
broadly possible to automatically infer (Yu et al.,
2017); affect-aware tutoring systems are the sub-
ject of widespread research (Woolf et al., 2009;
DMello and Graesser, 2012). In text-only settings
online, sentiment has been a key part of predic-
tion of attrition rates in MOOCs (Yang et al., 2013;
Wen et al., 2014), especially when combined with

micro-level instantaneous data like clickstream
events (Crossley et al., 2016). These systems are
now moving from data collected in text-only or
tech-only environments, to multimodal data col-
lected by always-on platforms like Alexa (Boc-
cella, 2019) and emerging video monitoring plat-
forms like the ”Class Care System” (Yujie, 2019).

With this broad trend, we should question the
implications of these systems as part of a move to-
wards surveillance and monitoring, and their po-
tential for impact on learners’ well-being and be-
havior. Multimodal data are increasingly used
to inform sentiment and affect detection algo-
rithms (Yu et al., 2017; DMello and Graesser,
2012; Woolf et al., 2009), but these algorithms are
known to produce discriminatory results, with dis-
parate outcomes by gender (Volkova et al., 2013),
race (Kiritchenko and Mohammad, 2018), and age
(Dı́az et al., 2018), perpetuating a quantifiable
trend of disproportionate surveillance impact for
people of color (Voigt et al., 2017). In a par-
ticularly illuminating example of bias introduced
during corpus creation, Okur et al. (2018) found
that experts from one culture radically misclassify
affective states when they do not share the same
cultural background as their subjects. A primary
question for educational affect-detection systems
will be to identify whether and how these discrim-
inatory results replicate in educational systems,
and will only become more urgent as real-time
data from cameras, microphones, and other tech-
nologies become ubiquitous in the classroom.

8 An Equity Agenda

8.1 Representation on Teams

A theme of our review is that cultural represen-
tations should be built into NLP systems; here,
though, we refer back to critical pedagogy’s de-
mand for cultural competence on the builders of
these systems. Digital embodiment of characters
from marginalized identities, developed by tech-
nologists without a background in those commu-
nities’ culture and practices, runs significant risks
of negative impacts and appropriation, or “digi-
tal Blackface” (Green, 2006). When NLP inter-
ventions mirror student cultures in purely perfor-
mative ways, that representation is unlikely to be
meaningful; indeed, it may worsen student en-
gagement with agent-based systems. But these
downfalls can be avoided through teams with “cul-
tural competence” through lived experience and
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group membership shared with the students they
are building applications for.

A lack of diversity on research teams is a key
contributor to discriminatory outcomes of ma-
chine learning systems in practice (West et al.,
2019). Representational harms can be avoided
by bringing those voices directly into the devel-
opment of systems. Many of the challenges we
have laid out are second nature to researchers with
a cultural background in the communities that they
seek to serve; having those voices in empowered
positions during development can help make these
issues salient before they are implemented - pro-
vided these voices are heard and empowered dur-
ing the design process (cf. Holstein et al. (2018)).

8.2 Intentional Science Communication

As researchers, our work always has the poten-
tial to “go viral” and reshape public discourse. To
illustrate, we can look to early language acquisi-
tion. In Hart and Risley (1995), researchers promi-
nently reported findings of a “30-million word
gap” for children raised in lower-class, predomi-
nantly Black households, hindering their literacy
development. Later research showed this gap was
likely overstated by an order of magnitude (Gilker-
son et al., 2017), and likely excluded race-related
environmental factors like bystander talk (Sperry
et al., 2018). The discourse that emerged was
largely discriminatory towards poor parents from
minority backgrounds (Avineri et al., 2015).

But scientists can also cautiously understate
results in public - most prominently in climate
change policy and climate denialism (Dunlap,
2013). In other fields, collective action by re-
searchers has produced unified stands on how their
technology should be used ethically, as in the use
of gene-editing tool CRISPR to modify unborn
children - an action that evoked unified condemna-
tion from governments (Collins, 2018), public fig-
ures (Lovell-Badge, 2019), and peer researchers in
China4. Understanding the wider implications of
research findings on NLP in education and posi-
tioning that work to have maximal impact is part of
the job of effective science writing. Each circum-
stance is specific and there are no universal best
practices - the key is to emphasize findings that are
well-grounded in results, and to be intentional in
how researchers encourage stories to evolve from
those findings.

4https://www.yicai.com/news/100067069.html

8.3 Transparency and Regulation

If we do not take collective stances on ethical
NLP in education from within our community, en-
forcement may instead come from external reg-
ulation. Some have argued this is a useful tool
for enforcing accountability on algorithmic sys-
tems. Prior work has proposed regulatory frame-
works that may serve as guidance (Whittaker et al.,
2018); legal frameworks for these questions are al-
ready being developed (Kroll et al., 2016); bills
are being introduced into the US Senate (Farivar,
2019). Potential outcomes include waiving trade
secrecy for data science companies, or applying
“truth-in-advertising” laws to AI systems. These
may be general, or may prioritize specific focus
areas like affect recognition.

Should we move in this direction, research
will need to support regulation, improving trans-
parency and governance of algorithmic predic-
tions. NLP researchers have aggressively stud-
ied interpretability, offering explanation of results
rather than predictions alone (Guidotti et al., 2018)
- linguistic information is captured by newer neu-
ral language models of text (Conneau et al., 2018;
Sommerauer and Fokkens, 2018) and speech (El-
loumi et al., 2018; Krug and Stober, 2018), read-
ing comprehension (Kaushik and Lipton, 2018),
and machine translation (Shi et al., 2016; Ra-
ganato and Tiedemann, 2018; Belinkov and Glass,
2019). Other work focuses on replication, al-
lowing consistent tying of modeling choices to
changes in behavior (Dror et al., 2017, 2018).

But the connection to liability is rarely made
explicit, and is worth emphasis. These tools are
not just useful for error analysis and optimization
of model performance; they will also be a crit-
ical step towards liability for harmful decisions
made by algorithms, which cannot alter behav-
ior if it cannot be traced and enforced (Ananny
and Crawford, 2018). Governance can also come
from somewhere in between collective action and
national-level regulation. Some have proposed
best practices for ethical industry research in NLP,
mirroring IRB processes in universities (Leidner
and Plachouras, 2017). This approach would as-
sign responsibility during research, limiting exper-
iments on users of commercial products. Either
unregulated software will cause harm to students
and teachers, or regulation and accountability to
prevent inequitable use will come from some-
where. There is a spectrum of options for NLP,
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from interpretability and self-governance to top-
down regulation. It would be better for researchers
to be at the forefront of that conversation.

8.4 Defining Boundaries for Software

As our last recommendation, researchers should
acknowledge the “solutionism” trap endemic in
technical research, which assumes that there is a
methodological change that could fix any problem
while maintaining the primacy of our algorithmic
solutions (Selbst et al., 2019). Some activists ad-
vocate for leaving certain problems unresearched
entirely, due to their intrinsic and systemic risk of
harm for marginalized populations — see for in-
stance this discussion in the case of facial recog-
nition software, in Whittaker et al. (2018). Some-
times, machine learning systems will not be the
right way to solve problems. A valuable contribu-
tion of future work will be to better lay out the tax-
onomies of ethics and equity that apply to NLP re-
search, following work that has begun in algorith-
mic systems more broadly (Ananny, 2016). This
will allow researchers to make consistent choices
about which problems are tractable with techno-
logical solutions, rather than addressing each new
problem in an ad hoc fashion (Chancellor et al.,
2019). This can only improve the quality of the
products we do choose to build.

9 Conclusion

Machine learning has made many promises that
are going to be difficult to fulfill. Throughout the
1960s and 1970s, science fiction author Arthur C.
Clarke described the aim of technology in educa-
tion to be: “Any teacher that can be replaced by
a machine should be.” (Bayne, 2015). As late as
2015, adaptive learning companies like Knewton
argued in favor of “robot tutors in the sky that can
semi-read your mind” to replace traditional teach-
ers (Westervelt, 2015). While this language has
become more muted in recent years, the promise
of AI and attached hype for our work is at an all-
time peak. Language technologies in education
have the potential to enable equity in the “peda-
gogical troika” of teaching, learning, and assess-
ment (Gordon and Rajagopalan, 2016). While that
potential is great, reifying existing power hierar-
chies is easy to do by accident or by choice; we
hope researchers will resist simple answers, and
build equity into future work from the start.
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Abstract

Knowing how to use words appropriately has
been a key to improving language proficiency.
Previous studies typically discuss how stu-
dents learn receptively to select the correct
candidate from a set of confusing words in
the fill-in-the-blank task where specific con-
text is given. In this paper, we go one step fur-
ther, assisting students to learn to use confus-
ing words appropriately in a productive task:
sentence translation. We leverage the GiveMe-
Example system, which suggests example sen-
tences for each confusing word, to achieve this
goal. In this study, students learn to differenti-
ate the confusing words by reading the exam-
ple sentences, and then choose the appropriate
word(s) to complete the sentence translation
task. Results show students made substantial
progress in terms of sentence structure. In ad-
dition, highly proficient students better man-
aged to learn confusing words. In view of the
influence of the first language on learners, we
further propose an effective approach to im-
prove the quality of the suggested sentences.

1 Introduction

In second or foreign language learning, learn-
ing synonyms is not uncommon in vocabulary
learning (Hashemi and Gowdasiaei, 2005; Webb,
2007). However, clear differentiation and proper
use of near-synonyms poses a challenge to many
language learners (Laufer, 1990; Tinkham, 1993;
Waring, 1997). Researchers have investigated lan-
guage learners’ lexical use problems, e.g., (Chen
and Lin, 2011; Hemchua et al., 2006; Yan-
juan, 2014; Laufer, 1990; Tinkham, 1993; War-
ing, 1997; Yeh et al., 2007; Zughoul, 1991)
and suggested that discriminating among seman-
tically similar items presents difficulties for learn-
ers (Laufer, 1990). For example, Zughoul (1991)
analyzed the writings of Arab EFL college stu-
dents and found that misapplication of near-

synonyms was the most common type of word
choice error made by his students. Likewise,
Hemchua and Schmitt (2006) investigated lexical
error types in the writings of Thai college students
and found that the use of near-synonyms was the
most common error made by their students.

Learners are prone to assuming that synonyms
behave identically in all contexts (Martin, 1984).
Actually, even though two words may share sim-
ilar meanings, they may not be fully substitutable
in certain scenarios (Edmonds and Hirst, 2002;
Karlsson, 2014; Liu and Zhong, 2014; Martin,
1984; Webb, 2007). Synonyms are highly likely
to confuse learners (Martin, 1984). For example,
both emphasis and stress describe “special atten-
tion or importance”. The verbs lay, place, and put
can collocate with “emphasis on” and “stress on”;
however, “place stress on” is a rare expression (it
occurs only once in the British National Corpus).
For ESL/EFL learners, correct word usage neces-
sitates not only knowledge of the meaning of a
word but also knowledge of its paradigmatic and
syntagmatic association. Without usage informa-
tion, synonyms “usually leave the student mysti-
fied” (Martin, 1984). Verbs construct and estab-
lish illustrate the fact that synonyms do not always
have the same collocates (Webb, 2007). Although
both words share the same meaning of “build”, in
practice, they are not interchangeable in the col-
locations “establish contact” and “construct sys-
tem”. Learners must grasp the collocational and
syntactic differences to use synonyms effectively
in a productive mode (Martin, 1984).

For language learners, to facilitate the use
of near-synonyms, confusing words, or colloca-
tions, it is not enough to just learn the senses
of a single confusing word. This has led to
the design of learning materials such as thesauri
and dictionaries for confusing and easily-misused
words (Room, 1988; Ragno, 2016). Although the
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information these reference tools provide is appro-
priate and instructive, the contents – especially ex-
ample sentences – are neither rich nor constantly
updated.

In view of this, artificial intelligence techniques
recently have been widely applied to assist lan-
guage learning. Applications such as grammar
correction (Ng et al., 2014; Napoles and Callison-
Burch, 2017) and essay scoring (Alikaniotis et al.,
2016; Dong and Zhang, 2016; Zhang and Lit-
man, 2018) are relatively mature. Research on the
lexical substitution (McCarthy and Navigli, 2007,
2009; Mihalcea et al., 2010; Melamud et al., 2015)
and the detection and correction of collocation er-
rors (Futagi, 2010; Alonso Ramos et al., 2014)
have also shown the potential of helping ESL learn
similar words, near-synonyms or synonyms. Lex-
ical substitution task try to determine a substitute
for a word in a context and preserving its mean-
ing and is possible to help language learners un-
derstand the correct meaning of a target word by
selecting a lexical substitute. The detection and
correction, on the other hand, is an inevitable as-
sistance for ESL learners since, as we know, col-
location error is one of the most common lexical
misuse problem. However, as interpretation is still
challenging for AI models, especially deep learn-
ing models (Ribeiro et al., 2016; Doshi-Velez and
Kim, 2017), there are fewer applications for tasks
involving comparisons and explanations, which is
the key to learning confusing words.

GiveMeExample (Huang et al., 2017) is one of
the few systems. It offers students suggestions of
example sentences for confusing words and helps
them to choose proper words for fill-in-the-blank
multiple-choice questions. GiveMeExample aims
to provide opportunities for learners to self-learn
the nuances between confusing words by compar-
ing and contrasting the suggested example sen-
tences. However, the fill-in-the-blank multiple-
choice format has its limitations. First, it decreases
learning efficiency: students look for hints (such
as prepositions or collocations) from the exam-
ple sentences to match the words adjacent to the
blank instead of reading and comparing these ex-
ample sentences thoroughly. Also, as answering
multiple-choice questions is a discriminative task,
students attempt to select the most possible candi-
date among all choices instead of learning to prop-
erly use the confusing words in question.

To improve the learning effect, we adopt Give-

MeExample but deploy it using a carefully de-
signed sentence translation task. Studies (Uzawa,
1996; Prince, 1996; Laufer and Girsai, 2008) have
investigated the effect of using translation tasks
in language learning. With the integration of the
translation task, learners were asked to produce a
second language (L2) text conditioned on a given
first language (L1) sentence. It is one of effec-
tive ways to learn word usage by producing a good
translation. In other words, we intentionally move
from a receptive to a productive learning task.
Generating sentences using confusing words re-
quires a better understanding of the words: with
this task we hope to discover how to better assist
language learners to learn to differentiate confus-
ing words.

2 Automatic Example Sentence Selection

In this study, we seek to use the GiveMeExam-
ple system (Huang et al., 2017) as a basis to im-
prove the automatic example sentence selection
task which aims to select sentences that clarify the
differences between confusing words. GiveMeEx-
ample proposes a clarification score to represent
the ability of a sentence to clear up confusion be-
tween the given words. In this section, we describe
the three main steps to build the automatic exam-
ple sentence selection model: the definition of the
clarification score, the word usage model, and the
dictionary-like sentence classifier.

2.1 Problem Definition

Here we define the task more clearly. Given a
confusing word set W = {w1, w2, ..., wn} and
their corresponding sentence sets {S1, S2, ..., Sn},
each sentence set contains a set of sentences St =
{st1, st2, ..., stm}. The target is to choose k sen-
tences from each sentence set that clarify the dif-
ferences among the words in the confusing word
set. The desired results are thus sentence sets
which clarify W , {S′

1, S
′
2, ..., S

′
n}, where S′

t =
{s′1, s′2, ..., s′k}.

2.2 Workflow

Given a word set and the corresponding sen-
tence sets, GiveMeExample selects sentences by
(1) building a word usage model for each word,
(2) selecting learning-suitable sentences using a
dictionary-like sentence classifier, and (3) rank-
ing sentences by computing clarification scores
with the help of the word usage model. The top
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Number Word Example sentence
1 refuse I was expecting you to refuse to leave the house.
2 refuse She declined to serve as an informant and refused his request that she keep their meeting secret.
3 reject In July, a judge in Australia rejected his request for a suppression order.

Table 1: Example sentences that illustrate clarification

five sentences for each word are selected to show
learners.

2.3 Clarification Score
To understand the definition of clarification, we
start from the confusing word set {refuse, reject}
in Table 1. The first sentence clarifies the differ-
ences better than the second sentence, as the us-
age of refuse in “refused his request” from the
second sentence is the same as that for reject in
“rejected his request” in the third sentence. This
illustrates two properties of clarification: the fit-
ness score and the relative closeness score. The
fitness score measures how well a sentence s il-
lustrates the usage of word w1: in this sentence
the word should be used in a common way in-
stead of a rare way. The relative closeness score, in
turn, measures how well a sentence s for word w1

highlights the difference between w1 and the other
words {w2, ..., wn}: it must be appropriate for w1

but inappropriate for {w2, ..., wn}. Namely, when
we replace w1 with {w2, ..., w3} in s, this sentence
should become a wrong sentence. As a result,
given a function P (s|w) that estimates the fitness
between a sentence s and a word w, we define the
clarification score as

score(s|wi) = P (s|wi) ∗ (
∑

wj∈W−wi

P (s|wi)− P (s|wj))

(1)

which is the multiplication of the fitness score and
the relative closeness score.

2.4 Word Usage Model
The word usage model represents the distribution
of the usage and the context for a given word, that
is, the fitness score P (s|w). GiveMeExample in-
cludes two word usage models: a Gaussian mix-
ture model (GMM) and a bidirectional long-short-
term-memory model (BiLSTM), described as fol-
lows. Notice that the word usage model is trained
as a classifier per word.

2.4.1 GMM with Local Contextual Features
The idea of the GMM is to turn words around
the target word, namely, its context, into em-
beddings and then model the distribution with a

Gaussian mixture model (Xu and Jordan, 1996).
Empirically, taking words within a window of
size two provides the best results. Therefore,
given a sentence s = {w1 · · ·wt · · ·wn} where
wt is the target word, the features are f =
{ewt−2 , ewt−1 , ewt−2+ewt−1 , ewt+1 , ewt+2 , ewt+1+
ewt+2}. Note that the features contain not only
the corresponding word embeddings, but also the
summation of two adjacent words to leverage the
meaning. Since the word embedding contains both
word identity information and semantic informa-
tion, the GMM model1 therefore learns the distri-
bution of both usage and semantic meaning.

2.4.2 BiLSTM
As the confusing words can diverge widely from
the target word itself, or could involve long-term
dependencies, GMM with local contextual fea-
tures do not always capture enough information.
The BiLSTM model thus utilizes the whole sen-
tence as a feature. The BiLSTM model consists
of a forward LSTM and a backward LSTM, which
take the words preceding and following the target
word as features respectively. The output vectors
of these two LSTMs are concatenated to form a
sentence embedding. After passing through two
dense layers, the BiLSTM model is then built as
a binary classifier that decides whether the given
sentence is the sentence of the target word or not.
In contrast to the generative GMM model, nega-
tive samples are needed to train the BiLSTM. As
a result, sentences from the corpus are randomly
sampled as negative samples2.

2.5 Dictionary-like Sentence Classification

The given sentences are not always suitable for
language learning. For example, a 40-word-long
sentence could be too complicated and distracting
to learn, and a short sentence such as “It is so-
phisticated” is not suitable for language learning
due to its lack of information. GiveMeExample
is equipped with a dictionary-like sentence classi-
fier to select sentences that are simple but informa-

1Each GMM model is trained on 5,000 instances.
2Each BiLSTM model is trained on 5,000 positive in-

stances and 50,000 negative instances.
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Figure 1: Example questions for translation experi-
ment. Participants click the readmore button to retrieve
more example sentences (the maximum number of sen-
tences for each word is five). Also, introverts and ex-
traverts are two tips that we provide, as they are more
difficult but not directly related to social and sociable.

tive. GiveMeExample collects sentences from the
COBUILD English Usage Dictionary (Sinclair,
1992) to train the dictionary-like sentence classi-
fier with syntactic features (Pilán et al., 2014) and
a logistic regression model (Walker and Duncan,
1967). Hence, it tends to select sentences similar
to those in the COBUILD dictionary.

3 Deployment: Sentence Translation

The sentence translation experiment was separated
into a pre-test and a post-test. In both of the tests,
participants were asked to translate ten sets of
questions from Mandarin to English. In each set,
there were four translation questions correspond-
ing to a specific set of confusing words. In addi-
tion to answering the question, participants could
refer to the example sentences suggested by Give-
MeExample in the post-test. In the following para-
graph, we describe the experiment in detail.

