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Preface

The ACL 2013 Workshop on Statistical Machine Translation (WMT 2013) took place on Thursday and
Friday, August 8-9, 2013 in Sofia, Bulgaria, immediately following the Conference of the Association
for Computational Linguistics (ACL).

This is the eighth time this workshop has been held. The first time it was held at HLT-NAACL 2006 in
New York City, USA. In the following years the Workshop on Statistical Machine Translation was held
at ACL 2007 in Prague, Czech Republic, ACL 2008, Columbus, Ohio, USA, EACL 2009 in Athens,
Greece, ACL 2010 in Uppsala, Sweden, EMNLP 2011 in Edinburgh, Scotland, and NAACL 2012 in
Montréal, Canada.

The focus of our workshop was to use parallel corpora for machine translation. Recent experimentation
has shown that the performance of SMT systems varies greatly with the source language. In this
workshop we encouraged researchers to investigate ways to improve the performance of SMT systems
for diverse languages, including morphologically more complex languages, languages with partial free
word order, and low-resource languages.

Prior to the workshop, in addition to soliciting relevant papers for review and possible presentation,
we conducted three shared tasks: a translation task, a quality estimation task, and a task to test
automatic evaluation metrics. The results of the shared tasks were announced at the workshop, and
these proceedings also include an overview paper for the shared tasks that summarizes the results, as
well as provides information about the data used and any procedures that were followed in conducting
or scoring the task. In addition, there are short papers from each participating team that describe their
underlying system in greater detail.

Like in previous years, we have received a far larger number of submission than we could accept for
presentation. This year we have received 32 full paper submissions and 46 shared task submissions. In
total WMT-2013 featured 18 full paper oral presentations and 45 shared task poster presentations.

The invited talk was given by Andreas Eisele (Directorate-General for Translation at the European
Commission, Luxembourg) entitled “Machine Translation at the European Commission: Serving the
multilingual needs of the European Commission”.

We would like to thank the members of the Program Committee for their timely reviews. We also
would like to thank the participants of the shared task and all the other volunteers who helped with the

evaluations.

Ondrej Bojar, Christian Buck, Chris Callison-Burch, Barry Haddow, Philipp Koehn, Christof Monz, Matt
Post, Hervé Saint-Amand, Radu Soricut, and Lucia Specia
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WMT 5-year Retrospective Best Paper Award

Each year WMT awards a 5-year Retrospective Best Paper Award. This year we selected the best paper
from 2008’s Workshop on Statistical Machine Translation, which was collocated with ACL in Columbus,
Ohio. The goals of this retrospective award are to recognize high-quality work that has stood the test of
time, and to highlight the excellent work that appears at WMT.

37 members of the WMT13 program committee voted on the best paper from a list of seven nominated
papers. These were nominated by selecting the papers with the most non-self-citations in the ACL
anthology network. This year the vote was very close, and was divided between several excellent papers.
Ultimately, the program committee decided to award the WMT 5-year Retrospective Best Paper Award
to:

Kevin Gimpel and Noah A. Smith. 2008. Rich Source-Side Context for Statistical Machine Translation.
In Proceedings of the Workshop on Statistical Machine Translation. Pages 9-17.

In this paper, Gimpel and Smith used a variety of features, including surrounding words and part-of-
speech tags, local syntactic structure, and other properties of the source language sentence to help predict
each phrase’s translation. They argued that source side features were easier to exploit than target side
features, and that they were likely to make a bigger impact, since some target side features are already
exploited via the language model. Gimpel and Smith empirically demonstrated the value of their model
by augmenting the baseline Moses MT system and fielding an entry into the English-to-German shared
task at WMT that year.

One of the program committee members, Preslav Nakov, commented that this work made an important
contribution in the direction of context-aware SMT, which has been largely neglected in mainstream
SMT research.

Congratulations to Kevin Gimpel and Noah Smith on their excellent work!
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Jiaji Zhou

MEANT at WMT 2013: A Tunable, Accurate yet Inexpensive Semantic Frame Based MT

Evaluation Metric
Chi-kiu Lo and Dekai Wu

An Approach Using Style Classification Features for Quality Estimation
Erwan Moreau and Raphael Rubino

DCU Participation in WMT2013 Metrics Task
Xiaofeng Wu, Hui Yu and Qun Liu
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Hidden Markov Tree Model for Word Alignment
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An MT Error-Driven Discriminative Word Lexicon using Sentence Structure Features
Jan Niehues and Alex Waibel
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Findings of the 2013 Workshop on Statistical Machine Translation

Ondrej Bojar
Charles University in Prague
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Abstract

We present the results of the WMT13
shared tasks, which included a translation
task, a task for run-time estimation of ma-
chine translation quality, and an unoffi-
cial metrics task. This year, 143 machine
translation systems were submitted to the
ten translation tasks from 23 institutions.
An additional 6 anonymized systems were
included, and were then evaluated both au-
tomatically and manually, in our largest
manual evaluation to date. The quality es-
timation task had four subtasks, with a to-
tal of 14 teams, submitting 55 entries.

1 Introduction

We present the results of the shared tasks of
the Workshop on Statistical Machine Translation
(WMT) held at ACL 2013. This workshop builds
on seven previous WMT workshops (Koehn and
Monz, 2006; Callison-Burch et al., 2007, 2008,
2009, 2010, 2011, 2012).

This year we conducted three official tasks: a
translation task, a human evaluation of transla-
tion results, and a quality estimation task.! In
the translation task (§2), participants were asked
to translate a shared test set, optionally restrict-
ing themselves to the provided training data. We
held ten translation tasks this year, between En-
glish and each of Czech, French, German, Span-
ish, and Russian. The Russian translation tasks
were new this year, and were also the most popu-
lar. The system outputs for each task were evalu-
ated both automatically and manually.

The human evaluation task (§3) involves ask-
ing human judges to rank sentences output by
anonymized systems. We obtained large numbers
of rankings from two groups: researchers (who

!The traditional metrics task is evaluated in a separate pa-
per (Machdcek and Bojar, 2013).

Christian Buck
University of Edinburgh

Barry Haddow
University of Edinburgh

University of Amsterdam Johns Hopkins University
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Chris Callison-Burch
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Philipp Koehn
University of Edinburgh

Radu Soricut
Google

Lucia Specia
University of Sheffield

contributed evaluations proportional to the number
of tasks they entered) and workers on Amazon’s
Mechanical Turk (who were paid). This year’s ef-
fort was our largest yet by a wide margin; we man-
aged to collect an order of magnitude more judg-
ments than in the past, allowing us to achieve sta-
tistical significance on the majority of the pairwise
system rankings. This year, we are also clustering
the systems according to these significance results,
instead of presenting a total ordering over systems.

The focus of the quality estimation task (§6)
is to produce real-time estimates of sentence- or
word-level machine translation quality. This task
has potential usefulness in a range of settings, such
as prioritizing output for human post-editing, or
selecting the best translations from a number of
systems. This year the following subtasks were
proposed: prediction of percentage of word edits
necessary to fix a sentence, ranking of up to five al-
ternative translations for a given source sentence,
prediction of post-editing time for a sentence, and
prediction of word-level scores for a given trans-
lation (correct/incorrect and types of edits). The
datasets included English-Spanish and German-
English news translations produced by a number
of machine translation systems. This marks the
second year we have conducted this task.

The primary objectives of WMT are to evaluate
the state of the art in machine translation, to dis-
seminate common test sets and public training data
with published performance numbers, and to re-
fine evaluation methodologies for machine trans-
lation. As before, all of the data, translations,
and collected human judgments are publicly avail-
able.> We hope these datasets serve as a valu-
able resource for research into statistical machine
translation, system combination, and automatic
evaluation or prediction of translation quality.

2http ://statmt.org/wmtl3/results.html
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2 Overview of the Translation Task

The recurring task of the workshop examines
translation between English and five other lan-
guages: German, Spanish, French, Czech, and —
new this year — Russian. We created a test set for
each language pair by translating newspaper arti-
cles and provided training data.

2.1 Test data

The test data for this year’s task was selected from
news stories from online sources. A total of 52
articles were selected, in roughly equal amounts
from a variety of Czech, English, French, German,
Spanish, and Russian news sites:?

Czech: aktudlné.cz (1), CTK (1), denik (1),
iDNES.cz (3), lidovky.cz (1), Novinky.cz (2)

French: Cyber Presse (3), Le Devoir (1), Le
Monde (3), Liberation (2)

Spanish: ABC.es (2), BBC Spanish (1), El Peri-
odico (1), Milenio (3), Noroeste (1), Primera
Hora (3)

English: BBC (2), CNN (2), Economist (1),
Guardian (1), New York Times (2), The Tele-
graph (1)

German: Der Standard (1), Deutsche Welle (1),
FAZ (1), Frankfurter Rundschau (2), Welt (2)

Russian: AIF (2), BBC Russian (2), Izvestiya (1),
Rosbalt (1), Vesti (1)

The stories were translated by the professional
translation agency Capita, funded by the EU
Framework Programme 7 project MosesCore, and
by Yandex, a Russian search engine.* All of the
translations were done directly, and not via an in-
termediate language.

2.2 Training data

As in past years we provided parallel corpora to
train translation models, monolingual corpora to
train language models, and development sets to
tune system parameters. Some training corpora
were identical from last year (Europarl®, United
Nations, French-English 10° corpus, CzEng),
some were updated (News Commentary, mono-
lingual data), and new corpora were added (Com-
mon Crawl (Smith et al., 2013), Russian-English
3For more details see the XML test files. The docid tag
gives the source and the date for each document in the test set,
and the origlang tag indicates the original source language.
4http ://www.yandex . com/

5As of Fall 2011, the proceedings of the European Parlia-
ment are no longer translated into all official languages.

parallel data provided by Yandex, Russian-English
Wikipedia Headlines provided by CMU).

Some statistics about the training materials are
given in Figure 1.

2.3 Submitted systems

We received 143 submissions from 23 institu-
tions. The participating institutions and their en-
try names are listed in Table 1; each system did
not necessarily appear in all translation tasks. We
also included three commercial off-the-shelf MT
systems and three online statistical MT systems,®
which we anonymized.

For presentation of the results, systems are
treated as either constrained or unconstrained, de-
pending on whether their models were trained only
on the provided data. Since we do not know how
they were built, these online and commercial sys-
tems are treated as unconstrained during the auto-
matic and human evaluations.

3 Human Evaluation

As with past workshops, we contend that auto-
matic measures of machine translation quality are
an imperfect substitute for human assessments.
We therefore conduct a manual evaluation of the
system outputs and define its results to be the prin-
cipal ranking of the workshop. In this section, we
describe how we collected this data and compute
the results, and then present the official results of
the ranking.

We run the evaluation campaign using an up-
dated version of Appraise (Federmann, 2012); the
tool has been extended to support collecting judg-
ments using Amazon’s Mechanical Turk, replac-
ing the annotation system used in previous WMTs.
The software, including all changes made for this
year’s workshop, is available from GitHub.’

This year differs from prior years in a few im-
portant ways:

e We collected about ten times more judgments
that we have in the past, using judgments
from both participants in the shared task and
non-experts hired on Amazon’s Mechanical
Turk.

o Instead of presenting a total ordering of sys-
tems for each pair, we cluster them and report
a ranking over the clusters.

®Thanks to Hervé Saint-Amand and Martin Popel for har-

vesting these entries.
7https ://github.com/cfedermann/Appraise



Europarl Parallel Corpus

Spanish < English French < English German <> English Czech < English
Sentences 1,965,734 2,007,723 1,920,209 646,605
Words 56,895,229 | 54,420,026 | 60,125,563 | 55,642,101 | 50,486,398 | 53,008,851 | 14,946,399 | 17,376,433
Distinct words 176,258 117,481 140,915 118,404 381,583 115,966 172,461 63,039
News Commentary Parallel Corpus
Spanish <+ English | French <+ English | German <> English | Czech <> English | Russian <+ English
Sentences 174,441 157,168 178,221 140,324 150,217
Words 5,116,388 | 4,520,796 | 4,928,135 | 4,066,721 | 4,597,904 | 4,541,058 | 3,206,423 | 3,507,249 | 3,841,950 | 4,008,949
Distinct words | 84,273 61,693 69,028 58,295 | 142,461 | 61,761 138,991 | 54,270 | 145,997 | 57,991
Common Crawl Parallel Corpus
Spanish < English French < English German <> English | Czech <> English | Russian <+ English
Sentences 1,845,286 3,244,152 2,399,123 161,838 878,386
Words 49,561,060 [46,861,758(91,328,790 81,096,306 | 54,575,405 | 58,870,638 | 3,529,783 (3,927,378 21,018,793 | 21,535,122
Distinct words| 710,755 640,778 889,291 859,017 | 1,640,835 | 823,480 | 210,170 | 128,212 | 764,203 432,062
United Nations Parallel Corpus
Spanish < English French <> English
Sentences 11,196,913 12,886,831
Words 318,788,686 | 365,127,098 | 411,916,781 | 360,341,450
Distinct words 593,567 581,339 565,553 666,077
102 Word Parallel Corpus Yandex 1M Parallel COI‘pllS
French > English Russian <> English
Sentences 22,520,400 Sentences 1,000,000
Words 811,203,407 | 668,412,817 ] _WOl'dS 24,121,459 | 26,107,293
Distinct words | 2,738,882 2,861,836 Distinct words 701,809 387,646
CzEng Parallel Corpus Wiki Headlines Parallel Corpus
Czech <> English Russian <> English
Sentences 14,833,358 Sentences 514,859
Words 200,658,857 | 228,040,794 Words 1,191,474 | 1,230,644
Distinct words | 1,389,803 920,824 Distinct words | 232,989 251,328
Europarl Language Model Data
English Spanish French German Czech
Sentence 2,218,201 2,123,835 2,190,579 2,176,537 668,595
Words 59,848,044 | 60,476,282 | 63,439,791 | 53,534,167 | 14,946,399
Distinct words 123,059 181,837 145,496 394,781 172,461
News Language Model Data
English Spanish French German Czech Russian
Sentence 68,521,621 13,384,314 21,195,476 54,619,789 27,540,749 19,912,911
Words 1,613,778,461 | 386,014,234 | 524,541,570 | 983,818,841 | 456,271,247 | 351,595,790
Distinct words 3,392,137 1,163,825 1,590,187 6,814,953 2,655,813 2,195,112
News Test Set
English | Spanish | French | German | Czech | Russian
Sentences 3000
Words 64,810 73,659 73,659 63,412 | 57,050 | 58,327
Distinct words 8,935 10,601 11,441 12,189 15,324 15,736

Figure 1: Statistics for the training and test sets used in the translation task. The number of words and the number of distinct
words (case-insensitive) is based on the provided tokenizer.



ID Institution

BALAGUR Yandex School of Data Analysis (Borisov et al., 2013)
CMU Carnegie Mellon University (Ammar et al., 2013)
CMU-TREE-TO-TREE

CU-BOJAR, Charles University in Prague (Bojar et al., 2013)
CU-DEPFIX,

CU-TAMCHYNA

CU-KAREL, CU-ZEMAN | Charles University in Prague (Bilek and Zeman, 2013)
CU-PHRASEFIX, Charles University in Prague (Galus¢dkova et al., 2013)
CU-TECTOMT

DCU Dublin City University (Rubino et al., 2013a)
DCU-FDA Dublin City University (Bicici, 2013a)

DCU-OKITA Dublin City University (Okita et al., 2013)

DESRT Universita di Pisa (Miceli Barone and Attardi, 2013)
ITS-LATL University of Geneva

JHU Johns Hopkins University (Post et al., 2013)

KIT Karlsruhe Institute of Technology (Cho et al., 2013)
LIA Université d’ Avignon (Huet et al., 2013)

LIMSI LIMSI (Allauzen et al., 2013)

MES-* Munich / Edinburgh / Stuttgart (Durrani et al., 2013a; Weller et al., 2013)
OMNIFLUENT SAIC (Matusov and Leusch, 2013)

PROMT PROMT Automated Translations Solutions

QCRI-MES Qatar / Munich / Edinburgh / Stuttgart (Sajjad et al., 2013)
QUAERO QUAERO (Peitz et al., 2013a)

RWTH RWTH Aachen (Peitz et al., 2013b)

SHEF University of Sheffield

STANFORD Stanford University (Green et al., 2013)

TALP-UPC TALP Research Centre (Formiga et al., 2013a)
TUBITAK TUBITAK-BILGEM (Durgar El-Kahlout and Mermer, 2013)
UCAM University of Cambridge (Pino et al., 2013)

UEDIN, University of Edinburgh (Durrani et al., 2013b)
UEDIN-HEAFIELD

UEDIN-SYNTAX University of Edinburgh (Nadejde et al., 2013)

UMD University of Maryland (Eidelman et al., 2013)

uu Uppsala University (Stymne et al., 2013)
COMMERCIAL-1,2,3 Anonymized commercial systems

ONLINE-A,B,G Anonymized online systems

Table 1: Participants in the shared translation task. Not all teams participated in all language pairs. The translations from the
commercial and online systems were not submitted by their respective companies but were obtained by us, and are therefore
anonymized in a fashion consistent with previous years of the workshop.



3.1 Ranking translations of sentences

The ranking among systems is produced by col-
lecting a large number of rankings between the
systems’ translations. Every language task had
many participating systems (the largest was 19,
for the Russian-English task). Rather than asking
judges to provide a complete ordering over all the
translations of a source segment, we instead ran-
domly select five systems and ask the judge to rank
just those. We call each of these a ranking task.
A screenshot of the ranking interface is shown in
Figure 2.

For each ranking task, the judge is presented
with a source segment, a reference translation,
and the outputs of five systems (anonymized and
randomly-ordered). The following simple instruc-
tions are provided:

You are shown a source sentence fol-
lowed by several candidate translations.
Your task is to rank the translations from
best to worst (ties are allowed).

The rankings of the systems are numbered from 1
to 5, with 1 being the best translation and 5 be-
ing the worst. Each ranking task has the potential
to provide 10 pairwise rankings, and fewer if the
judge chooses any ties. For example, the ranking

{A:1,B:2, C:4,D:3, E:5}
provides 10 pairwise rankings, while the ranking
{A:3,B:3,C:4,D:3,E:1}

provides just 7. The absolute value of the ranking
or the degree of difference is not considered.

We use the collected pairwise rankings to assign
each system a score that reflects how highly that
system was usually ranked by the annotators. The
score for some system A reflects how frequently it
was judged to be better than other systems when
compared on the same segment; its score is the
number of pairwise rankings where it was judged
to be better, divided by the total number of non-
tying pairwise comparisons. These scores were
used to compute clusters of systems and rankings
between them (§3.4).

3.2 Collecting the data

A goal this year was to collect enough data to
achieve statistical significance in the rankings. We
distributed the workload among two groups of
judges: researchers and Turkers. The researcher

group comprised partipants in the shared task, who
were asked to contribute judgments on 300 sen-
tences for each system they contributed. The re-
searcher evaluation was held over three weeks
from May 17-June 7, and yielded about 280k pair-
wise rankings.

The Turker group was composed of non-expert
annotators hired on Amazon’s Mechanical Turk
(MTurk). A basic unit of work on MTurk is called
a Human Intelligence Task (HIT) and included
three ranking tasks, for which we paid $0.25. To
ensure that the Turkers provided high quality an-
notations, this portion of the evaluation was be-
gun after the researcher portion had completed,
enabling us to embed controls in the form of high-
consensus pairwise rankings in the Turker HITs.
To build these controls, we collected ranking tasks
containing pairwise rankings with a high degree of
researcher consensus. An example task is here:

SENTENCE 504
SOURCE Vor den heiligen Stditten verbeugen
REFERENCE Let’s worship the holy places
SYSTEM A Before the holy sites curtain
SYSTEM B Before we bow to the Holy Places
SYSTEM C  To the holy sites bow
SYSTEM D  Bow down to the holy sites
SYSTEM E Before the holy sites pay
A B C D E

Al - 0 0 0 3

B|5 - 0 1 5
MATRIX cle 6 -0 6

D|6 8 5 - 6

E|O0O O 0 O -

Matrix entry M;; records the number of re-
searchers who judged System ¢ to be better than
System j. We use as controls pairwise judgments
for which |M; j — M ;| > 5, i.e., judgments where
the researcher consensus ran strongly in one direc-
tion. We rejected HITs from Turkers who encoun-
tered at least 10 of these controls and failed more
than 50% of them.

There were 463 people who participated in the
Turker portion of the manual evaluation, contribut-
ing 664k pairwise rankings from Turkers who
passed the controls. Together with the researcher
judgments, we collected close to a million pair-
wise rankings, compared to 101k collected last
year: a ten-fold increase. Table 2 contains more
detail.



"Valentino mél vidycky radéji
eleganci nez slavu.

— 20Uurce

Valentino has always preferred
elegance to notoriety.

— Reference

G- D B €D XD =D - T

"Valentino should always elegance rather than fame.

— Translation 1

D - €D XD € €D €D - €D

"Valentino has always rather than the elegance of glory.

— Translation 2

- CID CID €D €D D - @D

" Valentino had always preferred elegance than glory.

— Translation 3

G- €D XD €D €25 €D - €D

"Valentino has always had the elegance rather than glory.

— Translation 4

D - €D XD €D €D €D - €D

" Valentino has always had a rather than the elegance of the glory.

— Translation 5

Figure 2: Screenshot of the Appraise interface used in the human evaluation campaign. The annotator is presented with a
source segment, a reference translation, and the outputs of five systems (anonymized and randomly-ordered) and has to rank
these according to their translation quality, ties are allowed. For technical reasons, annotators on Amazon’s Mechanical Turk
received all three ranking tasks for a single HIT on a single page, one upon the other.

3.3 Annotator agreement

Each year we calculate annotator agreement
scores for the human evaluation as a measure of
the reliability of the rankings. We measured pair-
wise agreement among annotators using Cohen’s
kappa coefficient (k) (Cohen, 1960), which is de-
fined as

_ P(4) - P(E)

~ 1-P(E)
where P(A) is the proportion of times that the an-
notators agree, and P(FE) is the proportion of time
that they would agree by chance. Note that  is ba-
sically a normalized version of P(A), one which
takes into account how meaningful it is for anno-
tators to agree with each other, by incorporating
P(E). The values for x range from 0 to 1, with
zero indicating no agreement and 1 perfect agree-
ment.

We calculate P(A) by examining all pairs of
systems which had been judged by two or more
judges, and calculating the proportion of time that
they agreed that A > B, A = B,or A < B. In
other words, P(A) is the empirical, observed rate

at which annotators agree, in the context of pair-
wise comparisons.

As for P(E), it should capture the probability
that two annotators would agree randomly. There-
fore:

P(E) = P(4>B)* + P(4=B)* 4+ P(A<B)?

Note that each of the three probabilities in P(E)’s
definition are squared to reflect the fact that we are
considering the chance that two annotators would
agree by chance. Each of these probabilities is
computed empirically, by observing how often an-
notators actually rank two systems as being tied.
Table 3 gives x values for inter-annotator agree-
ment for WMT11-WMT13 while Table 4 de-
tails intra-annotator agreement scores. Due to the
change of annotation software, we used a slightly
different way of computing annotator agreement
scores. Therefore, we chose to re-compute values
for previous WMTs to allow for a fair comparison.
The exact interpretation of the kappa coefficient is
difficult, but according to Landis and Koch (1977),
0-0.2 is slight, 0.2-0.4 is fair, 0.4—-0.6 is moderate,



LANGUAGE PAIR Systems Rankings Average
Czech-English 11 85,469 7,769.91
English-Czech 12 102,842 8,570.17
German-English 17 128,668 7.568.71
English-German 15 77,286 5,152.40
Spanish-English 12 67,832 5,652.67
English-Spanish 13 60,464 4,651.08
French-English 13 80,741 6,210.85
English-French 17 100,783 5,928.41
Russian-English 19 151,422  7,969.58
English-Russian 14 87,323 6,237.36
Total 148 942,840 6,370.54
WMT12 103 101,969 999.69
WMTI11 133 63,045 474.02

Table 2: Amount of data collected in the WMT13 manual evaluation. The final two rows report summary information from the

previous two workshops.

LANGUAGE PAIR | WMTI1 WMTI2 WMTI13 | WMTI13, WMTI13,,
Czech-English 0.400 0.311 0.244 0.342 0.279
English-Czech 0.460 0.359 0.168 0.408 0.075
German-English 0.324 0.385 0.299 0.443 0.324
English-German 0.378 0.356 0.267 0.457 0.239
Spanish-English 0.494 0.298 0.277 0.415 0.295
English-Spanish 0.367 0.254 0.206 0.333 0.249
French-English 0.402 0.272 0.275 0.405 0.321
English-French 0.406 0.296 0.231 0.434 0.237
Russian-English — — 0.278 0.315 0.324
English-Russian — — 0.243 0.416 0.207

Table 3: x scores measuring inter-annotator agreement. The WMT13,. and WMT13,,, columns provide breakdowns for re-
searcher annotations and MTurk annotations, respectively. See Table 4 for corresponding intra-annotator agreement scores.

0.6-0.8 is substantial, and 0.8-1.0 is almost per-
fect. We find that the agreement rates are more or
less the same as in prior years.

The WMT13 column contains both researcher
and Turker annotations at a roughly 1:2 ratio. The
final two columns break out agreement numbers
between these two groups. The researcher agree-
ment rates are similar to agreement rates from past
years, while the Turker agreement are well below
researcher agreement rates, varying widely, but of-
ten comparable to WMT11 and WMT12. Clearly,
researchers are providing us with more consistent
opinions, but whether these differences are ex-
plained by Turkers racing through jobs, the partic-
ularities that inform researchers judging systems
they know well, or something else, is hard to tell.
Intra-annotator agreement scores are also on par
from last year’s level, and are often much better.
We observe better intra-annotator agreement for
researchers compared to Turkers.

As a small test, we varied the threshold of ac-
ceptance against the controls for the Turker data
alone and computed inter-annotator agreement
scores on the datasets for the Russian—English task
(the only language pair where we had enough data
at high thresholds). Table 5 shows that higher
thresholds do indeed give us better agreements,
but not monotonically. The increasing xs sug-
gests that we can find a segment of Turkers who
do a better job and that perhaps a slightly higher
threshold of 0.6 would serve us better, while the
remaining difference against the researchers sug-
gests there may be different mindsets informing
the decisions. In any case, getting the best perfor-
mance out of the Turkers remains difficult.

3.4 System Score

Given the multitude of pairwise comparisons, we
would like to rank the systems according to a
single score computed for each system. In re-



LANGUAGE PAIR | WMT11 WMTI2 WMTI13 | WMT13, WMTI13,,
Czech-English 0.597 0.454 0.479 0.483 0.478
English-Czech 0.601 0.390 0.290 0.547 0.242
German-English 0.576 0.392 0.535 0.643 0.515
English-German 0.528 0.433 0.498 0.649 0.452
Spanish-English 0.574 1.000 0.575 0.605 0.537
English-Spanish 0.426 0.329 0.492 0.468 0.492
French-English 0.673 0.360 0.578 0.585 0.565
English-French 0.524 0414 0.495 0.630 0.486
Russian-English — — 0.450 0.363 0.477
English-Russian — — 0.513 0.582 0.500

Table 4:  scores measuring intra-annotator agreement, i.e., self-consistency of judges, across for the past few years of the
human evaluation. The WMT13,. and WMT13,,, columns provide breakdowns for researcher annotations and MTurk annota-
tions, respectively. The perfect inter-annotator agreement for Spanish-English is a result of there being very little data for that

language pair.

thresh. rankings K
0.5 16,605 0.234
0.6 9,999 0.337
0.7 3,219 0.360
0.8 1,851 0.395
0.9 849 0.336

Table 5: Agreement as a function of threshold for Turkers on
the Russian—English task. The threshold is the percentage of
controls a Turker must pass for her rankings to be accepted.

cent evaluation campaigns, we tweaked the metric
and now arrived at a intuitive score that has been
demonstrated to be accurate in ranking systems ac-
cording to their true quality (Koehn, 2012).

The score, which we call EXPECTED WINS, has
an intuitive explanation. If the system is compared
against a randomly picked opposing system, on a
randomly picked sentence, by a randomly picked
judge, what is the probability that its translation is
ranked higher?

Formally, the score for a system S; among a set
of systems {.5;} given a pool of pairwise rankings
summarized as win( A, B) — the number of times
system A is ranked higher than system B — is
defined as follows:

score(S; win(S;, 5)

1
)= . .
1{S;} ]%Z win(S;, Sj) + win(S;, S;)
Note that this score ignores ties.

3.5 Rank Ranges and Clusters

Given the scores, we would like to rank the sys-
tems, which is straightforward. But we would also
like to know, if the obtained system ranking is
statistically significant. Typically, given the large

number of systems that participate, and the simi-
larity of the systems given a common training data
condition and often common toolsets, there will be
some systems that will be very close in quality.

To establish the reliability of the obtained sys-
tem ranking, we use bootstrap resampling. We
sample from the set of pairwise rankings an equal
sized set of pairwise rankings (allowing for multi-
ple drawings of the same pairwise ranking), com-
pute the expected wins score for each system
based on this sample, and rank each system. By
repeating this procedure a 1,000 times, we can de-
termine a range of ranks, into which system falls
at least 95% of the time (i.e., at least 950 times) —
corresponding to a p-level of p < 0.05.

Furthermore, given the rank ranges for each sys-
tem, we can cluster systems with overlapping rank
ranges.?

For all language pairs and all systems, Table 6
reports all system scores, rank ranges, and clus-
ters. The official interpretation of these results
is that systems in the same cluster are considered
tied. Given the large number of judgements that
we collected, it was possible to group on average
about two systems in a cluster, even though the
systems in the middle are typically in larger clus-
ters.

8Formally, given ranges defined by start(S;) and end(S;),
we seek the largest set of clusters {C.} that satisfies:

vS3ac:SeC
Se€Ca,SeC—Ca=0Cy
Coa#Cy, = VS; € Ca,S; € Cy:
start(S;) > end(S;) or start(.S;) > end(S;)



Czech-English

German-English

French-English

# | score | range | system # | rank | range | system # | rank | range | system
1 [0.607 1 UEDIN-HEAFIELD 1 | 0.660 1 ONLINE-B 1 |0.638 1 UEDIN-HEAFIELD
2 10.582| 2-3 | ONLINE-B 2 [0.620 | 2-3 | ONLINE-A 2 10.604| 2-3 | UEDIN
0.573 | 2-4 | MES 0.608 | 2-3 | UEDIN-SYNTAX 0.591 | 2-3 | ONLINE-B
0.562 | 3-5 | UEDIN 4 10586 | 4-5 | UEDIN 4 10573 | 4-5 | LIMSI-SOUL
0.547 | 4-7 | ONLINE-A 0.584 | 4-5 | QUAERO 0.562 | 4-5 | KIT
0.542 | 5-7 | UEDIN-SYNTAX 0.571 | 57 | xIT 0.541 | 5-6 | ONLINE-A
0.534 | 6-7 | CU-ZEMAN 0.562 | 6-7 | MES 7 10.512 7 MES-SIMPLIFIED
8 10.482 8 CU-TAMCHYNA 8 [0.543 | 8-9 | RWTH-JANE 8 10.486 8 DCU
9 10.458 9 DCU-FDA 0.533 | 8-10 | MES-REORDER 9 [0.439| 9-10 | RWTH
10 | 0.321 10 | JHU 0.526 | 9-10 | LIMSI-SOUL 0429 | 9-11 | CMU-T2T
11 | 0.297 11 SHEF-WPROA 11 | 0.480 11 TUBITAK 0.420 | 10-11 | CU-ZEMAN
12 1 0.462 | 12-13 | uMD 120.389 | 12 |IJHU
. 0.462 | 12-13 | bDCU 13 [0.322 | 13 | SHEF-WPROA
English-Czech 14 | 0.396 14 | CU-ZEMAN
# score range SyStem 15 0367 15 JHU
1 gggg }'g ES'EE;‘;?X 16 [0311| 16 | SHEF-WPROA
3 0562 3 NN 17 | 0.238 17 DESRT English-French
4 10.525 4 UEDIN # | rank | range | system
5 10.505| 5-7 | CU-ZEMAN 1 |0.607| 1-2 | UEDIN
0.502 | 5-7 | MES 0.600 | 1-3 | ONLINE-B
0.499 | 5-8 | ONLINE-A . 0.588 | 2-4 | LIMSI-SOUL
0.484 | 7-9 | CU-PHRASEFIX English-German 0.584 | 3-4 |KiT
0.476 | 8-9 | CU-TECTOMT # | rank | range | system 5 [0553| 5-7 [ PROMT
10 [ 0.457 | 10-11 | COMMERCIAL-1 1 [0.637| 1-2 | ONLINE-B 0.551 | 5-8 | STANFORD
0.450 | 10-11 | COMMERCIAL-2 0.636 | 1-2 | PROMT 0.547 | 5-8 | MES
12 10.389 12 | SHEF-WPROA 3 ]0.614 3 UEDIN-SYNTAX 0.537 | 6-9 | MES-INFLECTION
0.587 | 3-5 | ONLINE-A 0.533 | 7-10 | RWTH-PB
. . 0.571 | 4-6 | UEDIN 0.516 | 9-11 | ONLINE-A
Spanish-English 0554 | 56 | KIT 0.499 | 10-11 | pCU
# | score | range | system 7 10.523 7 STANFORD 12 | 0.427 12 | CU-ZEMAN
I 10624 | 1 | UEDIN-HEAFIELD 7§ [(0507| 8 | LIMSI-SOUL 1310408 13 |I1HU
2 10595| 2 | ONLINE-B 9 [0.477 | 9-11 | MES-REORDER 140382 | 14 | OMNIFLUENT
3 |0570| 3-5 | UEDIN 0.476 | 9-11 | JHU 1510350 | 15 |ITS-LATL
0.570 | 3-5 | ONLINE-A 0.460 | 10-12 | CU-ZEMAN 16 | 0.326 | 16 | ITS-LATL-PE
0.567 | 3-5 | MES 0.453 | 11-12 | TUBITAK
6 |0.537 6 LIMSI-SOUL 1310.361 13 | uu
7 10514 7 DCU 14 [ 0.329 | 14-15 | SHEF-WPROA
8 8122 Sg BEE_SSSA 0.323 | 14-15 | RWTH-JANE Russian-English
10 [ 0462 | 10 | CU-ZEMAN # | rank | range | system
11 1 0.425 11 JHU 1 0.657 1 ONLINE-B
12]0.169 | 12 | SHEF-WPROA 2 10604 2-3 | cMU
. . 0.588 | 2-3 | ONLINE-A
English-Russian 4 [0562| 46 | ONLINEG
English-Spanish # rank | range | system 0.561 | 4-6 | PROMT
# | rank | range | system 1 |0.641 1 PROMT 0.550 | 5-7 | QCRI-MES
1 [0.637 1 ONLINE-B 2 |0.623 2 ONLINE-B 0.546 | 5-7 | ucam
2 10582 | 2-4 | ONLINE-A 3 10556 | 3-4 |cmu 8 10.527 | 8-9 | BALAGUR
0.578 | 2-4 | UEDIN 0.542 | 3-6 | ONLINE-G 0.519 | 8-10 | MES-QCRI
0.567 | 3-4 | PROMT 0.538 | 3-7 | ONLINE-A 0.507 | 9-11 | UEDIN
5 10.535| 5-6 | MES 0.531 | 4-7 | UEDIN 0.497 | 10-12 | OMNIFLUENT
0.528 | 5-6 | TALP-UPC 0.520 | 5-7 | QCRI-MES 0.492 | 11-14 | L1A
7 10491 | 7-8 | LIMSI 8 |0.498 8 CU-KAREL 0.483 | 12-15 | OMNIFLUENT-C
0474 | 7-9 | bcu 9 10478 | 9-10 | MES-QCRI 0.481 | 12-15 | uMD
0.472 | 8-10 | DCU-FDA 0.469 | 9-10 | JHU 0.476 | 13-15 | CU-KAREL
0.455 | 9-11 | DCU-OKITA 110434 | 11-12 | COMMERCIAL-3 16 | 0432 | 16 | COMMERCIAL-3
0.446 | 10-11 | CU-ZEMAN 0.426 | 11-13 | L1A 17 | 0.417 17 UEDIN-SYNTAX
12 | 0.417 12 | JHU 0.419 | 12-13 | BALAGUR 18 | 0.396 18 | JHU
13 1 0.324 13 SHEF-WPROA 14 | 0.331 14 | CU-ZEMAN 19 | 0.215 19 | CU-ZEMAN

Table 6: Official results for the WMT13 translation task. Systems are ordered by the expected win score. Lines between
systems indicate clusters according to bootstrap resampling at p-level p < .05. This method is also used to determine the
range of ranks into which system falls. Systems with grey background indicate use of resources that fall outside the constraints
provided for the shared task.



4 Understandability of English—Czech

For the English-to-Czech translation, we con-
ducted a variation of the “understandability” test
as introduced in WMTO09 (Callison-Burch et al.,
2009) and used in WMT10. In order to obtain
additional reference translations, we conflated this
test with post-editing. The procedure was as fol-
lows:

1. Monolingual editing (also called blind edit-
ing). The first annotator is given just the MT
output and requested to correct it. Given er-
rors in MT outputs, some guessing of the
original meaning is often inevitable and the
annotators are welcome to try. If unable, they
can mark the sentences as incomprehensible.

2. Review. A second annotator is asked to
validate the monolingual edit given both the
source and reference translations. Our in-
structions specify three options:

(a) If the monolingual edit is an adequate
translation and acceptably fluent Czech,
confirm it without changes.

(b) If the monolingual edit is adequate but
needs polishing, modify the sentence
and prefix it with the label ‘OK:’.
If the monolingual edit is wrong, cor-
rect it. You may start from the origi-
nal unedited MT output, if that is eas-
ier. Avoid using the reference directly,
prefer words from MT output whenever
possible.

(©)

The motivation behind this procedure is that we
want to save the time necessary for reading the
sentence. If the reviewer has already considered
whether the sentence is an acceptable translation,
they do not need to read the MT output again in
order to post-edit it. Our approach is thus some-
what the converse of Aziz et al. (2013) who ana-
lyze post-editing effort to obtain rankings of MT
systems. We want to measure the understandabil-
ity of MT outputs and obtain post-edits at the same
time.

Both annotation steps were carried out in
the CASMACAT/Matecat post-editing user inter-
face.?, modified to provide the relevant variants of
the sentence next to the main edit box. Screen-
shots of the two annotation phases are given in
Figure 3 and Figure 4.

“http://www.casmacat.eu/index.php?n=Workbench

Occurrence  GOOD ALMOST BAD EMPTY Total

First 34.7 0.1 42.3 11.0 4082
Repeated 41.1 0.1 41.0 6.1 805
Overall 35.8 0.1 42.1 10.2 4887

Table 7: Distribution of review statuses.

Similarly to the traditional ranking task, we pro-
vided three consecutive sentences from the origi-
nal text, each translated with a different MT sys-
tem. The annotators are free to use this contex-
tual information when guessing the meaning or re-
viewing the monolingual edits. Each “annotation
HIT” consists of 24 sentences, i.e. 8 snippets of 3
consecutive sentences.

4.1 Basic Statistics on Editing

In total, 21 annotators took part in the exercise, 20
of them contributed to monolingual editing and 19
contributed to the reviews.

Connecting each review with the monolingual
edit (some edits received multiple reviews), we ob-
tain one data row. We collected 4887 data rows
(i.e. sentence revisions) for 3538 monolingual ed-
its, covering 1468 source sentences as translated
by 12 MT systems (including the reference).

Not all MT systems were considered for each
sentence, we preferred to obtain judgments for
more source sentences.

Based on the annotation instructions, each data
row has one of the four possible statuses: GOOD,
ALMOST, BAD, and EMPTY. GOOD rows are
those where the reviewer accepted the monolin-
gual edit without changes, ALMOST edits were
modified by the reviewer but they were marked as
‘OK’. BAD edits were changed by the reviewer
and no ‘OK’ mark was given. Finally, the sta-
tus EMPTY is assigned to rows where the mono-
lingual editor refused to edit the sentence. The
EMPTY rows nevertheless contain the (“regular”)
post-edit of the reviewer, so they still provide a
new reference translation for the sentence.

Table 7 summarizes the distribution of row sta-
tuses depending on one more significant distinc-
tion: whether the monolingual editor has seen the
sentence before or not. We see that EMPTY and
BAD monolingual edits together drop by about
6% absolute when the sentence is not new to the
monolingual editor. The occurrence is counted as
“repeated” regardless whether the annotator has
previously seen the sentence in an editing or re-
viewing task. Unless stated otherwise, we exclude
repeated edits from our calculations.

10



Jobs List > monoedit...monoedit

Fix the sentence (guess meaning, make Czech acceptable), or

use Alt+2 if impossible.

Naposledy to bylo vice neZ 2 roky, prvni znama reprodukce

byla v roce 1976.

| DOWNLOAD PROJECT

(450) > en > ¢s

Fix the sentence (guess meaning, make Czech

acceptable), or use Alt+2 if impossible.

Translation matches

Pro€ tedy Singapurci nemaji déti?

Orig MT

Impossible

Pro€ tedy Singaporeans nemit déti?

Id

Source: Anonymous 0000-00-00

on'tunderstand the sentence.

Source: Anonymous  0000-00-00

Fix the sentence (guess meaning, make Czech acceptable), or

Progress: [ " | 100% Total Words: 733 To-do: 0

Tan Wei Ming, feditel Sfiatkové a rodinné politiky Narodni

Speed: 4,521 Words/h

Completed in: Oh 00m Reset Document

Figure 3: In this screen, the annotator is expected to correct the MT output given only the context of at most two neighbouring

machine-translated sentences.

ALMOST Pairwise

treated Comparisons ~ Agreement K

separate 2690 56.0 0.270
inter as BAD 2690 67.9 0.351

as GOOD 2690 65.2  0.289

separate 170 653 0410
intra as BAD 170 69.4  0.386

as GOOD 170 71.8 0422

Table 8: Annotator agreement when reviewing monolingual
edits.

4.2 Agreement on Understandability

Before looking at individual system results, we
consider annotator agreement in the review step.
Details are given in Table 8. Given a (non-
EMPTY) string from a monolingual edit, we
would like to know how often two acceptability
judgments by two different reviewers (inter-) or
the same reviewer (intra-) agree. The repeated ed-
its remain in this analysis because we are not in-
terested in the origin of the string.

Our annotation setup leads to three possible la-
bels: GOOD, ALMOST, and BAD. The agree-
ment on one of three classes is bound to be lower
than the agreement on two classes, so we also re-
interpret ALMOST as either GOOD or BAD. Gen-
erally speaking, ALMOST is a positive judgment,
so it would be natural to treat it as GOOD. How-
ever, in our particular setup, when the reviewer
modified the sentence and forgot to add the label
‘OK:’, the item ended up in the BAD class. We
conclude that this is indeed the case: the inter-
annotator agreement appears higher if ALMOST
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is treated as BAD. Future versions of the review-
ing interface should perhaps first ask for the yes/no
judgment and only then allow to post-edit.

The x values in Table 8 are the Fleiss’
kappa (Fleiss, 1971), accounting for agreement by
chance given the observed label distributions.

In WMTO9, the agreements for this task were
higher: 77.4 for inter-AA and 86.6 for intra-AA.
(In 2010, the agreements for this task were not re-
ported.) It is difficult to say whether the differ-
ence lies in the particular language pair, the dif-
ferent set of annotators, or the different user in-
terface for our reviewing task. In 2009 and 2010,
the reviewers were shown 5 monolingual edits at
once and they were asked to judge each as accept-
able or not acceptable. We show just one segment
and they have probably set their minds on the post-
editing rather than acceptability judgment. We be-
lieve that higher agreements can be reached if the
reviewers first validate one or more of the edits and
only then are allowed to post-edit it.

4.3 Understandability of English— Czech

Table 9 brings about the first main result of our
post-editing effort. For each system (including
the reference translation), we check how often a
monolingual edit was marked OK or ALMOST
by the subsequent reviewer. The average under-
standability across all MT systems into Czech is
44.2+1.6%. This is a considerable improvement
compared to 2009 where the best systems pro-
duced about 32% understandable sentences. In



| DOWNLOAD PROJECT

Dnes rano dopije pivo jeho syn na poCest zesnulého otce.

(575)>en >cs

Jobs List > review...review

This morning, it is his son who will finish the beer at the feet

of the deceased.

17224 | "We help relatives as much as patients" says Nathalie [oK: ,, Pomahédme pfibuznym stejn& jako pacienttim,”

Savard, Director of Care. fikd Natalie Savardova, feditelka péce.

Poméhame piibuznym i pacientlim,” fika Natalie Savardova, feditelka
péte.

Translation matches

Blind edit (use whenever acceptable)

Source: Anonymous  0000-00-00

Orig MT (modify if Blind edit not usable) LPomahame piibuznym, stejné jako pacienti,” fika Natalie Savardova,
feditel péte.

Source: Anonymous 0000-00-00

"Pomahame pacientlim stejné jako jejich blizkym," vypravi Nathalie
Savardova, feditelka peCovatelske sluZ by.

Ref (do not use directly, just for reference)

Source: Anonymous 0000-00-00

For Mrs A., 89 years old, the worst fear is to die "conscious

and suffocating."

To-do: 0

Progress: [JF I 100%

Total Words: 1,533

Speed: 3,588 Words/h

Pro pani A., 89 let, je nejhor&i obavou umfit "uduSenim pfi

plném védomi".

Completed in: Oh 00m Reset Document

Figure 4: In this screen, the annotator is expected to validate the monolingual edit, correcting it if necessary. The annotator is
expected to add the prefix ‘OK:’ if the correction was more or less cosmetic.

Rank  System Total Observations % Understandable

Overall incl. ref. 4082 46.7£1.6

Overall without ref. 3808 44.2+1.6
1 Reference 274431 80.34+4.8
2-6 CU-ZEMAN 348+34 51.745.1
2-6 UEDIN 332433 51.5+£54
2-6 ONLINE-B 337+34 50.745.3
2-6 CU-BOJAR 341435 50.7£5.2
2-7 CU-DEPFIX 350+34 48.0+£5.3
6-10 COMMERCIAL-2 358+36 43.6+5.2
6-11 COMMERCIAL-1 31634 41.545.5
7-12 CU-TECTOMT 338+34 394452
8-12 MES 346+36 38.4+5.2
8-12 CU-PHRASEFIX 394+40 38.1+4.8
10-12  SHEF-WPROA 348432 34.245.1

2009 Reference 91

2009 Best System 32

2010 Reference 97

2010 Best System 58

Table 9: Understandability of English—Czech systems. The
= values indicate empirical confidence bounds at 95%. Rank
ranges were also obtained in the same resampling: in 95% of
observations, the system was ranked in the given range.

2010, the best systems or system combinations
reached 55%—-58%. The test set across years and
the quality of references and judgments also play a
role. In our annotation setup, the references appear
to be correctly understandable only to 80.3+4.8%.

To estimate the variance of these results due
to the particular sentences chosen, we draw 1000
random samples from the dataset, preserving the
dataset size and repeating some. The exact num-

ber of judgments per system can thus vary. We
report the 95% empirical confidence interval after
the ‘£’ signs in Table 9 (the systems range from
+4.8 to +5.5). When we drop individual blind ed-
itors or reviewers, the understandability judgments
differ by about 42 to +4. In other words, the de-
pendence on the test set appears higher than the
dependence on the annotators.

The limited size of our dataset allows us only
to separate two main groups of systems: those
ranking 2-6 and those ranking worse. This rough
grouping vaguely matches with WMT13 ranking
results as given in Table 6. A somewhat surpris-
ing observation is that two automatic corrections
ranked better in WMT13 ranking but score worse
in understandability: CU-DEPFIX fixes some lost
negation and some agreement errors of CU-BOJAR
and CU-PHRASEFIX is a standard statistical post-
editing of a transfer-based system CU-TECTOMT.
A detailed inspection of the data is necessary to
explain this.

5 More Reference Translations for Czech

Our annotation procedure described in Section 4
allowed us to obtain a considerable number of ad-
ditional reference translations on top of official
single reference.

12



Refs 1 2 3 4 5 6 7 8 91016
Sents 233 709 174 123 60 48 40 27 25 29

Table 10: Number of source sentences with the given number
of distinct reference translations.

In total, our edits cover 1468 source sentences,
i.e. about a half of the official test set size, and pro-
vide 4311 unique references. On average, one sen-
tence in our set has 2.9442.17 unique reference
translations. Table 10 provides a histogram.

It is well known that automatic MT evalua-
tion methods perform better with more references,
because a single one may not confirm a correct
part of MT output. This issue is more severe
for morphologically rich languages like Czech
where about 1/3 of MT output was correct but not
confirmed by the reference (Bojar et al., 2010).
Advanced evaluation methods apply paraphras-
ing to smooth out some of the lexical divergence
(Kauchak and Barzilay, 2006; Snover et al., 2009;
Denkowski and Lavie, 2010). Simpler techniques
such as lemmatizing are effective for morphologi-
cally rich languages (Tantug et al., 2008; Kos and
Bojar, 2009) but they will lose resolution once the
systems start performing generally well.

WMTs have taken the stance that a big enough
test set with just a single reference should compen-
sate for the lack of other references. We use our
post-edited reference translations to check this as-
sumption for BLEU and NIST as implemented in
mteval-13a (international tokenization switched
on, which is not the default setting).

We run many probes, randomly picking the test
set size (number of distinct sentences) and the
number of distinct references per sentence. Note
that such test sets are somewhat artificially more
diverse; in narrow domains, source sentences can
repeat and even appear verbatim in the training
data, and in natural test sets with multiple refer-
ences, short sentences can receive several identical
translations.

For each probe, we measure the Spearman’s
rank correlation coefficient p of the ranks pro-
posed by BLEU or NIST and the manual ranks.
We use the same implementation as applied in the
WMT13 Shared Metrics Task (Machacek and Bo-
jar, 2013). Note that the WMT13 metrics task still
uses the WMT12 evaluation method ignoring ties,
not the expected wins. As Koehn (2012) shows,
the two methods do not differ much.

Overall, the correlation is strongly impacted by
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Figure 5: Correlation of BLEU and WMT13 manual ranks
for English—Czech translation
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Figure 6: Correlation of NIST and WMT13 manual ranks
for English—Czech translation

the particular choice of test sentences and refer-
ence translations. By picking sentences randomly,
similarly or equally sized test sets can reach dif-
ferent correlations. Indeed, e.g. for a test set of
about 1500 distinct sentences selected from the
3000-sentence official test set (1 reference trans-
lation), we obtain correlations for BLEU between
0.86 and 0.94.

Figure 5 plots the correlations of BLEU and the
system rankings, Figure 6 provides the same pic-
ture for NIST. The upper triangular part of the plot
contains samples from our post-edited reference
translations, the lower rectangular part contains
probes from the official test set of 3000 sentences
with 1 reference translation.

To interpret the observations, we also calculate
the average and standard deviation of correlations
for each cell in Figures 5 and 6. Figures 7 and
8 plot the values for 1, 6, 7 and 8 references for
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Figure 8: Projections from Figure 6 of NIST and WMT13
manual ranks for English—Czech translation

BLEU and NIST, resp. The projections confirm
that the average correlations grow with test set
size, the growth is however sub-logarithmic.

Starting from as few as a dozen of sentences, we
see that using more references is better than using
a larger test set. For BLEU, we however already
seem to reach false positives at 7 references for
one or two hundred sentences: larger sets with just
one reference may correlate slightly better.

Using one reference obtained by post-editing
seems better than using the official (independent)
reference translations. BLEU is more affected
than NIST by this difference even at relatively
large test set size. Note that our post-edits are in-
spired by all MT systems, the good as well as the
bad ones. This probably provides our set with a
certain balance.

Overall, the best balance between the test set
size and the number of references seems to lie
somewhere around 7 references and 100 or 200
sentences. Creating such a test set could be even
cheaper than the standard 3000 sentences with just
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one reference. However, the wide error bars re-
mind us that even this setting can lead to correla-
tions anywhere between 0.86 and 0.96. For other
languages, data sets types or other MT evaluation
methods, the best setting can be quite different and
has to be sought for.

6 Quality Estimation Task

Machine translation quality estimation is the task
of predicting a quality score for a machine trans-
lated text without access to reference translations.
The most common approach is to treat the problem
as a supervised machine learning task, using stan-
dard regression or classification algorithms. The
second edition of the WMT shared task on qual-
ity estimation builds on the previous edition of the
task (Callison-Burch et al., 2012), with variants to
this previous task, including both sentence-level
and word-level estimation, with new training and
test datasets, along with evaluation metrics and
baseline systems.

The motivation to include both sentence- and
word-level estimation come from the different po-
tential applications of these variants. Some inter-
esting uses of sentence-level quality estimation are
the following:

e Decide whether a given translation is good

enough for publishing as is.

Inform readers of the target language only
whether or not they can rely on a translation.

Filter out sentences that are not good enough
for post-editing by professional translators.

Select the best translation among options
from multiple MT and/or translation memory
systems.

Some interesting uses of word-level quality es-
timation are the following:

e Highlight words that need editing in post-
editing tasks.

e Inform readers of portions of the sentence
which are not reliable.

e Select the best segments among options from
multiple translation systems for MT system
combination.

The goals of this year’s shared task were:



e To explore various granularity levels for the
task (sentence-level and word-level).

e To explore the prediction of more objective
scores such as edit distance and post-editing
time.

e To explore the use of quality estimation tech-
niques to replace reference-based MT evalua-
tion metrics in the task of ranking alternative
translations generated by different MT sys-
tems.

e To identify new and effective quality indica-
tors (features) for all variants of the quality
estimation task.

e To identify effective machine learning tech-
niques for all variants of the quality estima-
tion task.

e To establish the state of the art performance
in the field.

Four subtasks were proposed, as we discuss in
Sections 6.1 and 6.2. Each subtask provides spe-
cific datasets, annotated for quality according to
the subtask (Section 6.3), and evaluates the system
submissions using specific metrics (Section 6.6).
When available, external resources (e.g. SMT
training corpus) and translation engine-related re-
sources were given to participants (Section 6.4),
who could also use any additional external re-
sources (no distinction between open and close
tracks is made). Participants were also provided
with a software package to extract quality esti-
mation features and perform model learning (Sec-
tion 6.5), with a suggested list of baseline features
and learning method (Section 6.7). Participants
could submit up to two systems for each subtask.

6.1 Sentence-level Quality Estimation

Task 1.1 Predicting Post-editing Distance This
task is similar to the quality estimation task in
WMT12, but with one important difference in the
scoring variant: instead of using the post-editing
effort scores in the [1-5] range, we use HTER
(Snover et al., 2006) as quality score. This score
is to be interpreted as the minimum edit distance
between the machine translation and its manually
post-edited version, and its range is [0, 1] (O when
no edit needs to be made, and 1 when all words
need to be edited). Two variants of the results
could be submitted in the shared task:

e Scoring: A quality score for each sentence
translation in [0,1], to be interpreted as an
HTER score; lower scores mean better trans-
lations.

e Ranking: A ranking of sentence translations
for all source test sentences from best to
worst. For this variant, it does not matter how
the ranking is produced (from HTER predic-
tions, likert predictions, or even without ma-
chine learning). The reference ranking is de-
fined based on the true HTER scores.

Task 1.2 Selecting Best Translation This task
consists in ranking up to five alternative transla-
tions for the same source sentence produced by
multiple MT systems. We use essentially the same
data provided to participants of previous years
WMT’s evaluation metrics task — where MT eval-
uation metrics are assessed according to how well
they correlate with human rankings. However, ref-
erence translations produced by humans are not be
used in this task.

Task 1.3 Predicting Post-editing Time For this
task systems are required to produce, for each
translation, the expected time (in seconds) it
would take a translator to post-edit such an MT
output. The main application for predictions of
this type is in computer-aided translation where
the predicted time can be used to select among dif-
ferent hypotheses or even to omit any MT output
in cases where no good suggestion is available.

6.2 Word-level Quality Estimation

Based on the data of Task 1.3, we define Task 2, a
word-level annotation task for which participants
are asked to produce a label for each token that
indicates whether the word should be changed by
a post-editor or kept in the final translation. We
consider the following two sets of labels for pre-
diction:

e Binary classification: a keep/change label,
the latter meaning that the token should be
corrected in the post-editing process.

e Multi-class classification: a label specifying
the edit action that should be performed on
the token (keep as is, delete, or substitute).

6.3 Datasets

Task 1.1 Predicting post-editing distance For
the training of models, we provided the WMT12



quality estimation dataset: 2,254 English-
Spanish news sentences extracted from previous
WMT translation task English-Spanish test sets
(WMT09, WMT10, and WMT12). These were
translated by a phrase-based SMT Moses system
trained on Europarl and News Commentaries cor-
pora as provided by WMT, along with their source
sentences, reference translations, post-edited
translations, and HTER scores. We used TERp
(default settings: tokenised, case insensitive,
etc., but capped to 1)!° to compute the HTER
scores. Likert scores in [1,5] were also provided,
as participants may choose to use them for the
ranking variant.

As test data, we use a subset of the WMT13
English-Spanish news test set with 500 sentences,
whose translations were produced by the same
SMT system used for the training set. To com-
pute the true HTER labels, the translations were
post-edited under the same conditions as those on
the training set. As in any blind shared task, the
HTER scores were solely used to evaluate the sub-
missions, and were only released to participants
after they submitted their systems.

A few variations of the training and test data
were provided, including a version with cases re-
stored and a version detokenized. In addition,
we provided a number of engine-internal informa-
tion from Moses for glass-box feature extraction,
such as phrase and word alignments, model scores,
word graph, n-best lists and information from the
decoder’s search graph.

Task 1.2 Selecting best translation As training
data, we provided a large set of up to five alter-
native machine translations produced by different
MT systems for each source sentence and ranked
for quality by humans. This was the outcome of
the manual evaluation of the translation task from
WMTO09-WMT12. It includes two language pairs:
German-English and English-Spanish, with 7,098
and 4,592 source sentences and up to five ranked
translations, totalling 32,922 and 22,447 transla-
tions, respectively.

As test data, a set of up to five alternative ma-
chine translations per source sentence from the
WMTOS test sets was provided, with 365 (1,810)
and 264 (1,315) source sentences (translations)
for German-English and English-Spanish, respec-
tively. We note that there was some overlap be-
tween the MT systems used in the training data

'Ohttp://www.umiacs.umd.edu/~snover/terp/
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and test datasets, but not all systems were the
same, as different systems participate in WMT
over the years.

Task 1.3 and Task 2 Predicting post-editing
time and word-level edits For Tasks 1.3 and 2
we provides a new dataset consisting of 22 English
news articles which were translated into Span-
ish using Moses and post-edited during a CAS-
MACAT!! field trial. Of these, 15 documents have
been processed repeatedly by at least 2 out of 5
translators, resulting in a total of 1,087 segments.
For each segment we provided:

e English source and Spanish translation.

Spanish MT output which was used as basis
for post-editing.

Document and translator ID.

Position of the segment within the document.

The metadata about translator and document was
made available as we expect that translator perfor-
mance and normalisation over document complex-
ity can be helpful when predicting the time spend
on a given segment.

For the training portion of the data we also pro-
vided:

e Time to post-edit in seconds (Task 1.3).

e Binary (Keep, Change) and multiclass (Keep,
Substitute, Delete) labels on word level along
with explicit tokenization (Task 2).

The labels in Task 2 are derived by comput-
ing WER between the original machine translation
and its post-edited version.

6.4 Resources

For all tasks, we provided resources to extract
quality estimation features when these were avail-
able:

e The SMT training corpus (WMT News and
Europarl): source and target sides of the cor-
pus used to train the SMT engines for Tasks
1.1, 1.3, and 2, and truecase models gener-
ated from these. These corpora can also be
used for Task 1.2, but we note that some of
the MT systems used in the datasets of this
task were not statistical or did not use (only)
the training corpus provided by WMT.

"http://casmacat.eu/



Language models: n-gram language models
of source and target languages generated us-
ing the SMT training corpora and standard
toolkits such as SRILM Stolcke (2002), and
a language model of POS tags for the target
language. We also provided unigram, bigram
and trigram counts.

IBM Model 1 lexical tables generated by
GIZA++ using the SMT training corpora.

Phrase tables with word alignment informa-
tion generated by scripts provided by Moses
from the parallel corpora.

For Tasks 1.1, 1.3 and 2, the Moses config-
uration file used for decoding or the code to
re-run the entire Moses system.

For Task 1.1, both English and Spanish re-
sources for a number of advanced features
such as pre-generated PCFG parsing models,
topic models, global lexicon models and mu-
tual information trigger models.

We refer the reader to the QUEST website!? for
a detailed list of resources provided for each task.

6.5 QUEST Framework

QUEST (Specia et al., 2013) is an open source
framework for quality estimation which provides a
wide variety of feature extractors from source and
translation texts and external resources and tools.
These range from simple, language-independent
features, to advanced, linguistically motivated fea-
tures. They include features that rely on informa-
tion from the MT system that generated the trans-
lations (glass-box features), and features that are
oblivious to the way translations were produced
(black-box features).

QUEST also integrates a well-known machine
learning toolkit, scikit-learn,'? and other algo-
rithms that are known to perform well on this task
(e.g. Gaussian Processes), providing a simple and
effective way of experimenting with techniques
for feature selection and model building, as well
as parameter optimisation through grid search.

From QUEST, a subset of 17 features and an
SVM regression implementation were used as
baseline for Tasks 1.1, 1.2 and 1.3. The software
was made available to all participants.

12http ://www.quest.dcs.shef.ac.uk/
Bhttp://scikit-learn.org/
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6.6 Evaluation Metrics

Task 1.1 Predicting post-editing distance
Evaluation is performed against the HTER and/or
ranking of translations using the same metrics as
in WMT12. For the scoring variant of the task,
we use two standard metrics for regression tasks:
Mean Absolute Error (MAE) as a primary metric,
and Root of Mean Squared Error (RMSE) as a
secondary metric. To improve readability, we
report these error numbers by first mapping the
HTER values to the [0,100] interval, to be read
as percentage-points of the HTER metric. For a
given test set S with entries s;,1 < ¢ < |S|, we
denote by H(s;) the proposed score for entry s;
(hypothesis), and by V (s;) the reference value for
entry s; (gold-standard value):

Som H(si) = V(si)]

MAE — 5
RMSE — \/Zi]il(H(Tg)'— V(s))?

Both these metrics are non-parametric, auto-
matic and deterministic (and therefore consistent),
and extrinsically interpretable. For instance, a
MAE value of 10 means that, on average, the ab-
solute difference between the hypothesized score
and the reference score value is 10 percentage
points (i.e., 0.10 difference in HTER scores). The
interpretation of RMSE is similar, with the differ-
ence that RMSE penalises larger errors more (via
the square function).

For the ranking variant of the task, we use the
DeltaAvg metric proposed in the 2012 edition of
the task (Callison-Burch et al., 2012) as our main
metric. This metric assumes that each reference
test instance has an extrinsic number associated
with it that represents its ranking with respect to
the other test instances. For completeness, we
present here again the definition of DeltaAvg.

The goal of the DeltaAvg metric is to measure
how valuable a proposed ranking (which we call a
hypothesis ranking) is, according to the true rank-
ing values associated with the test instances. We
first define a parametrised version of this metric,
called DeltaAvg[n|. The following notations are
used: for a given entry sentence s, V' (s) represents
the function that associates an extrinsic value to
that entry; we extend this notation to a set .S, with
V(S) representing the average of all V'(s),s € S.



Intuitively, V' (S) is a quantitative measure of the
“quality” of the set S, as induced by the extrinsic
values associated with the entries in .S. For a set
of ranked entries .S and a parameter n, we denote
by 51 the first quantile of set S' (the highest-ranked
entries), Sa the second quantile, and so on, for n
quantiles of equal sizes.!* We also use the nota-
tion S;; = Uizz Si. Using these notations, we
define:

PV (Sig)

DeltaAvgy,[n| = 1
n J—

—V(S)
When the valuation function V' is clear from the
context, we write DeltaAvg[n| for DeltaAvgy [n].
The parameter n represents the number of quan-
tiles we want to split the set .S into. For instance,
n = 2 gives DeltaAvg[2] =V (S1)—V (.S), hence it
measures the difference between the quality of the
top quantile (top half) .S; and the overall quality
(represented by V' (.S)). For n = 3, DeltaAvg[3] =
(V(51)+V(512)/2=V () = (V(51)=V(5))+
(V(S12—V(S5)))/2, hence it measures an average
difference across two cases: between the quality of
the top quantile (top third) and the overall quality,
and between the quality of the top two quantiles
(S1 U So, top two-thirds) and the overall quality.
In general, DeltaAvg[n| measures an average dif-
ference in quality across n — 1 cases, with each
case measuring the impact in quality of adding an
additional quantile, from top to bottom. Finally,
we define:

SN, DeltaAvgy, [n]

DeltaAvg;, = N1

where N = |S]|/2. As before, we write DeltaAvg
for DeltaAvgy when the valuation function V' is
clear from the context. The DeltaAvg metric is an
average across all DeltaAvg[n] values, for those
n values for which the resulting quantiles have at
least 2 entries (no singleton quantiles).

We present results for DeltaAvg using as valu-
ation function V the HTER scores, as defined in
Section 6.3. We also use Spearman’s rank correla-
tion coefficient p as a secondary metric.

Task 1.2 Selecting best translation The perfor-
mance on the task of selecting the best transla-
tion from a pool of translation candidates is mea-

"If the size | S| is not divisible by n, then the last quantile
S, is assumed to contain the rest of the entries.

sured by comparing proposed (hypothesis) rank-
ings against human-produced rankings. The met-
ric used is Kendall’s 7 rank correlation coefficient,
computed as follows:

_ |concordant pairs| — |discordant pairs|

|total pairs|

where a concordant pair is a pair of two transla-
tions for the same source segment in which the
ranking order proposed by a human annotator and
the ranking order of the hypothesis agree; in a dis-
cordant pair, they disagree. The possible values of
7 range between 1 (where all pairs are concordant)
and —1 (where all pairs are discordant). Thus a
system with ranking predictions having a higher
7 value makes predictions that are more similar
to human judgements than a system with ranking
predictions having a lower 7. Note that, in general,
being able to predict rankings with an accuracy
of 7 = —1 is as difficult as predicting rankings
with an accuracy of 7 = 1, whereas a completely
random ranking would have an expected value of
7 = 0. The range is therefore said to be symmet-
ric.

However, there are two distinct ways of mea-
suring rank correlation using Kendall’s 7, related
to the way ties are treated. They greatly affect how
Kendall’s 7 numbers are to be interpreted, and es-
pecially the symmetry property. We explain the
difference in detail in what follows.

Kendall’s 7 with ties penalised If the goal is
to measure to what extent the difference in qual-
ity visible to a human annotator has been captured
by an automatically produced hypothesis (recall-
oriented view), then proposing a tie between t;
and ¢y (t1-equal-to-t2) when the pair was judged
(in the reference) as t1-better-than-¢, is treated as
a failure-to-recall. In other words, it is as bad as
proposing t;-worse-than-to. Henceforth, we call
this recall-oriented measure “Kendall’s 7 with ties
penalised”. This metric has the following proper-
ties:

e it is completely fair when comparing differ-
ent methods to produce ranking hypotheses,
because the denominator (number of total
pairs) is the same (it is the number of non-
tied pairs under the human judgements).

e it is non-symmetric, in the sense that a value
of 7 = —1 is not as difficult to obtain as 7 =



1 (simply proposing only ties getsa7 = —1);
hence, the sign of the 7 value matters.

o the expected value of a completely random
ranking is not necessarily 7 = 0, but rather
depends on the number of ties in the refer-
ence rankings (i.e., it is test set dependent).

Kendall’s 7 with ties ignored If the goal
is to measure to what extent the difference in
quality signalled by an automatically produced
hypothesis is reflected in the human annota-
tion (precision-oriented view), then proposing t1-
equal-to-to when the pair was judged differently
in the reference does no harm the metric.

Henceforth, we call this precision-oriented
measure “Kendall’s 7 with ties ignored”. This
metric has the following properties:

e it is not completely fair when comparing dif-
ferent methods to produce ranking hypothe-
ses, because the denominator (number of to-
tal pairs) may not be the same (it is the num-
ber of non-tied pairs under each system’s pro-
posal).

it is symmetric, in the sense that a value of

7 = —1 is as difficult to obtain as 7 = 1;

hence, the sign of the 7 value may not mat-
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ter.

the expected value of a completely random
ranking is 7 = 0 (test-set independent).

The first property is the most worrisome from
the perspective of reporting the results of a shared
task, because a system may fare very well on this
metric simply because it choses not to commit
(proposes ties) most of the time. Therefore, to
give a better understanding of the systems’ perfor-
mance, for Kendall’s 7 with ties ignored we also
provide the number of non-ties proposed by each
system.

Task 1.3 Predicting post-editing time Submis-
sions are evaluated in terms of Mean Average Er-
ror (MAE) against the actual time spent by post-
editors (in seconds). By using a linear error mea-
sure we limit the influence of outliers: sentences
that took very long to edit or where the measure-
ment taken is questionable.

'5In real life applications this distinction matters. Even
if, from a computational perspective, it is as hard to get 7

close to —1 as it is to get it close to 1, knowing the sign is the
difference between selecting the best or the worse translation.
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To further analyse the influence of extreme val-
ues, we also compute Spearman’s rank correlation
p coefficient which does not depend on the abso-
lute values of the predictions.

We also give RMSE and Pearson’s correlation
coefficient r for reference.

Task 2 Predicting word-level scores The word-
level task is primarily evaluated by macro-
averaged F-measure. Because the class distribu-
tion is skewed — in the test data about one third
of the tokens are marked as correct — we compute
precision and recall and F} for each class individ-
ually. Consider the following confusion matrix for
the two classes Keep and Change:

predicted
(K)eep (C)hange
(K)eep 10 20
expected (C)hange 30 40

For the given example we derive true-positive
(tp), true-negative (tn), false-positive (fp), and
false-negative (fn) counts:

tpK =10 pr =30 an =20
tpc =40  fpc =20 fnc =30

. PR
precisiony, = —— = 10/40
K= ot fox
recally = — 2K 10/30
tpix + fnk
2 - precisiony - recall g
Fi g =

precision g 4 recall g

A single cumulative statistic can be computed
by averaging the resulting F-measures (macro av-
eraging) or by micro averaging in which case pre-
cision and recall are first computed by accumulat-
ing the relevant values for all classes (Ozgiir et al.,
2005), e.g.

tpr + tpe
(tpx + fpr) + (tpc + fpc)

precision =

The latter gives equal weight to each exam-
ple and is therefore dominated by performance on
the largest class while macro-averaged F-measure
gives equal weight to each class.

The same setup is used to evaluate the perfor-
mance in the multiclass setting. Please note that
here the test data only contains 4% examples for
class (D)elete.



ID | Participating team

CMU | Carnegie Mellon University, USA (Hildebrand and Vogel, 2013)
CNGL | Centre for Next Generation Localization, Ireland (Bicici, 2013b)
DCU | Dublin City University, Ireland (Almaghout and Specia, 2013)
DCU-SYMC | Dublin City University & Symantec, Ireland (Rubino et al., 2013b)
DFKI | German Research Centre for Artificial Intelligence, Germany (Avramidis and

Popovic, 2013)

FBK-UEdin | Fondazione Bruno Kessler, Italy & University of Edinburgh, UK (Camargo de

Souza et al., 2013)

LIG | Laboratoire d’Informatique Grenoble, France (Luong et al., 2013)
LIMSI | Laboratoire d’Informatique pour la Mécanique et les Sciences de I’Ingénieur,

France (Singh et al., 2013)

LORIA | Lorraine Laboratory of Research in Computer Science and its Applications,

France (Langlois and Smaili, 2013)

SHEF | University of Sheffield, UK (Beck et al., 2013)
TCD-CNGL | Trinity College Dublin & CNGL, Ireland (Moreau and Rubino, 2013)
TCD-DCU-CNGL | Trinity College Dublin, Dublin City University & CNGL, Ireland (Moreau and

Rubino, 2013)

UMAC | University of Macau, China (Han et al., 2013)
UPC | Universitat Politecnica de Catalunya, Spain (Formiga et al., 2013b)

Table 11: Participants in the WMT13 Quality Estimation shared task.

6.7 Participants

Table 11 lists all participating teams submitting
systems to any subtask in this shared task. Each
team was allowed up to two submissions for each
subtask. In the descriptions below participation in
specific tasks is denoted by a task identifier: T1.1,
T1.2, T1.3, and T2.

Sentence-level baseline system (T1.1, T1.3):
QUEST was used to extract 17 system-
independent features from the source and
translation files and the SMT training cor-
pus that were found to be relevant in previous
work (same features as in the WMT12 shared
task):

e number of tokens in the source and tar-
get sentences.

e average source token length.

e average number of occurrences of the
target word within the target sentence.

e number of punctuation marks in source
and target sentences.

e Language model probability of source
and target sentences using language
models provided by the task.

e average number of translations per
source word in the sentence: as given
by IBM 1 model thresholded so that
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P(t|s) > 0.2, and so that P(t|s) > 0.01
weighted by the inverse frequency of
each word in the source side of the SMT
training corpus.

e percentage of unigrams, bigrams and tri-
grams in frequency quartiles 1 (lower
frequency words) and 4 (higher fre-
quency words) in the source side of the
SMT training corpus

e percentage of unigrams in the source
sentence seen in the source side of the
SMT training corpus.

These features are used to train a Support
Vector Machine (SVM) regression algorithm
using a radial basis function kernel within the
SCIKIT-LEARN toolkit. The «, € and C pa-
rameters were optimized using a grid-search
and 5-fold cross validation on the training
set. We note that although the system is re-
ferred to as a “baseline”, it is in fact a strong
system. For tasks of the same type as 1.1
and 1.3, it has proved robust across a range
of language pairs, MT systems, and text do-
mains for predicting post-editing effort, as it
has also been shown in the previous edition
of the task (Callison-Burch et al., 2012).

The same features could be useful for a base-
line system for Task 1.2. In our official re-



sults, however, the baseline for Task 1.2 is
simpler than that: it proposes random ranks
for each pair of alternative translations for a
given source sentence, as we will discuss in
Section 6.8.

CMU (T1.1, T1.2, T1.3): The CMU quality

estimation system was trained on features
based on language models, the MT sys-
tem’s distortion model and phrase table fea-
tures, statistical word lexica, several sentence
length statistics, source language word and
bi-gram frequency statistics, n-best list agree-
ment and diversity, source language parse,
source-target word alignment and a depen-
dency parse based cohesion penalty. These
features were extracted using GIZA++, a
forced alignment algorithm and the Stanford
parser (de Marneffe et al., 2006). The pre-
diction models were trained using four clas-
sifiers in the Weka toolkit (Hall et al., 2009):
linear regression, MSP trees, multi layer per-
ceptron and SVM regression. In addition to
main system submission, a classic n-best list
re-ranking approach was used for Task 1.2.

CNGL (T1.1, T1.2, T1.3, T2): CNGL systems

are based on referential translation machines
(RTM) (Bigici and van Genabith, 2013), par-
allel feature decay algorithms (FDA) (Bicici,
2013a), and machine translation performance
predictor (MTPP) (Bigici et al., 2013), all
of which allow to obtain language and MT
system-independent predictions. For each
task, RTM models were developed using the
parallel corpora and the language model cor-
pora distributed by the WMT13 translation
task and the language model corpora pro-
vided by LDC for English and Spanish.

The sentence-level features are described in
MTPP (Bigici et al., 2013); they include
monolingual or bilingual features using n-
grams defined over text or common cover
link (CCL) (Seginer, 2007) structures as the
basic units of information over which sim-
ilarity calculations are made. RTMs use
308 features about coverage and diversity,
IBM1, and sentence translation performance,
retrieval closeness and minimum Bayes re-
trieval risk, distributional similarity and en-
tropy, IBM2 alignment, character n-grams,
and sentence readability. The learning mod-
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els are Support Vector Machines (SVR) and
SVR with partial least squares (SVRPLS).

The word-level features include CCL links,
word length, location, prefix, suffix, form,
context, and alignment, totalling 511K fea-
tures for binary classification, and 637K for
multiclass classification. Generalised lin-
ear models (GLM) (Collins, 2002) and GLM
with dynamic learning (GLMd) were used.

DCU (T1.2): The main German-English submis-

sion uses six Combinatory Categorial Gram-
mar (CCG) features: CCG supertag lan-
guage model perplexity and log probability,
the number of maximal CCG constituents in
the translation output which are the highest-
probability minimum number of CCG con-
stituents that span the translation output, the
percentage of CCG argument mismatches be-
tween each subsequent CCG supertags, the
percentage of CCG argument mismatches be-
tween each subsequent CCG maximal cate-
gories and the minimum number of phrases
detected in the translation output. A second
submission uses the aforementioned CCG
features combined with 80 features from
QUEST as described in (Specia, 2011). For
the CCG features, the C&C parser was used
to parse the translation output. Moses was
used to build the phrase table from the SMT
training corpus with maximum phrase length
set to 7. The language model of supertags
was built using the SRILM toolkit. As learn-
ing algorithm, Logistic Regression as pro-
vided by the SCIKIT-LEARN toolkit was used.
The training data was prepared by converting
each ranking of translation outputs to a set
of pairwise comparisons according to the ap-
proach proposed by Avramidis et al. (2011).
The rankings were generated back from pair-
wise comparisons predicted by the model.

DCU-SYMC (T1.1): The DCU-Symantec team

employed a wide set of features which in-
cluded language model, n-gram counts and
word-alignment features as well as syntac-
tic features, topic model features and pseudo-
reference features. The main learning algo-
rithm was SVR, but regression tree learning
was used to perform feature selection, re-
ducing the initial set of 442 features to 96
features (DCU-Symantec alltypes) and 134



(DCU-Symantec combine). Two methods
for feature selection were used: a best-first
search in the feature space using regression
trees to evaluate the subsets, and reading bi-
narised features directly from the nodes of
pruned regression trees.