3.1 Building Translation Questions
In the sentence translation task were 15 confus-
ing word sets selected from Collins COBUILD
English Usage (Sinclair, 1992) and the Long-
man Dictionary of Common Errors (Turton and
Heaton, 1996). These two books identify errors in
word usage commonly made by language learn-
ers and then clear up the confusion. Thus the
word sets provided in the books were used as the
desired confusing words. A word set contained
two or three words. After selecting the confusing
word set, we extracted sentences that contain these
words from the parallel corpora Chinese English

News Magazine Parallel Text (LDC2005T10) and
Hong Kong Parallel Text (LDC2004T08). These
sentences were used as candidate questions. Since
many sentences in the parallel corpora were long
and complicated, we removed sentences whose
Chinese translation contains more than 40 words.
In the last step, we manually chose appropriate
sentences for testing the confusing words. In
the end, 15 confusing word sets were determined,
each of which contains four questions to be trans-
lated resulting a total of 60 questions. Note that
some difficult words in the question, such as “in-
troverts” and “extraverts” in Figure 1, were pro-
vided as they were unrelated to testing learner use
of confusing words.

3.2 Recommending Example Sentences

To recommend sentences, we first collected sen-
tences from Vocabulary3, an online dictionary.
The example sentences in Vocabulary mainly
come from formally-written news articles. We col-
lected 5,000 sentences for each word and used all
of them to train the GMM and BiLSTM word us-
age models. When recommending example sen-
tences, we used only the qualified sentences which
were filtered by the dictionary-like sentence clas-
sifier. The pretrained 300-dimension GloVe (Pen-
nington et al., 2014) embeddings were used in
both GMM and BiLSTM. We selected the last five
sentences from Vocabulary as a baseline setting.

3.3 Experimental Setup

Sixteen college students were recruited for this
translation experiment. As the translation of total
60 questions may not be done in one class, each
participants was asked to complete ten randomly-
assigned question sets, each of which contained
four questions. Thus a total of 40 translation ques-
tions were given. This process guarantees that
every questions is translated by the same num-
ber of participants. The testing period was about
45 minutes, leaving participants about five min-
utes for each question set. In addition to trans-
lating, five example sentences were provided for
each word in the post-test. To ensure the students
read the suggested sentences, only one example
sentence was displayed in the beginning, a “read-
more” button was designed for retrieving more ex-
ample sentences (the maximum number of exam-
ple sentences is five for each word). The “read-

3https://www.vocabulary.com/
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Category Example Grade

Appropriateness There is a small opportunity possibility that she had actually met such a person. 0

Local grammar What are you going to do if we refuse to following follow you? 3

Global grammar This building is was destroyed by the earthquake. 3

Structure The accident was caused by error. 1(The error is made by human, so it should be “by human error.”)

Meaning
To a skillful pilot, it’s lucky to say that landing in torrential rain.

1(The meaning is wired and the correct sentence should be “Landing safely in torrential
rain can only be a matter of luck for the most skilled pilot.”)

Table 2: Examples of grade criteria. The underlined word is the target confusing word.

more” activities were logged for further investiga-
tion. The pre- and post-tests were administered in
two different weeks to reduce short-term memory
effects. Figure 1 shows a screen-shot of a post-test
with the confusing word set social and sociable.

The example sentences provided were sug-
gested by the GMM and BiLSTM models or se-
lected from the Vocabulary website. Note that to
discourage participants from guessing specific pat-
terns, the example sentences from one of the three
sources were presented randomly. For instance, as
GMM takes contexts within a window as features,
the most significant difference exists only within
this window. However, we do not expect partici-
pants to look only at this small piece of text. Also,
sentences from Vocabulary are generally more dif-
ficult than those from GMM or BiLSTM, but par-
ticipants who are consistently presented with diffi-
cult sentences may stop considering these example
sentences to be useful resources. As the source
is assigned randomly for each proposed example
sentence, the total number of sentences for each
source is set to the number that can best distribute
sentences from different sources evenly.

3.4 Grading
Grading was done by an English native speaker
who is professional in language learning and
teaching. The grading criteria takes into account
appropriateness, grammar, and completeness. Ap-
propriateness measures whether the correct word
is used or not, so the score here is either zero or
one point. Grammar involves local grammar as
well as global grammar. All the grammar errors
relating directly to the target confusing word be-
long to local grammar; the remaining grammar
errors throughout the sentence belong to global
grammar. The initial points for both grammar
parts are four points; each grammar error results in
a one-point deduction. Completeness, which eval-

uates whether the student’s translation represents
all of the meanings, takes into account structure
and meaning. If a student missed content such as
adverbial phrases, points were deducted in terms
of structure. Similarly, if a student’s translation
was different from the original meaning, points
were deducted in terms of meaning. Both structure
and meaning started with two points. Examples
are listed in Table 2. Given our focus on examin-
ing whether students can learn how to differentiate
and use confusing words, we computed a weighted
sum for reference as follows:

WeightedSum = 5∗Appropriateness+LocalGrammar
(2)

which is the sum of the appropriateness scores,
weighted by 5, and the local grammar scores.

4 Results and Discussions

The pre and post scores for the grading categories
are summarized in Table 3. Student are separated
into Highly proficient group and Less proficient
group evenly by an external collocation test score
(Chen and Lin, 2011). In general, the suggested
example sentences helped students make substan-
tial progress in terms of sentence structure. It
is worth noting that students were able to com-
prehend the meaning of confusing words in the
given sentences selected from both of the BiLSTM
and GMM models. Students performed signifi-
cantly better in appropriateness, local grammar,
and structure when the sentences were suggested
by BiLSTM; while the GMM model was good at
presenting the structures of sentences and demon-
strating the meaning of confusing words.

Highly proficient students learned confusing
words better from the suggested example sen-
tences. The findings showed that BiLSTM helped
them gain a better understanding of appropriate-
ness, local grammar, and structure, and GMM
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Group Model Appropriateness Local grammar Weighted sum Global grammar Structure Meaning
pre post t-test pre post t-test pre post t-test pre post t-test pre post t-test pre post t-test

H Vocabulary 0.714 0.571 0.302 3.429 3.143 0.178 7.000 6.000 0.237 2.429 2.143 0.229 0.714 1.000 0.229 1.000 1.000 0.500
H GMM 0.444 0.444 0.500 2.444 3.000 0.123 4.667 5.222 0.347 1.667 1.556 0.364 0.667 1.222 0.025* 0.333 1.111 0.004*
H BiLSTM 0.273 0.545 0.041* 2.364 3.273 0.008* 3.727 6.000 0.011* 1.545 1.364 0.276 0.818 1.182 0.052 0.545 0.909 0.052
L Vocabulary 0.182 0.364 0.170 2.182 2.909 0.098 3.091 4.727 0.056 0.818 1.091 0.247 0.364 1.000 0.013* 0.455 0.636 0.220
L GMM 0.417 0.583 0.169 2.333 2.917 0.066 4.417 5.833 0.072 0.750 1.500 0.028* 0.500 1.167 0.012* 0.333 1.083 0.010*
L BiLSTM 0.429 0.524 0.165 2.667 2.714 0.443 4.810 5.333 0.169 1.238 1.571 0.116 0.762 1.143 0.004* 0.524 0.857 0.025*

Table 3: Result of translation experiment. The number of translated questions for each model ranges from 7 to
21, with the average number 11.8, depending on the number of early leave and absence we encountered in the
experiment day. The pre- and post- numbers correspond to the average score for pre-test and post-test respectively
and the t-test stars represent significance. The participants were separated into highly proficient (H) and less
proficient (L) groups.

helped with structure and meaning. Although it
was difficult for less-proficient students to recog-
nize the difference (small improvement in appro-
priateness and local grammar), the GMM model
significantly facilitated their comprehension in
terms of structure, global grammar and meaning.

The “readmore” logs show that most of the stu-
dents clicked the button and expand all the exam-
ple sentences immediately. This might imply that
students did read all the example sentences and
could refer to them when producing translations.

We analyzed the translation tasks to identify
possible problems. Below we discuss three pos-
sible explanations in terms of test items, learner
behavior, and the suggested example sentences.

First, in the proposed translation task, partici-
pants sometimes focused on the wrong segment of
the test item to translate with the confusing words.
This may be because in this productive testing pro-
cess, we do not specifically tell participants which
source word should be aligned to the target con-
fusing word. For instance, in “For a person to be-
come so poor, if it’s not because they didn’t work
hard in their youth then its because they have truly
had hard luck”, participants should have translated
the source words “hard luck” to English using the
appropriate word in the confusing word set. How-
ever, the students showed confusion in their focus-
ing on translating the source word poor into one of
hard, difficult, and tough as opposed to the source
word hard in hard luck. One example translation
made by a participant is “The reason why a per-
son’s life is tough might because he/she was lazy
when he/she was young or he/she had a bad luck”.
In such cases, the learning effect cannot be cor-
rectly evaluated.

We seek to find the best example sentences for
word sets where the words are confusing for learn-
ers. Hence regarding the suggested example sen-
tences, the example sentences were extracted as

long as the confusing words shared the least fa-
miliar senses. However, this led to words being
chosen in example sentences with different senses
and/or even different parts of speech, which is how
we wanted to compare them. The words hard and
difficult exemplify these issues. First, according
to WordNet, hard in this case indicates “resisting
weight or pressure” in the example sentence “Such
uncertainty can be hard on families, too”, whereas
difficult means “needing skill or effort” in the sen-
tence “But other stories are more difficult to ex-
plain”. On the other hand, hard is an adverb in
“Banks will have to work harder to make profits”,
while difficult is an adjective in “But other stories
are more difficult to explain”.

Student behavior also affected the performance
of this study. Some highly proficient students
were observed skipping the example sentences and
thus not learning from them how to differenti-
ate the confusing words, which led to inappropri-
ate translations similar to those made in the pre-
test. It could be that these highly proficient stu-
dents were more confident of their command of
certain confusing words. For example, when re-
quired to choose from beat, defeat, and win to
translate “Emmanuel Macron beats Marine Le Pen
in both rounds of the French presidential election”,
one highly proficient student made these transla-
tions in the pre- and post-tests, respectively: “Em-
manuel Macron won over Marine Le Pen for two
rounds of presidential election”, and “Emmanuel
Macron won over Marine Le Pen for presidential
election for two rounds”, whereas win over is not
a usage suggested by example sentences. In ad-
dition, from this example we can see that though
they rarely read example sentences, they did try to
translate in other words in the post-test, which re-
sults in the unstable scores of global grammar that
are less relevant to the near-synonym recognition
but to the translation instead.
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These three limitations partially explain learner
performance in the translation task. Thus we at-
tempted to refine the method for example sentence
extraction. Improving the test items and control-
ling student learning behavior is beyond the scope
of this study.

5 Leveraging First Language for Better
Example Sentence Selection

From the results of the translation experiment, we
observed that some words were confusing to stu-
dents due to language transfer from L1 (native lan-
guage) to L2 (foreign language). Some students
learn English such that they only remember how
to spell words and their L1 definitional glosses,
rather than understanding their context or usage.
For example, the confusing words hard and diffi-
cult are very similar and almost interchangeable.
If these words are memorized only by memoriz-
ing the L1 definitional glosses, not easy, students
may fail to recognize the slight difference between
them. In other words, example sentences contain-
ing words that translate into similar glosses in L1
are the sentences that indeed contain confusing
senses, and thus are the target candidates for the
GiveMeExample system to consider for sugges-
tion. We follow this line of thinking to improve
the example sentences.

In the new setting, the GiveMeExample system
groups example sentences by the L1 definitional
glosses of confusing words before proceeding to
automatic sentence selection with the BiLSTM or
GMM word usage model. When a word has multi-
ple senses, this step helps to identify the confusing
sense, under the assumption that words with simi-
lar L1 definitions are confusing. Take for example
hard and difficult: hard as an adjective has multi-
ple meanings – “not easy, requiring great physical
or mental effort to accomplish, resisting weight or
pressure, hard to bear”, etc; whereas difficult has
the meanings “not easy, requiring great physical
or mental effort to accomplish, and hard to con-
trol”. The common sense in L1 is not easy, requir-
ing great physical or mental effort to accomplish.
Sentences containing confusing words whose L1
translations share these two senses are selected for
later processing and suggestion.

To identify these sentences, we need each word
in the sentence and its corresponding L1 trans-
lation. For this purpose, parallel texts from two
corpora – Chinese English News Magazine Paral-

lel Text (LDC2005T10) and Hong Kong Parallel
Text (LDC2004T08), that is, a total of 2,682,129
English-Chinese sentence pairs – are utilized to
learn the word alignment between L1 and L2 par-
allel sentences. To align example sentences from
Vocabulary, first they were all translated into Tra-
ditional Chinese using Googletrans4. Then we
used NLTK5 to tokenize English sentences and
CKIP (Chen and Liu, 1992) to segment Chinese
sentences respectively. After that, the word align-
ment model GIZA++ (Och and Ney, 2003), a
toolkit that implements several statistical word
alignment models, was adopted to align English
words to their corresponding Chinese words. Af-
ter alignment, the L1 translations of confusing
words were recognized, after which the sentences
in the example sentence pool of the confusing
words in the same set were clustered with respect
to their L1 translation. There were 12 confus-
ing word sets with more than one common L1
translation. Only words in three confusing word
sets (possibility vs. opportunity, social vs. socia-
ble, and unusual vs. strange) had all different L1
translations. When a common L1 translation was
found for a set of confusing words, GiveMeExam-
ple passed through only those sentences contain-
ing confusing words with the same L1 translation
to the sentence selection component.

5.1 Human Evaluation

We employed Amazon Mechanical Turk crowd-
workers to give their perspectives on the suggested
sentences considering the L1 of learners. Twelve
sets of confusing words with common L1 trans-
lations were evaluated. GiveMeExample in both
the original and the new settings suggested respec-
tively five sentences using the BiLSTM and GMM
models for each word in the twelve sets. In this
new setting, six words – (briefly, duty, ordinary,
sight, shortly, and unusual) – had less than five
sentences.

Figure 2 shows a screenshot of two versions of
the suggested example sentences presented side-
by-side. Crowd-workers were given no informa-
tion about the settings or the sentence selection
models (BiLSTM or GMM). For each task, par-
ticipants were to read several sentences suggested
by the two versions of the GiveMeExample system
and then answer the following four questions.

4https://pypi.org/project/googletrans/
5https://www.nltk.org/
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Figure 2: An example survey for crowd-workers to
compare GiveMeExample with different settings. In
this specific example, first represents sentences sug-
gested by the new setting; second represents those from
the original.

Q1: Is Mandarin your first language (y/n)?

Q2: Are these words confusing to you (y/n)?

Q3: Which set of example sentences you think is
more useful for learning these words (1/2)?

Q4: In what aspect you think they are more use-
ful (choose one)? (a) clarifying their mean-
ing (e.g., social encounter vs. sociable char-
acter) (b) demonstrate their usage (e.g., as
usual but not as common) (c) showing cor-
rect grammar (e.g., The proposal was nar-
rowly defeated in a January election, but Ob-
viously we want to continue to win games.)

The purpose of Q1 and Q2 is to understand the
background of turkers, Q3 is to compare the new
setting with old setting among two models, and
Q4 is to investigate the effect of considering L1
translation. We also consulted a native speaker
who works as an expert editor. This expert com-
pleted the surveys under the same conditions as the
crowd-workers.

5.2 Results and Analysis
Sixty-one crowd-workers participated in the eval-
uation. Mandarin was the first language of 12
(19.67%) of them. On average, each worker com-
pleted six tasks (SD=8.17). For each set out of 12
sets, 15 workers were asked to answer the ques-
tions. We tested the example sentences suggested
by both GMM and BiLSTM models, collecting in
total 360 ratings from workers. It was an inter-
esting finding that only 5% of the confusing word

sets were labeled by workers as confusing no mat-
ter they were native speakers or not 6. Details are
shown in Table 4.

Table 4 shows the feedback on Q3 and Q4 from
workers and the expert on each confusing word
set. Results from the expert confirm that when
considering L1, our approach could provide bet-
ter example sentences. However, results from the
crowd-workers were mixed.

Several interesting observations were gleaned
from this experiment. First, when considering the
L1 translation and grouping sentences by their L1
sense, the example sentences containing confusing
words with different senses were excluded. There-
fore, learners could focus more on the confusing
sense to be learned. For example, work hard is a
commonly seen phrase in the example sentences
suggested by the original setting. When students
learned the confusion set containing hard, difficult,
and tough, the sentences containing work hard
were of little help, as the meanings were irrelevant
to the confusing sense in this set. However, in the
new setting, the example sentences for hard were
more semantically related to difficult and tough.
We can say that in this task, consideration of L1
amounted to implicitly performing word sense dis-
ambiguation (WSD).

The exclusion of sentences that did not contain
words with the confusing sense has additional ben-
efit. That is, the suggested sentences are more
likely to focus on the demonstration of the confus-
ing sense. This has the advantage that the confus-
ing words in the suggested sentences are diverse in
their part of speech and pragmatic domain. For in-
stance, in the confusion set defeat, win, and beat,
the common L1 sense among them is “to con-
quest” and “victory”. Under these certain mean-
ings, only win can be used as a verb or a noun
whereas the other two words can only function as
a verb. This illustrates the power of grouping sen-
tences by L1 translation Another example is de-
stroy in the confusion set destroy, ruin, and spoil.
In the original setting, destroy is used in only the
military domain and thus is misleading. When us-
ing the GMM model which considers only the lo-
cal context, the issue is even more serious. This
is mitigated in the new setting, especially for the
GMM model.

Following the above, in some cases workers in-
deed tended to prefer example sentences of some

6The expert had a clear understanding of these words.
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Confusing word set
Q2 (turkers) Q3 (turkers) Q3 (expert) Q4 (turkers)

No Yes BiLSTM GMM BiLSTM GMM BiLSTM GMM
(a) (b) (c) (a) (b) (c)

ordinary / usual / common 97% 3% N N O N 46% 40% 14% 46% 40% 14%
skillful / skilled 93% 7% O O O N 46% 46% 6% 34% 46% 20%

alternative / alternate 97% 3% O O N O 34% 60% 6% 26% 46% 26%
destroy / ruin / spoil 100% 0% O N N N 40% 40% 20% 20% 74% 6%

scarce / rare / unusual 97% 3% O O O O 14% 74% 14% 0% 74% 26%
defeat / win / beat 100% 0% N N N N 40% 46% 14% 20% 60% 20%

sight / landscape / scenery 93% 7% N O N O 40% 46% 14% 34% 46% 20%
briefly / shortly / concisely 97% 3% O N O O 14% 66% 20% 14% 60% 26%

hard / difficult / tough 90% 10% O N O O 14% 80% 6% 20% 54% 26%
error / mistake / oversight 90% 10% O N N N 26% 60% 14% 20% 66% 14%

duty / job / task 97% 3% N N O N 46% 46% 6% 14% 66% 20%
obligation / responsibility / commitment 93% 7% N N N N 26% 66% 6% 46% 40% 14%

Mean 95% 5% 42%(N) 67%(N) 50%(N) 58%(N) 32% 56% 12% 24% 56% 20%

Table 4: Results from the human evaluation. N represents the example sentences from the new setting, and O
are from the original one. In addition, the expert annotated that ALL of the suggested sentences were useful for
demonstrating their usage (b).

pattern. For example, in the set scarce, rare,
and unusual, confusing words in the example sen-
tences that shared the L1 translation very hardly
resulted in example sentences containing confus-
ing words functioning as adverb, adjective, and
adjective, respectively; however, in the original
setting where context is considered before sense,
they all function as adjectives. This interesting re-
sult reveals that there is overhead when learning
from materials without patterns, which could also
be why only highly proficient students can learn
the appropriateness.

6 Conclusion

In this paper, we leverage GiveMeExample, an
AI system which automatically suggests exam-
ple sentences to help ESL learners better learn
to differentiate confusing words. To evaluate the
system effectiveness, we designed a sophisticated
sentence translation task around the problem of
students not really learning via the previously de-
signed receptive task, i.e., multiple-choice selec-
tion. This approach was evaluated using college
students; results show that students made substan-
tial progress with assistance of the system. Specif-
ically, after learning the example sentences, stu-
dents produced more structural sentences. How-
ever, learning to use appropriate words is a de-
manding task which requires higher language pro-
ficiency.

The learner’s first language may lead to confu-
sion in different areas: this is also taken into ac-
count with a novel approach. Overall, the example
sentences in the refined list were considered more
useful for learning by Amazon mechanical turkers
and the expert English editor. However, for ESL
learners such as students and some of the turkers,

they tended to prefer example sentences with sim-
ilar patterns to mitigate cognitive overhead. Thus,
future work will focus on providing example sen-
tences with similar patterns but diverse contexts.
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Abstract

One of the challenges of building natural lan-
guage processing (NLP) applications for edu-
cation is finding a large domain-specific cor-
pus for the subject of interest (e.g., history or
science). To address this challenge, we pro-
pose a tool, Dexter, that extracts a subject-
specific corpus from a heterogeneous corpus,
such as Wikipedia, by relying on a small seed
corpus and distributed document representa-
tions. We empirically show the impact of the
generated corpus on language modeling, esti-
mating word embeddings, and consequently,
distractor generation, resulting in a better per-
formance than while using a general domain
corpus, a heuristically constructed domain-
specific corpus, and a corpus generated by a
popular system: BootCaT.