The following NLP tools were used in feature
extraction: the Brown English Wall-Street-
Journal-trained statistical parser (Charniak
and Johnson, 2005), a Lexical Functional
Grammar parser (XLE), together with a
hand-crafted Lexical Functional Grammar,
the English ParGram grammar (Kaplan et al.,
2004), and the TreeTagger part-of-speech
tagger (Schmidt, 1994) with off-the-shelf
publicly available pre-trained tagging mod-
els for English and Spanish. For pseudo-
reference features, the Bing, Moses and Sys-
tran translation systems were used. The Mal-
let toolkit (McCallum, 2002) was used to
build the topic models and features based on
a grammar checker were extracted with Lan-
guageTool.'®

DFKI (T1.2, T1.3): DFKI’s submission for Task

1.2 was based on decomposing rankings into
pairs (Avramidis, 2012), where the best sys-
tem for each pair was predicted with Lo-
gistic Regression (LogReg). For German-
English, LogReg was trained with Stepwise
Feature Selection (Hosmer, 1989) on two
feature sets: Feature Set 24 includes ba-
sic counts augmented with PCFG parsing
features (number of VPs, alternative parses,
parse probability) on both source and tar-
get sentences (Avramidis et al., 2011), and
pseudo-reference METEOR score; the most
successful set, Feature Set 33 combines those
24 features with the 17 baseline features. For
English-Spanish, LogReg was used with L2
Regularisation (Lin et al., 2007) and two fea-
ture sets were devised after scoring features
with ReliefF (Kononenko, 1994) and Infor-
mation Gain (Hunt et al., 1966). Feature Set
431 combines 30 features with highest abso-
lute Relief-F and Information Gain (15 from
each). features with the highest

Task 1.3 was modelled using feature sets
selected after Relief-F scoring of external
black-box and glass-box features extracted

®http://wuw.languagetool.org/
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from the SMT decoding process. The most
successful submission (linear6) was trained
with Linear Regression including the 17 fea-
tures with highest positive Relief-F. Most
prominent features include the alternative
possible parses of the source and target sen-
tence, the positions of the phrases with the
lowest and highest probability and future
cost estimate in the translation, the counts of
phrases in the decoding graph whose prob-
ability or whether the future cost estimate
is higher/lower than their standard deviation,
counts of verbs and determiners, etc. The
second submission (pls8) was trained with
Partial Least Squares regression (Stone and
Brooks, 1990) including more glass-box fea-
tures.

FBK-Uedin (T1.1, T1.3):

The submissions explored features built on
MT engine resources including automatic
word alignment, n-best candidate translation
lists, back-translations and word posterior
probabilities. Information about word align-
ments is used to extract quantitative (amount
and distribution of the alignments) and qual-
itative (importance of the aligned terms) fea-
tures under the assumption that alignment
information can help tasks where sentence-
level semantic relations need to be identified
(Souza et al., 2013). Three similar English-
Spanish systems are built and used to provide
pseudo-references (Soricut et al., 2012) and
back-translations, from which automatic MT
evaluation metrics could be computed and
used as features.

All features were computed over a concatena-
tion of several publicly available parallel cor-
pora for the English-Spanish language pair
such as Europarl, News Commentary, and
MultiUN. The models were developed using
supervised learning algorithms: SVMs (with
feature selection step prior to model learning)
and extremely randomized trees.

LIG (T2): The LIG systems are designed to

deal with both binary and multiclass variants
of the word level task. They integrate sev-
eral features including: system-based (graph
topology, language model, alignment con-
text, etc.), lexical (Part-of-Speech tags), syn-
tactic (constituent label, distance to the con-



stituent tree root) and semantic (target and
source polysemy count). Besides the exist-
ing components of the SMT system, feature
extraction requires further external tools and
resources, such as: TreeTagger (for POS tag-
ging), Bekerley Parser trained with AnCora
treebank (for generating constituent trees in
Spanish), WordNet and BabelNet (for pol-
ysemy count), Google Translate. The fea-
ture set is then combined and trained using
a Conditional Random Fields (CRF) learn-
ing method. During the labelling phase, the
optimal threshold is tuned using a small de-
velopment set split from the original training
set. In order to retain the most informative
features and eliminate the redundant ones, a
Sequential Backward Selection algorithm is
employed over the all-feature systems. With
the binary classifier, the Boosting technique
is applied to allow a number of sub feature
sets to complement each other, resulting in
the “stronger”” combined system.

LIMSI (T1.1, T1.3): The two tasks were treated

as regression problems using a simple elas-
tic regression, a linear model trained with L
and Lo regularisers. Regarding features, the
submissions mainly aimed at evaluating the
usefulness for quality estimation of n-gram
posterior probabilities (Gispert et al., 2013)
that quantify the probability for a given n-
gram to be part of the system output. Their
computation relies on all the hypotheses con-
sidered by a SMT system during decoding:
intuitively, the more hypotheses a n-gram ap-
pears in, the more confident the system is
that this n-gram is part of the correct trans-
lation, and the higher its posterior probabil-
ity is. The feature set contains 395 other fea-
tures that differs, in two ways, from the tra-
ditional features used in quality estimation.
First, it includes several features based on
large span continuous space language mod-
els (Le et al., 2011) that have already proved
their efficiency both for the translation task
and the quality estimation task. Second, each
feature was expanded into two “normalized
forms” in which their value was divided ei-
ther by the source length or the target length
and, when relevant, into a “ratio form” in
which the feature value computed on the tar-
get sentence is divided by its value computed
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SHEF (T1.1, T1.3):

in the source sentence.

LORIA (T1.1): The system uses the 17 baseline

features, plus several numerical and boolean
features computed from the source and target
sentences (Langlois et al., 2012). These are
based on language model information (per-
plexity, level of back-off, intra-lingual trig-
gers), translation table (IBM1 table, inter-
lingual triggers). For language models, for-
ward and backward models are built. Each
feature gives a score to each word in the sen-
tence, and the score of the sentence is the av-
erage of word scores. For several features,
the score of a word depends on the score of its
neighbours. This leads to 66 features. Sup-
port Vector Machines are used to learn a re-
gression model. In training is done in a multi-
stage procedure aimed at increasing the size
of the training corpus. Initially, the train-
ing corpus with machine translated sentences
provided by the task is used to train an SVM
model. Then this model is applied to the post-
edited and reference sentences (also provided
as part of the task). These are added to the
quality estimation training corpus using as la-
bels the SVM predictions. An algorithm to
tune the predicted scores on a development
corpus is used.

These submissions use
Gaussian Processes, a non-parametric prob-
abilistic learning framework for regression,
along with two techniques to improve predic-
tion performance and minimise the amount
of resources needed for the problem: feature
selection based on optimised hyperparame-
ters and active learning to reduce the training
set size (and therefore the annotation effort).
The initial set features contains all black box
and glass box features available within the
QUEST framework (Specia et al., 2013) for
the dataset at hand (160 in total for Task 1.1,
and 80 for Task 1.3). The query selection
strategy for active learning is based on the
informativeness of the instances using Infor-
mation Density, a measure that leverages be-
tween the variance among instances and how
dense the region (in the feature space) where
the instance is located is. To perform fea-
ture selection, following (Shah et al., 2013)
features are ranked by the Gaussian Process



algorithm according to their learned length
scales, which can be interpreted as the rel-
evance of such feature for the model. This
information was used for feature selection
by discarding the lowest ranked (least use-
ful) ones. based on empirical results found
in (Shah et al., 2013), the top 25 features for
both models were selected and used to retrain
the same regression algorithm.

UPC (T1.2): The methodology used a broad set

of features, mainly available through the last
version of the Asiya toolkit for MT evalua-
tion (Gonzalez et al., 2012)!7. Concretely,
86 features were derived for the German-to-
English and 97 features for the English-to-
Spanish tasks. These features cover differ-
ent approaches and include standard qual-
ity estimation features, as provided by the
above mentioned Asiya and QUEST toolk-
its, but also a variety of features based on
pseudo-references, explicit semantic analy-
sis and specialised language models trained
on the parallel and monolingual corpora pro-
vided by the WMT Translation Task.

The system selection task is approached by
means of pairwise ranking decisions. It uses
Random Forest classifiers with ties, expand-
ing the work of 402013cFormiga et al.), from
which a full ranking can be derived and the
best system per sentence is identified. Once
the classes are given by the Random Forest,
one can build a graph by means of the adja-
cency matrix of the pairwise decision. The fi-
nal ranking is assigned through a dominance
scheme similar to Pighin et al. (2012).

An important remark of the methodology is
the feature selection process, since it was no-
ticed that the learner was sensitive to the fea-
tures used. Selecting the appropriate set of
features was crucial to achieve a good per-
formance. The best feature combination was
composed of: i) a baseline quality estimation
feature set (Asiya or Quest) but not both of
them, ii) Length Model, iii) Pseudo-reference
aligned based features, and iv) adapted lan-
guage models. However, within the de-en
task, substituting Length Model and Aligned
Pseudo-references by the features based on

"http://asiya.lsi.upc.edu/
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Semantic Roles could bring marginally bet-
ter accuracy.

TCD-CNGL (T1.1) and TCD-DCU-CNGL

(T1.3): The system is based on features
which are commonly used for style classifi-
cation (e.g. author identification). The as-
sumption is that low/high quality translations
can be characterised by some patterns which
are frequent and/or differ significantly from
the opposite category. Such features are in-
tended to focus on striking patterns rather
than to capture the global quality in a sen-
tence, but they are used in conjunction with
classical features for quality estimation (lan-
guage modelling, etc.). This requires two
steps in the training process: first the refer-
ence categories against which sentences will
be compared are built, then the standard qual-
ity estimation model training stage is per-
formed. Both datasets (Tasks 1.1 and 1.3)
were used for both tasks. Since the number
of features can be very high (up to 65,000),
a combination of various heuristics for se-
lecting features was used before the training
stage (the submitted systems were trained us-
ing SVM with RBF kernels).

UMAC (T1.1, T1.2, T2): For Task 1.1, the fea-

ture set consists in POS sequences of the
source and target languages, using 12 uni-
versal tags that are common in both lan-
guages. The algorithm is an enhanced ver-
sion of the BLEU metric (EBLEU) designed
with a modified length penalty and added re-
call factor, and having the precision and re-
call components grouped using the harmonic
mean. For Task 1.2, in addition to the uni-
versal POS sequences of the source and tar-
get languages, features include the scores of
length penalty, precision, recall and rank.
Variants of EBLEU with different strategies
for alignment are used, as well as a Naive
Bayes classification algorithm. For Task 2,
the features used are unigrams (from previous
4th to following 3rd tokens), bigrams (from
previous 2nd to following 2nd tokens), skip
bigrams (previous and next token), trigrams
(from previous 2nd to following 2nd tokens).
The learning algorithms are Conditional Ran-
dom Fields and Naive Bayes.



6.8 Results

In what follows we give the official results for all
tasks followed by a discussion that highlights the
main findings for each of the tasks.

Task 1.1 Predicting post-editing distance

Table 12 summarises the results for the ranking
variant of the task. They are sorted from best to
worse using the DeltaAvg metric scores as primary
key and the Spearman’s rank correlation scores as
secondary key.

The winning submissions for the ranking vari-
ant of Task 1.1 are CNGL SVRPLS, with a
DeltaAvg score of 11.09, and DCU-SYMC all-
types, with a DeltaAvg score of 10.13. While the
former holds the higher score, the difference is not
significant at the p < 0.05 level as estimated by a
bootstrap resampling test.

Both submissions are better than the baseline
system by a very wide margin, a larger relative im-
provement than that obtained in the corresponding
WMTI12 task. In addition, five submissions (out
of 12 systems) scored significantly higher than the
baseline system (systems above the middle gray
area), which is a larger proportion than that in last
year’s task (only 3 out of 16 systems), indicat-
ing that this shared task succeeded in pushing the
state-of-the-art performance to new levels.

In addition to the performance of the official
submission, we report results obtained by two or-
acle methods: the gold-label HTER metric com-
puted against the post-edited translations as ref-
erence (Oracle HTER), and the BLEU metric (1-
BLEU to obtain the same range as HTER) com-
puted against the same post-edited translations as
reference (Oracle HBLEU). The “Oracle HTER”
DeltaAvg score of 16.38 gives an upperbound in
terms of DeltaAvg for the test set used in this eval-
vation. It indicates that, for this set, the differ-
ence in post-editing effort between the top quality
quantiles and the overall quality is 16.38 on aver-
age. The oracle based on HBLEU gives a lower
DeltaAvg score, which is expected since HTER
was our actual gold label. However, it is still
significantly higher than the score of the winning
submission, which shows that there is significant
room for improvement even by the highest scor-
ing submissions.

The results for the scoring variant of the task
are presented in Table 13, sorted from best to
worse by using the MAE metric scores as primary
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key and the RMSE metric scores as secondary key.

According to MAE scores, the winning submis-
sion is SHEF FS (MAE = 12.42), which uses fea-
ture selection and a novel learning algorithm for
the task, Gaussian Processes. The baseline sys-
tem is measured to have an MAE of 14.81, with
six other submissions having performances that
are not different from the baseline at a statisti-
cally significant level, as shown by the gray area
in the middle of Table 13). Nine submissions (out
of 16) scored significantly higher than the base-
line system (systems above the middle gray area),
a considerably higher proportion of submissions
as compared to last year (5 out of 19), which indi-
cates that this shared task also succeeded in push-
ing the state-of-the-art performance to new levels
in terms of absolute scoring. Only one (6%) sys-
tem scored significantly lower than the baseline,
as opposed to 8 (42%) in last year’s task.

For the sake of completeness, we also show or-
acles figures using the same methods as for the
ranking variant of the task. Here the lowerbound
in error (Oracle HTER) will clearly be zero, as
both MAE and RMSE are measured against the
same gold label used for the oracle computation.
“Oracle HBLEU” is also not indicative in this
case, as the although the values for the two metrics
(HTER and HBLEU) are within the same ranges,
they are not directly comparable. This explains the
larger MAE/RMSE figures for “Oracle HBLEU”
than those for most submissions.

Task 1.2 Selecting the best translation

Below we present the results for this task for each
of the two Kendall’s 7 flavours presented in Sec-
tion 6.6, for the German-English test set (Tables 14
and 16) and the English-Spanish test set (Tables 15
and 17). The results are sorted from best to worse
using each of the Kendall’s 7 metric flavours.

For German-English, the winning submission is
DFKTI’s logRegFss33 entry, for both Kendall’s 7
with ties penalised and ties ignored, with 7 = 0.31
(since this submission has no ties, the two met-
rics give the same 7 value). A trivial baseline that
proposes random ranks (with ties allowed) has a
Kendall’s 7 with ties penalised of -0.12 (as this
metric penalises the system’s ties that were non-
ties in the reference), and a Kendall’s 7 with ties
ignored of 0.08. Most of the submissions per-
formed better than this simple baseline. More in-
terestingly perhaps is the comparison between the
best submission and the performance by an ora-



System ID | DeltaAvg | Spearman p
e CNGL SVRPLS 11.09 0.55
e DCU-SYMC alltypes 10.13 0.59
SHEF FS 9.76 0.57
CNGL SVR 9.88 0.51
DCU-SYMC combine 9.84 0.59
CMU noB 8.98 0.57
SHEF FS-AL 8.85 0.50
Baseline bb17 SVR 8.52 0.46
CMU full 8.23 0.54
LIMSI 8.15 0.44
TCD-CNGL open 6.03 0.33
TCD-CNGL restricted 5.85 0.31
UMAC 2.74 0.11
Oracle HTER 16.38 1.00
Oracle HBLEU 15.74 0.93

Table 12: Official results for the ranking variant of the WMT13 Quality Estimation Task 1.1. The winning submissions are
indicated by a e (they are significantly better than all other submissions according to bootstrap resampling (10k times) with
95% confidence intervals). The systems in the gray area are not different from the baseline system at a statistically significant
level according to the same test. Oracle results that use human-references are also shown for comparison purposes.

System ID | MAE | RMSE

¢ SHEFFS | 1242 | 15.74

SHEF FS-AL | 13.02 | 17.03

CNGL SVRPLS | 13.26 | 16.82
LIMSI | 13.32 | 17.22

DCU-SYMC combine | 13.45 | 16.64
DCU-SYMC alltypes | 13.51 | 17.14
CMUnoB | 13.84 | 17.46

CNGL SVR | 13.85 | 17.28
FBK-UEdin extra | 14.38 | 17.68
FBK-UEdin rand-svr | 14.50 | 17.73
LORIA inctrain | 14.79 | 18.34
Baseline bb17 SVR | 14.81 | 18.22
TCD-CNGL open | 14.81 | 19.00
LORIA inctraincont | 14.83 | 18.17
TCD-CNGL restricted | 15.20 | 19.59
CMU full | 15.25 | 18.97

UMAC | 1697 | 21.94

Oracle HTER | 0.00 0.00
Oracle HBLEU (1-HBLEU) | 16.85 | 19.72

Table 13: Official results for the scoring variant of the WMT13 Quality Estimation Task 1.1. The winning submission is
indicated by a e (it is significantly better than the other submissions according to bootstrap resampling (10k times) with 95%
confidence intervals). The systems in the gray area are not different from the baseline system at a statistically significant level
according to the same test. Oracle results that use human-references are also shown for comparison purposes.
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German-English System ID | Kendall’s 7 with ties penalised
o DFKI logRegFss33 0.31
DFKI logRegFss24 0.28
CNGL SVRPLSFI1 0.17
CNGL SVRF1 0.17
DCU CCG 0.15
UPC AQE+SEM+LM 0.11
UPC AQE+LeM+ALGPR+LM 0.10
DCU baseline+CCG 0.00
Baseline Random-ranks-with-ties -0.12
UMAC EBLEU-I -0.39
UMAC NB-LPR -0.49
Oracle Human 1.00
Oracle BLEU (margin 0.00) 0.19
Oracle BLEU (margin 0.01) 0.05
Oracle METEOR-ex (margin 0.00) 0.23
Oracle METEOR-ex (margin 0.01) 0.06

Table 14: Official results for the Task 1.2 of the WMT13 Quality Estimation shared task for German-English, using as metric
Kendall’s 7 with ties penalised. The winning submissions are indicated by a e. Oracle results that use human-references are
also shown for comparison purposes.

English-Spanish System ID | Kendall’s 7 with ties penalised
e CNGL SVRPLSF1 0.15
CNGL SVRF1 0.13
DFKI logRegl.2-411 0.09
DFKI logRegl.2-431 0.04
UPC QQE+LeM+ALGPR+LM -0.03
UPC AQE+LeM+ALGPR+LM -0.06
CMU BLEUopt -0.11
Baseline Random-ranks-with-ties -0.23
UMAC EBLEU-A -0.27
UMAC EBLEU-I -0.35
CMU cls -0.63
Oracle Human 1.00
Oracle BLEU (margin 0.00) 0.17
Oracle BLEU (margin 0.02) -0.06
Oracle METEOR-ex (margin 0.00) 0.19
Oracle METEOR-ex (margin 0.02) 0.05

Table 15: Official results for the Task 1.2 of the WMT13 Quality Estimation shared task for English-Spanish, using as metric
Kendall’s 7 with ties penalised. The winning submissions are indicated by a e. Oracle results that use human-references are
also shown for comparison purposes.
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German-English System ID | Kendall’s 7 with ties ignored | Nr. of non-ties / Nr. of decisions
e DFKI logRegFss33 0.31 882/882
DFKI logRegFss24 0.28 882/882
UPC AQE+SEM+LM 0.27 768/882
UPC AQE+LeM+ALGPR+LM 0.24 788/882
DCU CCG 0.18 862/882
CNGL SVRPLSF1 0.17 882/882
CNGL SVRF1 0.17 881/882
Baseline Random-ranks-with-ties 0.08 718/882
DCU baseline+CCG 0.01 874/882
UMAC NB-LPR 0.01 447/882
UMAC EBLEU-I -0.03 558/882
Oracle Human 1.00 882/882
Oracle BLEU (margin 0.00) 0.22 859/882
Oracle BLEU (margin 0.01) 0.27 728/882
Oracle METEOR-ex (margin 0.00) 0.20 869/882
Oracle METEOR-ex (margin 0.01) 0.24 757/882

Table 16: Official results for the Task 1.2 of the WMT13 Quality Estimation shared task for German-English, using as metric
Kendall’s 7 with ties ignored. The winning submissions are indicated by a e. Oracle results that use human-references are also
shown for comparison purposes.

English-Spanish System ID | Kendall’s 7 with ties ignored | Nr. of non-ties / Nr. of decisions
e CMU cls 0.23 192/633
CNGL SVRPLSF1 0.16 632/633
CNGL SVRF1 0.13 631/633
DFKI logRegl.2-411 0.13 610/633
UPC QQE+LeM+ALGPR+LM 0.11 554/633
UPC AQE+LeM+ALGPR+LM 0.08 554/633
UMAC EBLEU-A 0.07 430/633
DFKI logRegl.2-431 0.04 633/633
Baseline Random-ranks-with-ties 0.03 507/633
UMAC EBLEU-I 0.02 407/633
CMU BLEUopt -0.11 633/633
Oracle Human 1.00 633/633
Oracle BLEU (margin 0.00) 0.19 621/633
Oracle BLEU (margin 0.02) 0.26 474/633
Oracle METEOR-ex (margin 0.00) 0.25 623/633
Oracle METEOR-ex (margin 0.02) 0.28 517/633

Table 17: Official results for the Task 1.2 of the WMT13 Quality Estimation shared task for English-Spanish, using as metric
Kendall’s 7 with ties ignored. The winning submissions are indicated by a e. Oracle results that use human-references are also
shown for comparison purposes.
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cle method that has access to human-created refer-
ences. This oracle uses human references to com-
pute BLEU and METEOR scores for each trans-
lation segment, and consequently computes rank-
ings for the competing translations based on these
scores. To reflect the impact of ties on the two
versions of Kendall’s 7 metric we use, we allow
these ranks to be tied if the difference between the
oracle BLEU or METEOR scores is smaller than
a margin (see lower section of Tables 14 and 16,
with margins of 0 and 0.01 for the scores). For ex-
ample, under a regime of BLEU with margin 0.01,
a translation with BLEU score of 0.172 would get
the same rank as a translation with BLEU score of
0.164 (difference of 0.008), but a higher rank than
a translation with BLEU score of 0.158 (difference
of 0.014). Not surprisingly, under the Kendall’s
7 with ties penalised the best Oracle BLEU or
METEOR performance happens for a 0.0 mar-
gin (which makes ties possible only for exactly-
matching scores), for a value of 7 = 0.19 and
7 = 0.23, respectively. Under the Kendall’s 7 with
ties ignored, the Oracle BLEU performance for a
0.01 margin (i.e, translations under 1 BLEU point
should be considered as having the same rank)
achieves 7 = 0.27, while Oracle METEOR for a
0.01 margin achieves 7 = 0.24. These values are
lower than the 7 = 0.31 of the winning submis-
sion without access to reference translations, sug-
gesting that quality estimation models are capable
of better modelling translation differences com-
pared to traditional, human reference-based MT
evaluation metrics.

For English-Spanish, under Kendall’s 7 with
ties penalised the winning submission is CNGL’s
SVRPLSFI, with 7 = 0.15. Under Kendall’s 7
with ties ignored, the best scoring submission is
CMU’s cls with 7 = 0.23, but this is achieved
by offering non-tie judgements only for 192 of the
633 total judgements (30% of them). As we dis-
cussed in Section 6.6, the ”Kendall’s = with ties
ignored” metric is weak with respect to compar-
ing different submissions, since it favours systems
that are do not commit to a given rank and rather
produce a large number of ties. This becomes even
clearer when we look at the performance of the or-
acle methods (Tables 15 and 17). Under Kendall’s
T with ties penalised, “Oracle BLEU” (margin
0.00) achieves 7 = 0.17, while under Kendall’s
7 with ties ignored, “Oracle BLEU” (margin 0.02)
has a 7 = 0.26. This results in 474 non-tie deci-
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sions (75% of them), and a better 7 value com-
pared to “Oracle BLEU” (margin 0.00), with a
7 = 0.19 under the same metric. The oracle values
for both BLEU and METEOR are close to the 7
values of the winning submissions, supporting the
conclusion that quality estimation techniques can
successfully replace traditional, human reference-
based MT evaluation metrics.

Task 1.3 Predicting post-editing time

Results for this task are presented in Table 18.
A third of the submissions was able to beat the
baseline. Among these FBK-UEDIN’s submission
ranked best in terms of MAE, our main metric for
this task, and also achieved the lowest RMSE.

Only three systems were able to beat our base-
line in terms of MAE. Please note that while all
features were available to the participants, our
baseline is actually a competitive system.

The second-best entry, CNGL SVR, reached
the highest Spearman’s rank correlation, our sec-
ondary metric. Furthermore, in terms of this met-
ric all four top-ranking entries, two by CNGL and
FBK-UEDIN respectively, are significantly better
than the baseline (10k bootstrap resampling test
with 95% confidence intervals). As high ranking
submissions also yield strong rank correlation to
the observed post-editing time, we can be confi-
dent that improvements in MAE are not only due
to better handling of extreme cases.

Many participants submitted two variants of
their systems with different numbers of features
and/or machine learning approaches. In Table 18
we can see these are grouped closely together giv-
ing rise to the assumption that the general pool of
available features and thereby the used resources
and strongest features are most relevant for a sys-
tem’s performance. Another hint in that direction
is the observation the top-ranked systems rely on
additional data and resources to generate their fea-
tures.

Task 2 Predicting word-level scores

Results for this task are presented in Table 19 and
20, sorted by macro average Fj. Since this is a
new task, we have yet to establish a strong base-
line. For reference we provide a trivial baseline
that predicts the dominant class — (K)eep — for ev-
ery token.

The first observation in Table 19 is that this triv-
ial baseline is difficult to beat in terms of accuracy.
However, considering our main metric — macro-



System ID | MAE | RMSE | Pearson’s r | Spearman’s p
e FBK-UEDIN Extra | 47.5 82.6 0.65 0.75
e FBK-UEDIN Rand-SVR | 47.9 86.7 0.66 0.74
CNGL SVR | 49.2 90.4 0.67 0.76
CNGL SVRPLS | 49.6 86.6 0.68 0.74
CMU slim | 51.6 84.7 0.63 0.68
Baseline bb17 SVR | 51.9 93.4 0.61 0.70
DFKI linear6 | 52.4 84.3 0.64 0.68
CMU full | 53.6 92.2 0.58 0.60
DFKI pls8 | 53.6 88.3 0.59 0.67
TCD-DCU-CNGL SVM2 | 55.8 98.9 0.47 0.60
TCD-DCU-CNGL SVM1 | 559 99.4 0.48 0.60
SHEFFS | 559 | 103.1 0.42 0.61
SHEF FS-AL | 64.6 99.1 0.57 0.60
LIMSI elastic | 70.6 | 114.4 0.58 0.64

Table 18: Official results for the Task 1.3 of the WMT13 Quality Estimation shared-task. The winning submissions are
indicated by a e (they are significantly better than all other submissions according to bootstrap resampling (10k times) with
95% confidence intervals). The systems in the gray area are not different from the baseline system at a statistically significant
level according to the same test.

Keep Change
System ID | Accuracy | Prec. | Recall | F; | Prec. | Recall | F; | Macro F}
¢ LIG FS_BIN 0.74 079 | 086 | 082 | 0.56 | 043 | 0.48 0.65
¢ LIG BOOST_BIN 0.74 0.78 0.88 | 0.83 | 0.57 | 037 | 0.45 0.64
CNGL GLM 0.70 0.76 | 0.86 | 0.80 | 0.47 0.31 | 0.38 0.59
UMAC NB 0.56 082 | 049 | 062 | 037 | 073 | 0.49 0.55
CNGL GLMd 0.71 074 | 093 | 0.82 | 0.51 0.19 | 0.28 0.55
UMAC CRF 0.71 072 | 098 | 083 049 | 0.04 | 0.07 0.45
Baseline (one class) 0.71 0.71 1.00 | 0.83 | 0.00 | 0.00 | 0.00 0.42

Table 19: Official results for Task 2: binary classification on word level of the WMT13 Quality Estimation shared-task. The
winning submissions are indicated by a e.

System ID | £} Keep | Fi Substitute | F; Delete | Micro-F} | Macro-F}
e LIG FS_MULT 0.83 0.44 0.072 0.72 0.45
e LIG ALL_MULT 0.83 0.45 0.064 0.72 0.45
UMAC NB 0.62 0.43 0.042 0.52 0.36
CNGL GLM 0.83 0.18 0.028 0.71 0.35
CNGL GLMd 0.83 0.14 0.034 0.72 0.34
UMAC CRF 0.83 0.04 0.012 0.71 0.29
Baseline (one class) 0.83 0.00 0.000 0.71 0.28

Table 20: Official results for Task 2: multiclass classification on word level of the WMT13 Quality Estimation shared-task.
The winning submissions are indicated by a e.
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average I —itis clear that all systems outperform
the baseline. The winning systems by LIG for the
binary task are also the top ranking systems on the
multiclass task.

While promising results are found for the bi-
nary variant of the task where systems are able to
achieve an F; of almost 0.5 for the relevant class
— Change, the multiclass prediction variant of the
task seem to suffer from its severe class imbalance.
In fact, none of the systems shows good perfor-
mance when predicting deletions.

6.9 Discussion

In what follows, we discuss the main accomplish-
ments of this shared task starting from the goals
we had previously identified for it.

Explore various granularity levels for the
quality-prediction task The decision on which
level of granularity quality estimation is applied
depends strongly on the intended application. In
Task 2 we tested binary word-level classification
in a post-editing setting. If such annotation is pre-
sented through a user interface we imagine that
words marked as incorrect would be hidden from
the editor, highlighted as possibly wrong or that a
list of alternatives would we generated.

With respect to the poor improvements over
trivial baselines, we consider that the results for
word-level prediction could be mostly connected
to limitations of the datasets provided, which are
very small for word-level prediction, as compared
to successful previous work such as (Bach et al.,
2011). Despite the limited amount of training
data, several systems were able to predict dubious
words (binary variant of the task), showing that
this can be a promising task. Extending the granu-
larity even further by predicting the actual editing
action necessary for a word yielded less positive
results than the binary setting.

We cannot directly compare sentence- and
word-level results. However, since sentence-level
predictions can benefit from more information
available and therefore more signal on which the
prediction is based, the natural conclusion is that,
if there is a choice in the prediction granularity,
to opt for the coarser one possible (i.e., sentence-
level over word-level). But certain applications
may require finer granularity levels, and therefore
word-level predictions can still be very valuable.

Explore the prediction of more objective scores
Given the multitude of possible applications for
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quality estimation we must decide which predicted
values are both useful and accurate. In this year’s
task we have attempted to address the useful-
ness criterion by moving from the subjective, hu-
man judgement-based scores, to the prediction of
scores that can be more easily interpreted for prac-
tical applications: post-editing distance or types of
edits (word-level), post-editing time, and ranking
of alternative translations.

The general promise of using objective scores is
that predicting a value that is related to the use case
will make quality estimation more applicable and
yield lower deviance compared to the use of proxy
metrics. The magnitude of this benefit should be
sufficient to account for the possible additional ef-
fort related to collecting such scores.

While a direct comparison between the differ-
ent types of scores used for this year’s tasks is not
possible as they are based on different datasets, if
we compare last year’s task on predicting 1-5 lik-
ert scores (and generating an overall ranking of all
translations in the test set) with this year’s Task
1.1, which is virtually the same, but using post-
editing distance as gold-label, we see that the num-
ber of systems that outperform the baseline '® is
proportionally larger this year. We can also notice
a higher relative improvement of these submis-
sions over the baseline system. While this could
simply be a consequence of progress in the field, it
may also provide an indication that objective met-
rics are more suitable for the problem.

Particularly with respect to post-editing time,
given that this label has a long tailed distribution
and is not trivial to measure even in a controlled
environment, the results of Task 1.3 are encour-
aging. Comparison with the better results seen
on Tasks 1.1 and 1.2, however, suggests that, for
Task 1.3, additional data processing, filtering, and
modelling (including modelling translator-specific
traits such as their variance in time) is required, as
evidenced in (Cohn and Specia, 2013).

Explore the use of quality estimation tech-
niques to replace reference-based MT evalua-
tion metrics When it comes to the task of au-
tomatically ranking alternative translations gener-
ated by different MT systems, the traditional use
of reference-based MT evaluation metrics is chal-
lenged by the findings of this task.

The top ranking quality estimation submissions

!8The two baselines are exactly the same, and therefore the
comparison is meaningful.



to Task 1.2 have performances that outperform or
are at least at the same level with the ones that
involve the use of human references. The most in-
teresting property of these techniques is that, be-
ing reference-free, they can be used for any source
sentences, and therefore are ready to be deployed
for arbitrary texts.

An immediate application for this capability is
a procedure by which MT system-selection is per-
formed, based on the output of such quality esti-
mators. Additional measurements are needed to
determine the level of improvement in translation
quality that the current performance of these tech-
niques can achieve in a system-selection scenario.

Identify new and effective quality indicators
Quality indicators, or features, are core to the
problem of quality estimation. One significant dif-
ference this year with respect to previous year was
the availability of QUEST, a framework for the ex-
traction of a large number of features. A few sub-
missions used these larger sets — as opposed to the
17 baseline features used in the 2012 edition — as
their starting point, to which they added other fea-
tures. Most features available in this framework,
however, had already been used in previous work.

Novel families of features used this year which
seems to have played an important role are those
proposed by CNGL. They include a number of
language and MT-system independent monolin-
gual and bilingual similarity metrics between the
sentences for prediction and corpora of the lan-
guage pair under consideration. Based on standard
regression algorithm (the same used by the base-
line system), the submissions from CNGL using
such feature families topped many of the tasks.

Another interesting family of features is that
used by TCD-CNGL and TCD-DCU-CNGL for
Tasks 1.1 and 1.3. These were borrowed from
work on style or authorship identification. The as-
sumption is that low/high quality translations can
be characterised by some patterns which are fre-
quent and/or differ significantly from patterns be-
longing to the opposite category.

Like in last year’s task, the vast majority of
the participating systems used external resources
in addition to those provided for the task, par-
ticularly for linguistically-oriented features, such
as parsers, part-of-speech taggers, named entity
recognizers, etc. A novel set of syntactic fea-
tures based on Combinatory Categorial Grammar
(CCG) performed reasonably well in Task 1.2:
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with six CCG-based features and no additional
features, the system outperformed the baseline
system and also a second submission where the
17 baseline features were added. This highlights
the potential of linguistically-motivated features
for the problem.

As expected, different feature sets were used
for different tasks. This is essential for Task 2,
where word-level features are certainly necessary.
For example, LIG used a number of lexical fea-
tures such as part-of-speech tag, word-posterior
probabilities, syntactic (constituent label, distance
to the constituent tree root, and target and source
polysemy count). For submissions where a se-
quence labelling algorithm such as a Conditional
Random Fields was used for prediction, the inter-
dependencies between adjacent words and labels
was also modelled though features.

Pseudo-references, i.e., scores from standard
evaluation metrics such as BLEU based on trans-
lations generated by an alternative MT system as
“reference”, featured in more than half of the sub-
missions for sentence-level tasks. This is not sur-
prising given their performance in previous work
on quality estimation.

Identify effective machine learning techniques
for all variants of the quality estimation task
For the sentence-level tasks, standard regression
methods such as SVR performed well as in the
previous edition of the shared task, topping the
results for the ranking variant of Task 1.1, both
first and second place. In fact this algorithm was
used by most submissions that outperformed the
baseline. An alternative algorithm to SVR with
very promising results and which was introduced
for the problem this year is that of Gaussian Pro-
cesses. It was used by SHEF, the winning submis-
sion in the scoring variant of Task 1.1, which also
performed well in the ranking variant, despite its
hyperparameters having been optimised for scor-
ing only. Algorithms behave similarly for Task
1.3, with SVR performing particularly well.

For Task 1.2, logistic regression performed the
best or among the best, along with SVR. One of
the most effective approach for this task, however,
appears to be one that is better tailored for the
task, namely pair-wise decomposition for ranking.
This approach benefits from transforming a k-way
ranking problem into a series of simpler, 2-way
ranking problems, which can be more accurately
solved. Another approach that shows promise is



that of ensemble of regressors, in which the output
is the results combining the predictions of differ-
ent regression models.

Linear-chain Conditional Random Fields are a
popular model of choice for sequence labelling
tasks and have been successfully used by several
participants in Task 2, along with discriminatively
trained Hidden Markov Models and Naive Bayes.

As in the previous edition, feature engineer-
ing and feature selection prior to model learning
were important components in many submissions.
However, the role of individual features is hard
to judge separately from the role of the machine
learning techniques employed.

Establish the state of the art performance All
four tasks addressed in this shared task have
achieved a dual role that is important for the re-
search community: (i) to make publicly available
new data sets that can serve to compare different
approaches and contributions; and (ii) to estab-
lish the present state-of-the-art performance in the
field, so that progress can be easily measured and
tracked. In addition, the public availability of the
scoring scripts makes evaluation and direct com-
parison straightforward.

Many participants submitted predictions for
several tasks. Comparison of the results shows
that there is little overlap between the best sys-
tems when the predicted value is varied. While
we did not formally require the participants to use
similar systems across tasks, these results indicate
that specialised systems with features selected de-
pending on the predicted variable can in fact be
beneficial.

As we mentioned before, compared to the pre-
vious edition of the task, we noticed (for Task
1.1) a larger relative improvement of scores over
the baseline system, as well as a larger propor-
tion of systems outperforming the baseline sys-
tems, which are a good indication that the field is
progressing over the years. For example, in the
scoring variant of Task 1.1, last year only 5 out of
20 systems (i.e. 25% of the systems) were able to
significantly outperform the baseline. This year, 9
out 16 systems (i.e. 56%) outperformed the same
baseline. Last year, the relative improvement of
the winning submission with respect to the base-
line system was 13%, while this year the relative
improvement is of 19%.

Overall, the tables of results presented in Sec-
tion 6.8 give a comprehensive view of the current
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state-of-the-art on the data sets used for this shared
task, as well as indications on how much room
there still is for improvement via figures from ora-
cle methods. As a result, people interested in con-
tributing to research in these machine translation
quality estimation tasks will be able to do so in a
principled way, with clearly established state-of-
the-art levels and straightforward means of com-
parison.

7 Summary

As in previous incarnations of this workshop we
carried out an extensive manual and automatic
evaluation of machine translation performance,
and we used the human judgements that we col-
lected to validate automatic metrics of translation
quality. We also refined last year’s quality estima-
tion task, asking for methods that predict sentence-
level post-editing effort and time, rank translations
from alternative systems, and pinpoint words in
the output that are more likely to be wrong.

As in previous years, all data sets generated by
this workshop, including the human judgments,
system translations and automatic scores, are pub-
licly available for other researchers to analyze.'”
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A Pairwise System Comparisons by Human Judges

Tables 21-30 show pairwise comparisons between systems for each language pair. The numbers in each
of the tables’ cells indicate the percentage of times that the system in that column was judged to be better
than the system in that row, ignoring ties. Bolding indicates the winner of the two systems.

Because there were so many systems and data conditions the significance of each pairwise compar-
ison needs to be quantified. We applied the Sign Test to measure which comparisons indicate genuine
differences (rather than differences that are attributable to chance). In the following tables % indicates sta-
tistical significance at p < 0.10, T indicates statistical significance at p < 0.05, and I indicates statistical
significance at p < 0.01, according to the Sign Test.

Each table contains final rows showing how likely a system would win when paired against a randomly
selected system (the expected win ratio score) and the rank range according bootstrap resampling (p <
0.05). Gray lines separate clusters based on non-overlapping rank ranges.
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Table 21: Head to head comparison, ignoring ties, for Czech-English systems
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Table 26: Head to head comparison, ignoring ties, for English-French systems
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Table 27: Head to head comparison, ignoring ties, for Spanish-English systems
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Table 28: Head to head comparison, ignoring ties, for English-Spanish systems
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ONLINE-B| — 401 421 411 371 371 411 .33f 3317 371 33f 331 357 .38f .34% 331 .29% .281 .14%
CMU|.60f — .50 461 431 47t 421 421 391 431 411 41f .40%f .38f .36f .30f .30f .29% .17%
ONLINE-A|.58F .50 - .50 .51 431 47x 441 407 41f 431 .38f .40f .38%f .38% .39% .34% .30f .19%
ONLINE-G|.591 .547 50 - .55t .50 .51 .48 421 411 441 437 467 .40f 441 .36%1 341 .331 .19%
PROMT .63} .57 49 451 — 431 471 431 471 471 431 39% 441 43f 37t .41% .40% 381 .25%
QCRI-MES |.631 .53 .571 .50 .57 - .48 461 47 450 431 .45f .45f .38f .42t .37f 331 401 .19%
UCAM-MULTIFRONTEND |.591 .581 .53% .49 .53f .52 - 471 48 461 46% 421 45%1 461 .45% .40f 391 331 .17%
BALAGUR |.671 .58] .561 .52 .571 .54 .53t - 471 49 .45% .53x 407 .44f 441 411 361 .331 .23%
MES-QCRI|.671 .61} .60 .58% .53 .53x .52 .53f - 49 471 47« .43f 43%f 447 .38f 421 391 .17%
UEDIN |.631 .571 .59% .591 .53t .55% 547 .51 51 - 48 .52 44% .52 49 421 431 351 21%
OMNIFLUENT-UNCNSTR |.67f .591 .571 .56} .571 .57{ .54 .55 .531 .52 - .51 467 .48 48 441 .40%1 391 .25%
LIA|.67% 591 .621 .571 .61f .55f .58 .47x .53% .48 .49 - 51 49 48 .50 .41% 391 .20%
OMNIFLUENT-CNSTR [.65% .60% .601 .547 .561 .551 .55 .60 .57f .561 .54 .49 - .51 48  47% 401 .40f .25%
UMD |.621 .621 .62 .601 .57 .621 .541 .56f .57f 48 .52 .51 49 - 53f 421 461 421 .19%
CU-KAREL |.66] .64} .62} .56} .63} .58% .55 .56 .56i .51 .52 .52 .52 477 — 441 40%1 4T7x 247
COMMERCIAL-3|.671 .70 .61 .64} .59 .63 .60f .591 .621 .58} .561 .50 .53~ .58f .56f — .51 441 32%
UEDIN-SYNTAX |.71% 701 .661 .661 .601 .671 .61 .64 .581 .57f .60f .59 .60f .54%f .60f .49 - .45 .25%
JHU|.72%1 711 701 .671 .621 .60% .67% .67% .61 .65f .61f .61f .60f .58% .53« .56% .55% - .24%
CU-ZEMAN|.867 .83%1 .81% .81% .75% .81f .831 .77f .83% .791 .75¢ .80f .75% .81f .761 .681 .75 .76 -
score| .65 .60 .58 56 .56 55 .54 .52 51 50 49 49 48 48 47 43 41 39 21
rank| 1 2-3 2-3 4-6 4-6 5-7 57 89 8-10 9-11 10-12 11-14 12-15 12-15 13-15 16 17 18 19
Table 29: Head to head comparison, ignoring ties, for Russian-English systems
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PROMT| — 441 391 47 .46x 361 371 371 321 351 .28f .30f .32f .24%
ONLINE-B |.561 — 441 411 441 .38f 371 351 .33% .39 .33f .31f .35f .24%
CMU|.611 .56 - .52 .49 471 431 411 391 441 441 407 .35f .28%
ONLINE-G|.53 .591 48 — 48 .50 .48 .46 .46x 421 .38f .43f .38% .36%
ONLINE-A |.54% 561 .51 .52 - 47 49 49 48 .44f 387 .40f 401 .34%
UEDIN |.641 .62 .53t .50 .53 - .49 461 .42f 391 441 41t 381 .29%
QCRI-MES |.63f .63 .57f .52 .51 .51 - 48 451 441 421 .39f .40f .29%
CU-KAREL |.63] .65 .591 .54 .51 .54} .52 - .50 .46t 431 .40f 421 .34%
MES-QCRI|.681 .671 .61 .54x .52 581 .551 .50 - .48x .47f .43f 451 .34%
JHU|.65] .61f .56% .58 .561 .61% .561 .54t .52x — .51 441 441 33%
COMMERCIAL-3|.72] .671 .561 .621 .62 .561 .58 .571 .531 .49 - .52 48 441
LIA .70 .691 .601 .571 .60% .59%1 .61%1 .601 .571 .561 .48 - A7t A4l
BALAGUR |.68} .651 .65] .621 .60% .621 .60f .58 .55f .56 .52  .53% - 411
CU-ZEMAN |.76% .761 .721 .64} .661 .71%1 .71 .661 .66I .67 .561 .591 .591 -
score| .64 .62 .55 54 53 53 52 49 47 46 43 42 41 33
rank| 1 2 34 36 3-7 47 57 8 9-109-10 11-12 11-13 12-13 14

Table 30: Head to head comparison, ignoring ties, for English-Russian systems
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Abstract

This paper presents the results of the
WMT13 Metrics Shared Task. We asked
participants of this task to score the
outputs of the MT systems involved in
WMTI13 Shared Translation Task. We
collected scores of 16 metrics from 8§ re-
search groups. In addition to that we com-
puted scores of 5 standard metrics such as
BLEU, WER, PER as baselines. Collected
scores were evaluated in terms of system
level correlation (how well each metric’s
scores correlate with WMT13 official hu-
man scores) and in terms of segment level
correlation (how often a metric agrees with
humans in comparing two translations of a
particular sentence).

1 Introduction

Automatic machine translation metrics play a very
important role in the development of MT systems
and their evaluation. There are many different
metrics of diverse nature and one would like to
assess their quality. For this reason, the Metrics
Shared Task is held annually at the Workshop of
Statistical Machine Translation (Callison-Burch et
al., 2012). This year, the Metrics Task was run
by different organizers but the only visible change
is hopefully that the results of the task are pre-
sented in a separate paper instead of the main
WMT overview paper.

In this task, we asked metrics developers to
score the outputs of WMT13 Shared Translation
Task (Bojar et al., 2013). We have collected the
computed metrics’ scores and use them to evalu-
ate quality of the metrics.

The systems’ outputs, human judgements and
evaluated metrics are described in Section 2. The
quality of the metrics in terms of system level cor-
relation is reported in Section 3. Segment level
correlation is reported in Section 4.
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2 Data

We used the translations of MT systems involved
in WMT13 Shared Translation Task together with
reference translations as the test set for the Metrics
Task. This dataset consists of 135 systems’ out-
puts and 6 reference translations in 10 translation
directions (5 into English and 5 out of English).
Each system’s output and the reference translation
contain 3000 sentences. For more details please
see the WMT13 main overview paper (Bojar et al.,
2013).

2.1 Manual MT Quality Judgements

During the WMT13 Translation Task a large scale
manual annotation was conducted to compare the
systems. We used these collected human judge-
ments for evaluating the automatic metrics.

The participants in the manual annotation were
asked to evaluate system outputs by ranking trans-
lated sentences relative to each other. For each
source segment that was included in the procedure,
the annotator was shown the outputs of five sys-
tems to which he or she was supposed to assign
ranks. Ties were allowed. Only sentences with 30
or less words were ranked by humans.

These collected rank labels were then used to
assign each system a score that reflects how high
that system was usually ranked by the annotators.
Please see the WMT13 main overview paper for
details on how this score is computed. You can
also find inter- and intra-annotator agreement esti-
mates there.

2.2 Participants of the Shared Task

Table 1 lists the participants of WMT13 Shared
Metrics Task, along with their metrics. We have
collected 16 metrics from a total of 8 research
groups.

In addition to that we have computed the fol-
lowing two groups of standard metrics as base-
lines:
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Metrics Participant

METEOR

LEPOR, NLEPOR

ACTA, ACTAS5+6
DEPREF-{ALIGN,EXACT}
SIMPBLEU-{RECALL,PREC}
MEANT, UMEANT
TERRORCAT

LOGREGFSS, LOGREGNORM

Table 1:

e Moses Scorer. Metrics BLEU (Papineni et
al., 2002), TER (Snover et al., 2006), WER,
PER and CDER (Leusch et al., 2006) were
computed using the Moses scorer which is
used in Moses model optimization. To tok-
enize the sentences we used the standard tok-
enizer script as available in Moses Toolkit. In
this paper we use the suffix *-MOSES to label
these metrics.

Mteval. Metrics BLEU (Papineni et
al., 2002) and NIST (Doddington,
2002) were computed using the script
mteval-vl3a.pl ! which is used in
OpenMT Evaluation Campaign and includes
its own tokenization. We use *-MTEVAL
suffix to label these metrics. By default,
mteval assumes the text is in ASCII,
causing poor tokenization around curly
quotes. We run mteval in both the
default setting as well as with the flag
——international-tokenization
(marked *-INTL).

We have normalized all metrics’ scores such
that better translations get higher scores.

3 System-Level Metric Analysis

We measured the quality of system-level metrics’
scores using the Spearman’s rank correlation coef-
ficient p. For each direction of translation we con-
verted the official human scores into ranks. For
each metric, we converted the metric’s scores of
systems in a given direction into ranks. Since there
were no ties in the rankings, we used the simplified
formula to compute the Spearman’s p:

63 df

n(n? —1)

p=1- (1)

'nttp://www.itl.nist.gov/iad/mig/
/tools/
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Carnegie Mellon University (Denkowski and Lavie, 2011)

University of Macau (Han et al., 2013)

Idiap Research Institute (Hajlaoui, 2013) (Hajlaoui and Popescu-Belis, 2013)
Dublin City University (Wu et al., 2013)

University of Shefield (Song et al., 2013)

Hong Kong University of Science and Technology (Lo and Wu, 2013)
German Research Center for Artificial Intelligence (Fishel, 2013)

DFKI (Avramidis and Popovi¢, 2013)

Participants of WMT13 Metrics Shared Task

where d; is the difference between the human rank
and metric’s rank for system ¢ and n is number of
systems. The possible values of p range between
1 (where all systems are ranked in the same order)
and -1 (where the systems are ranked in the re-
verse order). A good metric produces rankings of
systems similar to human rankings. Since we have
normalized all metrics such that better translations
get higher score we consider metrics with values
of Spearman’s p closer to 1 as better.

We also computed empirical confidences of
Spearman’s p using bootstrap resampling. Since
we did not have direct access to participants’ met-
rics (we received only metrics’ scores for the com-
plete test sets without the ability to run them on
new sampled test sets), we varied the “golden
truth” by sampling from human judgments. We
have bootstrapped 1000 new sets and used 95 %
confidence level to compute confidence intervals.

The Spearman’s p correlation coefficient is
sometimes too harsh: If a metric disagrees with
humans in ranking two systems of a very similar
quality, the p coefficient penalizes this equally as
if the systems were very distant in their quality.
Aware of how uncertain the golden ranks are in
general, we do not find the method very fair. We
thus also computed three following correlation co-
efficients besides the Spearman’s p:

e Pearson’s correlation coefficient. This co-
efficient measures the strength of the linear
relationship between metric’s scores and hu-
man scores. In fact, Spearman’s p is Pear-
son’s correlation coefficient applied to ranks.

Correlation with systems’ clusters. In the
Translation Task (Bojar et al., 2013), the
manual scores are also presented as clus-
ters of systems that can no longer be signifi-
cantly distinguished from one another given
the available judgements. (Please see the
WMT13 Overview paper for more details).



We take this cluster information as a “rank
with ties” for each system and calculate its
Pearson’s correlation coefficient with each
metric’s scores.

Correlation with systems’ fuzzy ranks. For
a given system the fuzzy rank is computed
as an average of ranks of all systems which
are not significantly better or worse than the
given system. The Pearson’s correlation co-
efficient of a metric’s scores and systems’
fuzzy ranks is then computed.

You can find the system-level correlations for
translations into English in Table 2 and for transla-
tions out of English in Table 3. Each row in the ta-
bles contains correlations of a metric in each of the
examined translation directions. The metrics are
sorted by average Spearman’s p correlation across
translation directions. The best results in each di-
rection are in bold.

As in previous years, a lot of metrics outper-
formed BLEU in system level correlation. The
metric which has on average the strongest corre-
lation in directions into English is METEOR. For
the out of English direction, SIMPBLEU-RECALL
has the highest system-level correlation. TER-
RORCAT achieved even a higher average corre-
lation but it did not participate in all language
pairs. The implementation of BLEU in mteval
is slightly better than the one in Moses scorer
(BLEU-MOSES). This confirms the known truth
that tokenization and other minor implementation
details can considerably influence a metric perfor-
mance.

4 Segment-Level Metric Analysis

We measured the quality of metrics’ segment-
level scores using Kendall’s 7 rank correlation
coefficient. For this we did not use the official
WMT13 human scores but we worked with raw
human judgements: For each translation direction
we extracted all pairwise comparisons where one
system’s translation of a particular segment was
judged to be (strictly) better than the other sys-
tem’s translation. Formally, this is a list of pairs
(a,b) where a segment translation a was ranked
better than translation b:

Pairs = {(a,b) | r(a) < r(b)} (2)

where r(-) is human rank. For a given metric m(-),
we then counted all concordant pairwise compar-
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isons and all discordant pairwise comparisons. A
concordant pair is a pair of two translations of
the same segment in which the comparison of hu-
man ranks agree with the comparison of the met-
ric’s scores. A discordant pair is a pair in which
the comparison of human ranks disagrees with the
metric’s comparison. Note that we totally ignore
pairs where human ranks or metric’s scores are
tied. Formally:

Con = {(a,b) € Pairs | m(a) >m(b)} (3)

4

Finally the Kendall’s 7 is computed using the fol-
lowing formula:

Dis :={(a,b) € Pairs | m(a) < m(b)}

|Con| — | Dis|
T =—
|Con| + | Dis|

The possible values of 7 range between -1 (a met-
ric always predicted a different order than humans
did) and 1 (a metric always predicted the same or-
der as humans). Metrics with higher 7 are better.

The final Kendall’s 7s are shown in Table 4
for directions into English and in Table 5 for di-
rections out of English. Each row in the tables
contains correlations of a metric in given direc-
tions. The metrics are sorted by average corre-
lation across the translation directions. Metrics
which did not compute scores for systems in all
directions are at the bottom of the tables.

You can see that in both categories, into and out
of English, the strongest correlated segment-level
metric is SIMPBLEU-RECALL.

&)

4.1 Details on Kendall’s 7

The computation of Kendall’s 7 has slightly
changed this year. In WMTI12 Metrics Task
(Callison-Burch et al., 2012), the concordant pairs
were defined exactly as we do (Equation 3) but the
discordant pairs were defined differently: pairs in
which one system was ranked better by the human
annotator but in which the metric predicted a tie
were considered also as discordant:

Dis :={(a,b) € Pairs | m(a) <m(b)} (6)

We feel that for two translations a and b of a seg-
ment, where a is ranked better by humans, a metric
which produces equal scores for both translations
should not be penalized as much as a metric which
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Directions | fr-en de-en es-en cs-en ru-en Average
Extracted pairs | 80741 128668 67832 85469 151422

SIMPBLEU-RECALL | .193 318 279 .260 234 257
METEOR | .178 293 236 265 239 242
DEPREF-ALIGN | .161 267 234 228 200 218
DEPREF-EXACT | .167 263 228 227 195 216
SIMPBLEU-PREC | .154 236 214 .208 174 197
NLEPOR | .149 240 204 176 172 .188
SENTBLEU-MOSES | .150 218 .198 197 170 187
LEPOR v3.100 | .149 221 161 187 177 .179
UMEANT | .101 .166 144 .160 .108 136
MEANT | .101 .160 145 .164 .109 136
LOGREGFSS-33 n/a 272 n/a n/a n/a 272
LOGREGFSS-24 n/a 270 n/a n/a n/a 270
TERRORCAT | .161 298 230 n/a n/a 230

Table 4: Segment-level Kendall’s 7 correlations of automatic evaluation metrics and the official WMT
human judgements when translating into English.

Directions | en-fr en-de en-es en-cs en-ru Average

Extracted pairs | 100783 77286 60464 102842 87323
SIMPBLEU-RECALL 158 085 231 065 126 133
SIMPBLEU-PREC .138 .065 187 .055 .095 .108
METEOR 147 .049 175 .058 11 .108
SENTBLEU-MOSES 133 .047 A71 .052 .095 .100
LEPOR v3.100 126 .058 178 .023 .109 .099
NLEPOR 124 .048 .163 .048 .097 .096

LOGREGNORM-411 n/a n/a .136 n/a n/a .136
TERRORCAT 116 .074 .186 n/a n/a 125
LOGREGNORMSOFT-431 n/a n/a .033 n/a n/a .033

Table 5: Segment-level Kendall’s 7 correlations of automatic evaluation metrics and the official WMT
human judgements when translating out of English.
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strongly disagrees with humans. The method we
used this year does not harm metrics which often
estimate two segments as equally good.

5 Conclusion

We carried out WMT13 Metrics Shared Task in
which we assessed the quality of various au-
tomatic machine translation metrics. We used
the human judgements as collected for WMT13
Translation Task to compute system-level and
segment-level correlations with human scores.

While most of the metrics correlate very well
on the system-level, the segment-level correlations
are still rather poor. It was shown again this year
that a lot of metrics outperform BLEU, hopefully
one of them will attract a wider use at last.
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Abstract

There has been a recent surge of interest in
semantic machine translation, which stan-
dard automatic metrics struggle to evalu-
ate. A family of measures called MEANT
has been proposed which uses semantic
role labels (SRL) to overcome this prob-
lem. The human variant, HMEANT, has
largely been evaluated using correlation
with human contrastive evaluations, the
standard human evaluation metric for the
WMT shared tasks. In this paper we claim
that for a human metric to be useful, it
needs to be evaluated on intrinsic proper-
ties. It needs to be reliable; it needs to
work across different language pairs; and
it needs to be lightweight. Most impor-
tantly, however, a human metric must be
discerning. We conclude that HMEANT
is a step in the right direction, but has
some serious flaws. The reliance on verbs
as heads of frames, and the assumption
that annotators need minimal guidelines
are particularly problematic.

1 Introduction

Human evaluation is essential in machine transla-
tion (MT) research because it is the ultimate way
to judge system quality. Furthermore, human eval-
uation is used to evaluate automatic metrics which
are necessary for tuning system parameters. Un-
fortunately, there is no clear consensus on which
evaluation strategy is best. Humans have been
asked to judge if translations are correct, to grade
them and to rank them. But it is often very difficult
to decide how good a translation is, when there are
so many possible ways of translating a sentence.
Another problem is that different types of evalua-
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tion might be useful for different purposes. If the
MT is going to be the basis of a human transla-
tor’s work-flow, then post-editing effort seems like
a natural fit. However, for people using MT for
gisting, what we really want is some measure of
how much meaning has been retained.

We clearly need a metric which tries to answer
the question, how much of the meaning does the
translation capture. In this paper, we explore the
use of human evaluation metrics which attempt
to capture the extent of this meaning retention.
In particular, we consider HMEANT (Lo and Wu,
2011a), a metric that uses semantic role labels
to measure how much of the “who, why, when,
where” has been preserved. For HMEANT evalua-
tion, annotators are instructed to identify verbs as
heads of semantic frames. Then they attach role
fillers to the heads and finally they align heads
and role fillers in the candidate translation with
those in a reference translation. In a series of pa-
pers, Lo and Wu (2010, 2011b,a, 2012) explored a
number of questions, evaluating HMEANT by us-
ing correlation statistics to compare it to judge-
ments of human adequacy and contrastive evalu-
ations. Given the drawbacks of those evaluation
measures, which we discuss in Sec. 2, they could
just as well have been evaluating the human ade-
quacy and contrastive judgements using HMEANT.
Human evaluation metrics need to be judged on
other intrinsic qualities, which we describe below.

The aim of this paper is to evaluate the effec-
tiveness of HMEANT, with the goal of using it to
judge the relative merits of different MT systems,
for example in the shared task of the Workshop on
Machine Translation.

In order to be useful, an MT evaluation metric
must be reliable, be language independent, have
discriminatory power, and be efficient. We address
each of these criteria as follows:

Proceedings of the Eighth Workshop on Statistical Machine Translation, pages 5261,
Sofia, Bulgaria, August 8-9, 2013 (©)2013 Association for Computational Linguistics



Reliability We produce extensive IAA (Inter-
annotator agreement) for HMEANT, breaking it
down into the different stages of annotation. Our
experimental results show that whilst the IAA for
HMEANT is acceptable at the individual stages of
the annotation, the compounding effect of dis-
agreement at each stage of the pipeline greatly re-
duces the effective overall IAA — to 0.44 on role
alignment for German, and, only slightly better,
0.59 for English. This raises doubts about the reli-
ability of HMEANT in its current form.

Discriminatory Power We consider output of
three types of MT system (Phrase-based, Syntax-
based and Rule-based) to attempt to gain insight
into the different types of semantic information
preserved by the different systems. The Syntax-
based system seems to have a slight edge overall,
but since IAA is so low, this result has to be taken
with a grain of salt.

Language Independence We apply HMEANT
to both English and German translation outputs,
showing that the guidelines can be adapted to the
new language.

Efficiency Whilst HMEANT evaluation will
never be as fast as, for example, the contrastive
judgements used for the WMT shared task,
it is still reasonably efficient considering the
fine-grained nature of the evaluation. On average,
annotators evaluated about 10 sentences per hour.

2 Related Work

Even though the idea that machine translation re-
quires a semantic representation of the translated
content is as old as the idea of computer-based
translation itself (Weaver, 1955), it has not been
until recently that people have begun to combine
statistical models with semantic representations.
Jones et al. (2012), for example, represent mean-
ing as directed acyclic graphs and map these to
PropBank (Palmer et al., 2005) style dependen-
cies. To evaluate such approaches properly, we
need evaluation metrics that capture the accuracy
of the translation.

Current automatic metrics of machine trans-
lation, such as BLEU (Papineni et al., 2002),
METEOR (Lavie and Denkowski, 2009) and
TER (Snover et al., 2009b), which have greatly
accelerated progress in MT research, rely on shal-
low surface properties of the translations, and
only indirectly capture whether or not the trans-
lation preserves the meaning. This has meant that
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potentially more sophisticated translation models
are pitted against the flatter phrase-based mod-
els, based on metrics which cannot reflect their
strengths. Callison-Burch et al. (2011) provide ev-
idence that automatic metrics are inconsistent with
human judgements when comparing rule-based
against statistical machine translation systems.

Automatic evaluation metrics are evaluated and
calibrated based on their correlation with human
judgements. However, after more than 60 years
of research into machine translation, there is still
no consensus on how to evaluate machine transla-
tion based on human judgements. (Hutchins and
Somers, 1992; Przybocki et al., 2009).

One obvious approach is to ask annotators to
rate translation candidates on a numerical scale.
Under the DARPA TIDES program, the Linguistic
Data Consortium (2002) developed an evaluation
scheme that relies on two five-point scales repre-
senting fluency and adequacy. This was also the
human evaluation scheme used in the annual MT
competitions sponsored by NIST (2005).

In an analysis of human evaluation results for
the WMT *07 workshop, however, Callison-Burch
et al. (2007) found high correlation between flu-
ency and adequacy scores assigned by individual
annotators, suggesting that human annotators are
not able to separate these two evaluation dimen-
sions easily. Furthermore these absolute scores
show low inter-annotator agreement. Instead of
giving absolute quality assessments, annotators
appeared to be using their ratings to rank trans-
lation candidates according to their overall prefer-
ence for one over the other.

In line with these findings, Callison-Burch et al.
(2007) proposed to let annotators rank translation
candidates directly, without asking them to assign
an absolute quality assessment to each candidate.
This type of human evaluation has been performed
in the last six Workshops on Statistical Machine
Translation.

Although it is useful to have a score or a rank
for a particular sentence, especially for evaluat-
ing automatic metrics, these ratings are necessar-
ily a simplification of the real differences between
translations. Translations can contain a large num-
ber of different types of errors of varying severity.
Even if we put aside difficulties with selecting one
preferred sentence, ranking judgements are diffi-
cult to generalise. Humans are shown five transla-
tions at a time, and there is a high cognitive cost to
ranking these at once. Furthermore, these repre-



sent a subset of the competing systems, and these
rankings must be combined with other annotators
judgements on five other system outputs to com-
pute an overall ranking. The methodology for in-
terpreting the contrastive evaluations has been the
subject of much recent debate in the community
(Bojar et al., 2011; Lopez, 2012).

There has been some effort to overcome these
problems. HTER (Snover et al., 2009a) is a met-
ric which counts the number of edits needed by a
human to convert the machine translation so as to
convey the same meaning as the reference. This
type of evaluation is of some use when one is us-
ing MT to aid human translation (although the re-
lationship between number of edits and actual ef-
fort is not straightforward (Koponen, 2012)), but
it is not so helpful when one’s task is gisting. The
number of edits need not correlate with the sever-
ity of the semantic differences between the two
sentences. The loss of a negative, for instance, is
only one edit away from the original, but the se-
mantics change completely.

Alternatively, HyTER (Dreyer and Marcu,
2012) is an annotation tool which allows a user
to create an exponential number of correct trans-
lations for a given sentence. These references are
then efficiently exploited to compare with machine
translation output. The authors argue that the cur-
rent metrics fail simply because they have access
to sets of reference translations which are simply
too small. However, the fact is that even if one
does have access to large numbers of translations,
it is very difficult to determine whether the refer-
ence correctly captures the essential semantic con-
tent of the references.

The idea of using semantic role labels to evalu-
ate machine translation is not new. Giménez and
Marquez (2007) proposed using automatically as-
signed semantic role labels as a feature in a com-
bined MT metric. The main difference between
this application of semantic roles and MEANT is
that arguments for specific verbs are taken into ac-
count, instead of just applying the subset agent,
patient and benefactor. This idea would probably
help human annotators to handle sentences with
passives, copulas and other constructions which
do not easily match the most basic arguments. On
the other hand, verb specific arguments are lan-
guage dependent.

Bojar and Wu (2012), applying HMEANT to

English-to-Czech MT output, identified a number
of problems with HMEANT, and suggested a vari-
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ety of improvements. In some respects, this work
is very similar, except that our goal is to evaluate
HMEANT along a range of intrinsic properties, to
determine how useful the metric really is to evalu-
ation campaigns such as the workshop on machine
translation.

3 Evaluation with HMEANT

3.1 Annotation Procedure

The goal of the HMEANT metric is to capture es-
sential semantic content, but still be simple and
fast. There are two stages to the annotation, the
first of which is semantic role labelling (SRL).
Here the annotator is directed to select the actions,
or frame heads, by marking all the verbs in the sen-
tence except for auxilliaries and modals. The roles
(or slot fillers) within the frame are then marked
and each is linked with a unique action. Each role
is given a type from an inventory of 11 (Table 1),
and an action with its collection of corresponding
roles is known as a frame. In the role annotation
the idea is to get the annotator to recognise who
did what to who, when, where and why in both the
references and the MT outputs.

who what whom when where
agent patient | benefactive | temporal | locative
why how

purpose degree, manner, modal, negation, other

Table 1: Semantic roles

The second stage in the annotation is alignment,
where the annotators match elements of the SRL
annotation in the reference with that in the MT
output. The annotators link both actions and roles,
and these alignments can be matched as “Correct”
or “Partial” matches, depending on how well the
action or role is translated. The guidelines for the
annotators are deliberately minimalistic, with the
argument being that non-experts can get started
quickly. Lo and Wu (2011a) claim that unskilled
annotators can be trained within 15 minutes.

In all such human evaluation, there is a trade-
off between simplicity and accuracy. Clearly when
evaluating bad machine translation output, we do
not want to label too much. However, sometimes
having so little choice of semantic roles can lead
to confusion and slow down the annotator when
more complicated examples do not fit the scheme.
Therefore, common exceptions need to be handled
either in the roles provided, or in the annotator
guidelines.



3.2 Calculation of Score

The overall HMEANT score for MT evaluation
is computed as the f-score from the counts of
matches of frames and their role fillers between
the reference and the MT output. Unmatched
frames are excluded from the calculation together
with all their corresponding roles.

In recognition that preservation of some types
of semantic relations may be more important than
others for a human to understand a sentence, one
may want to weight them differently in the com-
putation of the HMEANT score. Lo and Wu (2012)
train weights for each role filler type to optimise
correlation with human adequacy judgements. As
an unsupervised alternative, they suggest weight-
ing roles according to their frequency as approxi-
mation to their importance.

Since the main focus of the current paper is the
annotation of the actions, roles and alignments that
HMEANT depends on, we do not explore such dif-
ferent weight-setting schemes, but set the weights
uniformly, with the exception of a partial align-
ment, which is given a weight of 0.5. HMEANT is
thus defined as follows:

F; = # correct or partially correct fillers
for PRED i in MT
MT; = total # fillers for PRED i in MT
REF; = total # fillers for PRED i in REF

F;
P =
> T
matched i
F;
R =
> REFR
matched i
Peorrect + 0~5Ppartial
Piotal = . :
total # predicates in MT
R o Peorrect + 0-5Ppartial
total — . .
total # predicates in REF
HMEANT — 2 % Ptotal * Rtotal

Ptotal + Rtotal

3.3 Automating HMEANT

One of the main directions taken by the authors of
HMEANT is in creating a fully automated version
of the metric (MEANT) in (Lo et al., 2012). The
metric combines shallow semantic parsing with a
simple maximum weighted bipartite matching al-
gorithm for aligning semantic frames. They use
approximate matching schemes (Cosine and Jac-
card similarity) for matching roles, with the lat-
ter producing better alignments (Tumuluru et al.,
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2012). They demonstrate that MEANT corre-
lates with human adequacy judgements better than
other commonly used automatic metrics. In this
paper we focus on human evaluation, as it is es-
sential for building better automatic metrics, and
therefore a more fundamental problem.

4 Experimental Setup

4.1 Systems and Data Sets

We performed HMEANT evaluation on three
systems selected from 2013 WMT evaluation'.
The systems we selected were uedin—-wmt13,
uedin-syntax and rbmt -3, which were cho-
sen to provide us with a high performing phrase-
based system, a high performing syntax-based
system and the top performing rule-based system,
respectively. The cased BLEU scores of the three
systems are shown in Table 2.

System ‘ Type ‘ de-en ‘ en-de
uedin-wmt13 Phrase | 26.6 | 20.1
uedin-syntax | Syntax | 263 | 194
rbmt-3 Rule 188 | 16.5

Table 2: Cased BLEU on the full newstest2013
test set for the systems used in this study

We randomly selected sentences from the en-de
and de-en newstest2013 tasks, and extracted
the corresponding references and system outputs
for these sentences. For the en-de task, 75% of our
selected sentences were selected from the section
of newstest2013 that was originally in Ger-
man, with the other 25% from the section that was
originally in English. The sentence selection for
the de-en task was performed in a similar man-
ner. For presentation to the annotators, the sen-
tences were split into segments of 12. We found
that with practice, annotators could complete one
of these segments in around 100-120 minutes. In
total, with close to 70 hours of annotator effort,
we evaluated 142 sentences of German, and 72
sentences of English. The annotation for each
sentence includes 1 reference, 3 system outputs,
and their corresponding alignments. Apart from 5
singly-annotated German sentences, and 1 singly-
annotated English sentence, all sentences were an-
notated by exactly 2 annotators.

"www.statmt .org/wmt13



4.2 Annotation

The annotation for English was performed by 3
different annotators (E1, E2 and E3), and the Ger-
man annotation by 2 annotators (D1 and D2).
All the English annotators were machine transla-
tion researchers, with E1 and E2 both native En-
glish speakers whereas E3 is not a native speaker,
but lives and works in an English-speaking coun-
try. The two German annotators were both native
speakers of German, with no background in com-
putational linguistics, although D2 is a teacher of
German as a second language and has had linguis-
tic training.

The HMEANT evaluation task was carried out
following the framework described in Lo and Wu
(2011a) and Bojar and Wu (2012). For each sen-
tence in the evaluation set, the annotators were first
asked to mark the semantic frames and roles (i.e.,
slot fillers within the frame) in a human reference
translation of the respective sentence. They were
then presented with the output of several machine
translation systems for the same source sentence,
one system at a time, with the reference transla-
tion and its annotations visible in the left half of
the screen (cf. Fig. 1). For each system, the an-
notators were asked to annotate semantic frames
and slot fillers in the translation first, and then
align them with frame heads and slot fillers in
the human reference translation. Annotations and
alignment were performed with Edi-HMEANT?,
a web-based annotation tool for HMEANT that
we developed on the basis of Yawat (Germann,
2008). The tool allows the alignment of slots from
different semantic frames, and the alignment of
slots of different types; however, such alignments
are not considered in the computation of the final
HMEANT score.

The annotation guidelines were essentially
those used in Bojar and Wu (2012), with some ad-
ditional English examples, and a complete set of
German examples. For ease of comparison with
prior work, we used the same set of semantic role
labels as Bojar and Wu (2012), shown in Table 1.
Given the restriction that the head of a frame can
consist of only one word, a convention was made
that all other verbs attached to the main verb such
as modals, auxiliaries or separable particles for
German verbs, would be labelled as modal. This
was the only change we made to the HMEANT

’Edi-HMEANT  is part of the
Multi-text  Annotation and  Alignment
(http://www.statmt.org/edimtaats).

Edinburgh
Tool  Suite
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scheme.

5 Results and Discussion

5.1 Inter-Annotator Agreement

We first measured IAA on role identification, as
in Lo and Wu (2011a), except that we use exact
match on word spans as opposed to the approx-
imate match employed in that reference. Whilst
exact match is a harsher measure, penalising dis-
agreements related to punctuation and articles, us-
ing any sort of approximate match would mean
having to deal with N:M matches. IAA is defined
as follows:

2+« Px R

TAA =
P+R

Where P is defined as the number of labels (ei-
ther heads, roles, or alignments) that match be-
tween annotators, divided by the total number of
labels given by annotator 1. And R is defined the
same way for annotator 2. This is similar to an
F-measure (f1), where we consider one of the an-
notators as the gold standard. The IAA for role
identification is shown in Table 3.

Reference Hypothesis

Lang. | matches fl matches fl
de 865 0.846 | 2091  0.737
en 461 0.759 1199  0.749

Table 3: TAA for role identification. This is calcu-
lated by considering exact endpoint matches on all
spans (predicates and arguments).

The agreements in Table 3 are not too differ-
ent from those reported in earlier work. We note
that the IAA for the German annotators drops for
the MT system outputs, but this may be because
the English annotators (as MT researchers) are less
bothered by bad MT output than their counterparts
working on the German texts.

Next we looked at the IAA on role classifica-
tion, the other IAA figure provided by Lo and Wu
(2011a). We only considered roles where both an-
notators had marked the same span in the same
frame, with the frame being identified by its ac-
tion. The TAA for role classification is shown in
Table 4.

Again, we show similar levels of IAA to those
reported in (Lo and Wu, 2011a). Examining the
disagreements in more detail, we produced counts
of the most common role type disagreements, by



[0] sl

<@ done P>

And the problems in the municipality are also gritty and urban .| And the problems in the community are of crucial urban nature .

head of frame

are agent (who) the problems
locative (where)
other (how)

experiencer/patient (what)

are
are also

are

Cotiler —————— head of frame

are
are
are

agent (who) the problems
locative (where)

experiencer/patient (what)

Figure 1: Example of a sentence pair annotated with Edi-HMEANT. The reference translation is on
the left, the machine translation output on the right. Head and slot fillers for each semantic frame are
marked by selecting spans in the text and automatically listed in tables below the respective sentences.
Frames and slot fillers are aligned by clicking on table cells. The alignments of the semantic frames are
highlighted: green (grey in black and white version) for exact match and grey (light grey) for partial

match.
Reference Hypothesis
Lang. | matches fl matches fl
de 425 0.717 1050  0.769
en 245 0.825 634 0.826

Table 4: IAA for role classification. We only con-
sider cases where annotators had marked the same
span in the same frame.

Role 1 Role 2 | Count
Agent Experiencer-Patient 110
Degree-Extent Modal 92
Beneficiary Experiencer-Patient 45
Experiencer-Patient ~ Manner 26
Manner Other 25

Table 5: Most common role type disagreements,
for German

language. We show the top 5 disagreements in Ta-
bles 5 and 6. Essentially these show that the most
common role types provide the most confusions.
In order to shed more light on the role type dis-
agreements, we examined a random sample of 10
of the English annotations where the annotators
had disagreed about “Agent” versus “Experiencer-
Patient”. In 7 of these cases, there was a definite
correct answer, according to the annotation guide-
lines. Of the other 3, there were 2 cases of poor
MT output making the semantic interpretation dif-
ficult, and one case of existential “there”. Of the 7
cases where one annotator appears in error, 3 were
passive, 1 was a copula, and 1 involved the verb

Role 1 Role 2 | Count
Agent Experiencer-Patient 44
Manner Other 22
Degree-Extent  Temporal 12
Degree-Extent  Other 12

Beneficiary Experiencer-Patient 11

Table 6: Most common role type disagreements,
for English
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“receive”. For the other 2 there was no clear rea-
son for the error. From this small sample, we sug-
gest that passive constructions are still difficult to
annotate semantically.

The last of elements of the semantic frames to
be considered for IAA are the actions, i.e. the
frame heads or predicates. In this case identifying
a match was straightforward as actions are identi-
fied by a single token. The IAA for action identi-
fication is shown in Table 7.

Reference Hypothesis

Lang. | matches fl matches fl
de 238 0.937 592 0.826
en 126 0.818 362 0.868

Table 7: TAA for action identification.

We see fairly high IAA for actions, which seems
encouraging, but given the importance of actions
in HMEANT, we probably need the scores to be
higher. Most of the problems with the identifica-
tion of actions centre around multiple-verb con-
structions and participles.

We now turn our attention to the second stage
of the annotation process where the annotators
marked alignments between slots and roles. These
provide the relevant statistics for the calculation of
the HMEANT score so it is important that they are
annotated reliably.

Firstly, we consider the alignment of actions. In
this case, we use pipelined statistics, in that if one
annotator marks actions in the reference and hy-
pothesis, then aligns them, whilst the other anno-
tator does not mark the corresponding actions, we
still count this as an action alignment mismatch.
This creates a harsher measure on action align-
ment, but gives a better idea of the overall relia-
bility of the annotation task. In Table 8 we show
the TAA (as F1) on action alignments. Comparing
Tables 8 and 7 we see that, for English at least, the



Lang. ‘ matches f1
de 300 0.655
en 275 0.769

Table 8: IAA for action alignment, collapsing par-
tial and full alignment

agreement on action alignment is not much lower
than that on action identification, indicating that if
annotators agree on the actions then they generally
agree on how they align. For German, however,
the IAA on action alignment is a bit lower, ap-
parently because one of the annotators was much
stricter about which actions they aligned.