1 Introduction

Educational applications tend to target a specific
subject, in other words, a specific domain, such
as the medical domain in the case of (Jin et al.,
2018). Thus, building these applications with un-
derlying NLP algorithms, would typically require
a large domain-specific corpus. Example uses of
these large corpora are estimating language mod-
els (Rosenfeld, 2000), estimating word embed-
dings (Mikolov et al., 2013), and estimating docu-
ment embeddings (Le and Mikolov, 2014). These
estimations are central to several downstream ap-
plications including automatic speech recognition
(Katz, 1987), machine translation (Koehn et al.,
2003), and text categorization (Tang et al., 2015).

Previous findings, such as (McClosky, 2010),
have shown that training NLP applications on a
domain different from the target domain could
prove detrimental to the performance of these ap-
plications. In order to help educational applica-
tions in specific disciplines such as science and
history create a large, yet domain-specific corpus,

we propose a domain extraction tool, Dexter1, that
extracts a domain-specific corpus from Wikipedia.

The algorithm, elaborated in Section 2, retrieves
a set of documents from Wikipedia that are closest
in discipline to a user-supplied small seed corpus.
The size of this extracted set is a user-defined hy-
perparameter, and thus controls the trade-off be-
tween the specificity of the output corpus and its
size. We empirically determine the favorable con-
figuration of Dexter, demonstrate its benefits to-
wards estimating word embeddings, and conse-
quently distractor generation, as well as language
models. We also show how, on the aformentioned
tasks, Dexter outperforms BootCaT, a popular
toolkit to automatically create an Internet-derived
corpus (Baroni and Bernardini, 2004). Datasets
used in this research are released for public use2.

2 Method

Dexter’s algorithm builds on the assumption that
the distributed representation of two documents
covering similar topics are closer in the vec-
tor space than two documents covering differ-
ent topics. To test this assumption qualitatively,
we embed all Wikipedia articles in R300 using
Doc2Avg3, and then map them to R2 using t-SNE
(Maaten and Hinton, 2008) as shown in Figure 1.
We see that the subset of science Wikipedia arti-
cles form a cluster, thus validating our assump-
tion. Details on how science Wikipedia articles
were identified are provided in Section 3.1. Build-
ing on this observation, Dexter takes a seed set of
articles representing the target domain (e.g., sci-
ence), then sorts Wikipedia articles in increasing
order of distance to seed set, then returns the first
k documents as the extracted in-domain corpus.

1Publicly available at http://bit.ly/dexter-acl
2http://bit.ly/dexter-dataset-acl
3By averaging embeddings of words in document.
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Figure 1: Clustering of science (red) Wikipedia articles
among all (blue) Wikipedia articles in 2D.

Multiple design choices need to be considered
carefully and are decided empirically in Section
3.2. These decisions are: The document represen-
tation method, the distance function to the seed
set, and the seed corpus size. For the document
representation, we consider: Doc2Vec (Le and
Mikolov, 2014), Doc2Avg, Doc2wAvg4, TFIDF
(Leskovec et al., 2014), and LSA (Dumais, 2004).
For the distance function, we consider: Mean,
Min, Max, 90th percentile, and 10th percentile
(the last two being robust to outliers). For the seed
corpus size, we experiment with: 10, 102, and 103.

3 Experiments

We perform three main experiments. The first is
an intrinsic evaluation of Dexter, guiding our de-
sign choices. Second, we check the effect of the
domain-specificity of the resulting word embed-
dings on the downstream educational task of dis-
tractor generation for science questions. Third, we
evaluate the effect of Dexter on language model-
ing. Before we delve on the experimental details,
we describe the process of labeling Wikipedia ar-
ticles as science or not, and describe our competi-
tive baseline: BootCaT.

3.1 Experimental Setup

Dataset Preparation: Wikipedia does not clearly
partition its articles into different domains, but in-
stead assigns a set of categories to each article.
Wikipedia also organizes its categories as a di-
rected graph, where, if category b is a subcate-
gory of category a, then there exists an edge (a, b)
(Schönhofen, 2009). Although it might seem nat-
ural to consider all descendants of a category (do-
main in a broad sense) to belong to that category,
upon inspection we found the need for setting a

4The embedding of a document is the average of its
words’ embeddings weighted by a word’s TFIDF score

depth limit. For example, “Stalking” is a third de-
scendant of “Biology”, although “Stalking” is not
considered a “Biology”-related subject. Based on
similar observations, we set the depth limit to two.

To identify science articles, we consider a list of
science root categories, and all their subcategories
up to a depth of 2. All articles labeled with any
category in this list are considered science articles,
amounting to 176,905 articles. This collected sci-
ence corpus will be referred to as CD, while the
general Wikipedia corpus will be referred to as C.

We note that the corpus CD is created using
heuristics on Wikipedia’s taxonomy. In order to
assess the extent to which the articles in CD be-
long to the discipline of science, we do the fol-
lowing. Two annotators assess the quality of CD

by taking a subset of 1000 articles equally spread
across depths: 0, 1, 2, and 3. Each article (depth
anonymized) was given an integer score between
0 and 5 to reflect how much the content of the
article is related to science. The inter-annotator
agreement on the scores had a Pearson’s correla-
tion coefficient of 0.77 suggesting a reasonably
high agreement on the scores. Upon comparing
the average scores of articles at different depths,
we found the score to be inversely proportional to
the depth, with scores 4.35, 3.58, 3.21, and 2.4 for
articles at depth 0, 1, 2, and 3 respectively. This
further justifies our depth limit of 2, below which
the average score suddenly drops below 3.

Also, for the purposes of our experiments, we
split CD (176,905 articles) into three corpora: (1)
Cseed (1,000 articles having a depth of 0), used as
the seed corpus for Dexter and the BootCaT base-
lines, (2) Cho (40,000 articles), which is a held-
out dataset to be used for testing language models,
and (3) Csilver

5 (136,905 articles) = CD − Cho,
our training subset of CD to be used in language
modeling experiments. CD reflects the quality
of such a corpus heuristically-constructed using
Wikipedia’s taxonomy.
Baseline: One popular system used by researchers
to extract a domain-specific corpus is BootCaT
(Baroni and Bernardini, 2004), which operates on
the World Wide Web. BootCaT generates queries
to a search engine from user-supplied key phrases
and parses the first n pages retrieved for each
query, where n is set by the user.

Since Dexter requires seed articles instead of

5The term silver is used, rather than gold, since we rely
on heuristics rather than direct human supervision.
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key phrases, we bridge the gap by a key phrase ex-
traction algorithm (Rose et al., 2010) on the set of
seed articles, by utilizing a publicly available im-
plementation6 with default parameters. We thus
take Cseed and extract the top-100 key phrases
with less than 4 words, then feed them to Boot-
CaT, leading to a domain-specific corpus (referred
to as BootCat-KE). To avoid any possible noise
introduced by the keyword extraction algorithm
we consider another version of the BootCaT base-
line but now with a manual set of 100 key phrases
describing the domain of science. We take a list
of science key phrases available online7, and then
randomly select 100 phrases. The corpus gener-
ated by this algorithm is referred to as BootCat-M.

3.2 Intrinsic Evaluation

Before we analyze Dexter’s performance on
downstream tasks and compare it to BootCaT, we
study the intrinsic performance of Dexter under
several design choices and conditions. Our eval-
uation of Dexter is based on the precision of the
extracted articles averaged over 5 runs. Since we
would be manipulating the seed set size, and to
ensure Dexter’s robustness under randomness, we
artificially construct our seed set by taking a ran-
dom subset of CD instead of using Cseed. That
seed set is then used to algorithmically extract the
rest of CD via Dexter. Accordingly, precision is
calculated as the percentage of articles extracted,
which belong to CD−Cseed. As for recall, it is not
measured since precision is sufficient as a compar-
ison between methods assuming same number of
documents extracted.
Document representation: We vary the docu-
ment representation method while fixing the seed
corpus size at 103, and the distance function as
Mean (c.f. Figure 2a). We observe that LSA and
TFIDF are initially superior, but perform compa-
rably to Doc2Avg and Doc2wAvg as k increases.
LSA is chosen due to its low-dimensionality, and
superiority for modest k values.
Distance function: We vary the distance function
used while fixing the document representation to
LSA and the seed corpus size to 1000 (c.f. Figure
2b). We observe that the 10th percentile distance
function leads to the best precision. We hypothe-
size that this is due to the 10th percentile being ro-
bust to noise, and requiring closeness to only one

6https://github.com/csurfer/rake-nltk
7http://sci2.esa.int/glossary/

subdomain of science rather than all at once.
Seed corpus size: We vary the seed corpus size
while fixing the document representation to LSA
and the distance function as 10th percentile (c.f.
Figure 2c). We observe that a size of 100 was
equally sufficient to 1000. This shows that Dexter
does not require an unfeasibly large seed corpus
size, which would have defeated the purpose.

3.3 Distractor generation

To better assess the impact of the extracted cor-
pus by Dexter, we consider the task of distractor
generation for multiple-choice questions (MCQs)
(Stasaski and Hearst, 2017). Educators spend sig-
nificant amount of time choosing suitable distrac-
tors for MCQs, where the distractors are the incor-
rect choices in an MCQ. Moreover, distractor gen-
eration is an essential task for automatic question
generation. The choice of distractors is critical to
the learning outcomes of students, since a mis-
informed selection of easy distractors could ren-
der questions non-challenging (Araki et al., 2016).
The main aspect of the distractors’ quality is their
semantic similarity to the correct answer. The dis-
tractor cannot be a synonym of the answer and
if too distant, it can be easily eliminated by the
learner.

To automate this process, one considered
methodology is relying on word embeddings to
capture the semantics of the answer, and retrieve
the distractors closest semantically to the answer
(Araki et al., 2016). An essential component to
the quality of these word embeddings is the do-
main of the training corpus, as any shift in domain
would lead to a decrease in performance as noted
in (Bollegala et al., 2015). To illustrate this fur-
ther, we take the corpora C (∼2.3B words) and
CD (∼150M words), as described in Section 3.1,
as well as the science corpus extracted by Dexter
at size 150K (∼187M words) along with the cor-
pora BootCaT-KE (∼986K words), and BootCaT-
M (∼1.2M words). Also, to eliminate any ef-
fects of corpus size between Dexter and the Boot-
CaT baselines, we downsample Dexter’s corpus to
the size of the BootCaT corpora ( 986K words).
We then train six sets of word embeddings us-
ing FastText (Bojanowski et al., 2017), on each
of the six aforementioned corpora. The quality of
these word embeddings at capturing the semantics
of science words is then measured on the task of
distractor generation. Taking all questions from
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(a) Effect of Document Representation (b) Effect of Distance Function (c) Effect of Seed Corpus Size

Figure 2: Effect of design choices on accuracy of extracted domain

Corpus Recall Perplexity
C 17.43% 431.78
Csilver N/A 334.57
CD 20.47% N/A
BootCaT-KE 15.28% 3199.30
BootCaT-M 13.82% 4586.80
Dexter-Downsampled 18.86% 1117.34
Dexter 22.71% 294.20

Table 1: Distractor recall@100 for word embeddings
(middle) and perplexity of language models (right)
trained on corpora of varying domain specificity.

three science questions datasets – 7,787 questions
from ARC (Clark et al., 2018), 13,679 questions
from SciQ (Johannes Welbl and Gardner, 2017),
and 5059 questions from AI2-ScienceQuestions
(Allen Institute for AI, 2017) – we check the re-
call of the distractors8 in the top 100 most similar
words to the answer of each question. Results are
reported in Table 1.

As hypothesized, we notice that science-
specific word embeddings trained on CD

(20.47%) perform better than when trained on
all of Wikipedia (17.43%). But it was surprising
to observe that training on the science corpus
generated by Dexter led to an even better per-
formance (22.71%) than CD (20.47%). Since
CD was heuristically constructed from human
categorization, it might be the case that Dexter
was able to capture the language characteristics
of the science seed corpus better than heuristic
methods operating on Wikipedia’s taxonomy. The
same two annotators mentioned in 3.1 manually
labeled the extracted corpus (top 500 articles)
using the same scale. The scores of the two
annotators had a Perason’s correlation coefficient
of 0.66. Indeed the quality of the extracted

8 We checked the recall of only one-word distractors since
there is no straightforward method to retrieve phrases, as dis-
tractors, using distance over word embeddings. This does not
affect our comparison study of different word embeddings.

corpus turned out higher than that of CD, with an
average score of 4.712. A less surprising result
was Dexter’s outperformance (22.71%) of both
BootCaT baselines (15.28% and 13.82%) even
when Dexter was downsampled (18.86%). This is
expected as the automatic scraping of webpages
by BootCaT introduces noisy artifacts into the
corpus.

To qualitatively understand why word embed-
dings trained on domain-specific corpora outper-
form general ones we take a look at examples of
polysemous words, and their word embeddings
when trained on different corpora (c.f. Table
2). For example, the closest neighbors to the
word “Force” when trained on C are: “Forces”,
“Troops”, and “Army”, which reflect the mili-
tary sense to the word “Force”. When trained on
CD, the closest neighbors become: “Deflection”,
“Torque”, and “Gravity”, reflecting the scientific
sense of the word “Force”. Similarly, the closest
neighbors to the word “Field”, when trained on
C, are: “Fields”, “Football”, and “Professional-
sized”, reflecting a sports field sense. Whereas,
when trained on the extracted corpus by Dexter,
neighbors of “Field” become: “Fields”, “Magne-
tobiology”, and “Ambipolar”, reflecting a scien-
tific sense of the word “Field”.

3.4 Language modeling
Similar to the previous experiment, except for us-
ing Csilver instead of CD, we train 6 different tri-
gram language models (Brown et al., 1992) on
each corpus using kenlm (Heafield et al., 2013)
and under default parameters9. We then test the
perplexity of these language models on Cho. The
same pattern of comparative performances (c.f.
Table 1) is noticed in language modeling, which
reflects the impact of the quality of the domain-
specific corpus on the variety of resources (lan-
guage models and word embeddings) trained on

9https://kheafield.com/code/kenlm/
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Word Neighbors (General) Neighbors (Science)

Force Forces Troops Army Deflection Torque Gravity
Digest Review Guide Supplement Digested Extract Metabolize
Matter Matters Subject Debate Particles Materials Universe

Field Fields Football Professional-sized Fields Magnetobiology Ambipolar
Rock Punk Pop Indie Rocks Shoegazing Screamo

Cellular Cell Signalling Apoptosis Cell Organelle Automata

Table 2: Neighbors of polysemous scientific words when trained on the general Wikipedia (left), trained on CD

(top right), and trained on the extracted science corpus by Dexter bottom right).

Figure 3: Perplexity scores for language models trained
on General, Silver, and Dexter corpora across different
domains.

it. We thus conclude that educational NLP appli-
cations in science can benefit from Dexter if their
algorithm relies on a monolingual corpus. An ex-
ample of an educational NLP application utilizing
language models would be a machine translator
for science webpages.

4 Generalization to other domains

To ensure Dexter’s applicability to other educa-
tional domains, we repeated the experiment in
Section 3.4 for educational domains other than sci-
ence and show the results in Figure 3. We notice
that the extracted corpus by Dexter is capable of
training a significantly better language model than
that trained on either the respective silver corpus
or all of Wikipedia. The ineffectiveness of the gen-
eral corpus is expected as the extracted corpus of-
fers a more domain-specific training data. As for
the more surprising outcome of inefficacy of the
respective silver corpora, the reason seems to be
the size of the silver corpus for most of these do-
mains owing to the lack of articles in Wikipedia.
The extracted corpus does not suffer from this lim-
itation as its size is a hyperparameter set by the

user, 100K in this case. With fewer than 100K in-
domain articles, Dexter continues extracting arti-
cles that are close to but not in the domain leading
to an extrapolated language model combining the
benefits of the specificity of the small in-domain
corpus and the generality of the large corpus.

5 Conclusion

Relying on off-the-shelf resources reduces the
quality of educational NLP applications. To ad-
dress this challenge, we offer to the commu-
nity an aiding tool, Dexter, to extract a domain-
specific corpus from Wikipedia. We show that
our simple method outperforms in-domain corpora
constructed heuristically using Wikipedia’s taxon-
omy, or those constructed using popular systems
scraping the World Wide Web.
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Abstract

In recent years, sequence-to-sequence models
have been very effective for end-to-end gram-
matical error correction (GEC). As creating
human-annotated parallel corpus for GEC is
expensive and time-consuming, there has been
work on artificial corpus generation with the
aim of creating sentences that contain realistic
grammatical errors from grammatically cor-
rect sentences. In this paper, we investigate the
impact of using recent neural models for gen-
erating errors to help neural models to correct
errors. We conduct a battery of experiments on
the effect of data size, models, and comparison
with a rule-based approach.

1 Introduction

Grammatical error correction (GEC) is the task of
automatically identifying and correcting the gram-
matical errors in the written text. Recent work
treats GEC as a translation task that use sequence-
to-sequence models (Sutskever et al., 2014; Bah-
danau et al., 2015) to rewrite sentences with gram-
matical errors to grammatically correct sentences.
As with machine translation models, GEC models
benefit largely from the amount of parallel training
data. Since it is expensive and time-consuming to
create annotated parallel corpus for training, there
is research into generating sentences with artificial
errors from grammatically correct sentences with
the goal of simulating human-annotated data in a
cost-effective way (Yuan and Briscoe, 2016; Xie
et al., 2016; Chollampatt and Ng, 2018).

Recent work in artificial error generation (AEG)
is inspired by the back-translation approach of ma-
chine translation systems (Sennrich et al., 2016;
Poncelas et al., 2018). In this framework, an inter-
mediate model is trained to translate correct sen-
tences into errorful sentences. A new parallel cor-

∗Work done during internship at Grammarly

pus is created using the largely available gram-
matically correct sentences and the correspond-
ing synthetic data generated by this intermediate
model. The newly created corpus with the artifi-
cial errors is then used to train a GEC model (Rei
et al., 2017; Xie et al., 2018; Ge et al., 2018).

To date, there is no work that compares how
different base model architectures perform in the
AEG task. In this paper, we investigate how effec-
tive are different model architectures in generating
artificial, parallel data to improve a GEC model.
Specifically, we train four recent neural models
(and one rule-based model (Bryant and Briscoe,
2018)), including two new syntax-based models,
for generating as well as correcting errors. We
analyze which models are effective in the AEG
and correction conditions as well as by data size.
Essentially, we seek to understand how effective
are recent sequence-to-sequence (seq2seq) neural
model as AEG mechanisms “out of the box.”

2 Related Work

Before the adoption of neural models, early ap-
proaches to AEG involved identifying error statis-
tics and patterns in the corpus and applying
them to grammatically correct sentences (Brock-
ett et al., 2006; Rozovskaya and Roth, 2010).
Inspired by the back-translation approach, re-
cent AEG approaches inject errors into grammat-
ically correct input sentences by adopting meth-
ods from neural machine translation (Felice and
Yuan, 2014; Kasewa et al., 2018). Xie et al.
(2018) propose an approach that adds noise to the
beam-search phase of an back-translation based
AEG model to generate more diverse errors. They
use the synthesized parallel data generated by this
method to train a multi-layer convolutional GEC
model and achieve a 5 point F0.5 improvement
on the CoNLL-2014 test data (Ng et al., 2014).
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Ge et al. (2018) propose a fluency-boosting learn-
ing method that generates less fluent sentences
from correct sentences and pairs them with cor-
rect sentences to create new error-correct sentence
pairs during training. Their GEC model trained
with artificial errors approaches human-level per-
formance on multiple test sets.

3 Approach

3.1 Correction and Generation Tasks

We train our models on the two tasks—error cor-
rection and error generation. In error correction,
the encoder of the sequence-to-sequence model
takes an errorful sentence as input and the decoder
outputs the grammatically correct sentence. The
process is reversed in the error generation task,
where the model takes a correct sentence as input
and produces an errorful sentence as the output of
the decoder.

We investigate four recent neural sequence-to-
sequence models—(i) multi-layer convolutional
model (MLCONV; Chollampatt and Ng, 2018),
(ii) Transformer (Vaswani et al., 2017), (iii)
Parsing-Reading-Predict Networks (PRPN; Shen
et al., 2018), (iv) Ordered Neurons (ON-LSTM;
Shen et al., 2019)—as error correction models as
well as error generation models. The PRPN and
ON-LSTM models are originally designed as re-
current language models that jointly learn to in-
duce latent constituency parse trees. We use the
adaption of PRPN and ON-LSTM models as de-
coders of machine translation systems (UnderRe-
view, 2019): In this setting, a 2-layer LSTM is
used as the encoder of the syntactic seq-to-seq
models, and the PRPN and ON-LSTM are imple-
mented as the decoders with attention (Bahdanau
et al., 2015). We hypothesize that syntax is im-
portant in GEC and explore whether models that
incorporate syntactic bias would help with GEC
task. We provide a brief description of each model
in §3.2 and refer readers to the original work for
more details.

3.2 Models

Multi-layer Convolutional Model We use the
multi-layer convolutional encoder-decoder base
model (MLCONV) of Chollampatt and Ng (2018)
using the publicly available code from the au-
thors.1 As our aim is to only compare the per-

1https://github.com/nusnlp/
mlconvgec2018

formance of different architectures and not to
achieve state-of-the-art performance, we make
few changes to their code. The model of Chol-
lampatt and Ng (2018) produces 12 possible cor-
rect sentences for each input sentences with error.
They also train an N-gram language model as a re-
ranker to score the generated sentences and pick
the corrected sentence with the best score as fi-
nal output. We did not use this re-ranking step
in our model, nor did we perform ensembling or
use the pre-trained embeddings as in the original
work. We do not observe improvement in models
like transformer and PRPN using re-ranking with
an N-gram language model. Additionally, there’s
only a slight improvement in MLCONV using re-
ranking. The reason might be because the N-gram
language model is not very powerful.

Transformer Model We use the publicly avail-
able Fairseq framework which is built using Py-
torch for training the Transformer model. We ap-
ply the same hyper-parameters used for training
the IWSLT’14 German-English translation model
in the experiments of Vaswani et al. (2017).

PRPN Model is a language model that jointly
learns to parse and perform language modeling
(Shen et al., 2018). It uses a recurrent module with
a self-attention gating mechanism and the gate val-
ues are used to construct the constituency tree. We
use the BiLSTM model as the encoder and PRPN
as the decoder of the sequence-to-sequence model.

ON-LSTM Model is follow-up work of PRPN,
which incorporates syntax-based inductive bias to
the LSTM unit by imposing hierarchical update
order on the hidden state neurons (Shen et al.,
2019). ON-LSTM assumes that different nodes of
a constituency trees are represented by the differ-
ent chunks of adjacent neurons in the hidden state,
and introduces a master forget gate and a master
input gate to dynamically allocate the chunks of
hidden state neurons to different nodes. We use a
BiLSTM model as encoder and ON-LSTM model
as decoder.

4 Experiments

4.1 Data
We use the NUS Corpus of Learner English (NU-
CLE; Dahlmeier et al., 2013) and the Cambridge
Learner Corpus (CLC; Nicholls, 2003) as base
data for training both the correction and genera-
tion models. We remove sentence pairs that do
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not contain errors during preprocessing resulting
in 51,693 sentence pairs from NUCLE and 1.09
million sentence pairs from the CLC . We append
the CLC data to the NUCLE training set (hence-
forth NUCLE-CLC) to use as training data for
both AEG and correction. We use the standard
NUCLE development data as our validation set
and we early-stop the training based on the cross-
entropy loss of the seq-to-seq models for all mod-
els. For the generation of synthetic errorful data,
we use the 2017 subsection of the LDC New York
Times corpus also employed in the error genera-
tion experiments of Xie et al. (2018) which con-
tains around 1 million sentences.2

4.2 Setup

We conduct four experiments in this paper. In
Exp1, we train all the AEG models and interme-
diate GEC models on NUCLE-CLC. We use the
NYT dataset as input to the AEG models to gener-
ate sentences with artificial errors. We then create
new parallel training sets for correction by com-
bining the sentences from CLC and NUCLE with
the errorful sentences generated by each model.
We then train the GEC models using these parallel
datasets.

The three other experiments are variants of the
first. In Exp2 we train all correction models on ar-
tificial errors generated by the top neural AEG sys-
tems and a rule-based system for comparison. In
Exp3, we train the GEC models on NUCLE to an-
alyze models built on real data. Finally, in Exp4,
we train all GEC models on artificial data to de-
termine how well correction models can perform
without any real data.

All our experiments are tested on the CoNLL-
2014 test set and we use the sentence-level F0.5
score from the MaxMatch (M2) scorer (Dahlmeier
and Ng, 2012) for evaluation. All models are im-
plemented using the Fairseq framework.3

4.3 Results

Exp1: Figure 1 shows the performance of GEC
models trained on the base NUCLE-CLC set and
then retraining with various amounts of artifi-
cial data. We first observe that PRPN performs
substantially higher than the rest of the models
when trained only with the base CLC-NUCLE

2https://catalog.ldc.upenn.edu/
LDC2008T19

3https://github.com/pytorch/fairseq

data. However, its performance drops when arti-
ficial data generated by the corresponding PRPN
AEG model is added. As for ON-LSTM, the per-
formance improves slightly when the amount of
added data is less than 100k but the performance
drops drastically otherwise. Conversely, the per-
formance of MLCONV and Transformer improves
with the added artificial data but the improvement
is not linear with the amount of added data.

Figure 1: (Exp1) Models trained on the artificial data
generated by the corresponding AEG model. The X-
axis represents the amount of artificial data added to
NUCLE-CLC during training.

Exp2: Since the performance of MLCONV and
Transformer GEC models improve with the ad-
dition of artificial data generated by correspond-
ing AEG models, we hypothesize that the artifi-
cial error generated by these models are useful. To
test this hypothesis, we train all the GEC mod-
els with various amount of artificial error gener-
ated by MLCONV and Transformer AEG mod-
els. We also compare these AEG models to a rule-
based one inspired by the confusion set genera-
tion method in Bryant and Briscoe (2018). We
subsequently score each sentence with a language
model (GPT-2 (Radford et al., 2018)) in order not
to select the most probable sentence. This method
generates a confusion set for prepositions (set of
prepositions plus an empty element), determiners,
and morphological alternatives (cat→ cats).

The results of these experiments are found in
Table 1. Nearly all correction models improve
when using MLCONV or Transformer AEG data
with the biggest performances yielded using the
Transformer model. Interestingly, when using 1M
or 2M samples, performance starts to decline. We
believe that over 1M samples, the noisiness of the
artificial data overwhelms the contributions of the
real data (roughly over 1M samples). The per-
formance of all models drops when trained with
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GEC Model AEG model NUCLE-CLC 10K 50K 100K 500K 1M 2M

MLCONV MLCONV 35.2 35.1 34.7 34.6 38.9 39.4 34.0
Transformer MLCONV 36.3 43.9 44.1 45.4 44.4 45.5 42.0
PRPN MLCONV 43.6 45.4 42.8 43.2 39.6 38.6 31.7
ON-LSTM MLCONV 36.6 39.8 35.6 38.4 36.9 24.2 20.1

MLCONV Transformer 35.2 36.1 35.2 39.4 36.6 36.6 36.1
Transformer Transformer 36.3 20.1 43.9 42.9 43.7 44.0 41.0
PRPN Transformer 43.6 43.1 40.9 40.6 41.4 29.4 31.7
ON-LSTM Transformer 36.6 39.8 38.2 39.6 24.0 21.3 20.1

MLCONV Rule-based 35.2 6.0 7.8 10.5 13.7 13.9 –
Transformer Rule-based 36.3 13.5 14.4 21.8 14.5 21.6 –
PRPN Rule-based 43.6 2.8 4.9 2.6 3.9 8.9 –
ON-LSTM Rule-based 36.6 4.7 3.9 5.5 4.2 5.3 –

Table 1: (Exp2) Evaluating the impact of MLCONV, Transformer and the rule-based AEG systems. NUCLE-CLC
column represents the F0.5 score of GEC models trained on the base NUCLE-CLC data. 10K, 50K, 100K, 500K,
1M, and 2M represents the amount of artificial data added to the NUCLE-CLC during training.

the errors generated by the rule-based model. It is
interesting to observe that the performance drops
significantly just by adding 10K artificial sen-
tences to the base data.
Exp3: Table 2 shows the performance of the mod-
els trained on NUCLE dataset with additional arti-
ficial data generated by corresponding AEG mod-
els trained on NUCLE-CLC. We can see that the
performance of all models, except ON-LSTM, im-
proves significantly when 1 million artificial sen-
tence pairs are added to the NUCLE training data,
even though the errors in these sentences do not
resemble natural errors. This contrasts with the re-
sult in Figure 1 where the performance of the GEC
models trained with the combination of artificial
error and CLC-NUCLE base data drops. This sug-
gests that artificial data is helpful when the base
data size is relatively small.

Model NUCLE +10K +50K +1M

MLCONV 10.1 12.3 12.9 16.1
Transformer 11.2 28.1 16.9 22.8
PRPN 8.3 6.9 12.5 26.2
ON-LSTM 9.4 11.3 11.8 6.0

Table 2: (Exp3) Using only NUCLE as base train-
ing for correction. The AEG models are trained using
NUCLE-CLC data as in other experiments.

Exp4: The GEC models trained only on artifi-
cial data perform very poorly. The best setups,
Transformer and MLCONV, achieve F0.5 scores
of 12.8 and 12.4 respectively when trained with 2
million sentences generated by the corresponding
AEG model. This outcomes suggests that AEG
data should be paired with some sample of real

data to be effective.

4.4 Manual Evaluation

We performed a manual analysis of the generated
error sentences and found that many of the errors
did not always resemble those produced by hu-
mans. For example, The situation with other types
is not much (better → downward). This shows
that despite the noisiness of the error-generated
data, some models (namely MLCONV and Trans-
former) were robust enough to improve. This also
suggests that we may achieve better improvement
by controlling artificial errors to resemble the er-
rors produced by humans. The performance of
syntax-based models goes down significantly with
the addition of artificial errors, which indicates
that these models may be sensitive to poor artifi-
cial data.

5 Conclusion

We investigated the potential of recent neural ar-
chitectures, as well as rule-based one, to generate
parallel data to improve neural GEC. We found
that the Multi-Layer Convolutional and Trans-
former models tended to produce data that could
improve several models, though too much of it
would begin to dampen performance. The most
substantial improvements could be found when
the size of the real data for training was quite
small. We also found that the syntax-based mod-
els, PRPN and ONLSTM, are very sensitive to the
quality of artificial errors and their performance
drops substantially with the addition of artificial
error data. Our experiments suggest that, unlike in
machine translation, it is not very straightforward
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to use a simple back-translation approach for GEC
as unrealistic errors produced by back-translation
can hurt the correction performance substantially.

We believe this work shows the promise of us-
ing recent neural methods in an out-of-the-box
framework, though with care. Future work will
focus on ways of improving the quality of the syn-
thetic data. Ideas include leveraging recent de-
velopments in powerful language models or better
controlling for diversity and frequency of specific
error types.
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Abstract

Automated essay scoring systems typically
rely on hand-crafted features to predict es-
say quality, but such systems are limited by
the cost of feature engineering. Neural net-
works offer an alternative to feature engineer-
ing, but they typically require more annotated
data. This paper explores network structures,
contextualized embeddings and pre-training
strategies aimed at capturing discourse char-
acteristics of essays. Experiments on three es-
say scoring tasks show benefits from all three
strategies in different combinations, with sim-
pler architectures being more effective when
less training data is available.

1 Introduction

In the context of large scale testing and online
learning systems, automated essay scoring (AES)
is an important problem. There has been work on
both improving the performance of these systems
and on validity studies (Shermis, 2014). The abil-
ity to evaluate student writing has always been im-
portant for language teaching and learning; now it
also extends to science, since the focus is shift-
ing towards assessments that can more accurately
gauge construct knowledge as compared to mul-
tiple choice questions (Shermis, 2014). Most ex-
isting systems for automatic essay scoring lever-
age hand crafted features, ranging from word-
counts to argumentation structure and coherence,
in linear regression and logistic regression mod-
els (Chodorow and Burstein, 2004; Shermis and
Burstein, 2013; Klebanov et al., 2016; Nguyen
and Litman, 2018). Improving feature-based
models requires extensive redesigning of features
(Taghipour and Ng, 2016). Due to high variabil-
ity in types of student essays, feature-based sys-
tems are often individually designed for specific
prompts (Burstein et al., 2013). This poses a chal-
lenge for building essay scoring systems.

These problems (and the success of deep learn-
ing in other areas of language processing) have
led to the development of neural methods for au-
tomatic essay scoring, moving away from fea-
ture engineering. A variety of studies (mostly
LSTM-based) have reported AES performance
comparable to or better than feature-based mod-
els (Taghipour and Ng, 2016; Cummins and Rei,
2018; Wang et al., 2018; Jin et al., 2018; Farag
et al., 2018; Zhang and Litman, 2018). However,
the current state-of-the-art models still use a com-
bination of neural models and hand-crafted fea-
tures (Liu et al., 2019).

While vanilla RNNs, particularly LSTMs, are
good at representing text sequences, essays are
longer structured documents and less well suited
to an RNN representation. Thus, our work looks
at advancing AES by exploring other architectures
that incorporate document structure for longer
documents. Discourse structure and coherence
are important aspects of essay writing and are of-
ten explicitly a part of grading rubrics. We ex-
plore methods that aim at discourse-aware mod-
els, through design of the model structure, use
of discourse-based auxiliary pretraining tasks, and
use of contextualized embeddings trained with
cross-sentence context (Devlin et al., 2018). In or-
der to better understand the relative advantages of
these methods, we compare performance on three
essay scoring tasks with different characteristics,
contrasting results with a strong feature-based sys-
tem.

Our work makes two main contributions. First,
we demonstrate that both discourse-aware struc-
tures and discourse-related pre-training (via aux-
iliary tasks or contextualized embeddings) bene-
fit performance of neural network systems. In a
TOEFL essay scoring task, we obtain a substan-
tial improvement over the state-of-the-art. Second,
we show that complex contextualized embedding
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models are not useful for tasks with small anno-
tated training sets. Simpler discourse-aware neu-
ral models are still useful, but they benefit from
combination with a feature-based model.

2 Method

2.1 Neural Models

The overall system involves a neural network to
map an essay to a vector, which is then used with
ordinal regression (McCullagh, 1980) for essay
scoring. For this work we consider two neural
models that incorporate document structure:

• Hierarchical recurrent network with attention
(HAN) (Yang et al., 2016)

• Bidirectional context with attention (BCA)
(Nadeem and Ostendorf, 2018)

Both models are LSTM based. HAN captures the
hierarchical structure within a document, by using
two stacked layers of LSTMs. The first layer takes
word embeddings as input and outputs contextual-
ized word representations. Self attention is used to
compute a sentence vector as a weighted average
of the contextualized word vectors. The second
LSTM takes sentence vectors as input and outputs
a document vector based on averaging using self
attention at the sentence level.

BCA extends HAN to account for cross sen-
tence dependencies. For each word, using the
contextualized word vectors output from the first
LSTM, a look-back and look-ahead context vector
is computed based on the similarity with words in
the previous and following sentence, respectively.
The final word representation is then created as a
concatenation of the LSTM output, the look-back
and look-ahead context vectors, and then used to
create a sentence vector using attention weights,
which feeds into the second LSTM. The represen-
tation of cross-sentence dependencies makes this
model discourse aware.

2.2 Auxiliary Training Tasks

Neural networks typically require more training
data than feature-based models, but unlike these
models, neural networks can make use of related
tasks to improve performance through pretraining.
We use additional data chosen with the idea that
having related tasks for pretraining can help the
model learn aspects that impact the main classifi-
cation problem. We use the following tasks:

• Natural language inference (NLI): given a
pair of sentences, predict their relation as
neutral, contradictory, or entailment.
• Discourse marker prediction (DM): given a

pair of sentences, predict the category of dis-
course marker that connects them, e.g. “how-
ever” (corresponding to the idea opposition
category).

The NLI task has been shown to improve perfor-
mance for several NLP tasks (Cozma et al., 2018).
The DM prediction task is used since discourse
structure is an important aspect for essay writing.
Both tasks involve sentence pairs, so they impact
the first-level LSTM of the HAN and BCA mod-
els.

The use of contextualized embeddings can also
be thought of as pre-training with an auxiliary task
of language modeling (or masked language mod-
eling). In this work, we chose the bidirectional
transformer architecture (BERT) embeddings (De-
vlin et al., 2018), which uses a transformer ar-
chitecture trained on two tasks, masked language
model and next sentence prediction. We hypothe-
sized that the next sentence prediction would cap-
ture aspects of discourse coherence.

2.3 Training Methods
All HAN models and a subset of BCA models
are initialized with pretrained Glove word embed-
dings1 (Pennington et al., 2014). All models are
trained with the essay training data.

For models that are pretrained, the word-level
LSTM and bidirectional context with attention
(for BCA), are common for all tasks used in train-
ing. Given the word-level representations, the
model computes attention weights over words for
the target task (DM, NLI or essay scoring). The
sentence representation is then computed by aver-
aging the word representations using task-specific
attention weights. For the pretraining tasks, the
sentence representations the two sentences in the
pair are concatenated, passed through a feedfor-
ward neural network, and used with task-specific
weights and biases to predict the label. For pre-
training the BCA with the auxiliary tasks, the for-
ward context vector is computed for the first sen-
tence and the backward context vector is computed
for the second sentence. This allows the model to
learn the similarity projection matrix during pre-
training.

1http://nlp.stanford.edu/data/glove.42B.300d.zip
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For the essay scoring task there is another
sentence-level LSTM on top of the word-level
LSTM, with sentence-level attention, followed by
task-specific weights and biases. Pretraining is
followed by training with the essay data, with all
model parameters updated during training, except
for the auxiliary task-specific word-level attention,
feedforward networks, weights and biases. The
network used for BCA with pretraining tasks is
shown in Figure 1. The hyper-parameters were
tuned for the auxiliary tasks and the essay scor-
ing task. To incorporate BERT embeddings in our
model, we freeze the BERT model, and learn con-
textualized token embeddings for our data using
the base uncased model. The tokens are from the
second-to-last hidden layer, since we are not fine-
tuning the model and the last layer is likely to be
more tuned to the original BERT training tasks.
These embeddings are then used as input to the
BCA model (BERT-BCA), which is then trained
on the essay scoring task.

3 Experiments

3.1 Data
The first set of essay data is the ETS Corpus of
Non-Native Written English from the Linguistic
Data Consortium (LDC) (Blanchard et al., 2013)
consisting of 12,100 TOEFL essays.2

The data has essay scores given as high,
medium or low. Two train/test splits are used:

• Split 1 from LDC, 11,000 training essays and
1100 test essays

• Split 2 from (Klebanov et al., 2016), 6074
training essays and 2023 test essays

Split 1 is a larger publicly available set, and split
2 is used in the prior published work on this data.
The data distribution is shown in Table 1. The data
is skewed, with the medium score being the major-
ity class.

To evaluate model performance on smaller data
sets, we use essays in Sets 1 and 2 of the Auto-
mated Student Assessment Prize (ASAP) Com-
petition.3 We chose the first two sets from the
ASAP data, since they are persuasive essays, and
are likely to benefit more from discourse-aware
pretraining. The two essay sets have topics in
computer usage and library censorship, respec-
tively. Data statistics of the two essay sets are

2https://catalog.ldc.upenn.edu/LDC2014T06
3http://www.kaggle.com/c/asap-aes

Data set Essays High Medium Low
Train/dev 11,000 3,835 5,964 1,202

Test 1,100 367 604 129
Train/dev 6,074 2,102 3,318 655

Test 2,023 700 1,101 222
Table 1: Label distribution in LDC TOEFL dataset.
Data is split into training and test sets: split 1 (upper
part) and split 2 (lower part).

Data set Essays Avg. len Score range
1 1783 350 2-12
2 1800 350 1-6

Table 2: Data statistics for essay sets 1 and 2 of ASAP
corpus.

shown in Table 2. Since only the training sam-
ples are available for both sets, we report results
for 5-fold cross-validation using the same splits as
(Taghipour and Ng, 2016).

Pretraining tasks use two data sets. The NLI
task uses the Stanford natural language inference
(SNLI) data set (Bowman et al., 2015). We cast
our NLI task as a four-way classification task, be-
cause a subset of the data does not have gold la-
bels. Unlabeled examples were used with an “X”
label. While tuning on the main task, we found
that including the fourth NLI label gave better per-
formance on the essay scoring than not using it.