In order to calculate the IAA on role align-
ments, we only consider those alignments that
connect two roles in aligned frames, of the same
type, since these are the only role alignments that
count for computing the HMEANT score. This
means that if one of the annotators does not align
the frames, then all the contained role alignments
are counted as mismatches. We do not consider
the spans when calculating the agreement on role
alignments, meaning that if one annotator has an
alignment between roles of type T' in frame F/,
and the other annotator also aligns the same types
of roles in the same frame, then they are consid-
ered as a match. This is done because it is only the
counts of alignments that are relevant for HMEANT
scoring. The IAA on the role alignments is quite

Lang. ‘ matches fl
de 448 0.442
en 506 0.596

Table 9: IAA for role alignment.

low, dipping below 0.5 for German. This is mainly
because of the pipelining effect, where annota-
tion disagreements at each stage are compounded.
Since the final HMEANT score is computed essen-
tially by counting role alignments, this level of
IAA causes problems for this score calculation.
We computed HMEANT and BLEU scores for the
hypotheses annotated by each annotator pair. The
HMEANT scores were calculated as described in
Section 3.2. The two metrics are calculated for
each sentence (we apply +1 smoothing for BLEU),
then averaged across all sentences. Table 10 shows
the scores organised by annotator pair and sys-
tem type. The agreement in the overall scores is
not good, but really just reflects the compounded
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Annotator  System | BLEU  HMEANT HMEANT
Pair (Annot. 1)  (Annot. 2)
Phrase | 0.310  0.626 (2) 0.672 (3)

El,E2 Syntax | 0.291  0.635 (1) 0.730 (1)
Rule 0.252  0.578 (3) 0.673 (2)

Phrase | 0.378  0.569 (1) 0.602 (3)

El,E3 Syntax | 0.376  0.553 (2) 0.627 (2)
Rule 0.320 0.546 (3) 0.646 (1)

Phrase | 0.360  0.669 (2) 0.696 (3)

E2, E3 Syntax | 0.362  0.751 (1) 0.739 (1)
Rule 0.308  0.624 (3) 0.716 (2)

Phrase | 0.296  0.327 (1) 0.631 (3)

D1, D2 Syntax | 0.321  0.312(2) 0.707 (1)
Rule 0.242  0.274 (3) 0.648 (2)

Table 10: Scores assigned by each annotator pair.
The numbers in brackets after the HMEANT scores
show the relative ranking assigned by each anno-
tator.

agreement problems in the role alignments (Table
9). In no case do the annotators choose a consis-
tent ranking of the 3 systems, and in 2 of the 4 an-
notator pairs, the annotators disagree about which
is the top performing system.

5.2 Overall Scores

In this section we report the overall HMEANT
scores of the three systems whose output we an-
notated. Our main focus on this paper was on the
annotation task, so we do not wish to emphasise
the scoring, but it is nevertheless an important end-
product of the HMEANT annotation process. The
overall scores (HMEANT and +1 smoothed sen-
tence BLEU, averaged across sentences and anno-
tators) are given in Table 11.

Language System | BLEU HMEANT
Phrase | 0.351 0.634
en Syntax | 0.344 0.667
Rule | 0.295 0.625
Phrase | 0.294 0.482
de Syntax | 0.302 0.517
Rule | 0.242 0.464
Table 11: Comparison of mean HMEANT and

(smoothed sentence) BLEU for the three systems.

From the table we can observe that, whilst
BLEU shows similar scores for the phrase-based
and syntax-based systems, with lower scores for
the rule-based system, HMEANT shows the syntax-
based system as being ahead, with the other two
showing similar performance. We would caution
against reading too much into this, considering the
relatively small number of sentences annotated,



and the issues with IAA exposed in the previous
section, but it is an encouraging results for syntax-
based MT.

5.3 Discussion

Machine translation research needs a reliable
method for evaluating and comparing different
machine translation systems. The performance of
HMEANT as shown in the previous section is dis-
appointing. The fact that the final role IAA, in Ta-
ble 9, is 0.442 for German and 0.596 for English,
demonstrates that there are fundamental problems
with the scheme. One of the areas of greatest con-
fusion is between what seems like one of the eas-
iest role types to distinguish: agent and patient.
Here is an example of a passive where one anno-
tator has marked “tea” wrongly as agent, and the
other annotator correctly labelled it as patient:

Reference: In the kitchen, tea is prepared for
the guests

ACTION prepared

LOCATIVE In the kitchen

AGENT / PATIENT tea

MODAL is

BENEFICIARY for the guests

We would argue that the most important change
to HMEANT must be in creating more comprehen-
sive annotation guidelines, with examples of diffi-
cult cases. Bojar and Wu (2012) listed a number of
problems and improvements to HMEANT, which
we largely agree with. We list the most important
limitations of HMEANT that we have encountered:

e Single Word Heads Verbal predicates often
consist of multiple words, which can be split.
For example: “Take him up on his offer”.

Heads being limited to verbs The semantics
of verbs can often be carried by an equivalent
noun and should be allowed by HMEANT. For
example “My father broke down and cried .”,
the verb “cried” is correctly paraphrased in
“My father collapsed in tears .”

Copular Verbs These do not fit in to the lim-
ited list of role types. For example forcing
this sentence “The story is plausible”, to have
and agent and patient is confusing.

Prepositional Phrases attaching to a noun
These can greatly affect the semantics of a
sentence, but HMEANT has no way of captur-
ing this.
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e Semantics not on head This frequently oc-
curs with light verbs, for example “Bouson
did the review of the paper” is equivalent to
“Bouson reviewed the paper”.

Hierarchy of frames There are often frames
which are embedded in other frames, for ex-
ample in reported speech. It is not clear
whether errors at the lowest level should be
marked wrong just at that point, or whether
they should be marked wrong all the way up
the semantic tree. For example: “Arafat said
‘Isreal suffocates such a hope in the germ’ .
The frame headed by “said” is largely cor-
rect, but the reported speech is not. The pa-
tient role of the verb “said” could be aligned
as correct, as the error is already captured in
relation to the verb “suffocates”.

No discourse markers These are impor-
tant for capturing the relationships between
frames and should be labelled.

6 Conclusion

HMEANT represents an attempt to create a human
evaluation for machine translation which directly
measures the semantic content preserved by the
MT. It partly succeeds. However we have cast
doubt on the claim that HMEANT can be reliably
annotated with minimal annotator training and
guidelines. In the most extensive study of inter-
annotator agreement yet performed for HMEANT,
across two language pairs, we have shown that the
disagreements between annotators make it diffi-
cult to reliably compare different MT systems with
HMEANT scores.

Furthermore, the fact that HMEANT is restricted
to annotating purely verbal predicates results in
some important disadvantages. Ideally we need a
more general definition of a frame, not restricted
to purely verbal predicates, and we would like
to be able to link frames. We should explore
the feasibility of a semantic framework which at-
tempts to overcome reliance on syntactic proper-
ties such as Universal Conceptual Cognitive An-
notation (Abend and Rappoport, 2013).

7 Acknowledgements

The research leading to these results has received
funding from the European Union Seventh Frame-
work Programme (FP7/2007-2013) under grant
agreement 287658 (EU BRIDGE).



References

Abend, Omri and Ari Rappoport. 2013. “Univer-
sal Conceptual Cognitive Annotation (UCCA).”
Proceedings of ACL.

Bojar, Ondrej, Milos Ercegovcevi¢, Martin Popel,
and Omar Zaidan. 2011. “A Grain of Salt for the
WMT Manual Evaluation.” Proceedings of the
Sixth Workshop on Statistical Machine Transla-
tion, 1-11. Edinburgh, Scotland.

Bojar, Ondrej and Dekai Wu. 2012. “Towards a
Predicate-Argument Evaluation for MT.” Pro-
ceedings of SSST, 30-38.

Callison-Burch, Chris, Cameron Fordyce, Philipp
Koehn, Christof Monz, and Josh Schroeder.
2007. “(Meta-) evaluation of machine trans-
lation.” Proceedings of the Second Workshop
on Statistical Machine Translation, 136—158.
Prague, Czech Republic.

Callison-Burch, Chris, Philipp Koehn, Christof
Monz, and Omar F Zaidan. 2011. “Findings of
the 2011 workshop on statistical machine trans-
lation.” Proceedings of the Sixth Workshop on
Statistical Machine Translation, 22—64.

Dreyer, Markus and Daniel Marcu. 2012. “Hyter:
Meaning-equivalent semantics for translation
evaluation.”  Proceedings of the 2012 Con-
ference of the North American Chapter of
the Association for Computational Linguis-
tics: Human Language Technologies, 162-171.
Montréal, Canada.

Germann, Ulrich. 2008. “Yawat: Yet Another
Word Alignment Tool.” Proceedings of the
ACL-08: HLT Demo Session, 20-23. Colum-
bus, Ohio.

Giménez, Jesds and Lluis Marquez. 2007. “Lin-
guistic features for automatic evaluation of het-
erogenous mt systems.” Proceedings of the Sec-
ond Workshop on Statistical Machine Transla-
tion, StatMT °07, 256-264. Stroudsburg, PA,
USA.

Hutchins, W. J. and H. L. Somers. 1992. An intro-
duction to machine translation. Academic Press
New York.

Jones, Bevan, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, and Kevin Knight. 2012.
“Semantics-based machine translation with hy-
peredge replacement grammars.” Proceedings
of COLING.

Koponen, Maarit. 2012. “Comparing human per-
ceptions of post-editing effort with post-editing

60

operations.” Proceedings of the Seventh Work-
shop on Statistical Machine Translation, 181—
190. Montréal, Canada.

Lavie, Alon and Michael Denkowski. 2009. “The
METEOR metric for automatic evaluation of
machine translation.” Machine Translation.

Linguistic Data Consortium. 2002. “Lin-

guistic data annotation specification:  As-

sessment of fluency and adequacy in

Chinese-English  translation.” http:

//projects.ldc.upenn.edu/TIDES/

Translation/TranAssessSpec.pdf.

Lo, Chi-kiu, Anand Karthik Tumuluru, and Dekai
Wu. 2012. “Fully automatic semantic MT eval-
uation.” Proceedings of WMT, 243-252.

Lo, Chi-kiu and Dekai Wu. 2010. “Evaluating
machine translation utility via semantic role la-
bels.” Proceedings of LREC, 2873-2877.

Lo, Chi-kiu and Dekai Wu. 2011a. “MEANT : An
inexpensive , high-accuracy , semi-automatic
metric for evaluating translation utility via se-
mantic frames.” Proceedings of ACL, 220-229.

Lo, Chi-kiu and Dekai Wu. 2011b. “Structured vs.
flat semantic role representations for machine
translation evaluation.” Proceedings of SSST,
10-20.

Lo, Chi-kiu and Dekai Wu. 2012. “Unsupervised
vs. supervised weight estimation for semantic

MT evaluation metrics.” Proceedings of SSST,
49-56.

Lopez, Adam. 2012. “Putting human assessments
of machine translation systems in order.” Pro-
ceedings of WMT, 1-9.

NIST. 2005. “The 2005 NIST machine
translation  evaluation  plan  (MT-05).”
http://www.itl.nist.gov/iad/
mig/tests/mt/2005/doc/mt05_
evalplan.vl.1l.pdf.

Palmer, Martha, Daniel Gildea, and Paul Kings-
bury. 2005. “The proposition bank: An anno-
tated corpus of semantic roles.” Computational
Linguistics, 31(1):71-106.

Papineni, Kishore, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. “BLEU: a method for au-
tomatic evaluation of machine translation.” Pro-
ceedings of the Association for Computational
Linguistics, 311-318. Philadelphia, USA.

Przybocki, Mark, Kay Peterson, Sébastien Bron-
sart, and Gregory Sanders. 2009. “The NIST



2008 metrics for machine translation challen-
geoverview, methodology, metrics, and results.”
Machine Translation, 23(2):71-103.

Snover, Matthew, Nitin Madnani, Bonnie Dorr,
and Richard Schwartz. 2009a. “Fluency, ad-
equacy, or HTER? exploring different human
judgments with a tunable MT metric.” Proceed-
ings of the Workshop on Statistical Machine
Translation at the Meeting of the European
Chapter of the Association for Computational
Linguistics (EACL-2009). Athens, Greece.

Snover, Matthew, Nitin Madnani, Bonnie Dorr,
and Richard Schwartz. 2009b. “TER-plus:
paraphrase, semantic, and alignment enhance-
ments to translation edit rate.” Machine Trans-
lation.

Tumuluru, Anand Karthik, Chi-kiu Lo, and Dekai
Wu. 2012. “Accuracy and robustness in measur-
ing the lexical similarity of semantic role fillers
for automatic semantic MT evaluation.” Pro-
ceedings of PACLIC, 574-581.

Weaver, Warren. 1955. “Translation.” William N.
Locke and Andrew D. Booth (eds.), Machine
Translation of Languages; Fourteen Essays,
15-23. Cambridge, MA: MIT Press. Reprint of
a memorandum written in 1949.

61



LIMSI @ WMT’13

Alexandre Allauzen'2, Nicolas Pécheux'?, Quoc Khanh Do'?, Marco Dinarelli?,
Thomas Lavergne'?, Aurélien Max'-?, Hai-Son Le?, Francois Yvon'+
Univ. Paris-Sud' and LIMSI-CNRS?
rue John von Neumann, 91403 Orsay cedex, France
{firstname.lastname } @limsi.fr
Vietnamese Academy of Science and Technology?, Hanoi, Vietnam
lehaison @ioit.ac.vn

Abstract

This paper describes LIMSI’s submis-
sions to the shared WMT’13 translation
task. We report results for French-English,
German-English and Spanish-English in
both directions. Our submissions use
n-code, an open source system based on
bilingual n-grams, and continuous space
models in a post-processing step. The
main novelties of this year’s participation
are the following: our first participation
to the Spanish-English task; experiments
with source pre-ordering; a tighter integra-
tion of continuous space language mod-
els using artificial text generation (for Ger-
man); and the use of different tuning sets
according to the original language of the
text to be translated.

1 Introduction

This paper describes LIMSI’s submissions to the
shared translation task of the Eighth Workshop on
Statistical Machine Translation. LIMSI partici-
pated in the French-English, German-English and
Spanish-English tasks in both directions. For this
evaluation, we used n-code, an open source in-
house Statistical Machine Translation (SMT) sys-
tem based on bilingual n-grams', and continuous
space models in a post-processing step, both for
translation and target language modeling.

This paper is organized as follows. Section 2
contains an overview of the baseline systems built
with n-code, including the continuous space mod-
els. As in our previous participations, several
steps of data pre-processing, cleaning and filter-
ing are applied, and their improvement took a non-
negligible part of our work. These steps are sum-
marized in Section 3. The rest of the paper is de-
voted to the novelties of the systems submitted this

"http://ncode.limsi.fr/
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year. Section 4 describes the system developed for
our first participation to the Spanish-English trans-
lation task in both directions. To translate from
German into English, the impact of source pre-
ordering is investigated, and experimental results
are reported in Section 5, while for the reverse di-
rection, we explored a text sampling strategy us-
ing a 10-gram SOUL model to allow a tighter in-
tegration of continuous space models during the
translation process (see Section 6). A final section
discusses the main lessons of this study.

2 System overview

n-code implements the bilingual n-gram approach
to SMT (Casacuberta and Vidal, 2004; Marino
et al., 2006; Crego and Marifio, 2006). In this
framework, translation is divided in two steps: a
source reordering step and a (monotonic) transla-
tion step. Source reordering is based on a set of
learned rewrite rules that non-deterministically re-
order the input words. Applying these rules result
in a finite-state graph of possible source reorder-
ings, which is then searched for the best possible
candidate translation.

2.1 Features

Given a source sentence s of I words, the best
translation hypothesis t is defined as the sequence
of J words that maximizes a linear combination of
feature functions:

M
t = arg max { mzz:l Amhm(a, s, t) } (D

a

where )\, is the weight associated with feature
function h,, and a denotes an alignment between
source and target phrases. Among the feature
functions, the peculiar form of the translation
model constitutes one of the main difference be-
tween the n-gram approach and standard phrase-
based systems.

Proceedings of the Eighth Workshop on Statistical Machine Translation, pages 62—69,
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In addition to the translation model (TM), four-
teen feature functions are combined: a target-
language model; four lexicon models; six lexical-
ized reordering models (Tillmann, 2004; Crego et
al., 2011) aimed at predicting the orientation of
the next translation unit; a “weak’ distance-based
distortion model; and finally a word-bonus model
and a tuple-bonus model which compensate for the
system preference for short translations. The four
lexicon models are similar to the ones used in stan-
dard phrase-based systems: two scores correspond
to the relative frequencies of the tuples and two
lexical weights are estimated from the automatic
word alignments. The weight vector A is learned
using the Minimum Error Rate Training frame-
work (MERT) (Och, 2003) and BLEU (Papineni
et al., 2002) measured on nt09 (newstest2009) as
the optimization criteria.

2.2 Translation Inference

During decoding, source sentences are represented
in the form of word lattices containing the most
promising reordering hypotheses, so as to repro-
duce the word order modifications introduced dur-
ing the tuple extraction process. Hence, only those
reordering hypotheses are translated and are intro-
duced using a set of reordering rules automatically
learned from the word alignments. Part-of-speech
(POS) information is used to increase the gen-
eralization power of these rules. Hence, rewrite
rules are built using POS, rather than surface word
forms (Crego and Marifio, 2006).

2.3 SOUL rescoring

Neural networks, working on top of conventional
n-gram back-off language models (BOLMs), have
been introduced in (Bengio et al., 2003; Schwenk
et al., 2006) as a potential means to improve dis-
crete language models (LMs). As for our last year
participation (Le et al., 2012c), we take advantage
of the recent proposal of Le et al. (2011). Using
a specific neural network architecture (the Struc-
tured OUtput Layer or SOUL model), it becomes
possible to estimate n-gram models that use large
vocabulary, thereby making the training of large
neural network LMs (NNLMs) feasible both for
target language models and translation models (Le
etal., 2012a). We use the same models as last year,
meaning that the SOUL rescoring was used for all
systems, except for translating into Spanish. See
section 6 and (Le et al., 2012c) for more details.
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3 Corpora and data pre-processing

Concerning data pre-processing, we started from
our submissions from last year (Le et al., 2012c)
and mainly upgraded the corpora and the associ-
ated language-dependent pre-processing routines.
We used in-house text processing tools for the to-
kenization and detokenization steps (Déchelotte
et al., 2008). Previous experiments have demon-
strated that better normalization tools provide bet-
ter BLEU scores: all systems are thus built using
the “true-case” scheme.

As German is morphologically more complex
than English, the default policy which consists in
treating each word form independently is plagued
with data sparsity, which severely impacts both
training (alignment) and decoding (due to un-
known forms). When translating from German
into English, the German side is thus normalized
using a specific pre-processing scheme (Allauzen
et al., 2010; Durgar El-Kahlout and Yvon, 2010)
which aims at reducing the lexical redundancy by
(i) normalizing the orthography, (ii) neutralizing
most inflections and (iii) splitting complex com-
pounds. All parallel corpora were POS-tagged
with the TreeTagger (Schmid, 1994); in addition,
for German, fine-grained POS labels were also
needed for pre-processing and were obtained us-
ing the RFTagger (Schmid and Laws, 2008).

For Spanish, all the availaible data are tokenized
using FreeLing? toolkit (Padré and Stanilovsky,
2012), with default settings and some added rules.
Sentence splitting and morphological analysis are
disabled except for del — de el and al — a el.
Moreover, a simple “true-caser” based on upper-
case word frequency is used, and the specific
Spanish punctuation signs ”;”” and ”’;” are removed
and heuristically reintroduced in a post-processing
step. All Spanish texts are POS-tagged also using
Freeling. The EAGLES tag set is however sim-
plified by truncating the category label to the first
two symbols, in order to reduce the sparsity of the
reordering rules estimated by n-code.

For the CommonCrawl corpus, we found that
many sentences are not in the expected language.
For example, in the French side of the French-
English version, most of the first sentences are
in English. Therefore, foreign sentence pairs are
filtered out with a MaxEnt classifier that uses n-
grams of characters as features (n is between 1
and 4). This filter discards approximatively 10%

*http://nlp.Isi.upc.edu/freeling/



of the sentence pairs. Moreover, we also observe
that a lot of sentence pairs are not translation of
each other. Therefore, an extra sentence alignment
step is carried out using an in-house implementa-
tion of the tool described in (Moore, 2002). This
last step discards approximately 20% of the cor-
pus. For the Spanish-English task, the same filter-
ing is applied to all the available corpora.

4 System development for the
Spanish-English task

This is our first participation to the Spanish-
English translation task in both directions. This
section provides details about the development of
n-code systems for this language pair.

4.1 Data selection and filtering

The CommonCrawl and UN corpora can be con-
sidered as very noisy and out-of-domain. As de-
scribed in (Allauzen et al., 2011), to select a subset
of parallel sentences, trigram LMs were trained for
both Spanish and English languages on a subset of
the available News data: the Spanish (resp. En-
glish) LM was used to rank the Spanish (resp. En-
glish) side of the corpus, and only those sentences
with perplexity above a given threshold were se-
lected. Finally, the two selected sets were in-
tersected. In the following experiments, the fil-
tered versions of these corpora are used to train
the translation systems unless explicitly stated.

4.2 Spanish language model

To train the language models, we assumed that the
test set would consist in a selection of recent news
texts and all the available monolingual data for
Spanish were used, including the Spanish Giga-
word, Third Edition. A vocabulary is first defined
by including all tokens observed in the News-
Commentary and Europarl corpora. This vocab-
ulary is then expanded with all words that occur
more than 10 times in the recent news texts (LDC-
2007-2011 and news-crawl-2011-2012). This pro-
cedure results in a vocabulary containing 372k
words. Then, the training data are divided into
7 sets based on dates or genres. On each set, a
standard 4-gram LM is estimated from the vocab-
ulary using absolute discounting interpolated with
lower order models (Kneser and Ney, 1995; Chen
and Goodman, 1998). The resulting LMs are then
linearly interpolated using coefficients chosen so
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Corpora BLEU
devntll | test ntl2
es2en | N,E 30.2 33.2
N,E,C 30.6 33.7
N,E,U 30.3 33.6
N,E,C,U 30.6 33.7
N,E,C,U (nf) 30.7 33.6
en2es | N,E 32.2 33.3
N,E,C,U 32.3 33.6
N,E,C,U (nf) 32.5 33.9

Table 1: BLEU scores achieved with different

sets of parallel corpora. All systems are base-
line n-code with POS factor models. The follow-
ing shorthands are used to denote corpora, : "N’
stands for News-Commentary, ”E” for Europarl,
”C” for CommonCrawl, ”U” for UN and (nf) for
non filtered corpora.

as to minimise the perplexity evaluated on the de-
velopment set (n108).

4.3 Experiments

All reported results are averaged on 3 MERT runs.
Table 1 shows the BLEU scores obtained with dif-
ferent corpora setups. We can observe that us-
ing the CommonCrawl corpus improves the per-
formances in both directions, while the impact of
the UN data is less important, especially when
combined with CommonCrawl. The filtering strat-
egy described in Section 4.2 has a slightly posi-
tive impact of +0.1 BLEU point for the Spanish-
to-English direction but yields a 0.2 BLEU point
decrease in the opposite direction.

For the following experiments, all the available
corpora are therefore used: News-Commentary,
Europarl, filtered CommonCrawl and UN. For
each of these corpora, a bilingual n-gram model
is estimated and used by n-code as one individual
model score. An additionnal TM is trained on the
concatenation all these corpora, resulting in a to-
tal of 5 TMs. Moreover, n-code is able to handle
additional “factored” bilingual models where the
source side words are replaced by the correspond-
ing lemma or even POS tag (Koehn and Hoang,
2007). Table 2 reports the scores obtained with
different settings.

In Table 2, big denotes the use of a wider
context for n-gram TMs (n = 4,5,4 instead
of 3,4, 3 respectively for word-based, POS-based
and lemma-based TMs). Using POS factored



Condition BLEU
devntll | test nti2
es2en | base 30.3 33.5
pos 30.6 33.7
big-pos 30.7 33.7
big-pos-lem 30.7 33.8
en2es | base 32.0 334
pos 32.3 33.6
big-pos 32.3 33.8
big-pos-pos+ 32.2 33.4

Table 2: BLEU scores for different configuration
of factored translation models. The big prefix de-
notes experiments with the larger context for n-
gram translation models.

models yields a significant BLEU improvement,
as well as using a wider context for n-gram TMs.
Since Spanish is morphologically richer than En-
glish, lemmas are introduced only on the Span-
ish side. An additionnal BLEU improvement is
achieved by adding factored models based on lem-
mas when translating from Spanish to English,
while in the opposite direction it does not seem
to have any clear impact.

For English to Spanish, we also experimented
with a 5-gram target factored model, using the
whole morphosyntactic EAGLES tagset, (pos+ in
Table 2), to add some syntactic information, but
this, in fact, proved harmful.

As several tuning sets were available, experi-
ments were carried out with the concatenation of
nt09 to ntl11 as a tuning data set. This yields an im-
provement between 0.1 and 0.3 BLEU point when
testing on nt/2 when translating from Spanish to
English.

4.4 Submitted systems

For both directions, the submitted systems are
trained on all the available training data, the cor-
pora CommonCrawl and UN being filtered as de-
scribed previously. A word-based TM and a POS
factored TM are estimated for each training set.
To translate from Spanish to English, the system
is tuned on the concatenation of the nr09 to ntll
datasets with an additionnal 4-gram lemma-based
factored model, while in the opposite direction, we
only use ntl1.
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dev nt09 | test ntll
en2de 15.43 15.35
en-mod2de 15.06 15.00

Table 3: BLEU scores for pre-ordering experi-
ments with a n-code system and the approach pro-
posed by (Neubig et al., 2012)

5 Source pre-ordering for English to
German translation

While distorsion models can efficiently handle
short range reorderings, they are inadequate to
capture long-range reorderings, especially for lan-
guage pairs that differ significantly in their syn-
tax. A promising workaround is the source pre-
ordering method that can be considered similar,
to some extent, to the reordering strategy imple-
mented in n-code; the main difference is that the
latter uses one deterministic (long-range) reorder-
ing on top of conventional distortion-based mod-
els, while the former only considers one single
model delivering permutation lattices. The pre-
ordering approach is illustrated by the recent work
of Neubig et al. (2012), where the authors use a
discriminatively trained ITG parser to infer a sin-
gle permutation of the source sentence.

In this section, we investigate the use of this
pre-ordering model in conjunction with the bilin-
gual n-gram approach for translating English into
German (see (Collins et al., 2005) for similar ex-
periments with the reverse translation direction).
Experiments are carried out with the same settings
as described in (Neubig et al., 2012): given the
source side of the parallel data (en), the parser is
estimated to modify the original word order and to
generate a new source side (en-mod); then a SMT
system is built for the new language pair (en-mod
— de). The same reordering model is used to re-
order the test set, which is then translated with the
en-mod — de system.

Results for these experiments are reported in Ta-
ble 3, where nt09 and ntl] are respectively used
as development and test sets. We can observe that
applying pre-ordering on source sentences leads to
small drops in performance for this language pair.

To explain this degradation, the histogram of to-
ken movements performed by the model on the
pre-ordered training data is represented in Fig-
ure 1. We can observe that most of the movements
are in the range [—4, +6] (92% of the total occur-
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Figure 1: Histogram of token movement size ver-
sus its occurrences performed by the model Neu-
big on the source english data.

rences), which can be already taken into account
by the standard reordering model of the baseline
system. This is reflected also by the following
statistics: surprisingly, only 16% of the total num-
ber of sentences are changed by the pre-ordering
model, and the average sentence-wise Kendall’s 7
and the average displacement of these small parts
of modified sentences are, respectively, 0.027 and
3.5. These numbers are striking for two reasons:
first, English and German have in general quite
different word order, thus our experimental con-
dition should be somehow similar to the English-
Japanese scenario studied in (Neubig et al., 2012);
second, since the model is able to perform pre-
ordering basically at any distance, it is surprising
that a large part of the data remains unmodified.

6 Artificial Text generation with SOUL

While the context size for BOLMs is limited (usu-
ally up to 4-grams) because of sparsity issues,
NNLMs can efficiently handle larger contexts up
to 10-grams without a prohibitive increase of the
overall number of parameters (see for instance the
study in (Le et al., 2012b)). However the major
bottleneck of NNLM:s is the computation cost dur-
ing both training and inference. In fact, the pro-
hibitive inference time usually implies to resort to
a two-pass approach: the first pass uses a conven-
tional BOLM to produce a k-best list (the & most
likely translations); in the second pass, the prob-
ability of a NNLM is computed for each hypoth-
esis, which is then added as a new feature before
the k-best list is reranked. Note that to produce the
k-best list, the decoder uses a beam search strategy
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to prune the search space. Crucially, this pruning
does not use the NNLMs scores and results in po-
tentially sub-optimal k-best-lists.

6.1 Sampling texts with SOUL

In language modeling, a language is represented
by a corpus that is approximated by a m-gram
model. Following (Sutskever et al., 2011; Deoras
et al., 2013), we propose an additionnal approxi-
mation to allow a tighter integration of the NNLM:
a 10-gram NNLM is first estimated on the training
corpus; texts then are sampled from this model to
create an artificial training corpus; finally, this arti-
ficial corpus is approximated by a 4-gram BOLM.

The training procedure for the SOUL NNLM is
the same as the one described in (Le et al., 2012c¢).
To sample a sentence from the SOUL model, first
the sentence length is randomly drawn from the
empirical distribution, then each word of the sen-
tence is sampled from the 10-gram distribution es-
timated with the SOUL model.

The convergence of this sampling strategy can
be evaluated by monitoring the perplexity evolu-
tion vs. the number of sentences that are gener-
ated. Figure 2 depicts this evolution by measuring
perplexity on the nt08 set with a step size of 400M
sampled sentences. The baseline BOLM (std) is
estimated on all the available training data that
consist of approximately 300M of running words.
We can observe that the perplexity of the BOLM
estimated on sampled texts (generated texts) de-
creases when the number of sample sentences in-
creases, and tends to reach slowly the perplex-
ity of the baseline BOLM. Moreover, when both
BOLMs are interpolated, an even lower perplex-
ity is obtained, which further decreases with the
amount of sampled training texts.

6.2 Translation results

Experiments are run for translation into German,
which lacks a GigaWord corpus. An artificial cor-
pus containing 3 billions of running words is first
generated as described in Section 6.1. This corpus
is used to estimate a BOLM with standard settings,
that is then used for decoding, thereby approxi-
mating the use of a NNLM during the first pass.
Results reported in Table 4 show that adding gen-
erated texts improves the BLEU scores even when
the SOUL model is added in a rescoring step. Also
note that using the LM trained on the sampled cor-
pus yields the same BLEU score that using the
standard LM.
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Figure 2: Perplexity measured on ntO8 with the
baseline LM (std), with the LM estimated on the
sampled texts (generated texts), and with the inter-
polation of both.

Therefore, to translate from English to German,
the submitted system includes three BOLMs: one
trained on all the monolingual data, one on artifi-
cial texts and a third one that uses the freely avail-
able deWack corpus3 (1.7 billion words).

target LM BLEU

dev nt09 | test nt10
base 15.3 16.5
+genText 15.5 16.8
+SOUL 16.4 17.6
+genText+SOUL 16.5 17.8

Table 4: Impact of the use of sampled texts.

7 Different tunings for different original
languages

As shown by Lembersky et al. (2012), the original
language of a text can have a significant impact on
translation performance. In this section, this effect
is assessed on the French to English translation
task. Training one SMT system per original lan-
guage is impractical, since the required informa-
tion is not available for most of parallel corpora.
However, metadata provided by the WMT evalua-
tion allows us to split the development and test sets
according to the original language of the text. To
ensure a sufficient amount of texts for each con-
dition, we used the concatenation of newstest cor-
pora for the years 2008, 2009, 2011, and 2012,
leaving nt10 for testing purposes.

Five different development sets have been cre-
ated to tune five different systems. Experimental
results are reported in Table 7 and show a drastic

Shttp://wacky.sslmit.unibo.it/doku.php

67

baseline | adapted
original language tuning
cz 22.31 23.83
en 36.41 39.21
fr 31.61 3241
de 18.46 18.49
es 30.17 29.34
all 29.43 30.12

Table 5: BLEU scores for the French-to-English
translation task measured on ntl0 with systems
tuned on development sets selected according to
their original language (adapted tuning).

improvement in terms of BLEU score when trans-
lating back to the original English and a significant
increase for original text in Czech and French. In
this year’s evaluation, Russian was introduced as
a new language, so for sentences originally in this
language, the baseline system was used. This sys-
tem is used as our primary submission to the eval-
uation, with additional SOUL rescoring step.

8 Conclusion

In this paper, we have described our submis-
sions to the translation task of WMT’13 for
the French-English, German-English and Spanish-
English language pairs. Similarly to last year’s
systems, our main submissions use n-code, and
continuous space models are introduced in a post-
processing step, both for translation and target lan-
guage modeling. To translate from English to
German, we showed a slight improvement with
a tighter integration of the continuous space lan-
guage model using a text sampling strategy. Ex-
periments with pre-ordering were disappointing,
and the reasons for this failure need to be better
understood. We also explored the impact of using
different tuning sets according to the original lan-
guage of the text to be translated. Even though the
gain vanishes when adding the SOUL model in a
post-processing step, it should be noted that due to
time limitation this second step was not tuned ac-
cordingly to the original language. We therefore
plan to assess the impact of using different tuning
sets on the post-processing step.
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Abstract

We describe the CMU systems submit-
ted to the 2013 WMT shared task in ma-
chine translation. We participated in three
language pairs, French—English, Russian—
English, and English—Russian. Our
particular innovations include: a label-
coarsening scheme for syntactic tree-to-
tree translation and the use of specialized
modules to create “synthetic translation
options” that can both generalize beyond
what is directly observed in the parallel
training data and use rich source language
context to decide how a phrase should
translate in context.

1 Introduction

The MT research group at Carnegie Mellon Uni-
versity’s Language Technologies Institute par-
ticipated in three language pairs for the 2013
Workshop on Machine Translation shared trans-
lation task: French—English, Russian—English,
and English—Russian. Our French—English sys-
tem (§3) showcased our group’s syntactic sys-
tem with coarsened nonterminal types (Hanne-
man and Lavie, 2011). Our Russian—-English and
English—Russian system demonstrate a new multi-
phase approach to translation that our group is us-
ing, in which synthetic translation options (§4)
to supplement the default translation rule inven-
tory that is extracted from word-aligned training
data. In the Russian-English system (§5), we used
a CRF-based transliterator (Ammar et al., 2012)
to propose transliteration candidates for out-of-
vocabulary words, and used a language model
to insert or remove common function words in
phrases according to an n-gram English language
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model probability. In the English—Russian system
(86), we used a conditional logit model to predict
the most likely inflectional morphology of Rus-
sian lemmas, conditioning on rich source syntac-
tic features (§6.1). In addition to being able to
generate inflected forms that were otherwise unob-
served in the parallel training data, the translations
options generated in this matter had features re-
flecting their appropriateness given much broader
source language context than usually would have
been incorporated in current statistical MT sys-
tems.

For our Russian—English system, we addition-
ally used a secondary “pseudo-reference” transla-
tion when tuning the parameters of our Russian—
English system. This was created by automatically
translating the Spanish translation of the provided
development data into English. While the output
of an MT system is not always perfectly gram-
matical, previous work has shown that secondary
machine-generated references improve translation
quality when only a single human reference is
available when BLEU is used as an optimization
criterion (Madnani, 2010; Dyer et al., 2011).

2 Common System Components

The decoder infrastructure we used was cdec
(Dyer et al., 2010). Only the constrained data
resources provided for the shared task were used
for training both the translation and language
models. Word alignments were generated us-
ing the Model 2 variant described in Dyer et al.
(2013). Language models used modified Kneser-
Ney smoothing estimated using KenLM (Heafield,
2011). Translation model parameters were dis-
criminatively set to optimize BLEU on a held-out
development set using an online passive aggres-
sive algorithm (Eidelman, 2012) or, in the case of

Proceedings of the Eighth Workshop on Statistical Machine Translation, pages 70-77,
Sofia, Bulgaria, August 8-9, 2013 (©)2013 Association for Computational Linguistics



the French—English system, using the hypergraph
MERT algorithm and optimizing towards BLEU
(Kumar et al., 2009). The remainder of the paper
will focus on our primary innovations in the vari-
ous system pairs.

3 French-English Syntax System

Our submission for French-English is a tree-to-
tree translation system that demonstrates several
innovations from group’s research on SCFG-based
translation.

3.1 Data Selection

We divided the French—-English training data into
two categories: clean data (Europarl, News Com-
mentary, UN Documents) totaling 14.8 million
sentence pairs, and web data (Common Crawl,
Giga-FrEn) totaling 25.2 million sentence pairs.
To reduce the volume of data used, we filtered
non-parallel and other unhelpful segments accord-
ing to the technique described by Denkowski et al.
(2012). This procedure uses a lexical translation
model learned from just the clean data, as well as
source and target n-gram language models to com-
pute the following feature scores:

e French and English 4-gram log likelihood (nor-
malized by length);

e French-English and English—French lexical
translation log likelihood (normalized by
length); and,

e Fractions of aligned words under the French—
English and English—French models.

We pooled previous years” WMT news test sets
to form a reference data set. We computed the
same features. To filter the web data, we retained
only sentence for which each feature score was
no lower than two standard deviations below the
mean on the reference data. This reduced the web
data from 25.2 million to 16.6 million sentence
pairs. Parallel segments from all parts of the data
that were blank on either side, were longer than 99
tokens, contained a token of more than 30 charac-
ters, or had particularly unbalanced length ratios
were also removed. After filtering, 30.9 million
sentence pairs remained for rule extraction: 14.4
million from the clean data, and 16.5 million from
the web data.

3.2 Preprocessing and Grammar Extraction

Our French-English system uses parse trees in
both the source and target languages, so tokeniza-
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tion in this language pair was carried out to match
the tokenizations expected by the parsers we used
(English data was tokenized with the Stanford to-
kenizer for English and an in-house tokenizer for
French that targets the tokenization used by the
Berkeley French parser). Both sides of the par-
allel training data were parsed using the Berkeley
latent variable parser.

Synchronous context-free grammar rules were
extracted from the corpus following the method of
Hanneman et al. (2011). This decomposes each
tree pair into a collection of SCFG rules by ex-
haustively identifying aligned subtrees to serve as
rule left-hand sides and smaller aligned subtrees
to be abstracted as right-hand-side nonterminals.
Basic subtree alignment heuristics are similar to
those by Galley et al. (2006), and composed rules
are allowed. The computational complexity is held
in check by a limit on the number of RHS elements
(nodes and terminals), rather than a GHKM-style
maximum composition depth or Hiero-style max-
imum rule span. Our rule extractor also allows
“virtual nodes,” or the insertion of new nodes in
the parse tree to subdivide regions of flat struc-
ture. Virtual nodes are similar to the A+B ex-
tended categories of SAMT (Zollmann and Venu-
gopal, 2006), but with the added constraint that
they may not conflict with the surrounding tree
structure.

Because the SCFG rules are labeled with non-
terminals composed from both the source and tar-
get trees, the nonterminal inventory is quite large,
leading to estimation difficulties. To deal with
this, we automatically coarsening the nonterminal
labels (Hanneman and Lavie, 2011). Labels are
agglomeratively clustered based on a histogram-
based similarity function that looks at what tar-
get labels correspond to a particular source label
and vice versa. The number of clusters used is de-
termined based on spikes in the distance between
successive clustering iterations, or by the number
of source, target, or joint labels remaining. Start-
ing from a default grammar of 877 French, 2580
English, and 131,331 joint labels, we collapsed
the label space for our WMT system down to 50
French, 54 English, and 1814 joint categories. '

!Selecting the stopping point still requires a measure of
intuition. The label set size of 1814 chosen here roughly cor-
responds to the number of joint labels that would exist in the
grammar if virtual nodes were not included. This equivalence
has worked well in practice in both internal and published ex-
periments on other data sets (Hanneman and Lavie, 2013).



Extracted rules each have 10 features associated
with them. For an SCFG rule with source left-
hand side /,, target left-hand side ¢, source right-
hand side r;, and target right-hand side 74, they
are:

e phrasal translation log relative frequencies

log f(rs | r¢) and log f(ry | r5):

labeling relative frequency log f(¥s, i |75, 74)
and generation relative frequency
log f(rs> Tt | ls, Zt);

lexical translation log probabilities log pe,(7s |
r¢) and log pje.(r¢ | rs), defined similarly to
Moses’s definition;

. exp(%)—l f 1 ith £
a rarity score s for a rule with frequency

c (this score is monotonically decreasing in the
rule frequency); and,

three binary indicator features that mark
whether a rule is fully lexicalized, fully abstract,
or a glue rule.

Grammar filtering. Even after collapsing la-
bels, the extracted SCFGs contain an enormous
number of rules — 660 million rule types from just
under 4 billion extracted instances. To reduce the
size of the grammar, we employ a combination of
lossless filtering and lossy pruning. We first prune
all rules to select no more than the 60 most fre-
quent target-side alternatives for any source RHS,
then do further filtering to produce grammars for
each test sentence:

Lexical rules are filtered to the sentence level.
Only phrase pairs whose source sides match the
test sentence are retained.

Abstract rules (whose RHS are all nontermi-
nals) are globally pruned. Only the 4000 most
frequently observed rules are retained.

Mixed rules (whose RHS are a mix of terminals
and nonterminals) must match the test sentence,
and there is an additional frequency cutoff.

After this filtering, the number of completely lex-
ical rules that match a given sentence is typically
low, up to a few thousand rules. Each fully ab-
stract rule can potentially apply to every sentence;
the strict pruning cutoff in use for these rules is
meant to focus the grammar to the most important
general syntactic divergences between French and
English. Most of the latitude in grammar pruning
comes from adjusting the frequency cutoff on the
mixed rules since this category of rule is by far the
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most common type. We conducted experiments
with three different frequency cutoffs: 100, 200,
and 500, with each increase decreasing the gram-
mar size by 70-80 percent.

3.3 French-English Experiments

We tuned our system to the newstest2008 set of
2051 segments. Aside from the official new-
stest2013 test set (3000 segments), we also col-
lected test-set scores from last year’s newstest2012
set (3003 segments). Automatic metric scores
are computed according to BLEU (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2011),
and TER (Snover et al., 2006), all computed ac-
cording to MultEval v.0.5 (Clark et al., 2011).
Each system variant is run with two independent
MERT steps in order to control for optimizer in-
stability.

Table 1 presents the results, with the metric
scores averaged over both MERT runs. Quite in-
terestingly, we find only minor differences in both
tune and test scores despite the large differences in
filtered/pruned grammar size as the cutoff for par-
tially abstract rules increases. No system is fully
statistically separable (at p < 0.05) from the oth-
ers according to MultEval’s approximate random-
ization algorithm. The closest is the variant with
cutoff 200, which is generally judged to be slightly
worse than the other two. METEOR claims full
distinction on the 2013 test set, ranking the sys-
tem with the strictest grammar cutoff (500) best.
This is the version that we ultimately submitted to
the shared translation task.

4 Synthetic Translation Options

Before discussing our Russian—English and
English-Russian systems, we introduce the
concept of synthetic translation options, which
we use in these systems. We provide a brief
overview here; for more detail, we refer the reader
to Tsvetkov et al. (2013).

In language pairs that are typologically similar,
words and phrases map relatively directly from
source to target languages, and the standard ap-
proach to learning phrase pairs by extraction from
parallel data can be very effective. However, in
language pairs in which individual source lan-
guage words have many different possible transla-
tions (e.g., when the target language word could
have many different inflections or could be sur-
rounded by different function words that have no



Dev (2008) Test (2012) Test (2013)
System BLEU METR TER | BLEU METR TER | BLEU METR TER
Cutoff 100 | 22.52 31.44 59.22 27.73 33.30 53.25 28.34 *33.19 53.07
Cutoff 200 | 22.34 3140 59.21 | *27.33 33.26 53.23 | *28.05 *33.07 53.16
Cutoff 500 | 22.80 31.64 59.10 27.88 *33.58 53.09 28.27 *33.31 53.13

Table 1: French—English automatic metric scores for three grammar pruning cutoffs, averaged over two
MERT runs each. Scores that are statistically separable (p < 0.05) from both others in the same column

are marked with an asterisk (*).

direct correspondence in the source language), we
can expect the standard phrasal inventory to be
incomplete, except when very large quantities of
parallel data are available or for very frequent
words. There simply will not be enough exam-
ples from which to learn the ideal set of transla-
tion options. Therefore, since phrase based trans-
lation can only generate input/output word pairs
that were directly observed in the training corpus,
the decoder’s only hope for producing a good out-
put is to find a fluent, meaning-preserving transla-
tion using incomplete translation lexicons. Syn-
thetic translation option generation seeks to fill
these gaps using secondary generation processes
that produce possible phrase translation alterna-
tives that are not directly extractable from the
training data. By filling in gaps in the transla-
tion options used to construct the sentential trans-
lation search space, global discriminative transla-
tion models and language models can be more ef-
fective than they would otherwise be.

From a practical perspective, synthetic transla-
tion options are attractive relative to trying to build
more powerful models of translation since they
enable focus on more targeted translation prob-
lems (for example, transliteration, or generating
proper inflectional morphology for a single word
or phrase). Since they are translation options and
not complete translations, many of them may be
generated.

In the following system pairs, we use syn-
thetic translation options to augment hiero gram-
mar rules learned in the usual way. The synthetic
phrases we include augment draw from several
sources:

e transliterations of OOV Russian words (§5.3);

e English target sides with varied function words
(for example, given a phrase that translates into
cat we procedure variants like the cat, a cat and
of the cat); and,

e when translating info Russian, we generate
phrases by first predicting the most likely Rus-
sian lemma for a source word or phrase, and
then, conditioned on the English source context
(including syntactic and lexical features), we
predict the most likely inflection of the lemma

(§6.1).
5 Russian-English System

5.1 Data

We used the same parallel data for both the
Russian-English and English Russian systems.
Except for filtering to remove sentence pairs
whose log length ratios were statistical outliers,
we only filtered the Common Crawl corpus to re-
move sentence pairs with less than 50% concentra-
tion of Cyrillic characters on the Russian side. The
remaining data was tokenized and lower-cased.
For language models, we trained 4-gram Markov
models using the target side of the bitext and any
available monolingual data (including Gigaword
for English). Additionally, we trained 7-gram lan-
guage models using 600-class Brown clusters with
Witten-Bell smoothing.?

5.2 Baseline System

Our baseline Russian—English system is a hierar-
chical phrase-based translation model as imple-
mented in cdec (Chiang, 2007; Dyer et al., 2010).
SCFG translation rules that plausibly match each
sentence in the development and deftest sets were
extracted from the aligned parallel data using the
suffix array indexing technique of Lopez (2008).
A Russian morphological analyzer was used to
lemmatize the training, development, and test
data, and the “noisier channel” translation ap-
proach of Dyer (2007) was used in the Russian—
English system to let unusually inflected surface
forms back off to per-lemma translations.

*http://www.ark.cs.cmu.edu/cdyer/ru-600/.
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5.3 Synthetic Translations: Transliteration

Analysis revealed that about one third of the un-
seen Russian tokens in the development set con-
sisted of named entities which should be translit-
erated. We used individual Russian-English word
pairs in Wikipedia parallel headlines 3 to train a
linear-chained CRF tagger which labels each char-
acter in the Russian token with a sequence of zero
or more English characters (Ammar et al., 2012).
Since Russian names in the training set were in
nominative case, we used a simple rule-based mor-
phological generator to produce possible inflec-
tions and filtered out the ones not present in the
Russian monolingual corpus. At decoding, un-
seen Russian tokens are fed to the transliterator
which produces the most probable 20 translitera-
tions. We add a synthetic translation option for
each of the transliterations with four features: an
indicator feature for transliterations, the CRF un-
normalized score, the trigram character-LM log-
probability, and the divergence from the average
length-ratio between an English name and its Rus-
sian transliteration.

5.4 Synthetic Translations: Function Words

Slavic languages like Russian have a large number
of different inflected forms for each lemma, repre-
senting different cases, tenses, and aspects. Since
our training data is rather limited relative to the
number of inflected forms that are possible, we use
an English language model to generate a variety
of common function word contexts for each con-
tent word phrase. These are added to the phrase
table with a feature indicating that they were not
actually observed in the training data, but rather
hallucinated using SRILM’s disambig tool.

5.5 Summary

Table 5.5 summarizes our Russian-English trans-
lation results. In the submitted system, we addi-
tionally used MBR reranking to combine the 500-
best outputs of our system, with the 500-best out-
puts of a syntactic system constructed similarly to
the French—English system.

6 English-Russian System

The bilingual training data was identical to the
filtered data used in the previous section. Word
alignments was performed after lemmatizing the

3We contributed the data set to the shared task participants
at http://www.statmt.org/wmt13/wiki-titles.ru-en.tar.gz
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Table 2: Russian-English summary.

Condition BLEU

Baseline 30.8
Function words | 30.9
Transliterations | 31.1

Russian side of the training corpus. An unpruned,
modified Kneser-Ney smoothed 4-gram language
model (Chen and Goodman, 1996) was estimated
from all available Russian text (410 million words)
using the KenLLM toolkit (Heafield et al., 2013).

A standard hierarchical phrase-based system
was trained with rule shape indicator features, ob-
tained by replacing terminals in translation rules
by a generic symbol. MIRA training was per-
formed to learn feature weights.

Additionally, word clusters (Brown et al., 1992)
were obtained for the complete monolingual Rus-
sian data. Then, an unsmoothed 7-gram language
model was trained on these clusters and added as
a feature to the translation system. Indicator fea-
tures were also added for each cluster and bigram
cluster occurence. These changes resulted in an
improvement of more than a BLEU point on our
held-out development set.

6.1 Predicting Target Morphology

We train a classifier to predict the inflection of
each Russian word independently given the cor-
responding English sentence and its word align-
ment. To do this, we first process the Russian
side of the parallel training data using a statisti-
cal morphological tagger (Sharoff et al., 2008) to
obtain lemmas and inflection tags for each word
in context. Then, we obtain part-of-speech tags
and dependency parses of the English side of the
parallel data (Martins et al., 2010), as well as
Brown clusters (Brown et al., 1992). We extract
features capturing lexical and syntactical relation-
ships in the source sentence and train structured
linear logistic regression models to predict the tag
of each English word independently given its part-
of-speech.* In practice, due to the large size of
the corpora and of the feature space dimension,
we were only able to use about 10% of the avail-
able bilingual data, sampled randomly from the
Common Crawl corpus. We also restricted the

“We restrict ourselves to verbs, nouns, adjectives, adverbs
and cardinals since these open-class words carry most inflec-
tion in Russian.



neiTatecA_V + mis-sfm-e
MbiTajlaCb

ST~

she had attempted to cross

C50 C473 C28 c8 C275
PRP VBD VBN TO VB
aux aux
nsubj xcomp

Figure 1: The classifier is trained to predict the verbal inflection mis—sfm—e based on the linear and
syntactic context of the words aligned to the Russian word; given the stem neiTaTbes (pytat’sya), this
inflection paradigm produces the observed surface form nerrasiace (pytalas’).

set of possible inflections for each word to the set
of tags that were observed with its lemma in the
full monolingual training data. This was neces-
sary because of our choice to use a tagger, which
is not able to synthesize surface forms for a given
lemma-tag pair.

We then augment the standard hierarchical
phrase-base grammars extracted for the baseline
systems with new rules containing inflections not
necessarily observed in the parallel training data.
We start by training a non-gappy phrase transla-
tion model on the bilingual data where the Russian
has been lemmatized.’ Then, before translating an
English sentence, we extract translation phrases
corresponding to this specific sentence and re-
inflect each word in the target side of these phrases
using the classifier with features extracted from
the source sentence words and annotations. We
keep the original phrase-based translation features
and add the inflection score predicted by the clas-
sifier as well as indicator features for the part-of-
speech categories of the re-inflected words.

On a held-out development set, these synthetic
phrases produce a 0.3 BLEU point improvement.
Interestingly, the feature weight learned for using
these phrases is positive, indicating that useful in-
flections might be produced by this process.

7 Conclusion

The CMU systems draws on a large number of
different research directions. Techniques such as
MBR reranking and synthetic phrases allow dif-
ferent contributors to focus on different transla-

SWe keep intact words belonging to non-predicted cate-
gories.
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tion problems that are ultimately recombined into
a single system. Our performance, in particular,
on English—Russian machine translation was quite
satisfying, we attribute our biggest gains in this
language pair to the following:

Our inflection model that predicted how an En-
glish word ought best be translated, given its
context. This enabled us to generate forms that
were not observed in the parallel data or would
have been rare independent of context with pre-
cision.

Brown cluster language models seem to be quite
effective at modeling long-range morphological
agreement patterns quite reliably.
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Abstract

We use feature decay algorithms (FDA)
for fast deployment of accurate statistical
machine translation systems taking only
about half a day for each translation direc-
tion. We develop parallel FDA for solving
computational scalability problems caused
by the abundance of training data for SMT
models and LM models and still achieve
SMT performance that is on par with us-
ing all of the training data or better. Par-
allel FDA runs separate FDA models on
randomized subsets of the training data
and combines the instance selections later.
Parallel FDA can also be used for selecting
the LM corpus based on the training set
selected by parallel FDA. The high qual-
ity of the selected training data allows us
to obtain very accurate translation outputs
close to the top performing SMT systems.
The relevancy of the selected LM corpus
can reach up to 86% reduction in the num-
ber of OOV tokens and up to 74% reduc-
tion in the perplexity. We perform SMT
experiments in all language pairs in the
WMT13 translation task and obtain SMT
performance close to the top systems us-
ing significantly less resources for training
and development.

1 Introduction

Statistical machine translation (SMT) is a data in-
tensive problem. If you have the translations for
the source sentences you are translating in your
training set or even portions of it, then the trans-
lation task becomes easier. If some tokens are not
found in your training data then you cannot trans-
late them and if some translated word do not ap-
pear in your language model (LM) corpus, then it
becomes harder for the SMT engine to find their
correct position in the translation.
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Current SMT systems also face problems
caused by the proliferation of various parallel cor-
pora available for building SMT systems. The
training data for many of the language pairs in
the translation task, part of the Workshop on Ma-
chine translation (WMT13) (Callison-Burch et al.,
2013), have increased the size of the available par-
allel corpora for instance by web crawled corpora
over the years. The increased size of the training
material creates computational scalability prob-
lems when training SMT models and can increase
the amount of noisy parallel sentences found. As
the training set sizes increase, proper training set
selection becomes more important.

At the same time, when we are going to trans-
late just a couple of thousand sentences, possibly
belonging to the same target domain, it does not
make sense to invest resources for training SMT
models over tens of millions of sentences or even
more. SMT models like Moses already have filter-
ing mechanisms to create smaller parts of the built
models that are relevant to the test set.

In this paper, we develop parallel feature decay
algorithms (FDA) for solving computational scal-
ability problems caused by the abundance of train-
ing data for SMT models and LM models and still
achieve SMT performance that is on par with us-
ing all of the training data or better. Parallel FDA
runs separate FDA models on randomized subsets
of the training data and combines the instance se-
lections later. We perform SMT experiments in
all language pairs of the WMT13 (Callison-Burch
et al., 2013) and obtain SMT performance close to
the baseline Moses (Koehn et al., 2007) system us-
ing less resources for training. With parallel FDA,
we can solve not only the instance selection prob-
lem for training data but also instance selection for
the LM training corpus, which allows us to train
higher order n-gram language models and model
the dependencies better.

Parallel FDA improves the scalability of FDA
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and allows rapid prototyping of SMT systems for
a given target domain or task. Parallel FDA can be
very useful for MT in target domains with limited
resources or in disaster and crisis situations (Lewis
et al., 2011) where parallel corpora can be gath-
ered by crawling and selected by parallel FDA.
Parallel FDA also improves the computational re-
quirements of FDA by selecting from smaller cor-
pora and distributing the work load. The high
quality of the selected training data allows us to
obtain very accurate translation outputs close to
the top performing SMT systems. The relevancy
of the LM corpus selected can reach up to 86% re-
duction in the number of OOV tokens and up to
74% reduction in the perplexity.

We organize our work as follows. We describe
FDA and parallel FDA models in the next section.
We also describe how we extend the FDA model
for LM corpus selection. In section 3, we present
our experimental results and in the last section, we
summarize our contributions.

2 Feature Decay Algorithms for Instance
Selection

In this section, we describe the FDA algorithm,
the parallel FDA model, and how FDA training
instance selection algorithms can be used also for
instance selection for language model corpora.

2.1 Feature Decay Algorithm (FDA)

Feature decay algorithms (Bigici and Yuret,
2011a) increase the diversity of the training set by
decaying the weights of n-gram features that have
already been included. FDAs try to maximize the
coverage of the target language features for the test
set. Translation performance can improve as we
include multiple possible translations for a given
word, which increases the diversity of the training
set. A target language feature that does not appear
in the selected training instances will be difficult to
produce regardless of the decoding algorithm (im-
possible for unigram features). FDA tries to find
as many training instances as possible to increase
the chances of covering the correct target language
feature by reducing the weight of the included fea-
tures after selecting each training instance.

Algorithm 1 gives the pseudo-code for FDA.
We improve FDA with improved scaling, where
the score for each sentence is scaled proportional
to the length of the sentence, which reduces the
average length of the training instances.
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Algorithm 1: The Feature Decay Algorithm

Input: Parallel training sentences U, test set
features F, and desired number of
training instances V.
Data: A priority queue Q, sentence scores
score, feature values fval.
Output: Subset of the parallel sentences to be
used as the training data £ C U.
1 foreach f € F do
2 fval(f) « init(f,U)
3 foreach S € U/ do
>

score(S) +
fE€features(9)

enqueue(Q, S, score(S))
while |£| < N do
S < dequeue(Q)

1
SR

4

EE fval(f)

wn

score(S) + | fval(f)

fEfea%res(S)
if score(S) > topval(Q) then
L+ LU{S}
foreach f € features(S) do
fval(f) « decay(f,U,L)
else

enqueue(Q, S, score(S5))

10
11
12
13
14

The input to the algorithm consists of parallel
training sentences, the number of desired training
instances, and the source language features of the
test set. The feature decay function (decay) is
the most important part of the algorithm where
feature weights are multiplied by 1/n where n
is the count of the feature in the current train-
ing set. The initialization function (init) calcu-
lates the log of inverse document frequency (idf):
init(f,U) = log(|U]/(1 + C(f,U))), where
|| is the sum of the number of features appear-
ing in the training corpus and C'( f,U) is the num-
ber of times feature f appear in /. Further ex-
periments with the algorithm are given in (Bigici
and Yuret, 2011a). We improve FDA with a scal-
ing factor that prefers shorter sentences defined as:
|S]°, where s is the power of the source sentence
length and we set it to 0.9 after optimizing it over
the perplexity of the LM built over the selected
corpus (further discussed in Section 2.3).

2.2 Parallel FDA Model

FDA model obtains a sorting over all of the avail-
able training corpus based on the weights of the
features found on the test set. Each selected train-



Algorithm 2: Parallel FDA
Input: U, F, and N.
Output: £ C U.

1 U + shuffle(ld)

2 U, M + split(U,N)

3 L+ {}

4 S+ {}

s foreach U; € U do
L;,S; < FDA(U;, F, M)
add([,,ﬁi)
add(S,Si)

L + merge(L,S)

6
7
8
9

ing instance effects which feature weights will be
decayed and therefore can result in a different or-
dering of the instances if previous instance selec-
tions are altered. This makes it difficult to par-
allelize the FDA algorithm fully. Parallel FDA
model first shuffles the parallel training sentences,
U, and distributes them to multiple splits for run-
ning individual FDA models on them.

The input to parallel FDA also consists of paral-
lel training sentences, the number of desired train-
ing instances, and the source language features of
the test set. The first step shuffles the parallel train-
ing sentences and the next step splits into equal
parts and outputs the split files and the adjusted
number of instances to select from each, M. Since
we split into equal parts, we select equal number
of sentences, M, from each split. Then we run
FDA on each file to obtain sorted files, £, together
with their scores, S. merge combines k sorted
lists into one sorted list in O(Mklogk) where
ME is the total number of elements in all of the
input lists. | The obtained £ is the new training set
to be used for SMT experiments. We compared the
target 2-gram feature coverage of the training sets
obtained with FDA and parallel FDA and found
that parallel FDA achieves close performance.

Parallel FDA improves the scalability of FDA
and allows rapid prototyping of SMT systems for
a given target domain or task. Parallel FDA also
improves the computational requirements of FDA
by selecting from smaller corpora and distributing
the work load, which can be very useful for MT in
disaster scenarios.

! (Cormen et al., 2009), question 6.5-9. Merging k sorted
lists into one sorted list using a min-heap for k-way merging.
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2.3 Instance Selection for the Language
Model Corpus

The language model corpus is very important for
improving the SMT performance since it helps
finding the correct ordering among the translated
tokens or phrases. Increased LM corpus size can
increase the SMT performance where doubling the
LM corpus can improve the BLEU (Papineni et
al., 2002) by 0.5 (Koehn, 2006). However, al-
though LM corpora resources are more abundant,
training on large LM corpora also poses compu-
tational scalability problems and until 2012, LM
corpora such as LDC Gigaword corpora were not
fully utilized due to memory limitations of com-
puters and even with large memory machines, the
LM corpora is split into pieces, interpolated, and
merged (Koehn and Haddow, 2012) or the LM
order is decreased to use up to 4-grams (Markus
et al., 2012) or low frequency n-gram counts are
omitted and better smoothing techniques are de-
veloped (Yuret, 2008). Using only the given train-
ing data for building the LM is another option
used for limiting the size of the corpus, which
can also obtain the second best performance in
Spanish-English translation task and in the top
tier for German-English (Guzman et al., 2012;
Callison-Burch et al., 2012). This can also indi-
cate that prior knowledge of the test set domain
and its similarity to the available parallel training
data may be diminishing the gains in SMT perfor-
mance through better language modeling or better
domain adaptation.

For solving the computational scalability prob-
lems, there is a need for properly selecting LM
training data as well. We select LM corpus with
parallel FDA based on this observation:

No word not appearing in the training
set can appear in the translation.

It is impossible for an SMT system to translate
a word unseen in the training corpus nor can it
translate it with a word not found in the target
side of the training set 2. Thus we are only in-
terested in correctly ordering the words appear-
ing in the training corpus and collecting the sen-
tences that contain them for building the LM. At
the same time, we want to be able to model longer
range dependencies more efficiently especially for
morphologically rich languages (Yuret and Bigici,

2Unless the translation is a verbatim copy of the source.



2009). Therefore, a compact and more relevant
LM corpus can be useful.

Selecting the LM corpus is harder. First of all,
we know which words should appear in the LM
corpus but we do not know which phrases should
be there since the translation model may reorder
the translated words, find different translations,
and generate different phrases. Thus, we use 1-
gram features for LM corpus selection. At the
same time, in contrast with selecting instances for
the training set, we are less motivated to increase
the diversity since we want predictive power on
the most commonly observed patterns. Thus, we
do not initialize feature weights with the idf score
and instead, we use the inverse of the idf score
for initialization, which is giving more importance
to frequently occurring words in the training set.
This way of LM corpus selection also allows us
to obtain a more controlled language and helps us
create translation outputs within the scope of the
training corpus and the closely related LM corpus.

We shuffle the LM corpus available before split-
ting and select from individual splits, to prevent
extreme cases. We add the training set directly
into the LM and also add the training set not se-
lected into the pool of sentences that can be se-
lected for the LM. The scaling parameter s is opti-
mized over the perplexity of the training data with
the LM built over the selected LM corpus.

3 Experiments

We experiment with all language pairs in
both directions in the WMTI13 translation
task (Callison-Burch et al., 2013), which include
English-German (en-de), English-Spanish (en-es),
English-French (en-fr), English-Czech (en-cs),
and English-Russian (en-ru). We develop transla-
tion models using the phrase-based Moses (Koehn
et al., 2007) SMT system. We true-case all of the
corpora, use 150-best lists during tuning, set the
max-fertility of GIZA++ (Och and Ney, 2003) to
a value between 8-10, use 70 word classes learned
over 3 iterations with mkcls tool during GIZA++
training, and vary the language model order
between 5 to 9 for all language pairs. The de-
velopment set contains 3000 sentences randomly
sampled from among all of the development
sentences provided.

Since we do not know the best training set
size that will maximize the performance, we rely
on previous SMT experiments (Bicici and Yuret,
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2011a; Bigici and Yuret, 2011b) to select the
proper training set size. We choose close to 15
million words and its corresponding number of
sentences for each training corpus and 10 million
sentences for each LM corpus not including the
selected training set, which is added later. This
corresponds to selecting roughly 15% of the train-
ing corpus for en-de and 35% for ru-en, and due to
their larger size, 5% for en-es, 6% for cs-en, 2%
for en-fr language pairs. The size of the LM cor-
pus allows us to build higher order models. The
statistics of the training data selected by the paral-
lel FDA is given in Table 1. Note that the training
set size for different translation directions differ
slightly since we run a parallel FDA for each.

cs/en |de/en| es/en fr/en ru/en
words (#M) [ 186/215(92/99 (409 /359 1010/ 886 |41/44
sents (#K) 867 631 841 998 709
words (#M) | 13/15 [16/17| 23/21 26/22 |16/18

Table 1: Comparison of the training data available
and the selected training set by parallel FDA for
each language pair. The size of the parallel cor-
pora is given in millions (M) of words or thou-
sands (K) of sentences.

After selecting the training set, we select the
LM corpora using the words in the target side of
the training set as the features. For en, es, and
fr, we have access to the LDC Gigaword corpora,
from which we extract only the story type news
and for en, we exclude the corpora from Xinhua
News Agency (xin_eng). The size of the LM cor-
pora from LDC and the monolingual LM corpora
provided by WMT13 are given in Table 2. For
all target languages, we select 10M sentences with
parallel FDA from the LM corpora and the remain-
ing training sentences and add the selected training
data to obtain the LM corpus. Thus the size of the
LM corpora is 10M plus the number of sentences
in the training set as given in Table 1.

#M cs de en es fr ru
LDC - - 3402 949 773 -
Mono | 388 842 1389 341 434 289

Table 2: The size of the LM corpora from LDC
and the monolingual language model corpora pro-
vided in millions (M) of words.

With FDA, we can solve not only the instance
selection problem for the training data but also
the instance selection problem for the LM train-
ing corpus and achieve close target 2-gram cover-



S —en en —>T
cs-en  de-en  es-en fr-en ru-en en-cs en-de  en-es en-fr en-ru
WMT13 2620 2680 3060 3150  .2430 .1860 2030  .3040 3060  .1880
BLEUc 2430 2414 2909 2539 2226 .1708 1792 2799 2379 1732
BLEUc diff | .0190 .0266 .0151 .0611 .0204 .0152 .0238  .0241  .0681 .0148
LM order 7 9 7 9 6 5 5 5 7 5
BLEUc, n | .2407,5 .2396,5 .2886,8 .2532,6 .2215,9 | .1698,9 .1784,9 .2794,9 .2374,9 .1719,9

Table 3: Best BLEUc results obtained on the translation task together with the LM order used when
obtaining the result compared with the best constrained Moses results in WMT12 and WMT13. The last
row compares the BLEUCc result with respect to using a different LM order.

age using about 5% of the available training data
and 5% of the available LM corpus for instance for
en. A smaller LM training corpus also allows us
to train higher order n-gram language models and
model the dependencies better and achieve lower
perplexity as given in Table 5.

3.1 WMT13 Translation Task Results

We run a number of SMT experiments for each
language pair varying the LM order used and ob-
tain different results and sorted these based on the
tokenized BLEU performance, BLEUc. The best
BLEUc results obtained on the translation task to-
gether with the LM order used when obtaining the
results are given in Table 3. We also list the top re-
sults from WMT13 (Callison-Burch et al., 2013) 3,
which use phrase-based Moses for comparison
and the BLEUc difference we obtain. For trans-
lation tasks with en as the target, higher order n-
gram LM perform better whereas for translation
tasks with en as the source, mostly 5-gram LM
perform the best. We can obtain significant gains
in BLEU (+0.0023) using higher order LMs.

For all translation tasks except fr-en and en-ft,
we are able to obtain very close results to the top
Moses system output (0.0148 to 0.0266 BLEUc
difference). This shows that we can obtain very
accurate translation outputs yet use only a small
portion of the training corpus available, signifi-
cantly reducing the time required for training, de-
velopment, and deployment of an SMT system for
a given translation task.

We are surprised by the lower performance in
en-fr or fr-en translation tasks and the reason is,
we believe, due to the inherent noise in the Gi-
gaFrEn training corpus °. FDA is an instance se-

*We use the results from matrix.statmt.org.
“Phrase-based Moses systems usually rank in the top 3.
>We even found control characters in the corpora.
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lection tool and it does not filter out target sen-
tences that are noisy since FDA only looks at the
source sentences when selecting training instance
pairs. Noisy instances may be caused by a sen-
tence alignment problem and one way to fix them
is to measure the sentence alignment accuracy by
using a similarity score over word distributions
such as the Zipfian Word Vectors (Bigici, 2008).
Since noisy parallel corpora can decrease the per-
formance, we also experimented with discarding
the GigaFrEn corpus in the experiments. However,
this decreased the results by 0.0003 BLEU in con-
trast to 0.004-0.01 BLEU gains reported in (Koehn
and Haddow, 2012). Also, note that the BLEU re-
sults we obtained are lower than in (Koehn and
Haddow, 2012), which may be an indication that
our training set size was small for this task.

3.2 Training Corpus Quality

We measure the quality of the training corpus by
the coverage of the target 2-gram features of the
test set, which is found to correlate well with the
BLEU performance achievable (Bigici and Yuret,
2011a). Table 4 presents the source (scov) and tar-
get (tcov) 2-gram feature coverage of both the par-
allel training corpora (train) that we select from
and the training sets obtained with parallel FDA.
We show that we can obtain coverages close to us-
ing all of the available training corpora.

3.3 LM Corpus Quality

We compare the perplexity of the LM trained on
all of the available training corpora for the de-en
language pair versus the LM trained on the paral-
lel FDA training corpus and the parallel FDA LM
corpus. The number of OOV tokens become 2098,
2255, and 291 respectively for English and 2143,
2555, and 666 for German. To be able to com-
pare the perplexities, we take the OOV tokens into
consideration during calculations. Tokenized LM



cs-en de-en es-en fr-en ru-en | en-cs en-de en-es en-fr en-ru

train 5OV .70 74 .85 .83 .66 .82 .82 .84 .87 78
tcov | .82 .82 .84 .87 78 .70 74 .85 .83 .66
FDA 56OV .70 74 .85 .82 .66 .82 .82 .84 .84 78
tcov | .74 5 7 78 75 .59 .67 78 .76 .61

Table 4: Source (scov) and target (tcov) 2-gram feature coverage comparison of the training corpora
(train) with the training sets obtained with parallel FDA (FDA).

corpus has 247M tokens for en and 218M tokens
for de. We assume that each OOV word in en or
de contributes log(1/218M) to the log probabil-
ity, which we round to —19. We also present re-
sults for the case when we handle OOV words bet-
ter with a cost of —11 each in Table 5.

Table 5 shows that we reduce the perplexity
with a LM built on the training set selected with
parallel FDA, which uses only 15% of the training
data for de-en. More significantly, the LM build on
the LM corpus selected by the parallel FDA is able
to decrease both the number of OOV tokens and
the perplexity and allows us to efficiently model
higher order relationships as well. We reach up to
86% reduction in the number of OOV tokens and
up to 74% reduction in the perplexity.

log OOV = —19 log OOV = —11
ppl train FDA FDA LM | train FDA FDA LM
3| 763 774 203 431 419 187
4 | 728 754 192 412 409 178
en 5| 725 753 191 410 408 176
6 | 724 753 190 409 408 176
71 724 753 190 409 408 176
3 | 1255 1449 412 693 713 343
4 | 1216 1428 398 671 703 331
de 5 | 1211 1427 394 668 702 327
6 | 1210 1427 393 668 702 326
7 | 1210 1427 392 668 702 326
Table 5: Perplexity comparison of the LM built

from the training corpus (train), parallel FDA se-
lected training corpus (FDA), and the parallel FDA
selected LM corpus (FDA LM).

3.4 Computational Costs

In this section, we quantify how fast the overall
system runs for a given language pair. The in-
stance selection times are dependent on the num-
ber of training sentences available for the language
pair for training set selection and for the target lan-
guage for LM corpus selection. We give the av-
erage number of minutes it takes for the parallel
FDA to finish selection for each direction and for
each target language in Table 6.
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time (minutes) en-fr en-ru
Parallel FDA train | 50 18
Parallel FDA LM 66 50

Table 6: The average time in the number of min-
utes for parallel FDA to select instances for the
training set or for the LM corpus for language
pairs en-fr and en-ru.

Once the training set and the LM corpus are
ready, the training of the phrase-based SMT model
Moses takes about 12 hours. Therefore, we are
able to deploy an SMT system for the target trans-
lation task in about half a day and still obtain very
accurate translation results.

4 Contributions

We develop parallel FDA for solving computa-
tional scalability problems caused by the abun-
dance of training data for SMT models and LM
models and still achieve SMT performance that is
on par with the top performing SMT systems. The
high quality of the selected training data and the
LM corpus allows us to obtain very accurate trans-
lation outputs while the selected the LM corpus re-
sults in up to 86% reduction in the number of OOV
tokens and up to 74% reduction in the perplexity
and allows us to model higher order dependencies.
FDA and parallel FDA raise the bar of expec-
tations from SMT translation outputs with highly
accurate translations and lowering the bar to entry
for SMT into new domains and tasks by allowing
fast deployment of SMT systems in about half a
day. Parallel FDA provides a new step towards
rapid SMT system development in budgeted train-
ing scenarios and can be useful in developing ma-
chine translation systems in target domains with
limited resources or in disaster and crisis situations
where parallel corpora can be gathered by crawl-
ing and selected by parallel FDA. Parallel FDA is
also allowing a shift from general purpose SMT
systems towards task adaptive SMT solutions.
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Abstract

We describe our experiments with
phrase-based machine translation for
the WMT 2013 Shared Task. We
trained one system for 18 translation
directions between English or Czech
on one side and English, Czech, Ger-
man, Spanish, French or Russian on
the other side. We describe a set of re-
sults with different training data sizes
and subsets. For the pairs containing
Russian, we describe a set of indepen-
dent experiments with slightly different
translation models.

1 Introduction

With so many official languages, Europe is
a paradise for machine translation research.
One of the largest bodies of electronically
available parallel texts is being nowadays gen-
erated by the European Union and its insti-
tutions. At the same time, the EU also pro-
vides motivation and boosts potential market
for machine translation outcomes.

Most of the major European languages be-
long to one of three branches of the Indo-
European language family: Germanic, Ro-
mance or Slavic. Such relatedness is respon-
sible for many structural similarities in FEu-
ropean languages, although significant differ-
ences still exist. Within the language portfo-
lio selected for the WMT shared task, English,
French and Spanish seem to be closer to each
other than to the rest.

German, despite being genetically related
to English, differs in many properties. Its
word order rules, shifting verbs from one
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end of the sentence to the other, easily cre-
ate long-distance dependencies. Long Ger-
man compound words are notorious for in-
creasing out-of-vocabulary rate, which has
led many researchers to devising unsupervised
compound-splitting techniques. Also, upper-
case/lowercase distinction is more important
because all German nouns start with an up-
percase letter by the rule.

Czech is a language with rich morphology
(both inflectional and derivational) and rela-
tively free word order. In fact, the predicate-
argument structure, often encoded by fixed
word order in English, is usually captured by
inflection (especially the system of 7 grammat-
ical cases) in Czech. While the free word order
of Czech is a problem when translating to En-
glish (the text should be parsed first in order
to determine the syntactic functions and the
English word order), generating correct inflec-
tional affixes is indeed a challenge for English-
to-Czech systems. Furthermore, the multitude
of possible Czech word forms (at least order of
magnitude higher than in English) makes the
data sparseness problem really severe, hinder-
ing both directions.

Most of the above characteristics of Czech
also apply to Russian, another Slavic language.
Similar issues have to be expected when trans-
lating between Russian and English. Still,
there are also interesting divergences between
Russian and Czech, especially on the syntactic
level. Russian sentences typically omit cop-
ula in the present tense and there is also no
direct equivalent of the verb “to have”. Pe-
riphrastic constructions such as “there is XXX
by him” are used instead. These differences
make the Czech-Russian translation interest-
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ing as well. Interestingly enough, results of
machine translation between Czech and Rus-
sian has so far been worse than between En-
glish and any of the two languages, language
relatedness notwithstanding.

Our goal is to run one system under as
similar conditions as possible to all eighteen
translation directions, to compare their trans-
lation accuracies and see why some directions
are easier than others. The current version of
the system does not include really language-
specific techniques: we neither split German
compounds, nor do we address the peculiari-
ties of Czech and Russian mentioned above.

In an independent set of experiments, we
tried to deal with the data sparseness of Rus-
sian language with the addition of a backoff
model with a simple stemming and some ad-
ditional data; those experiments were done for
Russian and Czech|English combinations.

2 The Translation System

Both sets of experiments use the same ba-
sic framework. The translation system is
built around Moses' (Koehn et al., 2007).
Two-way word alignment was computed us-
ing GIZA++? (Och and Ney, 2003), and
alignment symmetrization using the grow-
diag-final-and heuristic (Koehn et al., 2003).
Weights of the system were optimized using
MERT (Och, 2003). No lexical reordering
model was trained.

For language modeling we use the SRILM
toolkit® (Stolcke, 2002) with modified Kneser-
Ney smoothing (Kneser and Ney, 1995; Chen
and Goodman, 1998).

3 General experiments

In the first set of experiments we wanted to
use the same setting for all language pairs.

3.1 Data and Pre-processing Pipeline

We applied our system to all the ten official
language pairs. In addition, we also exper-
imented with translation between Czech on
one side and German, Spanish, French or Rus-
sian on the other side. Training data for
these additional language pairs were obtained

"ttp://www.statmt . org/moses/
2http://code.google.com/p/giza-pp/
3http://www-speech.sri.com/projects/srilm/

by combining parallel corpora of the officially
supported pairs. For instance, to create the
Czech-German parallel corpus, we identified
the intersection of the English sides of Czech-
English and English-German corpora, respec-
tively; then we combined the corresponding
Czech and German sentences.

We took part in the constrained task. Un-
less explicitly stated otherwise, the transla-
tion model in our experiments was trained on
the combined News-Commentary v8 and Eu-
roparl v7 corpora.* Note that there is only
News Commentary and no Europarl for Rus-
sian. We were also able to evaluate several
combinations with large parallel corpora: the
UN corpus (English, French and Spanish),
the Giga French-English corpus and CzEng
(Czech-English). We did not use any large
corpus for Russian-English. Table 1 shows the
sizes of the training data.

Corpus SentPairs Tkns Ingl Tkns Ing2
cs-en 786,929 18,196,080 21,184,881
de-en 2,098,430 55,791,641 58,403,756
es-en 2,140,175 62,444,507 59,811,355
fr-en 2,164,891 70,363,304 60,583,967
ru-en 150,217 3,889,215 4,100,148
de-cs 657,539 18,160,857 17,788,600
es-cs 697,898 19,577,329 18,926,839
fr-cs 693,093 10,717,885 18,849,244
ru-cs 103,931 2,642,772 2,319,611
Czeng

cs-en 14,833,358 204,837,216 235,177,231
UN

es-en 11,196,913 368,154,702 328,840,003
fr-en 12,886,831 449,279,647 372,627,886
Giga

fr-en 22,520,400 854,353,231 694,394,577

Table 1: Number of sentence pairs and tokens
for every language pair in the parallel training
corpus. Languages are identified by their ISO
639 codes: cs = Czech, de = German, en =
English, es = Spanish, fr = French, ru = Rus-
sian. Every line corresponds to the respective
version of EuroParl + News Commentary; the
second part presents the extra corpora.

The News Test 2010 (2489 sentences in
each language) and 2012 (3003 sentences)
data sets® were used as development data for
MERT. BLEU scores reported in this paper
were computed on the News Test 2013 set

‘http://www.statmt . org/umt13/
translation-task.html\#download

Shttp://www.statmt.org/wmt13/
translation-task.html



(3000 sentences each language). We do not
use the News Tests 2008, 2009 and 2011.

All parallel and monolingual corpora un-
derwent the same preprocessing. They were
tokenized and some characters normalized
or cleaned. A set of language-dependent
heuristics was applied in an attempt to re-
store the opening/closing quotation marks (i.e.
"quoted" — “quoted”) (Zeman, 2012).

The data are then tagged and lemmatized.
We used the Featurama tagger for Czech
and English lemmatization and TreeTagger for
German, Spanish, French and Russian lemma-
tization. All these tools are embedded in the
Treex analysis framework (Zabokrtsky et al.,
2008).

The lemmas are used later to compute word
alignment. Besides, they are needed to ap-
ply “supervised truecasing” to the data: we
cast the case of the lemma to the form, rely-
ing on our morphological analyzers and tag-
gers to identify proper names, all other words
are lowercased. Note that guessing of the true
case is only needed for the sentence-initial to-
ken. Other words can typically be left in their
original form, unless they are uppercased as a
form of HIGHLIGHTING.

3.2 Experiments

BLEU scores were computed by our sys-
tem, comparing truecased tokenized hypoth-
esis with truecased tokenized reference trans-
lation. Such scores must differ from the official
evaluation—see Section 3.2.4 for discussion of
the final results.

The confidence interval for most of the
scores lies between 40.5 and 0.6 BLEU %
points.

3.2.1 Baseline Experiments

The set of baseline experiments were trained
on the supervised truecased combination of
News Commentary and Europarl. As we had
lemmatizers for the languages, word alignment
was computed on lemmas. (But our previous
experiments showed that there was little dif-
ference between using lemmas and lowercased
4-character “stems”) A hexagram language
model was trained on the monolingual version
of the News Commentary + Europarl corpus
(typically a slightly larger superset of the tar-
get side of the parallel corpus).
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3.2.2 Larger Monolingual Data

Besides the monolingual halves of the par-
allel corpora, additional monolingual data
were provided / permitted. Our experiments
in previous years clearly showed that the
Crawled News corpus (2007-2012), in-domain
and large, contributed significantly to better
BLEU scores. This year we included it in
our baseline experiments for all language pairs:
translation model on News Commentary +
Europarl, language model on monolingual part
of the two, plus Crawled News.

In addition there are the Gigaword corpora
published by the Linguistic Data Consortium,
available only for English (5" edition), Span-
ish (3"Y) and French (3"?). Table 2 gives
the sizes and Table 3 compares BLEU scores
with Gigaword against the baseline. Gigaword
mainly contains texts from news agencies and
as such it should be also in-domain. Neverthe-
less, the crawled news are already so large that
the improvement contributed by Gigaword is
rarely significant.

Corpus Segments Tokens
newsc+euro.cs 830,904 18,862,626
newsc—+euro.de 2,380,813 59,350,113
newsc4+euro.en 2,466,167 67,033,745
newsc4+euro.es 2,330,369 66,928,157
newsc—+euro.fr 2,384,293 74,962,162
newsc.ru 183,083 4,340,275
news.all.cs 27,540,827 460,356,173
news.all.de 54,619,789 1,020,852,354
news.all.en 68,341,615 1,673,187,787
news.all.es 13,384,314 388,614,890
news.all.fr 21,195,476 557,431,929
news.all.ru 19,912,911 361,026,791
gigaword.en 117,905,755 4,418,360,239
gigaword.es 31,304,148 1,064,660,498
gigaword.fr 21,674,453 963,571,174

Table 2: Number of segments (paragraphs
in Gigaword, sentences elsewhere) and tokens
of additional monolingual training corpora.
“newsc—+euro” are the monolingual versions of
the News Commentary and FEuroparl parallel
corpora. “news.all” denotes all years of the
Crawled News corpus for the given language.



Direction | Baseline Gigaword
en-cs 0.1632
en-de 0.1833
en-es 0.2808 0.2856
en-fr 0.2987 0.2988
en-ru 0.1582
cs-en 0.2328 0.2367
de-en 0.2389 0.2436
es-en 0.2916 0.2975
fr-en 0.2887
ru-en 0.1975 0.2003
cs-de 0.1595
cs-es 0.2170 0.2220
cs-fr 0.2220 0.2196
cs-Tu 0.1660
de-cs 0.1488
es-cs 0.1580
fr-cs 0.1420
ru-cs 0.1506

Table 3: BLEU scores of the baseline experi-
ments (left column) on News Test 2013 data,
computed by the system on tokenized data,
versus similar setup with Gigaword. The dif-
ference was typically not significant.

3.2.3 Larger Parallel Data

Various combinations with larger parallel cor-
pora were also tested. We do not have results
for all combinations because these experiments
needed a lot of time and resources and not all
of them finished in time successfully.

In general the UN corpus seems to be of low
quality or too much off-domain. It may help
a little if used in combination with news-euro.
If used separately, it always hurts the results.

The Giga French-English corpus gave the
best results for English-French as expected,
even without the core news-euro data. How-
ever, training the model on data of this size is
extremely demanding on memory and time.

Finally, Czeng undoubtedly improves
Czech-English translation in both directions.
The news-euro dataset is smaller for this
language pair, which makes Czeng stand out
even more. See Table 4 for details.

3.2.4 Final Results

Table 5 compares our BLEU scores with those
computed at matrix.statmt.org.
BLEU (without flag) denotes BLEU score
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Dir Parallel Mono BLEU
en-es NEws-euro +gigaword  0.2856
en-es news-euro-un +gigaword (0.2844
en-es un un-+gigaw.  0.2016
en-fr  giga +gigaword  0.3106
en-fr  giga +newsall 0.3037
en-fr  news-euro-un +gigaword 0.3010
en-fr news-euro +gigaword  (0.2988
en-fr un un 0.2933
€s-en  news-euro +gigaword  0.2975
es-en news-euro-un baseline 0.2845
es-en  un un4+news 0.2067
fr-en news-euro-un +gigaword 0.2914
fr-en news-euro baseline 0.2887
fr-en un un-+news 0.2737

Table 4: BLEU scores with different parallel
corpora.

computed by our system, comparing truecased
tokenized hypothesis with truecased tokenized
reference translation.

The official evaluation by matrix.statmt.
org gives typically lower numbers, reflecting
the loss caused by detokenization and new
(different) tokenization.

3.2.5 Efficiency

The baseline experiments were conducted
mostly on 64bit AMD Opteron quad-core
2.8 GHz CPUs with 32 GB RAM (decoding
run on 15 machines in parallel) and the whole
pipeline typically required between a half and
a whole day.

However, we used machines with up to
500 GB RAM to train the large language mod-
els and translation models. Aligning the UN
corpora with Giza++ took around 5 days.
Giga French-English corpus was even worse
and required several weeks to complete. Us-
ing such a large corpus without pruning is not
practical.

4 Extra Experiments with Russian

In a separate set of experiments, we tried to
take a basic Moses framework and change the
setup a little for better results on morpholog-
ically rich languages.

Tried combinations were Russian-Czech and
Russian-English.



Direction | BLEU BLFEU, BLEU;
en-cs 0.1786 0.180 0.170
en-de 0.1833 0.179 0.173
en-es 0.2856 0.288 0.271
en-fr 0.3010 0.270 0.259
en-ru 0.1582 0.142 0.142
cs-en 0.2527 0.259 0.244
de-en 0.2389 0.244 0.230
es-en 0.2856 0.288 0.271
fr-en 0.2887 0.294 0.280
ru-en 0.1975 0.203 0.191
cs-de 0.1595 0.159 0.151
cs-es 0.2220 0.225 0.210
cs-fr 0.2220 0.191 0.181
cs-Tu 0.1660 0.150 0.149
de-cs 0.1488 0.151 0.142
€s-cs 0.1580 0.160 0.152
fr-cs 0.1420 0.145 0.137
ru-cs 0.1506 0.151 0.144

Table 5: Final BLEU scores. BLEU is true-
cased computed by the system, BLFEU; is
the official lowercased evaluation by matrix.
statmt.org. BLEU, is official truecased eval-
uation. Although lower official scores are ex-
pected, notice the larger gap in en-fr and cs-fr
translation. There seems to be a problem in
our French detokenization procedure.

4.1 Data

For the additional Russian-to-Czech systems,
we used following parallel data:

o UMC 0.1 (Klyueva and Bojar, 2008) — tri-
parallel set, consisting of news articles —
93,432 sentences

o data mined from movie subtitles (de-
scribed in further detail below)
2,324,373 sentences

e Czech-Russian part of InterCorp — a cor-
pus from translation of fiction books (Cer-
mék and Rosen, 2012) — 148,847 sentences

For Russian-to-English translation, we used
combination of

e UMC 0.1 — 95,540 sentences

o subtitles — 1,790,209 sentences

&9

 Yandex English-Russian parallel corpus 6
— 1,000,000 sentences

o wiki headlines from WMT website 7 —
514,859 sentences

e common crawl from WMT website —
878,386 sentences

Added together, Russian-Czech parallel
data consisted of 2,566,615 sentences and
English-Czech parallel data consisted of
4,275,961 sentences ®.

We also used 765 sentences from UMC003
as a devset for MERT training.

We used the following monolingual corpora
to train language models. Russian:

e Russian sides of all the parallel data —
4,275,961 sentences

e News commentary from WMT website —
150,217 sentences

e News crawl 2012 — 9,789,861 sentences
For Czech:

e Czech sides of all the parallel data —
2,566,615 sentences

¢ Data downloaded from Czech news arti-
cles? — 1,531,403 sentences

o WebColl (Spoustova et al.,
4,053,223 sentences

2010) —

« PDT ' -~ 115,844 sentences

e Complete Czech Wikipedia — 3,695,172
sentences

e Sentences scraped from Czech social
server okoun.cz — 580,249 sentences

For English:

e English sides of all the paralel data —
4,275,961 sentences

e News commentary from WMT website —
150,217 sentences

Table 6 and Table 7 shows the sizes of the
training data.

Shttps://translate.yandex.ru/corpus?lang=en
"http://www.statmt.org/wnt13/
translation-task.html
8some sentences had to be removed for technical
reasons
“http://thepiratebay.sx/torrent/7121533/
Onttp://ufal.mff.cuni.cz/pdt2.0/



Corpus ‘ SentPairs  Tok Ingl Tok Ing2

CS-ru

2,566,615
4,275,961

19,680,239 20,031,688
en-ru 64,619,964 58,671,725
Table 6: Number of sentence pairs and tokens
for every language pair.

Corpus ‘ Sentences Tokens
en mono | 13,426,211 278,199,832
ru mono | 13,701,213 231,076,387
cs mono | 12,542,506 202,510,993

Table 7: Number of sentences and tokens for
every language.

4.1.1 Tokenization, tagging

Czech and English data was tokenized and
tagged using Morce tagger; Russian was to-
kenized and tagged using TreeTagger. Tree-
Tagger also does lemmatization; however, we
didn’t use lemmas for alignment or translation
models, since our experiments showed that
primitive stemming got better results.

However, what is important to mention is
that TreeTagger had problems with some cor-
pora, mostly Common Crawl. For some rea-
son, Russian TreeTagger has problems with
“dirty” data—sentences in English, French or
random non-unicode noise. It either slows
down significantly or stops working at all. For
this reason, we wrapped TreeTagger in a script
that detected those hangs and replaced the
erroneous Russian sentences with bogus, one-
letter Russian sentences (we can’t delete those,
since the lines already exist in the opposite lan-
guages; but since the pair doesn’t really make
sense in the first place, it doesn’t matter as
much).

All the data are lowercased for all the mod-
els and we recase the letters only at the very
end.

4.1.2 Subtitle data

For an unrelated project dealing with movie
subtitles translation, we obtained data from
OpenSubtitles.org for Czech and English sub-
titles. However, those data were not aligned
on sentence level and were less structured—we
had thousands of .srt files with some sort of
metadata.

When exploiting the data from the subtitles,
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we made several observations:

language used in subtitles is very different
from the language used in news articles

one of the easiest and most accurate sen-
tence alignments in movie subtitles is the
one based purely on the time stamps

allowing bigger differences in the time
stamps in the alignment produced more
data, but less accurate

the subtitles are terribly out of domain (as
experiments with using only the subtitle
data showed us), but adding the corpus
mined from the subtitles still increases
the accuracy of the translation

allowing bigger differences in the time
stamps and, therefore, more (albeit less
accurate) data always led to better results
in our tests.

In the end, we decided to pair as much sub-
titles as possible, even with the risk of some
being misaligned, because we found out that
this helped the most.

4.2 Translation model, language model

For alignment, we used primitive stemming
that takes just first 6 letters from a word.
We found out that using this “brute force”
stemming—for reasons that will have to be
explored in a further research—return better
results than regular lemmatization, for both
alignment and translation model, as described
further.

For each language pair, we used a transla-
tion model with two translation tables, one of
them as backoff model. More exactly, the pri-
mary translation is from a form to a combina-
tion of (lower case) form and tag, and the sec-
ondary backoff translation is from a “stem” de-
scribed above to a combination of (lower case)
form and tag.

We built two language models—one for tags
and one for lower case forms.

The models were actually a mixed model us-
ing interpolate option in SRILM—we trained a
different language model for each corpus, and
then we mixed the language models using a
small development set from UMCO003.



4.3 Final Results

The final results from matrix.statmt.org are
in the table Table 8. You might notice a sharp
difference between lowercased and truecased
BLEU—that is due to a technical error that
we didn’t notice before the deadline.

Direction | BLEU; BLEU;
ru-cs 0.158 0.135
cs-Tu 0.165 0.162
ru-en 0.224 0.174
en-ru 0.163 0.160

Table 8: Lowercased and cased BLEU scores

5 Conclusion

We have described two independent Moses-
based SMT systems we used for the WMT
2013 shared task. We discussed experiments
with large data for many language pairs from
the point of view of both the translation accu-
racy and efficiency.
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Abstract

This paper describes our WMT submis-
sions CU-BOJAR and CU-DEPFIX, the lat-
ter dubbed “CHIMERA” because it com-
bines on three diverse approaches: Tec-
toMT, a system with transfer at the deep
syntactic level of representation, factored
phrase-based translation using Moses, and
finally automatic rule-based correction of
frequent grammatical and meaning errors.
We do not use any off-the-shelf system-
combination method.

1 Introduction

Targeting Czech in statistical machine transla-
tion (SMT) is notoriously difficult due to the
large number of possible word forms and com-
plex agreement rules. Previous attempts to resolve
these issues include specific probabilistic models
(Subotin, 2011) or leaving the morphological gen-
eration to a separate processing step (Fraser et al.,
2012; Marecek et al., 2011).

TectoMT (CU-TECTOMT, Galusc¢dkova et al.
(2013)) is a hybrid (rule-based and statistical) MT
system that closely follows the analysis-transfer-
synthesis pipeline. As such, it suffers from many
issues but generating word forms in proper agree-
ments with their neighbourhood as well as the
translation of some diverging syntactic structures
are handled well. Overall, TectoMT sometimes
even ties with a highly tuned Moses configuration
in manual evaluations, see Bojar et al. (2011).

Finally, Rosa et al. (2012) describes Depfix, a
rule-based system for post-processing (S)MT out-
put that corrects some morphological, syntactic
and even semantic mistakes. Depfix was able to
significantly improve Google output in WMT12,
so now we applied it on an open-source system.

Our WMT13 system is thus a three-headed
creature where, hopefully: (1) TectoMT provides

missing word forms and safely handles some non-
parallel syntactic constructions, (2) Moses ex-
ploits very large parallel and monolingual data,
and boosts better lexical choice, (3) Depfix at-
tempts to fix severe flaws in Moses output.

2 System Description

Input - TectoMT [ cu-tectomt

N ¥

Moses » cu-bojar

¥

Depfix H» cu-depfix = Chimera

Figure 1: CHIMERA: three systems combined.

CHIMERA is a sequential combination of three
diverse MT systems as depicted in Figure 1. Each
of the intermediate stages of processing has been
submitted as a separate primary system for the
WMT manual evalution, allowing for a more thor-
ough analysis.

Instead of an off-the-shelf system combination
technique, we use TectoMT output as synthetic
training data for Moses as described in Section 2.1
and finally we process its output using rule-based
corrections of Depfix (Section 2.2). All steps di-
rectly use the source sentence.

2.1 Moses Setup for CU-BOJAR

We ran a couple of probes with reduced training
data around the setup of Moses that proved suc-
cessful in previous years (Bojar et al., 2012a).

2.1.1 Pre-processing

We use a stable pre-processing pipeline that in-
cludes normalization of quotation marks,! tok-
enization, tagging and lemmatization with tools

"We do not simply convert them to unpaired ASCII quotes

but rather balance them and use other heuristics to convert
most cases to the typographically correct form.

Proceedings of the Eighth Workshop on Statistical Machine Translation, pages 92-98,
Sofia, Bulgaria, August 8-9, 2013 (©)2013 Association for Computational Linguistics



Ic—form
9.13

stc
9.81

utc
9.70

Case
BLEU

recaser
9.05

Table 1: Letter Casing

included in the Treex platform (Popel and
Zabokrtsky, 2010).

This year, we evaluated the end-to-end effect of
truecasing. Ideally, English-Czech SMT should be
trained on data where only names are uppercased
(and neither the beginnings of sentences, nor all-
caps headlines or exclamations etc). For these ex-
periments, we trained a simple baseline system on
1 million sentence pairs from CzEng 1.0.

Table 1 summarizes the final (case-sensitive!)
BLEU scores for four setups. The standard ap-
proach is to train SMT lowercase and apply a re-
caser, e.g. the Moses one, on the output. Another
option (denoted “lc—form”) is to lowercase only
the source side of the parallel data. This more
or less makes the translation model responsible
for identifying names and the language model for
identifying beginnings of sentences.

The final two approaches attempt at “truecas-
ing” the data, i.e. the ideal lowercasing of ev-
erything except names. Our simple unsupervised
truecaser (“utc) uses a model trained on monolin-
gual data (1 million sentences in this case, same
as the parallel training data used in this experi-
ment) to identify the most frequent “casing shape”
of each token type when it appears within a sen-
tence and then converts its occurrences at the be-
ginnings of sentences to this shape. Our super-
vised truecaser (“stc”) casts the case of the lemma
on the form, because our lemmatizers for English
and Czech produce case-sensitive lemmas to indi-
cate names. After the translation, only determinis-
tic uppercasing of sentence beginnings is needed.

We confirm that “stc” as we have been using it
for a couple of years is indeed the best option, de-
spite its unpleasingly frequent omissions of names
(incl. “Spojené stity”, “the United States”). One
of the rules in Depfix tries to cast the case from
the source to the MT output but due to alignment
errors, it is not perfect in fixing these mistakes.

Surprisingly, the standard recasing worked
worse than “lc—form”, suggesting that two Moses
runs in a row are worse than one joint search.

We consider using a full-fledged named entity
recognizer in the future.
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Tokens [M]
Corpus Sents [M]  English  Czech
CzEng 1.0 14.83  235.67 205.17
Europarl 0.65 17.61 15.00
Common Crawl 0.16 4.08 3.63

Table 2: Basic Statistics of Parallel Data.

2.1.2 Factored Translation for Morphological
Coherence

We use a quite standard factored configuration of
Moses. We translate from “stc” to two factors:
“stc” and “tag” (full Czech positional morpholog-
ical tag). Even though tags on the target side make
the data somewhat sparser (a single Czech word
form typically represents several cases, numbers
or genders), we do not use any back-off or alterna-
tive decoding path. A high-order language model
on tags is used to promote grammatically correct
and coherent output. Our system is thus less prone
to errors in local morphological agreement.

2.1.3 Large Parallel Data

The main source of our parallel data was CzEng
1.0 (Bojar et al., 2012b). We also used Europarl
(Koehn, 2005) as made available by WMT13 orga-
nizers.> The English-Czech part of the new Com-
mon Crawl corpus was quite small and very noisy,
so we did not include it in our training data. Ta-
ble 2 provides basic statistics of the data.

Processing large parallel data can be challeng-
ing in terms of time and computational resources
required. The main bottlenecks are word align-
ment and phrase extraction.

GIZA++ (Och and Ney, 2000) has been the
standard tool for computing word alignment in
phrase-based MT. A multi-threaded version exists
(Gao and Vogel, 2008), which also supports incre-
mental extensions of parallel data by applying a
saved model on a new sentence pair. We evaluated
these tools and measured their wall-clock time? as
well as the final BLEU score of a full MT system.

Surprisingly, single-threaded GIZA++ was con-
siderably faster than single-threaded MGIZA. Us-
ing 12 threads, MGIZA outperformed GIZA++
but the difference was smaller than we expected.

Table 3 summarizes the results. We checked the
difference in BLEU using the procedure by Clark
etal. (2011) and GIZA++ alignments were indeed

http://www.statmt.org/wmt13/
translation—-task.html

3Time measurements are only indicative, they were af-
fected by the current load in our cluster.



Alignment Wallclock Time  BLEU
GIZA++ 71 15.5
MGIZA 1 thread 114 154
MGIZA 12 threads 51 154

Table 3: Rough wallclock time [hours] of word
alignment and the resulting BLEU scores.

Corpus Sents [M]  Tokens [M]
CzEng 1.0 14.83 205.17
CWC Articles 36.72 626.86
CNC News 28.08 483.88
CNA 47.00 830.32
Newspapers 64.39 1040.80
News Crawl 2491 444.84
Total 215.93 3631.87

Table 4: Basic Statistics of Monolingual Data.

little but significantly better than MGIZA in three
MERT runs.
We thus use the standard GIZA++ aligner.

2.1.4 Large Language Models

We were able to collect a very large amount of
monolingual data for Czech: almost 216 million
sentences, 3.6 billion tokens. Table 4 lists the
corpora we used. CWC Articles is a section of
the Czech Web Corpus (Spoustova and Spousta,
2012). CNC News refers to a subset of the Czech
National Corpus* from the news domain. CNA
is a corpus of Czech News Agency stories from
1998 to 2012. Newspapers is a collection of ar-
ticles from various Czech newspapers from years
1998 to 2002. Finally, News Crawl is the mono-
lingual corpus made available by the organizers of
WMTI13.

We created an in-domain language model from
all the corpora except for CzEng (where we only
used the news section). We were able to train a 4-
gram language model using KenLM (Heafield et
al., 2013). Unfortunately, we did not manage to
use a model of higher order. The model file (even
in the binarized trie format with probability quan-
tization) was so large that we ran out of memory
in decoding.®> We also tried pruning these larger
models but we did not have enough RAM.

To cater for a longer-range coherence, we
trained a 7-gram language model only on the News
Crawl corpus (concatenation of all years). In this
case, we used SRILM (Stolcke, 2002) and pruned
n-grams so that (training set) model perplexity

*nttp://korpus.cz/
3Due to our cluster configuration, we need to pre-load lan-
guage models.
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Token Order  Sents Tokens  ARPA.gz  Trie

M] M] [GB] [GB]
stc 4 20131 343092 282 118
stc 7 2491 444 .84 13.1 8.1
tag 10 14.83 205.17 72 3.0

Table 5: LMs used in CU-BOJAR.

does not increase more than 10~'4. The data for
this LM exactly match the domain of WMT test
sets.

Finally, we model sequences of morphological
tags on the target side using a 10-gram LM es-
timated from CzEng. Individual sections of the
corpus (news, fiction, subtitles, EU legislation,
web pages, technical documentation and Navajo
project) were interpolated to match WMT test sets
from 2007 to 2011 best. This allows even out-of-
domain data to contribute to modeling of overall
sentence structure. We filtered the model using the
same threshold 1014,

Table 5 summarizes the resulting LM files as
used in CU-BOJAR and CHIMERA.

2.1.5 Bigger Tuning Sets

Koehn and Haddow (2012) report benefits from
tuning on a larger set of sentences. We experi-
mented with a down-scaled MT system to com-
pare a couple of options for our tuning set: the
default 3003 sentences of newstest2011, the de-
fault and three more Czech references that were
created by translating from German, the default
and two more references that were created by post-
editing a variant of our last year’s Moses system
and also a larger single-reference set consisting
of several newstest years. The preliminary re-
sults were highly inconclusive: negligibly higher
BLEU scores obtained lower manual scores. Un-
able to pick the best configuration, we picked the
largest. We tune our systems on “bigref”, as spec-
ified in Table 6. The dataset consists of 11583
source sentences, 3003 of which have 4 reference
translations and a subset (1997 sents.) of which
has 2 reference translations constructed by post-
editing. The dataset does not include 2010 data as
a heldout for other foreseen experiments.

2.1.6 Synthetic Parallel Data

Galuscakova et al. (2013) describe several possi-
bilities of combining TectoMT and phrase-based
approaches. Our CU-BOJAR uses one of the sim-
pler but effective ones: adding TectoMT output on
the test set to our training data. As a contrast to



English Czech #Refs  # Snts
newstest2011  official + 3 more from German 4 3003
newstest2011 2 post-edits of a system 2 1997
similar to (Bojar et al., 2012a)
newstest2009  official 1 2525
newstest2008  official 1 2051
newstest2007  official 1 2007
Total 4 11583

Table 6: Our big tuning set (bigref).

CU-BOJAR, we also examine PLAIN Moses setup
which is identical but lacks the additional syn-
thetic phrase table by TectoMT.

In order to select the best balance between
phrases suggested by TectoMT and our parallel
data, we provide these data as two separate phrase
tables. Each phrase table brings in its own five-
tuple of scores, one of which, the phrase-penalty
functions as an indicator how many phrases come
from which of the phrase tables. The standard
MERT is then used to optimize the weights.®’

We use one more trick compared to
Galuscakova et al. (2013): we deliberately
overlap our training and tuning datasets. When
preparing the synthetic parallel data, we use the
English side of newstests 08 and 10-13. The
Czech side is always produced by TectoMT. We
tune on bigref (see Table 6), so the years 08, 11
and 12 overlap. (We could have overlapped also
years 07, 09 and 10 but we had them originally
reserved for other purposes.) Table 7 summarizes
the situation and highlights that our setup is fair:
we never use the target side of our final evaluation
set newstest2013. Some test sets are denoted
“could have” as including them would still be
correct.

The overlap allows MERT to estimate how use-
ful are TectoMT phrases compared to the standard
phrase table not just in general but on the spe-
cific foreseen test set. This deliberate overfitting
to newstest 08, 11 and 12 then helps in translating
newstest13.

This combination technique in its current state
is rather expensive as a new phrase table is re-
quired for every new input document. However,
if we fix the weights for the TectoMT phrase ta-

SUsing K-best batch MIRA (Cherry and Foster, 2012) did
not work any better in our setup.

"We are aware of the fact that Moses alternative decoding
paths (Birch and Osborne, 2007) with similar phrase tables
clutter n-best lists with identical items, making MERT less
stable (Eisele et al., 2008; Bojar and Tamchyna, 2011). The
issue was not severe in our case, CU-BOJAR needed 10 itera-
tions compared to 3 iterations needed for PLAIN.

Used in

Test Set Training Tuning Final Eval
newstest07 could have en+cs -
newstestO8  en+TectoMT en+cs -
newstest09 could have en+cs -
newstestl0  en+TectoMT  could have -
newstestll  en+TectoMT en+cs -
newstestl2  en+TectoMT en+cs -
newstestl3  en+TectoMT - en+cs

Table 7: Summary of test sets usage. “en” and
“cs” denote the official English and Czech sides,
resp. “TectoMT” denotes the synthetic Czech.

ble, we can avoid re-tuning the system (whether
this would degrade translation quality needs to be
empirically evaluated). Moreover, if we use a dy-
namic phrase table, we could update it with Tec-
toMT outputs on the fly, thus bypassing the need
to retrain the translation model.

2.2 Depfix

Depfix is an automatic post-editing tool for cor-
recting errors in English-to-Czech SMT. It is ap-
plied as a post-processing step to CU-BOJAR, re-
sulting in the CHIMERA system. Depfix 2013 is an
improvement of Depfix 2012 (Rosa et al., 2012).
Depfix focuses on three major types of language
phenomena that can be captured by employing lin-
guistic knowledge but are often hard for SMT sys-
tems to get right:
e morphological agreement, such as:

— an adjective and the noun it modifies have to
share the same morphological gender, num-
ber and case

— the subject and the predicate have to agree in
morphological gender, number and person, if
applicable

o transfer of meaning in cases where the same
meaning is expressed by different grammatical
means in English and in Czech, such as:

— asubject in English is marked by being a left
modifier of the predicate, while in Czech a
subject is marked by the nominative morpho-
logical case

— English marks possessiveness by the preposi-
tion “of”’, while Czech uses the genitive mor-
phological case

— negation can be marked in various ways in
English and Czech

e verb-noun and noun-noun valency—see (Rosa

et al., 2013)

Depfix first performs a complex lingustic anal-



System BLEU TER WMT Ranking
Appraise  MTurk
CU-TECTOMT 14.7 0.741 0.455 0.491
CU-BOJAR 20.1 0.696 0.637 0.555
CU-DEPFIX 20.0 0.693 0.664 0.542
PLAIN Moses 19.5 0.713 - -
GOOGLE TR. - - 0.618 0.526

Table 8: Overall results.

ysis of both the source English sentence and its
translation to Czech by CU-BOJAR. The anal-
ysis includes tagging, word-alignment, and de-
pendency parsing both to shallow-syntax (“analyt-
ical”) and deep-syntax (“tectogrammatical”) de-
pendency trees. Detection and correction of errors
is performed by rule-based components (the va-
lency corrections use a simple statistical valency
model). For example, if the adjective-noun agree-
ment is found to be violated, it is corrected by
projecting the morphological categories from the
noun to the adjective, which is realized by chang-
ing their values in the Czech morphological tag
and generating the appropriate word form from the
lemma-tag pair using the rule-based generator of
Hajic (2004).

Rosa (2013) provides details of the current ver-
sion of Depfix. The main additions since 2012 are
valency corrections and lost negation recovery.

3 Overall Results

Table 8 reports the scores on the WMT13 test
set. BLEU and TER are taken from the evalu-
ation web site® for the normalized outputs, case
insensitive. The normalization affects typeset-
ting of punctuation only and greatly increases
automatic scores. “WMT ranking” lists results
from judgments from Appraise and Mechanical
Turk. Except CU-TECTOMT, the manual evalua-
tion used non-normalized MT outputs. The fig-
ure is the WMT12 standard interpretation as sug-
gested by Bojar et al. (2011) and says how often
the given system was ranked better than its com-
petitor across all 18.6k non-tying pairwise com-
parisons extracted from the annotations.

We see a giant leap from CU-TECTOMT to CU-
BOJAR, confirming the utility of large data. How-
ever, CU-TECTOMT had something to offer since it
improved over PLAIN, a very competitive baseline,
by 0.6 BLEU absolute. Depfix seems to slightly
worsen BLEU score but slightly improve TER; the

$http://matrix.statmt.org/
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System # Tokens % Tokens
All 22920 76.44
Moses 3864 12.89
TectoMT 2323 7.75
Other 877 292

Table 9: CHIMERA components that contribute
“confirmed” tokens.

System # Tokens % Tokens
None 21633 79.93
Moses 2093 7.73
TectoMT 2585 9.55

Both 385 1.42
CU-BOJAR 370 1.37

Table 10: Tokens missing in CHIMERA output.

manual evaluation is similarly indecisive.

4 Combination Analysis

We now closely analyze the contributions of
the individual engines to the performance of
CHIMERA. We look at translations of the new-
stest2013 sets produced by the individual systems
(PLAIN, CU-TECTOMT, CU-BOJAR, CHIMERA).

We divide the newstest2013 reference tokens
into two classes: those successfully produced by
CHIMERA (Table 9) and those missed (Table 10).
The analysis can suffer from false positives as well
as false negatives, a “confirmed” token can violate
some grammatical constraints in MT output and
an “unconfirmed” token can be a very good trans-
lation. If we had access to more references, the
issue of false negatives would decrease.

Table 9 indicates that more than 3/4 of to-
kens confirmed by the reference were available
in all CHIMERA components: PLAIN Moses, CU-
TECTOMT alone but also in the subsequent combi-
nations CU-BOJAR and the final CU-DEPFIX.

PLAIN Moses produced 13% tokens that Tec-
toMT did not provide and TectoMT output
roughly 8% tokens unknown to Moses. However,
note that it is difficult to distinguish the effect of
different model weights: PLAIN might have pro-
duced some of those tokens as well if its weights
were different. The row “Other” includes cases
where e.g. Depfix introduced a confirmed token
that none of the previous systems had.

Table 10 analyses the potential of CHIMERA
components. These tokens from the reference
were not produced by CHIMERA. In almost 80%
of cases, the token was not available in any 1-best
output; it may have been available in Moses phrase



tables or the input sentence.

TectoMT offered almost 10% of missed tokens,
but these were not selected in the subsequent com-
bination. The potential of Moses is somewhat
lower (about 8%) because our phrase-based com-
bination is likely to select wordings that score well
in a phrase-based model. 385 tokens were sug-
gested by both TectoMT and Moses alone, but the
combination in CU-BOJAR did not select them, and
finally 370 tokens were produced by the combina-
tion while they were not present in 1-best output of
neither TectoMT nor Moses. Remember, all these
tokens eventually did not get to CHIMERA output,
so Depfix must have changed them.

4.1 Depfix analysis

Table 11 analyzes the performance of the individ-
ual components of Depfix. Each evaluated sen-
tence was either modified by a Depfix component,
or not. If it was modified, its quality could have
been evaluated as better (improved), worse (wors-
ened), or the same (equal) as before. Thus, we can
evaluate the performance of the individual compo-

nents by the following measures:°
.. o #improved
precision = #Himproved+#Hworsened (1)
. _ #modified
,meaCt — #evaluated (2)
useless = ﬁ% 3)

Please note that we make an assumption that if
a sentence was modified by multiple Depfix com-
ponents, they all have the same effect on its qual-
ity. While this is clearly incorrect, it is impossible
to accurately determine the effect of each individ-
ual component with the evaluation data at hand.
This probably skews especially the reported per-
formance of “high-impact” components, which of-
ten operate in combination with other components.

The evaluation is computed on 871 hits in which
CU-BOJAR and CHIMERA were compared.

The results show that the two newest compo-
nents — Lost negation recovery and Valency model
— both modify a large number of sentences. Va-
lency model seems to have a slightly negative ef-
fect on the translation quality. As this is the only
statistical component of Depfix, we believe that
this is caused by the fact that its parameters were
not tuned on the final CU-BOJAR system, as the

“We use the term precision for our primary measure for

convenience, even though the way we define it does not match
exactly its usual definition.
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Depfix component Prc. Imp. Usl.
Aux ’be’ agr. - 1.4%  100%
No prep. without children - 0.5% 100%
Sentence-initial capitalization 0% 0.1% 0%
Prepositional morph. case 0% 2.1% 83%
Preposition - noun agr. 40% 3.8% 70%
Noun number projection 41% 7.2% 65%
Valency model 48% 10.6% 66%
Subject - nominal pred. agr. 50% 3.8% 76%
Noun - adjective agr. 55% 17.8% 75%
Subject morph. case 56% 8.5% 57%
Tokenization projection 56% 3.0% 38%
Verb tense projection 58% 5.2% 47%
Passive actor with by’ 60% 1.0% 44%
Possessive nouns 67% 0.9% 25%
Source-aware truecasing 67% 2.8% 50%
Subject - predicate agr. 68% 5.1% 57%
Pro-drop in subject 73% 3.4% 63%
Subject - past participle agr. 75% 6.3% 42%
Passive - aux 'be’ agr. 77% 4.8% 69%
Possessive with *of” 78% 1.5% 31%
Present continuous 78% 1.5% 31%
Missing reflexive verbs 80% 1.6% 64%
Subject categories projection  83% 3.7% 62%
Rehang children of aux verbs  83% 5.5% 62%
Lost negation recovery 90% 7.2% 38%

Table 11: Depfix components performance analy-
sis on 871 sentences from WMT13 test set.

tuning has to be done semi-manually and the fi-
nal system was not available in advance. On the
other hand, Lost negation recovery seems to have
a highly positive effect on translation quality. This
is to be expected, as a lost negation often leads to
the translation bearing an opposite meaning to the
original one, which is probably one of the most
serious errors that an MT system can make.

5 Conclusion

We have reached our chimera to beat Google
Translate. We combined all we have: a deep-
syntactic transfer-based system TectoMT, very
large parallel and monolingual data, factored setup
to ensure morphological coherence, and finally
Depfix, a rule-based automatic post-editing sys-
tem that corrects grammaticality (agreement and
valency) of the output as well as some features vi-
tal for adequacy, namely lost negation.
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Abstract

This paper describes the English-Russian
and Russian-English statistical machine
translation (SMT) systems developed at
Yandex School of Data Analysis for the
shared translation task of the ACL 2013
Eighth Workshop on Statistical Machine
Translation. We adopted phrase-based
SMT approach and evaluated a number
of different techniques, including data fil-
tering, spelling correction, alignment of
lemmatized word forms and translitera-
tion. Altogether they yielded +2.0 and
+1.5 BLEU improvement for ru-en and en-
ru language pairs. We also report on the
experiments that did not have any positive
effect and provide an analysis of the prob-
lems we encountered during the develop-
ment of our systems.

1 Introduction

We participated in the shared translation task of
the ACL 2013 Workshop on Statistical Machine
Translation (WMT13) for ru-en and en-ru lan-
guage pairs. We provide a detailed description of
the experiments carried out for the development of
our systems.

The rest of the paper is organized as follows.
Section 2 describes the tools and data we used.
Our Russian—English and English—Russian se-
tups are discussed in Section 3. In Section 4 we
report on the experiments that did not have any
positive effect despite our expectations. We pro-
vide a thorough analysis of erroneous outputs in
Section 5 and draw conclusions in Section 6.

2 Tools and data
2.1 Tools

We used an open source SMT system Moses
(Koehn et al., 2007) for all our experiments ex-
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cluding the one described in Section 4.1 due to its
performance constraints. To overcome the limita-
tion we employed our in-house decoder.

Language models (LM) were created with an
open source IRSTLM toolkit (Federico et al.,
2008). We computed 4-gram LMs with modified
Kneser-Ney smoothing (Kneser and Ney, 1995).

We used an open source MGIZA++ tool (Gao
and Vogel, 2008) to compute word alignment.

To obtain part of speech (POS) tags we used
an open source Stanford POS tagger for English
(Toutanova et al., 2003) and an open source suite
of language analyzers, FreeLing 3.0 (Carreras et
al., 2004; Padr6 and Stanilovsky, 2012), for Rus-
sian.

We utilized a closed source free for non-
commercial use morphological analyzer, Mystem
(Segalovich, 2003), that used a limited dictionary
to obtain lemmas.

We also made use of the in-house language rec-
ognizer based on (Dunning, 1994) and a spelling
corrector designed on the basis of the work of
Cucerzan and Brill (2004).

We report all results in case-sensitive BLEU
(Papineni et al., 2002) using mt-evall3a script
from Moses distribution.

2.2 Data
Training data

We used News Commentary and News Crawl
monolingual corpora provided by the organizers
of the workshop.

Bilingual training data comprised English-
Russian parallel corpus release by Yandex', News
Commentary and Common Crawl corpora pro-
vided by the organizers.

We also exploited Wiki Headlines collection of
three parallel corpora provided by CMU? as a

'https ://translate.yandex.ru/corpus
http://www.statmt.org/wmt13/
wiki-titles.ru-en.tar.gz
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source of reliable data.

Development set

The newstest2012 test set (Callison-Burch et al.,
2012) was divided in the ratio 2:1 into a tuning
set and a test set. The latter is referred to as
newstest2012-test in the rest of the paper.

3 Primary setups

3.1 Baseline

We built the baseline systems according to the in-
structions available at the Moses website?.

3.2 Preprocessing

The first thing we noticed was that some sentences
marked as Russian appeared to be sentences in
other languages (most commonly English). We
applied a language recognizer for both monolin-
gual and bilingual corpora. Results are given in
Table 1.

Corpus Filtered out (%)
Bilingual 3.39
Monolingual (English) 0.41
Monolingual (Russian) 0.58

Table 1: Results of the language recognizer: per-
centage of filtered out sentences.

The next thing we came across was the pres-
ence of a lot of spelling errors in our training data,
so we applied a spelling corrector. Statistics are
presented in Table 2.

Corpus Modified (%)
Bilingual (English) 0.79
Bilingual (Russian) 1.45
Monolingual (English) 0.61
Monolingual (Russian) 0.52

Table 2: Results of the spelling corrector: percent-
age of modified sentences.

3.3 Alignment of lemmatized word forms

Russian is a language with rich morphology. The
diversity of word forms results in data sparse-
ness that makes translation of rare words dif-
ficult. In some cases inflections do not con-
tain any additional information and are used

http://www.statmt.org/moses/?n=moses.
baseline
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only to make an agreement between two words.
E.g. ADJ + NOUN: kpacus|as | apda (beau-
tiful harp), xpacus[oe| nuanuno (beautiful pi-
ano), KpaCHB posinb (beautiful grand piano).
These inflections reflect the gender of the noun
words, that has no equivalent in English.

In this particular case we can drop the inflec-
tions, but for other categories they can still be use-
ful for translation, because the information they
contain appears in function words in English. On
the other hand, most of Russian morphology is
useless for word alignment.

We applied a morphological analyzer Mystem
(Segalovich, 2003) to the Russian text and con-
verted each word to its dictionary form. Next
we computed word alignment between the origi-
nal English text and the lemmatized Russian text.
All the other steps were executed according to the
standard procedure with the original texts.

3.4 Phrase score adjustment

Sometimes phrases occur one or two times in the
training corpus. In this case the corresponding
phrase translation probability would be overesti-
mated. We used Good-Turing technique described
in (Gale, 1994) to decrease it to some more realis-
tic value.

3.5 Decoding

Minimum Bayes-Risk (MBR)

MBR decoding (Kumar and Byrne, 2004) aims
to minimize the expected loss of translation er-
rors. As it is not possible to explore the space of
all possible translations, we approximated it with
the 1,000 most probable translations. A minus
smoothed BLEU score (Lin and Och, 2004) was
used for the loss function.

Reordering constrains

We forbade reordering over punctuation and trans-
lated quoted phrases independently.

3.6 Handling unknown words

The news texts contained a lot of proper names
that did not appear in the training data. E.g. al-
most 25% of our translations contained unknown
words. Dropping the unknown words would lead
to better BLEU scores, but it might had caused
bad effect on human judgement. To leave them
in Cyrillic was not an option, so we exploited two
approaches: incorporating reliable data from Wiki
Headlines and transliteration.



newstest2012-test | newstest2013
Russian— English
Baseline 28.96 21.82
+ Preprocessing 29.59 22.28
+ Alignment of lemmatized word forms 29.97 22.61
+ Good-Turing 30.31 22.87
+ MBR 30.45 23.21
+ Reordering constraints 30.54 23.33
+ Wiki Headlines 30.68 23.46
+ Transliteration 30.93 23.73
English— Russian
Baseline 21.96 16.24
+ Preprocessing 22.48 16.76
+ Good-Turing 22.84 17.13
+ MBR and Reordering constraints 23.27 17.45
+ Wiki Headlines and Transliteration 23.54 17.80

Table 3: Experimental results in case-sensitive BLEU for Russian—English and English—Russian tasks.

Wiki Headlines

We replaced the names occurring in the text with
their translations, based on the information in
"guessed-names" corpus from Wiki Headlines.

As has been mentioned in Section 3.3, Russian
is a morphologically rich language. This often
makes it hard to find exactly the same phrases,
so we applied lemmatization of Russian language
both for the input text and the Russian side of the
reference corpus.

Russian— English transliteration

We gained considerable improvement from incor-
porating Wiki Headlines, but still 17% of transla-
tions contained Cyrillic symbols.

We applied a transliteration algorithm based on
(Knight and Graehl, 1998). This technique yielded
us a significant improvement, but introduced a lot
of errors. E.g. Ixxetimc Bonn (James Bond) was
converted to Dzhejms Bond.

English— Russian transliteration

In Russian, it is a common practice to leave some
foreign words in Latin. E.g. the names of compa-
nies: Apple, Google, Microsoft look inadmissible
when either translated directly or transliterated.
Taking this into account, we applied the
same transliteration algorithm (Knight and Graehl,
1998), but replaced an unknown word with its
transliteration only if we found a sufficient num-
ber of occurrences of its transliterated form in the
monolingual corpus. We used five for such num-

101

ber.

3.7 Experimental results

We summarized the gains from the de-
scribed techniques for Russian—English and
English—Russian tasks on Table 3.

4 What did not work

4.1 'Translation in two stages

Frequently machine translations contain errors
that can be easily corrected by human post-editors.
Since human aided machine translation is cost-
efficient, we decided to address this problem to the
computer.

We propose to translate sentences in two stages.
At the first stage a SMT system is used to trans-
late the input text into a preliminary form (in target
language). At the next stage the preliminary form
is translated again with an auxiliary SMT system
trained on the translated and the target sides of the
parallel corpus.

We encountered a technical challenge, when we
had to build a SMT system for the second stage.
A training corpus with one side generated with
the first stage SMT system was not possible to be
acquired with Moses due to its performance con-
straints. Thereupon we utilized our in-house SMT
decoder and managed to translate 2M sentences in
time.

We applied this technique both for ru-en and en-
ru language pairs. Approximately 20% of the sen-



tences had changed, but the BLEU score remained
the same.

4.2 Factored model

We tried to build a factored model for ru-en lan-
guage pair with POS tags produced by Stanford
POS tagger (Toutanova et al., 2003).

Unfortunately, we did not gain any improve-
ments from it.

5 Analysis

We carefully examined the erroneous outputs of
our system and compared it with the outputs of
the other systems participating in ru-en and en-ru
tasks, and with the commercial systems available
online (Bing, Google, Yandex).

5.1 Transliteration

Russian— English

The standard transliteration procedure is not in-
vertible. This means that a Latin word being trans-
fered into Cyrillic and then transliterated back
to Latin produces an artificial word form. E.g.
XaBapa XausbBapcen / Havard Halvarsen was
correctly transliterated by only four out of 23
systems, including ours. Twelve systems either
dropped one of the words or left it in Cyrillic.
We provide a list of typical mistakes in order of
their frequency: Khavard Khalvarsen, Khavard
Khal’varsen, Xavard Xaljvarsen. Another exam-
ple: Mucc Yaitart (Miss Wyatt) — Miss Uayett
(all the systems failed).

The next issue is the presence of non-null in-
flections that most certainly would result in wrong
translation by any straight-forward algorithm. E.g.
Xaitnensbepr| a| (Heidelberg) — Heidelberga.

English— Russian

In Russian, most words of foreign origin are writ-
ten phonetically. Thereby, in order to obtain the
best quality we should transliterate the transcrip-
tion, not the word itself. E.g. the French derived
name Elsie Monereau [’elsi mono’tav] being trans-
lated by letters would result in Dsicu Mouepeay
while the transliteration of the transcription would
result in the correct form Dsicu Momnpo.

5.2 Grammars

English and Russian make use of different gram-
mars. When the difference in their sentence struc-
ture becomes fundamental the phrase-based ap-
proach might get inapplicable.
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Word order

Both Russian and English are classified as subject-
verb-object (SOV) languages, but Russian has
rather flexible word order compared to English
and might frequently appear in other forms. This
often results in wrong structure of the translated
sentence. A common mistake made by our sys-
tem and reproduced by the major online services:
He M3MEHWJINCh U mpaBuia (rules have not been
changed either) — have not changed and the
rules.

Constructions

o there is / there are is a non-local construc-
tion that has no equivalent in Russian. In
most cases it can not be produced from the
Russian text. E.g. ma croste cTont maTpér-
Ka (there is a matryoshka doll on the table)
— on the table is a matryoshka.

multiple negatives in Russian are grammati-
cally correct ways to express negation (a sin-
gle negative is sometimes incorrect) while
they are undesirable in standard English. E.g.
Tam mukTO HuUKOrIA HEe ObLI (nobody has
ever been there) being translated word by
word would result in there nobody never not
was.

5.3 Idioms

Idiomatic expressions are hard to discover and
dangerous to translate literary. E.g. a Russian
idiom 6buta He ObLia (let come what may) be-
ing translated word by word would result in was
not was. Neither of the commercial systems we
checked managed to collect sufficient statistic to
translate this very popular expression.

6 Conclusion

We have described the primary systems developed
by the team of Yandex School of Data Analysis for
WMT13 shared translation task.

We have reported on the experiments and
demonstrated considerable improvements over the
respective baseline. Among the most notable tech-
niques are data filtering, spelling correction, align-
ment of lemmatized word forms and translitera-
tion. We have analyzed the drawbacks of our sys-
tems and shared the ideas for further research.
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Abstract

This paper describes the phrase-based
SMT systems developed for our partici-
pation in the WMT13 Shared Translation
Task. Translations for English<+>German
and English<+French were generated us-
ing a phrase-based translation system
which is extended by additional models
such as bilingual, fine-grained part-of-
speech (POS) and automatic cluster lan-
guage models and discriminative word
lexica (DWL). In addition, we combined
reordering models on different sentence
abstraction levels.

1 Introduction

In this paper, we describe our systems for the
ACL 2013 Eighth Workshop on Statistical Ma-
chine Translation. We participated in the Shared
Translation Task and submitted translations for
English<>German and English<>French using a
phrase-based decoder with lattice input.

The paper is organized as follows: the next sec-
tion gives a detailed description of our systems
including all the models. The translation results
for all directions are presented afterwards and we
close with a conclusion.

2 System Description

The phrase table is based on a GIZA++ word
alignment for the French<+>English systems. For
the German<+English systems we use a Discrim-
inative Word Alignment (DWA) as described in
Niehues and Vogel (2008). For every source
phrase only the top 10 translation options are con-
sidered during decoding. The SRILM Toolkit
(Stolcke, 2002) is used for training SRI language
models using Kneser-Ney smoothing.

For the word reordering between languages, we
used POS-based reordering models as described in
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Section 4. In addition to it, tree-based reordering
model and lexicalized reordering were added for
German<>English systems.

An in-house phrase-based decoder (Vogel,
2003) is used to perform translation. The trans-
lation was optimized using Minimum Error Rate
Training (MERT) as described in Venugopal et
al. (2005) towards better BLEU (Papineni et al.,
2002) scores.

2.1 Data

The Europarl corpus (EPPS) and News Commen-
tary (NC) corpus were used for training our trans-
lation models. We trained language models for
each language on the monolingual part of the
training corpora as well as the News Shuffle and
the Gigaword corpora. The additional data such as
web-crawled corpus, UN and Giga corpora were
used after filtering. The filtering work for this data
is discussed in Section 3.

For the German<+English systems we use the
news-test2010 set for tuning, while the news-
test2011 set is used for the French<>English sys-
tems. For testing, news-test2012 set was used for
all systems.

2.2 Preprocessing

The training data is preprocessed prior to train-
ing the system. This includes normalizing special
symbols, smart-casing the first word of each sen-
tence and removing long sentences and sentence
pairs with length mismatch.

Compound splitting is applied to the German
part of the corpus of the German—English system
as described in Koehn and Knight (2003).

3 Filtering of Noisy Pairs

The filtering was applied on the corpora which
are found to be noisy. Namely, the Giga English-
French parallel corpus and the all the new web-
crawled data . The operation was performed using
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an SVM classifier as in our past systems (Medi-
ani et al., 2011). For each pair, the required lexica
were extracted from Giza alignment of the corre-
sponding EPPS and NC corpora. Furthermore, for
the web-crawled data, higher precision classifiers
were trained by providing a larger number of neg-
ative examples to the classifier.

After filtering, we could still find English sen-
tences in the other part of the corpus. Therefore,
we performed a language identification (LID)-
based filtering afterwards (performed only on the
French-English corpora, in this participation).

4 Word Reordering

Word reordering was modeled based on POS se-
quences. For the German<+English system, re-
ordering rules learned from syntactic parse trees
were used in addition.

4.1 POS-based Reordering Model

In order to train the POS-based reordering model,
probabilistic rules were learned based on the POS
tags from the TreeTagger (Schmid and Laws,
2008) of the training corpus and the alignment. As
described in Rottmann and Vogel (2007), continu-
ous reordering rules are extracted. This modeling
of short-range reorderings was extended so that it
can cover also long-range reorderings with non-
continuous rules (Niehues and Kolss, 2009), for
German<>English systems.

4.2 Tree-based Reordering Model

In addition to the POS-based reordering, we
apply a tree-based reordering model for the
German<+English translation to better address the
differences in word order between German and
English. We use the Stanford Parser (Rafferty and
Manning, 2008) to generate syntactic parse trees
for the source side of the training corpus. Then
we use the word alignment between source and
target language to learn rules on how to reorder
the constituents in a German source sentence to
make it match the English target sentence word or-
der better (Herrmann et al., 2013). The POS-based
and tree-based reordering rules are applied to each
input sentence. The resulting reordered sentence
variants as well as the original sentence order are
encoded in a word lattice. The lattice is then used
as input to the decoder.
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4.3 Lexicalized Reordering

The lexicalized reordering model stores the re-
ordering probabilities for each phrase pair. Pos-
sible reordering orientations at the incoming and
outgoing phrase boundaries are monotone, swap
or discontinuous. With the POS- and tree-based
reordering word lattices encode different reorder-
ing variants. In order to apply the lexicalized re-
ordering model, we store the original position of
each word in the lattice. At each phrase boundary
at the end, the reordering orientation with respect
to the original position of the words is checked.
The probability for the respective orientation is in-
cluded as an additional score.

5 Translation Models

In addition to the models used in the baseline sys-
tem described above, we conducted experiments
including additional models that enhance trans-
lation quality by introducing alternative or addi-
tional information into the translation modeling
process.

5.1 Bilingual Language Model

During the decoding the source sentence is seg-
mented so that the best combination of phrases
which maximizes the scores is available. How-
ever, this causes some loss of context information
at the phrase boundaries. In order to make bilin-
gual context available, we use a bilingual language
model (Niehues et al., 2011). In the bilingual lan-
guage model, each token consists of a target word
and all source words it is aligned to.

5.2 Discriminative Word Lexicon

Mauser et al. (2009) introduced the Discriminative
Word Lexicon (DWL) into phrase-based machine
translation. In this approach, a maximum entropy
model is used to determine the probability of using
a target word in the translation.

In this evaluation, we used two extensions to
this work as shown in (Niehues and Waibel, 2013).
First, we added additional features to model the
order of the source words better. Instead of rep-
resenting the source sentence as a bag-of-words,
we used a bag-of-n-grams. We used n-grams up to
the order of three and applied count filtering to the
features for higher order n-grams.

Furthermore, we created the training examples
differently in order to focus on addressing errors
of the other models of the phrase-based translation



system. We first translated the whole corpus with a
baseline system. Then we only used the words that
occur in the N-Best List and not in the reference as
negative examples instead of using all words that
do not occur in the reference.

5.3 Quasi-Morphological Operations

Because of the inflected characteristic of the
German language, we try to learn quasi-
morphological operations that change the lexi-
cal entry of a known word form to the out-of-
vocabulary (OOV) word form as described in
Niehues and Waibel (2012).

5.4 Phrase Table Adaptation

For the French<«+English systems, we built two
phrase tables; one trained with all data and the
other trained only with the EPPS and NC cor-
pora. This is due to the fact that Giga corpus is big
but noisy and EPPS and NC corpus are more reli-
able. The two models are combined log-linearly to
achieve the adaptation towards the cleaner corpora
as described in Niehues et al. (2010).

6 Language Models

The 4-gram language models generated by the
SRILM toolkit are used as the main language
models for all of our systems. For the
English<+French systems, we use a good quality
corpus as in-domain data to train in-domain lan-
guage models. Additionally, we apply the POS
and cluster language models in different systems.
For the German—English system, we build sepa-
rate language models using each corpus and com-
bine them linearly before the decoding by mini-
mizing the perplexity. Language models are inte-
grated into the translation system by a log-linear
combination and receive optimal weights during
tuning by the MERT.

6.1 POS Language Models

For the English—German system, we use the POS
language model, which is trained on the POS se-
quence of the target language. The POS tags are
generated using the RFTagger (Schmid and Laws,
2008) for German. The RFTagger generates fine-
grained tags which include person, gender, and
case information. The language model is trained
with up to 9-gram information, using the German
side of the parallel EPPS and NC corpus, as well
as the News Shuffle corpus.
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6.2 Cluster Language Models

In order to use larger context information, we use
a cluster language model for all our systems. The
cluster language model is based on the idea shown
in Och (1999). Using the MKCLS algorithm, we
cluster the words in the corpus, given a number
of classes. Then words in the corpus are replaced
with their cluster IDs. Using these cluster IDs,
we train n-gram language models as well as a
phrase table with this additional factor of cluster
ID. Our submitted systems have diversed range of
the number of clusters as well as n-gram.

7 Results

Using the models described above we performed
several experiments leading finally to the systems
used for generating the translations submitted to
the workshop. The results are reported as case-
sensitive BLEU scores on one reference transla-
tion.

7.1 German— English

The experiments for the German to English trans-
lation system are summarized in Table 1. The
baseline system uses POS-based reordering, DWA
with lattice phrase extraction and language models
trained on the News Shuffle corpus and Giga cor-
pus separately. Then we added a 5-gram cluster
LM trained with 1,000 word classes. By adding a
language model using the filtered crawled data we
gained 0.3 BLEU on the test set. For this we com-
bined all language models linearly. The filtered
crawled data was also used to generate a phrase
table, which brought another improvement of 0.85
BLEU. Applying tree-based reordering improved
the BLEU score, and the performance had more
gain by adding the extended DWL, namely us-
ing both bag-of-ngrams and n-best lists. While
lexicalized reordering gave us a slight gain, we
added morphological operation and gained more
improvements.

7.2 English—German

The English to German baseline system uses POS-
based reordering and language models using par-
allel data (EPPS and NC) as shown in Table 2.
Gradual gains were achieved by changing align-
ment from GIZA++ to DWA, adding a bilingual
language model as well as a language model based
on the POS tokens. A 9-gram cluster-based lan-
guage model with 100 word classes gave us a



System Dev Test
Baseline 24.15 22.79
+ Cluster LM 24.18 22.84
+ Crawled Data LM (Comb.) 24.53 23.14
+ Crawled Data PT 25.38 23.99
+ Tree Rules 25.80 24.16
+ Extended DWL 25.59 24.54
+ Lexicalized Reordering 26.04 24.55
+ Morphological Operation - 24.62

Table 1: Translation results for German—English

small gain. Improving the reordering using lexi-
alized reordering gave us gain on the optimization
set. Using DWL let us have more improvements
on our test set. By using the filtered crawled data,
we gained a big improvement of 0.46 BLEU on
the test set. Then we extended the DWL with bag
of n-grams and n-best lists to achieve additional
improvements. Finally, the best system includes
lattices generated using tree rules.

System Dev Test
Baseline 17.00 16.24
+ DWA 17.27 16.53
+ Bilingual LM 17.27 16.59
+POS LM 17.46 16.66
+ Cluster LM 17.49 16.68
+ Lexicalized Reordering 17.57 16.68
+ DWL 17.58 16.77
+ Crawled Data 18.43 17.23
+ Extended DWL 18.66 17.57
+ Tree Rules 18.63 17.70

Table 2: Translation results for English—German

7.3 French—English

Table 3 reports some remarkable improvements
as we combined several techniques on the
French—English direction. The baseline system
was trained on parallel corpora such as EPPS, NC
and Giga, while the language model was trained
on the English part of those corpora plus News
Shuffle. The newly presented web-crawled data
helps to achieve almost 0.6 BLEU points more
on test set. Adding bilingual language model and
cluster language model does not show a significant
impact. Further gains were achieved by the adap-
tation of in-domain data into general-theme phrase
table, bringing 0.15 BLEU better on the test set.
When we added the DWL feature, it notably im-
proves the system by 0.25 BLEU points, resulting
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in our best system.

System Dev Test
Baseline 30.33 29.35
+ Crawled Data 30.59 29.93
+ Bilingual and Cluster LMs 30.67 30.01
+ In-Domain PT Adaptation 31.17 30.16
+ DWL 31.07 30.40

Table 3: Translation results for French—English

7.4 English—French

In the baseline system, EPPS, NC, Giga and News
Shuffle corpora are used for language modeling.
The big phrase tables tailored EPPC, NC and Giga
data. The system also uses short-range reordering
trained on EPPS and NC. Adding parallel and fil-
tered crawl data improves the system. It was fur-
ther enhanced by the integration of a 4-gram bilin-
gual language model. Moreover, the best config-
uration of 9-gram language model trained on 500
clusters of French texts gains 0.25 BLEU points
improvement. We also conducted phrase-table
adaptation from the general one into the domain
covered by EPPS and NC data and it helps as well.
The initial try-out with lexicalized reordering fea-
ture showed an improvement of 0.23 points on the
development set, but a surprising reduction on the
test set, thus we decided to take the system after
adaptation as our best English—French system.

System Dev  Test
Baseline 30.50 27.77
+ Crawled Data 31.05 27.87
+ Bilingual LM 31.23 28.50
+ Cluster LM 31.58 28.75
+ In-Domain PT Adaptation 31.88 29.12
+ Lexicalized Reordering 32.11 28.98

Table 4: Translation results for English—French

8 Conclusions

We have presented the systems for our par-
ticipation in the WMT 2013 Evaluation for
English«>German and English<+French. All sys-
tems use a class-based language model as well
as a bilingual language model. Using a DWL
with source context improved the translation qual-
ity of English<»German systems. Also for these
systems, we could improve even more with a
tree-based reordering model. Special handling



of OOV words improved German—English sys-
tem, while for the inverse direction the language
model with fine-grained POS tags was helpful. For
English<+French, phrase table adaptation helps to
avoid using wrong parts of the noisy Giga corpus.
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Abstract

This paper describesUBITAK-B ILGEM
statistical machine translation (SMT) sys-
tems submitted to the Eighth Work-
shop on Statistical Machine Transla-
tion (WMT) shared translation task for
German-English language pair in both di-
rections. We implement phrase-based
SMT systems with standard parameters.
We present the results of using a big tun-
ing data and the effect of averaging tun-
ing weights of different seeds. Addition-
ally, we performed a linguistically moti-
vated compound splitting in the German-
to-English SMT system.

Introduction

MGIZA++ (Gao and Vogel, 2008) with the stan-
dard alignment heuristigrow-diag-final(Och and
Ney, 2003) for word alignments.Good-Turing
smoothing was used for phrase extraction. Sys-
tems were tuned omewstest2012vith MERT
(Och, 2003) and tested onewstest2011 4-
gram language models (LMs) were trained on
the target side of the parallel text and the mono-
lingual data by using SRILM (Stolcke, 2002)
toolkit with Kneser-Ney smoothing (Kneser and
Ney, 1995) and then binarized by using KenLM
toolkit (Heafield, 2011). At each step, systems
were tuned with five different seeds with lattice-
samples. Minimum Bayes risk decoding (Kumar
and Byrne, 2004) anedrop-unknowrparameters
were used during the decoding.

This configuration is common for all of the ex-

. i o S periments decribed in this paper unless stated oth-
TUBITAK-BILGEM participated for the firsttime o vise - Table 1 shows the number of sentences
in the WMT'13 shared translation task for the coqin system training after tkean-corpuspro-
German-English language pairs in both directionscess_

We implemented a phrase-based SMT system by

using the entire available training data. In the [ Data Number of sentenceg
German-to-English SMT system, we performed a | Europarl 1908574
linguistically motivated compound splitting. We News-Commentary 177712
tested different language model (LM) combina- [ Commoncrawl 796458

tions by using the parallel data, monolingual data,
and Gigaword v4. In each step, we tuned systems
with five different tune seeds and used the average
of tuning weights n the_fmal syst(_em._ We tuned We trained two baseline systems in order to as-
our systems on abig tuning setwhich is generategess the effects of this year's new parallel data
from the last years’ (2008, 2009, 2010, and 2012 '

ommoncrawl We first trained an SMT system

development sets. The rest of the paper describes . - -
the details of our systems. E‘by using only the training data from the previ

ous WMT shared translation tasks thagigoparl
andnews-commentariBaseline). As the second
baseline, we also included the new parallel data
2.1 Baseline commoncrawonly in the translation modeB@ase-

All available data was tokenized, truecased, andine2). Then, we includedcommoncrawicorpus
the maximum number of tokens were fixed toboth to the translation model and the language
70 for the translation model. The Moses openmodel Baseline3.

SMT toolkit (Koehn et al., 2007) was used with Table 2 compares the baseline results. For all

Table 1: Parallel Corpus.

2 German-English
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experiments throughout the paper, we present the System newstestl2 newstestll
minimum and the maximum BLEU scores ob- | Baseline3 21.28|21.58  20.22|20.49
tained after five different tunes. As seen in the| Gibbs Sampling 21.36/21.59 19.98|20.40
table, the addition of theommoncrawtorpus re-

sultedin al.1 BLEU (Papineni et al., 2002) points Table 3: Bayesian Alignment Results.
improvement (on average) on the test set. Al-

thoughBaselineZs slightly better thamBaseline3
we usedBaseline3and kepttommoncrawtorpus

2.3 Development Data in Training

in LMs for further experiments. Development data from the previous years (i.e.
newstestOgewstestOnewstest1)) though being

System newstestl2 newstestl]l a small set of corpus (7K sentences), is in-domain

Baselinel 20.58/20.74 19.14]19.29 data and can positively affect the translation sys-

Baseline2 21.37|21.58 20.16|20.46 tem. In order to make use of this data, we exper-

Baseline3 21.28|21.58 20.22(20.49 imented two methods: i) adding the development

data in the translation model as described in this

Table 2: Baseline Results. section and ii) using it as a big tuning set for tun-

ing the parameters more efficiently as explained in
the next section.

Similar to including thecommoncrawkorpus,
In the original IBM models (Brown et al., 1993), we first add the development data both to the train-
word translation probabilities are treated as modeing and language models by concatenating it to the
parameters and the expectation-maximizatioriggest corpusuroparl (DD(tm+Im)) and then
(EM) algorithm is used to obtain the maximum- we removed this corpus from the language models
likelihood estimates of the parameters and thg¢DD(tm)). Results in Table 4 show that including
resulting distributions on alignments. However,the development data both the tranining and lan-
EM provides a point-estimate, not a distribu-guage model increases the performance in devel-
tion, for the parameters. The Bayesian align-opment set but decreases the performance in the
ment on the other hand takes into account altest set. Including the data only in the translation
values of the model parameters by treating thenmodel shows a very slight improvement in the test
as multinomial-distributed random variables with set.
Dirichlet priors and integrating over all possible
values. A Bayesian approach to word alignment | System newstestl2 newstestll
inference in IBM Models is shown to result in sig- | Baseline3  21.2821.58  20.22(20.49
nificantly less “garbage collection” and a much | DD(tm+Im) 21.28)21.65 20.00|20.49

2.2 Bayesian Alignment

more compact alignment dictionary. As a result, | DD(tm) 21.23|21.52  20.26|20.49
the Bayesian word alignment has better transla-
tion performances and obtains significant BLEU Table 4: Development Sets Resullts.

improvements over EM on various language pairs,
data sizes, and experimental settings (Mermer et _ _ _
al., 2013). 2.4 Tuning with a Big Development Data

We compared the translation performance ofThe second method of making use of the develop-
word alignments obtained via Bayesian inferencament data is to concatenate it to the tuning set. As
to those obtained via EM algorithm. We used aa baseline, we tuned the system witbwstest12
a Gibbs sampler for fully Bayesian inference inas mentioned in Section 2.1. Then, we concate-
HMM alignment model, integrating over all pos- nated the development data of the previous years
sible parameter values in finding the alignmentwith the newstest12nd built a big tuning set. Fi-
distribution by usingBaseline3word alignments nally, we obtained a tuning set of 10K sentences.
for initialization. Table 3 compares the BayesianWe excluded th@ewstest1hs an internal test set
alignment to the EM alignment. The results showto see the relative improvements of different sys-
a slight increase in the developmentisetvstestl2 tems. Table 5 shows the results of using a big tun-
but a decrease d@f.1 BLEU points on average in ing set. Tuning the system with a big tuning set
the test sehewstest11 resulted in &.13 BLEU points improvement.
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System newstestl2 newstestll tokens (e.g., der, das, die, den, dem, des). Except
newstestl2 21.28|21.58 20.22|20.49 for the plural and genitive cases, all these forms
Big Tune  20.93]|21.19 20.32]20.58 are translated to the same English word “the”.

In the German preprocessing, we aimed both
normalizing lexical redundancy and splitting Ger-
man compounds with corpus driven splitting al-

2.5 Effects of Different Language Models gorithm based on Koehn and Knight (2003). We

. . used the same compound splitting and lexical re-
In this set of experiments, we tested the effects P P 9

£ diff t binati ¢ el and i dundancy normalization methods described in Al-
ot diiierent combinations of parafel and Monolin- ;o gt 4], (2010) and Durgar El-Kahlout and
gual data as language models. As the baseline,

trained three LM ¢ h el von (2010) with minor in-house changes. We
rained three LVIS, one from each paratiel Corpus, ;e only “addition” (e.g., -s, -n, -en, -e, -es) and
aseuroparl, news-commentayandcommoncrawl

and one LM from the monolingual dataews ‘runcation” (€.g., -e, -en, -n) affixes for com-
. . i ound splitting. We selected minimum candidate
shuffled(Baselined. We then trained two LMs, P PIting

length nd minimum split length td. B -
one from the whole parallel data and one from thee gth to8 and um split length td. By us

) ing the Treetagger (Schmid, 1994) output, we in-

monolingual dataZLMs). Table 6 shows that us- g reelagge ( L ) outp .
: cluded linguistic information in compound split-
ing whole parallel corpora as one LM performs._. I "

o ._ting such as not splitting named entities and for-
better than individual corpus LMs and results in _. . .

o ) . eign words CS1). We also experimented adding
0.1 BLEU points improvement on the baseline. Fi- L .

: . # as a delimiter for the splitted words except the
nally, we trained Gigaword v4 (LDC2009T13) as 4ast word (e.g., Finanzkrisen is splitted as finanz#
third LM (3LMs) which gives &.16 BLEU points ’

Table 5: Tuning Results.

improvement over theLMs. krisen) €S2
On top of the compound splitting, we

System newstestl2 newstestll applied the lexical redundancy normalization
Baseline3 21.28|21.58 20.22|20.49 (CS+Norml). We lemmatized German articles,
2LMs 21.46]21.70  20.28|20.57 adjectives (only positive form), for some pronouns
3LMs 21.78]21.93  20.54[20.68 and for nouns in order to remove the lexical re-

dundancy (e.g., Bildes as Bild) by using the fine-

Table 6: Language Model Resullts. grained part-of-speech tags generated by RFTag-

ger (Schmid and Laws, 2008). Similar@s2, We

tested the delimited version of normalized words
2.6 German Preprocessing (CS+Norm2).

In German, compounding is very common. From Table 7 shows the results of compound split-
the machine translation point of view, compoundsing and normalization methods. As a result, nor-
increase the vocabulary size with high number onalization on top of compounding did not per-
the singletons in the training data and hence deform well. Besides, experiments showed that com-
crease the word alignment quality. Moreover, highpound word decomposition is crucial and helps
number of out-of-vocabulary (OOV) words in tun- vastly to improve translation results43 BLEU

ing and test sets results in several German Wordpoints on average over the best system described
left as untranslated. A well-known solution to this jn Section 2.5.

problem is compound splitting.
Similarly, having different word forms for a

X System newstestl2 newstestll
cauises the lexical redundancy n transladon. Thio | SLMS  PLTSELOS 20542065
redundancy results in unnegessary large bhrase cS1 22.01]22.21 20.63|20.89
CS2 22.06]22.22  20.74/20.99

translation tables that overload the decoder, as a
separate phrase translation entry has to be kept for
each word form. For example, German definite de-
terminer could be marked in sixteen different ways
according to the possible combinations of genders,
case and number, which are fused in six different

CS+Norm2 21.96/22.16 20.70]20.88
CS+Norm1 20.63[20.76 22.01[22.16

Table 7: Compound Splitting Results.
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2.7 Average of Weights Additionally, averaging the tuning weights of dif-

As mentioned in Section 2.1, we performed tun-€rent seeds results 2 BLEU points improve-

ing with five different seeds. We averaged the five™ent
tuning weights and directly applied these weights
during the decoding. Table 8 shows that using the
average of several tuning weights performs bette

System newstestl2 newstestll
Baseline 16.95/17.03 15.93|16.13

L ) ) + Big Tune 16.82(17.01 16.22|16.37
than each individual tuning)(2 BLEU points). .
9 P ) Avg. of Weights 16.99 16.47
System newstestl2 newstestll
CS2 22.06[22.22  20.74]20.99 Table 10: English to German Final System Re-
Avg. of Weights 22.27 21.07 |  Sults.

Table 8: Average of Weights Results. )
4 Final System and Results

2.8 Other parameters Table 11 shows our official submission scores for
eGerman-Eninsh SMT systems submitted to the

In addition to the experiments described in th WMT'13.

earlier sections, we removed thérop-unknown
parameter which gave us(a5 BLEU points im-
provement. We also included the monotone-at-
punctuation,-mp in decoding. We handled out-
of-vocabulary (OOV) words by lemmatizing the
OOV.WOI’d.S.. Moreove.r, we added all deVEIOp.mentl'able 11: German-English Official Test Submis-
data in training after fixing the parameter weights_.
as described in Section 2.7. Although each o
these changes increases the translation scores each
gave less than.1 BLEU point improvement. Ta-
ble 9 shows the results of the final system afte
including all of the approaches except the ones d
scribed in Section 2.2 and 2.3.

System newstestl13
De-En 25.60
En-De 19.28

r5 Conclusion

Sh this paper, we described our submissions to
WMT’'13 Shared Translation Task for German-

System newstestl2 newstestl1 Endlish language pairs. We used phrase-based

Final System 92.59[22.77 21.8621.93 systems with a big tuning set which is a com-
Avg. of Weights 9966 92.00 bination of the development sets from last four

years. We tuned the systems on this big tuning
set with five different tunes. We averaged these
Table 9: German-to-English Final System Results]five tuning weights in the final system. We trained
4-gram language models one from parallel data
and one from monolingual data. Moreover, we
trained a 4-gram language model with Gigaword
v4 for German-to-English direction. For German-
For English-to-German translation system, thdo-English, we performed a different compound
baseline setting is the same as described in Sesplitting method instead of the Moses splitter. We
tion 2.1. We also added the items that showedbtained al.7 BLEU point increase for German-
positive improvement in the German to Englishto-English SMT system and@5 BLEU point in-
SMT system such as using 2 LMs, tuning with fivecrease for English-to-German SMT system for the
seeds and averaging tuning parameters, usiqy  internal test sehewstest2011 Finally, we sub-
and not usingdrop-unknown Table 10 shows the mitted our German-to-English SMT system with
experimental results for English-to-German SMTa BLEU score25.6 and English-to-German SMT
systems. Similar to the German-to-English direc-system with a BLEU scor#9.3 for the official test
tion, tuning with a big development data outper-setnewstest2013
forms the baselin@.26 BLEU points (on average).

+ tune data in train —— 22.09

3 English-German
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Abstract

We validated various novel and recently
proposed methods for statistical machine
translation on 10 language pairs, using
large data resources. We saw gains
from optimizing parameters, training with
sparse features, the operation sequence
model, and domain adaptation techniques.
We also report on utilizing a huge lan-
guage model trained on 126 billion tokens.

The annual machine translation evaluation cam-
paign for European languages organized around
the ACL Workshop on Statistical Machine Trans-
lation offers the opportunity to test recent advance-
ments in machine translation in large data condi-
tion across several diverse language pairs.

Building on our own developments and external
contributions to the Moses open source toolkit, we
carried out extensive experiments that, by early in-
dications, led to a strong showing in the evaluation
campaign.

We would like to stress especially two contri-
butions: the use of the new operation sequence
model (Section 3) within Moses, and — in a sepa-
rate unconstraint track submission — the use of a
huge language model trained on 126 billion tokens
with a new training tool (Section 4).