The DM task is based on a collection of over
13K free books from www.smashwords.com
– an online book distribution platform.4 Labeled
discourse marker data was created by identifying
sentence pairs that had a discourse marker at the
start of the second sentence. We used 87 dis-
course markers, which were then mapped to seven
groups, for a total of 581,650 sentence pairs. A set
of randomly-selected 95,450 consecutive sentence
pairs without discourse markers was added to the
data set as negative examples, leading to an eight
way classification task. Example discourse marker
categories include:

• Idea opposition: nonetheless, on the other
hand, however

• Idea justification: in other words, for exam-
ple, alternatively

• Time relation: meanwhile, in the past, si-
multaneously

4The data set published by (Zhu et al., 2015) is no longer
available, so we compiled our own data set.
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Figure 1: Network structure for BCA with pretraining tasks.

The complete set of labels, number of samples and
mapping scheme are given in Appendix A.

3.2 Training Configurations
We explore the following setups to train AES
models for the LDC-TOEFL essays:

1. Training using only LDC essay data;
2. Pretraining with one task (either NLI or DM

prediction), followed by training with the es-
say data;

3. Pretraining alternating between the two aux-
iliary tasks (NLI-DM), followed by training
with the essay data; and

4. Training the BCA model with only the essay
data, using static BERT token embeddings as
input to the model.

For the ASAP data, we used the third training con-
figuration.

For the pretraining tasks, 10% of the training
data is used as a held out development set. On
pretraining tasks, the BCA model achieves accu-
racy 0.60 (8 classes) on the development set of
DM data, and accuracy 0.78 (4 classes) on the ded-
icated test set of SNLI data (Bowman et al., 2015).

Ten-fold cross validation was used for the LDC
essay data, five-fold for the ASAP data. A vo-
cabulary size of 75000 was used for all the ex-
periments, except those trained with BERT to-
ken embeddings. Dropout and early stopping was
used for regularization, including variational re-
current dropout (Gal and Ghahramani, 2016) at
both LSTM layers. Hyper-parameter training was
used to find the optimal dropout and determine
early stopping. Network sizes, dropout and num-
ber of epochs over the training data are listed in
Table 3.5

5Trained models and code is available at
https://github.com/Farahn/AES

Shared parameters
Word level LSTM 150

Word level attention weight size 75
Sentence level LSTM 150

Sentence level attention weight size 50
Dropout rate 0.25-0.5

BERT embedding size 768
Auxiliary task parameters

Feed-forward network layer 1 500
Feed-forward network layer 2 250

Training epochs
Essay data 35-45
NLI data 15-25
DM data 5-7

Table 3: Hyper-parameters

3.3 Baselines

We develop a feature-based model that combines
text readability (Vajjala and Meurers, 2014; Vaj-
jala, 2018) and argument mining features (Nguyen
and Litman, 2018). In our implementation, we re-
move one set of basic features, e.g., word counts,
spelling errors etc., since they are present in both
models and keep the set from (Vajjala and Meur-
ers, 2014). Given the extracted features, a gra-
dient boosting algorithm is used to learn a re-
gression model. Predicted scores are scaled and
rounded to calculate Quadratic Weighted Kappa
(QWK) against the true scores. These two fea-
ture sets are chosen because they incorporate dis-
course features in AES. In (Vajjala and Meurers,
2014), the authors used the addDiscourse toolkit
(Pitler et al., 2009), which takes as input the syn-
tactic tree of the sentence, and tags the discourse
connectives, e.g., therefore, however, and their
senses, e.g., CONTINGENCY.Cause, COMPAR-
ISON.Contrast. These automated annotations are
then used to calculate connective based features,
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e.g., number of discourse connectives per sen-
tence, number of each sense. In (Nguyen and Lit-
man, 2018), an end-to-end pipeline system was
built to parse input essays for argument structures.
The system identifies argument components, e.g.,
claims, premises, in essay sentences, and deter-
mines if a support relation is present between each
pair of components. Based on that, the authors ex-
tract 33 argumentative features used for their AES
model.

In addition, we build neural baselines using ex-
isting sentence representations as input to a docu-
ment level LSTM. Specifically, we compare: i) the
BERT sentence encoder, taking the sentence rep-
resentation from the second-to-last hidden layer of
BERT (as in BERT-BCA) and ii) the Universal
sentence encoder (USE) (Cer et al., 2018), which
is trained on multiple down-stream tasks includ-
ing classification and sentiment analysis. Unlike
for BERT, there are no sequential sentence tasks
used in training USE, so we claim that USE is
not discourse-aware. The vectors output from the
LSTM are then averaged using attention weights
to generate a document representation, as in the
HAN and BCA models, so these baselines are
also hierarchical models and will be referred to as
BERT-HAN and USE-HAN, respectively. For both
setups, the sentence vectors are frozen and not up-
dated during training; initial experiments found no
performance gain from fine-tuning.

3.4 Results

3.4.1 LDC TOEFL Essays

The results are shown in Table 4, together with
previously reported results for feature-based au-
tomatic essay scoring systems from (Klebanov
et al., 2016) (Klebanov16) and (Nguyen and Lit-
man, 2018) (Nguyen18). Significance testing was
done on the test set using bootstrap.

All neural models outperform previously re-
ported results on split 2, with the exception
of USE-HAN, as does the augmented feature-
based baseline implemented here. Using the
new feature-based system as the baseline for sig-
nificance testing, only the results from BERT-
BCA give a statistically significant improvement
(p <0.01). The two models that do not explicitly
use discourse cues, HAN and USE-HAN, have the
lowest scores of the neural models. The best result
is obtained when we combine contextualized to-
ken level embeddings from BERT with the cross-

Model Split 1 Split 2
Arg (Klebanov16) - 0.344

Length (Klebanov16) - 0.518
Arg + Len (Klebanov16) - 0.540

Nguyen18 - 0.622
Feature baseline 0.659 0.642

USE-HAN 0.626 0.618
BERT-HAN 0.688 0.680

HAN 0.635 0.623
NLI-HAN 0.643 0.630
DM-HAN 0.651 0.654

NLI-DM-HAN 0.655 0.644
BCA 0.637 0.636

NLI-BCA 0.652 0.647
DM-BCA 0.661 0.661

NLI-DM-BCA 0.659 0.663
BERT-BCA 0.729 0.715

Table 4: Results for the essay scoring task on LDC
TOEFL corpus for both splits reported in QWK.

sentence attention in BCA. This indicates that the
two methods are complementary and useful for
writing evaluation.

Figure 2 shows the confusion matrices for the
USE-HAN baseline, DM-BCA and BERT-BCA
systems for the LDC TOEFL split 1. The con-
fusion matrices indicate that both USE-HAN and
DM-BCA over-predict the essay scores compared
to BERT-BCA, i.e. assign a higher scoring cat-
egory than the true score. The problem is most
severe for USE-HAN, which correctly labels only
40% of the low test samples.

3.4.2 ASAP Essays
Results are reported for 5-fold CV. For each of
the splits, 20% data is used to tune the dropout
rate, learning rate and number of iterations. Since
there was a small variation in the optimal param-
eters for the 5 folds, we used the average of the
parameters from the first two sets for training all
five folds. The test QWK is computed by taking
the true labels and predictions for all 5 test sets.
For the ASAP data set, we report performances of
our feature baseline, the best sentence representa-
tion model, and the best pretrained BCA model.
In addition, we present a simple combination of
the feature-based and BCA model, averaging the
scores predicted by the two models. The results
are shown in table 5.

For both ASAP sets, feature based models per-
form better than the neural models. We hypoth-
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(a) USE-HAN Baseline (b) DM-BCA (c) BERT-BCA

Figure 2: Confusion matrices for the USE-HAN baseline vs. the best neural models on LDC TOEFL split 1.

Model ASAP 1 ASAP 2
TSLF (Liu 2019) 0.852 0.736
Feature baseline 0.833 0.692

BERT-HAN 0.748 0.627
NLI-DM-BCA 0.800 0.671

NLI-DM-BCA+features 0.840 0.711

Table 5: Results for the essay scoring task for ASAP
sets 1 and 2 reported in QWK.

esize that this is due to having less training data
than for the TOEFL essays. Using the pretrained
BERT-HAN model does significantly worse than
the pretrained NLI-DM-BCA model. Combining
the best neural and feature-based model gives a
small, but insignificant performance gain. A more
sophisticated combination would likely yield bet-
ter results.

The current state-of-the art is the two stage
learning framework (TSLF) (Liu et al., 2019). The
model has two components, one using sentence
representation from BERT input to an RNN (simi-
lar to our BERT-HAN), and the second component
uses hand crafted features. The BERT sentence
representations are used to learn an essay score, a
prompt-relevance score and a “coherence” score,
trained on original and permuted essays. Docu-
ment representations from the neural network and
the hand crafted features are then used together in
a gradient-boosting decision tree to predict the fi-
nal essay score.

4 Analysis and Discussion

We hypothesized that good quality essays would
be more coherent. To see if this is captured by
the learned sentence representations, we examined
sentence similarities in the TOEFL essays in rela-
tion to the essay score. Taking the sentence vector

sim2 simall

Model Min σ Min σ

USE-HAN -0.180 0.214 -0.440 0.400
BERT-HAN -0.012 0.013 -0.047 -0.005

HAN 0.021 -0.023 0.069 -0.051
DM-HAN -0.414 0.365 -0.437 0.460

BCA -0.394 0.362 -0.571 0.632
DM-BCA -0.448 0.433 -0.554 0.589

BERT-BCA 0.052 -0.071 0.186 -0.153
Table 6: Correlation of sim2 and simall with the true
essay scores for LDC TOEFL split 1.

Figure 3: Sentence similarity for DM-BCA, left is a
high scoring essay (ID 108264), right is a low scoring
essay (ID 10226).

outputs from the second LSTM layer for essay i
for a particular model for LDC split 1, we com-
pute the cosine similarity of each sentence with its
neighboring sentence sim2 and with all other sen-
tences simall. We then compute the correlation of
the mean, min and standard deviation of both sim2

and simall with the true labels. The mean gave no
meaningful differences between models, but there
were differences for the min and standard devia-
tion (σ), which are presented in Table 6.

In terms of correlation between essay scores
and min/variance of sentence similarity, the high-
est correlations are associated with the models
that use explicit discourse-aware approaches: DM
pre-training and/or the BCA architecture (with-
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Figure 4: Sentence similarity for BERT-HAN, left is a
high scoring essay (ID 108264), right is a low scoring
essay (ID 10226).

out BERT). The correlation values indicate that
these sentence representations capture aspects of
text structure that are reflected in a positive trend
for the variance and negative trends for minimum
sentence similarity. This suggests that discussion
on multiple topics/aspects, as opposed to a sin-
gle theme, tends to result in high scoring essays,
as visualized in Figure 3 for DM-BCA. The fact
that low-scoring essays have higher cross-sentence
similarity likely reflects a less varied use of vocab-
ulary than higher coherence.

Both BERT-HAN and BERT-BCA lead to rep-
resentations for which sentence similarity has
lower variance and lower correlation of the stan-
dard deviation with essay quality. The BERT-BCA
sentence embedding similarities, illustrated for the
same essays in Figure 4, seem to be learning a
fundamentally different representation, but clearly
also useful. In both cases, the BERT embeddings
are learned using the next sentence prediction ob-
jective (together with the masked language model
objective). We hypothesize that AES performance
improvement with BERT, i.e., BERT-HAN and
BERT-BCA, may be due to contextualized word
representations (within and cross-sentence), re-
ducing the need for BCA cross-sentence attention,
as seen by the good performance of the BERT-
HAN model, which has no explicit cross-sentence
dependencies.

An initial investigation of sentence-level atten-
tion weights suggests that weights tend to be more
uniform for low scoring essays and show more
variation for higher scoring ones. However we ob-
serve no meaningful difference between the differ-
ent models.

For both BERT-HAN and BERT-BCA, we froze
the sentence and token embeddings (respectively)
for use in our models. Our experiments indicated
that it is hard to fine-tune the BERT model with the
limited training data available for the LDC TOEFL

and ASAP training sets. Experiments showed that
freezing the model and using tokens as input to
the model gave similar performance as fine-tuning
BERT, and was much easier to optimize. For the
ASAP data, initial experiments using BERT token
embeddings as input to BCA gave significantly
worse performance than the best BCA model. Fine
tuning in this case also proved more challenging,
and results indicated that it did not perform better
than freezing sentence embeddings.

5 Related Work

Neural networks have already shown promising
results for AES. Our work differs from prior ef-
forts primarily in the particular architecture that
we use. Most prior work uses LSTMs (Farag et al.,
2018; Wang et al., 2018; Cummins and Rei, 2018)
or a combination LSTMs and CNNs (Taghipour
and Ng, 2016; Zhang and Litman, 2018), cast as
linear or logistic regression problems. In con-
trast, we use a hierarchically structured model
with ordinal regression. The work by (Farag et al.,
2018) is similar in that they model local text co-
herence, though the coherence features are for de-
tecting adversarial examples and not used directly
in essay scoring. The neural essay scoring sys-
tem presented in (Cummins and Rei, 2018) also
uses a multitask framework, but the auxiliary task
is grammatical error detection. In our work, we
found that adding grammatical error features im-
proved an existing feature-based system, and we
expect that grammar error detection would be a
useful auxiliary task for our neural model as well.

There is no single data set that all systems report
on, which makes it difficult to compare results.
For the TOEFL data, where prior published work
uses feature-based systems (Klebanov et al., 2016;
Nguyen and Litman, 2018), our system provides
state-of-the-art results. For the ASAP data, where
there are published studies using neural networks,
the best scoring systems use ensembling and/or
combine neural and feature-based approaches (Liu
et al., 2019; Taghipour and Ng, 2016). Such meth-
ods would likely also benefit our model, but the
focus here was on the use of auxiliary pretraining
tasks.

Our study explored the hierarchical attention
network (HAN) (Yang et al., 2016) and bidi-
rectional context with attention (BCA) network
(Nadeem and Ostendorf, 2018). Other neural
network architectures for document classification
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could also be explored, e.g., (Le and Mikolov,
2014; Ji and Smith, 2017; Card et al., 2018). Nu-
merous previous studies have looked at using ex-
ternal data to improve performance of neural clas-
sifiers. One study that influenced our work is (Jer-
nite et al., 2017), which showed that discourse-
based tasks such as sentence order and conjunc-
tion prediction can improve neural sentence rep-
resentations for several NLP tasks. This study
used the Book Corpus data (Zhu et al., 2015) and
the Gutenberg data (Stroube, 2003) for discourse-
based tasks. Our task is similar, but we use a larger
set of discourse markers.

Representations from pretrained models includ-
ing (Devlin et al., 2018; Cer et al., 2018; Pe-
ters et al., 2018) have led to performance im-
provements across a variety of downstream NLP
tasks. As shown in the previous section, token and
sentence embeddings from BERT (Devlin et al.,
2018) were useful for the essay scoring task, for
which more data was available. In contrast to
our work, which did not find the BERT sentence
embeddings as useful for the ASAP data (when
used in a hierarchical document model), BERT
was found to be useful for ASAP in (Liu et al.,
2019), where neural and hand-crafted features are
used jointly in classification. While we experi-
mented with both freezing and fine-tuning BERT,
we observed no difference in model performance
with fine-tuning. Work by (Peters et al., 2019) has
shown that fine tuning BERT vs. freezing can give
significant performance improvements for textual
similarity tasks, but it is not significant for natural
language inference tasks.

6 Conclusions

In this work we show that using a neural model
with cross-sentence dependencies and having a
discourse-based training task can improve perfor-
mance on automatic essay scoring over both the
feature-based state-of-the-art models and hierar-
chical LSTMs for the LDC TOEFL essay data.
The natural language inference task, although use-
ful for other text classification tasks, does not con-
tribute as much to essay scoring. Using pretrained
BERT tokens can further improve performance on
the TOEFL data, indicating that other discourse-
aware tasks, such as next sentence prediction, help
essay scoring. For the ASAP data sets, our aug-
mented feature-based system outperforms our best
neural models, which may be due to the small

amount of training data. The better results in (Liu
et al., 2019) are achieved with a model that learns
the combination of hand-crafted features and the
neural document representation. Thus, for tasks
with limited labeled data, there is still a place for
hand-crafted features.

Like other neural models, our approach suffers
from a lack of interpretability. While our analysis
of sentence similarity with the DM-BCA model
provides some useful insights into differences be-
tween high and low scoring TOEFL essays, the
best scoring model did not have the same behavior.
This remains an open problem.
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A Discourse marker data

The data for discourse marker prediction task
was created using over 13,000 books from www.
smashwords.com. Sentence pairs with 87 dis-
course markers were selected, mapped to seven
groups. The distribution of labels is shown in Ta-
ble 7.

The mapping of labels to groups is given below:

• Idea justification: in other words, in partic-
ular, this means that, in fact, for example, al-
ternatively, for instance, to exemplify, specif-
ically, instead, indeed, as an example, as an
alternative, actually, as an illustration, as a
matter of fact

• Time relation: meanwhile, in the past, si-
multaneously, thereafter, after a while, by
then, in turn, in the future, at the same time,
previously, in the meantime

• Idea support: for this reason, therefore, thus,
consequently, hence, as a consequence, as a
result, that is the reason why, the reason is
that, accordingly, this shows that, for that rea-
son, thereby, one of the main reasons

• Idea opposition: nonetheless, on the other
hand, however, conversely, on the contrary,

Category Number of samples
Idea justification 144022

Time relation 24600
Idea support 67223

Idea opposition 181949
Idea expansion 67800

Alternative 7203
Conclusion 88853

Negative samples 95450
Table 7: Categories and data distribution for the dis-
course marker prediction task.

in comparison, by contrast, in opposition, in
contrast, still, by comparison, nevertheless

• Idea expansion: in like manner, likewise, in
addition, also, moreover, equally important,
what is more, additionally, in the same way,
furthermore, besides, in addition to this, sim-
ilarly

• Alternative: else, otherwise

• Conclusion: ultimately, in the end, in clos-
ing, finally, in brief, last but not least, in sum,
to summarize, lastly, at the end of the day,
in short, after all, in conclusion, to conclude,
overall, eventually, at last, all in all, on the
whole, briefly, in summary
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Abstract

Automatic assessment of the proficiency lev-
els of the learner is a critical part of Intelligent
Tutoring Systems. We present methods for
assessment in the context of language learn-
ing. We use a specialized Elo formula used
in conjunction with educational data mining.
We simultaneously obtain ratings for the pro-
ficiency of the learners and for the difficulty
of the linguistic concepts that the learners are
trying to master. From the same data we also
learn a graph structure representing a domain
model capturing the relations among the con-
cepts. This application of Elo provides ratings
for learners and concepts which correlate well
with subjective proficiency levels of the learn-
ers and difficulty levels of the concepts.

1 Introduction

A key goal of Intelligent Tutoring Systems (ITS)
is to provide students with individualized learning,
and thus support their learning process. Several
systems for various subjects have proven to be ef-
fective, (Ritter et al., 2007; Arroyo et al., 2014;
Klinkenberg et al., 2011). Our work is part of
an international collaborative effort to developing
large-scale Intelligent Computer-Aided Language
Learning (ICALL) systems for use in real-world
environments. Our system, Revita (Katinskaia
et al., 2018), is in use in official university-level
curricula at several major universities, to enhance
language learning and teaching.1

To develop automated methods for personalized
tutoring, robust models for assessing the current
proficiency of learners are required. Such models
enable quantitative evaluation and comparison of
teaching methods with respect to the rate of devel-
opment of the learners, which enables us to evalu-
ate the performance of the ICALL system.

1https://revita.cs.helsinki.fi/

Several approaches for modeling knowledge
have been proposed, such as Bayesian Knowledge
Tracing (Corbett and Anderson, 1994), Learn-
ing Factor Analysis (Cen et al., 2006), and
its more advanced variant—Performance Factor
Analysis, (Pavlik Jr et al., 2009). These models,
however, are complex and time-consuming to im-
plement for ITS, and require large amounts of data
for each learner, (Pelánek, 2016).

In this work, we present a simple and effective
method for assessing the proficiency of language
learners, as well as the difficulty of linguistic con-
cepts, by utilizing the Elo formula, (Elo, 1978)—
in an unsupervised fashion. The result is a set of
rated concepts and a method for assessing the cur-
rent and historical proficiency of each learner. We
also present a concept graph—learned from the
educational data—representing the dependencies
between concepts.

We use educational data, collected from real
language learners, in two assessment contexts.
One context is where learners take language profi-
ciency tests. During the test the system samples
questions from a database, each question linked
to a specific linguistic concept. Examples of con-
cepts are collocations, certain type of verb inflec-
tion, certain word-order rules, etc. In the second
context, learners do exercises based on “authentic”
texts—chosen based on the learners’ interests—
that have a difficulty estimate, assigned by a sta-
tistical model. In each context, the result is a nu-
meric Elo-based rating describing learners’ profi-
ciency in the target language.