1 Initial System Development

We start with systems (Haddow and Koehn, 2012)
that we developed for the 2012 Workshop on
Statistical Machine Translation (Callison-Burch
etal., 2012). The notable features of these systems
are:
e Moses phrase-based models with mostly de-
fault settings
e training on all available parallel data, includ-
ing the large UN parallel data, the French-
English 10° parallel data and the LDC Giga-
word data
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e very large tuning set consisting of the test sets
from 2008-2010, with a total of 7,567 sen-
tences per language

German-English ~ with  syntactic  pre-
reordering (Collins et al., 2005), compound
splitting (Koehn and Knight, 2003) and use
of factored representation for a POS target
sequence model (Koehn and Hoang, 2007)
English—-German with morphological target
sequence model

Note that while our final 2012 systems in-
cluded subsampling of training data with modified
Moore-Lewis filtering (Axelrod et al., 2011), we
did not use such filtering at the starting point of
our development. We will report on such filtering
in Section 2.

Moreover, our system development initially
used the WMT 2012 data condition, since it took
place throughout 2012, and we switched to WMT
2013 training data at a later stage. In this sec-
tion, we report cased BLEU scores (Papineni et al.,
2001) on newstest2011.

1.1 Factored Backoff (German—English)

We have consistently used factored models in past
WMT systems for the German—English language
pairs to include POS and morphological target se-
quence models. But we did not use the factored
decomposition of translation options into multi-
ple mapping steps, since this usually lead to much
slower systems with usually worse results.

A good place, however, for factored decompo-
sition is the handling of rare and unknown source
words which have more frequent morphological
variants (Koehn and Haddow, 2012a). Here, we
used only factored backoff for unknown words,
giving gains in BLEU of +.12 for German—English.

1.2 Tuning with k-best MIRA

In preparation for training with sparse features, we
moved away from MERT which is known to fall

Proceedings of the Eighth Workshop on Statistical Machine Translation, pages 114-121,
Sofia, Bulgaria, August 8-9, 2013 (©)2013 Association for Computational Linguistics



apart with many more than a couple of dozen fea-
tures. Instead, we used k-best MIRA (Cherry and
Foster, 2012). For the different language pairs, we
saw improvements in BLEU of -.05 to +.39, with an
average of +.09. There was only a minimal change

in the length ratio (Table 1)

MERT k-best MIRA A
de-en | 22.11 (1.010) | 22.10 (1.008) | —.01 (+.002)
fr-en | 30.00 (1.023) | 30.11 (1.026) | +.11 (+.003)
es-en | 30.42 (1.021) | 30.63 (1.020) | +.21 (-.001)
cs-en | 25.54(1.022) | 25.49 (1.024) | -.05 (+.002)
en-de | 16.08 (0.995) | 16.04 (1.001) | —.04 (+.006)
en-fr | 29.26 (0.980) | 29.65(0.982) | +.39 (+.002)
en-es | 31.92(0.985) | 31.95(0.985) | +.03 (+.000)
en-cs | 17.38 (0.967) | 17.42(0.974) | +.04 (+.007)
avg - - +.09

Table 1: Tuning with k-best MIRA instead of MERT
(cased BLEU scores with length ratio)

1.3 Translation Table Smoothing with
Kneser-Ney Discounting

Previously, we smoothed counts for the phrasal
conditional probability distributions in the trans-
lation model with Good Turing discounting. We
explored the use of Kneser-Ney discounting, but
results are mixed (no difference on average, see
Table 2), so we did not pursue this further.

Good Turing | Kneser Ney A
de-en 22.10 22.15 +.05
fr-en 30.11 30.13 +.02
es-en 30.63 30.64 +.01
cs-en 25.49 25.56 +.07
en-de 16.04 15.93 —-11
en-fr 29.65 29.75 +.10
en-es 31.95 31.98 +.03
en-cs 17.42 17.26 -.16
avg - - +.00

Table 2: Translation model smoothing with Kneser-Ney

1.4 Sparse Features

A significant extension of the Moses system over
the last couple of years was the support for large
numbers of sparse features. This year, we tested
this capability on our big WMT systems. First, we
used features proposed by Chiang et al. (2009):

e phrase pair count bin features (bins 1, 2, 3,
4-5, 6-9, 10+)

target word insertion features

source word deletion features

word translation features

phrase length feature (source, target, both)
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The lexical features were restricted to the 50 most
frequent words. All these features together only
gave minor improvements (Table 3).

baseline | sparse A
de-en 22.10 22.02 | -.08
fr-en 30.11 3024 | +.13
es-en 30.63 30.61 | -.02
cs-en 25.49 25.49 | +.00
en-de 16.04 1593 | -.09
en-fr 29.65 29.81 | +.16
en-es 31.95 32.02 | +.07
en-cs 17.42 1728 | -.14
avg - - +.04

Table 3: Sparse features

We also explored domain features in the sparse
feature framework, in three different variations.
Assume that we have three domains, and a phrase
pair occurs in domain A 15 times, in domain B 5
times, and in domain C never.

We compute three types of domain features:

e binary indicator, if phrase-pairs occurs in do-
main (example: ind4 = 1, indp = 1, ind¢ = 0)
e ratio how frequent the phrase pairs occurs in
domain (example: ratios = 1225
5 _ ; —
545 = .25, ratioc = 0)
e subset of domains in which phrase pair oc-

= .75, ratiop =

curs (example: subsetap = 1, other subsets 0)

We tested all three feature types, and found
the biggest gain with the domain indicator feature
(+.11, Table 4). Note that we define as domain the
different corpora (Europarl, etc.). The number of
domains ranges from 2 to 9 (see column #d).!

#d| base. indicator ratio subset
de-en | 2 | 22.10 | 22.14 +.04 | 22.07-.03 | 22.12 +.02
frren | 4 | 30.11 | 30.34+.23 | 30.29 +.18 | 30.15 +.04
es-en | 3 30.63 | 30.88 +.25 | 30.64 +.01 | 30.82 +.19
cs-en | 9 | 2549 | 2558 +.09 | 2558 +.09 | 25.46-.03
en-de | 2 | 16.12% | 16.14+.02 | 1596 -.16 | 16.01 —.11
en-fr | 4 | 29.65 | 29.75+.10 | 29.71 +.05 | 29.70 +.05
en-es | 3 31.95 | 32.06 +.11 | 32.13 +.18 | 32.02 +.07
en-cs | 9 1742 | 17.45+.03 | 17.35-.07 | 17.44 +.02
avg. - - +.11 +.03 +.03

Table 4: Sparse domain features

When combining the domain features and the

other sparse features, we see roughly additive
gains (Table 5). We use the domain indicator fea-
ture and the other sparse features in subsequent ex-
periments.

'In the final experiments on the 2013 data condition, one
domain (commoncrawl) was added for all language pairs.



baseline indicator ratio subset

de-en 22.10 22.18 +.08 | 22.10 £.00 | 22.16 +.06
fr-en 30.11 30.41 +.30 | 30.49 +.38 | 30.36 +.25
es-en 30.63 30.75 +.12 | 30.56 -.07 | 30.85 +.22
cs-en 25.49 25.56 +.07 | 25.63 +.14 | 25.43-.06
en-de 16.12 1595-17 | 1596-.16 | 16.05-.07
en-fr 29.65 29.96 +.31 | 29.88 +.23 | 29.92 +.27
en-es 31.95 3212 +.17 | 32.16 +.21 | 32.08 +.23
en-cs 17.42 17.38-.04 | 17.35-.07 | 17.40-.02
avg. - +.11 +.09 +.11

Table 5: Combining domain and other sparse features

1.5 Tuning Settings

Given the opportunity to explore the parameter
tuning of models with sparse features across many
language pairs, we investigated a number of set-
tings. We expect tuning to work better with more
iterations, longer n-best lists and bigger cube prun-
ing pop limits. Our baseline settings are 10 itera-
tions with 100-best lists (accumulating) and a pop
limit of 1000 for tuning and 5000 for testing.

base 25 it. 25it+1k-best | 25it+popSk
de-en | 22.18 | 22.16-.02 | 22.14-.04 22.17 -.01
fr-en | 30.41 | 30.40-.01 30.44 +.03 30.49 +.08
es-en | 30.75 | 3091 +.16 | 30.86 +.11 30.81 +.06
cs-en | 25.56 | 25.60+.04 | 25.64+.08 | 25.56 +.00
en-de | 15.96 | 1599 +.03 | 16.05+.09 15.96 +.00
en-fr | 29.96 | 29.90-.06 | 29.95-.01 29.92 -.04
en-es | 32.12 | 32.17+.05 | 32.11-.01 32.19 +.07
en-cs | 17.38 | 17.43 +.05 17.50 +.12 17.38 +.00
avg - +.03 +.05 +.02

Table 6: Tuning settings (number of iterations, size of n-best
list, and cube pruning pop limit)

Results support running tuning for 25 iterations
but we see no gains for 5000 pops. There is ev-
idence that an n-best list size of 1000 is better in
tuning but we did not adopt this since these large
lists take up a lot of disk space and slow down the
MIRA optimization step (Table 6).

1.6 Smaller Phrases

Given the very large corpus sizes (up to a billion
words of parallel data for French-English), the
size of translation model and lexicalized reorder-
ing model becomes a challenge. Hence, we want
to examine if restriction to smaller phrases is fea-
sible without loss in translation quality. Results
in Table 7 suggest that a maximum phrase length
of 5 gives almost identical results, and only with
a phrase length limit of 4 significant losses occur.
We adopted the limit of 5.
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max 7 max 6 max 5 max 4
de-en | 22.16 | 22.03-.13 | 22.05-.11 | 22.17 +.01
fr-en 30.40 | 30.30-.10 | 30.39-.01 | 30.23 -.17
es-en | 30.91 | 30.80-.09 | 30.86-.05 | 30.81-.10
cs-en | 25.60 | 25.55-.05 | 25.53-.07 | 25.48-.12
en-de | 15.99 | 15.94-05 | 15.97-.02 | 16.03 +.04
en-fr | 29.90 | 29.97 +.07 | 29.89 -.01 | 29.77 -.13
en-es | 32.17 | 32.13-.04 | 3227 +.10 | 31.93-24
en-cs | 1743 | 17.46+.03 | 17.41-.02 | 17.41-.02
avg - -.05 -.03 -.09

Table 7: Maximum phrase length, reduced from baseline

1.7 Unpruned Language Models

Previously, we trained 5-gram language models
using the default settings of the SRILM toolkit in
terms of singleton pruning. Thus, training throws
out all singletons n-grams of order 3 and higher.
We explored whether unpruned language models
could give better performance, even if we are only
able to train 4-gram models due to memory con-
straints. At the time, we were not able to build un-
pruned 4-gram language models for English, but
for the other language pairs we did see improve-
ments of -.07 to +.13 (Table 8). We adopted such
models for these language pairs.

| 5g pruned | 4gunpruned | A

en-fr 29.89 29.83 -.07
en-es 32.27 32.34 +.07
en-cs 17.41 17.54 +.13

Table 8: Language models without singleton pruning

1.8 Translations per Input Phrase

Finally, we explored one more parameter: the limit
on how many translation options are considered
per input phrase. The default for this setting is 20.
However, our experiments (Table 9) show that we
can get better results with a translation table limit
of 100, so we adopted this.

tt1 20 | tt1 30 | tt1 50 | ttl 100
de-en | 21.05 | +.06 | +.09 +.01
fren | 3039 | -.02 | +.05 +.07
es-en | 30.86 | +.00 | -.03 -.07
cs-en | 2553 | +.24 | +.13 +.20
en-de | 1597 | +.03 | +.07 +.11
en-fr | 29.83 | +.14 | +.19 +.13
en-es | 32.34 | +.08 +.10 +.07
en-cs | 17.54 | -.05 -.02 +.01
avg - +.06 | +.07 +.07

Table 9: Maximal number translations per input phrase

1.9 Other Experiments

We explored a number of other settings and fea-
tures, but did not observe any gains.



Using HMM alignment instead of IBM
Model 4 leads to losses of —.01 to —.27.

An earlier check of modified Moore—Lewis
filtering (see also below in Section 3) gave
very inconsistent results.

Filtering the phrase table with significance
filtering (Johnson et al., 2007) leads to losses
of —.19 to —.63.

Throwing out phrase pairs with direct transla-
tion probability ¢(é|f) of less than 10~° has
almost no effect.

Double-checking the contribution of the
sparse lexical features in the final setup, we
observe an average losses of —.07 when drop-
ping these features.

For the German-English language pairs we
saw some benefits to using sparse lexical fea-
tures over POS tags instead of words, so we
used this in the final system.

1.10 Summary

We adopted a number of changes that improved
our baseline system by an average of +.30, see Ta-
ble 10 for a breakdown.

avg. | method

+.01 | factored backoff

+.09 | kbest MIRA

+.11 | sparse features and domain indicator
+.03 | tuning with 25 iterations

—.03 | maximum phrase length 5

+.02 | unpruned 4-gram LM

+.07 | translation table limit 100

+.30 | total

Table 10: Summary of impact of changes

Minor improvements that we did not adopt was
avoiding reducing maximum phrase length to 5
(average +.03) and tuning with 1000-best lists
(+.02).

The improvements differed significantly by lan-
guage pair, as detailed in Table 11, with the
biggest gains for English—French (+.70), no gain
for English-German and no gain for English—
German.

1.11 New Data

The final experiment of the initial system devel-
opment phase was to train the systems on the new
data, adding newstest2011 to the tuning set (now
10,068 sentences). Table 12 reports the gains on
newstest2012 due to added data, indicating very
clearly that valuable new data resources became
available this year.
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baseline | improved A
de-en 21.99 22.09 +.10
fr-en 30.00 30.46 +.46
es-en 30.42 30.79 +.37
cs-en 25.54 25.73 +.19
en-de 16.08 16.08 +.00
en-fr 29.26 29.96 +.70
en-es 31.92 32.41 +.49
en-cs 17.38 17.55 +.17

Table 11: Overall improvements per language pair

WMT 2012 | WMT 2013 A
de-en 23.11 24.01 +0.90
fr-en 29.25 30.77 +1.52
es-en 32.80 33.99 +1.19
cs-en 22.53 22.86 +0.33
ru-en - 31.67 -
en-de 16.78 17.95 +1.17
en-fr 27.92 28.76 +0.84
en-es 33.41 34.00 +0.59
en-cs 15.51 15.78 +0.27
en-ru - 23.78 -

Table 12: Training with new data (newstest2012 scores)

2 Domain Adaptation Techniques

We explored two additional domain adaptation
techniques: phrase table interpolation and modi-
fied Moore-Lewis filtering.

2.1 Phrase Table Interpolation

We experimented with phrase-table interpolation
using perplexity minimisation (Foster et al., 2010;
Sennrich, 2012). In particular, we used the im-
plementation released with Sennrich (2012) and
available in Moses, comparing both the naive and
modified interpolation methods from that paper.
For each language pair, we took the alignments
created from all the data concatenated, built sepa-
rate phrase tables from each of the individual cor-
pora, and interpolated using each method. The re-
sults are shown in Table 13

baseline naive modified

fr-en 30.77 30.63 -.14 -

es-en” 33.98 33.83-.15 | 34.03 +.05
cs-en” 23.19 2277 -42 | 23.03-.17
ru-en 31.67 31.42-25 | 31.59-.08
en-fr 28.76 28.88 +.12 -

en-es 34.00 34.07 +.07 | 34.31 +.31
en-cs 15.78 15.88 +.10 | 15.87 +.09
en-ru 23.78 23.84 +.06 | 23.68 .10

Table 13: Comparison of phrase-table interpolation (two
methods) with baseline (on newstest2012). The baselines are
as Table 12 except for the starred rows where tuning with
PRO was found to be better. The modified interpolation was
not possible in fr<>en as it uses to much RAM.

The results from the phrase-table interpolation
are quite mixed, and we only used the technique



for the final system in en-es. An interpolation
based on PRO has recently been shown (Haddow,
2013) to improve on perplexity minimisation is
some cases, but the current implementation of this
method is limited to 2 phrase-tables, so we did not
use it in this evaluation.

2.2 Modified Moore-Lewis Filtering

In last year’s evaluation (Koehn and Haddow,
2012b) we had some success with modified
Moore-Lewis filtering (Moore and Lewis, 2010;
Axelrod et al., 2011) of the training data. This
year we conducted experiments in most of the lan-
guage pairs using MML filtering, and also exper-
imented using instance weighting (Mansour and
Ney, 2012) using the (exponential of) the MML
weights. The results are show in Table 14

base MML Inst. Wt Inst. Wt

line 20% (scale)
fr-en 30.77 - - -
es-en” | 33.98 | 34.26 +.28 | 33.85-.13 | 33.98 +.00
cs-en”™ | 23.19 | 22.62-.57 | 23.17-.02 | 23.13-.06
ru-en 31.67 | 31.58-.09 | 31.57-.10 | 31.62-.05
en-fr 28.67 | 28.74 +.07 | 28.81 +.17 | 28.63 -.04
en-es 34.00 | 34.07 +.07 | 34.27 +.27 | 34.03 +.03
en-cs 15.78 | 15.37-41 | 15.87 +.09 | 15.89 +.11
en-ru 23.78 | 22.90-.88 | 23.82 +.05 | 23.72-.06

Table 14: Comparison of MML filtering and weighting with
baseline. The MML uses monolingual news as in-domain,
and selects from all training data after alignment.The weight-
ing uses the MML weights, optionally downscaled by 10,
then exponentiated. Baselines are as Table 13.

As with phrase-table interpolation, MML filter-
ing and weighting shows a very mixed picture, and
not the consistent improvements these techniques
offer on IWSLT data. In the final systems, we used
MML filtering only for es-en.

3 Operation Sequence Model (OSM)

We enhanced the phrase segmentation and re-
ordering mechanism by integrating OSM: an op-
eration sequence N-gram-based translation and re-
ordering model (Durrani et al., 2011) into the
Moses phrase-based decoder. The model is based
on minimal translation units (MTUs) and Markov
chains over sequences of operations. An opera-
tion can be (a) to jointly generate a bi-language
MTU, composed from source and target words, or
(b) to perform reordering by inserting gaps and do-
ing jumps.

Model: Given a bilingual sentence pair <
F,E > and its alignment A, we transform it to
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Ifh ge%?cht %n hars

I dorot go to the house

Figure 1: Bilingual Sentence with Alignments

sequence of operations (01,02, ...,05) and learn
a Markov model over this sequence as:

J
Posm(F, B, A) = p(o]) = [] p(ojl0j-n+1, - 05-1)
=1

By coupling reordering with lexical generation,
each (translation or reordering) decision condi-
tions on n — 1 previous (translation and reorder-
ing) decisions spanning across phrasal boundaries
thus overcoming the problematic phrasal indepen-
dence assumption in the phrase-based model. In
the OSM model, the reordering decisions influ-
ence lexical selection and vice versa. Lexical gen-
eration is strongly coupled with reordering thus
improving the overall reordering mechanism.

We used the modified version of the OSM
model (Durrani et al., 2013b) that addition-
ally handles discontinuous and unaligned target
MTUs?. We borrow 4 count-based supportive fea-
tures, the Gap, Open Gap, Gap-width and Dele-
tion penalties from Durrani et al. (2011).

Training: During training, each bilingual sen-
tence pair is deterministically converted to a
unique sequence of operations. Please refer to
Durrani et al. (2011) for a list of operations and
the conversion algorithm and see Figure 1 and Ta-
ble 15 for a sample bilingual sentence pair and
its step-wise conversion into a sequence of oper-
ation. A 9-gram Kneser-Ney smoothed operation
sequence model is trained with SRILM.

Search: Although the OSM model is based on
minimal units, phrase-based search on top of OSM
model was found to be superior to the MTU-based
decoding in Durrani et al. (2013a). Following this
framework allows us to use OSM model in tandem
with phrase-based models. We integrated the gen-
erative story of the OSM model into the hypothe-
sis extension of the phrase-based Moses decoder.
Please refer to (Durrani et al., 2013b) for details.

Results: Table 16 shows case-sensitive BLEU
scores on newstest2012 and newstest2013 for fi-

3In the original OSM model these are removed from the
alignments through a post-processing heuristic which hurts in
some language pairs. See Durrani et al. (2013b) for detailed
experiments.



Operation Sequence Generation
Generate(Ich, I) Ich |
1
Generate Target Only (do) | Ich |
Ido
Insert Gap Ich I:] nicht |
Generate (nicht, not) 1 do not
Jump Back (1) Ich gehe | nicht
Generate (gehe, go) I do not go
Generate Source Only (ja) | Ich gehe ja | nicht
I do not go
Jump Forward Ich gehe ja nicht |
1 do not go
Generate (zum, to the) ... gehe ja nicht zum |
...not go to the
Generate (haus, house) ...janicht zum haus |
... go to the house

Table 15: Step-wise Generation of Figure 1

LP Baseline +OSM
newstest | 2012 | 2013 2012 2013
de-en 23.85 | 26.54 | 24.11 +.26 | 26.83 +.29
fr-en 30.77 | 31.09 | 30.96 +.19 | 31.46 +.37
es-en 34.02 | 30.04 | 34.51 +.49 | 30.94 +.90
cs-en 2270 | 25.70 | 23.03 +.33 | 25.79 +.09
ru-en 31.87 | 24.00 | 32.33 +.46 | 24.33 +.33
en-de 17.95 | 20.06 | 18.02 +.07 | 20.26 +.20
en-fr 28.76 | 30.03 | 29.36 +.60 | 30.39 +.36
en-es 33.87 | 29.66 | 34.44 +.57 | 30.10 +.44
en-cs 15.81 | 18.35 | 16.16 +.35 | 18.62 +.27
en-ru 23.75 | 18.44 | 24.05+.30 | 18.84 +.40

Table 16: Results using the OSM Feature

nal systems from Section 1 and these systems aug-
mented with the operation sequence model. The
model gives gains for all language pairs (BLEU
+.09 to +.90, average +.37, on newstest2013).

4 Huge Language Models

To overcome the memory limitations of SRILM,
we implemented modified Kneser-Ney (Kneser
and Ney, 1995; Chen and Goodman, 1998)
smoothing from scratch using disk-based stream-
ing algorithms. This open-source* tool is de-
scribed fully by Heafield et al. (2013). We used it
to estimate an unpruned 5—gram language model
on web pages from ClueWeb09.? The corpus was
preprocessed by removing spam (Cormack et al.,
2011), selecting English documents, splitting sen-
tences, deduplicating, tokenizing, and truecasing.
Estimation on the remaining 126 billion tokens
took 2.8 days on a single machine with 140 GB
RAM (of which 123 GB was used at peak) and six
hard drives in a RAIDS configuration. Statistics
about the resulting model are shown in Table 17.

“http://kheafield.com/code/
5http ://lemurproject.org/clueweb09/
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1 2 \ 3 4 \ 5
393m | 3,775m | 17,629m | 39,919m | 59,794m
Table 17: Counts of unique n-grams (m for millions) for the
5 orders in the unconstrained language model

The large language model was then quantized
to 10 bits and compressed to 643 GB with KenLM
(Heafield, 2011), loaded onto a machine with 1
TB RAM, and used as an additional feature in
unconstrained French—English, Spanish—-English,
and Czech—English submissions. This additional
language model is the only difference between our
final constrained and unconstrained submissions;
no additional parallel data was used. Results are
shown in Table 18. Improvement from large lan-
guage models is not a new result (Brants et al.,
2007); the primary contribution is estimating on a
single machine.

| Constrained | Unconstrained | A
fr-en 31.46 32.24 +.78
es-en 30.59 31.37 +.78
cs-en 27.38 28.16 +.78
ru-en 24.33 25.14 +.81

Table 18: Gain on newstest2013 from the unconstrained lan-
guage model. Our time on shared machines with 1 TB is
limited so Russian—-English was run after the deadline and
German-English was not ready in time.

5 Summary

Table 19 breaks down the gains over the final sys-
tem from Section 1 from using the operation se-
quence models (OSM), modified Moore-Lewis fil-
tering (MML), fixing a bug with the sparse lex-
ical features (Sparse-Lex Bugfix), and instance
weighting (Instance Wt.), translation model com-
bination (TM-Combine), and use of the huge lan-
guage model (ClueWeb09 LM).
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| System | 2012 | 2013

Spanish-English

1. | Baseline 34.02 30.04

2. | 1+OSM 34.51 +.49 | 30.94 +90

3. | 1+MML (20%) 34.38 +.36 | 30.38 +.34

4. | 1+Sparse-Lex Bugfix 34.17+.15 | 30.33 +.29

5. | 142+3: OSM+MML 34.65 +.63 | 30.51 +.47

6. | 1+2+3+4 34.68 +.66 | 30.59 +.55

7. | 6+ClueWeb09 LM 31.37+1.33
English-Spanish

1. | Baseline 33.87 29.66

2. | 1+OSM 34.44 +.57 | 30.10 +.44

3. | 1+4TM-Combine 3431 +44 | 29.76 +.10

4. | l+Instance Wt. 34.27 +.40 | 29.63 -.03

5. | 1+Sparse-Lex Bugfix 34.20 +.33 | 29.86 +.20

6. | 142+3: OSM+TM-Cmb. | 34.63 +.76 | 30.21 +.55

7. | 142+4: OSM+Inst. Wt. 34.58 +.71 | 30.11 +.45

8. | 1424345 3478 +91 | 3043 +.77
Czech-English

1. | Baseline 22.70 25.70

2. | 1+OSM 23.03 +.33 | 25.79 +.09

3. | 1+with PRO 23.19 +.49 | 26.08 +.38

4. | 1+Sparse-Lex Bugfix 22.86 +.16 | 25.74 +.04

5. | 1+OSM+PRO 2342 +.72 | 26.23 +.53

6. | 1+2+3+4 23.16 +.46 | 2594 +.24

7. | 5+ClueWeb09 LM 27.06 +.36
English-Czech

1. | Baseline 15.85 18.35

2. | 1+OSM 16.16 +.31 | 18.62 +.27
French-English

1. | Baseline 30.77 31.09

2. | 1+OSM 30.96 +.19 | 31.46 +.37

3. | 24+ClueWeb09 LM 32.24 +1.15
English-French

1. | Baseline 28.76 30.03

2. | 1+OSM 29.36 +.60 | 30.39 +.36

3. | 1+Sparse-Lex Bugfix 28.97 +.21 | 30.08 +.05

4. | 1+2+3 29.37 +.61 | 30.58 +.55
German-English

1. | Baseline 23.85 26.54

2. | 1+OSM 24.11 +.26 | 26.83 +.29
English-German

1. | Baseline 17.95 20.06

2. | 1+OSM 18.02 +.07 | 20.26 +.20
Russian-English

1. | Baseline 31.87 24.00

2. | 1+OSM 32.33 +.46 | 24.33 +.33
English-Russian

1. | Baseline 23.75 18.44

2. | 1+OSM 24.05+.40 | 18.84 +.40

Table 19: Summary of methods with BLEU scores on news-
test2012 and newstest2013. Bold systems were submitted,
with the ClueWeb09 LM systems submitted in the uncon-
straint track. The German-English and English-German
OSM systems did not complete in time for the official sub-
mission.
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Abstract

This paper describes Munich-Edinburgh-
Stuttgart’s submissions to the Eighth
Workshop on Statistical Machine Transla-
tion. We report results of the translation
tasks from German, Spanish, Czech and
Russian into English and from English to
German, Spanish, Czech, French and Rus-
sian. The systems described in this paper
use OSM (Operation Sequence Model).
We explain different pre-/post-processing
steps that we carried out for different
language pairs. For German-English we
used constituent parsing for reordering
and compound splitting as preprocessing
steps. For Russian-English we transliter-
ated the unknown words. The translitera-
tion system is learned with the help of an
unsupervised transliteration mining algo-
rithm.

1 Introduction

In this paper we describe Munich-Edinburgh-
Stuttgart’s’ joint submissions to the Eighth Work-
shop on Statistical Machine Translation. We use
our in-house OSM decoder which is based on
the operation sequence N-gram model (Durrani
et al., 2011). The N-gram-based SMT frame-
work (Marifno et al., 2006) memorizes Markov
chains over sequences of minimal translation units
(MTUs or tuples) composed of bilingual transla-
tion units. The OSM model integrates reordering
operations within the tuple sequences to form a
heterogeneous mixture of lexical translation and

'Qatar Computing Research Institute and University of
Szeged were partnered for RU-EN and DE-EN language pairs
respectively.
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reordering operations and learns a Markov model
over a sequence of operations.

Our decoder uses the beam search algorithm in
a stack-based decoder like most sequence-based
SMT frameworks. Although the model is based
on minimal translation units, we use phrases dur-
ing search because they improve the search accu-
racy of our system. The earlier decoder (Durrani
et al., 2011) was based on minimal units. But we
recently showed that using phrases during search
gives better coverage of translation, better future
cost estimation and lesser search errors (Durrani
et al., 2013a) than MTU-based decoding. We have
therefore shifted to phrase-based search on top of
the OSM model.

This paper is organized as follows. Section 2
gives a short description of the model and search
as used in the OSM decoder. In Section 3 we
give a description of the POS-based operation se-
quence model that we test for our German-English
and English-German experiments. Section 4 de-
scribes our processing of the German and English
data for German-English and English-German ex-
periments. In Section 5 we describe the unsuper-
vised transliteration mining that has been done for
the Russian-English and English-Russian experi-
ments. In Section 6 we describe the sub-sampling
technique that we have used for several language
pairs. In Section 7 we describe the experimental
setup followed by the results. Finally we summa-
rize the paper in Section 8.

2 System Description

2.1 Model

Our systems are based on the OSM (Operation Se-
quence Model) that simultaneously learns trans-
lation and reordering by representing a bilingual

Proceedings of the Eighth Workshop on Statistical Machine Translation, pages 122—127,
Sofia, Bulgaria, August 8-9, 2013 (©)2013 Association for Computational Linguistics



BTide Léirfer haren MilWﬁstieﬂ
Both countries have invested millions of dollars
Figure 1: Bilingual Sentence with Alignments

sentence pair and its alignments as a unique se-
quence of operations. An operation either jointly
generates source and target words, or it performs
reordering by inserting gaps or jumping to gaps.
We then learn a Markov model over a sequence of
operations 01,09, ...,0y that encapsulate MTUs
and reordering information as:

J

posm(ola ) OJ) = Hp(0j|0j*n+17 ) Ojfl)
j=1

By coupling reordering with lexical generation,
each (translation or reordering) decision depends
on n — 1 previous (translation and reordering) de-
cisions spanning across phrasal boundaries. The
reordering decisions therefore influence lexical se-
lection and vice versa. A heterogeneous mixture
of translation and reordering operations enables us
to memorize reordering patterns and lexicalized
triggers unlike the classic N-gram model where
translation and reordering are modeled separately.

2.2 Training

During training, each bilingual sentence pair is de-
terministically converted to a unique sequence of
operations.”> The example in Figure 1(a) is con-
verted to the following sequence of operations:

Generate(Beide, Both) — Generate(Ldnder, coun-
tries) — Generate(haben, have) — Insert Gap —
Generate(investiert, invested)

At this point, the (partial) German and English
sentences look as follows:

Beide Lénder haben| ]investiert

Both countries have invested
The translator then jumps back and covers the
skipped German words through the following se-
quence of operations:

Jump Back(1) — Generate(Millionen, millions) —
Generate(von, of) — Generate(Dollar, dollars)

2Please refer to Durrani et al. (2011) for a list of opera-
tions and the conversion algorithm.
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The generative story of the OSM model also
supports discontinuous source-side cepts and
source-word deletion. However, it doesn’t provide
a mechanism to deal with unaligned and discon-
tinuous target cepts. These are handled through
a 3-step process® in which we modify the align-
ments to remove discontinuous and unaligned tar-
get MTUs. Please see Durrani et al. (2011) for
details. After modifying the alignments, we con-
vert each bilingual sentence pair and its align-
ments into a sequence of operations as described
above and learn an OSM model. To this end,
a Kneser-Ney (Kneser and Ney, 1995) smoothed
9-gram model is trained with SRILM (Stolcke,
2002) while KenLLM (Heafield, 2011) is used at
runtime.

2.3 Feature Functions

We use additional features for our model and em-
ploy the standard log-linear approach (Och and
Ney, 2004) to combine and tune them. We search
for a target string E' which maximizes a linear
combination of feature functions:

J

E= arg max Z; Ajhj(o1,...,07)
]:

where A; is the weight associated with the fea-
ture hj(o1,...,05). Apart from the main OSM
feature we train 9 additional features: A target-
language model (see Section 7 for details), 2 lex-
ical weighting features, gap and open gap penalty
features, two distance-based distortion models and
2 length-based penalty features. Please refer to
Durrani et al. (2011) for details.

2.4 Phrase Extraction

Phrases are extracted in the following way: The
aligned training corpus is first converted to an op-
eration sequence. Each subsequence of operations
that starts and ends with a translation operation, is
considered a “phrase”. The translation operations
include Generate Source Only (X) operation which
deletes unaligned source word. Such phrases may
be discontinuous if they include reordering opera-
tions. We replace each subsequence of reordering
operations by a discontinuity marker.

*Durrani et al. (2013b) recently showed that our post-
processing of alignments hurt the performance of the Moses
Phrase-based system in several language pairs. The solu-
tion they proposed has not been incorporated into the current
OSM decoder yet.



During decoding, we match the source tokens
of the phrase with the input. Whenever there is
a discontinuity in the phrase, the next source to-
ken can be matched at any position of the input
string. If there is no discontinuity marker, the next
source token in the phrase must be to the right of
the previous one. Finally we compute the number
of uncovered input tokens within the source span
of the hypothesized phrase and reject the phrase
if the number is above a threshold. We use a
threshold value of 2 which had worked well in
initial experiments. Once the positions of all the
source words of a phrase are known, we can com-
pute the necessary reordering operations (which
may be different from the ones that appeared in
the training corpus). This usage of phrases al-
lows the decoder to generalize from a seen trans-
lation “scored a goal — ein Tor schoss” (where
scored/a/goal and schoss/ein/Tor are aligned, re-
spectively) to “scored a goal — schoss ein Tor”.
The phrase can even be used to translate “er schoss
heute ein Tor — he scored a goal today” although
“heute” appears within the source span of the
phrase “ein Tor schoss”. Without phrase-based
decoding, the unusual word translations ““schoss—
scored” and “Tor—goal” (at least outside of the soc-
cer literature) are likely to be pruned.

The phrase tables are further filtered with
threshold pruning. The translation options with
a frequency less than x times the frequency of
the most frequent translation are deleted. We use
x = 0.02. We use additional settings to increase
this threshold for longer phrases. The phrase fil-
tering heuristic was used to speed up decoding. It
did not lower the BLEU score in our small scale
experiments (Durrani et al., 2013a), however we
could not test whether this result holds in a large
scale evaluation.

2.5 Decoder

The decoding framework used in the operation se-
quence model is based on Pharaoh (Koehn, 2004).
The decoder uses beam search to build up the
translation from left to right. The hypotheses are
arranged in m stacks such that stack ¢ maintains
hypotheses that have already translated ¢ many for-
eign words. The ultimate goal is to find the best
scoring hypothesis, that translates all the words
in the foreign sentence. During the hypothesis
extension each extracted phrase is translated into
a sequence of operations. The reordering opera-
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tions (gaps and jumps) are generated by looking at
the position of the translator, the last foreign word
generated etc. (Please refer to Algorithm 1 in Dur-
rani et al. (2011)). The probability of an opera-
tion depends on the n — 1 previous operations. The
model is smoothed with Kneser-Ney smoothing.

3 POS-based OSM Model

Part-of-speech information is often relevant for
translation. The word “stores” e.g. should be
translated to “Liden” if it is a noun and to “spei-
chert” when it is a verb. The sentence “The small
child cries” might be incorrectly translated to “Die
kleinen Kind weint” where the first three words
lack number, gender and case agreement.

In order to better learn such constraints which
are best expressed in terms of part of speech, we
add another OSM model as a new feature to the
log-linear model of our decoder, which is identi-
cal to the regular OSM except that all the words
have been replaced by their POS tags. The input
of the decoder consists of the input sentence with
automatically assigned part-of-speech tags. The
source and target part of the training data are also
automatically tagged and phrases with words and
POS tags on both sides are extracted. The POS-
based OSM model is only used in the German-to-
English and English-to-German experiments.* So
far, we only used coarse POS tags without gender
and case information.

4 Constituent Parse Reordering

Our German-to-English system used constituent
parses for pre-ordering of the input. We parsed all
of the parallel German to English data available,
and the tuning, test and blind-test sets. We then
applied reordering rules to these parses. We used
the rules for reordering German constituent parses
of Collins et al. (2005) together with the additional
rules described by Fraser (2009). These are ap-
plied as a preprocess to all German data (training,
tuning and test data). To produce the parses, we
started with the generative BitPar parser trained on
the Tiger treebank with optimizations of the gram-
mar, as described by (Fraser et al., 2013). We then
performed self-training using the high quality Eu-
roparl corpus - we parsed it, and then retrained the
parser on the output.

“This work is ongoing and we will present detailed exper-
iments in the future.



Following this, we performed linguistically-
informed compound splitting, using the system of
Fritzinger and Fraser (2010), which disambiguates
competing analyses from the high-recall Stuttgart
Morphological Analyzer SMOR (Schmid et al.,
2004) using corpus statistics (Koehn and Knight,
2003). We also split portmanteaus like German
“zum” formed from “zu dem” meaning “to the”.
Due to time constraints, we did not address Ger-
man inflection. See Weller et al. (2013) for further
details of the linguistic processing involved in our
German-to-English system.

S Transliteration Mining/Handling
OOVs

The machine translation system fails to translate
out-of-vocabulary words (OOVs) as they are un-
known to the training data. Most of the OOVs
are named entities and simply passing them to
the output often produces correct translations if
source and target language use the same script.
If the scripts are different transliterating them to
the target language script could solve this prob-
lem. However, building a transliteration system
requires a list of transliteration pairs for training.
We do not have such a list and making one is a
cumbersome process. Instead, we use the unsu-
pervised transliteration mining system of Sajjad et
al. (2012) that takes a list of word pairs for train-
ing and extracts transliteration pairs that can be
used for the training of the transliteration system.
The procedure of mining transliteration pairs and
transliterating OOVs is described as follows:

We word-align the parallel corpus using
GIZA++ in both direction and symmetrize the
alignments using the grow-diag-final-and heuris-
tic. We extract all word pairs which occur as 1-
to-1 alignments (like Sajjad et al. (2011)) and later
refer to them as the list of word pairs. We train the
unsupervised transliteration mining system on the
list of word pairs and extract transliteration pairs.
We use these mined pairs to build a transliteration
system using the Moses toolkit. The translitera-
tion system is applied in a post-processing step
to transliterate OOVs. Please refer to Sajjad et
al. (2013) for further details on our transliteration
work.

6 Sub-sampling

Because of scalability problems we were not able
to use the entire data made available for build-
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ing the translation model in some cases. We used
modified Moore-Lewis sampling (Axelrod et al.,
2011) for the language pairs es-en, en-es, en-fr,
and en-cs. In each case we included the News-
Commentary and Europarl corpora in their en-
tirety, and scored the sentences in the remaining
corpora (the selection corpus) using a filtering cri-
terion, adding 10% of the selection corpus to
the training data. We can not say with certainty
whether using the entire data will produce better
results with the OSM decoder. However, we know
that the same data used with the state-of-the-art
Moses produced worse results in some cases. The
experiments in Durrani et al. (2013c) showed that
MML filtering decreases the BLEU scores in es-
en (news-test13: Table 19) and en-cs (news-test12:
Table 14). We can therefore speculate that being
able to use all of the data may improve our results
somewhat.

7 Experiments

Parallel Corpus: The amount of bitext used for
the estimation of the translation models is: de—en
~ 4.5M and ru—en ~ 2M parallel sentences. We
were able to use all the available data for cs-to-en
(= 15.6M sentences). However, sub-sampled data
was used for en-to-cs (= 3M sentences), en-to-fr
(= 7.8M sentences) and es—en (=~ 3M sentences).

Monolingual Language Model: We used all
the available training data (including LDC Giga-
word data) for the estimation of monolingual lan-
guage models: en ~ 287.3M sentences, fr ~ 91M,
es ~ 65.7M, cs ~ 43.4M and ru = 21.7M sen-
tences. All data except for ru-en and en-ru was
true-cased. We followed the approach of Schwenk
and Koehn (2008) by training language models
from each sub-corpus separately and then linearly
interpolated them using SRILM with weights op-
timized on the held-out dev-set. We concatenated
the news-test sets from four years (2008-2011) to
obtain a large dev-set® in order to obtain more sta-
ble weights (Koehn and Haddow, 2012).

Decoder Settings: For each extracted input
phrase only 15-best translation options were used
during decoding.® We used a hard reordering limit

SFor Russian-English and English-Russian language
pairs, we divided the tuning-set news-test 2012 into two
halves and used the first half for tuning and second for test.

®We could not experiment with higher n-best translation
options due to a bug that was not fixed in time and hindered
us from scaling.



of 16 words which disallows a jump beyond 16
source words. A stack size of 100 was used during
tuning and 200 for decoding the test set.

Results: Table 1 shows the uncased BLEU
scores along with the rank obtained on the sub-
mission matrix.” We also show the results from
human evaluation.

Lang Evaluation
Automatic Human

BLEU | Rank | Win Ratio | Rank
de-en | 27.6 9/31 0.562 6-8
es-en | 304 6/12 0.569 3-5
cs-en | 26.4 3/11 0.581 2-3
ru-en | 24.5 8/22 0.534 7-9
en-de | 20.0 6/18
en-es | 29.5 3/13 0.544 5-6
en-cs | 17.6 | 14/22 0.517 4-6
en-ru 18.1 6/15 0.456 9-10
en-fr | 30.0 7126 0.541 5-9

Table 1: Translating into and from English

8 Conclusion

In this paper, we described our submissions to
WMT 13 in all the shared-task language pairs
(except for fr-en). We used an OSM-decoder,
which implements a model on n-gram of opera-
tions encapsulating lexical generation and reorder-
ing. For German-to-English we used constituent
parsing and applied linguistically motivated rules
to these parses, followed by compound splitting.
We additionally used a POS-based OSM model for
German-to-English and English-to-German exper-
iments. For Russian-English language pairs we
used unsupervised transliteration mining. Because
of scalability issues we could not use the entire
data in some language pairs and used only sub-
sampled data. Our Czech-to-English system that
was built from the entire data did better in both
automatic and human evaluation compared to the
systems that used sub-sampled data.
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Abstract

We present the system we developed to
provide efficient large-scale feature-rich
discriminative training for machine trans-
lation. We describe how we integrate with
MapReduce using Hadoop streaming to
allow arbitrarily scaling the tuning set and
utilizing a sparse feature set. We report our
findings on German-English and Russian-
English translation, and discuss benefits,
as well as obstacles, to tuning on larger
development sets drawn from the parallel
training data.

1 Introduction

The adoption of discriminative learning methods
for SMT that scale easily to handle sparse and lex-
icalized features has been increasing in the last
several years (Chiang, 2012; Hopkins and May,
2011). However, relatively few systems take full
advantage of the opportunity. With some excep-
tions (Simianer et al., 2012), most still rely on
tuning a handful of common dense features, along
with at most a few thousand others, on a relatively
small development set (Cherry and Foster, 2012;
Chiang et al., 2009). While more features tuned
on more data usually results in better performance
for other NLP tasks, this has not necessarily been
the case for SMT.

Thus, our main focus in this paper is to improve
understanding into the effective use of sparse fea-
tures, and understand the benefits and shortcom-
ings of large-scale discriminative training. To
this end, we conducted experiments for the shared
translation task of the 2013 Workshop on Statis-
tical Machine Translation for the German-English
and Russian-English language pairs.
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2 Baseline system

We use a hierarchical phrase-based decoder im-
plemented in the open source translation system
cdec! (Dyer et al., 2010). For tuning, we use
Mr. MIRA? (Eidelman et al., 2013), an open
source decoder agnostic implementation of online
large-margin learning in Hadoop MapReduce. Mr.
MIRA separates learning from the decoder, allow-
ing the flexibility to specify the desired inference
procedure through a simple text communication
protocol. The decoder receives input sentences
and weight updates from the learner, while the
learner receives k-best output with feature vectors
from the decoder.

Hadoop MapReduce (Dean and Ghemawat,
2004) is a popular distributed processing frame-
work that has gained widespread adoption, with
the advantage of providing scalable parallelization
in a manageable framework, taking care of data
distribution, synchronization, fault tolerance, as
well as other features. Thus, while we could oth-
erwise achieve the same level of parallelization, it
would be in a more ad-hoc manner.

The advantage of online methods lies in their
ability to deal with large training sets and high-
dimensional input representations while remain-
ing simple and offering fast convergence. With
Hadoop streaming, our system can take advantage
of commodity clusters to handle parallel large-
scale training while also being capable of running
on a single machine or PBS-managed batch clus-
ter.

System design To efficiently encode the infor-
mation that the learner and decoder require (source
sentence, reference translation, grammar rules) in
a manner amenable to MapReduce, i.e. avoiding
dependencies on “side data” and large transfers
across the network, we append the reference and

"http://cdec-decoder.org
https://github.com/kho/mr-mira
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per-sentence grammar to each input source sen-
tence. Although this file’s size is substantial, it is
not a problem since after the initial transfer, it re-
sides on Hadoop distributed file system, and Map-
Reduce optimizes for data locality when schedul-
ing mappers.

A single iteration of training is performed as
a Hadoop streaming job. Each begins with a
map phase, with every parallel mapper loading the
same initial weights and decoding and updating
parameters on a shard of the data. This is followed
by a reduce phase, with a single reducer collect-
ing final weights from all mappers and computing
a weighted average to distribute as initial weights
for the next iteration.

Parameter Settings We tune our system toward
approximate sentence-level BLEU (Papineni et al.,
2002),> and the decoder is configured to use cube
pruning (Huang and Chiang, 2007) with a limit
of 200 candidates at each node. For optimiza-
tion, we use a learning rate of n=1, regularization
strength of C'=0.01, and a 500-best list for hope
and fear selection (Chiang, 2012) with a single
passive-aggressive update for each sentence (Ei-
delman, 2012).

Baseline Features We used a set of 16 stan-
dard baseline features: rule translation relative
frequency P(elf), lexical translation probabilities
Piex(e|f) and Py, (f[€), target n-gram language
model P(e), penalties for source and target words,
passing an untranslated source word to the tar-
get side, singleton rule and source side, as well
as counts for arity-0,1, or 2 SCFG rules, the total
number of rules used, and the number of times the
glue rule is used.

2.1 Data preparation

For both languages, we used the provided Eu-
roparl and News Commentary parallel training
data to create the translation grammar neces-
sary for our model. For Russian, we addi-
tionally used the Common Crawl and Yandex
data. The data were lowercased and tokenized,
then filtered for length and aligned using the
GIZA++ implementation of IBM Model 4 (Och
and Ney, 2003) to obtain one-to-many align-
ments in both directions and symmetrized sing the
grow-diag-final-and method (Koehn et al., 2003).

SWe approximate corpus BLEU by scoring sentences us-

ing a pseudo-document of previous 1-best translations (Chi-
ang et al., 2009).
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We constructed a 5-gram language model us-
ing SRILM (Stolcke, 2002) from the provided
English monolingual training data and parallel
data with modified Kneser-Ney smoothing (Chen
and Goodman, 1996), which was binarized using
KenLM (Heafield, 2011). The sentence-specific
translation grammars were extracted using a suffix
array rule extractor (Lopez, 2007).

For German, we used the 3,003 sentences in
newstest2011 as our Dev set, and report results
on the 3,003 sentences of the newstest2012 Test
set using BLEU and TER (Snover et al., 2000).
For Russian, we took the first 2,000 sentences of
newstest2012 for Dev, and report results on the re-
maining 1,003. For both languages, we selected
1,000 sentences from the bitext to be used as an
additional testing set (Test2).

Compound segmentation lattices As German
is a morphologically rich language with produc-
tive compounding, we use word segmentation lat-
tices as input for the German translation task.
These lattices encode alternative segmentations of
compound words, allowing the decoder to auto-
matically choose which segmentation is best. We
use a maximum entropy model with recommended
settings to create lattices for the dev and test sets,
as well as for obtaining the 1-best segmentation of
the training data (Dyer, 2009).

3 Evaluation

This section describes the experiments we con-
ducted in moving towards a better understanding
of the benefits and challenges posed by large-scale
high-dimensional discriminative tuning.

3.1 Sparse Features

The ability to incorporate sparse features is the pri-
mary reason for the recent move away from Min-
imum Error Rate Training (Och, 2003), as well as
for performing large-scale discriminative training.
We include the following sparse Boolean feature
templates in our system in addition to the afore-
mentioned baseline features: rule identity (for ev-
ery unique rule in the grammar), rule shape (map-
ping rules to sequences of terminals and nontermi-
nals), target bigrams, lexical insertions and dele-
tions (for the top 150 unaligned words from the
training data), context-dependent word pairs (for
the top 300 word pairs in the training data), and
structural distortion (Chiang et al., 2008).



Dev Test Test2 Sk 10k 25k 50k Dev Test Testa 15k
en 75k 74k 27k 132k 255k 634k 1258k ru ggt §4i ;;llli 35(1)1;
de 74k 73k 26k 133k 256k 639k 1272k ! !
Table 1: Corpus statistics in tokens for German. Tab1§ 2: Corpus statistics in tokens for
Russian.
Set # features | Tune Test 2
1BLEU | 1BLEU | |TER 28 o
de-en 16 22.38 | 22.69 | 60.61 26 / s
+sparse 108k 23.86 | 23.01 | 59.89 34 7~
ru-en 16 30.18 | 29.89 | 49.05 2% /
+sparse 77k 3240 | 30.81 [ 4840 | “ % g
228

Table 3: Results with the addition of sparse fea-
tures for German and Russian.

All of these features are generated from the
translation rules on the fly, and thus do not have
to be stored as part of the grammar. To allow for
memory efficiency while scaling the training data,
we hash all the lexical features from their string
representation into a 64-bit integer.

Altogether, these templates result in millions of
potential features, thus how to select appropriate
features, and how to properly learn their weights
can have a large impact on the potential benefit.

3.2 Adaptive Learning Rate

The passive-aggressive update used in MIRA has a
single learning rate n for all features, which along
with « limits the amount each feature weight can
change at each update. However, since the typical
dense features (e.g., language model) are observed
far more frequently than sparse features (e.g., rule
identity), it has been shown to be advantageous
to use an adaptive per-feature learning rate that
allows larger steps for features that do not have
much support (Green et al., 2013; Duchi et al.,
2011). Essentially, instead of having a single pa-
rameter 7,

cost(y) —w' (F(yT) — £(v))

o < min | C,
- < 1) — £@)IP

—f(y))

we instead have a vector 2 with one entry for each
feature weight:

W W+ an (f(y+)

$-1 x4 Adiag (wa)

w i w+aS? (F(yT) - £(y))

22,6

24 A

222

Iteration

Figure 1: Learning curves for tuning when using
a single step size (1) versus different per-feature
learning rates.

In practice, this update is very similar to that of
AROW (Crammer et al., 2009; Chiang, 2012).

Figure 1 shows learning curves for sparse mod-
els with a single learning rate, and adaptive learn-
ing with A=0.01 and A=0.1, with associated re-
sults on Test in Table 4.* As can be seen, using
a single 7 produces almost no gain on Dev. How-
ever, while both settings using an adaptive rate fare
better, the proper setting of \ is important. With
A=0.01 we observe 0.5 BLEU gain over A=0.1 in
tuning, which translates to a small gain on Test.
Henceforth, we use an adaptive learning rate with
A=0.01 for all experiments.

Table 3 presents baseline results for both lan-
guages. With the addition of sparse features, tun-
ing scores increase by 1.5 BLEU for German, lead-
ing to a 0.3 BLEU increase on Test, and 2.2 BLEU
for Russian, with 1 BLEU increase on Test. The
majority of active features for both languages are
rule id (74%), followed by target bigrams (14%)
and context-dependent word pairs (11%).

3.3 Feature Selection

As the tuning set size increases, so do the num-
ber of active features. This may cause practi-
cal problems, such as reduced speed of computa-
tion and memory issues. Furthermore, while some

*All sparse models are initialized with the same tuned
baseline weights. Learning rates are local to each mapper.
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Adaptive | #feat. | Tune Test
TBLEU | TBLEU | JTER
none 74k 2275 22.87 | 60.19
A=0.01 108k | 23.86 | 23.01 | 59.89
A=0.1 62k 2332 | 2292 | 60.09

Table 4: Results with different A settings for using a per-feature learning rate with sparse features.

Set #feat. | Tune Test
TBLEU | 1BLEU | |TER
all 510k | 32.99 22.36 | 59.26
top 200k | 200k | 32.96 22.35 | 59.29
all 373k | 34.26 28.84 | 49.29
top 200k | 200k | 34.45 28.98 | 49.30

Table 5: Comparison of using all features versus
top k selection.

sparse features will generalize well, others may
not, thereby incurring practical costs with no per-
formance benefit. Simianer et al. (2012) recently
explored ¢1/¢5 regularization for joint feature se-
lection for SMT in order to improve efficiency and
counter overfitting effects. When performing par-
allel learning, this allows for selecting a reduced
set of the top k features at each iteration that are
effective across all learners.

Table 5 compares selecting the top 200k fea-
tures versus no selection for a larger German and
Russian tuning set (§3.4). As can be seen, we
achieve the same performance with the top 200k
features as we do when using double that amount,
while the latter becomes increasing cumbersome
to manage. Therefore, we use a top 200k selection
for the remainder of this work.

3.4 Large-Scale Training

In the previous section, we saw that learning
sparse features on the small development set leads
to substantial gains in performance. Next, we
wanted to evaluate if we can obtain further gains
by scaling the tuning data to learn parameters di-
rectly on a portion of the training bitext. Since the
bitext is used to learn rules for translation, using
the same parallel sentences for grammar extrac-
tion as well as for tuning feature weights can lead
to severe overfitting (Flanigan et al., 2013). To
avoid this issue, we used a jackknifing method to
split the training data into n = 10 folds, and built
a translation system on n—1 folds, while sampling
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sentences from the News Commentary portion of
the held-out fold to obtain tuning sets from 5,000
to 50,000 sentences for German, and 15,000 sen-
tences for Russian.

Results for large-scale training for German are
presented in Table 6. Although we cannot com-
pare the tuning scores across different size sets,
we can see that tuning scores for all sets improve
substantially with sparse features. Unfortunately,
with increasing tuning set size, we see very little
improvement in Test BLEU and TER with either
feature set. Similar findings for Russian are pre-
sented in Table 7. Introducing sparse features im-
proves performance on each set, respectively, but
Dev always performs better on Test.

While tuning on Dev data results in better BLEU
on Test than when tuning on the larger sets, it is
important to note that although we are able to tune
more features on the larger bitext tuning sets, they
are not composed of the same genre as the Tune
and Test sets, resulting in a domain mismatch.

This phenomenon is further evident in German
when testing each model on Test2, which is se-
lected from the bitext, and is thus closer matched
to the larger tuning sets, but is separate from both
the parallel data used to build the translation model
and the tuning sets. Results on Test2 clearly show
significant improvement using any of the larger
tuning sets versus Dev for both the baseline and
sparse features. The 50k sparse setting achieves
almost 1 BLEU and 2 TER improvement, showing
that there are significant differences between the
Dev/Test sets and sets drawn from the bitext.

For Russian, we amplified the effects by select-
ing Test2 from the portion of the bitext that is sepa-
rate from the tuning set, but is among the sentences
used to create the translation model. The effects of
overfitting are markedly more visible here, as there
is almost a 7 BLEU difference between tuning on
Dev and the 15k set with sparse features. Further-
more, it is interesting to note when looking at Dev
that using sparse features has a significant nega-
tive impact, as the baseline tuned Dev performs



Tuning Test
TBLEU | |TER
5k 22.81 | 59.90
10k 22777 | 59.78
25k 22.88 | 59.77
50k 22.86 | 59.76

Table 8: Results for German with 2 iterations of
tuning on Dev after tuning on larger set.

reasonably well, while the introduction of sparse
features leads to overfitting the specificities of the
Dev/Test genre, which are not present in the bitext.

We attempted two strategies to mitigate this
problem: combining the Dev set with the larger
bitext tuning set from the beginning, and tuning
on a larger set to completion, and then running 2
additional iterations of tuning on the Dev set using
the learned model. Results for tuning on Dev and a
larger set together are presented in Table 7 for Rus-
sian and Table 6 for German. As can be seen, the
resulting model improves somewhat on the other
genre and strikes a middle ground, although it is
worse on Test than Dev.

Table 8 presents results for tuning several ad-
ditional iterations after learning a model on the
larger sets. Although this leads to gains of around
0.5 BLEU on Test, none of the models outperform
simply tuning on Dev. Thus, neither of these two
strategies seem to help. In future work, we plan
to forgo randomly sampling the tuning set from
the bitext, and instead actively select the tuning
set based on similarity to the test set.

4 Conclusion

We explored strategies for scaling learning for
SMT to large tuning sets with sparse features.
While incorporating an adaptive per-feature learn-
ing rate and feature selection, we were able to
use Hadoop to efficiently take advantage of large
amounts of data. Although discriminative training
on larger sets still remains problematic, having the
capability to do so remains highly desirable, and
we plan to continue exploring methods by which
to leverage the power of the bitext effectively.
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Abstract

This paper describes the TALP participa-
tion in the WMT13 evaluation campaign.
Our participation is based on the combi-
nation of several statistical machine trans-
lation systems: based on standard phrase-
based Moses systems. Variations include
techniques such as morphology genera-
tion, training sentence filtering, and do-
main adaptation through unit derivation.
The results show a coherent improvement
on TER, METEOR, NIST, and BLEU
scores when compared to our baseline sys-
tem.

1 Introduction

The TALP-UPC center (Center for Language and
Speech Technologies and Applications at Univer-
sitat Politecnica de Catalunya) focused on the En-
glish to Spanish translation of the WMT13 shared
task.

Our primary (contrastive) run is an internal
system selection comprised of different train-
ing approaches (without CommonCrawl, unless
stated): (a) Moses Baseline (Koehn et al.,
2007b), (b) Moses Baseline + Morphology Gener-
ation (Formiga et al., 2012b), (c) Moses Baseline
+ News Adaptation (Henriquez Q. et al., 2011),
(d) Moses Baseline + News Adaptation + Mor-
phology Generation , and (e) Moses Baseline +
News Adaptation + Filtered CommonCrawl Adap-
tation (Barrén-Cedefio et al., 2013). Our sec-
ondary run includes is the full training strategy
marked as (e) in the previous description.

The main differences with respect to our last
year’s participation (Formiga et al., 2012a) are: i)
the inclusion of the CommonCrawl corpus, using
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a sentence filtering technique and the system com-
bination itself, and ii) a system selection scheme
to select the best translation among the different
configurations.

The paper is organized as follows. Section 2
presents the phrase-based system and the main
pipeline of our baseline system. Section 3 de-
scribes the our approaches to improve the baseline
system on the English-to-Spanish task (special at-
tention is given to the approaches that differ from
last year). Section 4 presents the system combi-
nation approach once the best candidate phrase of
the different subsystems are selected. Section 5
discusses the obtained results considering both in-
ternal and official test sets. Section 6 includes con-
clusions and further work.

2 Baseline system: Phrase-Based SMT

Our contribution is a follow up of our last year par-
ticipation (Formiga et al., 2012a), based on a fac-
tored Moses from English to Spanish words plus
their Part-of-Speech (POS). Factored corpora aug-
ments words with additional information, such as
POS tags or lemmas. In that case, factors other
than surface (e.g. POS) are usually less sparse, al-
lowing the construction of factor-specific language
models with higher-order n-grams. Such language
models can help to obtain syntactically more cor-
rect outputs.

We used the standard models available in Moses
as feature functions: relative frequencies, lexi-
cal weights, word and phrase penalties, wbe-msd-
bidirectional-fe reordering models, and two lan-
guage models (one for surface and one for POS
tags). Phrase scoring was computed using Good-
Turing discounting (Foster et al., 2006).

As aforementioned, we developed five factored
Moses-based independent systems with different
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approaches. We explain them in Section 3. As
a final decision, we applied a system selection
scheme (Formiga et al., 2013; Specia et al., 2010)
to consider the best candidate for each sentence,
according to human trained quality estimation
(QE) models. We set monotone reordering of
the punctuation signs for the decoding using the
Moses wall feature.

We tuned the systems using the Moses
MERT (Och, 2003) implementation. Our focus
was on minimizing the BLEU score (Papineni et
al., 2002) of the development set. Still, for ex-
ploratory purposes, we tuned configuration (c) us-
ing PRO (Hopkins and May, 2011) to set the ini-
tial weights at every iteration of the MERT algo-
rithm. However, it showed no significant differ-
ences compared to the original MERT implemen-
tation.

We trained the baseline system using all
the available parallel corpora, except for
common-crawl. That is, European Parlia-
ment (EPPS) (Koehn, 2005), News Commentary,
and United Nations. Regarding the monolingual
data, there were more News corpora organized
by years for Spanish. The data is available at
the Translation Task’s website!. We used all
the News corpora to busld the language model
(LM). Firstly, a LM was built for every corpus
independently. Afterwards, they were combined
to produce de final LM.

For internal testing we used the News 2011 and
News 2012 data and concatenated the remaining
three years of News data as a single parallel corpus
for development.

We processed the corpora as in our participa-
tion to WMT12 (Formiga et al., 2012a). Tok-
enization and POS-tagging in both Spanish and
English was obtained with FreeLing (Padré et al.,
2010). Stemming was carried out with Snow-
ball (Porter, 2001). Words were conditionally case
folded based on their POS: proper nouns and ad-
jectives were separated from other categories to
determine whether a string should be fully folded
(no special property), partially folded (noun or ad-
jective) or not folded at all in (acronym).

Bilingual corpora was filtered with the clean-
corpus-n script of Moses (Koehn et al., 2007a), re-
moving those pairs in which a sentence was longer
than 70. For the CommonCrawl corpus we used a
more complex filtering step (cf. Section 3.3).

"http://www.statmt.org/wmt13/translation-task.html
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Postprocessing included two special scripts to
recover contractions and clitics. Detruecasing was
done forcing the capitals after the punctuation
signs. Furthermore we used an additional script in
order to check the casing of output names with re-
spect to the source. We reused our language mod-
els and alignments (with stems) from WMT12.

3 Improvement strategies

We tried three different strategies to improve the
baseline system. Section 3.1 shows a strategy
based on morphology simplification plus genera-
tion. Its aim is dealing with the problems raised
by morphology-rich languages, such as Spanish.
Section 3.2 presents a domain—adaptation strategy
that consists of deriving new units. Section 3.3
presents an advanced strategy to filter the good bi-
sentences from the CommonCrawl corpus, which
might be useful to perform the domain adaptation.

3.1 Morphology generation

Following the success of our WMT12 participa-
tion (Formiga et al., 2012a), our first improve-
ment is based on the morphology generalization
and generation approach (Formiga et al., 2012b).
We focus our strategy on simplifying verb forms
only.

The approach first translates into Spanish sim-
plified forms (de Gispert and Marifio, 2008). The
final inflected forms are predicted through a mor-
phology generation step, based on the shallow
and deep-projected linguistic information avail-
able from both source and target language sen-
tences.

Lexical sparseness is a crucial aspect to deal
with for an open-domain robust SMT when trans-
lating to morphology-rich languages (e.g. Span-
ish) . We knew beforehand (Formiga et al., 2012b)
that morphology generalization is a good method
to deal with generic translations and it provides
stability to translations of the training domain.

Our morphology prediction (generation) sys-
tems are trained with the WMT13 corpora (Eu-
roparl, News, and UN) together with noisy data
(OpenSubtitles). This combination helps to obtain
better translations without compromising the qual-
ity of the translation models. These kind of mor-
phology generation systems are trained with a rel-
atively short amount of parallel data compared to
standard SMT training corpora.

Our main enhancement to this strategy is the



addition of source-projected deep features to the
target sentence in order to perform the morphol-
ogy prediction. These features are Dependency
Features and Semantic Role Labelling, obtained
from the source sentence through Lund Depen-
dency Parser’. These features are then projected
to the target sentence as explained in (Formiga et
al., 2012b).

Projected deep features are important to pre-
dict the correct verb morphology from clean and
fluent text. However, the projection of deep fea-
tures is sentence-fluency sensitive, making it un-
reliable when the baseline MT output is poor. In
other words, the morphology generation strategy
becomes more relevant with high-quality MT de-
coders, as their output is more fluent, making the
shallow and deep features more reliable classifier
guides.

3.2 Domain Adaptation through pivot
derived units

Usually the WMT Translation Task focuses on
adapting a system to a news domain, offering an
in-domain parallel corpus to work with. How-
ever this corpus is relatively small compared to
the other corpora. In our previous participation
we demonstrated the need of performing a more
aggressive domain adaptation strategy. Our strat-
egy was based on using in-domain parallel data to
adapt the translation model, but focusing on the
decoding errors that the out-of-domain baseline
system makes when translating the in-domain cor-
pus.

The idea is to identify the system mistakes and
use the in-domain data to learn how to correct
them. To that effect, we interpolate the transla-
tion models (phrase and lexical reordering tables)
with a new adapted translation model with derived
units. We obtained the units identifying the mis-
matching parts between the non-adapted transla-
tion and the actual reference (Henriquez Q. et al.,
2011). This derivation approach uses the origi-
nal translation as a pivot to find a word-to-word
alignment between the source side and the target
correction (word-to-word alignment provided by
Moses during decoding).

The word-to-word monolingual alignment be-
tween output translation target correction was ob-
tained combining different probabilities such as
i)lexical identity, ii) TER-based alignment links,

Zhttp://nlp.cs.lth.se/software/
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Table 1: Commoncrawl corpora statistics for

WMT13 before and after filtering.

iii) lexical model probabilities, iv) char-based Lev-
enshtein distance between tokens and v) filtering
out those alignments from NULL to a stop word
(p = —00).

We empirically set the linear interpolation
weight as w = 0.60 for the baseline translation
models and w = 0.40 for the derived units trans-
lations models. We applied the pivot derived units
strategy to the News domain and to the filtered
Commoncrawl corpus (cf. Section 5). The proce-
dure to filter out the Commoncrawl corpus is ex-
plained next.

3.3 CommonCrawl Filtering

We used the CommonCrawl corpus, provided for
the first time by the organization, as an impor-
tant source of information for performing aggres-
sive domain adaptation. To decrease the impact
of the noise in the corpus, we performed an auto-
matic pre-selection of the supposedly more correct
(hence useful) sentence pairs: we applied the au-
tomatic quality estimation filters developed in the
context of the FAUST project®. The filters’ pur-
pose is to identify cases in which the post-editions
provided by casual users really improve over auto-
matic translations.

The adaptation to the current framework is as
follows. Example selection is modelled as a bi-
nary classification problem. We consider triples
(src, ref ,trans), where src and ref stand for the
source-reference sentences in the CommonCrawl
corpus and frans is an automatic translation of the
source, generated by our baseline SMT system. A
triple is assigned a positive label iff ref is a bet-
ter translation from src than trans. That is, if the
translation example provided by CommonCrawl is
better than the output of our baseline SMT system.

We used four feature sets to characterize the
three sentences and their relationships: sur-
face, back-translation, noise-based and similarity-
based. These features try to capture (a) the simi-
larity between the different texts on the basis of

Shttp://www.faust—£fp7.eu
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diverse measures, (b) the length of the different
sentences (including ratios), and (c) the likelihood
of a source or target text to include noisy text.*
Most of them are simple, fast-calculation and
language-independent features. However, back-
translation features require that frans and ref are
back-translated into the source language. We did
it by using the TALP es-en system from WMT12.

Considering these features, we trained lin-
ear Support Vector Machines using SVM! 9/
(Joachims, 1999). Our training collection was the
FFF* corpus, with +500 hundred manually anno-
tated instances (Barrén-Cedeiio et al., 2013). No
adaptation to CommonCrawl was performed. To
give an idea, classification accuracy over the test
partition of the FFF* corpus was only moderately
good (~70%). However, ranking by classification
score a fresh set of over 6,000 new examples, and
selecting the top ranked 50% examples to enrich a
state-of-the-art SMT system, allowed us to signifi-
cantly improve translation quality (Barrén-Cedefio
etal., 2013).

For WMT13, we applied these classifiers to
rank the CommonCrawl translation pairs and then
selected the top 53% instances to be processed by
the domain adaptation strategy. Table 1 displays
the corpus statistics before and after filtering.

4 System Combination

We approached system combination as a system
selection task. More concretely, we applied Qual-
ity Estimation (QE) models (Specia et al., 2010;
Formiga et al., 2013) to select the highest qual-
ity translation at sentence level among the trans-
lation candidates obtained by our different strate-
gies. The QE models are trained with human
supervision, making use of no system-dependent
features.

In a previous study (Formiga et al., 2013),
we showed the plausibility of building reliable
system-independent QE models from human an-
notations. This type of task should be addressed
with a pairwise ranking strategy, as it yields bet-
ter results than an absolute quality estimation ap-
proach (i.e., regression) for system selection. We
also found that training the quality estimation
models from human assessments, instead of au-
tomatic reference scores, helped to obtain better

“We refer the interested reader to (Barrén-Cedeiio et al.,
2013) for a detailed description of features, process, and eval-
uation.
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models for system selection for both /) mimicking
the behavior of automatic metrics and ii) learning
the human behavior when ranking different trans-
lation candidates.

For training the QE models we used the data
from the WMT13 shared task on quality estima-
tion (System Selection Quality Estimation at Sen-
tence Level task’), which contains the test sets
from other WMT campaigns with human assess-
ments. We used five groups of features, namely:
i) QuestQFE: 17 QE features provided by the Quest
toolkit®; ii) AsiyaQE: 26 QE features provided by
the Asiya toolkit for MT evaluation (Giménez and
Marquez, 2010a); iii) LM (and LM-PoS) perplex-
ities trained with monolingual data; iv) PR: Clas-
sical lexical-based measures -BLEU (Papineni et
al., 2002), NIST (Doddington, 2002), and ME-
TEOR (Denkowski and Lavie, 2011)- computed
with a pseudo-reference approach, that is, using
the other system candidates as references (Sori-
cut and Echihabi, 2010); and v) PROTHER: Ret-
erence based metrics provided by Asiya, including
GTM, ROUGE, PER, TER (Snover et al., 2008),
and syntax-based evaluation measures also with a
pseudo-reference approach.

We trained a Support Vector Machine ranker by
means of pairwise comparison using the SVM'9h*
toolkit (Joachims, 1999), but with the “~z p” pa-
rameter, which can provide system rankings for
all the members of different groups. The learner
algorithm was run according to the following pa-
rameters: linear kernel, expanding the working set
by 9 variables at each iteration, for a maximum of
50,000 iterations and with a cache size of 100 for
kernel evaluations. The trade-off parameter was
empirically set to 0.001.

Table 2 shows the contribution of different fea-
ture groups when training the QE models. For
evaluating performance, we used the Asiya nor-
malized linear combination metric ULC (Giménez
and Marquez, 2010b), which combines BLEU,
NIST, and METEOR (with exact, paraphrases and
synonym variants). Within this scenario, it can
be observed that the quality estimation features
(QuestQE and AsiyaQE) did not obtain good re-
sults, perhaps because of the high similarity be-
tween the test candidates (Moses with different
configurations) in contrast to the strong differ-
ence between the candidates in training (Moses,

Shttp://www.quest.dcs.shef.ac.uk/wmt13_ge.html
Shttp://www.quest.dcs.shef.ac.uk



Features Asiya ULC
WMT’11 WMT’12 | AVG || WMT’13
QuestQFE 60.46 60.64 | 60.55 60.06
AsiyaQFE 61.04 60.89 | 60.97 60.29
QuestQE+AsiyaQFE 60.86 61.07 | 60.96 60.42
LM 60.84 60.63 | 60.74 60.37
QuestQE+AsiyaQE+LM 60.80 60.55 | 60.67 60.21
QuestQE+AsiyaQE+PR 60.97 61.12 | 61.05 60.54
QuestQE+AsiyaQE+PR+PROTHER 61.05 61.19 | 61.12 60.69
PR 61.24 61.08 | 61.16 61.04
PR+PROTHER 61.19 61.16 | 61.18 60.98
PR+PROTHER+LM 61.11 61.29 | 61.20 61.03
QuestQE+AsiyaQE+PR+PROTHER+ILM 60.70 60.88 | 60.79 60.14

Table 2: System selection scores (ULC) obtained using QE models trained with different groups of
features. Results displayed for WMT11, WMT12 internal tests, their average, and the WMT13 test

EN—ES | BLEU | TER |
wmtl3 | Primary 29.5 1 0.586
wmtl3 | Secondary | 29.4 | 0.586

Table 4: Official automatic scores for the WMT13
English<+Spanish translations.

RBMT, Jane, etc.). On the contrary, the pseudo-
reference-based features play a crucial role in the
proper performance of the QE model, confirming
the hypothesis that PR features need a clear dom-
inant system to be used as reference. The PR-
based configurations (with and without LM) had
no big differences between them. We choose the
best AVG result for the final system combination:
PR+PROTHER+LM, which it is consistent with
the actual WMT13 evaluated afterwards.

5 Results

Evaluations were performed considering different
quality measures: BLEU, NIST, TER, and ME-
TEOR in addition to an informal manual analy-
sis. This manifold of metrics evaluates distinct as-
pects of the translation. We evaluated both over
the WMT11 and WMT12 test sets as internal in-
dicators of our systems. We also give our perfor-
mance on the WMT13 test dataset.

Table 3 presents the obtained results for the
different strategies: (a) Moses Baseline (w/o
commoncrawl) (b) Moses Baseline+Morphology
Generation (w/o commoncrawl) (c) Moses Base-
line+News Adaptation through pivot based align-
ment (w/o commoncrawl) (d) Moses Baseline +

News Adaptation (b) + Morphology Generation
(c) (e) Moses Baseline + News Adaptation (b) +
Filtered CommonCrawl Adaptation.

The official results are in Table 4. Our primary
(contrastive) run is the system combination strat-
egy whereas our secondary run is the full training
strategy marked as (e) on the system combination.
Our primary system was ranked in the second clus-
ter out of ten constrained systems in the official
manual evaluation.

Independent analyzes of the improvement
strategies show that the highest improvement
comes from the CommonCrawl Filtering + Adap-
tation strategy (system e). The second best strat-
egy is the combination of the morphology pre-
diction system plus the news adaptation system.
However, for the WMTI12 test the News Adap-
tation strategy contributes to main improvement
whereas for the WMT13 this major improvement
is achieved with the morphology strategy. Analyz-
ing the distance betweem each test set with respect
to the News and CommonCrawl domain to further
understand the behavior of each strategy seems an
interesting future work. Specifically, for further
contrasting the difference in the morphology ap-
proach, it would be nice to analyze the variation in
the verb inflection forms. Hypothetically, the per-
son or the number of the verb forms used may have
a higher tendency to be different in the WMT13
test set, implying that our morphology approach is
further exploited.

Regarding the system selection step (internal
WMT1I2 test), the only automatic metric that has
an improvement is TER. However, TER is one of
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EN—ES

BLEU | NIST | TER | METEOR

wmtl2 | Baseline 3297 | 827 | 49.27 4991
wmtl2 | + Morphology Generation 33.03 | 8.29 | 49.02 50.01
wmtl2 | + News Adaptation 33.22 | 8.31 | 49.00 50.16
wmtl2 | + News Adaptation + Morphology Generation 33.29 | 8.32 | 48.83 50.29
wmtl2 | + News Adaptation + Filtered CommonCrawl Adaptation | 33.61 | 8.35 | 48.82 50.52
wmt12 | System Combination | 3343 | 8.34 [ 48.78 | 50.44
wmtl3 | Baseline 29.02 | 7.72 | 51.92 46.96
wmtl3 | Morphology Generation 2935 | 7.73 | 52.04 47.04
wmtl3 | News Adaptation 29.19 | 7.74 | 5191 47.07
wmtl3 | News Adaptation + Morphology Generation 29.40 | 7.74 | 51.96 47.12
wmtl3 | News Adaptation + Filtered CommonCrawl Adaptation 2947 | 7.77 | 51.82 47.22
wmtl3 | System Combination ‘ 29.54 ‘ 7.77 ‘ 51.76 ‘ 47.34

Table 3: Automatic scores for English— Spanish translations.

the most reliable metrics according to human eval-
uation. Regarding the actual WMT13 test, the sys-
tem selection step is able to overcome all the auto-
matic metrics.

6 Conclusions and further work

This paper described the TALP-UPC participa-
tion for the English-to-Spanish WMT13 transla-
tion task. We applied the same systems as in last
year, but enhanced with new techniques: sentence
filtering and system combination.

Results showed that both approaches performed
better than the baseline system, being the sentence
filtering technique the one that most improvement
reached in terms of all the automatic quality indi-
cators: BLEU, NIST, TER, and METEOR. The
system combination was able to outperform the
independent systems which used morphological
knowledge and/or domain adaptation techniques.

As further work would like to focus on further
advancing on the morphology-based techniques.
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Abstract

We present two English-to-Czech systems
that took part in the WMT 2013 shared
task: TECTOMT and PHRASEFIX. The
former is a deep-syntactic transfer-based
system, the latter is a more-or-less stan-
dard statistical post-editing (SPE) applied
on top of TECTOMT. In a brief survey, we
put SPE in context with other system com-
bination techniques and evaluate SPE vs.
another simple system combination tech-
nique: using synthetic parallel data from
TECTOMT to train a statistical MT sys-
tem (SMT). We confirm that PHRASEFIX
(SPE) improves the output of TECTOMT,
and we use this to analyze errors in TEC-
TOMT. However, we also show that ex-
tending data for SMT is more effective.

1 Introduction

This paper describes two submissions to the
WMT 2013 shared task:! TECTOMT — a deep-
syntactic tree-to-tree system and PHRASEFIX —
statistical post-editing of TECTOMT using Moses
(Koehn et al., 2007). We also report on exper-
iments with another hybrid method where TEC-
TOMT is used to produce additional (so-called
synthetic) parallel training data for Moses. This
method was used in CU-BOJAR and CU-DEPFIX
submissions, see Bojar et al. (2013).

2 Overview of Related Work

The number of approaches to system combination
is enormous. We very briefly survey those that
form the basis of our work reported in this paper.
2.1 Statistical Post-Editing

Statistical post-editing (SPE, see e.g. Simard et al.
(2007), Dugast et al. (2009)) is a popular method

'nttp://www.statmt.org/wmt13
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for improving outputs of a rule-based MT sys-
tem. In principle, SPE could be applied to any
type of first-stage system including a statistical
one (Oflazer and El-Kahlout, 2007; Béchara et al.,
2011), but most benefit could be expected from
post-editing rule-based MT because of the com-
plementary nature of weaknesses and advantages
of rule-based and statistical approaches.

SPE is usually done with an off-the-shelf SMT
system (e.g. Moses) which is trained on output of
the first-stage system aligned with reference trans-
lations of the original source text. The goal of SPE
is to produce translations that are better than both
the first-stage system alone and the second-stage
SMT trained on the original training data.

Most SPE approaches use the reference trans-
lations from the original training parallel corpus
to train the second-stage system. In contrast,
Simard et al. (2007) use human-post-edited first-
stage system outputs instead. Intuitively, the lat-
ter approach achieves better results because the
human-post-edited translations are closer to the
first-stage output than the original reference trans-
lations. Therefore, SPE learns to perform the
changes which are needed the most. However, cre-
ating human-post-edited translations is laborious
and must be done again for each new (version of
the) first-stage system in order to preserve its full
advantage over using the original references.’

Rosa et al. (2013) have applied SPE on
English—Czech SMT outputs. They have used
the approach introduced by Béchara et al. (2011),
but no improvement was achieved. However, their
rule-based post-editing were found helpful.

Our SPE setting (called PHRASEFIX) uses
TECTOMT as the first-stage system and Moses as
the second-stage system. Ideally, TECTOMT pre-

*If more reference translations are available, it would be
beneficial to choose such references for training SPE which
are most similar to the first-stage outputs. However, in our
experiments only one reference is available.

Proceedings of the Eighth Workshop on Statistical Machine Translation, pages 141-147,
Sofia, Bulgaria, August 8-9, 2013 (©)2013 Association for Computational Linguistics



serves well-formed syntactic sentence structures,
and the SPE (Moses) fixes low fluency wordings.

2.2 MT Output Combination

An SPE system is trained to improve the output
of a single first-stage system. Sometimes, more
(first-stage) systems are available, and we would
like to combine them. In MT output selection,
for each sentence one system’s translation is se-
lected as the final output. In MT output combi-
nation, the final translation of each sentence is a
combination of phrases from several systems. In
both approaches, the systems are treated as black
boxes, so only their outputs are needed. In the
simplest setting, all systems are supposed to be
equally good/reliable, and the final output is se-
lected by voting, based on the number of shared n-
grams or language model scores. The number and
the identity of the systems to be combined there-
fore do not need to be known in advance. More so-
phisticated methods learn parameters/weights spe-
cific for the individual systems. These methods
are based e.g. on confusion networks (Rosti et al.,
2007; Matusov et al., 2008) and joint optimization
of word alignment, word order and lexical choice
(He and Toutanova, 2009).

2.3 Synthetic Data Combination

Another way to combine several first-stage sys-
tems is to employ a standard SMT toolkit, e.g.
Moses. The core of the idea is to use the n first-
stage systems to prepare synthetic parallel data
and include them in the training data for the SMT.

Corpus Combination (CComb) The easiest
method is to use these n newly created paral-
lel corpora as additional training data, i.e. train
Moses on a concatenation of the original paral-
lel sentences (with human-translated references)
and the new parallel sentences (with machine-
translated pseudo-references).

Phrase Table Combination (PTComb) An-
other method is to extract n phrase tables in
addition to the original phrase table and ex-
ploit the Moses option of multiple phrase tables
(Koehn and Schroeder, 2007). This means that
given the usual five features (forward/backward
phrase/lexical log probability and phrase penalty),
we need to tune 5 - (n + 1) features. Because such
MERT (Och, 2003) tuning may be unstable for
higher n, several methods were proposed where
the n+1 phrase tables are merged into a single one
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(Eisele et al., 2008; Chen et al., 2009). Another is-
sue of phrase table combination is that the same
output can be achieved with phrases from several
phrase tables, leading to spurious ambiguity and
thus less diversity in n-best lists of a given size
(see Chen et al. (2009) for one possible solution).
CComb does not suffer from the spurious ambi-
guity issue, but it does not allow to tune special
features for the individual first-stage systems.

In our experiments, we use both CComb and
PTComb approaches. In PTComb, we use TEC-
TOMT as the only first-stage system and Moses as
the second-stage system. We use the two phrase
tables separately (the merging is not needed; 5 - 2
is still a reasonable number of features in MERT).
In CComb, we concatenate English<+Czech par-
allel corpus with English<+“synthetic Czech” cor-
pus translated from English using TECTOMT. A
single phrase table is created from the concate-
nated corpus.

3 TEcCcTOMT

TECTOMT is a linguistically-motivated tree-to-
tree deep-syntactic translation system with trans-
fer based on Maximum Entropy context-sensitive
translation models (Marecek et al., 2010) and
Hidden Tree Markov Models (Zabokrtsky and
Popel, 2009). It employs some rule-based compo-
nents, but the most important tasks in the analysis-
transfer-synthesis pipeline are based on statistics
and machine learning. There are three main rea-
sons why it is a suitable candidate for SPE and
other hybrid methods.

TECTOMT has quite different distribution
and characteristics of errors compared to
standard SMT (Bojar et al., 2011).

TECTOMT is not tuned for BLEU using
MERT (its development is rather driven by hu-
man inspection of the errors although different
setups are regularly evaluated with BLEU as an
additional guidance).

TECTOMT uses deep-syntactic dependency
language models in the transfer phase, but it
does not use standard n-gram language mod-
els on the surface forms because the current syn-
thesis phase supports only 1-best output.

The version of TECTOMT submitted to WMT
2013 is almost identical to the WMT 2012 version.
Only a few rule-based components (e.g. detection
of surface tense of English verbs) were refined.



Tokens

Corpus Sents Czech English
CzEng ISM  205M  236M
tmt(CzEng) I5SM  197M  236M
Czech Web Corpus 37M  627M -
WMT News Crawl  25M  445M -

BLEU 1-TER
TECTOMT 14.714+0.53 35.61£0.60
PHRASEFIX 17.734£0.54 35.63+0.65
Filtering 14.684+0.50 35.47+0.57
Mark Reliable Phr.  17.874+0.55 35.57+0.66
Mark Identities 17.87+0.57 35.85+0.68

Table 1: Statistics of used data.

4 Common Experimental Setup

All our systems (including TECTOMT) were
trained on the CzEng (Bojar et al., 2012) par-
allel corpus (development and evaluation sub-
sets were omitted), see Table 1 for statistics.
We translated the English side of CzEng with
TECTOMT to obtain “synthetic Czech”. This
way we obtained a new parallel corpus, denoted
tmt(CzEng), with English <+ synthetic Czech sen-
tences. Analogically, we translated the WMT
2013 test set (newstest2013) with TECTOMT and
obtained " (newstest2013). Our baseline SMT
system (Moses) trained on CzEng corpus only was
then also used for WMT 2013 test set transla-
tion, and we obtained *"*(newstest2013). For all
MERT tuning, newstest2011 was used.

4.1 Alignment

All our parallel data were aligned with GIZA++
(Och and Ney, 2003) and symmetrized with
the “grow-diag-final-and” heuristics. This ap-
plies also to the synthetic corpora “™(CzEng),
tmt (newstest2013), and 5™ (newstest2013).

For the SPE experiments, we decided to base
alignment on (genuine and synthetic Czech) lem-
mas, which could be acquired directly from the
TECTOMT output. For the rest of the experiments,
we approximated lemmas with just the first four
lowercase characters of each (English and Czech)
token.

4.2 Language Models

In all our experiments, we used three language
models on truecased forms: News Crawl as pro-
vided by WMT organizers,* the Czech side of
CzEng and the Articles section of the Czech Web

3 Another possibility was to adapt TECTOMT to output
source-to-target word alignment, but GIZA++ was simpler to
use also due to different internal tokenization in TECTOMT
and our Moses pipeline.

“The deep-syntactic LM of TECTOMT was trained only
on this News Crawl data — http://www.statmt.org/
wmtl3/translation-task.html (sets 2007-2012).
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Table 2: Comparison of several strategies of SPE.
Best results are in bold.

Corpus (Spoustovd and Spousta, 2012).

We used SRILM (Stolcke, 2002) with modified
Kneser-Ney smoothing. We trained 5-grams on
CzEng; on the other two corpora, we trained 7-
grams and pruned them if the (training set) per-
plexity increased by less than 104 relative. The
domain of the pruned corpora is similar to the test
set domain, therefore we trained 7-grams on these
corpora. Adding CzEng corpus can then increase
the results only very slightly — training 5-grams on
CzEng is therefore sufficient and more efficient.

Each of the three LMs got its weight as-
signed by MERT. Across the experiments, Czech
Web Corpus usually gained the largest portion of
weights (40+17% of the total weight assigned to
language models), WMT News Crawl was the sec-
ond (32+15%), and CzEng was the least useful
(15£7%), perhaps due to its wide domain mixture.

5 SPE Experiments

We trained a base SPE system as described in Sec-
tion 2.1 and dubbed it PHRASEFIX.

First two rows of Table 2 show that the first-
stage TECTOMT system (serving here as the base-
line) was significantly improved in terms of BLEU
(Papineni et al., 2002) by PHRASEFIX (p < 0.001
according to the paired bootstrap test (Koehn,
2004)), but the difference in TER (Snover et
al., 2006) is not significant.’> The preliminary
results of WMT 2013 manual evaluation show
only a minor improvement: TECTOMT=0.476
vs. PHRASEF1X=0.484 (higher means better, for
details on the ranking see Callison-Burch et al.
(2012)).

>The BLEU and TER results reported here slightly differ
from the results shown at http://matrix.statmt.
org/matrix/systems_1list/1720 because of differ-
ent tokenization and normalization. It seems that statmt.org
disables the --international-tokenization
switch, so e.g. the correct Czech quotes (,,word*) are not
tokenized, hence the neighboring tokens are never counted
as matching the reference (which is tokenized as " word ").



Despite of the improvement, PHRASEFIX’s
phrase table (synthetic Czech <+ genuine Czech)
still contains many wrong phrase pairs that worsen
the TECTOMT output instead of improving it.
They naturally arise in cases where the genuine
Czech is a too loose translation (or when the
English-Czech sentence pair is simply misaligned
in CzEng), and the word alignment between gen-
uine and synthetic Czech struggles.

Apart from removing such garbage phrase pairs,
it would also be beneficial to have some control
over the SPE. For instance, we would like to gen-
erally prefer the original output of TECTOMT ex-
cept for clear errors, so only reliable phrase pairs
should be used. We examine several strategies:

Phrase table filtering. We filter out all phrase
pairs with forward probability < 0.7 and all sin-
gleton phrase pairs. These thresholds were set
based on our early experiments. Similar filtering
was used by Dugast et al. (2009).

Marking of reliable phrases. This strategy is
similar to the previous one, but the low-frequency
phrase pairs are not filtered-out. Instead, a special
feature marking these pairs is added. The subse-
quent MERT of the SPE system selects the best
weight for this indicator feature. The frequency
and probability thresholds for marking a phrase
pair are the same as in the previous case.

Marking of identities A special feature indicat-
ing the equality of the source and target phrase in
a phrase pair is added. In general, if the output
of TECTOMT matched the reference, then such
output was probably good and does not need any
post-editing. These phrase pairs should be perhaps
slightly preferred by the SPE.

As apparent from Table 2, marking either reli-
able phrases or identities is useful in our SPE set-
ting in terms of BLEU score. In terms of TER
measure, marking the identities slightly improves
PHRASEFIX. However, none of the improvements
is statistically significant.

6 Data Combination Experiments

We now describe experiments with phrase table
and corpus combination. In the training step, the
source-language monolingual corpus that serves
as the basis of the synthetic parallel data can
be:

o the source side of the original parallel training
corpus (resulting in ?(CzEng)),

e a huge source-language monolingual corpus for
which no human translations are available (we
have not finished this experiment yet),

e the source side of the test set (resulting in
tmt (newstest2013) if translated by TECTOMT
or ™ (newstest2013) if translated by baseline
configuration of Moses trained on CzEng), or

e a combination of the above.

There is a trade-off in the choice: the source
side of the test set is obviously most useful for
the given input, but it restricts the applicability (all
systems must be installed or available online in the
testing time) and speed (we must wait for the slow-
est system and the combination).

So far, in PTComb we tried adding the full
synthetic CzEng (“CzEng + (CzEng)”), adding
the test set (“CzEng + ™(newstest2013)” and
“CzEng + *™(newstest2013)”), and adding both
(“CzEng + " (CzEng) + "™ (newstest2013)”). In
CComb, we concatenated CzEng and full syn-
thetic CzEng (“CzEng + *(CzEng)”).

There are two flavors of PTComb: either the
two phrase tables are used both at once as alter-
native decoding paths (“Alternative”), where each
source span is equipped with translation options
from any of the tables, or the synthetic Czech
phrase table is used only as a back-off method if a
source phrase is not available in the primary table
(“Back-off”). The back-off model was applied to
source phrases of up to 5 tokens.

Table 3 summarizes our results with phrase ta-
ble and corpus combination. We see that adding
synthetic data unrelated to the test set does bring
only a small benefit in terms of BLEU in the case
of CComb, and we see a small improvement in
TER in two cases. Adding the (synthetic) transla-
tion of the test set helps. However, adding trans-
lated source side of the test set is helpful only if
it is translated by the TECTOMT system. If our
baseline system is used for this translation, the re-
sults even slightly drop.

Somewhat related experiments for pivot lan-
guages by Galus¢dkova and Bojar (2012) showed
a significant gain when the outputs of a rule-based
system were added to the training data of Moses.
In their case however, the genuine parallel corpus
was much smaller than the synthetic data. The
benefit of unrelated synthetic data seems to van-
ish with larger parallel data available.



Training Data for Moses Decoding Type BLEU 1-TER

baseline: CzEng — 18.524+0.57 36.4140.66
tmt(CzEng) — 15.96+0.53 33.6740.63
CzEng + ™! (CzEng) CComb 18.574+0.57 36.474+0.64
CzEng + ™! (CzEng) PTComb Alternative  18.42+0.58  36.4740.65
CzEng + " (CzEng) PTComb Back-off 18.3840.57 36.25+0.65
CzEng + ! (newstest2013) PTComb Alternative 18.684+0.57 37.00+0.65
CzEng + "™ (newstest2013) PTComb Alternative 18.46+£0.54 36.59£0.65
CzEng + "™!(CzEng) + ™! (newstest2013) PTComb Alternative 18.85+0.58 37.03+0.66

Table 3: Comparison of several strategies used for Synthetic Data Combination (PTComb — phrase table

combination and CComb — corpus combination).

BLEU Judged better
SPE 17.73£0.54 123
PTComb 18.68+0.57 152

Table 4: Automatic (BLEU) and manual (number
of sentences judged better than the other system)
evaluation of SPE vs. PTComb.

7 Discussion

7.1 Comparison of SPE and PTComb

Assuming that our first-stage system, TECTOMT,
guarantees the grammaticality of the output (sadly
often not quite true), we see SPE and PTComb
as two complementary methods that bring in the
goods of SMT but risk breaking the grammati-
cality. Intuitively, SPE feels less risky, because
one would hope that the post-edits affect short se-
quences of words and not e.g. the clause structure.
With PTComb, one relies purely on the phrase-
based model and its well-known limitations with
respect to grammatical constraints.

Table 4 compares the two approaches empir-
ically. For SPE, we use the default PHRASE-
Fix; for PTComb, we use the option “CzEng +
tmt(newstest2013)”. The BLEU scores are re-
peated.

We ran a small manual evaluation where three
annotators judged which of the two outputs was
better. The identity of the systems was hidden,
but the annotators had access to both the source
and the reference translation. Overall, we col-
lected 333 judgments over 120 source sentences.
Of the 333 judgments, 17 marked the two systems
as equally correct, and 44 marked the systems as
incomparably wrong. Across the remaining 275
non-tying comparisons, PTComb won — 152 vs.
123.
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We attribute the better performance of PTComb
to the fact that, unlike SPE, it has direct access to
the source text. Also, the risk of flawed sentence
structure in PTComb is probably not too bad, but
this can very much depend on the language pair.
English—Czech translation does not need much
reordering in general.

Based on the analysis of the better marked re-
sults of the PTComb system, the biggest problem
is the wrong selection of the word and word form,
especially for verbs. PTComb also outperforms
SPE in processing of frequent phrases and sub-
ordinate clauses. This problem could be solved
by enhancing fluency in SPE or by incorporat-
ing more training data. Another possibility would
be to modify TECTOMT system to produce more
than one-best translation as the correct word or
word form may be preserved in sequel transla-
tions.

7.2 Error Analysis of TECTOMT

While SPE seems to perform worse, it has a
unique advantage: it can be used as a feedback
for improving the first stage system. We can either
inspect the filtered SPE phrase table or differences
in translated sentences.

After submitting our WMT 2013 systems, this
comparison allowed us to spot a systematic error
in TECTOMT tagging of latin-origin words:

source pancreas
TECTOMT  slinivek [plural]
PHRASEFIX slinivky [singular] bFisni

The part-of-speech tagger used in TECTOMT in-
correctly detects pancreas as plural, and the wrong
morphological number is used in the synthesis.
PHRASEFIX correctly learns that the plural form
slinivek should be changed to singular slinivky,
which has also a higher language model score.
Moreover, PHRASEFIX also learns that the trans-



lation of pancreas should be two words (brisni
means abdominal). TECTOMT currently uses a
simplifying assumption of 1-to-1 correspondence
between content words, so it is not able to produce
the correct translation in this case.

Another example shows where PHRASEFIX
recovered from a lexical gap in TECTOMT:

source people who are strong-willed
TECTOMT lidé , ktefi jsou silnd willed
PHRASEFIX lidi, ktefi maji silnou vuili

TECTOMT’s primary translation model considers
strong-willed an OOV word, so a back-off dictio-
nary specialized for hyphen compounds is used.
However, this dictionary is not able to translate
willed. PHRASEFIX corrects this and also the
verb jsou = are (the correct Czech translation is
maji silnou viili = have a strong will).

Finally, PHRASEFIX can also break things:
source You won’t be happy here
TECTOMT  Nebudete stastni tady
PHRASEFIX Vy tady stastni [you here happy]

Here, PHRASEFIX damaged the translation by

omitting the negative verb nebudete = you won'’t.

8 Conclusion

Statistical post-editing (SPE) and phrase table
combination (PTComb) can be seen as two com-
plementary approaches to exploiting the mutual
benefits of our deep-transfer system TECTOMT
and SMT.

We have shown that SPE improves the results of
TECTOMT. Several variations of SPE have been
examined, and we have further improved SPE re-
sults by marking identical and reliable phrases us-
ing a special feature. However, SMT still out-
performs SPE according to BLEU and TER mea-
sures. Finally, employing PTComb, we have im-
proved the baseline SMT system by utilizing ad-
ditional data translated by the TECTOMT system.
A small manual evaluation suggests that PTComb
is on average better than SPE, though in about one
third of sentences SPE was judged better. In our
future experiments, we plan to improve SPE by
applying techniques suited for monolingual align-
ment, e.g. feature-based aligner considering word
similarity (Rosa et al., 2012) or extending the par-
allel data with vocabulary identities to promote
alignment of the same word form (Dugast et al.,
2009). Marking and filtering methods for SPE also
deserve a deeper study. As for PTComb, we plan
to combine several sources of synthetic data (in-
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cluding a huge source-language monolingual cor-
pus).
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Abstract

We describe the Stanford University NLP
Group submission to the 2013 Workshop
on Statistical Machine Translation Shared
Task. We demonstrate the effectiveness of a
new adaptive, online tuning algorithm that
scales to large feature and tuning sets. For
both English-French and English-German,
the algorithm produces feature-rich mod-
els that improve over a dense baseline and
compare favorably to models tuned with
established methods.

1 Introduction

Green et al. (2013b) describe an online, adaptive
tuning algorithm for feature-rich translation mod-
els. They showed considerable translation quality
improvements over MERT (Och, 2003) and PRO
(Hopkins and May, 2011) for two languages in a
research setting. The purpose of our submission to
the 2013 Workshop on Statistical Machine Trans-
lation (WMT) Shared Task is to compare the algo-
rithm to more established methods in an evaluation.
We submitted English-French (En-Fr) and English-
German (En-De) systems, each with over 100k fea-
tures tuned on 10k sentences. This paper describes
the systems and also includes new feature sets and
practical extensions to the original algorithm.

2 Translation Model

Our machine translation (MT) system is Phrasal
(Cer et al., 2010), a phrase-based system based on
alignment templates (Och and Ney, 2004). Like
many MT systems, Phrasal models the predictive
translation distribution p(e|f; w) directly as

1 T
plelf;w) = exp[w ¢€,f] (1)
(elf:0) = 577 (e /)
where e is the target sequence, f is the source se-
quence, w is the vector of model parameters, ¢(-)

148

is a feature map, and Z(f) is an appropriate nor-
malizing constant. For many years the dimension
of the feature map ¢(-) has been limited by MERT,
which does not scale past tens of features.

Our submission explores real-world translation
quality for high-dimensional feature maps and as-
sociated weight vectors. That case requires a more
scalable tuning algorithm.

2.1 Online, Adaptive Tuning Algorithm

Following Hopkins and May (2011) we cast MT tun-
ing as pairwise ranking. Consider a single source
sentence f with associated references e'*. Let d
be a derivation in an n-best list of f that has the
target ¢ = e(d) and the feature map ¢(d). Define
the linear model score M (d) = w - ¢(d). For any
derivation d that is better than d_ under a gold
metric G, we desire pairwise agreement such that

G (e(d+),el:k) >G (e(d_),elik>
< M(dy) > M(d-)

Ensuring pairwise agreement is the same as ensur-
ing w- [6(d+) — é(d_)] > 0.

For learning, we need to select derivation pairs
(dy,d_) to compute difference vectors z; =
¢(dy) — ¢(d—). Then we have a 1-class separa-
tion problem trying to ensure w - x4+ > 0. The
derivation pairs are sampled with the algorithm of
Hopkins and May (2011). Suppose that we sample
s pairs for source sentence f; to compute a set of
difference vectors D; = {x1**}. Then we optimize

1

e~ W4

2)
which is the familiar logistic loss. Hopkins and
May (2011) optimize (2) in a batch algorithm
that alternates between candidate generation (i.e.,
n-best list or lattice decoding) and optimization
(e.g., L-BFGS). We instead use AdaGrad (Duchi

l(w) = 6(Dpw) =~ > log 7—

4 €Dy

Proceedings of the Eighth Workshop on Statistical Machine Translation, pages 148—153,
Sofia, Bulgaria, August 8-9, 2013 (©)2013 Association for Computational Linguistics



et al., 2011), a variant of stochastic gradient de-
scent (SGD) in which the learning rate is adapted
to the data. Informally, AdaGrad scales the weight
updates according to the geometry of the data ob-
served in earlier iterations. Consider a particu-
lar dimension j of w, and let scalars vy = wy j,
gt = Vjily(wi—1), and Gy Ele gf. The Ada-
Grad update rule is

3)
“4)

—1/2
v =v-1 —nG, / gt
Gt = G +9152

In practice, Gy is a diagonal approximation. If Gy =
I, observe that (3) is vanilla SGD.

In MT systems, the feature map may generate
exponentially many irrelevant features, so we need
to regularize (3). The L; norm of the weight vec-
tor is known to be an effective regularizer in such
a setting (Ng, 2004). An efficient way to apply
L regularization is the Forward-Backward split-
ting (FOBOS) framework (Duchi and Singer, 2009),
which has the following two-step update:

(&)

W 1= W1 — Nt—1 V1 (wi—1)

1 2
we = argmin o f|w —w;_g[3 + ne-17(w)
w 2
(6)

where (5) is just an unregularized gradient descent
step and (6) balances the regularization term r(w)
with staying close to the gradient step.

For L; regularization we have r(w) = A||w||1
and the closed-form solution to (6) is

wy = sign(wti%) [|wt7%] — 77,5,1)\] . @)

where [z|1 = max(z,0) is the clipping function
that in this case sets a weight to O when it falls below
the threshold 7,1 \.

Online algorithms are inherently sequential; this
algorithm is no exception. If we want to scale the
algorithm to large tuning sets, then we need to par-
allelize the weight updates. Green et al. (2013b)
describe the parallelization technique that is imple-
mented in Phrasal.

2.2 [Extensions to (Green et al., 2013b)

Sentence-Level Metric We previously used the
gold metric BLEU+-1 (Lin and Och, 2004), which
smoothes bigram precisions and above. This metric
worked well with multiple references, but we found
that it is less effective in a single-reference setting

149

like WMT. To make the metric more robust, Nakov
et al. (2012) extended BLEU+1 by smoothing both
the unigram precision and the reference length. We
found that this extension yielded a consistent +0.2
BLEU improvement at test time for both languages.
Subsequent experiments on the data sets of Green
etal. (2013b) showed that standard BLEU+1 works
best for multiple references.

Custom regularization parameters Green et al.
(2013b) showed that large feature-rich models over-
fit the tuning sets. We discovered that certain fea-
tures caused greater overfitting than others. Custom
regularization strengths for each feature set are one
solution to this problem. We found that technique
largely fixed the overfitting problem as shown by
the learning curves presented in section 5.1.

Convergence criteria Standard MERT imple-
mentations approximate tuning BLEU by re-
ranking the previous n-best lists with the updated
weight vector. This approximation becomes infeasi-
ble for large tuning sets, and is less accurate for algo-
rithms like ours that do not accumulate n-best lists.
We approximate tuning BLEU by maintaining the
1-best hypothesis for each tuning segment. At the
end of each epoch, we compute corpus-level BLEU
from this hypothesis set. We flush the set of stored
hypotheses before the next epoch begins. Although
memory-efficient, we find that this approximation
is less dependable as a convergence criterion than
the conventional method. Whereas we previously
stopped the algorithm after four iterations, we now
select the model according to held-out accuracy.

3 Feature Sets

3.1 Dense Features

The baseline “dense” model has 19 features: the
nine Moses (Koehn et al., 2007) baseline features, a
hierarchical lexicalized re-ordering model (Galley
and Manning, 2008), the (log) bitext count of each
translation rule, and an indicator for unique rules.

The final dense feature sets for each language
differ slightly. The En-Fr system incorporates a
second language model. The En-De system adds a
future cost component to the linear distortion model
(Green et al., 2010).The future cost estimate allows
the distortion limit to be raised without a decrease
in translation quality.



3.2 Sparse Features

Sparse features do not necessarily fire on each hy-
pothesis extension. Unlike prior work on sparse MT
features, our feature extractors do not filter features
based on tuning set counts. We instead rely on the
regularizer to select informative features.

Several of the feature extractors depend on
source-side part of speech (POS) sequences and
dependency parses. We created those annotations
with the Stanford CoreNLP pipeline.

Discriminative Phrase Table A lexicalized in-
dicator feature for each rule in a derivation. The
feature weights can be interpreted as adjustments
to the associated dense phrase table features.

Discriminative Alignments A lexicalized indi-
cator feature for the phrase-internal alignments in
each rule in a derivation. For one-to-many, many-to-
one, and many-to-many alignments we extract the
clique of aligned tokens, perform a lexical sort, and
concatenate the tokens to form the feature string.

Discriminative Re-ordering A lexicalized indi-
cator feature for each rule in a derivation that ap-
pears in the following orientations: monotone-with-
next, monotone-with-previous, non-monotone-
with-next, non-monotone-with-previous. Green
et al. (2013b) included the richer non-monotone
classes swap and discontinuous. However, we found
that these classes yielded no significant improve-
ment over the simpler non-monotone classes. The
feature weights can be interpreted as adjustments
to the generative lexicalized re-ordering model.

Source Content-Word Deletion Count-based
features for source content words that are “deleted”
in the target. Content words are nouns, adjectives,
verbs, and adverbs. A deleted source word is ei-
ther unaligned or aligned to one of the 100 most
frequent target words in the target bitext. For each
deleted word we increment both the feature for the
particular source POS and an aggregate feature for
all parts of speech. We add similar but separate
features for head content words that are either un-
aligned or aligned to frequent target words.

Inverse Document Frequency Numeric fea-
tures that compare source and target word frequen-
cies. Let idf(-) return the inverse document fre-
quency of a token in the training bitext. Suppose
a derivation d = {r1,79,...,7,} is composed of
n translation rules, where e(r) is the target side of
the rule and f(r) is the source side. For each rule

Bilingual Monolingual
Sentences  Tokens Tokens
En-Fr 5.0M 289M 1.51B
En-De 4.4M 223M 1.03B

Table 1: Gross corpus statistics after data selection
and pre-processing. The En-Fr monolingual counts
include French Gigaword 3 (LDC2011T10).

r that translates j source tokens to i target tokens
we compute

g =" idf(e(r);) — > _idf(f(r);)  (8)
i J
We add two numeric features, one for the source and
another for the target. When ¢ > 0 we increment
the target feature by ¢; when ¢ < 0 we increment
the target feature by |q|. Together these features
penalize asymmetric rules that map rare words to
frequent words and vice versa.

POS-based Re-ordering The lexicalized dis-
criminative re-ordering model is very sparse, so we
added re-ordering features based on source parts of
speech. When a rule is applied in a derivation, we
extract the associated source POS sequence along
with the POS sequences from the previous and next
rules. We add a “with-previous” indicator feature
that is the conjunction of the current and previous
POS sequences; the “with-next” indicator feature is
created analogously. This feature worked well for
En-Fr, but not for En-De.

4 Data Preparation

Table 1 describes the pre-processed corpora from
which our systems are built.

4.1 Data Selection

We used all of the monolingual and parallel En-
De data allowed in the constrained condition. We
incorporated all of the French monolingual data,
but sampled a SM-sentence bitext from the approx-
imately 40M available En-Fr parallel sentences.
To select the sentences we first created a “target”
corpus by concatenating the tuning and test sets
(newstest2008-2013). Then we ran the feature
decay algorithm (FDA) (Bigici and Yuret, 2011),
which samples sentences that most closely resem-
ble the target corpus. FDA is a principled method
for reducing the phrase table size by excluding less
relevant training examples.
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4.2 Tokenization

We tokenized the English (source) data according
to the Penn Treebank standard (Marcus et al., 1993)
with Stanford CoreNLP. The French data was to-
kenized with packages from the Stanford French
Parser (Green et al., 2013a), which implements a
scheme similar to that used in the French Treebank
(Abeillé et al., 2003).

German is more complicated due to pervasive
compounding. We first tokenized the data with the
same English tokenizer. Then we split compounds
with the lattice-based model (Dyer, 2009) in cdec
(Dyer et al., 2010). To simplify post-processing we
added segmentation markers to split tokens, e.g.,
tiberschritt = tiber #schritt.

4.3 Alignment

We aligned both bitexts with the Berkeley Aligner
(Liang et al., 2006) configured with standard set-
tings. We symmetrized the alignments according
to the grow-diag heuristic.

4.4 Language Modeling

We estimated unfiltered 5-gram language models
using Implz (Heafield et al., 2013) and loaded them
with KenLM (Heafield, 2011). For memory effi-
ciency and faster loading we also used KenLM to
convert the LMs to a trie-based, binary format. The
German LM included all of the monolingual data
plus the target side of the En-De bitext. We built
an analogous model for French. In addition, we
estimated a separate French LM from the Gigaword
data.!

4.5 French Agreement Correction

In French verbs must agree in number and person
with their subjects, and adjectives (and some past
participles) must agree in number and gender with
the nouns they modify. On their own, phrasal align-
ment and target side language modeling yield cor-
rect agreement inflection most of the time. For
verbs, we find that the inflections are often accurate:
number is encoded in the English verb and subject,
and 3rd person is generally correct in the absence
of a 1st or 2nd person pronoun. However, since En-
glish does not generally encode gender, adjective
inflection must rely on language modeling, which
is often insufficient.

!The MT system learns significantly different weights for

the two LMs: 0.086 for the primary LM and 0.044 for the
Gigaword LM.
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To address this problem we apply an automatic
inflection correction post-processing step. First, we
generate dependency parses of our system’s out-
put using BONSAI (Candito and Crabbé, 2009),
a French-specific extension to the Berkeley Parser
(Petrov et al., 2006). Based on these dependencies,
we match adjectives with the nouns they modify
and past participles with their subjects. Then we
use Lefff (Sagot, 2010), a machine-readable French
lexicon, to determine the gender and number of the
noun and to choose the correct inflection for the
adjective or participle.

Applied to our 3,000 sentence development set,
this correction scheme produced 200 corrections
with perfect accuracy. It produces a slight (—0.014)
drop in BLEU score. This arises from cases where
the reference translation uses a synonymous but
differently gendered noun, and consequently has
different adjective inflection.

4.6 German De-compounding

Split German compounds must be merged after
translation. This process often requires inserting
affixes (e.g., s, en) between adjacent tokens in the
compound. Since the German compounding rules
are complex and exception-laden, we rely on a dic-
tionary lookup procedure with backoffs. The dic-
tionary was constructed during pre-processing. To
compound the final translations, we first lookup
the compound sequence—which is indicated by
segmentation markers—in the dictionary. If it is
present, then we use the dictionary entry. If the com-
pound is novel, then for each pair of words to be
compounded, we insert the suffix most commonly
appended in compounds to the first word of the pair.
If the first word itself is unknown in our dictionary,
we insert the suffix most commonly appended after
the last three characters. For example, words end-
ing with ung most commonly have an s appended
when they are used in compounds.

4.7 Recasing

Phrasal includes an LM-based recaser (Lita et al.,
2003), which we trained on the target side of the
bitext for each language. On the newstest2012 de-
velopment data, the German recaser was 96.8% ac-
curate and the French recaser was 97.9% accurate.

5 Translation Quality Experiments

During system development we tuned on
newstest2008—2011 (10,570 sentences) and tested



#iterations #features tune  newstest2012 newstest2013%
Dense 10 20 30.26 31.12 -
Feature-rich 11 207k 32.29 31.51 29.00

Table 2: En-Fr BLEU-4 [% uncased] results. The tuning set is newstest2008—2011. (}) newstest2013 is

the cased score computed by the WMT organizers.

#iterations #features tune  newstest2012  newstest20131
Dense 10 19 16.83 18.45 -
Feature-rich 13 167k 17.66 18.70 18.50

Table 3: En-De BLEU-4 [% uncased] results.

on newstest2012 (3,003 sentences). We compare
the feature-rich model to the “dense” baseline.

The En-De system parameters were: 200-best
lists, a maximum phrase length of 8, and a distortion
limit of 6 with future cost estimation. The En-Fr
system parameters were: 200-best lists, a maximum
phrase length of 8, and a distortion limit of 5.

The online tuning algorithm used a default learn-
ing rate n = 0.03 and a mini-batch size of 20. We
set the regularization strength A to 10.0 for the dis-
criminative re-ordering model, 0.0 for the dense
features, and 0.1 otherwise.

5.1 Results

Tables 2 and 3 show En-Fr and En-De results, re-
spectively. The “Feature-rich” model, which con-
tains the full complement of dense and sparse fea-
tures, offers a meager improvement over the “Dense”
baseline. This result contrasts with the results
of Green et al. (2013b), who showed significant
translation quality improvements over the same
dense baseline for Arabic-English and Chinese-
English. However, they had multiple target refer-
ences, whereas the WMT data sets have just one.
We speculate that this difference is significant. For
example, consider a translation rule that rewrites
to a 4-gram in the reference. This event can in-
crease the sentence-level score, thus encouraging
the model to upweight the rule indicator feature.

More evidence of overfitting can be seen in Fig-
ure 1, which shows learning curves on the devel-
opment set for both language pairs. Whereas the
dense model converges after just a few iterations,
the feature-rich model continues to creep higher.
Separate experiments on a held-out set showed that
generalization did not improve after about eight
iterations.

6 Conclusion

We submitted a feature-rich MT system to WMT
2013. While sparse features did offer a measur-
able improvement over a baseline dense feature set,
the gains were not as significant as those shown
by Green et al. (2013b). One important difference
between the two sets of results is the number of ref-
erences. Their NIST tuning and test sets had four
references; the WMT data sets have just one. We
speculate that sparse features tend to overfit more
in this setting. Individual features can greatly in-
fluence the sentence-level metric and thus become
large components of the gradient. To combat this
phenomenon we experimented with custom reg-
ularization strengths and a more robust sentence-
level metric. While these two improvements greatly
reduced the model size relative to (Green et al.,
2013Db), a generalization problem remained. Nev-
ertheless, we showed that feature-rich models are
now competitive with the state-of-the-art.
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Abstract

We describe the LIA machine transla-
tion systems for the Russian-English and
English-Russian translation tasks. Various
factored translation systems were built us-
ing MOSES to take into account the mor-
phological complexity of Russian and we
experimented with the romanization of un-
translated Russian words.

1 Introduction

This paper presents the factored phrase-based
Machine Translation (MT) systems (Koehn and
Hoang, 2007) developed at LIA, for the Russian-
English and English-Russian translation tasks at
WMT’13. These systems use only data provided
for the evaluation campaign along with the LDC
English Gigaword corpus.

We summarize in Section 2 the resources used
and the main characteristics of the systems based
on the MOSES toolkit (Koehn et al., 2007). Sec-
tion 3 reports experiments on the use of fac-
tored translation models. Section 4 describes the
transliteration process used to improve the Russian
to English task. Finally, we conclude in Section 5.

2 System Architecture

2.1 Pre-processing

The corpora available for the workshop were pre-
processed using an in-house script that normal-
izes quotes, dashes, spaces and ligatures. Long
sentences or sentences with many numeric or
non-alphanumeric characters were also discarded.
Since the Yandex corpus is provided as lower-
cased, we decided to lowercase all the other cor-
pora. The same pipeline was applied to the LDC
Gigaword; also only the documents classified as
“story” were retained. Table 1 summarizes the
used data and introduces designations that we fol-
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low in the remainder of this paper to refer to these
corpora.

Russian is a morphologically rich language with
nouns, adjectives and verbs inflected for case,
number and gender. This property requires in-
troducing morphological information inside the
MT system to handle the lack of many inflec-
tional forms inside training corpora. For this
purpose, each corpus was previously tagged with
Part-of-Speech (PoS) tags. The tagger TREE-
TAGGER (Schmid, 1995) was selected for its
good performance on several comparable tasks.
The Russian tagger associates each word (e.g.
ammka (boxes)) with a complex PoS including
morphological information (e.g. “Ncmpnn” for
“Noun Type=common Gender=masculine Num-
ber=plural Case=nominative Animate=no”) and
its lemma (e.g. amwmk (box)). A description of
the Russian tagset can be found in (Sharoff et al.,
2008). The English tagger provides also a lemma-
tization and outputs PoS from the Penn Treebank
tagset (Marcus et al., 1993) (e.g. “NNS” for
“Noun plural”).

In order to simplify the comparison of differ-
ent setups, we used the tokenizer included in the
TREETAGGER tool to process all the corpora.

2.2 Language Models

Kneser-Ney discounted LMs were built
from monolingual corpora using the SRILM
toolkit (Stolcke, 2002). 5-gram LMs were trained
for words, 7-gram LMs for lemmas and PoS. A
LM was built separately on each monolingual cor-
pus: mono-news-c and news-s. Since ldc was too
large to be processed as one file, it was split into
three parts according to the original publication
year of the document. These LMs were combined
through linear interpolation. Weights were fixed
by optimizing the perplexity on a corpus made of
the WMT test sets from 2008 to 2011 for English
and on the WMT 2012 test set for Russian (the

Proceedings of the Eighth Workshop on Statistical Machine Translation, pages 154-157,
Sofia, Bulgaria, August 8-9, 2013 (©)2013 Association for Computational Linguistics



CORPORA

DESIGNATION  SIZE (SENTENCES)

English-Russian Bilingual training

News Commentary v8 news-c 146k

Common Crawl crawl 755k

Yandex yandex 978k
English Monolingual training

News Commentary v8 Mono-news-c 247k

Shuffled News Crawl corpus (from 2007 to 2012)  news-s 68M

LDC Gigaword ldc 190 M
Russian Monolingual training

News Commentary v8 Mono-news-c 182k

Shuffled News Crawl corpus (from 2008 to 2012) news-s 20M

Development
newstest2012 testl2 3,003

Table 1: Used bilingual and monolingual corpora

only available at that time).

2.3 Alignment and Translation Models

All parallel corpora were aligned using
MGiza++ (Gao and Vogel, 2008). Our transla-
tion models are phrase-based models (PBMs) built
with MOSES using default settings. Weights of
LM, phrase table and lexicalized reordering model
scores were optimized on fest/2, thanks to the
MERT algorithm (Gao and Vogel, 2008). Since
only one development corpus was made available
for Russian, we used a 3-fold cross-validation
so that MERT is repeated three times for each
translation model on a 2,000-sentence subsample
of testi2.

To recase the corpora, translation models were
trained using a word-to-word translation model
trained on the parallel corpora aligning lowercased
and cased sentences of the monolingual corpora
mono-news-c and news-s.

3 Experiments with Factored
Translation Models

The evaluation was performed using case-
insensitive BLEU and was computed with the
mteval-vl3a.pl script provided by NIST.
The BLEU scores shown in the tables below are
all averaged on the test parts obtained from the 3-
fold cross validation process.

In the remainder of the paper, we employ the
notation proposed by Bojar et al. (2012) to refer
to factored translation models. For example, tW-
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W:tL-L+tP-P+glLaP-W, where “t” and “g” stand
for “translation” and “generation”, denotes a trans-
lation system with two decoding paths:

e a first one directly translates words to words
(tW-W),

e a second one is divided into three steps:

1. translation from lemmas to lemmas (tL-
L),

2. translation from PoS to PoS (tP-P) and

. generation of target words from target

lemmas and PoS (gLaP-W).

3.1 Baseline Phrase-Based Systems

Table 2 is populated with the results of PBMs
which use words as their sole factor. When LMs
are built on mono-news-c and news-s, an improve-
ment of BLEU is observed each time a training
parallel corpus is used, both for both translation di-
rections (columns 1 and 3). We can also notice an
absolute increase of 0.4 BLEU score when the En-
glish LM is additionally trained on Idc (column 2).

3.2 Decomposition of factors

Koehn and Hoang (2007) suggested from their ex-
periments for English-Czech systems that “it is
beneficial to carefully consider which morpholog-
ical information to be used.” We therefore tested
various decompositions of the complex Russian
PoS tagset (P) output by TREETAGGER. We con-
sidered the grammatical category alone (C), mor-
phological information restrained to case, number



EN — RU RU — EN
+L.DC
news-c 26.52 26.82 19.89
+crawl | 29.49 29.82 21.06
+yandex | 31.08 31.49 22.16

Table 2: BLEU scores measured with standard
PBMs.

Tagset #tags Examples

C 17 Af,Vm, P, C

M1 95 fsg, -s-, fsa, —

M2 380 fsg, -s-, fsa, uTo (that)

M3 580 fsg, -s-life, fsa3, uro (that)

P 604  Afpfsg, Vmifls-a-e, P-3fsa, C

Table 3: Statistics on Russian tagsets.

and gender (M1), the fields included in M1 along
with additional information (lemmas) for conjunc-
tions, particles and adpositions (M2), and finally
the information included in M2 enriched with per-
son for pronouns and person, tense and aspect for
verbs (M3). Table 3 provides the number of tags
and shows examples for each used tagset.

To speed up the training of translation models,
we experimented with various setups for factor de-
composition from news-c. The results displayed
on Table 4 show that factors with morphologi-
cal information lead to better results than a PBM
trained on word forms (line 1) but that finally the
best system is achieved when the complex PoS tag
output by TREETAGGER is used without any de-
composition (last line).

tW-W 19.89
tW-WaC 19.81
tW-WaM 1 20.04
tW-WaCaM1 19.95
tW-WaM?2 19.92
tW-WaCaM2 1991
tW-WaM3 19.98
tW-WaCaM3 19.89
tW-WaP 20.30

Table 4: BLEU scores for EN—RU using news-c
as training parallel corpus.
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tL-W 29.23
tW-W 31.49
tWaP-WaP 31.62
tW-W:tL-W 31.69
tW-WaP 31.80

tW-WaP:tL-WaP 31.89

Table 5: BLEU scores for RU—EN using the three
available parallel corpora.

3.3 Experimental Results for Factored
Models

The many inflections for Russian induce a hight
out-of-vocabulary rate for the PBMs, which gener-
ates many untranslated Russian words for Russian
to English. We experimented with the training of
a PMB on lemmatized Russian corpora (Table 5,
line 1) but observed a decrease in BLEU score
w.r.t. a PBM trained on words (line 2). With two
decoding paths — one from words, one from lem-
mas (line 4) — using the MOSES ability to manage
multiple decoding paths for factored translation
models, an absolute improvement of 0.2 BLEU
score was observed.

Another interest of factored models is disam-
biguating translated words according to their PoS.
Translating a (word, PoS) pair results in an ab-
solute increase of 0.3 BLEU (line 5), and of 0.4
BLEU when considering two decoding paths (last
line). Disambiguating source words with PoS did
not seem to help the translation process (line 3).

The Russian inflections are far more problem-
atic in the other translation direction since mor-
phological information, including case, gender
and number, has to be induced from the English
words and PoS, which are restrained for that lan-
guage to the grammatical category and knowledge
about number (singular/plural for nouns, 3rd per-
son singular or not for verbs). Disambiguating
translated Russian words with their PoS resulted
in a dramatic increase of BLEU by 1.6 points (Ta-
ble 6, last line vs line 3). The model that trans-
lates independently PoS and lemmas, before gen-
erating words, albeit appealing for its potential to
deal with data sparsity, turned out to be very dis-
appointing (first line). We additionally led ex-
periments training generation models gl.aP-W on
monolingual corpora instead of the less volumi-
nous parallel corpora, but we did not observed a
gain in terms of BLEU.



tL-L+tP-P+gLaP-W  17.06
tW-W 22.16
tWaP-WaP 23.34
tWaP-LaP+glLaP-W  23.48
tW-LaP+gLaP-W 23.58
tW-WaP 23.72

Table 6: BLEU scores for EN—RU using the three
available parallel corpora.

\ BEFORE AFTER

31.80 32.15
31.89 32.21

tW-WaP
tW-WaP:tL-WaP

Table 7: BLEU scores for RU — EN before and
after transliteration.

4 Transliteration

Words written in Cyrillic inside the English trans-
lation output were transliterated into Latin letters.
We decided to restrain the use of transliteration for
the English to Russian direction since we found
that many words, especially proper names, are in-
tentionally used in Latin letters in the Russian ref-
erence.

Transliteration was performed in two steps.
Firstly, untranslated words in Cyrillic are looked
up in the guessed-names.ru-en file provided for the
workshop and built from Wikipedia. Secondly, the
remaining words are romanized with rules of the
BGN/PCGN romanization method for Russian (on
Geographic Names, 1994). Transliterating words
in Cyrillic resulted in an absolute improvement of
0.3 BLEU for our two best factor-based system
(Table 7, last column).

The factored model with the tW-WaP:tL-
WaP translation path and a transliteration post-
processing step is the final submission for the
Russian-English workshop translation task, while
the tW-WaP is the final submission for the other
translation direction.

5 Conclusion

This paper presented experiments carried out with
factored phrase-based translation models for the
two-way Russian-English translation tasks. A mi-
nor gain was observed after romanizing Russian
words (+0.3 BLEU points for RU — EN) and
higher improvements using word forms, PoS inte-
grating morphological information and lemma as
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factors (+0.4 BLEU points for RU — EN and +1.6
for EN — RU w.r.t. to a phrase-based restrained
to word forms). However, these improvements
were observed with setups which disambiguate
words according to their grammatical category or
morphology, while results integrating a generation
step and dealing with data sparsity were disap-
pointing. It seems that further work should be
done to fully exploit the potential of this option
inside MOSES.
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Abstract

This paper describes Omnifluent™ Trans-
late — a state-of-the-art hybrid MT sys-
tem capable of high-quality, high-speed
translations of text and speech. The sys-
tem participated in the English-to-French
and Russian-to-English WMT evaluation
tasks with competitive results. The
features which contributed the most to
high translation quality were training data
sub-sampling methods, document-specific
models, as well as rule-based morpholog-
ical normalization for Russian. The latter
improved the baseline Russian-to-English
BLEU score from 30.1 to 31.3% on a held-
out test set.

1 Introduction

Omnifluent Translate is a comprehensive multilin-
gual translation platform developed at SAIC that
automatically translates both text and audio con-
tent. SAIC’s technology leverages hybrid machine
translation, combining features of both rule-based
machine and statistical machine translation for im-
proved consistency, fluency, and accuracy of trans-
lation output.

In the WMT 2013 evaluation campaign, we
trained and tested the Omnifluent system on the
English-to-French and Russian-to-English tasks.
We chose the En—Fr task because Omnifluent En—
Fr systems are already extensively used by SAIC’s
commercial customers: large human translation
service providers, as well as a leading fashion de-
signer company (Matusov, 2012). Our Russian-to-
English system also produces high-quality transla-
tions and is currently used by a US federal govern-
ment customer of SAIC.

Our experimental efforts focused mainly on the
effective use of the provided parallel and monolin-
gual data, document-level models, as well using
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rules to cope with the morphological complexity
of the Russian language. While striving for the
best possible translation quality, our goal was to
avoid those steps in the translation pipeline which
would make a real-time use of the Omnifluent sys-
tem impossible. For example, we did not integrate
re-scoring of N-best lists with huge computation-
ally expensive models, nor did we perform system
combination of different system variants. This al-
lowed us to create a MT system that produced our
primary evaluation submission with the translation
speed of 18 words per second!. This submission
had a BLEU score of 24.2% on the Russian-to-
English task?, and 27.3% on the English-to-French
task. In contrast to many other submissions from
university research groups, our evaluation system
can be turned into a fully functional, commer-
cially deployable on-line system with the same
high level of translation quality and speed within
a single work day.

The rest of the paper is organized as follows. In
the next section, we describe the core capabilities
of the Omnifluent Translate systems. Section 3
explains our data selection and filtering strategy.
In Section 4 we present the document-level trans-
lation and language models. Section 5 describes
morphological transformations of Russian. In sec-
tions 6 we present an extension to the system that
allows for automatic spelling correction. In Sec-
tion 7, we discuss the experiments and their evalu-
ation. Finally, we conclude the paper in Section 8.

2 Core System Capabilities

The Omnifluent system is a state-of-the-art hybrid
MT system that originates from the AppTek tech-
nology acquired by SAIC (Matusov and Koprii,
2010a). The core of the system is a statistical
search that employs a combination of multiple

!'Using a single core of a 2.8 GHz Intel Xeon CPU.
’The highest score obtained in the evaluation was 25.9%
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probabilistic translation models, including phrase-
based and word-based lexicons, as well as reorder-
ing models and target n-gram language models.
The retrieval of matching phrase pairs given an
input sentence is done efficiently using an algo-
rithm based on the work of (Zens, 2008). The
main search algorithm is the source cardinality-
synchronous search. The goal of the search is to
find the most probable segmentation of the source
sentence into non-empty non-overlapping contigu-
ous blocks, select the most probable permutation
of those blocks, and choose the best phrasal trans-
lations for each of the blocks at the same time. The
concatenation of the translations of the permuted
blocks yields a translation of the whole sentence.
In practice, the permutations are limited to allow
for a maximum of M “gaps” (contiguous regions
of uncovered word positions) at any time during
the translation process. We set M to 2 for the
English-to-French translation to model the most
frequent type of reordering which is the reorder-
ing of an adjective-noun group. The value of M
for the Russian-to-English translation is 3.

The main differences of Omnifluent Trans-
late as compared to the open-source MT sys-
tem Moses (Koehn et al., 2007) is a reordering
model that penalizes each deviation from mono-
tonic translation instead of assigning costs propor-
tional to the jump distance (4 features as described
by Matusov and Koprii (2010b)) and a lexicaliza-
tion of this model when such deviations depend on
words or part-of-speech (POS) tags of the last cov-
ered and current word (2 features, see (Matusov
and Koprii, 2010a)). Also, the whole input doc-
ument is always visible to the system, which al-
lows the use of document-specific translation and
language models. In translation, multiple phrase
tables can be interpolated linearly on the count
level, as the phrasal probabilities are computed
on-the-fly. Finally, various novel phrase-level fea-
tures have been implemented, including binary
topic/genre/phrase type indicators and translation
memory match features (Matusov, 2012).

The Omnifluent system also allows for partial
or full rule-based translations. Specific source lan-
guage entities can be identified prior to the search,
and rule-based translations of these entities can
be either forced to be chosen by the MT system,
or can compete with phrase translation candidates
from the phrase translation model. In both cases,
the language model context at the boundaries of
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the rule-based translations is taken into account.
Omnifluent Translate identifies numbers, dates,
URLs, e-mail addresses, smileys, etc. with manu-
ally crafted regular expressions and uses rules to
convert them to the appropriate target language
form. In addition, it is possible to add manual
translation rules to the statistical phrase table of
the system.

3 Training Data Selection and Filtering

We participated in the constrained data track of
the evaluation in order to obtain results which are
comparable to the majority of the other submis-
sions. This means that we trained our systems only
on the provided parallel and monolingual data.

3.1 TrueCasing

Instead of using a separate truecasing module, we
apply an algorithm for finding the true case of the
first word of each sentence in the target training
data and train truecased phrase tables and a true-
cased language model®. Thus, the MT search de-
cides on the right case of a word when ambiguities
exist. Also, the Omnifluent Translate system has
an optional feature to transfer the case of an input
source word to the word in the translation output
to which it is aligned. Although this approach is
not always error-free, there is an advantage to it
when the input contains previously unseen named
entities which use common words that have to be
capitalized. We used this feature for our English-
to-French submission only.

3.2 Monolingual Data

For the French language model, we trained sepa-
rate 5-gram models on the two GigaWord corpora
AFP and APW, on the provided StatMT data for
2007-2012 (3 models), on the EuroParl data, and
on the French side of the bilingual data. LMs were
estimated and pruned using the IRSTLM toolkit
(Federico et al., 2008). We then tuned a linear
combination of these seven individual parts to op-
timum perplexity on WMT test sets 2009 and 2010
and converted them for use with the KenLM li-
brary (Heafield, 2011). Similarly, our English LM
was a linear combination of separate LMs built for
GigaWord AFP, APW, NYT, and the other parts,
StatMT 2007-2012, Europarl/News Commentary,
and the Yandex data, which was tuned for best per-
plexity on the WMT 2010-2013 test sets.

3Source sentences were lowercased.



3.3 Parallel Data

Since the provided parallel corpora had differ-
ent levels of noise and quality of sentence align-
ment, we followed a two-step procedure for fil-
tering the data. First, we trained a baseline sys-
tem on the “good-quality” data (Europarl and
News Commentary corpora) and used it to trans-
late the French side of the Common Crawl data
into English. Then, we computed the position-
independent word error rate (PER) between the
automatic translation and the target side on the
segment level and only kept those original seg-
ment pairs, the PER for which was between 10%
and 60%. With this criterion, we kept 48% of the
original 3.2M sentence pairs of the common-crawl
data.

To leverage the significantly larger Multi-UN
parallel corpus, we performed perplexity-based
data sub-sampling, similarly to the method de-
scribed e.g. by Axelrod et al. (2011). First, we
trained a relatively small 4-gram LM on the source
(English) side of our development data and evalu-
ation data. Then, we used this model to compute
the perplexity of each Multi-UN source segment.
We kept the 700K segments with the lowest per-
plexity (normalized by the segment length), so that
the size of the Multi-UN corpus does not exceed
30% of the total parallel corpus size. This proce-
dure is the only part of the translation pipeline for
which we currently do not have a real-time solu-
tion. Yet such a real-time algorithm can be imple-
mented without problems: we word-align the orig-
inal corpora using GIZA+ahead of time, so that af-
ter sub-sampling we only need to perform a quick
phrase extraction. To obtain additional data for
the document-level models only (see Section 4),
we also applied this procedure to the even larger
Gigaword corpus and thus selected 1M sentence
pairs from this corpus.

We used the PER-based procedure as described
above to filter the Russian-English Common-
crawl corpus to 47% of its original size. The base-
line system used to obtain automatic translation
for the PER-based filtering was trained on News
Commentary, Yandex, and Wiki headlines data.

4 Document-level Models

As mentioned in the introduction, the Omnifluent
system loads a whole source document at once.
Thus, it is possible to leverage document context
by using document-level models which score the
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phrasal translations of sentences from a specific
document only and are unloaded after processing
of this document.

To train a document-level model for a specific
document from the development, test, or evalua-
tion data, we automatically extract those source
sentences from the background parallel training
data which have (many) n-grams (n=2...7) in com-
mon with the source sentences of the document.
Then, to train the document-level LM we take the
target language counterparts of the extracted sen-
tences and train a standard 3-gram LM on them.
To train the document-level phrase table, we take
the corresponding word alignments for the ex-
tracted source sentences and their target counter-
parts, and extract the phrase table as usual. To
keep the additional computational overhead min-
imal yet have enough data for model estimation,
we set the parameters of the n-gram matching
in such a way that the number of sentences ex-
tracted for document-level training is around 20K
for document-level phrase tables and 100K for
document-level LMs.

In the search, the counts from the document-
level phrase table are linearly combined with the
counts from the background phrase table trained
on the whole training data. The document-level
LM is combined log-linearly with the general LM
and all the other models and features. The scal-
ing factors for the document-level LMs and phrase
tables are not document-specific; neither is the
linear interpolation factor for a document-level
phrase table which we tuned manually on a devel-
opment set. The scaling factor for the document-
level LM was optimized together with the other
scaling factors using Minimum Error Rate Train-
ing (MERT, see (Och, 2003)).

For English-to-French translation, we used both
document-level phrase tables and document-level
LMs; the background data for them contained the
sub-sampled Gigaword corpus (see Section 3.3).
We used only the document-level LMs for the
Russian-to-English translation. They were ex-
tracted from the same data that was used to train
the background phrase table.

S Morphological Transformations of
Russian

Russian is a morphologically rich language. Even
for large vocabulary MT systems this leads to data
sparseness and high out-of-vocabulary rate. To



mitigate this problem, we developed rules for re-
ducing the morphological complexity of the lan-
guage, making it closer to English in terms of the
used word forms. Another goal was to ease the
translation of some morphological and syntactic
phenomena in Russian by simplifying them; this
included adding artificial function words.

We used the pymorphy morphological analyzer*
to analyze Russian words in the input text. The
output of pymorphy is one or more alternative
analyses for each word, each of which includes
the POS tag plus morphological categories such
as gender, tense, etc. The analyses are generated
based on a manual dictionary, do not depend on
the context, and are not ordered by probability of
any kind. However, to make some functional mod-
ifications to the input sentences, we applied the
tool not to the vocabulary, but to the actual input
text; thus, in some cases, we introduced a context
dependency. To deterministically select one of the
pymorphy’s analyses, we defined a POS priority
list. Nouns had a higher priority than adjectives,
and adjectives higher priority than verbs. Other-
wise we relied on the first analysis for each POS.

The main idea behind our hand-crafted rules
was to normalize any ending/suffix which does not
carry information necessary for correct translation
into English. Under normalization we mean the
restoration of some “base” form. The pymorphy
analyzer API provides inflection functions so that
each word could be changed into a particular form
(case, tense, etc.). We came up with the following
normalization rules:

e convert all adjectives and participles to first-
person masculine singular, nominative case;

e convert all nouns to the nominative case
keeping the plural/singular distinction;

e for nouns in genitive case, add the artificial
function word “of_" after the last noun before
the current one, if the last noun is not more
than 4 positions away;

e for each verb infinitive, add the artificial
function word “to_" in front of it;

e convert all present-tense verbs to their infini-
tive form;

e convert all past-tense verbs to their past-tense
first-person masculine singular form;

e convert all future-tense verbs to the artificial
function word “will_” + the infinitive;

*nttps://bitbucket.org/kmike/pymorphy

e For verbs ending with reflexive suffixes
csi/cb, add the artificial function word “sya_”
in front of the verb and remove the suf-
fix. This is done to model the reflexion (e.g.
“on ymbIBaJsica — “oH sya_ ymbiBaJ — “he
washed himself”, here “sya_” corresonds to
“himself™), as well as, in other cases, the pas-
sive mood (e.g. “om BcraBjigerca’ — “OH

sya_ BcTa/sdTh — “it is inserted”).

An example that is characteristic of all these mod-
ifications is given in Figure 1.

It is worth noting that not all of these transfor-
mations are error-free because the analysis is also
not always error-free. Also, sometimes there is in-
formation loss (as in case of the instrumental noun
case, for example, which we currently drop instead
of finding the right artificial preposition to express
it). Nevertheless, our experiments show that this is
a successful morphological normalization strategy
for a statistical MT system.

6 Automatic Spelling Correction

Machine translation input texts, even if prepared
for evaluations such as WMT, still contain spelling
errors, which lead to serious translation errors. We
extended the Omnifluent system by a spelling cor-
rection module based on Hunspell®> — an open-
source spelling correction software and dictionar-
ies. For each input word that is unknown both to
the Omnifluent MT system and to Hunspell, we
add those Hunspell’s spelling correction sugges-
tions to the input which are in the vocabulary of
the MT system. They are encoded in a lattice and
assigned weights. The weight of a suggestion is
inversely proportional to its rank in the Hunspell’s
list (the first suggestions are considered to be more
probable) and proportional to the unigram proba-
bility of the word(s) in the suggestion. To avoid
errors related to unknown names, we do not apply
spelling correction to words which begin with an
uppercase letter.

The lattice is translated by the decoder using
the method described in (Matusov et al., 2008);
the globally optimal suggestion is selected in the
translation process. On the English-to-French
task, 77 out of 3000 evaluation data sentences
were translated differently because of automatic
spelling correction. The BLEU score on these
sentences improved from 22.4 to 22.6%. Man-
ual analysis of the results shows that in around

Shttp://hunspell.sourceforge.net



source

O6e poBoMIICcs B OTesie BAmmMHTTOH CITyCTSI HECKOJIBKO YACOB TIOCJIE COBEINAHUs CYIa 0 eIy

prep Oben sya__ IIPOBOJMJI B OTEJIb Bamuarron CIIyCTsd HECKOJIbKO YacChl IIOC/I€ COBEeIlaHmne Of_ Cy[ 110 JeJi0o

ref | The dinner was held at a Washington hotel a few hours after the conference of the court over the case

Figure 1: Example of the proposed morphological normalization rules and insertion of artificial function

words for Russian.

System BLEU PER
(%]  [%]
baseline 31.3 41.1
+ extended features 31.7 41.0
+ alignment combination 32.1 40.6
+ doc-level models 32.7 39.3
+ common-crawl/UN data 33.0 39.9

Table 1: English-to-French translation results
(newstest-2012-part2 progress test set).

70% of the cases the MT system picks the right
or almost right correction. We applied automatic
spelling correction also to the Russian-to-English
evaluation submissions. Here, the spelling correc-
tion was applied to words which remained out-of-
vocabulary after applying the morphological nor-
malization rules.

7 Experiments

7.1 Development Data and Evaluation
Criteria

For our experiments, we divided the 3000-
sentence newstest-2012 test set from the WMT
2012 evaluation in two roughly equal parts, re-
specting document boundaries. The first part we
used as a tuning set for N-best list MERT opti-
mization (Och, 2003). We used the second part
as a test set to measure progress; the results on it
are reported below. We computed case-insensitive
BLEU score (Papineni et al., 2002) for optimiza-
tion and evaluation. Only one reference translation
was available.

7.2 English-to-French System

The baseline system for the English-to-French
translation direction was trained on Europarl and
News Commentary corpora. The word align-
ment was obtained by training HMM and IBM
Model 3 alignment models and combining their
two directions using the “grow-diag-final” heuris-
tic (Koehn, 2004). The first line in Table 1 shows
the result for this system when we only use the
standard features (phrase translation and word lex-
icon costs in both directions, the base reorder-
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System BLEU PER
(%] [%]
baseline (full forms) 30.1 38.9
morph. reduction 31.3 38.1
+ extended features 324 37.3
+ doc-level LMs 323 374
+ common-crawl data 329 37.1

Table 2: Russian-to-English translation results
(newstest-2012-part2 progress test set).

ing features as described in (Matusov and Koprii,
2010b) and the 5-gram target LM). When we
also optimize the scaling factors for extended fea-
tures, including the word-based and POS-based
lexicalized reordering models described in (Ma-
tusov and Koprii, 2010a), we improve the BLEU
score by 0.4% absolute. Extracting phrase pairs
from three different, equally weighted alignment
heuristics improves the score by another 0.3%.
The next big improvement comes from using
document-level language models and phrase ta-
bles, which include Gigaword data. Especially the
PER decreases significantly, which indicates that
the document-level models help, in most cases, to
select the right word translations. Another signifi-
cant improvement comes from adding parts of the
Common-crawl and Multi-UN data, sub-sampled
with the perplexity-based method as described in
Section 3.3. The settings corresponding to the last
line of Table 1 were used to produce the Omniflu-
ent primary submission, which resulted in a BLEU
score of 27.3 on the WMT 2013 test set.

After the deadline for submission, we discov-
ered a bug in the extraction of the phrase table
which had reduced the positive impact of the ex-
tended phrase-level features. We re-ran the opti-
mization on our tuning set and obtained a BLEU
score of 27.7% on the WMT 2013 evaluation set.

7.3 Russian-to-English System

The first experiment with the Russian-to-English
system was to show the positive effect of the
morphological transformations described in Sec-
tion 5. Table 2 shows the result of the baseline
system, trained using full forms of the Russian



words on the News Commentary, truecased Yan-
dex and Wiki Headlines data. When applying the
morphological transformations described in Sec-
tion 5 both in training and translation, we obtain
a significant improvement in BLEU of 1.3% ab-
solute. The out-of-vocabulary rate was reduced
from 0.9 to 0.5%. This shows that the morpholog-
ical reduction actually helps to alleviate the data
sparseness problem and translate structurally com-
plex constructs in Russian.

Significant improvements are obtained for Ru—
En through the use of extended features, including
the lexicalized and “POS”-based reordering mod-
els. As the “POS” tags for the Russian words we
used the pymorphy POS tag selected deterministi-
cally based on our priority list, together with the
codes for additional morphological features such
as tense, case, and gender. In contrast to the En—
Fr task, document-level models did not help here,
most probably because we used only LMs and
only trained on sub-sampled data that was already
part of the background phrase table. The last boost
in translation quality was obtained by adding those
segments of the cleaned Common-crawl data to
the phrase table training which are similar to the
development and evaluation data in terms of LM
perplexity. The BLEU score in the last line of Ta-
ble 2 corresponds to Omnifluent’s BLEU score of
24.2% on the WMT 2013 evaluation data. This is
only 1.7% less than the score of the best BLEU-
ranked system in the evaluation.

8 Summary and Future Work

In this paper we described the Omnifluent hybrid
MT system and its use for the English-to-French
and Russian-to-English WMT tasks. We showed
that it is important for good translation quality to
perform careful data filtering and selection, as well
as use document-specific phrase tables and LMs.
We also proposed and evaluated rule-based mor-
phological normalizations for Russian. They sig-
nificantly improved the Russian-to-English trans-
lation quality. In contrast to some evaluation par-
ticipants, the presented high-quality system is fast
and can be quickly turned into a real-time system.
In the future, we intend to improve the rule-based
component of the system, allowing users to add
and delete translation rules on-the-fly.
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Abstract

We propose a pre-reordering scheme to
improve the quality of machine translation
by permuting the words of a source sen-
tence to a target-like order. This is accom-
plished as a transition-based system that
walks on the dependency parse tree of the
sentence and emits words in target-like or-
der, driven by a classifier trained on a par-
allel corpus. Our system is capable of gen-
erating arbitrary permutations up to flexi-
ble constraints determined by the choice of
the classifier algorithm and input features.

1 Introduction

The dominant paradigm in statistical machine
translation consists mainly of phrase-based sys-
tem such as Moses (Koehn et.al.,2007). Differ-
ent languages, however, often express the same
concepts in different idiomatic word orders, and
while phrase-based system can deal to some ex-
tent with short-distance word swaps that are cap-
tured by short segments, they typically perform
poorly on long-distance (more than four or five
words apart) reordering. In fact, according to
(Birch et.al., 2008), the amount of reordering be-
tween two languages is the most predictive feature
of phrase-based translation accuracy.

A number of approaches to deal with long-
distance reordering have been proposed. Since an
extuasive search of the permutation space is un-
feasible, these approaches typically constrain the
search space by leveraging syntactical structure of
natural languages.

In this work we consider approaches which in-
volve reordering the words of a source sentence
in a target-like order as a preprocessing step, be-
fore feeding it to a phrase-based decoder which
has itself been trained with a reordered training
set. These methods also try to leverage syntax,
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typically by applying hand-coded or automatically
induced reordering rules to a constituency or de-
pendency parse of the source sentence. (Gal-
ley and Manning, 2008; Xu et.al., 2009; Genzel,
2010; Isozaki et.al., 2010) or by treating reorder-
ing as a global optimization problem (Tromble and
Eisner, 2009; Visweswariah et.al., 2011). In or-
der to keep the training and execution processes
tractable, these methods impose hard constrains
on the class of permutations they can generate.

We propose a pre-reordering method based on
a walk on the dependency parse tree of the source
sentence driven by a classifier trained on a parallel
corpus.

In principle, our system is capable of generat-
ing arbitrary permutations of the source sentence.
Practical implementations will necessarily limit
the available permutations, but these constraints
are not intrinsic to the model, rather they depend
on the specific choice of the classifier algorithm,
its hyper-parameters and input features.

2 Reordering as a walk on a dependency
tree

2.1 Dependency parse trees

Let a sentence be a list of words s
(w1, we, ..., wy) and its dependency parse tree
be a rooted tree whose nodes are the words of the
sentence. An edge of the tree represents a syntac-
tical dependency relation between a head (parent)
word and a modifier (child) word. Typical depen-
dency relations include verb-subject, verb-object,
noun-adjective, and so on.

We assume that in addition to its head h; and
dependency relation type d; each word is also an-
notated with a part-of-speech p; and optionally a
lemma [/; and a morphology m; (e.g. grammatical
case, gender, number, tense).

Some definitions require dependency parse
trees to be projective, meaning that any complete
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subtree must correspond to a contiguous span of
words in the sentence, however, we don’t place
such a requirement. In practice, languages with a
substantially strict word ordering like English typ-
ically have largely projective dependencies, while
languages with a more free word ordering like
Czech can have substantial non-projectivity.

2.2 Reordering model

Given a sentence s € .S with its dependency parse
tree and additional annotations, we incrementally
construct a reordered sentence s’ by emitting its
words in a sequence of steps. We model the re-
ordering process as a non-deterministic transition
system which traverses the parse tree:

Let the state of the system be a tuple x
(i, r, a, ,...) containing at least the index of the
current node ¢ (initialized at the root), the list of
emitted nodes r (initialized as empty) and the last
transition action a (initialized as null). Additional
information can be included in the state x, such as
the list of the last K nodes that have been visited,
the last K actions and a visit count for each node.

At each step we choose one of the following ac-
tions:

e EMIT': emit the current node. Enabled only
if the current node hasn’t already been emit-
ted

i¢r
(i, (r|4), EMIT, ,...

EMIT

G ra,..) = )

e U P: move to the parent of the current node

hi # null, Vj a # DOW N;

)lﬁ;(h“ T, []F’7 goos

(¢, roa,,... )
e DOW N;: move to the child j of the current

node. Enabled if the subtree of j (including
7) contains nodes that have not been emitted

yet.
hj =1, a# UP, 3k € subtree(i): k¢ r
Gy se) 5™ (G, r, DOWN;, ,...)

The pre-conditions on the UP and DOWN actions
prevent them from canceling each other, ensuring
that progress is made at each step. The additional
precondition on DOWN actions ensures that the
process always halts at a final state where all the
nodes have been emitted.

Let T (s) be the set of legal traces of the transi-
tion system for sentence s. Each trace 7 € T (s)
defines a permutation s, of s as the list of emitted
nodes r of its final state.
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We define the reordering problem as finding the
trace 7* that maximizes a scoring function ¢

(D

7" = arg Tgljé}(};) (s, 7)

Note that since the parse tree is connected, in
principle any arbitrary permutation can be gen-
erated for a suitable choice of ®, though the
maximization problem (1) is NP-hard and APX-
complete in the general case, by trivial reduction
from the traveling salesman problem.

The intuition behind this model is to leverage
the syntactical information provided by the de-
pendency parse tree, as successfully done by (Xu
et.al., 2009; Genzel, 2010; Isozaki et.al., 2010)
without being strictly constrained by a specific
type reordering rules.

2.3 Trace scores

We wish to design a scoring function & that cap-
tures good reorderings for machine translation and
admits an efficient optimization scheme.

We chose a function that additively decomposes
into local scoring functions, each depending only
on a single state of the trace and the following tran-
sition action

I7|-1

P(s, 7) = Z d(s, x(1, 1), o (1, t+1))

t=1

2

We further restrict our choice to a function

which is linear w.r.t. a set of elementary local fea-
ture functions { fi }

|F|

(l)(S? xz, a) = ka’fk (S, xz, a) (3)
k=1

where {v} € RIFl is a vector of parameters
derived from a training procedure.

While in principle each feature function could
depend on the whole sentence and the whole se-
quence of nodes emitted so far, in practice we re-
strict the dependence to a fixed neighborhood of
the current node and the last few emitted nodes.
This reduces the space of possible permutations.

2.4 Classifier-driven action selection

Even when the permutation space has been re-
stricted by an appropriate choice of the feature
functions, computing an exact solution of the opti-
mization problem (1) remains non-trivial, because



at each step of the reordering generation process,
the set of enabled actions depends in general on
nodes emitted at any previous step, and this pre-
vents us from applying typical dynamic program-
ming techniques. Therefore, we need to apply an
heuristic procedure.

In our experiments, we apply a simple greedy
procedure: at each step we choose an action ac-
cording to the output a two-stage classifier:

1. A three-class one-vs-all logistic classifier
chooses an action among EMIT, UP or
DOWN based on a vector of features ex-
tracted from a fixed neighborhood of the cur-
rent node ¢, the last emitted nodes and addi-
tional content of the state.

. If a DOWN action was chosen, then a one-
vs-one voting scheme is used to choose
which child to descend to: For each pair
(4, 4') = j < 7' of children of 7, a binary lo-
gistic classifier assigns a vote either to j or
7. The child that receives most votes is cho-
sen. This is similar to the max-wins approach
used in packages such as LIBSVM (Chang
and Lin, 2011) to construct a M-class clas-
sifier from M (M — 1) /2 binary classifiers,
except that we use a single binary classifier
acting on a vector of features extracted from
the pair of children (j, j') and the node i,

with their respective neighborhoods.

We also experimented with different classification
schemes, but we found that this one yields the best
performance.

Note that we are not strictly maximizing a
global linear scoring function as as defined by
equations (2) and (3), although this approach is
closely related to that framework.

This approach is related to transition-based de-
pendency parsing such as (Nivre and Scholz,
2004; Attardi, 2006) or dependency tree revi-
sion(Attardi and Ciaramita, 2007).

3 Training

3.1 Dataset preparation

Following (Al-Onaizan and Papineni, 2006;
Tromble and Eisner, 2009; Visweswariah et.al.,
2011), we generate a source-side reference re-
ordering of a parallel training corpus. For each
sentence pair, we generate a bidirectional word
alignment using GIZA++ (Och and Ney, 2000)

166

and the “grow-diag-final-and” heuristic imple-
mented in Moses (Koehn et.al.,2007), then we as-
sign to each source-side word a integer index cor-
responding to the position of the leftmost target-
side word it is aligned to (attaching unaligned
words to the following aligned word) and finally
we perform a stable sort of source-side words ac-
cording to this index.

On language pairs where GIZA++ produces
substantially accurate alignments (generally all
European languages) this scheme generates a
target-like reference reordering of the corpus.

In order to tune the parameters of the down-
stream phrase-based translation system and to test
the overall translation accuracy, we need two addi-
tional small parallel corpora. We don’t need a ref-
erence reordering for the tuning corpus since it is
not used for training the reordering system, how-
ever we generate a reference reordering for the test
corpus in order to evaluate the accuracy of the re-
ordering system in isolation. We obtain an align-
ment of this corpus by appending it to the train-
ing corpus, and processing it with GIZA++ and
the heuristic described above.

3.2 Reference traces generation and classifier
training

For each source sentence s in the training set
and its reference reordering s’, we generate a
minimum-length trace 7 of the reordering transi-
tion system, and for each state and action pair in it
we generate the following training examples:

o For the first-stage classifier we generate a sin-
gle training examples mapping the local fea-
tures to an EMIT, UP or DOWN action label

e For the second-stage classifier, if the action is
DOW Nj, for each pair of children (k, k') :
k < k' of the current node 7, we generate a
positive example if j = k or a negative ex-
ample if j = k.
Both classifiers are trained with the LIBLIN-
EAR package (Fan et.al., 2008), using the L2-
regularized logistic regression method. The reg-
ularization parameter C' is chosen by two-fold
cross-validation. In practice, subsampling of the
training set might be required in order to keep
memory usage and training time manageable.

3.3 Translation system training and testing

Once the classifiers have been trained, we run
the reordering system on the source side of the



whole (non-subsampled) training corpus and the
tuning corpus. For instance, if the parallel cor-
pora are German-to-English, after the reorder-
ing step we obtain German’-to-English corpora,
where German’ is German in an English-like
word order. These reordered corpora are used to
train a standard phrase-based translation system.
Finally, the reordering system is applied to source
side of the test corpus, which is then translated
with the downstream phrase-based system and the
resulting translation is compared to the reference
translation in order to obtain an accuracy measure.
We also evaluate the "monolingual” reordering ac-
curacy of upstream reordering system by compar-
ing its output on the source side of the test cor-
pus to the reference reordering obtained from the
alignment.

4 Experiments

We performed German-to-English and Italian-to-
English reordering and translation experiments.