The paper is organized as follows. Section 2
outlines out data generation process. In Section 3,
we describe the Elo rating system, and discuss our
modifications to the formulas in the two assess-
ment contexts. In Section 4, we discuss our ap-
proach for building a domain model, represented
by a concept graph. Section 5 describes simula-
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tions and experiments on obtaining Elo ratings for
concepts and for assessing learner competency. In
Section 6, we discuss preliminary results on corre-
lation between Elo ratings in different assessment
contexts, and the correlation between the Elo rat-
ings and the performance levels assigned by teach-
ers. We also demonstrate a graph of concepts, each
with Elo difficulty estimates. In Section 7, we dis-
cuss current problems. Section 8 concludes with
current directions of research.

2 Data

This work builds on educational data we have col-
lected through a collaborative effort with language
teachers at several universities. In this paper, we
focus on students learning Russian as a second
language (L2) at different levels on the CEFR
scale, ranging from A1 to C2, (Little, 2007). The
students yield data in two assessment contexts:

Language tests: In the testing context, the stu-
dents take online language tests on a platform pro-
vided by the system. Each test is time-limited,
and comprised of approximately 300 test items,
sampled from a database of 3390 multiple-choice
questions. The questions were prepared by lan-
guage teachers and linguistic experts over a period
of 20 years, (Kopotev, 2012, 2010). Each question
is linked to one of 140 linguistic “concepts,” also
predefined by the experts. At the time of this writ-
ing, the response data consists of 600 000 test an-
swers, by approximately 1000 learners. For each
answer we record to which concept the question
belongs, whether the answer was correct, as well
as timestamps.

Language practice: In the practice context, stu-
dents practice the language by doing exercises
based on a text. The response data consists of
student answers to the exercises: one set of ex-
ercises is associated with a snippet of text (e.g,
one paragraph). The system offers various types
of exercises, including multiple-choice questions,
“cloze” quizzes (fill-in-the-blank), and listening
comprehension, which are generated automati-
cally based on the text chosen by the learner. Each
text has been assigned a difficulty rating by a lin-
ear model, described in 3.4. Currently, we do not
use information about to which linguistic concepts
each exercise belong. For each attempted set of
exercises, we use the percentage of correct an-
swers, text difficulty, and the timestamp.

3 Rating methods

This section describes how we calculate and up-
date ratings of users and linguistic concepts. We
cover the two assessment contexts in which the
data were generated: first, the testing context, and
second, the practice context. The estimator of text
difficulty is described at the end of this section.

3.1 Elo ratings
The Elo rating, introduced by Arpad Elo, (Elo,
1978), was originally used for rating the skills of
chess players, and evolved versions of it are now
widely used in a variety of domains, ranging from
video-games to Tinder.

The Elo formula defines the expected result of
actor A in a match against actor B according to:

EA =
1

1 + 10
RB−RA

σ

(1)

EA is a value between 0 and 1, indicating the ex-
pectation (probability) of success/win. RX refers
to the current rating of actor X , and σ is a scale
variable. The scale is traditionally set to 400 (in
chess). This controls the spread of the resulting
ratings. In the present work, we used σ = 600.2

The rating of actorA after a match with another
actor is completed is updated according to:

R′
A = RA +K(SA − EA) (2)

The factor K controls the maximum rating adjust-
ment that is possible at one time. We use a static
K value of 32. SA denotes the outcome, or the
score of a match for actor A: loss, draw and win
for A is denoted as 0, 0.5 and 1, respectively.

The Elo rating method has three important prop-
erties. First, the formulas are symmetric: A and B
switch places when calculating with respect to B.
This leads to the zero-sum property of the Elo rat-
ing distribution, when K is static—the amount of
Elo lost by the losing actor is transferred to the
winning one. As a result, the mean of the ratings
of all actors will be whatever the initial rating is set
to. We initially set the rating of all players (con-
cepts and learners) to 1500.

Second, the magnitude of the rating update de-
pends on the difference between the outcome SA

2The reason for this is largely aesthetic; the number of
users is currently small (about 1000), which results in a some-
what narrow spread of the rating distribution. A larger spread
is more comparable to actual chess ratings, which is more
familiar and easier to conceptualize.
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and the expected score EA. This means that a
highly rated actor failing against a significantly
lower rated one will have a severe loss in Elo, ap-
proaching the value of K. Conversely, the success
of a higher rated actor is expected, thus it yields a
small update in the rating. If the actors are evenly
matched the update is between the two extremes.

Finally, the final, or “current,” distribution of
Elo ratings in a system depends on the order of
the matches. This implies that the Elo rating is
a representation of an actor’s current proficiency.
Consider an actor who fails in the first half of
100 matches, and succeeds in the second half, and
compare the result to the reverse order. Because
the rating updates decrease toward the expected
extremes, and are exaggerated at the unexpected
extremes, the resulting rating of the actor will be
high when his successes are in the second half
of the matches and low in the reverse case—even
though the two sequences are events are the same,
and differ only in their ordering.

3.2 Language test ratings

In (Klinkenberg et al., 2011; Pelánek, 2016), it was
shown that Elo ratings can be adapted for use in
educational systems, to model the proficiency of
students and the difficulty of questions. In our sys-
tem, in the testing context, the analogue of an out-
come of a “game” is a student attempting an exer-
cise; the two rated “actors” are the student and the
exercise. SA represents whether a student has an-
swered the question correctly. The rating RQ of a
question Q captures the difficulty of the question.

An adjustment is made for multiple-choice
problems to account for the fact that students have
some chance of guessing correctly, even if they do
not know the correct answer. For this, we adopt an
approach recommended by Pelánek (2016), penal-
izing the expected value by the probability that a
random guess is correct. A similar expectation for-
mula is proposed in Item Response Theory (Em-
bretson and Reise, 2013).

In (Klinkenberg et al., 2011; Pelánek, 2016), the
focus was assessing the difficulty of each particu-
lar question. In our system, we model the con-
cept category to which the questions belong; ev-
ery question from a concept is a representative for
the concept in the calculations. In our data, each
question is linked to one linguistic concept. The
formula for the expectation of student S having
a correct response on a question from Concept C

adjusted for guessing is:

EA =
1

k
· 1 + (1− 1

k
) · 1

1 + 10
RC−RS

σ

, (3)

where k is the number of choices in the multiple-
choice question. We expect the Elo ratings
for concepts to approach their true value after
a large number of data points (“games” or ex-
ercise attempts) have been sampled. To ob-
tain concept ratings of better quality, they are
learned by re-adjusting all ratings by re-playing all
games/attempts in chronological order over sev-
eral epochs. We call this the Elo “burn-in” period,
and describe it in Section 5.1. This is used to ob-
tain “stable” concept ratings.

3.3 Language practice ratings
In the practice context, the exercises are different
from the test context. Our method therefore dif-
fers in the two contexts in several ways. Here,
the exercises sets that the learners have answered
are composed of a variety of exercises, some of
which may not be linked to a specific linguistic
concept (recall, each test item is linked to a con-
cept). This means we cannot share the ratings di-
rectly between the two learning contexts.

To address this problem, we make the simplify-
ing assumption that on average the exercises in a
given text correspond to the difficulty rating of the
text. The method for estimating the difficulty of a
text is described in the following subsection.3

Concretely, we define SA as the percentage of
correct responses in a given set of exercises. EA

for a set of exercises is set to the Elo rating of the
entire text from which the exercises are drawn.

We update the learner’s Elo after each set of ex-
ercises, but update the text’s Elo only after an en-
tire iteration through the text. Crucially, the sys-
tem updates the Elo for the text only with respect
to the specific user who practiced it. This mod-
els the notion that as I practice with the same text
over and over, the text becomes “easier” for me—
but not for other players.

3.4 Estimator of text difficulty
Modeling and characterizing the readability of
texts is a well-studied problem with a long his-
tory, (Dubay, 2009). Experiments with lexical and

3This means that A. our difficulty model should return an
accurate estimate of the complexity of the text, and B. that
these difficulty estimates should be properly calibrated to the
desired rating scale.
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grammatical features have been conducted, (Chen
and Meurers, 2016; Heilman et al., 2008).

We use a simple linear model for estimating the
difficulty of a given text. The output of this model
is scaled onto the Elo rating scale. This enables us
to calculate the expected result of any rated learner
solving exercises from any rated text.

Lexical frequency is known to be a powerful
predictor of text readability, (Chen and Meurers,
2016). We use the normalized mean of the lexical
frequencies of the tokens in a text as a feature. Ad-
ditionally, we use mean token length and mean
sentence length, as they are also used in classic
readability measurements, (Kincaid et al., 1975;
Flesch, 1979). These three features are scaled for
a simple 3-variable regression model.

Currently, data for training this model are parti-
tioned into two types: texts from sources with sim-
plified language vs. texts from difficult sources.
We label simple texts with a value of 0.2 and dif-
ficult texts with 0.8.4 We aim for a model that
produces a correct ordering of texts with respect
to their difficulty. We do not need an exact es-
timate. If the learner Elo ratings based on these
estimates correlate well with the ratings from the
testing context, we consider this estimator accu-
rate enough. In Section 5 we show that so far, this
indeed seems to be the case.

The model outputs typically range between 0
and 1. We scale these values to Elo ratings ac-
cording to formula 4. This transformation is based
on the Elo rating distribution acquired in the test-
ing context. The bounds are clamped at (0, 1), as
some texts may get a high difficulty value (some-
times even > 2, in extreme cases).

f(x) =





600, if x < −0.4
1000x+ 1000, if − 0.4 ≤ x ≤ 1.4

2400, if x > 1.4
(4)

4 Concept graph

We are interested in finding a model for the “nat-
ural” order in which learners acquire linguistic
concepts—directly from learner data. Learners
will find some orders more natural than others—

4This is a simplification, which does not reflect reality ac-
curately, as not all texts from a given source are of equal dif-
ficulty. However, simply fitting a low dimensional, high-bias
estimator such as this yields a reasonable baseline model that
generalizes well enough to other texts. We will explore more
sophisticated models in the future.

e.g., when some concept is a requirement for an-
other. The fact that one concept “precedes” an-
other is called the surmise relation in Knowledge
Space Theory (Doignon and Falmagne, 1999).

Often the domain model in ITS is built by elic-
iting domain knowledge from experts. We devised
a baseline model to infer such relations from user
data, without supervision. As we mentioned, each
test question is mapped to a certain linguistic con-
cept, and we store all test results from all students.
Based on these results, we know to what extent
which users have mastered which concepts; from
this, we can try to tell apart the more basic con-
cepts from the more advanced ones.

The aim is to build a partial order over the set of
all concepts C, which specifices which concepts
are related—i.e., we write c2 → c1 to mean con-
cept c2 presupposes (or implies) concept c1.5

Given a set of users U , we build a matrix of
“mastery” scores M , of dimension |U | × |C|. Ev-
ery element Mij is the proportion of correct an-
swers that user ui has given for concept cj . In the
current implementation, we consider each “user”
to be a single test session. If the same person
completes the test at different times, they will be
treated as different users for the purpose of com-
puting consistency. This is done to take into ac-
count the fact that a user’s level of proficiency
changes over time.

For every pair c1, c2 ∈ C, we check whether
c2 → c1, c1 → c2 or c1 ⊥ c2 . We compare all
columns of M pairwise. Let cj denote column j
ofM and ck column k. To check whether ck → cj
is true, we define a logical function CONu which
checks that user u is consistent with this relation:

Muk Muj CONu(ck → cj)

0 0 1
1 0 0
0 1 1
1 1 1

Again, here ck is the “harder” concept than cj .
Thus, if Muk = 0 (user u knows nothing about
concept ck), that is consistent with ck → cj re-
gardless of the value of cj . Conversely ifMuj = 1
(user umastered concept ck perfectly), that is con-
sistent with ck → cj regardless of the value of ck.

In practice, the values in M are fractions be-
tween 0 and 1. Therefore we introduce two thresh-

5We would like to say that c1 is a prerequisite for c2, but
that may be too strong a claim. However we may be able to
learn from the data that typically c1 is mastered before c2.
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old parameters to map Mij to zeroes and ones:
we believe that a user u really does not know the
(harder) concept ck if Muk 6 θguess: the “guess-
ing” upper bound, below which we believe that the
user does not know the concept, while sometimes
only guessing the correct answer. Analogously,
we say that a user u has mastered quite well the
(easier) concept cj if Muj > θmaster: the “mas-
tery” lower bound, above which we believe that
the user knows the concept, while sometimes mak-
ing a few mistakes.

To check whether ck → cj , we compute the pro-
portion σ of all users who are consistent with this
relation ck → cj , as follows:

σ(ck → cj) =
1

n

∑

u∈U
CONu(Muk,Muj)

where:

CONu(Muk,Muj) =





1 if Muk 6 θguess

1 if Muj > θmaster

0 otherwise

n is the total number of users. θguess and θmaster

refer to the thresholds of guessing and master-
ing respectively. That is, we ignore all users
where the level of proficiency in c1 and c2 suggests
that user only partially understands both concepts,
since they do not support to the consistency from
ck → cj .

We then apply a consistency threshold θ such
that, if σ(c2 → c1) > θ, we add the relation c2 →
c1 to our partial order.

Finally, we represent the partial order as a di-
rected acyclic graph (DAG), where each path in
the graph represents a possible prerequisite route
toward learning a concept. For example, if we
wish to obtain a complete syllabus for a language
course, then we can find a total order compatible
with our partial order (i.e., a linear extension) by
topologically sorting the nodes in the graph.

We tested this approach with a set of over 620K
answers gathered from 700 users, and manually
evaluated the results, setting θ = .7.

Our domain experts confirm that the resulting
graph provides a plausible model for the relations
between the concepts in the language.

5 Experiments

5.1 Elo burn-in
In conventional Elo rating systems, the ratings of
both actors are updated after each match. Our goal

Figure 1: Learning concept Elo ratings with burn-in

is to learn a stable rating for each language con-
cept, which we can keep unchanged as learners
take further tests and improve. The rationale be-
hind this is that the concepts don’t become less
difficult for everyone if a learner masters it.

To achieve this, we perform a burn-in simu-
lation based on the user data we have collected.
Specifically, we take the entire collection of data
and calculate the Elo updates for each data point—
user U doing exercise E—in chronological order.
We do this for repeated epochs until the sum of
differences between epochs nears zero. This is il-
lustrated in Figure 1.

Once convergence is achieved, we reset the stu-
dent ratings, and recalculate them from scratch
with the fixed concept ratings. This yields a system
where the learners’ ratings are comparable and in-
dependent for any learner, including future ones.

5.2 Test and exercise simulation
To verify that one test (of 300 items) is sufficient
for a learner to reach her current “true” rating, we
performed simulation experiments. Concretely,
we measured how many test items a new learner
(e.g., with a rating of 1800 Elo) must answer in
order to settle on her rating.

In this simulation, each student is initially rated
as 1500, and complete some test items. We use
the Elo expectation formula to get the response
accuracy for the simulated actors. We perform
randomized simulations of actors performing one
300-item test with this average response accu-
racy and observe the results, shown in Figure 2.
The actors’ responses—correct or false—are sam-
pled randomly according to her supposed correct
rate. We also add a small amount of normally dis-
tributed random noise. As Figure 2 shows, in this
case, one 300-item test is enough to reach one’s
“true” rating.
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Figure 2: Simulation: test items

Figure 3: Simulation: exercises based on texts

In contrast to the test item context, in the con-
text of text-based exercises, the Elo ratings will be
updated over time both for for learners and prac-
tice texts. We conducted a simulation to visualize
the rating trends.

In the exercise simulation, the simulated actor
has the same starting point as in the simulation for
tests—1500. We fix her rate of correct responses,
e.g., as 50%, and the actor is practicing only sim-
ulated texts rated at 1800. This means that the the-
oretical upper bound of the actors’ rating is, by
definition, under 1800.6 The same normally dis-
tributed noise is introduced in this simulation as
above. The data in our system shows that texts typ-
ically contain 10 snippets (exercise sets) or fewer.
After a full pass through a text, namely, 10 prob-
lem sets, the ratings for the text are updated with
respect to this particular actor. In this simula-
tion each text is to be practiced twice. Figure 3
shows the result of this simulation. We stopped
the simulation after 8 texts (each practiced twice)
because the rating of the actor had converged to
1800. Since the student begins far below 1800,
the first several problem sets will have a substan-
tial drop in their rating, due to the large initial dif-

650% success rate in a competition setting means the play-
ers are perfectly matched; since the text is rated 1800, the
learner’s Elo rating should also reach 1800 and remain there.

Figure 4: Expert annotated CEFR groups vs. mean Elo
rating for each CEFR level

ference between student’s rating and text’s diffi-
culty estimate. This initial burn-in process soon
ends, after the student practice several snippets.
As we can observe in Figure 3, the initial burn-
in process ends after 3 texts—10 snippets/practice
sets per text, each text practiced twice, yielding
60 snippets—the subsequent ones showing only
a slight change. The simulation is based on the
assumption that the student will go though every
problem set in strict order. In reality, this is not
very likely. We can therefore infer that this student
can reach a rating around 1800 rating after practic-
ing with less than 140 snippets/problem sets.

6 Results

The result of primary interest is how well the Elo
ratings given by our system correspond to CEFR
levels assigned to the learners by the expert teach-
ers, who estimate the learners’ proficiency based
on a wide range of assessment criteria, including
written essays and oral exams. The relationship
between Elo and CEFR is illustrated in Figure 4.

The figure shows the means and 95% confi-
dence intervals of the Elo ratings for the CEFR
levels of students, assigned subjectively by the
teachers. The numbers of students at each CEFR
level in our experiments are given in Table 1. The
data in Figure 4 comes from 142 students whose
CEFR levels were established independently of
these tests by the teachers. Although language
competency encompasses several skills—reading,
writing, aural comprehension, speaking—and the
learner may be at different levels in different skills,
we normally expect that the competencies across
different sills are fairly well correlated. The cor-
relation om Figure 4 is 0.90. Thus, the data in the
figure indicate good correlation between our rating
method and actual proficiency.

While assessing and modeling the improvement
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CEFR Students
A1 48
A2 31

B1 18
B2 6

C1 17
C2 22

Total 142

Table 1: Number of CEFR rated students in Figure 4

Figure 5: A representative student test Elo progress

of learners is largely in the realm of future work,
we have interesting preliminary data of learners’
improvement. Figure 5 shows an example of the
progress of a typical actual learner taking tests.
The learner takes (randomized) tests over a period
of time, with the rating improving consistently. In
this example, we see an increase of almost 300 in
average Elo during the periods. The improvement
is attributed to the fact that the learner has covered
new material during the period, mastered more of
the concepts in the test, and consequently scoring
better on those questions.

Another crucial question is how well our Elo
estimates from the exercise context correlate with
Elo ratings from the testing context. For this we
also have initial results, shown in Figure 6. We
have so far collected only a modest amount of
learner data, and therefore the conclusions drawn
from the data are preliminary. Investigating this
correlation requires substantial data from learners
who have worked in both contexts: practicing with
exercises based on texts, and completing tests. The
figure shows results for the top 17 students, who
have completed at least 1000 exercise sets (text
snippets, in orange) and at least 300 test items (in
blue)—sorted according to their test rating. The
figure shows good correlation between the two rat-

Figure 6: Correlation between test and text-based exer-
cise ratings (ρ = 0.79)

ings for the students. At present, the correlation
between test and practice Elo score is 0.79.

The last goal in our work is to investigate the re-
lationship between the concept graph and the Elo
ratings. Figure 7 shows a small sub-graph of the
concept graph. The complete concept graph 8 can
found in the Appendix. From Figures 7 and 8, we
can see that typically (though not always), if con-
cept A surmises concept B, A will have a higher
Elo rating than B. This makes sense, as more dif-
ficult concepts should surmise easier ones. The
Elo ratings and the graph structure do not corre-
spond perfectly. Expecting that real-valued linear
ratings can accurately describe the natural order
of concepts is unreasonable. Since the graph and
the Elo ratings describe different processes, it is
not surprising to find inversions in the graph, such
as between concepts 98 and 93, in Figure 7. The
structure of the graph, its relation to the difficulty
of concepts, and the natural learning order of con-
cepts is an key future research topic.

Figure 7: Sub-graph of the complete concept graph (see
Supplementary Materials). Arrows denote implication.
Top number: ID of the concept (appendix A); bottom
number: Elo score of the concept (appendix B).
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7 Current problems

We are in the process of collecting user data and
evaluating the methods of assessment presented in
this paper. Subjective CEFR ratings are being col-
lected from the teachers for some of the students.
While the number of hand-labeled CEFR ratings
is modest at the time of writing, it is sufficient to
indicate that using Elo-based ratings for measur-
ing language proficiency shows promise. Building
domain models based on the concept precedence
graph is another direction of research.

Comparing our ratings and expert-annotated
proficiency levels in larger quantities will raise the
confidence of our method. We must note that a sin-
gle value cannot be expected to describe the lan-
guage proficiency of a learner completely, as there
are several aspects of the language to master.

We plan to compare other Elo-based mod-
els, such as Glicko (Glickman, 1999), and
TrueSkill (Herbrich et al., 2007), with our Elo rat-
ing formula. Robust methods for obtaining nu-
merical estimates of skills enables us to develop
ICALL systems, by facilitating the quantitative
evaluation of skills, and the resulting improvement
of the learners.

8 Conclusions

The main contributions of this paper are:

• We adapt and evaluate Elo-based rating for-
mulas for modeling language learners’ profi-
ciency, as well as the difficulty of texts and
linguistic concepts, not only the difficulty of
questions/test items.
• We obtain static difficulty ratings for the

linguistic concepts by performing an ini-
tial burn-in for the Elo ratings based on a
large amount of learner data, and then as-
sess students’ proficiency using the learned
Elo ratings. Feedback from language teach-
ers/experts indicates that the ratings correlate
with their estimates of learner competency.
• We use a linear-regression model of text dif-

ficulty as an estimator, to obtain Elo ratings
for the texts. This enables us to rate the per-
formance of learners, who practice with ex-
ercises generated from the texts. Preliminary
results indicate that there is a positive corre-
lation between ratings in the exercise and the
test contexts.

• We build a partial order over all concepts
found in the domain, and visualize the par-
tial order as a DAG over concepts. The con-
cept graph is not linear as the Elo ratings.
The structure of the concept graph and the
Elo ratings of the concepts generally agree
in that the graph displays a strong tendency
of decreasing rating from the more complex
concepts to the more fundamental concepts,
as indicated by the actual data collected from
the learning process.

In sum, the proposed methods enable us to rate
the proficiency of the current and future language
learners, which is a fundamental goal in ITS and
ICALL.
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A List of concepts

ID Rating Name of concept
6 1602 Lexicology. Lexical semantics
7 1860 Collocations
8 1679 Lexicology. Coordination of words
9 1382 Verb. Case government

10 1541 Verb. Prepositional government
11 1550 Adjectives
12 1509 Nouns
19 1471 Impersonal verbs (except verba meteorologica) and their government
20 1482 Predicative adverbs and their government. Existence, state, time
21 1480 Predicative adverbs and their government. Necessity, possibility, impossibility
22 1577 Negative constructions with predicative ‘be’ (and synonyms), genitive of negation
23 1423 Sentences with dative subject: ‘Кате 25 лет’
24 1445 Expressions of time, place and manner. Preposition-free expressions
25 1621 Constructions with cardinal numerals
26 1470 Constructions with collective numerals
27 1652 Genitive plural of Pluralia tantum words
28 1630 I declension. Type ‘музей-музеи, воробей-воробьи’
29 1595 I declension. Type ‘санаторий’
30 1662 I declension. Fleeting vowels and alternations я, е, ё / й (‘заяц-зайца, заём-займа’)
31 1608 I declension. Type ‘карандаш’
32 1671 I declension. Type ‘адрес-адреса’
33 1562 I declension. Type ‘солдат-много солдат, сапог-пара сапог’
34 1586 I declension. Type ‘-анин/-янин, -ин’
35 1518 I declension. Type ‘дерево-деревья’
36 1616 II declension. Type ‘армия’
37 1603 II declension. Type на -ня
38 1713 II declension. Type ‘статья’
39 1616 Fleeting vowel in genitive plural
40 1504 Nouns with prepositions в/на ending in -у/-ю in prepositional singular
41 1619 Nouns ending in -у/-ю in prepositional singular and -а in nominative plural
42 1644 Possessive adjectives. Type ‘лисий’
43 1601 Ordinal numbers. Type ‘третий’
44 1612 Possessive adjectives. Type ‘мамин’
45 1543 Cardinal numbers. ‘Сто’ vs. ‘пятьсот, шестьсот, семьсот, девятьсот’
46 1608 Quantifiers. Collective quantifiers in oblique cases
47 1528 Quantifiers. Collective quantifiers ‘оба, обе’
48 1594 I conjugation. Type ‘плакать’
49 1511 I conjugation. Type ‘рисовать’
51 1560 II conjugation. Type ‘молчать’
52 1674 Preterite. Type ‘исчезнуть’
54 1570 Regular verbs with vowel alternation
55 1512 Resultative
56 1553 Iterative / potential iterative / qualities
57 1507 Expression of duration - ‘за какое время’
58 1416 Factual meaning of verbs
59 1817 Aspect, expression of action completed in the past
60 1648 Aspect, expression of capability/incapability. (‘Тебе этого не понимать/понять!’)
61 1509 Inception of action
62 1525 ‘Забыть, успеть, удаться’ + infinitive
63 1539 ‘Уметь, нравиться, любить’ etc. + infinitive
64 1651 ‘Пора, скорее’ + infinitive
65 1553 ‘Нельзя, невозможно, не могу’ + infinitive
66 1499 ‘Не’ + infinitive
67 1501 Negative sentences
68 1411 Imperative
69 1559 Proximal future
70 1674 Impersonal sentences. Infinitival sentences. Subordinate sentences (‘если / прежде чем’ + infinitive)
71 946 Impersonal sentences. Infinitival sentences. Modal expressions
72 1580 Impersonal sentences. Infinitival sentences. Sentences, with negative pronouns and adverbs
73 1701 Generis-personal sentences
75 1516 Passive and its relation to indefinite-personal sentences (equivalent of Finnish impersonal passive)
76 1800 Stress: forms of verbal preterite
77 1706 Stress: short adjectives
78 1736 Stress: participles
79 1548 Nouns. Type A: stress on the stem
80 1719 Nouns. Type B, B1, B2: stress on the ending
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81 1633 Nouns. Type C, C1: stress on the stem in singular, on the ending in plural
82 1614 Nouns. Type D, D1: stress on the ending in singular, on the stem in plural
83 1610 Nouns. Type ‘нож-ножом, сторож-сторожем’
84 1646 Declension of adjectives. Type ‘хорошего’
85 1295 Place of adverbs of time, place and manner
86 1693 Place of negation in the sentence
87 1785 Place of participles in the sentence
88 1618 Place of gerunds in the sentence
89 1296 Place of pronouns in a phrase
90 1589 Word order in sentences introducing direct quotations
91 1681 Second person singular imperative in conditionals (‘если’)
92 1591 Usage of ‘сам’ and ’один’
93 1530 Sentences of type ‘Знаю его как врача.’
94 1567 Sentences of type ‘Быть грозе’
95 1556 Sentences of type ‘Лодку унесло ветром’
96 1509 Genitive plural
97 1537 Frequent prefixed verbs of motion + prepositional constructions
98 1539 Animate noun object
99 1580 Unprefixed verbs of motion

100 1121 Unstressed fleeting vowels in roots and suffixes of nouns and adjectives
101 1391 Unstressed vowels in verbal forms
102 907 Unstressed vowels in roots
103 1452 Unstressed vowels in case endings
104 1179 Unstressed vowels in prefixes
105 370 Unstressed vowels in suffixes
106 1557 Unstressed vowels linking compounds
107 1224 Unstressed particles не and ни
108 357 Letter г in ending -ого (-его)
109 1443 Letter й
110 1241 Letter ч and ш before н and т
111 1427 Letters ъ and ь:
112 1500 Vowels in verbal endings
113 1451 Vowels in the infinitive (indefinite form) before -ть
114 1365 Vowels not after sibilants and ц
115 1231 Vowels after sibilants and ц
116 1091 Voiceless and voiced consonants
117 1378 Consonant clusters at the juncture of morphemes
118 1654 Double and single -н- in suffixes of adjectives and nouns
119 2025 Double and single -н- in suffixes of full and short forms of adjectives
120 1706 Double and single -н- in suffixes of past passive participles and corresponding adjectives
121 1414 Double and single -н- in words derived from adjectives and participles
122 1341 Double consonants in borrowed roots and suffixes
123 1529 Double consonants in native roots
124 1131 Double consonants at morpheme juncture
125 997 Silent consonants
126 1050 Peculiarities of spelling of certain roots
127 1273 Peculiarities of spelling of certain suffixes
128 1868 Joint vs. separate spelling of negation ‘не’: verb (+participles)
129 1320 Joint vs. separate spelling of negation ‘не’: pronoun
130 1296 Joint vs. separate spelling of negation ‘не’: adverb (+‘несколько’)
131 1475 Joint vs. separate spelling of negation ‘не’: adjectives (+full-short)
132 1490 Joint vs. separate spelling of negation ‘не’: noun
133 1563 Joint vs. hyphenated spelling: adjectives
134 1590 Joint vs. hyphenated spelling: numerals
135 1059 Joint vs. hyphenated spelling: pronouns
136 1312 Joint vs. hyphenated spelling: adverbs
137 1555 Joint vs. hyphenated spelling: common nouns
138 1484 Joint vs. hyphenated spelling: function words
139 1836 Joint vs. hyphenated spelling: proper names
140 1555 Capitalized vs. lowercase: astronomical/geographical names
141 1664 Capitalized vs. lowercase: posts, titles, awards
142 1738 Capitalized vs. lowercase: names of official organizations
143 1898 Capitalized vs. lowercase: names linked to religion, historical epochs and events
144 1718 Capitalized vs. lowercase: names of trademarks, documents, works of art
145 1309 Capitalized vs. lowercase: proper names of persons, animals
190 1527 Accusative/ergative subject + Impersonal verb: ‘Васю тошнит’
191 1467 Prep+genitive subject + Impersonal verb: ‘У меня болит голова/шумит в голове’
230 1496 Dative subject + adverb: ‘мне (стало) плохо/нужно/скучно’
231 1548 Dative subject + impersonal verb: ‘мне идет/надоело/везет/хватит’
232 1431 Dative subject + impersonal-reflexive verb: ‘мне нравится/кажется/пришлось’
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Figure 8: The full concept graph.
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Abstract

We present a unique dataset of student source-
based argument essays to facilitate research on
the relations between content, argumentation
skills, and assessment. Two classroom writ-
ing assignments were given to college students
in a STEM major, accompanied by a carefully
designed rubric. The paper presents a reliabil-
ity study of the rubric, showing it to be highly
reliable, and initial annotation on content and
argumentation annotation of the essays.

1 Introduction

Researchers in education have long recommended
the use of rubrics to assess student writing and
to inform instruction, especially regarding feed-
back to students (Graham et al., 2016; Jonsson
and Svingby, 2007). Writing is important not
only as a means to demonstrate knowledge, but
also to acquire understanding of subject matter,
including in STEM (Sampson et al., 2013; Klein
and Rose, 2010; Gunel et al., 2007; Norris and
Phillips, 2003). Argumentative writing plays a key
role in such learning (Hand et al., 2015). It is
difficult, however, for instructors in subject areas
to provide writing instruction alongside the dis-
ciplinary content (Gillespie et al., 2014; Graham
et al., 2014; Kiuhara et al., 2009). We are inves-
tigating the use of rubrics to support instruction
in argumentation writing, with two goals in mind.
Our first goal is to investigate effective instruction
of argument writing skills, including the design
and application of rubrics. Our second goal is to
investigate how natural language processing tech-
niques can facilitate instructors’ use of rubrics.

The study described here is a collaboration
among three computer science faculty: one spe-
cializing in educational technology, and two in

natural language processing (NLP), who apply
NLP to educational data. To investigate how a
rubric can support instruction in argument writing,
we designed a sequence of two argument essay as-
signments and rubrics. The collaborator in educa-
tional technology gave the assignments to college
freshman enrolled in her academic skills class in
their first semester. Both assignments asked stu-
dents to do a critical analysis of source material,
and write an argumentative essay in response to
a prompt by stating a claim, providing arguments
in support of their claim, as well as counterargu-
ments, before reaching a conclusion. The instruc-
tion, and therefore the rubrics, emphasized stu-
dents’ ability to understand source material (con-
tent), to write a coherent essay (coherence), and to
construct an argument (argumentation).

The assignments asked students to summarize
the source material before writing the argument.
To support a fine-grained analysis of the students’
essays and provide data for evaluating NLP tech-
niques, the students’ essays are manually anno-
tated for content and argument. The following
sections present the assignments and rubrics, the
essay data set, the reliability study, and the an-
notation methods for content and argumentation.
We present initial findings on the comparison of
grades assigned in the class to those assigned by
reliable raters, and on the relation of the annota-
tion to the reliable grades. We discuss questions
that can be investigated about student learning,
and about the interdependence of students’ ability
to articulate content and construct an argument.

2 Related Work

Previous work has looked at automated meth-
ods to support rubric-based writing (Passonneau
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et al., 2018). Rubric-based writing assessment
has recently been brought to researchers’ atten-
tion, particularly on designing automated assess-
ment methods. Gerard et al. (2016); Gerard and
Linn (2016) have demonstrated that automated as-
sessment using rubrics successfully identifies the
students at risk of failing, and facilitates effec-
tive guidance and meaningful classroom interac-
tions. Agejev and Šnajder (2017) uses ROUGE
and BLEU in assessing summary writing from
college L2 students. Santamarı́a Lancho et al.
(2018) show that using G-Rubric, an LSA-based
tool applying rubric assessment, helps the instruc-
tors grade the short text answers to open-ended
questions, and proves to be reliable, with a Pear-
son correlation between human graders and G-
Rubric of 0.72.

Recent work investigates fine-grained writing
assessment, especially on content quality eval-
uation by diving into linguistic phenomena and
structures, combined with various NLP tech-
niques. Klebanov et al. (2014) investigated the
correlations between essays scores with a content
importance model. Another line of research has
studied the role of argumentative features in pre-
dicting the overall essay quality (Ong et al., 2014;
Song et al., 2014; Klebanov et al., 2016; Ghosh
et al., 2016; Persing and Ng, 2015). For example,
Klebanov et al. (2016) and Ghosh et al. (2016) ex-
amine the relations between argumentation struc-
ture features and the holistic essay quality (low,
medium and high) applied to TOEFL essays. In
this paper, we use the argumentative features intro-
duced by Ghosh et al. (2016), but correlate them
with the rubric related to the quality of the argu-
ment on a scale of 0-5.

3 Assignments and Rubrics

Two argument essays were assigned in fall 2018
to computer science freshman in a university in
the United Kingdom. In the first of these (Essay
1, assigned early in the semester), students were
asked to choose one of three articles on a current
technology topic, with the number of students per
article capped at one third of the class compris-
ing 141 students. These students are enrolled in a
variety of degree programs, ranging from informa-
tion technology to computer engineering, offered
by a department of mathematics and computer sci-
ence. They form a heterogeneous group, both in
educational background and age, since many are

admitted through the university’s mission to pro-
vide learning opportunities for the whole commu-
nity.

The first part of the assignments required that
students summarize the readings in one hundred
and fifty to two hundred and fifty words. The sec-
ond part elicited a three to five hundred-word ar-
gument essay addressing a given question. The
list of topics and associated questions is shown be-
low. Students were allowed to use external sources
to back up their arguments, but had to reference
these.

1. Autonomous Vehicles: will these change
how we travel today?

2. Cybercrime: will education and investment
provide the solution?

3. Cryptocurrencies: are they the currencies of
the future?

For the second assignment (Essay 2), all stu-
dents were provided with the same three journal
articles relating to uses of AI in education. They
were asked to summarize, in one hundred and
fifty to two hundred and fifty words, key issues
relating to the use of AI in teaching and learn-
ing as stated in the articles. Then, they had to
write a three to five hundred word argument es-
say addressing the question: Should artificial in-
telligence be used in teaching and learning? Both
essays were assessed using a rubric designed by
the three collaborators, based on existing rubrics:
SRI’s Source-Based Argument Scoring Attributes
(AWC) (Gallagher et al., 2015) and Ferretti’s well
known argument rubric (Ferretti et al., 2000). The
four dimensions and their weights (in parenthe-
ses) are shown below. Each dimension or sub-
dimension was rated on a 6-point scale ([0 to 5];
see Appendix A which gives the rubric for Essay
1.)

1. Content (3/7) - quality, coverage, coherence;
2. Argument (2/7) - claims, support, counterar-

gument;
3. Conventions (1/7) - lexis and grammar;
4. Referencing (1/7) - sources and citations.

For Essay 2, some of the details of the Content-
quality and the Referencing dimensions of the
rubric were revised in recognition of the fact that
in the second essay, students were not allowed to
use external sources.
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Students received three hours of preparatory in-
struction prior to the essays being assigned. The
first two hours focused on how to write argument
essays - engaging with the prompt, formulating
a claim, developing arguments and counterargu-
ments, and concluding the essay - as prescribed by
Simon Black (2018) in his text, Crack the Essay:
Secrets of Argumentative Writing Revealed.

The third hour of instruction, given later in the
course, provided students with feedback, exem-
plified by student submissions for the first essay.
During this lecture, they were shown good and
poor examples of essay writing through an appli-
cation of the rubric to several anonymized exam-
ples. These were later made available for their
reference. Using the rubric to provide formative
feedback may have resulted in better performance
by students on Essay 2. Many of the students per-
formed better on the second assignment.

Of the 141 enrolled students, 123 completed Es-
say 1, 101 completed Essay 2, and 97 completed
both. Essay 2 was due 4 weeks following the sub-
mission of Essay 1, which made it possible for stu-
dents to receive feedback on Essay 1 before sub-
mitting Essay 2. The framework used in designing
the instruction is the cyclical process suggested by
Jonassen (2008). Grading of Essay 1 was done by
three of the five tutors teaching the course; each
tutor graded all the essays for one of the three top-
ics. The two remaining tutors split the Essay 2
submissions between them. To ensure consistency
between the graders, the instructor moderated the
grading by randomly selecting one-tenth of each
set to regrade.

Using rubrics in higher education is well doc-
umented (Reddy and Andrade, 2010). Although
mainly used for defining and grading assignments,
rubrics can also be incorporated into instruction.
Here, the feedback provided following the scoring
of Essay 1 using the rubric was part of a develop-
mental process, which culminated in Essay 2. For
many of these students, it was their first attempt at
writing an argument essay. A large proportion of
them reported that the rubric helped them to un-
derstand the assignment better, and that they used
it as a guide. In a survey examining how students
used the rubric for Essay 1, 84 students responded,
and 34% believed they achieved a good mark be-
cause they used the rubric. Only 11.3% felt the
rubric made them lose marks.

Over 65% of students who submitted both es-

says received the same or a better grade on the sec-
ond essay. Most who received the same grade on
both essays ranked in the 95th percentile on both.
The students had very positive things to say about
what they learned from the assignment. These in-
cluded: how to read critically; recognizing and
questioning an author’s argument; how to struc-
ture and write an argument; how to support a claim
with evidence; and how to analyze complex issues.
All of these competencies underpin critical think-
ing and problem solving, which are the fundamen-
tal skills taught to STEM majors.

4 Essay Dataset

The composition of the dataset supports simulta-
neous investigation of summary content analysis
and argumentation mining: the former reflects the
skills of reading comprehension and summariza-
tion, and the latter includes logical reasoning, ar-
gumentation, and writing skills. While summary
and argument serve distinct roles, the combination
into a single writing assignment allows us to assess
the interdependence between reading comprehen-
sion and argument writing.

Below, we present descriptive statistics of the
dataset. Table 1 shows the sample sizes for es-
says on the given topics Cybercrime (CyberCri)
with 44, Autonomous Vehicles (AutoV) with 42,
and CryptoCurrencies (CrypCurr) with 37. In the
second assignment, there are 101 essays about AI.
Table 2 shows that the second assignment had a
higher average of tokens per sentence across sum-
mary, argument and overall. The vocabulary size
of the whole dataset is 5,923.

Assignment1 Assignment2
CyberCri AutoV CrypCurr AI

44 42 37 101

Table 1: Sample size given each assignment and topic;
the total number of essays is 224.

In contrast to other data sets investigated for ar-
gument mining, here the assignments are from a
single course with the same set of students. The
size of our data set is comparable to one used in
(Ghosh et al., 2016) (TOEFL essays), but smaller
than those used in (Stab and Gurevych, 2014; Kle-
banov et al., 2016). In addition, the data set we
collected has multiple essays for four topics, based
on source readings. This gives us the opportunity
to investigate students’ reliance on source material
in their argumentation.
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Sum CyberCri AutoV CrypCurr AI
Sents 7.43 7.24 8.62 7.30
Tk/Sents 34.21 32.84 28.52 36.08
Arg CyberCri AutoV CrypCurr AI
Sents 17.36 19.66 19.51 19.05
Tk/Sents 31.96 32.32 33.20 34.79
Overall CyberCri AutoV CrypCurr AI
Sents 24.78 27.04 28.14 26.34
Tk/Sent 32.46 32.90 32.04 36.17

Vocabulary Size 5923

Table 2: Dataset statistics of average numbers of
sentences (Sents) and average tokens per sentence
(Tk/Sents) from summaries (Sum) and arguments
(Arg) across topics. The total vocabulary size is also
given.