4.1 Data

The German-to-English corpus is Europarl v7
(Koehn, 2005). We splititin a 1,881,531 sentence
pairs training set, a 2,000 sentence pairs develop-
ment set (used for tuning) and a 2,000 sentence
pairs test set. We also used a 3,000 sentence pairs
“challenge” set of newspaper articles provided by
the WMT 2013 translation task organizers.

The Italian-to-English corpus has been assem-
bled by merging Europarl v7, JRC-ACQUIS v2.2
(Steinberger et.al., 2006) and bilingual newspaper
articles crawled from news websites such as Cor-
riere.it and Asianews.it. It consists of a 3,075,777
sentence pairs training set, a 3,923 sentence pairs
development set and a 2,000 sentence pairs test
set.

The source sides of these corpora have been
parsed with Desr (Attardi, 2006). For both lan-
guage pairs, we trained a baseline Moses phrase-
based translation system with the default configu-
ration (including lexicalized reordering).

In order to keep the memory requirements and
duration of classifier training manageable, we sub-
sampled each training set to 40,000 sentences,
while both the baseline and reordered Moses sys-
tem are trained on the full training sets.

167

4.2 Features

After various experiments with feature selection,
we settled for the following configuration for both
German-to-English and Italian-to-English:

e First stage classifier: current node 7 state-
ful features (emitted?, left/right subtree emit-
ted?, visit count), curent node lexical and
syntactical features (surface form w;, lemma
l;, POS p;, morphology m;, DEPREL d;, and
pairwise combinations between lemma, POS
and DEPREL), last two actions, last two vis-
ited nodes POS, DEPREL and visit count,
last two emitted nodes POS and DEPREL, bi-
gram and syntactical trigram features for the
last two emitted nodes and the current node,
all lexical, syntactical and stateful features
for the neighborhood of the current node
(left, right, parent, parent-left, parent-right,
grandparent, left-child, right-child) and pair-
wise combination between syntactical fea-
tures of these nodes.

Second stage classifier: stateful features for
the current node ¢ and the the children pair
(4, j"), lexical and syntactical features for
each of the children and pairwise combina-
tions of these features, visit count differences
and signed distances between the two chil-
dren and the current node, syntactical trigram
features between all combinations of the two
children, the current node, the parent h; and
the two last emitted nodes and the two last
visited nodes, lexical and syntactical features
for the two children left and right neighbors.

All features are encoded as binary one-of-n indi-
cator functions.

4.3 Results

For both German-to-English and Italian-to-
English experiments, we prepared the data as
described above and we trained the classifiers on
their subsampled training sets. In order to evaluate
the classifiers accuracy in isolation from the rest
of the system, we performed two-fold cross vali-
dation on the same training sets, which revealed
an high accuracy: The first stage classifier obtains
approximately 92% accuracy on both German and
Italian, while the second stage classifier obtains
approximately 89% accuracy on German and 92%
on Italian.



| BLEU | NIST

57.35 | 13.2553
68.78 | 15.3441

German
Italian

Table 1: Monolingual reordering scores

| BLEU | NIST

de-en baseline | 33.78 | 7.9664
de-en reordered | 32.42 | 7.8202
it-en baseline 29.17 | 7.1352
it-en reordered | 28.84 | 7.1443

Table 2: Translation scores

We applied the reordering preprocessing system
to the source side of the corpora and evaluated the
monolingual BLEU and NIST score of the test sets
(extracted from Europarl) against their reference
reordering computed from the alignment

To evaluate translation performance, we trained
a Moses phrase-based system on the reordered
training and tuning corpora, and evaluated the
BLEU and NIST of the (Europarl) test sets. As
a baseline, we also trained and evaluated Moses
system on the original unreordered corpora.

We also applied our baseline and reordered
German-to-English systems to the WMT2013
translation task dataset.

5 Discussion

Unfortunately we were generally unable to im-
prove the translation scores over the baseline, even
though our monolingual BLEU for German-to-
English reordering is higher than the score re-
ported by (Tromble and Eisner, 2009) for a com-
parable dataset.

Accuracy on the WMT 2013 set is very low. We
attribute this to the fact that it comes form a differ-
ent domain than the training set.

Since classifier training set cross-validation ac-
curacy is high, we speculate that the main problem
lies with the training example generation process:
training examples are generated only from opti-
mal reordering traces. This means that once the
classifiers produce an error and the system strays
away from an optimal trace, it may enter in a fea-
ture space that is not well-represented in the train-
ing set, and thus suffer from unrecoverable per-
formance degradation. Moreover, errors occurring
on nodes high in the parse tree may cause incor-
rect placement of whole spans of words, yielding
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a poor BLEU score (although a cursory exami-
nation of the reordered sentences doesn’t reveal
this problem to be prevalent). Both these issues
could be possibly addressed by switching from
a classifier-based system to a structured predic-
tion system, such as averaged structured percep-
tron (Collins, 2002) or MIRA (Crammer, 2003;
McDonald et.al., 2005).

Another possible cause of error is the purely
greedy action selection policy. This could be ad-
dressed using a search approach such as beam
search.

We reserve to investigate these approaches in
future work.
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Abstract

We present the syntax-based string-to-
tree statistical machine translation systems
built for the WMT 2013 shared transla-
tion task. Systems were developed for
four language pairs. We report on adapting
parameters, targeted reduction of the tun-
ing set, and post-evaluation experiments
on rule binarization and preventing drop-
ping of verbs.

1 Overview

Syntax-based machine translation models hold
the promise to overcome some of the fundamen-
tal problems of the currently dominating phrase-
based approach, most importantly handling re-
ordering for syntactically divergent language pairs
and grammatical coherence of the output.

We are especially interested in string-to-tree
models that focus syntactic annotation on the tar-
get side, especially for morphologically rich target
languages (Williams and Koehn, 2011).

We have trained syntax-based systems for the
language pairs

English-German,
German-English,
Czech-English, and
Russian-English.

We have also tried building systems for French-
English and Spanish-English but the data size
proved to be problematic given the time con-
straints. We give a brief description of the syntax-
based model and its implementation within the
Moses system. Some of the available features are
described as well as some of the pre-processing
steps. Several experiments are described and final
results are presented for each language pair.

2 System Description

The syntax-based system used in all experiments
is the Moses string-to-tree toolkit implementing
GHKM rule extraction and Scope-3 parsing previ-
ously described in by Williams and Koehn (2012)
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2.1 Grammar

Our translation grammar is a synchronous context-
free grammar (SCFG) with phrase-structure labels
on the target side and the generic non-terminal la-
bel X on the source side. In this paper, we write
these rules in the form

LHS — RHS; | RHS;

where LHS is a target-side non-terminal label and
RHS; and RHS; are strings of terminals and non-
terminals for the source and target sides, respec-
tively. We use subscripted indices to indicate the
correspondences between source and target non-
terminals.

For example, a translation rule to translate the
German Haus into the English house is

NN — Haus | house
If our grammar also contains the translation rule
S — das ist ein X1 | this is a NNj

then we can apply the two rules to an input das ist
ein Haus to produce the output this is a house.

2.2 Rule Extraction

The GHKM rule extractor (Galley et al., 2004,
2006) learns translation rules from a word-aligned
parallel corpora for which the target sentences are
syntactically annotated. Given a string-tree pair,
the set of minimally-sized translation rules is ex-
tracted that can explain the example and is consis-
tent with the alignment. The resulting rules can be
composed in a non-overlapping fashion in order to
cover the string-tree pair.

Two or more minimal rules that are in a parent-
child relationship can be composed together to ob-
tain larger rules with more syntactic context. To
avoid generating an exponential number of com-
posed rules, several limitation have to be imposed.

One such limitation is on the size of the com-
posed rules, which is defined as the number of
non-part-of-speech, non-leaf constituent labels in
the target tree (DeNeefe et al., 2007). The corre-
sponding parameter in the Moses implementation
is MaxRuleSize and its default value is 3.
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Another limitation is on the depth of the rules’
target subtree. The rule depth is computed as the
maximum distance from its root node to any of its
children, not counting pre-terminal nodes (param-
eter MaxRuleDepth, default 3).

The third limitation considered is the number of
nodes in the composed rule, not counting target
words (parameter MaxNodes, default 15).

These parameters are language-dependent and
should be set to values that best represent the char-
acteristics of the target trees on which the rule ex-
tractor is trained on. Therefore the style of the
treebanks used for training the syntactic parsers
will also influence these numbers. The default
values have been set based on experiments on
the English-German language pair (Williams and
Koehn, 2012). It is worth noting that the Ger-
man parse trees (Skut et al., 1997) tend to be
broader and shallower than those for English. In
Section 3 we present some experiments where we
choose different settings of these parameters for
the German-English language pair. We use those
settings for all language pairs where the target lan-
guage is English.

2.3 Tree Restructuring

The coverage of the extracted grammar depends
partly on the structure of the target trees. If the
target trees have flat constructions such as long
noun phrases with many sibling nodes, the rules
extracted will not generalize well to unseen data
since there will be many constraints given by the
types of different sibling nodes.

In order to improve the grammar coverage to
generalize over such cases, the target tree can be
restructured. One restructuring strategy is tree
binarization. Wang et al. (2010) give an exten-
sive overview of different tree binarization strate-
gies applied for the Chinese-English language
pair. Moses currently supports left binarization
and right binarization.

By left binarization all the left-most children
of a parent node n except the right most child
are grouped under a new node. This node is in-
serted as the left child of n and receives the la-
bel n. Left binarization is then applied recursively
on all newly inserted nodes until the leaves are
reached. Right binarization implies a similar pro-
cedure but in this case the right-most children of
the parent node are grouped together except the
left most child.
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Another binarization strategy that is not cur-
rently integrated in Moses, but is worth investigat-
ing for different language pairs, is parallel head
binarization.

The result of parallel binarization of a parse
tree is a binarization forest. To generate a bina-
rization forest node, both right binarization and
left binarization are applied recursively to a parent
node with more than two children. Parallel head
binarization is a case of parallel binarization with
the additional constraint that the head constituent
is part of all the new nodes inserted by either left
or right binarization steps.

In Section 3 we give example of some initial ex-
periments carried out for the German-English lan-
guage pair.

2.4 Pruning The Grammar

Decoding for syntax-based model relies on a
bottom-up chart parsing algorithm. Therefore de-
coding efficiency is influenced by the following
combinatorial problem: given an input sentence
of length n and a context-free grammar rule with
s consecutive non-terminals, there are (”jl) ways
to choose subspans, or application contexts (Hop-
kins and Langmead, 2010), that the rule can ap-
plied to. The asymptotic running time of chart
parsing is linear in this number O(n?®).

Hopkins and Langmead (2010) maintain cubic
decoding time by pruning the grammar to remove
rules for which the number of potential applica-
tion contexts is too large. Their key observation is
that a rule can have any number of non-terminals
and terminals as long as the number of consecutive
non-terminal pairs is bounded. Terminals act to
anchor the rule, restricting the number of potential
application contexts. An example is the rule X —
WyY Z z for which there are at most O(n?) appli-
cation contexts, given that the terminals will have
a fixed position and will play the role of anchors
in the sentence for the non-terminal spans. The
number of consecutive non-terminal pairs plus the
number of non-terminals at the edge of a rule is
referred to as the scope of the rule. The scope of a
grammar is the maximum scope of any of its rules.
Moses implements scope-3 pruning and therefore
the resulting grammar can be parsed in cubic time.

2.5 Feature Functions

Our feature functions are unchanged from last
year. They include the n-gram language model
probability of the derivation’s target yield, its word



count, and various scores for the synchronous
derivation. Our grammar rules are scored accord-
ing to the following functions:

e p(RHSs|RHS;, LHS),
translation probability.

the noisy-channel

e p(LHS, RHS;|RHS;), the direct translation
probability.

o p(RHS:|RHS;) and pie, (RHSs|RHS,),
the direct and indirect lexical weights (Koehn
et al., 2003).

® Dpefg(FRAG), the monolingual PCFG prob-
ability of the tree fragment from which
the rule was extracted. This is defined
as [[, p(r;), where ry...r, are the con-
stituent CFG rules of the fragment. The
PCFG parameters are estimated from the
parse of the target-side training data. All lex-
ical CFG rules are given the probability 1.
This is similar to the p.s, feature proposed
by Marcu et al. (2006) and is intended to en-
courage the production of syntactically well-
formed derivations.

exp(—1/count(r)), a rule rareness penalty.

exp(1), a rule penalty. The main grammar
and glue grammars have distinct penalty fea-
tures.

3 Experiments

This section describes details for the syntax-based
systems submitted by the University of Edinburgh.
Additional post-evaluation experiments were car-
ried out for the German-English language pair.

3.1 Data

We made use of all available data for each lan-
guage pair except for the Russian-English where
the Commoncrawl corpus was not used. Table 1
shows the size of the parallel corpus used for each
language pair. The English side of the paral-
lel corpus was parsed using the Berkeley parser
(Petrov et al., 2006) and the German side of the
parallel corpus was parsed using the BitPar parser
(Schmid, 2004). For German-English, German
compounds were split using the script provided
with Moses. The parallel corpus was word-aligned
using MGIZA++ (Gao and Vogel, 2008).

All available monolingual data was used for
training the language models for each language
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Lang. pair | Sentences | Grammar Size
en-de 4,411,792 31,568,480
de-en 4,434,060 55,310,162
cs-en 14,425,564 | 209,841,388
ru-en 1,140,359 7,946,502

Table 1: Corpus statistics for parallel data.

pair. S-gram language models were trained us-
ing SRILM toolkit (Stolcke, 2002) with modi-
fied Kneser-Ney smoothing (Chen and Goodman,
1998) and then interpolated using weights tuned
on the newstest2011 development set.

The feature weights for each system were tuned
on development sets using the Moses implementa-
tion of minimum error rate training (Och, 2003).
The size of the tuning data varied for different lan-
guages depending on the amount of available data.
In the case of the the German-English pair a filter-
ing criteria based on sentence level BLEU score
was applied which is briefly described in Section
3.5. Table 2 shows the size of the tuning set for
each language pair.

Lang. pair | Sentences
en-de 7,065
de-en 2,400
cs-en 10,068
ru-en 1,501

Table 2: Corpus statistics for tuning data.

3.2 Pre-processing

Some attention was given to pre-processing of the
English side of the corpus prior to parsing. This
was done to avoid propagating parser errors to the
rule-extraction step. These particular errors arise
from a mismatch in punctuation and tokenization
between the corpus used to train the parser, the
PennTree bank, and the corpus which is being
parsed and passed on to the rule extractor. There-
fore we changed the quotation marks, which ap-
pear quite often in the parallel corpora, to opening
and closing quotation marks. We also added some
PennTree bank style tokenization rules'. These
rules split contractions such as I’ll, It’s, Don’t,
Gonna, Commissioner’s in order to correctly sep-
arate the verbs, negation and possessives that are

"The PennTree bank tokenization rules considered were
taken from http://www.cis.upenn.edu/~treebank/
tokenizer.sed. Further examples of contractions were
added.



Grammar Size BLEU
Parameters Full Filtered | 2009-40 | 2010-40 | 2011-40 | Average
Depth=3, Nodes=15, Size=3 | 2,572,222 751,355 18.57 20.43 18.51 19.17
Depth=4, Nodes=20, Size=4 | 3,188,970 901,710 | 18.88 20.38 18.63 19.30
Depth=5, Nodes=20, Size=5 | 3,668,205 980,057 | 19.04 20.47 18.75 19.42
Depth=5, Nodes=30, Size=5 | 3,776,961 980,061 18.90 20.59 18.77 19.42
Depth=5, Nodes=30, Size=6 | 4,340,716 | 1,006,174 | 18.98 20.52 18.80 19.43

Table 3: Cased BLEU scores for various rule extraction parameter settings for German-English language
pair. The parameters considered are MaxRuleDepth, MaxRuleSize, MaxNodes. Grammar sizes are given
for the full extracted grammar and after filtering for the newstest2008 dev set.

newstest2012 newstest2013
System Sentences | BLEU | Glue Rule | Tree Depth | BLEU | Glue Rule | Tree Depth
Baseline 5,771 23.21 542 4.03 26.27 4.23 3.80
Big tuning set 10,068 23.52 341 4.34 26.33 2.49 4.03
Filtered tuning set 2,400 23.54 3.21 4.37 26.30 2.37 4.05

Table 4: Cased BLEU scores for German-English systems tuned on different data. Scores are emphasized
for the system submitted to the shared translation task.

parsed as separate constituents.

For German—English, we carried out the usual
compound splitting (Koehn and Knight, 2003), but
not pre-reordering (Collins et al., 2005).

3.3 Rule Extraction

Some preliminary experiments were carried out
for the German-English language pair to deter-
mine the parameters for the rule extraction step:
MaxRuleDepth, MaxRuleSize, MaxNodes. Table 3
shows the BLEU score on different test sets for
various parameter settings. For efficiency rea-
sons less training data was used, therefore the
grammar sizes, measured as the total number of
extracted rules, are smaller than the final sys-
tems (Table 1). The parameters on the third line
Depth=5, Nodes=20, Size=4 were chosen as the
average BLEU score did not increase although the
size of the extracted grammar kept growing. Com-
paring the rate of growth of the full grammar and
the grammar after filtering for the dev set (the
columns headed “Full” and “Filtered”) suggests
that beyond this point not many more usable rules
are extracted, even while the total number of rules
stills increases.

3.4 Decoder Settings

We used the following non-default decoder param-
eters:
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max-chart-span=25: This limits sub deriva-
tions to a maximum span of 25 source words. Glue
rules are used to combine sub derivations allowing
the full sentence to be covered.

ttable-limit=200: Moses prunes the translation
grammar on loading, removing low scoring rules.
This option increases the number of translation
rules that are retained for any given source side
RHS;.

cube-pruning-pop-limit=1000: Number of hy-
potheses created for each chart span.

3.5 Tuning sets

One major limitation for the syntax-based systems
is that decoding becomes inefficient for long sen-
tences. Therefore using large tuning sets will slow
down considerably the development cycle. We
carried out some preliminary experiments to de-
termine how the size of the tuning set affects the
quality and speed of the system.

Three tuning sets were considered. The tun-
ing set that was used for training the baseline sys-
tem was built using the data from newstest2008-
2010 filtering out sentences longer than 30 words.
The second tuning set was built using all data
from newstest2008-2011. The final tuning set
was also built using the concatenation of the sets
newstest2008-2011. All sentences in this set were
decoded with a baseline system and the output was
scored according to sentence-BLEU scores. We se-




lected examples with high sentence-BLEU score in
a way that penalizes excessively short examples?.
Results of these experiments are shown in Table 4.

Results show that there is some gain in BLEU
score when providing longer sentences during tun-
ing. Further experiments should consider tuning
the baseline with the newstest2008-2011 data, to
eliminate variance caused by having different data
sources. Although the size of the third tuning set is
much smaller than that of the other tuning sets, the
BLEU score remains the same as when using the
largest tuning set. The glue rule number, which
shows how many times the glue rule was applied,
is lowest when tuning with the third data set. The
tree depth number, which shows the depth of the
resulting target parse tree, is higher for the third
tuning set as compared to the baseline and similar
to that resulted from using the largest tuning set.
These numbers are all indicators of better utilisa-
tion of the syntactic structure.

Regarding efficiency, the baseline tuning set and
the filtered tuning set took about a third of the time
needed to decode the larger tuning set.

Therefore we could draw some initial conclu-
sions that providing longer sentences is useful,
but sentences for which some baseline system per-
forms very poorly in terms of BLEU score can be
eliminated from the tuning set.

3.6 Results

Table 5 summarizes the results for the systems
submitted to the shared task. The BLEU scores for
the phrase-based system submitted by the Univer-
sity of Edinburgh are also shown for comparison.
The syntax-based system had BLEU scores similar
to those of the phrase-based system for German-
English and English-German language pairs. For
the Czech-English and Russian-English language
pairs the syntax-based system was 2 BLEU points
behind the phrase-based system.

However, in the manual evaluation, the
German—English and English—-German syntax
based systems were ranked higher than the phrase-
based systems. For Czech-English, the syntax
systems also came much closer than the BLEU
score would have indicated.

The Russian-English system performed worse
because we used much less of the available data
for training (leaving out Commoncrawl) and there-

2Ongoing work by Eva Hasler. Filtered data set was pro-
vided in order to speed up experiment cycles.
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phrase-based syntax-based

BLEU | manual | BLEU | manual
en-de | 20.1 | 0.571 194 | 0.614
de-en | 26.6 | 0586 | 263 | 0.608
cs-en | 26.2 | 0562 | 244 | 0.542
ru-en | 243 | 0.507 | 225 | 0416

Table 5: Cased BLEU scores and manual evalua-
tion scores (“expected wins”) on the newstest2013
evaluation set for the phrase-based and syntax-
based systems submitted by the University of Ed-
inburgh.

fore the extracted grammar is less reliable. An-
other reason was the mismatch in data format-
ting for the Russian-English parallel corpus. All
the training data was lowercased which resulted in
more parsing errors.

3.7 Post-Submission Experiments

Table 6 shows results for some preliminary ex-
periments carried out for the German-English lan-
guage pair that were not included in the final sub-
mission. The baseline system is trained on all
available parallel data and tuned on data from
newstest2008-2010 filtered for sentences up to 30
words.

Tree restructuring — In one experiment the
parse trees were restructured before training by
left binarization. Tree restructuring is need to im-
prove generalization power of rules extracted from
flat structures such as base noun phrases with sev-
eral children. The second raw in Table 6 shows
that the BLEU score did not improve and more
glue rules were applied when using left binariza-
tion. One reason for this result is that the rule ex-
traction parameters MaxRuleDepth, MaxRuleSize,
MaxNodes had the same values as in the baseline.
Increasing this parameters should improve the ex-
tracted grammar since binarizing the trees will in-
crease these three dimensions.

Verb dropping — A serious problem of
German—English machine translation is the ten-
dency to drop verbs, which shatters sentence struc-
ture. One cause of this problem is the failure of the
IBM Models to properly align the German verb to
its English equivalent, since it is often dislocated
with respect to English word order. Further prob-
lems appear when the main verb is not reordered in
the target sentence, which can result in lower lan-



Table 7: Statistics about verb dropping.

guage model scores and BLEU scores. However
the syntax models handle the reordering of verbs
better than phrase-based models.

In an experiment we investigated how the num-
ber of verbs dropped by the translation rules can
be reduced. In order to reduce the number of
verb dropping rules we looked at unaligned verbs
and realigned them before rule extraction. An un-
aligned verb in the source sentence was aligned
to the verb in the target sentence for which IBM
model 1 predicted the highest translation probabil-
ity. The third row in Table 6 shows the results of
this experiment. While there is no change in BLEU
score the number of glue rules applied is lower.
Further analysis shows in Table 7 that the number
of verb dropping rules in the grammar is almost
three times lower and that there are more trans-
lated verbs in the output when realigning verbs.

4 Conclusion

We describe in detail the syntax-based machine
translation systems that we developed for four Eu-
ropean language pairs. We achieved competitive
results, especially for the language pairs involving
German.
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newstest2012 newstest2013

System Grammar size | BLEU | glue rule | tree depth | BLEU | glue rule | tree depth

Baseline 55,310,162 | 23.21 542 4.03 26.27 4.23 3.80
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Abstract

This paper describes shallow
semantically-informed Hierarchical
Phrase-based SMT (HPBSMT) and
Phrase-Based SMT (PBSMT) systems
developed at Dublin City University
for participation in the translation task
between EN-ES and ES-EN at the Work-
shop on Statistical Machine Translation
(WMT 13). The system uses PBSMT
and HPBSMT decoders with multiple
LMs, but will run only one decoding
path decided before starting translation.
Therefore the paper does not present a
multi-engine system combination. We
investigate three types of shallow seman-
tics: (i) Quality Estimation (QE) score,
(ii) genre 1D, and (iii) context ID derived
from context-dependent language models.
Our results show that the improvement is
0.8 points absolute (BLEU) for EN-ES
and 0.7 points for ES-EN compared to
the standard PBSMT system (single best
system). It is important to note that we
developed this method when the standard
(confusion network-based) system com-
bination is ineffective such as in the case
when the input is only two.

I ntroduction

PBSMT. Although we call this &E score, this
score is not quite a standard one which does not
have access to translation output information. The
second semantics is genre ID which is intended to
capture domain adaptation. The third semantics
is context ID: this context ID is used to adjust the
context for the local words. Context ID is used in
a continuous-space LM (Schwenk, 2007), but is
implicit since the context does not appear in the
construction of a continuous-space LM. Note that
our usage of the terrsemantics refers to meaning
constructed by a sentence or words. The QE
score works as a sentence level switch to select
HPBSMT or PBSMT, based on thsemantics

of a sentence. The genre ID gives an indication
that the sentence is to be translated by genre ID-
sensitive MT systems, again based semantics

on a sentence level. The context-dependent LM
can be interpreted as supplying the local context
to a word, capturingemantics on a word level.

The architecture presented in this paper is sub-
stantially different from multi-engine system com-
bination. Although the system has multiple paths,
only one path is chosen at decoding when process-
ing unseen data. Note thstandard multi-engine
system combination using these three semantics
has been presented before (Okita et al., 2012b;
Okita et al., 2012a; Okita, 2012). This paper also
compares the two approaches.

The remainder of this paper is organized as fol-
lows. Section 2 describes the motivation for our

This paper describes shallow semantically-2PProach. In Section 3, we describe our proposed

informed

Hierarchical Phrase-based

smTSYystems, while in Section 4 we describe the exper-

(HPBSMT) and Phrase-Based SMT (PBSMT)imental results. We conclude in Section 5.
systems developed at Dublin City UnlverS|ty2 M otivation

for participation in the translation task between

EN-ES and ES-EN at WMT 13. Our objectives Model Difference of PBSMT and HPBSMT
are to incorporate several shallow semantics int@ur motivation is identical with a system combi-
SMT systems. The first semantics is the QE scoreation strategy which would obtain a better trans-
for a given input sentence which can be used tdation if we can access more than two translations.
select the decoding path either of HPBSMT orEven though we are limited in the type of MT sys-
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tems, i.e. SMT systems, we can access at leasind EN-ZH in other workshops.

two systems, i.e. PBSMT and HPBSMT systems. Under the assumption that we use the same
The merit that accrues from accessing these tweraining corpus for training PBSMT and HPBSMT
translation is shown in Figure 1. In this exam-systems, our hypothesis is that we may be able
ple between EN-ES, the skirts of the distributionto predict the quality of translation. Note that al-
shows that around 20% of the examples obtain théhough this is the analogy of quality estimation,
same BLEU score, 37% are better under PBSMTihe setting is slightly different in that in test phase,
and 42% under HPBSMT. Moreover, around 10%we will not be given a translation output, but only
of sentences show difference of 10 BLEU points.a source sentence. Our aim is to predict whether
Even a selection of outputs would improve the re-HPBSMT obtains better translation output than
sults. Unfortunately, some pitfall of system com-PBSMT or not. Hence, our aim does not require
bination (Rosti et al., 2007) impact on the processhat the quality prediction here is very accurate
when the number of available translation is onlycompared to the standard quality estimation task.
two. If there are only two inputs, (1) the mismatchWe use a feature set consisting of various charac-
of word order and word selection would yield a teristics of input sentences.

bad combination since system combination relies

on monolingual word alignment (or TER-based3 Our Methods: Shallow Semantics
alignment) which seeks identical words, and (2)

Minimum Bayes Risk (MBR) decoding, which is
a first step, will not work effectively since it re-
lies on voting. (In fact, only selecting one of the
translation outputs is even effective: this methoas'l'
is called system combination as well (_Spema etal. 1 OQE Score
2010).) Hence, although the aim is similar, we do

not use a system combination strategy, but we deRQuality estimation aims to predict the quality of

Our system accommodates PBSMT and HPBSMT
with multiple of LMs. A decoder which handles
shallow semantic information is shown in Table

velop a semantically-informed SMT system. translation outputs for unseen data (e.g. by build-
ing a regressor or a classifier) without access to
left: PBSMT and right: HPBSMT [> 1114, < 1276, = 613] on newstest2011(dev) references: the inputs are translation OutputS and

1000

source sentences in a test phase, while in a training
phase the corresponding BLEU or HTER scores
are used. In this subsection, we try to build a re-
gressor with the similar settings but without sup-
plying the translation outputs. That is, we supply
; only the input sentences. (Since our method is not
a quality estimation for a given translation output,
quality estimation may not be an entirely appro-
priate term. However, we borrow this term for this
paper.) If we can build such a regressor for PB-
e e g e e SMT and HPBSMT systems, we would be able
to select a better translation output without actu-
ally translating them for a given input sentence.

Figure 1: Figure shows the difference of sentencel-\lote that we translate the training set by PBSMT

based performance between PBSMT and HPBénd HPBSMT in a training phase only to supply
SMT systems. their BLEU scores to a regressor (since a regres-
sor is a supervised learning method). Then, we
Relation of Complexity of Source Sentenceand  use these regressors for a given unseen source sen-
Performance of HPBSMT and PBSMT It is tence (which has no translation output attached) to
interesting to note that PBSMT tends to be betpredict their BLEU scores for PBSMT and HPB-
ter than HPBSMT for European language pairsSMT.

as the recent WMT workshop shows, while HPB- Our motivation came from the comparison of
SMT shows often better performance for distanta sequential learning system and a parser-based
language pairs such as EN-JP (Okita et al., 2010kgystem. The typical decoder of the former is a
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Viterbi decoder while that of the latter is a Cocke-ties caused by inserted clauses, coordination, long
Younger-Kasami (CYK) decoder (Younger, 1967).Multiword Expressions, and parentheses, while
The capability of these two systems providesthe sequential learning system does not (This is
an intuition about the difference of PBSMT andsince this is what the aim of the context-free

HPBSMT: the CYK decoder-based system hagrrammar-based system is.) These difficulties are
some capability to handle syntactic constructionsnanifest in input sentences.

while the Viterbi decoder-based system has only

the capability of learning a sequence.

translation model, rule table.
Output: English translation e

ceScore = predictQEScorg)
if (ceScore == HPBSMTBetter)
for span length I=1td ; do
for start=0.14-1 do
genrelD = predictGenrel ()
end =start+ 1

[start,end] do
forall rules r do
if rule r applies to chart seq s then
create new chart entry ¢
with LM(genrelD)
add chart entry c to chart
return e from best chart entry in spani[g),
else:
genrelD = predictGenrelD}{)
place empty hypothesis into stack 0
for all stacks 0...n-1 do
for all hypotheses in stack do
for all translation options do
if applicable then
create new hyp with LM(ID)
place in stack
recombine with existing hyp if
possible
prune stack if too big
return e

predictQEScore()
predictGenrelD()
predictContextID@ord;, word;_1)

For ex-

Input: Foreign sent f#,...,f1,, language model,

forall seq s of entries and words in span

1.0

« true BLEU difference of PBSMT and HPBSMT
» predicted BLEU difference of PBSMT and HPBSMT

difference of BLEU points

—0.5F

50 100 150 200 250 300
sample ID

Figure 2: A blue line shows the true BLEU dif-
ference between PBSMT and HPBSMT (y-axis)
where x-axis is the sample IDs reordered in de-
scending order (blue), while green dots show the
BLEU absolute difference (y-axis) of the typical
samples where x-axis is shared with the above.
This example is sampled 300 points from new-
stest2013 (ES-EN). Even if the regressor does not
achieve a good performance, the bottom line of the
overall performance is already really high in this
tricky problem. Roughly, even if we plot randomly
we could achieve around 80 - 90% of correctness.
Around 50% of samples (middle of the curve) do
not care (since the true performance of PBSMT
and HPBSMT are even), there is a slope in the left
side of the curve where random plot around this
curve would achieve 15 - 20% among 25% of cor-
rectness (the performance of PBSMT is superior),
and there is another slope in the right side of the
curve where random plot would achieve again 15
- 20% among 25% (the performance of HPBSMT
is superior). In this case, accuracy is 86%.

If we assume that this is one major difference
between these two systems, the complexity of the

Table 1: Decoding algorithm: the main algorithm input sentence will correlate with the difference of
of PBSMT and HPBSMT are from (Koehn, 2010). translation quality of these two systems. In this
The modification is related to predictQEScore(),subsection, we assume that this is one major dif-

predictGenrelD(), and predictContextID().

ference of these two systems and that the complex-
ity of the input sentence will correlate with the dif-

ample, the (context-free) grammar-based systerference of translation quality of these two systems.
has the capability of handling various difficul- Based on these assumptions, we build a regressor
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for each system for a given input sentence where in
a training phase we supply the BLEU score mea-
sured using the training set. One remark is that the
BLEU score which we predict is only meaning-

ful in a relative manner since we actually generate
a translation output in preparation phase (there is

i. Sample a label zfd)
Multinomial (6,)

ii. Sample a word w§d>
Multinomial(¢.) from the
belc = 2V

i

~

la-

a dependency to the mean of BLEU score in the Using topic modeling (or LDA) as described
training set). Nevertheless, this is still meaningfulabove, we perform the in-domain data partitioning
as a relative value if we want to talk about theiras follows, building LMs for each class, and run-
difference, which is what we want in our settingsning a decoding process for the development set,
to predict which system, either PBSMT or HPB- which will obtain the best weights for cluster

SMT, will generate a better output.
The main features used for training the regres-
sor are as follows: (1) number of / length of in-

serted clause / coordination / multiword expres- o

sions, (2) number of long phrases (connection by
‘of’; ordering of words), (3) number of OOV
words (which let it lower the prediction quality),

(4) number of / length of parenthesis, etc. We ob- 3.

tained these features using parser (de Marneffe et
al., 2006) and multiword extractor (Okita et al.,
2010a).

3.2 GenrelD

Genre IDs allow us to apply domain adaptation 5.

technique according to the genre ID of the testset.
Among various methods of domain adaptation, we
investigate unsupervised clustering rather than al-
ready specified genres.

We used (unsupervised) classification via La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003)
to obtain genre ID. LDA represents topics as
multinomial distributions over thelV unique

1. Fix the number of clusters, we explore val-

ues from small to big.

Do unsupervised document classification (or
LDA) on the source side of the training, de-
velopment and test sets.

Separate each class of training sets and build
LM for each clustei (1 < i < C).

4. Separate each class of development set (keep

the original index and new index in the allo-
cated separated dataset).

(Using the same class of development set):
Run the decoder on each class to obtain the
n-best lists, run a MERT process to obtain the
best weights based on the n-best lists, (Repeat
the decoding / MERT process several itera-
tions. Then, we obtain the best weights for a
particular class.)

For the test phase,

word-types in the corpus and represents docu- 1. Separate each class of the test set (keep the

ments as a mixture of topics.

Let C' be the number of unique labels in the
corpus. Each labet is represented by &V-
dimensional multinomial distributiog. over the
vocabulary. For document we observe both the
words in the document(® as well as the docu-
ment labels:(?). Given the distribution over top-
ics 84, the generation of words in the document is
captured by the following generative model.

original index and new index in the allocated
separated dataset).

2. Suppose the test sentence belongs to cluster

1, run the decoder of clustér

3. Repeat the previous step until all the test sen-

tences are decoded.

3.3 Context ID

Context ID semantics is used through the re-
ranking of the n-best list in a MERT process
(Schwenk, 2007; Schwenk et al., 2012; Le et al.,
2012). 2-layer ngram-HMM LM is a two layer
version of the 1-layer ngram-HMM LM (Blun-
(a) Sample a distribution over its observedsom and Cohn, 2011) which is a nonparametric
labelsf,; ~ Dirichlet(-|a)
(b) Foreachword € {1,...,N}V}

1. Foreachlabel € {1,...C}, sample a distri-
bution over word-types, ~ Dirichlet(-|3)

2. For each documente {1,...,D}

ICurrently, we do not have a definite recommendation on
this. It needs to be studied more deeply.
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Bayesian method using hierarchical Pitman-Yor discrete representation
prior. In the 2-layer LM, the hidden sequence of ﬁ - ?
the first layer becomes the input to the higher layer projection layer / ]
of inputs. Note that such an architecture comes _ !
from the Restricted Boltzmann Machine (Smolen- pdentaver
sky, 1986) accumulating in multiple layers in or-
der to build deep belief networks (Taylor and Hin- output layer
ton, 2009). Although a 2-layer ngram-HMM LM probabiity estimation | al network
is inferior in its performance compared with other
two LMs, the runtime cost is cheaper than these.
h; denotes the hidden word for the first laykr, —O—-0O—0
denotes the hidden word for the second layer, % hiﬁe"'ayh
denotes the word in output layer. The generative A—0
model for this is shown below.

hilhe ~ F(ds,) 1)
welhe ~  F(¢s,) 2
wilwii—1 ~ PY(d;, 0;,Gi) (3

continuous-space languag
model [Schwenk, 2007]

I'N

—O—0
er

Ilst hidde

2-layer ngram-HMM language model  2-|ayer conditional RBM language model

where « is a concentration parametef, is a

strength parameter, an@d; is a base measure. _ _
Note that these terms belong to the hierarchicafigure 3: Figure shows the three kinds of context-

Pitman-Yor language model (Teh, 2006). We usediependent LM. The upper-side shows continuous-
a blocked inference for inference. The perfor-SPace language model (Schwenk, 2007). The

mance of 2-layer LM is shown in Table 3. lower-left shows ours, i.e. the 2-layer ngram-
HMM LM. The lower-right shows the 2-layer con-

ditional Restricted Boltzmann Machine LM (Tay-
We used Moses (Koehn et al., 2007) for PBSMTlor and Hinton, 2009).
and HPBSMT systems in our experiments. The

GIZA++ implementation (Och and Ney, 2003) of guage model, that is parallel corpora (Europarl

IB_M Model 4 is useql as the baseline fpr word /7 (Koehn, 2005), Common Crawl corpus, UN
alignment: Model 4 is incrementally trained by corpus, and News Commentary) and monolingual

performing 5 iterations of Model 1, 5 iterations corpora (Europarl V7, News Commentary, and
of HMM, 3 iterations of Model 3, and 3 iter- yaws Crawl from 2007’ 10 2012). ’

ations of Model 4. For phrase extraction the Experimental results are shown in Table 2.

grow-diag-final heuristics described in (Koehn etrpq |eft-most columnsem-inform) shows our re-
al., 2003) is used to derive the refined alignment ;.5 Theserm-inform made a improvement of 0.8
from bidirectional alignments. We then perform g, gy points absolute compared to the PBSMT
MERT process (Och, 2003) which optimizes theyqqits in EN-ES, while the standard system com-
BLEU metric, while a 5-gram language model is yin4tion ost 0.1 BLEU points absolute compared
derived with Kneser-Ney smoothing (Kneser andto the single worst. For ES-EN, theemvinform
Ney, 1995) trained with SRILM (Stolcke, 2002). 546 an improvement of 0.7 BLEU points abso-
For the HPBSMT system, the chart-based decodqte compared to the PBSMT results. These im-
of Moses (Koehn et al., 2007) is used. Most of theprovements over both of PBSMT and HPBSMT

procedures are identical with the PBSMT systems, o giatistically significant by a paired bootstrap
except the rule extraction process (Chiang, 2005),,¢; (Koehn, 2004).

The procedures to handle three kinds of seg
mantics are implemented using the already men-
tioned algorithm. We use libSVM (Chang and Lin, This paper describes shallow semantically-
2011), and Mallet (McCallum, 2002) for Latent informed HPBSMT and PBSMT systems devel-
Dirichlet Allocation (LDA) (Blei et al., 2003). oped at Dublin City University for participation in

For the corpus, we used all the resources prothe translation task at the Workshop on Statistical
vided for the translation task at WMT13 for lan- Machine Translation (WMT 13). Our system has

4 Experimental Settings

Conclusion
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| EN-ES | sem-inform| PBSMT | HPBSMT | syscomb| aug-syscomh
BLEU 30.3 29.5 28.2 28.1 28.5
BLEU(11b) 30.3 205 | 282 28.1 28.5
BLEU-cased 29.0 28.4 27.1 27.0 27.5
BLEU-cased(11b) 29.0 28.4 27.1 27.0 27.5
NIST 7.91 7.74 7.35 7.35 7.36
Meteor 0.580 0.579 0.577 0.577 0.578
WER 53.7 554 59.3 59.2 58.9
PER 41.3 42.4 46.0 45.8 45.5
| ES-EN | sem-inform| PBSMT | HPBSMT | syscomb| aug-syscomhb
BLEU 31.1 304 23.1 28.8 29.9
BLEU(11b) 31.1 304 | 23.1 28.8 29.9
BLEU-cased 29.7 29.1 22.3 27.9 28.8
BLEU-cased(11b) 29.7 29.1 22.3 27.9 28.8
NIST 7.87 7.79 6.67 7.40 7.71
Meteor 0.615 0.612 0.533 0.612 0.613
WER 54.8 554 62.5 59.3 56.1
PER 41.3 41.8 48.3 45.8 41.9

Table 2: Table shows the score where “sem-inform” shows our systerderlimed figure shows the
official score. “syscomb” denotes the confusion-network-basstésycombination using BLEU, while
“aug-syscomb” uses three shallow semantics described in QE score ébkita2012a), genre ID (Okita
et al., 2012b), and context ID (Okita, 2012). Note that the inputs fax@yd and aug-syscomb are the
output of HPBSMT and PBSMT. HPBSMT from ES to EN has marked witlthich indicates that this
is trained only with Europarl V7.

2-layer ngram-| SRI- (confusion network-based) system combination is
EN HMM LM LM ineffective such as in the case when the input is
newstest12 130.4 140.3 only two.
newstestll 146.2 157.1 A further avenue would be the investigation of
newstestld 156.4 166.8 other semantics such as linguistic semantics, in-
newstest09 176.3 187.1 cluding co-reference resolution or anaphora reso-

lution, hyper-graph decoding, and text understand-
Table 3: Table shows the perplexity of context-ing. Some of which are investigated in the context
dependent language models, which is 2-layeof textual entailment task (Okita, 2013b) and we
ngram HMM LM, and that of SRILM (Stolcke, would like to extend this to SMT task. Another
2002) in terms of newstest09 to 12. investigation would be the integration of genre ID

into the context-dependent LM. The preliminary

work shows that such integration would decrease

PBSMT and HPBSMT decoders with multiple the overall perplexity (Okita, 2013a).

LMs, but our system will execute only one path,
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Abstract

This paper describes the joint submis-
sion of the QUAERO project for the
German—English translation task of the
ACL 2013 Eighth Workshop on Statisti-
cal Machine Translation (WMT 2013).
The submission was a system combina-
tion of the output of four different transla-
tion systems provided by RWTH Aachen
University, Karlsruhe Institute of Technol-
ogy (KIT), LIMSI-CNRS and SYSTRAN
Software, Inc. The translations were
joined using the RWTH’s system com-
bination approach. Experimental results
show improvements of up to 1.2 points in
BLEU and 1.2 points in TER compared to
the best single translation.

1 Introduction

QUAERO is a European research and develop-
ment program with the goal of developing multi-
media and multilingual indexing and management
tools for professional and general public applica-
tions (http://www.quaero.org). Research in ma-
chine translation is mainly assigned to the four
groups participating in this joint submission. The
aim of this submission was to show the quality of
a joint translation by combining the knowledge of
the four project partners. Each group develop and
maintain their own different machine translation
system. These single systems differ not only in
their general approach, but also in the preprocess-
ing of training and test data. To take advantage
of these differences of each translation system, we
combined all hypotheses of the different systems,
using the RWTH system combination approach.
This paper is structured as follows. First, the
different engines of all four groups are introduced.
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In Section 3, the RWTH Aachen system combina-
tion approach is presented. Experiments with dif-
ferent system selections for system combination
are described in Section 4. This paper is concluded
in Section 5.

2 Translation Systems

For WMT 2013, each QUAERO partner trained
their systems on the parallel Europarl (EPPS),
News Commentary (NC) corpora and the web-
crawled corpus. All single systems were tuned on
the newstest2009 and newstest2010 development
set. The newstest2011 development set was used
to tune the system combination parameters. Fi-
nally, on newstest2012 the results of the different
system combination settings are compared. In this
Section, all four different translation engines are
presented.

2.1 RWTH Aachen Single System

For the WMT 2013 evaluation, RWTH utilized a
phrase-based decoder based on (Wuebker et al.,
2012) which is part of RWTH’s open-source SMT
toolkit Jane 2.1 !.  GIZA++ (Och and Ney, 2003)
was employed to train a word alignment, language
models have been created with the SRILM toolkit
(Stolcke, 2002).

After phrase pair extraction from the word-
aligned parallel corpus, the translation probabil-
ities are estimated by relative frequencies. The
standard feature set also includes an n-gram lan-
guage model, phrase-level IBM-1 and word-,
phrase- and distortion-penalties, which are com-
bined in log-linear fashion. Furthermore, we used
an additional reordering model as described in
(Galley and Manning, 2008). By this model six

"http://www-16.informatik.rwth-aachen.
de/jane/
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additional feature are added to the log-linear com-
bination. The model weights are optimized with
standard Mert (Och, 2003a) on 200-best lists. The
optimization criterion is BLEU.

2.1.1 Preprocessing

In order to reduce the source vocabulary size trans-
lation, the German text was preprocessed by split-
ting German compound words with the frequency-
based method described in (Koehn and Knight,
2003). To further reduce translation complexity
for the phrase-based approach, we performed the
long-range part-of-speech based reordering rules
proposed by (Popovic et al., 20006).

2.1.2 Translation Model

We applied filtering and weighting for domain-
adaptation similarly to (Mansour et al., 2011) and
(Mansour and Ney, 2012). For filtering the bilin-
gual data, a combination of LM and IBM Model
1 scores was used. In addition, we performed
weighted phrase extraction by using a combined
LM and IBM Model 1 weight.

2.1.3 Language Model

During decoding a 4-gram language model is ap-
plied. The language model is trained on the par-
allel data as well as the provided News crawl,
the 10° French-English, UN and LDC Gigaword
Fourth Edition corpora.

2.2 Karlsruhe Institute of Technology Single
System

2.2.1 Preprocessing

The training data was preprocessed prior to the
training. Symbols such as quotes, dashes and
apostrophes are normalized. Then the first words
of each sentence are smart-cased. For the Ger-
man part of the training corpus, the hunspell? lex-
icon was used, in order to learn a mapping from
old German spelling to new German writing rules.
Compound-splitting was also performed as de-
scribed in Koehn and Knight (2003). We also re-
moved very long sentences, empty lines, and sen-
tences which show big mismatch on the length.

2.2.2 Filtering

The web-crawled corpus was filtered using an
SVM classifier as described in (Mediani et al.,
2011). The lexica used in this filtering task were
obtained from Giza alignments trained on the

Zhttp://hunspell.sourceforge.net/
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cleaner corpora, EPPS and NC. Assuming that this
corpus is very noisy, we biased our classifier more
towards precision than recall. This was realized
by giving higher number of false examples (80%
of the training data).

This filtering technique ruled out more than
38% of the corpus (the unfiltered corpus contains
around 2.4M pairs, 0.9M of which were rejected
in the filtering task).

2.2.3 System Overview

The in-house phrase-based decoder (Vogel, 2003)
is used to perform decoding. Optimization with
regard to the BLEU score is done using Minimum
Error Rate Training (MERT) as described in Venu-
gopal et al. (2005).

2.2.4 Reordering Model

We applied part-of-speech (POS) based reordering
using probabilistic continuous (Rottmann and Vo-
gel, 2007) and discontinuous (Niehues and Kolss,
2009) rules. This was learned using POS tags gen-
erated by the TreeTagger (Schmid, 1994) for short
and long range reorderings respectively.

In addition to this POS-based reordering, we
also used tree-based reordering rules. Syntactic
parse trees of the whole training corpus and the
word alignment between source and target lan-
guage are used to learn rules on how to reorder the
constituents in a German source sentence to make
it match the English target sentence word order
better (Herrmann et al., 2013). The training corpus
was parsed by the Stanford parser (Rafferty and
Manning, 2008). The reordering rules are applied
to the source sentences and the reordered sentence
variants as well as the original sequence are en-
coded in a word lattice which is used as input to
the decoder.

Moreover, our reordering model was extended
so that it could include the features of lexicalized
reordering model. The reordering probabilities for
each phrase pair are stored as well as the origi-
nal position of each word in the lattice. During
the decoding, the reordering origin of the words
is checked along with its probability added as an
additional score.

2.2.5 Translation Models
The translation model uses the parallel data of
EPPS, NC, and the filtered web-crawled data. As

word alignment, we used the Discriminative Word
Alignment (DWA) as shown in (Niehues and Vo-



gel, 2008). The phrase pairs were extracted using
different source word order suggested by the POS-
based reordering models presented previously as
described in (Niehues et al., 2009).

In order to extend the context of source lan-
guage words, we applied a bilingual language
model (Niehues et al., 2011). A Discriminative
Word Lexicon (DWL) introduced in (Mauser et
al., 2009) was extended so that it could take the
source context also into the account. For this,
we used a bag-of-ngrams instead of representing
the source sentence as a bag-of-words. Filtering
based on counts was then applied to the features
for higher order n-grams. In addition to this, the
training examples were created differently so that
we only used the words that occur in the n-best list
but not in the reference as negative example.

2.2.6 Language Models

We build separate language models and combined
them prior to decoding. As word-token based
language models, one language model is built on
EPPS, NC, and giga corpus, while another one is
built using crawled data. We combined the LMs
linearly by minimizing the perplexity on the de-
velopment data. As a bilingual language model we
used the EPPS, NC, and the web-crawled data and
combined them. Furthermore, we use a 5-gram
cluster-based language model with 1,000 word
clusters, which was trained on the EPPS and NC
corpus. The word clusters were created using the
MKCLS algorithm.

2.3 LIMSI-CNRS Single System
2.3.1 System overview

LIMSTI’s system is built with n-code (Crego et al.,
2011), an open source statistical machine transla-
tion system based on bilingual n-gram?. In this
approach, the translation model relies on a spe-
cific decomposition of the joint probability of a
sentence pair using the n-gram assumption: a sen-
tence pair is decomposed into a sequence of bilin-
gual units called fuples, defining a joint segmen-
tation of the source and target. In the approach of
(Marifio et al., 2006), this segmentation is a by-
product of source reordering which ultimately de-
rives from initial word and phrase alignments.

2.3.2 An overview of n-code
The baseline translation model is implemented as
a stochastic finite-state transducer trained using

3http ://ncode.limsi.fr/
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a n-gram model of (source,target) pairs (Casacu-
berta and Vidal, 2004). Training this model re-
quires to reorder source sentences so as to match
the target word order. This is performed by
a stochastic finite-state reordering model, which
uses part-of-speech information* to generalize re-
ordering patterns beyond lexical regularities.

In addition to the translation model, eleven fea-
ture functions are combined: a target-language
model; four lexicon models; two lexicalized re-
ordering models (Tillmann, 2004) aiming at pre-
dicting the orientation of the next translation unit;
a ’weak’ distance-based distortion model; and
finally a word-bonus model and a tuple-bonus
model which compensate for the system prefer-
ence for short translations. The four lexicon mod-
els are similar to the ones use in a standard phrase
based system: two scores correspond to the rel-
ative frequencies of the tuples and two lexical
weights estimated from the automatically gener-
ated word alignments. The weights associated to
feature functions are optimally combined using a
discriminative training framework (Och, 2003b).

The overall search is based on a beam-search
strategy on top of a dynamic programming algo-
rithm. Reordering hypotheses are computed in a
preprocessing step, making use of reordering rules
built from the word reorderings introduced in the
tuple extraction process. The resulting reordering
hypotheses are passed to the decoder in the form
of word lattices (Crego and Mario, 2006).

2.3.3 Continuous space translation models

One critical issue with standard n-gram translation
models is that the elementary units are bilingual
pairs, which means that the underlying vocabu-
lary can be quite large, even for small translation
tasks. Unfortunately, the parallel data available to
train these models are typically order of magni-
tudes smaller than the corresponding monolingual
corpora used to train target language models. It is
very likely then, that such models should face se-
vere estimation problems. In such setting, using
neural network language model techniques seem
all the more appropriate. For this study, we fol-
low the recommendations of Le et al. (2012), who
propose to factor the joint probability of a sen-
tence pair by decomposing tuples in two (source
and target) parts, and further each part in words.
This yields a word factored translation model that

“4Part-of-speech labels for English and German are com-
puted using the TreeTagger (Schmid, 1995).



can be estimated in a continuous space using the
SOUL architecture (Le et al., 2011).

The design and integration of a SOUL model for
large SMT tasks is far from easy, given the com-
putational cost of computing n-gram probabilities.
The solution used here was to resort to a two pass
approach: the first pass uses a conventional back-
off n-gram model to produce a k-best list; in the
second pass, the k-best list is reordered using the
probabilities of m-gram SOUL translation models.
In the following experiments, we used a fixed con-
text size for SOUL of m = 10, and used k = 300.

2.3.4 Corpora and data pre-processing

All the parallel data allowed in the constrained
task are pooled together to create a single par-
allel corpus. This corpus is word-aligned using
MGIZA++ with default settings. For the English
monolingual training data, we used the same setup
as last year® and thus the same target language
model as detailed in (Allauzen et al., 2011).

For English, we also took advantage of our in-
house text processing tools for the tokenization
and detokenization steps (Dchelotte et al., 2008)
and our system is built in “true-case”. As Ger-
man is morphologically more complex than En-
glish, the default policy which consists in treat-
ing each word form independently is plagued with
data sparsity, which is detrimental both at training
and decoding time. Thus, the German side was
normalized using a specific pre-processing scheme
(described in (Allauzen et al., 2010; Durgar El-
Kahlout and Yvon, 2010)), which notably aims at
reducing the lexical redundancy by (i) normalizing
the orthography, (ii) neutralizing most inflections
and (iii) splitting complex compounds.

2.4 SYSTRAN Software, Inc. Single System

In the past few years, SYSTRAN has been focus-
ing on the introduction of statistical approaches
to its rule-based backbone, leading to Hybrid Ma-
chine Translation.

The technique of Statistical Post-Editing
(Dugast et al., 2007) is used to automatically edit
the output of the rule-based system. A Statistical
Post-Editing (SPE) module is generated from a
bilingual corpus. It is basically a translation mod-
ule by itself, however it is trained on rule-based

Shttp://geek.kyloo.net/software
®The fifth edition of the English Gigaword
(LDC2011T07) was not used.
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translations and reference data. It applies correc-
tions and adaptations learned from a phrase-based
5-gram language model. Using this two-step
process will implicitly keep long distance re-
lations and other constraints determined by the
rule-based system while significantly improving
phrasal fluency. It has the advantage that quality
improvements can be achieved with very little
but targeted bilingual data, thus significantly
reducing training time and increasing translation
performance.

The basic setup of the SPE component is identi-
cal to the one described in (Dugast et al., 2007).
A statistical translation model is trained on the
rule-based translation of the source and the target
side of the parallel corpus. Language models are
trained on each target half of the parallel corpora
and also on additional in-domain corpora. More-
over, the following measures - limiting unwanted
statistical effects - were applied:

o Named entities are replaced by special tokens
on both sides. This usually improves word
alignment, since the vocabulary size is sig-
nificantly reduced. In addition, entity trans-
lation is handled more reliably by the rule-

based engine.

The intersection of both vocabularies (i.e. vo-
cabularies of the rule-based output and the
reference translation) is used to produce an
additional parallel corpus (whose target is
identical to the source). This was added to the
parallel text in order to improve word align-
ment.

Singleton phrase pairs are deleted from the
phrase table to avoid overfitting.

Phrase pairs not containing the same number
of entities on the source and the target side
are also discarded.

Phrase pairs appearing less than 2 times were
pruned.

The SPE language model was trained on 2M
phrases from the news/europarl and Common-
Crawl corpora, provided as training data for WMT
2013. Weights for these separate models were
tuned by the Mert algorithm provided in the Moses
toolkit (Koehn et al., 2007), using the provided
news development set.
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Figure 1: Confusion network of four different hypotheses.

3 RWTH Aachen System Combination

System combination is used to produce consen-
sus translations from multiple hypotheses gener-
ated with different translation engines. First, a
word to word alignment for the given single sys-
tem hypotheses is produced. In a second step a
confusion network is constructed. Then, the hy-
pothesis with the highest probability is extracted
from this confusion network. For the alignment
procedure, each of the given single systems gen-
erates one confusion network with its own as pri-
mary system. To this primary system all other hy-
potheses are aligned using the METEOR (Lavie
and Agarwal, 2007) alignment and thus the pri-
mary system defines the word order. Once the
alignment is given, the corresponding confusion
network is constructed. An example is given in
Figure 1. The final network for one source sen-
tence is the union of all confusion networks gen-
erated from the different primary systems. That
allows the system combination to select the word
order from different system outputs.

Before performing system combination, each
translation output was normalized by tokenization
and lowercasing. The output of the combination
was then truecased based on the original truecased
output.

The model weights of the system combination
are optimized with standard Mert (Och, 2003a)
on 100-best lists. We add one voting feature for
each single system to the log-linear framework of
the system combination. The voting feature fires
for each word the single system agrees on. More-
over, a word penalty, a language model trained on
the input hypotheses, a binary feature which pe-
nalizes word deletions in the confusion network
and a primary feature which marks the system
which provides the word order are combined in
this log-linear model. The optimization criterion
is 4BLEU-TER.

4 Experimental Results

In this year’s experiments, we tried to improve the
result of the system combination further by com-
bining single systems tuned on different develop-
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Table 1: Comparison of single systems tuned on
newstest2009 and newstest2010. The results are
reported on newstest2012.

single systems tuned on | newstest2012
newstest | BLEU | TER

KIT 2009 24.6 | 58.4
2010 24.6 | 58.6

LIMSI 2009 22,5 | 61.5
2010 22.6 | 59.8

SYSTRAN 2009 20.9 | 63.3
2010 21.2 | 62.2

RWTH 2009 23.7 | 60.8
2010 244 | 58.8

ment sets. The idea is to achieve a more stable

performance in terms of translation quality, if the
single systems are not optimized on the same data
set. In Table 1, the results of each provided single
system tuned on newstest2009 and newstest2010
are shown. For RWTH, LIMSI and SYSTRAN,
it seems that the performance of the single system
depends on the chosen tuning set. However, the
translation quality of the single systems provided
by KIT is stable.

As initial approach and for the final submis-
sion, we grouped single systems with dissimilar
approaches. Thus, KIT (phrase-based SMT) and
SYSTRAN (rule-based MT) tuned their system on
newstest2010, while RWTH (phrase-based SMT)
and LIMSI (n-gram) optimized on newstest2009.

To compare the impact of this approach, all pos-
sible combinations were checked (Table 2). How-
ever, it seems that the translation quality can not be
improved by this approach. For the test set (new-
stest2012), BLEU is steady around 25.6 points.
Even if the single system with lowest BLEU are
combined (KIT 2010, LIMSI 2009, SYSTRAN
2010, RWTH 2009), the translation quality in
terms of BLEU is comparable with the combina-
tion of the best single systems (KIT 2009, LIMSI
2010, SYSTRAN 2010, RWTH 2010). However,
we could gain 1.0 point in TER.

Due to the fact, that for the final submission the
initial grouping was available only, we kept this



Table 2: Comparison of different system combination settings. For each possible combination of systems
tuned on different tuning sets, a system combination was set up, re-tuned on newstest2011 and evaluated
on newstest2012. The setting used for further experiments is set in boldface.

single systems system combinations

KIT | LIMSI | SYSTRAN | RWTH || newstest2011 | newstest2012

tuned on newstest BLEU | TER | BLEU | TER
2009 | 2009 2009 2009 246 | 58.0 | 25.6 | 56.8
2010 | 2010 2010 2010 242 | 58.1 | 25.6 | 577
2010 | 2009 2009 2009 245 | 579 | 2577 | 574
2009 | 2010 2009 2009 244 | 583 | 25.7 | 57.0
2009 | 2009 2010 2009 245 | 579 | 25.6 | 57.0
2009 | 2009 2009 2010 245 | 58.0 | 25.6 | 56.8
2009 | 2010 2010 2010 241 | 575 | 254 | 564
2010 | 2009 2010 2010 243 | 57.6 | 25.6 | 569
2010 | 2010 2009 2010 242 | 580 | 25.6 | 573
2010 | 2010 2010 2009 243 | 579 | 255 | 57.6
2010 | 2010 2009 2009 244 | 58.1 | 25.6 | 575
2009 | 2009 2010 2010 244 | 57.8 | 25.5 | 56.6
2009 | 2010 2010 2009 244 | 582 | 255 | 57.0
2009 | 2010 2009 2010 242 | 57.8 | 25.5 | 56.8
2010 | 2009 2009 2010 244 | 579 | 25,6 | 574
2010 | 2009 2010 2009 244 | 57.7 | 25.6 | 574

Table 3: Results of the final submission (bold-
face) compared with best single system on new-
stest2012.

newstest2011 | newstest2012
BLEU | TER | BLEU | TER
bestsingle | 23.2 [ 609 [ 24.6 | 584 |
system comb. | 244 | 577 | 256 | 574
+ IBM-1 24.6 | 58.1 | 25.6 | 57.6
+ bigLM 24.6 | 57.9 | 258 | 57.2

combination. To improve this baseline further, two
additional models were added. We applied lexi-
cal smoothing (/BM-1) and an additional language
model (bigLM) trained on the English side of the
parallel data and the News shuffle corpus. The re-
sults are presented in Table 3.

The baseline was slightly improved by 0.2
points in BLEU and TER. Note, this system com-
bination was the final submission.

5 Conclusion

For the participation in the WMT 2013 shared
translation task, the partners of the QUAERO
project (Karlsruhe Institute of Technology, RWTH

Aachen University, LIMSI-CNRS and SYSTRAN
Software, Inc.) provided a joint submission. By
joining the output of four different translation sys-
tems with RWTH’s system combination, we re-
ported an improvement of up to 1.2 points in
BLEU and TER.

Combining systems optimized on different tun-
ing sets does not seem to improve the translation
quality. However, by adding additional model, the
baseline was slightly improved.

All in all, we conclude that the variability in
terms of BLEU does not influence the final result.
It seems that using different approaches of MT in
a system combination is more important (Freitag
et al., 2012).
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Abstract

This paper describes the statistical ma-
chine translation (SMT) systems devel-
oped at RWTH Aachen University for
the translation task of the ACL 2013
Eighth Workshop on Statistical Machine
Translation (WMT 2013). We partici-
pated in the evaluation campaign for the
French-English and German-English lan-
guage pairs in both translation directions.
Both hierarchical and phrase-based SMT
systems are applied. A number of dif-
ferent techniques are evaluated, including
hierarchical phrase reordering, translation
model interpolation, domain adaptation
techniques, weighted phrase extraction,
word class language model, continuous
space language model and system combi-
nation. By application of these methods
we achieve considerable improvements
over the respective baseline systems.

1 Introduction

For the WMT 2013 shared translation task!
RWTH utilized state-of-the-art phrase-based and
hierarchical translation systems as well as an in-
house system combination framework. We give
a survey of these systems and the basic meth-
ods they implement in Section 2. For both
the French-English (Section 3) and the German-
English (Section 4) language pair, we investigate
several different advanced techniques. We con-
centrate on specific research directions for each
of the translation tasks and present the respec-
tive techniques along with the empirical results
they yield: For the French—English task (Sec-
tion 3.2), we apply a standard phrase-based sys-
tem with up to five language models including a

"nttp://www.statmt .org/wmt13/
translation—-task.html
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word class language model. In addition, we em-
ploy translation model interpolation and hierarchi-
cal phrase reordering. For the English—French
task (Section 3.1), we train translation mod-
els on different training data sets and augment
the phrase-based system with a hierarchical re-
ordering model, a word class language model,
a discriminative word lexicon and a insertion
and deletion model. For the German—English
(Section 4.3) and English—German (Section 4.4)
tasks, we utilize morpho-syntactic analysis to pre-
process the data (Section 4.1), domain-adaptation
(Section 4.2) and a hierarchical reordering model.
For the German—English task, an augmented hi-
erarchical phrase-based system is set up and we
rescore the phrase-based baseline with a continu-
ous space language model. Finally, we perform a
system combination.

2 Translation Systems

In this evaluation, we employ phrase-based trans-
lation and hierarchical phrase-based translation.
Both approaches are implemented in Jane (Vilar et
al., 2012; Wuebker et al., 2012), a statistical ma-
chine translation toolkit which has been developed
at RWTH Aachen University and is freely avail-
able for non-commercial use.’

2.1 Phrase-based System

In the phrase-based decoder (source cardinality
synchronous search, SCSS), we use the standard
set of models with phrase translation probabilities
and lexical smoothing in both directions, word and
phrase penalty, distance-based distortion model,
an n-gram target language model and three bi-
nary count features. Optional additional models
used in this evaluation are the hierarchical reorder-
ing model (HRM) (Galley and Manning, 2008), a
word class language model (WCLM) (Wuebker et

http://www.hltpr.rwth-aachen.de/jane/

Proceedings of the Eighth Workshop on Statistical Machine Translation, pages 193-199,
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al., 2012), a discriminative word lexicon (DWL)
(Mauser et al., 2009), and insertion and deletion
models (IDM) (Huck and Ney, 2012). The param-
eter weights are optimized with minimum error
rate training (MERT) (Och, 2003). The optimiza-
tion criterion is BLEU.

2.2 Hierarchical Phrase-based System

In hierarchical phrase-based translation (Chiang,
2007), a weighted synchronous context-free gram-
mar is induced from parallel text. In addition to
continuous lexical phrases, hierarchical phrases
with up to two gaps are extracted. The search is
carried out with a parsing-based procedure. The
standard models integrated into our Jane hierar-
chical systems (Vilar et al., 2010; Huck et al.,
2012c) are: phrase translation probabilities and
lexical smoothing probabilities in both translation
directions, word and phrase penalty, binary fea-
tures marking hierarchical phrases, glue rule, and
rules with non-terminals at the boundaries, four
binary count features, and an n-gram language
model. Optional additional models comprise IBM
model 1 (Brown et al., 1993), discriminative word
lexicon and triplet lexicon models (Mauser et al.,
2009; Huck et al., 2011), discriminative reordering
extensions (Huck et al., 2012a), insertion and dele-
tion models (Huck and Ney, 2012), and several
syntactic enhancements like preference grammars
(Stein et al., 2010) and soft string-to-dependency
features (Peter et al., 2011). We utilize the cube
pruning algorithm for decoding (Huck et al., 2013)
and optimize the model weights with MERT. The
optimization criterion is BLEU.

2.3 System Combination

System combination is used to produce consensus
translations from multiple hypotheses generated
with different translation engines. First, a word
to word alignment for the given single system hy-
potheses is produced. In a second step a confusion
network is constructed. Then, the hypothesis with
the highest probability is extracted from this con-
fusion network. For the alignment procedure, one
of the given single system hypotheses is chosen as
primary system. To this primary system all other
hypotheses are aligned using the METEOR (Lavie
and Agarwal, 2007) alignment and thus the pri-
mary system defines the word order. Once the
alignment is given, the corresponding confusion
network is constructed. An example is given in
Figure 1.
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The model weights of the system combination
are optimized with standard MERT on 100-best
lists. For each single system, a factor is added to
the log-linear framework of the system combina-
tion. Moreover, this log-linear model includes a
word penalty, a language model trained on the in-
put hypotheses, a binary feature which penalizes
word deletions in the confusion network and a pri-
mary feature which marks the system which pro-
vides the word order. The optimization criterion is
4BLEU-TER.

2.4 Other Tools and Techniques

We employ GIZA++ (Och and Ney, 2003) to train
word alignments. The two trained alignments are
heuristically merged to obtain a symmetrized word
alignment for phrase extraction. All language
models (LMs) are created with the SRILM toolkit
(Stolcke, 2002) and are standard 4-gram LMs
with interpolated modified Kneser-Ney smooth-
ing (Kneser and Ney, 1995; Chen and Goodman,
1998). The Stanford Parser (Klein and Manning,
2003) is used to obtain parses of the training data
for the syntactic extensions of the hierarchical sys-
tem. We evaluate in truecase with BLEU (Papineni
et al., 2002) and TER (Snover et al., 2006).

2.5 Filtering of the Common Crawl Corpus

The new Common Crawl corpora contain a large
number of sentences that are not in the labelled
language. To clean these corpora, we first ex-
tracted a vocabulary from the other provided cor-
pora. Then, only sentences containing at least
70% word from the known vocabulary were kept.
In addition, we discarded sentences that contain
more words from target vocabulary than source
vocabulary on the source side. These heuristics
reduced the French-English Common Crawl cor-
pus by 5,1%. This filtering technique was also ap-
plied on the German-English version of the Com-
mon Crawl corpus.

3 French-English Setups

We trained phrase-based translation systems for
French—English and for English—French. Cor-
pus statistics for the French-English parallel data
are given in Table 1. The LMs are 4-grams trained
on the provided resources for the respective lan-
guage (Europarl, News Commentary, UN, 109,
Common Crawl, and monolingual News Crawl
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Figure 1: Confusion network of four different hypotheses.

Table 1: Corpus statistics of the preprocessed
French-English parallel training data. EPPS de-
notes Europarl, NC denotes News Commentary,
CC denotes Common Crawl. In the data, numeri-
cal quantities have been replaced by a single cate-
gory symbol.

’ ‘ French English
EPPS | Sentences 2.2M
+ NC | Running Words| 64.7M 59.7M
Vocabulary 1534K | 132.2K
CC Sentences 3.2M
Running Words| 88.1M | 80.9.0M
Vocabulary 954.8K | 908.0K
UN Sentences 12.9M
Running Words| 413.3M | 362.3M
Vocabulary 487.1K | 508.3K
107 Sentences 22.5M
Running Words| 771.7M | 661.1M
Vocabulary 1974.0K| 1947.2K
All Sentences 40.8M
Running Words| 1337.7M| 1163.9M
Vocabulary 2749.8K| 2730.1K

language model training data).’

3.1 Experimental Results English— French

For the English—French task, separate translation
models (TMs) were trained for each of the five
data sets and fed to the decoder. Four additional
indicator features are introduced to distinguish the
different TMs. Further, we applied the hierar-
chical reordering model, the word class language
model, the discriminative word lexicon, and the
insertion and deletion model. Table 2 shows the
results of our experiments.

As a development set for MERT, we use new-
stest2010 in all setups.

3.2 Experimental Results French— English

For the French—English task, a translation model
(TM) was trained on all available parallel data.
For the baseline, we interpolated this TM with

3The parallel 10° corpus is often also referred to as WMT
Giga French-English release 2.
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an in-domain TM trained on EPPS+NC and em-
ployed the hierarchical reordering model. More-
over, three language models were used: The first
language model was trained on the English side
of all available parallel data, the second one on
EPPS and NC and the third LM on the News Shuf-
fled data. The baseline was improved by adding a
fourth LM trained on the Gigaword corpus (Ver-
sion 5) and a 5-gram word class language model
trained on News Shuffled data. For the WCLM,
we used 50 word classes clustered with the tool
mkcls (Och, 2000). All results are presented in Ta-
ble 3.

4 German-English Setups

For both translation directions of the German-
English language pair, we trained phrase-based
translation systems. Corpus statistics for German-
English can be found in Table 4. The language
models are 4-grams trained on the respective tar-
get side of the bilingual data as well as on the
provided News Crawl corpus. For the English
language model the 10° French-English, UN and
LDC Gigaword Fifth Edition corpora are used ad-
ditionally.

4.1 Morpho-syntactic Analysis

In order to reduce the source vocabulary size for
the German—English translation, the German text
is preprocessed by splitting German compound
words with the frequency-based method described
in (Koehn and Knight, 2003). To further reduce
translation complexity, we employ the long-range
part-of-speech based reordering rules proposed by
Popovi¢ and Ney (2006).

4.2 Domain Adaptation

This year, we experimented with filtering and
weighting for domain-adaptation for the German-
English task. To perform adaptation, we define a
general-domain (GD) corpus composed from the
news-commentary, europarl and Common Crawl
corpora, and an in-domain (ID) corpus using
a concatenation of the test sets (newstest{2008,
2009, 2010, 2011, 2012}) with the correspond-
ing references. We use the test sets as in-domain



Table 2: Results for the English—French task (truecase).

BLEU and TER are given in percentage.

newstest2010 is used as development set.

newstest2008 | newstest2009 | newstest2010 | newstest2011 | newstest2012

English—French BLEU | TER | BLEU ‘ TER | BLEU ‘ TER | BLEU | TER | BLEU | TER
TM:EPPS + HRM 229 | 63.0| 250 | 60.0 | 27.8 | 56.7 | 289 | 544 | 27.2 | 57.1
TM:UN + HRM 2277 |1 634 | 250 | 60.0 | 28.3 | 564 | 295 | 542 | 27.3 | 57.1
TM:10° + HRM 235 1623 | 260 | 59.2 | 29.6 | 552 | 30.3 | 53.3 | 28.0 | 56.4
TM:CC + HRM 235 | 623 | 26.2 | 58.8 | 29.2 | 553 | 30.3 | 53.3 | 28.2 | 56.0
TM:NC 210 | 648 | 223 | 61.6 | 25.6 | 58.7 | 269 | 56.6 | 25.7 | 58.5
+ HRM 215 | 643 | 226 | 61.2 | 26.1 | 584 | 27.3 | 56.1 | 26.0 | 58.2
+ TM:EPPS,CC,UN 239 | 61.8 | 264 | 58.6 | 299 | 54.7 | 31.0 | 52.7 | 28.6 | 55.6
+ TM:10° 240 | 61.5| 265 | 584 | 30.2 | 542 | 31.1 | 523 | 28.7 | 55.3

+ WCLM, DWL, IDM | 24.0 | 61.6 | 26.5 | 583 | 304 | 54.0 | 314 | 52.1 | 28.8 | 55.2

Table 3: Results for the French—English task (truecase).

BLEU and TER are given in percentage.

newstest2010 is used as development set.

newstest2010 | newstest2011 | newstest2012

French— English BLEU ‘ TER | BLEU ‘ TER | BLEU | TER
SCSS baseline 28.1 | 54.6 | 29.1 | 53.3 - -

+ GigaWord.v5 LM | 28.6 | 54.2 | 29.6 | 52.9 | 29.6 | 53.3

+ WCLM 29.1 | 53.8 | 30.1 | 52.5 | 29.8 | 53.1

(newswire) as the other corpora are coming from
differing domains (news commentary, parliamen-
tary discussions and various web sources), and on
initial experiments, the other corpora did not per-
form well when used as an in-domain representa-
tive for adaptation. To check whether over-fitting
occurs, we measure the results of the adapted
systems on the evaluation set of this year (new-
stest2013) which was not used as part of the in-
domain set.

The filtering experiments are done similarly to
(Mansour et al., 2011), where we compare filtering
using LM and a combined LM and IBM Model 1
(LM+M1) based scores. The scores for each sen-
tence pair in the general-domain corpus are based
on the bilingual cross-entropy difference of the
in-domain and general-domain models. Denoting
Hpy(zx) as the cross entropy of sentence x ac-
cording to LM, then the cross entropy difference
DHpp(x) can be written as:

DHLM(J:) = HLMID (l‘) - HLMGD (:E)

The bilingual cross entropy difference for a sen-
tence pair (s,t) in the GD corpus is then defined
by:

DHLM(S) + DHLM(t)

For IBM Model 1 (M1), the cross-entropy

Hyyi(s|t) is defined similarly to the LM cross-
entropy, and the resulting bilingual cross-entropy
difference will be of the form:

DHMl(S’t) + DHMl(t|S)

The combined LM+MI1 score is obtained by
summing the LM and M1 bilingual cross-entropy
difference scores. To perform filtering, the GD
corpus sentence pairs are scored by the appropri-
ate method, sorted by the score, and the n-best sen-
tences are then used to build an adapted system.

In addition to adaptation using filtering, we ex-
periment with weighted phrase extraction similar
to (Mansour and Ney, 2012). We differ from their
work by using a combined LM+M1 weight to per-
form the phrase extraction instead of an LM based
weight. We use a combined LM+M1 weight as
this worked best in the filtering experiments, mak-
ing scoring with LM+M1 more reliable than LM
scores only.

4.3 Experimental Results German—English

For the German—English task, the baseline is
trained on all available parallel data and includes
the hierarchical reordering model. The results of
the various filtering and weighting experiments are
summarized in Table 5.
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Table 5: German-English results (truecase). BLEU and TER are given in percentage. Corresponding
development set is marked with *. { labels the single systems selected for the system combination.

newstest2009 newstest2010 newstest2011 newstest2012 | newstest2013
German— English BLEU ‘ TER BLEU | TER BLEU | TER BLEU | TER | BLEU | TER
SCSS baseline 21.7 | 61.1 24.8% | 58.9*% | 22.0 | 61.1 234 | 60.0 | 26.1 | 56.4
LM 800K-best 21.6 | 60.5 24.7*% | 58.3*% | 22.0 | 60.5 23.6 | 59.7 | - -
LM+M1 800K-best 214 | 60.5 24.7*% | 58.1*% | 22.0 | 604 | 23.7 | 59.2 | - -
(LM+M1)*TM 221 60.2 | 254% | 57.8*% | 22.5 60.1 240 | 59.1 | - -
(LM+M1)*TM+GW | 22.8 59.5 25.7*% | 57.2% | 23.1 59.5 244 | 58.6 | 26.6 | 55.5
LCM+MD*TM+GW+ | 22.9% | 61.1* | 25.2 | 59.3 22.8 | 61.5 23.7 | 60.8 | 26.4 | 57.1
SCSS baseline 22.6*% | 61.6*% | 24.1 60.1 22.1 62.0 | 23.1 | 61.2 | - -
CSLM rescoringf 220 | 604 | 25.1% | 583*% 224 |60.2 |239 |593]|26.0 |56.0
HPBTY 219 | 604 | 24.9% | 58.2% | 22.3 60.3 23.6 | 59.6 | 259 | 56.3
| system combination | - | - | - | - | 23.4% | 59.3* | 24.7 | 585 [ 27.1 [ 553 ]

Table 6: English-German results (truecase). newstest2009 was used as development set. BLEU and TER

are given in percentage.

newstest2008 | newstest2009 | newstest2010 | newstest2011 | newstest2012
English— German BLEU ‘ TER | BLEU ‘ TER | BLEU | TER | BLEU | TER | BLEU | TER
SCSS baseline 149 [ 709 [ 149 [ 704 | 160 | 66.3 | 154 | 695 | 15.7 | 675
LM 800K-best 15.1 | 709 | 15.1 | 703 | 16.2 | 66.3 | 15.6 | 694 | 159 | 674
(LM+M1) 800K-best | 15.8 | 70.8 | 154 | 70.0 | 16.2 | 66.2 | 16.0 | 69.3 | 16.1 | 67.4
(LM+M1) ifelse 16.1 | 70.6 | 157 | 69.9 | 16.5 | 66.0 | 16.2 | 69.2 | 163 | 67.2

Table 4: Corpus statistics of the preprocessed
German-English parallel training data (Europarl,
News Commentary and Common Crawl). In the
data, numerical quantities have been replaced by a
single category symbol.