5 Rubric Reliability

Educational intervention studies where re-
searchers investigate the potential benefit of
a proposed intervention apply rubrics whose
reliability has been assessed. For example, in
their meta-analysis of educational interventions,
Graham and Perin (2007) exclude interventions
whose reliability is below 0.60. We also test the
reliability of the rubric used in the classroom
assignments discussed here. The reliability study
we present has two purposes. First, it provides
insight into the difficulty of graders’ use of a
multi-dimensional content and argument rubric
under ordinary classroom conditions where there
is time pressure to assign grades. Second, it pro-
vides a measure of the quality of the gold standard
against which to evaluate the automated NLP
techniques we will develop. Our reliability study
addressed the content and argument dimensions of
the rubric, and achieved high inter-rater reliability.

Two advanced undergraduates were recruited
for the reliability study. They were trained by a
team consisting of the collaborators and their re-
search assistants during a period of seven weeks,
with each rater devoting 10 hours per week. Each
rater then graded half the essays (apart from six
used in training).

The raters’ training consisted of activities in
which they learned about the structure of argu-
ment writing and carried out the assignment, used
the rubric to assess different topics and writers,
and participated in webinars where they received
feedback and further training. Figure 1 shows
the seven-week training regimen. During weeks
1-2, they became familiar with all three writ-
ing prompts through their own essay writing, and
grading the other rater’s essays. There were two

rounds in which they independently assessed three
Cryptocurrency essays (weeks 4, 6; six distinct es-
says), with webinar feedback in between (weeks
5, 7). The week 5 webinar involved all three re-
searchers, the two raters, and a PhD student on the
project. All other webinars with the raters were
presented by the instructor co-author. A final we-
binar (week 7) pointed to minor differences be-
tween the two assignments and rubrics pertaining
to use of open-ended external sources in Essay 1
and not Essay 2.

For the assessment tasks in weeks 4 and 6, three
Cryptocurrency essays representing high, medium
and low students’ scores were selected. The raters
did not know there was a difference in the stu-
dents’ original grades, and no one on the project
other than the instructor knew how the three were
originally graded. As a result of the discussion
from the week 5 webinar, a consensus was reached
on the three initial Cryptocurrency essays. The
raters were instructed to use these as a model for
applying the rubric in a consistent manner.

Rater agreement was assessed using Pearson
correlation on the content and argument compo-
nents of the rubric. Content quality, content cov-
erage, and content coherence were each indepen-
dently rated on a six-point scale (0 to 5). Ar-
gument was rated on an eleven-point scale (0 to
10). After the raters applied the rubric to the
first three Cryptocurrency essays, their correla-
tions with each other and with the assigned grades
varied widely, from negative correlation to high
correlation. After the second round of three es-
says, the correlation between the two raters was
perfect on two, and poor on the third. After a
brief discussion, we decided that this was suffi-
cient agreement for the raters to work indepen-

Week Activity
1 Webinar to review argument writing,

assignment #1, and rubric #1
2 Each rater writes one essay on AV, and one

on Crypto or Cyber; raters apply rubric to
the other rater’s two essays

3 Webinar on their essays and assessments
4 Raters each assess the same three Crypto
5 Webinar on their first round of assessment

with detailed discussion among raters
and all researchers

6 Raters each assess three additional Crypto
7 Feedback on the second round of assessment;

webinar on assignment and rubric #2

Figure 1: Seven-week rater training
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Essay CQual CCov CCoher Arg Conven Ref Cont/Arg Total
AutoV 0.38 0.52 0.29 0.32 0.19 0.56 0.63 0.52
Crypto 0 0.12 0 0.48 0.47 0.56 0.72 0.36
Cyber 0.36 0.33 0.12 0.44 0.30 0.84 0.59 0.50

All Essay 1 0.23 0.40 0.14 0.41 0.31 0.69 0.62 0.47
Essay 2 (AI and Ed) 0.32 0.44 0.42 0.36 0.44 0.61 0.54 0.47

All 0.25 0.38 0.25 0.34 0.38 0.69 0.55 0.42

Table 3: Correlations of the reliable grades with the tutors’ grades

dently to apply the rubric to the remaining essays.
To complete the gold standard rubric scores,

each rater worked on 28 essays per week for three
weeks, and 31 in the fourth week. A random se-
lection of 10 essays were assessed by both raters.
The correlation for the content and argument di-
mensions on the ten essays ranged from one low
outlier of -0.52 to 1.0. The average was 0.75, and
on all but the outlier it was 0.89.

The reliability study shows that the rubric can
be applied reliably, but also highlights the diffi-
culty of incorporating a fine-grained rubric into
classroom use, where tutors have little time to en-
gage in training. The assessments from the reliable
raters generally have moderate correlation with the
tutors’ grades, ranging from 0.72 for the Cryp-
tocurrency essays to 0.54 for the AI Education es-
says for the complete rubric. Table 3 gives the cor-
relations between the raters and the tutors who did
the grading on each component of the rubric, the
sum of the four content and argument dimensions,
and the total. In addition to providing the correla-
tions for all the essays as a whole, the table also
gives the breakdown for each assignment, and for
the three topics in assignment 1.

6 Annotation of Essay Content

Here we describe the annotation of the content
of the summary portion and argument portion of
students’ essays. This comprises three annota-
tion tasks: identification of summary content units
(SCUs) in the summary; identification of elemen-
tary discourse units (EDUs) in the argument; and
alignment of EDUs with SCUs.

To annotate the summary content, we use Pyra-
mid annotation (Nenkova et al., 2007), a summary
content annotation that has been shown to corre-
late with a main ideas rubric used in an educa-
tional intervention with community college stu-
dents (Passonneau et al., 2018). As in that study,
we collect five reference summaries written by
more advanced students, referred to as a wise
crowd. The wise crowd summaries are first an-

Figure 2: Workflow diagram for content annotation:
from DUCView to SEAView. The green box and ar-
rows indicate the flow of the wise crowd summaries
and essays, and the box and arrows in dashed red lines
are show the flow of a student summary and essay.

notated with DUCView1 to create a list of sum-
mary content units (SCUs) (see Figure 2), where
each SCU appears in at least one wise crowd sum-
mary and at most in all five. An SCU is roughly
a proposition, but need not be expressed as a full
clause. SCUs are ranked by their frequency in
the wise crowd summaries to provide an impor-
tance measure of the SCU. Content scores given
to student summaries are based on matches from
the student summary to SCUs in the pyramid.
Pyramid scores measure the inherent quality of
a student’s summary (relative proportion of high-
weighted SCUs), and the content coverage (pro-
portional representation of average SCU weights
in wise crowd summaries). Pyramid annotation
has been found to be highly reliable (Passonneau,
2010). Agreement measured by Krippendorf’s al-
pha (scores in [-1,1]) on ten pairs of pyramids cre-
ated by different annotators, for five topics from
each of two distinct datasets, ranged from 0.75 to
0.89. For sixteen peer summarizers on three top-
ics each, average alpha for annotation of pyramid
SCUs in summaries was 0.78. Due to the exten-

1We made some modifications to the original DUCView;
the new version is available from https://github.
com/psunlpgroup/DUCView.
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Figure 3: SEAView interface. Left panel as the workspace of summary and essay: users could select the span
of text, drag and drop to the center panel as an EDU then change the label; center panel for EDUs and SCUs
alignments; right panel for displaying list of SCUs from manual pyramid. The text highlighted by yellow color in
left panel is the current selected EDU annotated and labeled as blue highlighted text in EDU and SCU alignment
table, as shown in center panel, with EDU ID as 11 and a match of SCU weighted 2 and ID as 9, corresponding to
the pyramid in right panel.

sive reliability measures in past work on pyramid
annotation, we did not re-assess its reliability here.

To annotate the content of the argument portion
of the essay, we identify all distinct Elementary
Discourse Units (EDU). Identifying (segmenting)
EDUs from text and representing their meanings
play a key role in discourse parsing (Marcu, 2000;
Li et al., 2016; Braud et al., 2017). Definitions
of EDUs vary, thus Prasad et al. (2008) consider
the full range of clause types, including verb ar-
guments and non-finite clauses. To simplify the
annotation, we restrict EDUs to propositions de-
rived from tensed clauses that are not verb argu-
ments (such as that complements of verbs of be-
lief). In (Gao et al., 2019), we report the iterative
development of reliable annotation guidelines for
untrained annotators.2 Annotators first identify the
start and end of tensed clauses, omitting discourse
connectives from the EDU spans, which can be
discontinuous. Annotators then provide a para-
phrase of the EDU span as an independent sim-
ple sentence. The EDU annotation is illustrated in
a subsection below along with the annotation tool
developed for this purpose.

6.1 Content annotation workflow
To follow the principles of pyramid annotation ap-
plied to education (Passonneau et al., 2018), we
collected wise crowd essays written by sopho-
mores who took the academic skills course in the
previous year and by the trained raters on the
project (advanced undergraduates), to constitute

2Currently in submission to another venue.

five references per topic. We used the guide-
lines from DUC 2006 (Passonneau, 2006), and
an enhanced annotation tool (see above). As
shown in Figure 2, the annotation workflow be-
gins with pyramid content annotation, which takes
wise crowd summaries as input to DUCView. The
annotator creates SCUs and exports the pyramid
XML file (*.pyr). A pyramid file and a student
summary are then the input for the annotator to
match phrases in the student summary to pyramid
SCUs, which is also exported as XML (*.pan).

6.2 SEAView

We designed a tool to annotate EDUs in the wise
crowd essays and the student essays, and to align
EDUs with SCUs.3 As shown in Figure 3, SEAV-
iew (for SCU and EDU Alignment) takes as in-
put two-part essays that contain a summary and an
argument, where the summary has already been
annotated in DUCView. To annotate the wise
crowd essays, a .pyr file is loaded into SEAView.
The input files must contain document separator
lines between the essays, and another header line
between the summary and argument of each es-
say. The annotator identifies EDUs in each of the
wise crowd essays. To annotate a student essay, a
.pan file is loaded into SEAView. Annotators per-
form the annotation in two steps: identification of
all the EDUs in the argument text; alignment of
EDUs with any SCUs that share the same mean-
ing. The final output from SEAView includes a list

3Available for download: https://github.com/
psunlpgroup/SEAView.
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of EDUs, a list of SCUs matched with the EDUs,
and an alignment table. Depending on the type
of input, SEAView will generate SCU-EDU align-
ment for wise crowd essays (.sea files), or SCU-
EDU alignments for student essays (.sep files).

7 Initial Content Annotation Results

We first present preliminary content annotation re-
sults on topic Cryptocurrencies and Autonomous
Vehicle. Two manual pyramids are annotated,
with statistics shown in Table 4. The total num-
ber of SCUs are 34 and 41 for Cryptocurren-
cies and Autonomous Vehicle respectively. Nei-
ther topic has found SCUs weighted 5 (number
of wise crowd). Both found 8 SCUs that are
weighted 4 and 3, and a long tail distribution of
low-weighted SCUs (26 for Cryptocurrencies; 33
for Autonomous Vehicles).

Table 5 presents statistics of content annota-
tion of essays, from both wise crowd submissions
and students submissions, on EDU-SCU align-
ment between manual pyramid and essays. In wise
crowds, the average weight of SCUs matched in
essays is 2.60 (Cryptocurrencies) and 2.37 (Au-
tonomous Vehicle). Autonomous Vehicle has
more EDUs on average (N=35.00) than Cryp-
tocurrencies (N=23.80), while Cryptocurrencies
has longer length of EDU than Autonomous Vehi-
cle, respectively 17.39 and 15.18 words. Finally,
the SCU weights normalized by the total number
of EDUs are 0.11 and 0.7, and by the number of
matched EDUs are 1.07 and 0.62, for Cryptocur-
rencies and Autonomous Vehicles, respectively.
For student submissions, the Autonomous Vehi-
cles set has slightly higher numbers except for to-
tal EDUs, which is 36.70 for Autonomous Vehi-
cle and 36.76 for Cryptocurrencies. Autonomous
Vehicle has 2.75 as average weight of SCUs and
Cryptocurrencies has 2.07. Cryptocurrencies has
shorter length of EDUs compared to Autonomous
Vehicle, as 13.62 and 14.00. For the normalized
SCU by total number of EDUs and number of
matched EDUs, Autonomous Vehicle shows more
with 0.08 and 0.84, while Cryptocurrencies has

Topic Total SCUs w=5 w=4 w=3 w ≤ 2
CrypCurr 34 0 3 5 26
AutoV 41 0 6 2 33

Table 4: Distributions of SCUs with weights from man-
ual pyramids annotation of Cryptocurrencies and Au-
tonomous Vehicle

0.06 and 0.70. This indicates that more important
content is mentioned in Autonomous Vehicle sub-
missions than Cryptocurrencies.

Table 5 also lists the average (reliable) to-
tal grade, and the breakdown for content quality
and content coverage. Students’ grades on Au-
tonomous Vehicle and Cryptocurrencies are sim-
ilar in all three aspects, as 23.48, 3.68 and 3.83 for
Autonomous Vehicle, and 23.16, 3.81 and 3.39 in
Cryptocurrencies.

8 Annotation of Argument Structure

To annotate the argumentative part of the essays,
we used the coarse-grained argumentative struc-
ture proposed by Stab and Gurevych (2014): argu-
ment components (major claim, claim, premises)
and argument relations (support/attack). Similar
to Hidey et al. (2017), we took as annotation unit
the proposition instead of the clause, given that
premises are frequently propositions that conflate
multiple clauses. For this pilot annotation task
we labeled the 37 Cryptocurrency essays and used
two expert annotators with background in linguis-
tics and/or argumentation. We used Brat as anno-
tation tool.4 The set contains 36 main claims, 559
claims, 277 premises, 560 support relations and
101 attack relations.

Ghosh et al. (2016) proposed a set of argumen-
tative features and showed that they correlate well
with the holistic essay scores (low, medium and
high) when applied to TOEFL persuasive essays:
1) features related to argument components (AC)
such as the number of claims, number of premises,
fraction of sentences containing argument com-
ponents; 2) features related to argument relations
(AR), such as the number and percentage of sup-
ported claims, and the number and percentage of
dangling claims (i.e., claims with no supporting
premises), the number of attack relations and at-
tacks against the major claim; and 3) features re-
lated to the typology of argument structures (TS)
such as the number of argument chains, number
of argument trees. In this study, we wanted to
see whether these proposed features correlate well
with the 6 scale rubric that rate the “quality” of the
argument. The scored used were the one obtained
in our reliability study. Table 6 summarizes the
features (for details see (Ghosh et al., 2016)).

Given the manual annotation of the essays,
to measure the effectiveness of the argumenta-

4https://brat.nlplab.org.
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Stat CrypCurrWise AutoVWise CrypCurrPeer AutoVPeer

WeightSCU 2.60 2.37 2.07 2.75
Total EDUs 23.80 35.00 36.76 36.70
Tokens per EDU 17.39 15.18 13.62 14.00
NormSCUEDUTotal 0.11 0.07 0.06 0.08
NormSCUEDUMatched 1.07 0.62 0.70 0.84
Final ScoresRubric - - 23.16 23.48
Content QualityRubric - - 3.81 3.68
Content CoverageRubric - - 3.39 3.83

Table 5: Statistics of annotated wise crowd summaries and essays form Cryptocurrencies (CrypCurrWise) and
Autonomous Vehicle (AutoVWise), and student submissions (CrypCurrPeer and AutoVPeer): average matched
SCU weights (WeightSCU ), average numbers of EDUs (Total EDUs), average tokens per EDU (Tokens per EDU),
weighted SCU normalized by total number of EDUs (NormSCUEDUTotal), weighted SCU normalized by the
number of matched EDUs (NormSCUEDUMatched). We also provide the scores from rubrics here (bottom of the
table): Final scores across 6 categories (Final ScoresRubric), content quality (Content QualityRubric) and content
coverage (Content CoverageRubric).

Feature
Group

Argumentation Feature Description

# of Claims
AC # of Premises

# and fraction of sentences containing
argument components
# and % of supported Claims

AR # and % of dangling Claims
# of Claims supporting Major Claim
# of total Attacks and Attacks against
Major Claim
# of Argument Chains

TS # of Argument Trees (hight=1 or >1)

Table 6: Argumentation Features

tive features in predicting the quality of argu-
ment scores (0-5) we use Logistic Regression (LR)
learners and evaluate the learners using quadratic-
weighted kappa (QWK) against the human scores,
a methodology generally used for essay scoring
(Farra et al., 2015; Ghosh et al., 2016). QWK
corrects for chance agreement between the sys-
tem prediction and the human prediction, and it
takes into account the extent of the disagreement
between labels. Since the number of essays is
very small we did a five-fold cross validation. Ta-
ble 7 reports the performance for the three fea-
ture groups as well as their combination. The
baseline feature (bl) is the number of sentences in
the essay, since essay length has been shown to
be generally highly correlated with essay scores
(Chodorow and Burstein, 2004).

As seen in Table 7 out of the individual fea-
tures groups the higher correlation is obtained by
the Argument Relation group. The best correlation
is obtained when using all the argumentative fea-
tures (AC+Ar+TS). Unlike Ghosh et al. (2016), we
found that adding the baseline feature to the argu-
ment features did not help, except when combin-

Features Correlations
bl 0.15

AC 0.27
AR 0.35
TS 0.17

bl + AC 0.21
bl + AR 0.26
bl + TS 0.33

AC + AR + TS 0.41
bl + AC + AR + TS 0.26

Table 7: Correlation of LR (5 fold CV) with argument
quality scores.

ing with the typology of argument structure fea-
tures. We also looked at what features are asso-
ciated with different rubric scores based on the
the regression coefficients. As expected, the tree
structure features (TS) correlated with high score
essays (4 and 5). In addition, high scoring es-
says (5) have a higher number of ”attack” rela-
tions to the main claim, showing that the essays
contain counterarguments (presenting both sides
of the issue). Number of supported claims corre-
lated negatively with lower scoring essays (mean-
ing that the low scoring essays has more unsup-
ported claims). Moreover, number of claims sup-
porting the main claim was negatively correlated
with low scoring essays. In those essays, the stu-
dents, although advancing arguments, they failed
to connect them to their main claim. Looking at
the different between high scoring essays (4 vs.
5) we noticed an interesting aspect: for the essays
scored with 5 the ratio of argumentative sentences
w.r.t total number of sentence was higher than for
the essays with a 4 score, while the essays with a
4 scores tend to be longer. In general our corre-
lations scores were much lower than the ones re-
ported by Ghosh et al. (2016). There are several
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explanations for that. First, the number of essays
is smaller (37 compared to 107) and we have a 6-
point scale rather than a 3 point scale. In addition,
our scale reflected the argument quality and not a
holistic essays score; looking just at argumenta-
tive discourse structure might not be enough, we
need to look both at structure and the semantics of
arguments (content) to more reliably distinguish
essays based on their argument quality (Klebanov
et al., 2016). Our annotation of content and argu-
ment will allow us to pursue this line of inquiry in
our future work.

9 Conclusion

We have presented the collection of a rich data
set of essays written by college freshman in an
academic skills class. We conducted a reliability
assessment of the rubric used to explain the as-
signment expectations. The moderate correlation
of the raters’ scores with the grades assigned by
tutors, combined with the lengthy investment in
time to train the raters, shows that high reliability
can be achieved at a cost that cannot be sustained
in ordinary classrooms. One of the questions our
future work will address is the degree to which
rubrics could be partly automated using NLP tech-
niques. Partial automation could free instructors
from the demands of managing a team of graders,
and potentially lead to greater consistency in stu-
dent feedback.

Our future work will investigate the interdepen-
dence of the content and argument annotations
presented here, and the ramifications for student
learning. Two teams of annotators working com-
pletely independently performed the content an-
notation (SCUs, EDUs) and the argument anno-
tation. We will investigate the correspondence be-
tween EDUs and argument components, both of
which are simple propositions. Depending on how
well they correspond, it is possible that providing
EDU annotation as input to argument annotation
could improve the argument annotation reliability.
Ultimately we aim to help instructors provide stu-
dents with better feedback on their ability to sum-
marize the main ideas of source material, the role
that these ideas play in their arguments, and the
overall quality of their essays.
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