German ‘ English ‘

Sentences 4.1M
Running Words | 104M 104M
Vocabulary 717K 750K

For filtering, we use the 800K best sentences
from the whole training corpora, as this se-
lection performed best on the dev set among
100K,200K,400K,800K,1600K setups. Filtering
seems to mainly improve on the TER scores, BLEU
scores are virtually unchanged in comparison to
the baseline. LM+MI1 filtering improves further
on TER in comparison to LM-based filtering.

The weighted phrase extraction performs best
in our experiments, where the weights from the
LM+M1 scoring method are used. Improvements
in both BLEU and TER are achieved, with BLEU
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improvements ranging from +0.4% up-to +0.6%
and TER improvements from -0.9% and up-to -
1.1%.

As a final step, we added the English Gigaword
corpus to the LM (+GW). This resulted in further
improvements of the systems.

In addition, the system as described above was
tuned on newstest2009. Using this development
set results in worse translation quality.

Furthermore, we rescored the SCSS baseline
tuned on newstest2009 with a continuous space
language model (CSLM) as described in (Schwenk
et al., 2012). The CSLM was trained on the eu-
roparl and news-commentary corpora. For rescor-
ing, we used the newstest2011 set as tuning set and
re-optimized the parameters with MERT on 1000-
best lists. This results in an improvement of up to
0.8 points in BLEU compared to the baseline.

We compared the phrase-based setups with a
hierarchical translation system, which was aug-
mented with preference grammars, soft string-
to-dependency features, discriminative reordering
extensions, DWL, IDM, and discriminative re-



ordering extensions. The phrase table of the hier-
archical setup has been extracted from News Com-
mentary and Europarl parallel data only (not from
Common Crawl).

Finally, three setups were joined in a system
combination and we gained an improvement of up
to 0.5 points in BLEU compared to the best single
system.

4.4 Experimental Results English—German

The results for the English—German task are
shown in Table 6. While the LM-based filter-
ing led to almost no improvement over the base-
line, the LM+M1 filtering brought some improve-
ments in BLEU. In addition to the sentence fil-
tering, we tried to combine the translation model
trained on NC+EPPS with a TM trained on Com-
mon Crawl] using the ifelse combination (Mansour
and Ney, 2012). This combination scheme con-
catenates both TMs and assigns the probabilities
of the in-domain TM if it contains the phrase,
else it uses the probabilities of the out-of-domain
TM. Appling this method, we achieved further im-
provements.

5 Conclusion

For the participation in the WMT 2013 shared
translation task, RWTH experimented with both
phrase-based and hierarchical translation systems.
Several different techniques were evaluated and
yielded considerable improvements over the re-
spective baseline systems as well as over our last
year’s setups (Huck et al., 2012b). Among these
techniques are a hierarchical phrase reordering
model, translation model interpolation, domain
adaptation techniques, weighted phrase extraction,
a word class language model, a continuous space
language model and system combination.
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Abstract

This paper describes the University of
Cambridge submission to the FEighth
Workshop on Statistical Machine Transla-
tion. We report results for the Russian-
English translation task. We use mul-
tiple segmentations for the Russian in-
put language. We employ the Hadoop
framework to extract rules. The decoder
is HiFST, a hierarchical phrase-based de-
coder implemented using weighted finite-
state transducers. Lattices are rescored
with a higher order language model and
minimum Bayes-risk objective.

1 Introduction

This paper describes the University of Cam-
bridge system submission to the ACL 2013
Eighth Workshop on Statistical Machine Transla-
tion (WMT13). Our translation system is HiFST
(Iglesias et al., 2009), a hierarchical phrase-based
decoder that generates translation lattices directly.
Decoding is guided by a CYK parser based on a
synchronous context-free grammar induced from
automatic word alignments (Chiang, 2007). The
decoder is implemented with Weighted Finite
State Transducers (WFSTs) using standard op-
erations available in the OpenFst libraries (Al-
lauzen et al., 2007). The use of WFSTs allows
fast and efficient exploration of a vast translation
search space, avoiding search errors in decoding.
It also allows better integration with other steps
in our translation pipeline such as 5-gram lan-
guage model (LM) rescoring and lattice minimum
Bayes-risk (LMBR) decoding (Blackwood, 2010).

We participate in the Russian-English transla-
tion shared task in the Russian-English direction.
This is the first time we train and evaluate a sys-
tem on this language pair. This paper describes the
development of the system.
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The paper is organised as follows. Section 2
describes each step in the development of our sys-
tem for submission, from pre-processing to post-
processing and Section 3 presents and discusses
results.

2 System Development

2.1 Pre-processing

We use all the Russian-English parallel data avail-
able in the constraint track. We filter out non
Russian-English sentence pairs with the language-
detection library.? A sentence pair is filtered out if
the language detector detects a different language
with probability more than 0.999995 in either the
source or the target. This discards 78543 sen-
tence pairs. In addition, sentence pairs where the
source sentence has no Russian character, defined
by the Perl regular expression [\x0400-\x04ff],
are discarded. This further discards 19000 sen-
tence pairs.

The Russian side of the parallel corpus is to-
kenised with the Stanford CoreNLP toolkit.> The
Stanford CoreNLP tokenised text is additionally
segmented with Morfessor (Creutz and Lagus,
2007) and with the TreeTagger (Schmid, 1995).
In the latter case, we replace each token by its
stem followed by its part-of-speech. This of-
fers various segmentations that can be taken ad-
vantage of in hypothesis combination: CoreNLP,
CoreNLP+Morfessor and CoreNLP+TreeTagger.
The English side of the parallel corpus is tokenised
with a standard in-house tokeniser. Both sides of
the parallel corpus are then lowercased, so mixed
case is restored in post-processing.

Corpus statistics after filtering and for various
segmentations are summarised in Table 1.

2http://code.google.com/p/language-detection/
*http://nlp.stanford.edu/software/corenlp.shtml

Proceedings of the Eighth Workshop on Statistical Machine Translation, pages 200-205,
Sofia, Bulgaria, August 8-9, 2013 (©)2013 Association for Computational Linguistics



’ Lang ‘ Segmentation | # Tokens | # Types

RU CoreNLP 47.4M 1.2M
RU Morfessor 50.0M 0.4M
RU TreeTagger 47.4M 1.5M
EN Cambridge 50.4M 0.7M

Table 1: Russian-English parallel corpus statistics
for various segmentations.

2.2 Alignments

Parallel data is aligned using the MTTK toolkit
(Deng and Byrne, 2008). We train a word-
to-phrase HMM model with a maximum phrase
length of 4 in both source-to-target and target-to-
source directions. The final alignments are ob-
tained by taking the union of alignments obtained
in both directions.

2.3 Rule Extraction and Retrieval

A synchronous context-free grammar (Chiang,
2007) is extracted from the alignments. The con-
straints are set as in the original publication with
the following exceptions:

e phrase-based rule maximum number of
source words: 9

e maximum number of source element (termi-
nal or nonterminal): 5

e maximum span for nonterminals: 10

Maximum likelihood estimates for the transla-
tion probabilities are computed using MapReduce.
We use a custom Hadoop-based toolkit which im-
plements method 3 of Dyer et al. (2008). Once
computed, the model parameters are stored on disk
in the HFile format (Pino et al., 2012) for fast
querying. Rule extraction and feature computa-
tion takes about 2h30. The HFile format requires
data to be stored in a key-value structure. For the
key, we use shared source side of many rules. The
value is a list of tuples containing the possible tar-
gets for the source key and the associated param-
eters of the full rule. The query set of keys for
the test set is all possible source phrases (includ-
ing nonterminals) found in the test set.

During HFile querying we add other features.
These include IBM Model 1 (Brown et al., 1993)
lexical probabilities. Loading these models in
memory doesn’t fit well with the MapReduce
model so lexical features are computed for each
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test set rather than for the entire parallel corpus.
The model parameters are stored in a client-server
based architecture. The client process computes
the probability of the rule by querying the server
process for the Model 1 parameters. The server
process stores the model parameters completely
in memory so that parameters are served quickly.
This architecture allows for many low-memory
client processes across many machines.

2.4 Language Model

We used the KenLM toolkit (Heafield et al., 2013)
to estimate separate 4-gram LMs with Kneser-Ney
smoothing (Kneser and Ney, 1995), for each of the
corpora listed in Tables 2 (self-explanatory abbre-
viations). The component models were then in-
terpolated with the SRILM toolkit (Stolcke, 2002)
to form a single LM for use in first-pass trans-
lation decoding. The interpolation weights were
optimised for perplexity on the news-test2008,
newstest2009 and newssyscomb2009 development
sets. The weights reflect both the size of the com-
ponent models and the genre of the corpus the
component models are trained on, e.g. weights are
larger for larger corpora in the news genre.

Corpus # Tokens
EU + NC + UN + CzEng + Yx | 652.5M
Giga + CC + Wiki 654.1M
News Crawl 1594.3M
afp 874.1M
apw 1429.3M
cna + wpb 66.4M
Itw 326.5M
nyt 1744.3M
Xin 425.3M
Total 7766.9M

Table 2: Statistics for English monolingual cor-
pora.

2.5 Decoding

For translation, we use the HiFST decoder (Igle-
sias et al., 2009). HiFST is a hierarchical decoder
that builds target word lattices guided by a prob-
abilistic synchronous context-free grammar. As-
suming N to be the set of non-terminals and T the
set of terminals or words, then we can define the
grammar as a set R = {R} of rules R : N —
(v,a) I p, where N € N, v,a € {NUT}" and p
the rule score.



HiFST translates in three steps. The first step
is a variant of the CYK algorithm (Chappelier and
Rajman, 1998), in which we apply hypothesis re-
combination without pruning. Only the source
language sentence is parsed using the correspond-
ing source-side context-free grammar with rules
N — ~. Each cell in the CYK grid is specified
by a non-terminal symbol and position: (V, z,y),
spanning s= "' on the source sentence s1...s,.

For the second step, we use a recursive algo-
rithm to construct word lattices with all possi-
ble translations produced by the hierarchical rules.
Construction proceeds by traversing the CYK grid
along the back-pointers established in parsing. In
each cell (N, z,y) of the CYK grid, we build a
target language word lattice L(N, z, y) containing
every translation of s2TY 1 from every derivation
headed by N. For efficiency, this lattice can use
pointers to lattices on other cells of the grid.

In the third step, we apply the word-based LM
via standard WFST composition with failure tran-
sitions, and perform likelihood-based pruning (Al-
lauzen et al., 2007) based on the combined trans-
lation and LM scores.

We are using shallow-1 hierarchical gram-
mars (de Gispert et al., 2010) in our experiments.
This model is constrained enough that the decoder
can build exact search spaces, i.e. there is no prun-
ing in search that may lead to spurious undergen-
eration errors.

2.6 Features and Parameter Optimisation

We use the following standard features:
e language model

source-to-target and target-to-source transla-
tion scores

source-to-target and target-to-source lexical
scores

target word count
rule count
glue rule count

deletion rule count (each source unigram, ex-
cept for OOVs, is allowed to be deleted)

binary feature indicating whether a rule is ex-
tracted once, twice or more than twice (Ben-
der et al., 2007)
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No alignment information is used when com-
puting lexical scores as done in Equation (4) in
(Koehn et al., 2005). Instead, the source-to-target
lexical score is computed in Equation 1:

s(ru,en) =

R FE
11> pan(encfru,)

r=1e=0
ey
where ru are the terminals in the Russian side of
a rule, en are the terminals in the English side of
a rule, including the null word, R is the number
of Russian terminals, F is the number of English
terminals and pj; is the IBM Model 1 probability.

In addition to these standard features, we also
use provenance features (Chiang et al., 2011). The
parallel data is divided into four subcorpora: the
Common Crawl (CC) corpus, the News Commen-
tary (NC) corpus, the Yandex (Yx) corpus and the
Wiki Headlines (Wiki) corpus. For each of these
subcorpora, source-to-target and target-to-source
translation and lexical scores are computed. This
requires computing IBM Model 1 for each sub-
corpus. In total, there are 28 features, 12 standard
features and 16 provenance features.

When retrieving relevant rules for a particular
test set, various thresholds are applied, such as
number of targets per source or translation prob-
ability cutoffs. Thresholds involving source-to-
target translation scores are applied separately for
each provenance and the union of all surviving
rules for each provenance is kept. This strategy
gives slight gains over using thresholds only for
the general translation table.

1
(E+ 1)k

We use an implementation of lattice minimum
error rate training (Macherey et al., 2008) to op-
timise under the BLEU score (Papineni et al.,
2001) the feature weights with respect to the odd
sentences of the newstest2012 development set
(newstest2012.tune). The weights obtained match
our expectation, for example, the source-to-target
translation feature weight is higher for the NC cor-
pus than for other corpora since we are translating
news.

2.7 Lattice Rescoring

The HiFST decoder is set to directly generate
large translation lattices encoding many alterna-
tive translation hypotheses. These first-pass lat-
tices are rescored with second-pass higher-order
LMs prior to LMBR.



2.7.1 5-gram LM Lattice Rescoring

We build a sentence-specific, zero-cutoff stupid-
backoff (Brants et al., 2007) 5-gram LMs esti-
mated over the data described in section 2.4. Lat-
tices obtained by first-pass decoding are rescored
with this 5-gram LM (Blackwood, 2010).

2.7.2 LMBR Decoding

Minimum Bayes-risk decoding (Kumar and
Byrne, 2004) over the full evidence space of the 5-
gram rescored lattices is applied to select the trans-
lation hypothesis that maximises the conditional
expected gain under the linearised sentence-level
BLEU score (Tromble et al., 2008; Blackwood,
2010). The unigram precision p and average re-
call ratio r are set as described in Tromble et al.
(2008) using the newstest2012.tune development
set.

2.8 Hypothesis Combination

LMBR decoding (Tromble et al., 2008) can also be
used as an effective framework for multiple lattice
combination (Blackwood, 2010). We used LMBR
to combine translation lattices produced by sys-
tems trained on alternative segmentations.

2.9 Post-processing

Training data is lowercased, so we apply true-
casing as post-processing. We used the disam-
big tool provided by the SRILM toolkit (Stolcke,
2002). The word mapping model which contains
the probability of mapping a lower-cased word
to its mixed-cased form is trained on all avail-
able data. A Kneser-Ney smoothed 4-gram lan-
guage model is also trained on the following cor-
pora: NC, News Crawl, Wiki, afp, apw, cna, Itw,
nyt, wpb, xin, giga. In addition, several rules are
manually designed to improve upon the output of
the disambig tool. First, casing information from
pass-through translation rules (for OOV source
words) is used to modify the casing of the output.
For example, this allows us to get the correct cas-
ing for the word Bundesrechnungshof. Other rules
are post-editing rules which force some words
to their upper-case forms, such as euro — Euro.
Post-editing rules are developed based on high-
frequency errors on the newstest2012.tune devel-
opment set. These rules give an improvement of
0.2 mixed-cased NIST BLEU on the development
set.

Finally, the output is detokenised before sub-
mission and Cyrillic characters are transliterated.
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We assume for human judgment purposes that it
is better to have a non English word in Latin al-
phabet than in Cyrillic (e.g. uprazdnyayushchie);
sometimes, transliteration can also give a correct
output (e.g. Movember), especially in the case of
proper nouns.

3 Results and Discussion

Results are reported in Table 3. We use the inter-
nationalisation switch for the NIST BLEU scor-
ing script in order to properly lowercase the hy-
pothesis and the reference. This introduces a
slight discrepancy with official results going into
the English language. The newstest2012.test de-
velopment set consists of even sentences from
newstest2012.  We observe that the CoreNLP
system (A) outperforms the other two systems.
The CoreNLP+Morfessor system (B) has a much
smaller vocabulary but the model size is compa-
rable to the system A’s model size. Translation
did not benefit from source side morphological de-
composition. We also observe that the gain from
LMBR hypothesis combination (A+B+C) is mini-
mal. Unlike other language pairs, such as Arabic-
English (de Gispert et al., 2009), we have not yet
found any great advantage in multiple morpho-
logical decomposition or preprocessing analyses
of the source text. 5-gram and LMBR rescoring
give consistent improvements. S5-gram rescoring
improvements are very modest, probably because
the first pass 4-gram model is trained on the same
data. As noted, hypothesis combination using the
various segmentations gives consistent but modest
gains over each individual system.

Two systems were submitted to the evalua-
tion. System A+B+C achieved a mixed-cased
NIST BLEU score of 24.6, which was the top
score achieved under this measure. System A sys-
tem achieved a mixed-cased NIST BLEU score of
24.5, which was the second highest score.

4 Summary

We have successfully trained a Russian-English
system for the first time. Lessons learned include
that simple tokenisation is enough to process the
Russian side, very modest gains come from com-
bining alternative segmentations (it could also be
that the Morfessor segmentation should not be per-
formed after CoreNLP but directly on untokenised
data), and reordering between Russian and En-
glish is such that a shallow-1 grammar performs



Configuration newstest2012.tune | newstest2012.test | newstest2013
CoreNLP(A) 33.65 32.36 25.55
+5¢g 33.67 32.58 25.63
+5g+LMBR 33.98 32.89 25.89
CoreNLP+Morfessor(B) | 33.21 3191 25.33
+5¢g 33.28 32.12 25.44
+5g+LMBR 33.58 32.43 25.78
CoreNLP+TreeTagger(C) | 32.92 31.54 24.78
+5¢g 32.94 31.85 24.97
+5g+LMBR 33.12 32.12 25.05
A+B+C 34.32 33.13 26.00
Table 3: Translation results, shown in lowercase NIST BLEU. Bold results correspond to submitted
systems.
competitively. Peter F. Brown, Vincent J. Della Pietra, Stephen

Future work could include exploring alterna-
tive grammars, applying a 5-gram Kneser-Ney
smoothed language model directly in first-pass de-
coding, and combining alternative segmentations
that are more diverse from each other.
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Abstract

We describe improvements made over the
past year to Joshua, an open-source trans-
lation system for parsing-based machine
translation. The main contributions this
past year are significant improvements in
both speed and usability of the grammar
extraction and decoding steps. We have
also rewritten the decoder to use a sparse
feature representation, enabling training of
large numbers of features with discrimina-
tive training methods.

1 Introduction

Joshua is an open-source toolkit! for hierarchical
and syntax-based statistical machine translation
of human languages with synchronous context-
free grammars (SCFGs). The original version of
Joshua (Li et al., 2009) was a port (from Python to
Java) of the Hiero machine translation system in-
troduced by Chiang (2007). It was later extended
to support grammars with rich syntactic labels (Li
et al., 2010). Subsequent efforts produced Thrax,
the extensible Hadoop-based extraction tool for
synchronous context-free grammars (Weese et al.,
2011), later extended to support pivoting-based
paraphrase extraction (Ganitkevitch et al., 2012).
Joshua 5.0 continues our yearly update cycle.
The major components of Joshua 5.0 are:

§3.1 Sparse features. Joshua now supports an
easily-extensible sparse feature implementa-
tion, along with tuning methods (PRO and
kbMIRA) for efficiently setting the weights
on large feature vectors.

! joshua-decoder.org

§3.2 Significant speed increases. Joshua 5.0 is up
to six times faster than Joshua 4.0, and also
does well against hierarchical Moses, where
end-to-end decoding (including model load-
ing) of WMT test sets is as much as three
times faster.

§3.3 Thrax 2.0. Our reengineered Hadoop-based
grammar extractor, Thrax, is up to 300%
faster while using significantly less interme-
diate disk space.

§3.4 Many other features. Joshua now includes a
server mode with fair round-robin scheduling
among and within requests, a bundler for dis-
tributing trained models, improvements to the
Joshua pipeline (for managing end-to-end ex-
periments), and better documentation.

2 Overview

Joshua is an end-to-end statistical machine trans-
lation toolkit. In addition to the decoder com-
ponent (which performs the actual translation), it
includes the infrastructure needed to prepare and
align training data, build translation and language
models, and tune and evaluate them.

This section provides a brief overview of the
contents and abilities of this toolkit. More infor-
mation can be found in the online documentation
(joshua—decoder.org/5.0/).

2.1 The Pipeline: Gluing it all together

The Joshua pipeline ties together all the infrastruc-
ture needed to train and evaluate machine transla-
tion systems for research or industrial purposes.
Once data has been segmented into parallel train-
ing, development, and test sets, a single invocation
of the pipeline script is enough to invoke this entire
infrastructure from beginning to end. Each step is
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broken down into smaller steps (e.g., tokenizing a
file) whose dependencies are cached with SHA1
sums. This allows a reinvoked pipeline to reliably
skip earlier steps that do not need to be recom-
puted, solving a common headache in the research
and development cycle.

The Joshua pipeline is similar to other “ex-
periment management systems” such as Moses’
Experiment Management System (EMS), a much
more general, highly-customizable tool that al-
lows the specification and parallel execution of
steps in arbitrary acyclic dependency graphs
(much like the UNIX make tool, but written with
machine translation in mind). Joshua’s pipeline
is more limited in that the basic pipeline skeleton
is hard-coded, but reduced versatility covers many
standard use cases and is arguably easier to use.

The pipeline is parameterized in many ways,
and all the options below are selectable with
command-line switches. Pipeline documentation
is available online.

2.2 Data preparation, alignment, and model
building

Data preparation involves data normalization (e.g.,
collapsing certain punctuation symbols) and tok-
enization (with the Penn treebank or user-specified
tokenizer). Alignment with GIZA++ (Och and
Ney, 2000) and the Berkeley aligner (Liang et al.,
2006b) are supported.

Joshua’s builtin grammar extractor, Thrax, is
a Hadoop-based extraction implementation that
scales easily to large datasets (Ganitkevitch et al.,
2013). It supports extraction of both Hiero (Chi-
ang, 2005) and SAMT grammars (Zollmann and
Venugopal, 2006) with extraction heuristics eas-
ily specified via a flexible configuration file. The
pipeline also supports GHKM grammar extraction
(Galley et al., 2006) using the extractors available
from Michel Galley? or Moses.

SAMT and GHKM grammar extraction require
a parse tree, which are produced using the Berke-
ley parser (Petrov et al., 2006), or can be done out-
side the pipeline and supplied as an argument.

2.3 Decoding

The Joshua decoder is an implementation of the
CKY+ algorithm (Chappelier et al., 1998), which
generalizes CKY by removing the requirement

nlp.stanford.edu/~mgalley/software/
stanford-ghkm-latest.tar.gz
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that the grammar first be converted to Chom-
sky Normal Form, thereby avoiding the complex-
ities of explicit binarization schemes (Zhang et
al., 2006; DeNero et al., 2009). CKY+ main-
tains cubic-time parsing complexity (in the sen-
tence length) with Earley-style implicit binariza-
tion of rules. Joshua permits arbitrary SCFGs, im-
posing no limitation on the rank or form of gram-
mar rules.

Parsing complexity is still exponential in the
scope of the grammar,®> so grammar filtering re-
mains important. The default Thrax settings ex-
tract only grammars with rank 2, and the pipeline
implements scope-3 filtering (Hopkins and Lang-
mead, 2010) when filtering grammars to test sets
(for GHKM).

Joshua uses cube pruning (Chiang, 2007) with
a default pop limit of 100 to efficiently explore the
search space. Other decoder options are too nu-
merous to mention here, but are documented on-
line.

2.4 Tuning and testing

The pipeline allows the specification (and optional
linear interpolation) of an arbitrary number of lan-
guage models. In addition, it builds an interpo-
lated Kneser-Ney language model on the target
side of the training data using KenLM (Heafield,
2011; Heafield et al., 2013), BerkeleyLM (Pauls
and Klein, 2011) or SRILM (Stolcke, 2002).

Joshua ships with MERT (Och, 2003) and PRO
implementations. Tuning with k-best batch MIRA
(Cherry and Foster, 2012) is also supported via
callouts to Moses.

3 What’s New in Joshua 5.0

3.1 Sparse features

Until a few years ago, machine translation systems
were for the most part limited in the number of fea-
tures they could employ, since the line-based op-
timization method, MERT (Och, 2003), was not
able to efficiently search over more than tens of
feature weights. The introduction of discrimina-
tive tuning methods for machine translation (Liang
et al., 2006a; Tillmann and Zhang, 2006; Chiang
et al., 2008; Hopkins and May, 2011) has made
it possible to tune large numbers of features in
statistical machine translation systems, and open-

>Roughly, the number of consecutive nonterminals in a
rule (Hopkins and Langmead, 2010).



source implementations such as Cherry and Foster
(2012) have made it easy.

Joshua 5.0 has moved to a sparse feature rep-
resentation internally. First, to clarify terminol-
ogy, a feature as implemented in the decoder is
actually a template that can introduce any number
of actual features (in the standard machine learn-
ing sense). We will use the term feature function
for these templates and feature for the individual,
traditional features that are induced by these tem-
plates. For example, the (typically dense) features
stored with the grammar on disk are each separate
features contributed by the PHRASEMODEL fea-
ture function template. The LANGUAGEMODEL
template contributes a single feature value for each
language model that was loaded.

For efficiency, Joshua does not store the en-
tire feature vector during decoding. Instead, hy-
pergraph nodes maintain only the best cumulative
score of each incoming hyperedge, and the edges
themselves retain only the hyperedge delta (the in-
ner product of the weight vector and features in-
curred by that edge). After decoding, the feature
vector for each edge can be recomputed and ex-
plicitly represented if that information is required
by the decoder (for example, during tuning).

This functionality is implemented via the fol-
lowing feature function interface, presented here
in simplified pseudocode:

interface FeatureFunction:
apply (context, accumulator)

The context comprises fixed pieces of the input
sentence and hypergraph:

e the hypergraph edge (which represents the
SCFG rule and sequence of tail nodes)

e the complete source sentence
e the input span

The accumulator object’s job is to accumulate
feature (name,value) pairs fired by a feature func-
tion during the application of a rule, via another
interface:

interface Accumulator:

add (feature_name, value)

The accumulator generalization* permits the use
of a single feature-gathering function for two ac-
cumulator objects: the first, used during decoding,
maintains only a weighted sum, and the second,

“Due to Kenneth Heafield.
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used (if needed) during k-best extraction, holds
onto the entire sparse feature vector.

For tuning large sets of features, Joshua sup-
ports both PRO (Hopkins and May, 2011), an in-
house version introduced with Joshua 4.0, and k-
best batch MIRA (Cherry and Foster, 2012), im-
plemented via calls to code provided by Moses.

3.2 Performance improvements

We introduced many performance improvements,
replacing code designed to get the job done under
research timeline constraints with more efficient
alternatives, including smarter handling of locking
among threads, more efficient (non string-based)
computation of dynamic programming state, and
replacement of fixed class-based array structures
with fixed-size literals.

We used the following experimental setup to
compare Joshua 4.0 and 5.0: We extracted a large
German-English grammar from all sentences with
no more than 50 words per side from Europarl v.7
(Koehn, 2005), News Commentary, and the Com-
mon Crawl corpora using Thrax default settings.
After filtering against our test set (newstest2012),
this grammar contained 70 million rules. We then
trained three language models on (1) the target
side of our grammar training data, (2) English
Gigaword, and (3) the monolingual English data
released for WMT13. We tuned a system using
kbMIRA and decoded using KenLM (Heafield,
2011). Decoding was performed on 64-core 2.1
GHz AMD Opteron processors with 256 GB of
available memory.

Figure 1 plots the end-to-end runtime’ as a
function of the number of threads. Each point in
the graph is the minimum of at least fifteen runs
computed at different times over a period of a few
days. The main point of comparison, between
Joshua 4.0 and 5.0, shows that the current version
is up to 500% faster than it was last year, espe-
cially in multithreaded situations.

For further comparison, we took these models,
converted them to hierarchical Moses format, and
then decoded with the latest version.® We com-
piled Moses with the recommended optimization
settings’ and used the in-memory (SCFG) gram-

%i.e., including model loading time and grammar sorting

The latest version available on Github as of June 7, 2013

"With tcmalloc and the following compile flags:
—-—-max-factors=1 --kenlm-max-order=5
debug-symbols=o0ff
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Figure 1: End-to-end runtime as a function of the
number of threads. Each data point is the mini-
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Figure 2: Decoding time alone.

mar format. BLEU scores were similar.® In this
end-to-end setting, Joshua is about 200% faster
than Moses at high thread counts (Figure 1).

Figure 2 furthers the Moses and Joshua com-
parison by plotting only decoding time (subtract-
ing out model loading and sorting times). Moses’
decoding speed is 2—3 times faster than Joshua’s,
suggesting that the end-to-end gains in Figure 1
are due to more efficient grammar loading.

3.3 Thrax2.0

The Thrax module of our toolkit has undergone
a similar overhaul. The rule extraction code was

822.88 (Moses), 22.99 (Joshua 4), and 23.23 (Joshua 5).

” ; amod
holding on to the Iong-'term investment
VBG IN TO DT JJ NN

lex-R-investment  lex-L-on-to
pos-L-IN-TO  pos-L-TO lex-L-to
dep-det-R-investment pos-R-NN
dep-amod-R-investment
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-

1 (the Iong-term) =

Figure 3: Here, position-aware lexical and part-of-
speech n-gram features, labeled dependency links,
and features reflecting the phrase’s CCG-style la-
bel NP/NN are included in the context vector.

rewritten to be easier to understand and extend, al-
lowing, for instance, for easy inclusion of alterna-
tive nonterminal labeling strategies.

We optimized the data representation used for
the underlying map-reduce framework towards
greater compactness and speed, resulting in a
300% increase in extraction speed and an equiv-
alent reduction in disk I/O (Table 1). These
gains enable us to extract a syntactically labeled
German-English SAMT-style translation grammar
from a bitext of over 4 million sentence pairs in
just over three hours. Furthermore, Thrax 2.0 is
capable of scaling to very large data sets, like
the composite bitext used in the extraction of the
paraphrase collection PPDB (Ganitkevitch et al.,
2013), which counted 100 million sentence pairs
and over 2 billion words on the English side.

Furthermore, Thrax 2.0 contains a module fo-
cused on the extraction of compact distributional
signatures over large datasets. This distribu-
tional mode collects contextual features for n-
gram phrases, such as words occurring in a win-
dow around the phrase, as well as dependency-
based and syntactic features. Figure 3 illustrates
the feature space. We then compute a bit signature
from the resulting feature vector via a randomized
locality-sensitive hashing projection. This yields a
compact representation of a phrase’s typical con-
text. To perform this projection Thrax relies on
the Jerboa toolkit (Van Durme, 2012). As part of
the PPDB effort, Thrax has been used to extract
rich distributional signatures for 175 million 1-
to-4-gram phrases from the Annotated Gigaword
corpus (Napoles et al., 2012), a parsed and pro-
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Cs-En Fr-En De-En Es-En
Rules 112M 357TM 202M 380M
Space ‘ Time Space ‘ Time Space ‘ Time Space ‘ Time
Joshua 4.0 | 120GB | 112 min | 364GB | 369 min | 211GB | 203 min | 413GB | 397 min
Joshua5.0 | 31GB | 25min | 10IGB | 81 min | 56GB | 44 min | 108GB | 84 min

Difference | -74.1% | -77.7% | -12.3% | -78.0% | -73.5% | -78.3% | -73.8% | -78.8%

Table 1: Comparing Hadoop’s intermediate disk space use and extraction time on a selection of Europarl
v.7 Hiero grammar extractions. Disk space was measured at its maximum, at the input of Thrax’s final
grammar aggregation stage. Runtime was measured on our Hadoop cluster with a capacity of 52 mappers
and 26 reducers. On average Thrax 2.0, bundled with Joshua 5.0, is up to 300% faster and more compact.

cessed version of the English Gigaword (Graff et
al., 2003).

Thrax is distributed with Joshua and is also
available as a separate download.’

3.4 Other features

Joshua 5.0 also includes many features designed
to increase its usability. These include:

e A TCP/IP server architecture, designed to
handle multiple sets of translation requests
while ensuring fairness in thread assignment
both across and within these connections.

o Intelligent selection of translation and lan-
guage model training data using cross-
entropy difference to rank training candidates
(Moore and Lewis, 2010; Axelrod et al.,
2011) (described in detail in Orland (2013)).

e A bundler for easy packaging of trained mod-
els with all of its dependencies.

e A year’s worth of improvements to the
Joshua pipeline, including many new features
and supported options, and increased robust-
ness to error.

e Extended documentation.

4 WMT Submissions

We submitted a constrained entry for all tracks ex-
cept English-Czech (nine in total). Our systems
were constructed in a straightforward fashion and
without any language-specific adaptations using
the Joshua pipeline. For each language pair, we
trained a Hiero system on all sentences with no
more than fifty words per side in the Europarl,
News Commentary, and Common Crawl corpora.

9github .com/joshua-decoder/thrax
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We built two interpolated Kneser-Ney language
models: one from the monolingual News Crawl
corpora (2007-2012), and another from the tar-
get side of the training data. For systems translat-
ing into English, we added a third language model
built on Gigaword. Language models were com-
bined linearly into a single language model using
interpolation weights from the tuning data (new-
stest2011). We tuned our systems with kbMIRA.
For truecasing, we used a monolingual translation
system built on the training data, and finally deto-
kenized with simple heuristics.

5 Summary

The 5.0 release of Joshua is the result of a signif-
icant year-long research, engineering, and usabil-
ity effort that we hope will be of service to the
research community. User-friendly packages of
Joshua are available from joshua-decoder.
org, while developers are encouraged to partic-
ipate via github.com/joshua-decoder/
joshua. Mailing lists, linked from the main
Joshua page, are available for both.
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Abstract

This paper presents the experiments con-
ducted by the Machine Translation group
at DCU and Prompsit Language Engineer-
ing for the WMT 13 translation task. Three
language pairs are considered: Spanish-
English and French-English in both direc-
tions and German-English in that direc-
tion. For the Spanish-English pair, the use
of linguistic information to select paral-
lel data is investigated. For the French-
English pair, the usefulness of the small in-
domain parallel corpus is evaluated, com-
pared to an out-of-domain parallel data
sub-sampling method. Finally, for the
German-English system, we describe our
work in addressing the long distance re-
ordering problem and a system combina-
tion strategy.

1 Introduction

This paper presents the experiments conducted
by the Machine Translation group at DCU! and
Prompsit Language Engineering? for the WMT13
translation task on three language pairs: Spanish-
English, French-English and German-English.
For these language pairs, the language and trans-
lation models are built using different approaches
and datasets, thus presented in this paper in sepa-
rate sections.

In Section 2, the systems built for the Spanish-
English pair in both directions are described. We
investigate the use of linguistic information to se-
lect parallel data. In Section 3, we present the sys-
tems built for the French-English pair in both di-

'http://www.nclt.dcu.ie/mt/
http://www.prompsit .com/
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rections. The usefulness of the small in-domain
parallel corpus is evaluated, compared to an out-
of-domain parallel data sub-sampling method. In
Section 4, for the German-English system, aiming
at exploring the long distance reordering problem,
we first describe our efforts in a dependency tree-
to-string approach, before combining different hi-
erarchical systems with a phrase-based system and
show a significant improvement over three base-
line systems.

2 Spanish-English

This section describes the experimental setup for
the Spanish-English language pair.

2.1 Setting

Our setup uses the MOSES toolkit, version
1.0 (Koehn et al., 2007). We use a pipeline
with the phrase-based decoder with standard pa-
rameters, unless noted otherwise. The decoder
uses cube pruning (-cube-pruning-pop-limit 2000
-s 2000), MBR (-mbr-size 800 -mbr-scale 1) and
monotone at punctuation reordering.

Individual language models (LMs), 5-gram and
smoothed using a simplified version of the im-
proved Kneser-Ney method (Chen and Goodman,
1996), are built for each monolingual corpus using
IRSTLM 5.80.01 (Federico et al., 2008). These
LMs are then interpolated with IRSTLM using
the test set of WMT11 as the development set. Fi-
nally, the interpolated LMs are merged into one
LM preserving the weights using SRILM (Stol-
cke, 2002).

We use all the parallel corpora available for
this language pair: Europarl (EU), News Com-
mentary (NC), United Nations (UN) and Common
Crawl (CC). Regarding monolingual corpora, we
use the freely available monolingual corpora (Eu-
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roparl, News Commentary, News 2007-2012) as
well as the target side of several parallel corpora:
Common Crawl, United Nations and 10° French—
English corpus (only for English as target lan-
guage). Both the parallel and monolingual data
are tokenised and truecased using scripts from the
MOSES toolkit.

2.2 Data selection

The main contribution in our participation regards
the selection of parallel data. We follow the
perplexity-based approach to filter monolingual
data (Moore and Lewis, 2010) extended to filter
parallel data (Axelrod et al., 2011). In our case, we
do not measure perplexity only on word forms but
also using different types of linguistic information
(lemmas and named entities) (Toral, 2013).

We build LMs for the source and target sides
of the domain-specific corpus (in our case NC)
and for a random subset of the non-domain-
specific corpus (EU, UN and CC) of the same size
(number of sentences) of the domain-specific cor-
pus. Each parallel sentence s in the non-domain-
specific corpus is then scored according to equa-
tion 1 where PPjq(s) is the perplexity of s in
the source side according to the domain-specific
LM and PPpg(s) is the perplexity of s in the
source side according to the non-domain-specific
LM. PPry(s) and PPptl(s) contain the corre-
sponding values for the target side.

% « (PPysi(s) — PPosi(s))
L(PP(s) — PPoti(s) (1)

score(s) =

Table 1 shows the results obtained using four
models: word forms (forms), forms and named en-
tities (forms+nes), lemmas (lem) and lemmas and
named entities (lem+nes). Details on these meth-
ods can be found in Toral (2013).

For each corpus we selected two subsets (see in
bold in Table 1), the one for which one method
obtained the best perplexity (top 5% of EU us-
ing forms, 2% of UN using lemmas and 50% of
CC using forms and named entities) and a big-
ger one used to compare the performance in SMT
(top 14% of EU using lemmas and named entities
(lem+nes), top 12% of UN using forms and named
entities and the whole CC). These subsets are used
as training data in our systems.

As we can see in the table, the use of lin-
guistic information allows to obtain subsets with
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lower perplexity than using solely word forms, e.g.
1057.7 (lem+nes) versus 1104.8 (forms) for 14%
of EU. The only exception to this is the subset that
comprises the top 5% of EU, where perplexity us-
ing word forms (957.9) is the lowest one.

corpus size  forms forms+nes lem lem+nes
EU 5% 9579 9872 9743 1005.5
14% 1104.8 1058.7 1111.6 1057.7

UN 2% 877.1 969.6  866.6 962.2
12%  1203.2 11309 1183.8 1131.6

cC 50% 573.0 5472 5745 546.4
100% 560.1 560.1 560.1 560.1

Table 1: Perplexities in data selection

2.3 Results

Table 2 presents the results obtained. Note that
these were obtained during development and thus
the systems are tuned on WMT’s 2011 test set and
tested on WMT’s 2012 test set.

All the systems share the same LM. The first
system (no selection) is trained with the whole NC
and EU. The second (small) and third (big) sys-
tems use as training data the whole NC and sub-
sets of EU (5% and 14%, respectively), UN (2%
and 12%, respectively) and CC (50% and 100%,
respectively), as shown in Table 1.

System #sent. BLEU BLEUcased
no selection 2.1M  31.99 30.96
small 1.4M  33.12 32.05
big 3.8M 3349 32.43

Table 2: Number of sentences and BLEU scores
obtained on the WMT12 test set for the different
systems on the EN-ES translation task.

The advantage of data selection is clear. The
second system, although smaller in size compared
to the first (1.4M sentence pairs versus 2.1M),
takes its training from a more varied set of data,
and its performance is over one absolute BLEU
point higher.

When comparing the two systems that rely on
data selection, one might expect the one that uses
data with lower perplexity (small) to perform bet-
ter. However, this is not the case, the third system
(big) performing around half an absolute BLEU
point higher than the second (small). This hints
at the fact that perplexity alone is not an optimal
metric for data selection, but size should also be
considered. Note that the size of system 3’s phrase
table is more than double that of system 2.



3 French-English

This section describe the particularities of the MT
systems built for the French-English language pair
in both directions. The goal of the experimen-
tal setup presented here is to evaluate the gain of
adding small in-domain parallel data into a trans-
lation system built on a sub-sample of the out-of-
domain parallel data.

3.1 Data Pre-processing

All the available parallel and monolingual data for
the French-English language pair, including the
last versions of LDC Gigaword corpora, are nor-
malised and special characters are escaped using
the scripts provided by the shared task organisers.
Then, the corpora are tokenised and for each lan-
guage a true-case model is built on the concatena-
tion of all the data after removing duplicated sen-
tences, using the scripts included in MOSES dis-
tribution. The corpora are then true-cased before
being used to build the language and the transla-
tion models.

3.2 Language Model

To build our final language models, we first build
LMs on each corpus individually. All the monolin-
gual corpora are considered, as well as the source
or target side of the parallel corpora if the data
are not already in the monolingual data. We build
modified Kneser-Ney discounted 5-gram LMs us-
ing the SRILM toolkit for each corpus and sepa-
rate the LMs in three groups: one in-domain (con-
taining news-commentary and news crawl cor-
pora), another out-of-domain (containing Com-
mon Crawl, Europarl, UN and 10° corpora), and
the last one with LDC Gigaword LMs (the data
are kept separated by news source, as distributed
by LDC). The LMs in each group are linearly in-
terpolated based on their perplexities obtained on
the concatenation of all the development sets from
previous WMT translation tasks. The same devel-
opment corpus is used to linearly interpolate the
in-domain and LDC LMs. We finally obtain two
LMs, one containing out-of-domain data which is
only used to filter parallel data, and another one
containing in-domain data which is used to filter
parallel data, tuning the translation model weights
and at decoding time. Details about the number of
n-grams in each language model are presented in
Table 3.
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French English
out in out in
l-gram 4.0 33 4.2 10.7
2-gram 43.0 440 482 1619
3-gram 542 61.8 634 256.8
4-gram  99.7 119.2 103.2 502.7
5-gram 1364 165.0 1254 680.7

Table 3: Number of n-grams (in millions) for the
in-domain and out-of-domain LMs in French and
English.

3.3 Translation Model

Two phrase-based translation models are built
using MGiza++ (Gao and Vogel, 2008) and
MOSES3, with the default alignment heuris-
tic (grow-diag-final) and bidirectional reordering
models. The first translation model is in-domain,
built with the news-commentary corpus. The sec-
ond one is built on a sample of all the other paral-
lel corpora available for the French-English lan-
guage pair. Both corpora are cleaned using the
script provided with Moses, keeping the sentences
with a length below 80 words. For the second
translation model, we used the modified Moore-
Lewis method based on the four LMs (two per
language) presented in section 3.2. The sum of
the source and target perplexity difference is com-
puted for each sentence pair of the corpus. We set
an acceptance threshold to keep a limited amount
of sentence pairs. The kept sample finally con-
tains ~ 3.7M sentence pairs to train the translation
model. Statistics about this data sample and the
news-commentary corpus are presented in Table 4.
The test set of WMT12 translation task is used to
optimise the weights for the two translation mod-
els with the MERT algorithm. For this tuning step,
the limit of target phrases loaded per source phrase
is set to 50. We also use a reordering constraint
around punctuation marks. The same parameters
are used during the decoding of the test set.

news-commentary sample
tokens FR 4. 7™M 98.6M
tokens EN 4.0M 88.0M
sentences 156.5k 3. 7M

Table 4: Statistics about the two parallel corpora,
after pre-processing, used to train the translation
models.

*Moses version 1.0



3.4 Results

The two translation models presented in Sec-
tion 3.3 allow us to design three translation sys-
tems: one using only the in-domain model, one
using only the model built on the sub-sample of
the out-of-domain data, and one using both mod-
els by giving two decoding paths to Moses. For
this latter system, the MERT algorithm is also used
to optimise the translation model weights. Results
obtained on the WMT13 test set, measured with
the official automatic metrics, are presented in Ta-
ble 5. The submitted system is the one built on
the sub-sample of the out-of-domain parallel data.
This system was chosen during the tuning step be-
cause it reached the highest BLEU scores on the
development corpus, slightly above the combina-
tion of the two translation models.

News-Com. Sample Comb.
FR-EN
BLEUdev 26.9 30.0 29.9
BLEU 27.0 30.8 30.4
BLEUcased 26.1 29.8 29.3
TER 62.9 58.9 59.3
EN-FR
BLEUdev 27.1 29.7 29.6
BLEU 26.6 29.6 294
BLEUcased 25.8 28.7 28.5
TER 65.1 61.8 62.0

Table 5: BLEU and TER scores obtained by our
systems. BLEUdev is the score obtained on the
development set given by MERT, while BLEU,
BLEUcased and TER are obtained on the test set
given by the submission website.

For both FR-EN and EN-FR tasks, the best re-
sults are reached by the system built on the sub-
sample taken from the out-of-domain parallel data.
Using only News-Commentary to build a trans-
lation model leads to acceptable BLEU scores,
with regards to the size of the training corpus.
When the sub-sample of the out-of-domain par-
allel data is used to build the translation model,
adding a model built on News-Commentary does
not improve the results. The difference between
these two systems in terms of BLEU score (both
cased sensitive and insensitive) indicates that sim-
ilar results can be achieved, however it appears
that the amount of sentence pairs in the sample
is large enough to limit the impact of the small
in-domain corpus parallel. Further experiments
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are still required to determine the minimum sam-
ple size needed to outperform both the in-domain
system and the combination of the two translation
models.

4 German-English

In this section we describe our work on German
to English subtask. Firstly we describe the De-
pendency tree to string method which we tried but
unfortunately failed due to short of time. Secondly
we discuss the baseline system and the preprocess-
ing we performed. Thirdly a system combination
method is described.

4.1 Dependency Tree to String Method

Our original plan was to address the long distance
reordering problem in German-English transla-
tion. We use Xie’s Dependency tree to string
method(Xie et al., 2011) which obtains good re-
sults on Chinese to English translation and ex-
hibits good performance at long distance reorder-
ing as our decoder.

We use Stanford dependency parser* to parse
the English side of the data and Mate-Tool® for
the German side. The first set of experiments did
not lead to encouraging results and due to insuffi-
cient time, we decide to switch to other decoders,
based on statistical phrase-based and hierarchical
approaches.

4.2 Baseline System

In this section we describe the three baseline sys-
tem we used as well as the preprocessing technolo-
gies and the experiments set up.

4.2.1 Preprocessing and Corpus

We first use the normalisation scripts provided by
WMT2013 to normalise both English and Ger-
man side. Then we escape special characters on
both sides. We use Stanford tokeniser for English
and OpenNLP tokeniser® for German. Then we
train a true-case model using with Europarl and
News-Commentary corpora, and true-case all the
corpus we used. The parallel corpus is filtered
with the standard cleaning scripts provided with

*http://nlp.stanford.edu/software/
lex—-parser.shtml

Shttp://code.google.com/p/mate-tools/

*http://opennlp.sourceforge.net/
models-1.5/



MOSES. We split the German compound words
with jWordSplitter’.

All the corpus provided for the shared task are
used for training our translation models, while
WMT2011 and WMT2012 test sets are used to
tune the models parameters. For the LM, we
use all the monolingual data provided, including
LDC Gigaword. Each LM is trained with the
SRILM toolkit, before interpolating all the LMs
according to their weights obtained by minimiz-
ing the perplexity on the tuning set (WMT2011
and WMT2012 test sets). As SRILM can only
interpolate 10 LMs, we first interpolate a LM with
Europarl, News Commentary, News Crawl (2007-
2012, each year individually, 6 separate parts),
then we interpolate a new LM with this interpo-
lated LM and LDC Gigawords (we kept the Gi-
gaword subsets separated according to the news
sources as distributed by LDC, which leads to 7
corpus).

4.2.2 Three baseline systems

We use the data set up described by the former
subsection and build up three baseline systems,
namely PB MOSES (phrase-based), Hiero MOSES
(hierarchical) and CDEC (Dyer et al., 2010). The
motivation of choosing Hierarchical Models is to
address the German-English’s long reorder prob-
lem. We want to test the performance of CDEC and
Hiero MOSES and choose the best. PB MOSES is
used as our benchmark. The three results obtained
on the development and test sets for the three base-
line system and the system combination are shown
in the Table 6.

Development  Test
PB MOSES 22.0 24.0
Hiero MOSES 22.1 244
CDEC 22.5 24.4
Combination 23.0 24.8

Table 6: BLEU scores obtained by our systems on
the development and test sets for the German to
English translation task.

From the Table 6 we can see that on develop-
ment set, CDEC performs the best, and its much
better than MOSES’s two decoder, but on test
set, Hiero MOSES and CDEC performs as well as
each other, and they both performs better than PB
Model.

"nttp://www.danielnaber.de/
jwordsplitter/
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4.3 System Combination

We also use a word-level combination strat-
egy (Rosti et al., 2007) to combine the three trans-
lation hypotheses. To combine these systems, we
first use the Minimum Bayes-Risk (MBR) (Kumar
and Byrne, 2004) decoder to obtain the 5 best hy-
pothesis as the alignment reference for the Con-
fusion Network (CN) (Mangu et al., 2000). We
then use IHMM (He et al., 2008) to choose the
backbone build the CN and finally search for and
generate the best translation.

We tune the system parameters on development
set with Simple-Simplex algorithm. The param-
eters for system weights are set equal. Other pa-
rameters like language model, length penalty and
combination coefficient are chosen when we see a
good improvement on development set.

5 Conclusion

This paper presented a set of experiments con-
ducted on Spanish-English, French-English and
German-English language pairs. For the Spanish-
English pair, we have explored the use of linguistic
information to select parallel data and use this as
the training for SMT. However, the comparison of
the performance obtained using this method and
the purely statistical one (i.e. perplexity on word
forms) remains to be carried out. Another open
question regards the optimal size of the selected
data. As we have seen, minimum perplexity alone
cannot be considered an optimal metric since us-
ing a larger set, even if it has higher perplexity,
allowed us to obtain notably higher BLEU scores.
The question is then how to decide the optimal size
of parallel data to select.

For the French-English language pair, we inves-
tigated the usefulness of the small in-domain par-
allel data compared to out-of-domain parallel data
sub-sampling. We show that with a sample con-
taining ~ 3.7M sentence pairs extracted from the
out-of-domain parallel data, it is not necessary to
use the small domain-specific parallel data. Fur-
ther experiments are still required to determine the
minimum sample size needed to outperform both
the in-domain system and the combination of the
two translation models.

Finally, for the German-English language pair,
we presents our exploitation of long ordering
problem. We compared two hierarchical models
with one phrase-based model, and we also use a
system combination strategy to further improve



the translation systems performance.

Acknowledgments

The research leading to these results has re-
ceived funding from the European Union Seventh
Framework Programme FP7/2007-2013 under
grant agreement PIAP-GA-2012-324414 (Abu-
MaTran) and through Science Foundation Ireland
as part of the CNGL (grant 07/CE/11142).

References

Amittai Axelrod, Xiaodong He, and Jianfeng Gao.
2011. Domain adaptation via pseudo in-domain
data selection. In Proceedings of the Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP ’11, pages 355-362, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Stanley F. Chen and Joshua Goodman. 1996. An em-
pirical study of smoothing techniques for language
modeling. In Proceedings of the 34th annual meet-
ing on Association for Computational Linguistics,
ACL ’96, pages 310-318, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Chris Dyer, Jonathan Weese, Hendra Setiawan, Adam
Lopez, Ferhan Ture, Vladimir Eidelman, Juri Gan-
itkevitch, Phil Blunsom, and Philip Resnik. 2010.
cdec: A decoder, alignment, and learning framework
for finite-state and context-free translation models.
In Proceedings of the ACL 2010 System Demonstra-
tions, pages 7—12. Association for Computational
Linguistics.

Marcello Federico, Nicola Bertoldi, and Mauro Cet-
tolo. 2008. IRSTLM: an open source toolkit for
handling large scale language models. In INTER-
SPEECH, pages 1618—-1621. ISCA.

Qin Gao and Stephan Vogel. 2008. Parallel implemen-
tations of word alignment tool. In Software Engi-
neering, Testing, and Quality Assurance for Natural
Language Processing, pages 49-57. Association for
Computational Linguistics.

Xiaodong He, Mei Yang, Jianfeng Gao, Patrick
Nguyen, and Robert Moore. 2008. Indirect-hmm-
based hypothesis alignment for combining outputs
from machine translation systems. In Proceedings
of the Conference on Empirical Methods in Natu-
ral Language Processing, pages 98—107. Associa-
tion for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondfej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the ACL
on Interactive Poster and Demonstration Sessions,

218

ACL °07, pages 177-180, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Shankar Kumar and William Byrne. 2004. Minimum
bayes-risk decoding for statistical machine transla-
tion. In Proceedings of HLT-NAACL, pages 169-
176.

Lidia Mangu, Eric Brill, and Andreas Stolcke. 2000.
Finding consensus in speech recognition: word er-
ror minimization and other applications of confu-
sion networks. Computer Speech & Language,
14(4):373-400.

Robert C. Moore and William Lewis. 2010. Intelli-
gent selection of language model training data. In
Proceedings of the ACL 2010 Conference Short Pa-
pers, ACLShort *10, pages 220-224, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Antti-Veikko I Rosti, Necip Fazil Ayan, Bing Xiang,
Spyros Matsoukas, Richard Schwartz, and Bonnie
Dorr. 2007. Combining outputs from multiple
machine translation systems. In Human Language
Technologies 2007: The Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 228-235.

Andreas Stolcke. 2002. Srilm - an extensible lan-
guage modeling toolkit. In John H. L. Hansen and
Bryan L. Pellom, editors, INTERSPEECH. ISCA.

Antonio Toral. 2013. Hybrid Selection of Language
Model Training Data Using Linguistic Information
and Perplexity. In Proceedings of the Second Work-
shop on Hybrid Approaches to Machine Translation
(HyTra), ACL 2013.

Jun Xie, Haitao Mi, and Qun Liu. 2011. A novel
dependency-to-string model for statistical machine
translation. In Proceedings of the Conference on
Empirical Methods in Natural Language Process-
ing, pages 216-226. Association for Computational
Linguistics.



QCRI-MES Submission at WMT13: Using Transliteration Mining to
Improve Statistical Machine Translation

Hassan Sajjad', Svetlana Smekalova?, Nadir Durrani’,
Alexander Fraser?, Helmut Schmid*
! Qatar Computing Research Institute — hsajjad @qf.org.qa

2University of Stuttgart — smekalsa@ims.uni-stuttgart.de

3University of Edinburgh — dnadir@inf.ed.ac.uk

4Ludwig-Maximilians University Munich — (fraser|schmid) @cis.uni-muenchen.de

Abstract

This paper describes QCRI-MES’s sub-
mission on the English-Russian dataset to
the Eighth Workshop on Statistical Ma-
chine Translation. We generate improved
word alignment of the training data by
incorporating an unsupervised translitera-
tion mining module to GIZA++ and build
a phrase-based machine translation sys-
tem. For tuning, we use a variation of PRO
which provides better weights by optimiz-
ing BLEU+1 at corpus-level. We translit-
erate out-of-vocabulary words in a post-
processing step by using a transliteration
system built on the transliteration pairs
extracted using an unsupervised translit-
eration mining system. For the Russian
to English translation direction, we apply
linguistically motivated pre-processing on
the Russian side of the data.

1

We describe the QCRI-Munich-Edinburgh-
Stuttgart (QCRI-MES) English to Russian and
Russian to English systems submitted to the
Eighth Workshop on Statistical Machine Trans-
lation. ~ We experimented using the standard
Phrase-based Statistical Machine Translation
System (PSMT) as implemented in the Moses
toolkit (Koehn et al., 2007). The typical pipeline
for translation involves word alignment using
GIZA++ (Och and Ney, 2003), phrase extraction,
tuning and phrase-based decoding. Our system is
different from standard PSMT in three ways:

Introduction

e We integrate an unsupervised transliteration
mining system (Sajjad et al., 2012) into the
GIZA++ word aligner (Sajjad et al., 2011).
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So, the selection of a word pair as a correct
alignment is decided using both translation
probabilities and transliteration probabilities.

The MT system fails when translating out-of-
vocabulary (OOV) words. We build a statis-
tical transliteration system on the translitera-
tion pairs mined by the unsupervised translit-
eration mining system and transliterate them
in a post-processing step.

We use a variation of Pairwise Ranking Op-
timization (PRO) for tuning. It optimizes
BLEU at corpus-level and provides better
feature weights that leads to an improvement
in translation quality (Nakov et al., 2012).

We participate in English to Russian and Rus-
sian to English translation tasks. For the Rus-
sian/English system, we present experiments with
two variations of the parallel corpus. One set of
experiments are conducted using the standard par-
allel corpus provided by the workshop. In the sec-
ond set of experiments, we morphologically re-
duce Russian words based on their fine-grained
POS tags and map them to their root form. We
do this on the Russian side of the parallel corpus,
tuning set, development set and test set. This im-
proves word alignment and learns better transla-
tion probabilities by reducing the vocabulary size.

The paper is organized as follows. Section
2 talks about unsupervised transliteration mining
and its incorporation to the GIZA++ word aligner.
In Section 3, we describe the transliteration sys-
tem. Section 4 describes the extension of PRO
that optimizes BLEU+1 at corpus level. Section
5 and Section 6 present English/Russian and Rus-
sian/English machine translation experiments re-
spectively. Section 7 concludes.

Proceedings of the Eighth Workshop on Statistical Machine Translation, pages 219-224,
Sofia, Bulgaria, August 8-9, 2013 (©)2013 Association for Computational Linguistics



2 Transliteration Mining

Consider a list of word pairs that consists of either
transliteration pairs or non-transliteration pairs.
A non-transliteration pair is defined as a word
pair where words are not transliteration of each
other. They can be translation, misalignment,
etc. Transliteration mining extracts transliteration
pairs from the list of word pairs. Sajjad et al.
(2012) presented an unsupervised transliteration
mining system that trains on the list of word pairs
and filters transliteration pairs from that. It models
the training data as the combination of a translit-
eration sub-model and a non-transliteration sub-
model. The transliteration model is a joint source
channel model. The non-transliteration model as-
sumes no correlation between source and target
word characters, and independently generates a
source and a target word using two fixed uni-
gram character models. The transliteration mining
model is defined as an interpolation of the translit-
eration model and the non-transliteration model.

We apply transliteration mining to the list of
word pairs extracted from English/Russian paral-
lel corpus and mine transliteration pairs. We use
the mined pairs for the training of the translitera-
tion system.

2.1 Transliteration Augmented-GIZA++

GIZA++ aligns parallel sentences at word level. It
applies the IBM models (Brown et al., 1993) and
the HMM model (Vogel et al., 1996) in both direc-
tions i.e. source to target and target to source. It
generates a list of translation pairs with translation
probabilities, which is called the t-table. Sajjad
et al. (2011) used a heuristic-based transliteration
mining system and integrated it into the GIZA++
word aligner. We follow a similar procedure but
use the unsupervised transliteration mining system
of Sajjad et al. (2012).

We define a transliteration sub-model and train
it on the transliteration pairs mined by the unsuper-
vised transliteration mining system. We integrate
it into the GIZA++ word aligner. The probabil-
ity of a word pair is calculated as an interpolation
of the transliteration probability and the transla-
tion probability stored in the t-table of the differ-
ent alignment models used by the GIZA++ aligner.
This interpolation is done for all iterations of all
alignment models.
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2.1.1 Estimating Transliteration Probabilities

We use the algorithm for the estimation of translit-
eration probabilities of Sajjad et al. (2011). We
modify it to improve efficiency. In step 6 of Al-
gorithm 1 instead of taking all f that coocur with
e, we take only those that have a word length ra-
tio in range of 0.8-1.2." This reduces cooc(e) by
more than half and speeds up step 9 of Algorithm
1. The word pairs that are filtered out from cooc(e)
won’t have transliteration probability py; (f|e). We
do not interpolate in these cases and use the trans-
lation probability as it is.

Algorithm 1 Estimation of transliteration proba-
bilities, e-to-f direction
1: unfiltered data < list of word pairs
2: filtered data <—transliteration pairs extracted using unsu-
pervised transliteration mining system
3: Train a transliteration system on the filtered data
4: for all e do
5:  nbestTI(e) < 10 best transliterations for e accord-
ing to the transliteration system
6:  cooc(e) <+ set of all f that cooccur with e in a parallel
sentence with a word length in ratio of 0.8-1.2
candidateTI(e) < cooc(e) U nbestT1(e)
for all f do
DPmoses(f,€) < joint transliteration probability of e
and f according to the transliterator
10:  Calculate conditional transliteration probability

pei(fle) Pmoses (fe)

&
Zf’ECandidateTI(e) Pmoses (f',€)

R

2.1.2 Modified EM Training

Sajjad et al. (2011) modified the EM training of
the word alignment models. They combined the
translation probabilities of the IBM models and
the HMM model with the transliteration proba-
bilities. Consider pio(fle) = fia(f,€)/ fra(e) is
the translation probability of the word alignment
models. The interpolated probability is calcu-
lated by adding the smoothed alignment frequency
fia(f,€) to the transliteration probability weight
by the factor A\. The modified translation probabil-
ities is given by:

ﬁ(f’e) — fta(fae)'i_)‘ptz(f‘e) (1)
fta(e) + A

where fta(fa 8) = pta(f|€)fta(e)- pta(f‘e) is ob-
tained from the original t-table of the alignment
model. f;,(e) is the total corpus frequency of e.
A is the transliteration weight which is defined as
the number of counts the transliteration model gets
versus the translation model. The model is not

"We assume that the words with very different character
counts are less likely to be transliterations.



very sensitive to the value of A\. We use A = 50
for our experiments. The procedure we described
of estimation of transliteration probabilities and
modification of EM is also followed in the oppo-
site direction f-to-e.

3 Transliteration System

The unsupervised transliteration mining system
(as described in Section 2) outputs a list of translit-
eration pairs. We consider transliteration word
pairs as parallel sentences by putting a space af-
ter every character of the words and train a PSMT
system for transliteration. We apply the transliter-
ation system to OOVs in a post-processing step on
the output of the machine translation system.

Russian is a morphologically rich language.
Different cases of a word are generally represented
by adding suffixes to the root form. For OOVs
that are named entities, transliterating the inflected
forms generates wrong English transliterations as
inflectional suffixes get transliterated too. To han-
dle this, first we need to identify OOV named en-
tities (as there can be other OOVs that are not
named entities) and then transliterate them cor-
rectly. We tackle the first issue as follows: If
an OOV word is starting with an upper case let-
ter, we identify it as a named entity. To correctly
transliterate it to English, we stem the named en-
tity based on a list of suffixes (a, om, &1, e, o1, Y)
and transliterate the stemmed form. For morpho-
logically reduced Russian (see Section 6.1), we
follow the same procedure as OOVs are unknown
to the POS tagger too and are (incorrectly) not re-
duced to their root forms. For OOVs that are not
identified as named entities, we transliterate them
without any pre-processing.

4 PRO: Corpus-level BLEU

Pairwise Ranking Optimization (PRO) (Hopkins
and May, 2011) is an extension of MERT (Och,
2003) that can scale to thousands of parameters.
It optimizes sentence-level BLEU+1 which is an
add-one smoothed version of BLEU (Lin and Och,
2004). The sentence-level BLEU+1 has a bias
towards producing short translations as add-one
smoothing improves precision but does not change
the brevity penalty. Nakov et al. (2012) fixed this
by using several heuristics on brevity penalty, ref-
erence length and grounding the precision length.
In our experiments, we use the improved version
of PRO as provided by Nakov et al. (2012). We
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call it PROv1 later on.

5 English/Russian Experiments

5.1 Dataset

The amount of bitext used for the estimation of the
translation model is ~ 2M parallel sentences. We
use newstest2012a for tuning and newstest2012b
(tst2012) as development set.

The language model is estimated using large
monolingual corpus of Russian ~ 21.7M sen-
tences. We follow the approach of Schwenk and
Koehn (2008) by training domain-specific lan-
guage models separately and then linearly inter-
polate them using SRILM with weights optimized
on the held-out development set. We divide the
tuning set newstest2012a into two halves and use
the first half for tuning and second for test in or-
der to obtain stable weights (Koehn and Haddow,
2012).

5.2 Baseline Settings

We word-aligned the parallel corpus using
GIZA++ (Och and Ney, 2003) with 5 iterations
of Modell, 4 iterations of HMM and 4 iterations
of Model4, and symmetrized the alignments us-
ing the grow-diag-final-and heuristic (Koehn et al.,
2003). We built a phrase-based machine transla-
tion system using the Moses toolkit. Minimum er-
ror rate training (MERT), margin infused relaxed
algorithm (MIRA) and PRO are used to optimize
the parameters.

5.3 Main System Settings

Our main system involves a pre-processing step
— unsupervised transliteration mining, and a post-
processing step — transliteration of OOVs. For the
training of the unsupervised transliteration min-
ing system, we take the word alignments from
our baseline settings and extract all word pairs
which occur as 1-to-1 alignments (like Sajjad et
al. (2011)) and later refer to them as a list of
word pairs. The unsupervised transliteration min-
ing system trains on the list of word pairs and
mines transliteration pairs. We use the mined pairs
to build a transliteration system using the Moses
toolkit. The transliteration system is used in Algo-
rithm 1 to generate transliteration probabilities of
candidate word pairs and is also used in the post-
processing step to transliterate OOVs.

We run GIZA++ with identical settings as de-
scribed in Section 5.2. We interpolate for ev-



| GIZA++ | TA-GIZA++ OOV-TI
MERT 23.41 23.51 23.60
MIRA 23.60 23.73 23.85
PRO 23.57 23.68 23.70
PROv1 23.65 23.76 23.87

Table 1: BLEU scores of English to Russian ma-
chine translation system evaluated on tst2012 us-
ing baseline GIZA++ alignment and translitera-
tion augmented-GIZA++. OOV-TI presents the
score of the system trained using TA-GIZA++ af-
ter transliterating OOV's

ery iteration of the IBM Modell and the HMM
model. We had problem in applying smoothing
for Model4 and did not interpolate transliteration
probabilities for Model4. The alignments are re-
fined using the grow-diag-final-and heuristic. We
build a phrase-based system on the aligned pairs
and tune the parameters using PROvI. OOVs are
transliterated in the post-processing step.

5.4 Results

Table 1 summarizes English/Russian results on
tst2012. Improved word alignment gives up to
0.13 BLEU points improvement. PROv1 improves
translation quality and shows 0.08 BLEU point
increase in BLEU in comparison to the parame-
ters tuned using PRO. The transliteration of OOVs
consistently improve translation quality by at least
0.1 BLEU point for all systems.”> This adds to a
cumulative gain of up to 0.2 BLEU points.

We summarize results of our systems trained on
GIZA++ and transliteration augmented-GIZA++
(TA-GIZA++) and tested on tst2012 and tst2013
in Table 2. Both systems use PROv1 for tuning
and transliteration of OOV in the post-processing
step. The system trained on TA-GIZA++ per-
formed better than the system trained on the base-
line aligner GIZA++.

6 Russian/English Experiments

In this section, we present translation experiments
in Russian to English direction. We morphologi-
cally reduce the Russian side of the parallel data in
a pre-processing step and train the translation sys-
tem on that. We compare its result with the Rus-
sian to English system trained on the un-processed
parallel data.

>We see similar gain in BLEU when using operation se-
quence model (Durrani et al., 2011) for decoding and translit-
erating OOVs in a post-processing step (Durrani et al., 2013).
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SYS | tst2012 | tst2013
GIZA++ 2376 | 184
TA-GIZA++ | 2387 | 185*

Table 2: BLEU scores of English to Russian ma-
chine translation system evaluated on tst2012 and
tst2013 using baseline GIZA++ alignment and
transliteration augmented-GIZA++ alignment and
post-processed the output by transliterating OOVs.
Human evaluation in WMT13 is performed on
TA-GIZA++ tested on tst2013 (marked with *)

6.1 Morphological Processing

The linguistic processing of Russian involves POS
tagging and morphological reduction. We first tag
the Russian data using a fine grained tagset. The
tagger identifies lemmas and the set of morpholog-
ical attributes attached to each word. We reduce
the number of these attributes by deleting some
of them, that are not relevant for English (for ex-
ample, gender agreement of verbs). This gener-
ates a morphologically reduced Russian which is
used in parallel with English for the training of
the machine translation system. Further details on
the morphological processing of Russian are de-
scribed in Weller et al. (2013).

6.1.1 POS Tagging

We use RFTagger (Schmid and Laws, 2008) for
POS tagging. Despite the good quality of tagging
provided by RFTagger, some errors seem to be un-
avoidable due to the ambiguity of certain gram-
matical forms in Russian. A good example of
this is neuter nouns that have the same form in
all cases, or feminine nouns, which have identi-
cal forms in singular genitive and plural nomina-
tive (Sharoff et al., 2008). Since Russian sentences
have free word order, and the case of nouns can-
not be determined on that basis, this imperfection
can not be corrected during tagging or by post-
processing the tagger output.

6.1.2 Morphological Reduction

English in comparison to Slavic group of lan-
guages is morphologically poor. For example, En-
glish has no morphological attributes for nouns
and adjectives to express gender or case; verbs in
English have no gender either. Russian, on the
contrary, has rich morphology. It suffices to say
that the Russian has 6 cases and 3 grammatical
genders, which manifest themselves in different



suffixes for nouns, pronouns, adjectives and some
verb forms.

When translating from Russian into English, a
lot of these attributes become meaningless and ex-
cessive. It makes sense to reduce the number of
morphological attributes before the text is sup-
plied for the training of the MT system. We ap-
ply morphological reduction to nouns, pronouns,
verbs, adjectives, prepositions and conjunctions.
The rest of the POS (adverbs, particles, interjec-
tions and abbreviations) have no morphological at-
tributes and are left unchanged.

We apply morphological reduction to train,
tune, development and test data. We refer to this
data set as morph-reduced later on.

6.2 Dataset

We use two variations of the parallel corpus to
build and test the Russian to English system. One
system is built on the data provided by the work-
shop. For the second system, we preprocess the
Russian side of the data as described in Section
6.1. Both the provided parallel corpus and the
morph-reduced parallel corpus consist of 2M par-
allel sentences each. We use them for the estima-
tion of the translation model. We use large train-
ing data for the estimation of monolingual lan-
guage model — en ~ 287.3M sentences. We follow
the identical procedure of interpolated language
model as described in Section 5.1. We use new-
stest2012a for tuning and newstest2012b (tst2012)
for development.

6.3 System Settings

We use identical system settings to those described
in Section 5.3. We trained the systems sepa-
rately on GIZA++ and transliteration augmented-
GIZA++ to compare their results. All systems are
tuned using PROv1. The translation output is post-
processed to transliterate OOVs.

6.4 Results

Table 3 summarizes results of Russian to English
machine translation systems trained on the orig-
inal parallel corpus and on the morph-reduced
corpus and using GIZA++ and transliteration
augmented-GIZA++ for word alignment. The sys-
tem using TA-GIZA++ for alignment shows the
best results for both tst2012 and tst2013. The im-
proved alignment gives a BLEU improvement of
up to 0.4 points.
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Original corpus

SYS | tst2012 | tst2013

GIZA++ 32.51 25.5

TA-GIZA++ | 33.40 25.9%
Morph-reduced

SYS | tst2012 | tst2013

GIZA++ 31.22 24.30

TA-GIZA++ | 31.40 24.45

Table 3: Russian to English machine translation
system evaluated on tst2012 and tst2013. Human
evaluation in WMT13 is performed on the system
trained using the original corpus with TA-GIZA++
for alignment (marked with *)

The system built on the morph-reduced data
shows degradation in results by 1.29 BLEU points.
However, the percentage of OOVs reduces for
both test sets when using the morph-reduced data
set compared to the original parallel corpus. We
analyze the output of the system and find that the
morph-reduced system makes mistakes in choos-
ing the right tense of the verb. This might be one
reason for poor performance. This implies that the
morphological reduction is slightly damaging the
data, perhaps for specific parts of speech. In the
future, we would like to investigate this issue in
detail.

7 Conclusion

In this paper, we described the QCRI-Munich-
Edinburgh-Stuttgart machine translation systems
submitted to the Eighth Workshop on Statistical
Machine Translation. We aligned the parallel cor-
pus using transliteration augmented-GIZA++ to
improve the word alignments. We built a phrase-
based system using the Moses toolkit. For tun-
ing the feature weights, we used an improvement
of PRO that optimizes for corpus-level BLEU. We
post-processed the output of the machine transla-
tion system to transliterate OOV words.

For the Russian to English system, we mor-
phologically reduced the Russian data in a pre-
processing step. This reduced the vocabulary size
and helped to generate better word alignments.
However, the performance of the SMT system
dropped by 1.29 BLEU points in decoding. We
will investigate this issue further in the future.
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Abstract

We describe the Uppsala University sys-
tem for WMT13, for English-to-German
translation. We use the Docent decoder,
a local search decoder that translates at
the document level. We add tunable dis-
tortion limits, that is, soft constraints on
the maximum distortion allowed, to Do-
cent. We also investigate cleaning of the
noisy Common Crawl corpus. We show
that we can use alignment-based filtering
for cleaning with good results. Finally we
investigate effects of corpus selection for
recasing.

1 Introduction

In this paper we present the Uppsala University
submission to WMT 2013. We have submitted one
system, for translation from English to German.
In our submission we use the document-level de-
coder Docent (Hardmeier et al., 2012; Hardmeier
et al., 2013). In the current setup, we take advan-
tage of Docent in that we introduce tunable dis-
tortion limits, that is, modeling distortion limits as
soft constraints instead of as hard constraints. In
addition we perform experiments on corpus clean-
ing. We investigate how the noisy Common Crawl
corpus can be cleaned, and suggest an alignment-
based cleaning method, which works well. We
also investigate corpus selection for recasing.

In Section 2 we introduce our decoder, Docent,
followed by a general system description in Sec-
tion 3. In Section 4 we describe our experiments
with corpus cleaning, and in Section 5 we describe
experiments with tunable distortion limits. In Sec-
tion 6 we investigate corpus selection for recasing.
In Section 7 we compare our results with Docent
to results using Moses (Koehn et al., 2007). We
conclude in Section 8.
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2 The Docent Decoder

Docent (Hardmeier et al., 2013) is a decoder for
phrase-based SMT (Koehn et al., 2003). It differs
from other publicly available decoders by its use
of a different search algorithm that imposes fewer
restrictions on the feature models that can be im-
plemented.

The most popular decoding algorithm for
phrase-based SMT is the one described by Koehn
et al. (2003), which has become known as stack
decoding. It constructs output sentences bit by
bit by appending phrase translations to an initially
empty hypothesis. Complexity is kept in check,
on the one hand, by a beam search approach that
only expands the most promising hypotheses. On
the other hand, a dynamic programming technique
called hypothesis recombination exploits the lo-
cality of the standard feature models, in particu-
lar the n-gram language model, to achieve a loss-
free reduction of the search space. While this de-
coding approach delivers excellent search perfor-
mance at a very reasonable speed, it limits the
information available to the feature models to an
n-gram window similar to a language model his-
tory. In stack decoding, it is difficult to implement
models with sentence-internal long-range depen-
dencies and cross-sentence dependencies, where
the model score of a given sentence depends on
the translations generated for another sentence.

In contrast to this very popular stack decod-
ing approach, our decoder Docent implements a
search procedure based on local search (Hard-
meier et al., 2012). At any stage of the search pro-
cess, its search state consists of a complete docu-
ment translation, making it easy for feature mod-
els to access the complete document with its cur-
rent translation at any point in time. The search
algorithm is a stochastic variant of standard hill
climbing. At each step, it generates a successor
of the current search state by randomly applying

Proceedings of the Eighth Workshop on Statistical Machine Translation, pages 225-231,
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one of a set of state changing operations to a ran-
dom location in the document. If the new state
has a better score than the previous one, it is ac-
cepted, else search continues from the previous
state. The operations are designed in such a way
that every state in the search space can be reached
from every other state through a sequence of state
operations. In the standard setup we use three op-
erations: change-phrase-translation replaces the
translation of a single phrase with another option
from the phrase table, resegment alters the phrase
segmentation of a sequence of phrases, and swap-
phrases alters the output word order by exchang-
ing two phrases.

In contrast to stack decoding, the search algo-
rithm in Docent leaves model developers much
greater freedom in the design of their feature func-
tions because it gives them access to the transla-
tion of the complete document. On the downside,
there is an increased risk of search errors because
the document-level hill-climbing decoder cannot
make as strong assumptions about the problem
structure as the stack decoder does. In prac-
tice, this drawback can be mitigated by initializing
the hill-climber with the output of a stack decod-
ing pass using the baseline set of models without
document-level features (Hardmeier et al., 2012).
Since its inception, Docent has been used to ex-
periment with document-level semantic language
models (Hardmeier et al., 2012) and models to
enhance text readability (Stymne et al., 2013b).
Work on other discourse phenomena is ongoing.
In the present paper, we focus on sentence-internal
reordering by exploiting the fact that Docent im-
plements distortion limits as soft constraints rather
than strictly enforced limitations. We do not in-
clude any of our document-level feature functions.

3 System Setup

In this section we will describe our basic system
setup. We used all corpora made available for
English—-German by the WMT13 workshop. We
always concatenated the two bilingual corpora Eu-
roparl and News Commentary, which we will call
EP-NC. We pre-processed all corpora by using
the tools provided for tokenization and we also
lower-cased all corpora. For the bilingual corpora
we also filtered sentence pairs with a length ra-
tio larger than three, or where either sentence was
longer than 60 tokens. Recasing was performed as
a post-processing step, trained using the resources
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in the Moses toolkit (Koehn et al., 2007).

For the language model we trained two sepa-
rate models, one on the German side of EP-NC,
and one on the monolingual News corpus. In
both cases we trained 5-gram models. For the
large News corpus we used entropy-based prun-
ing, with 102 as a threshold (Stolcke, 1998). The
language models were trained using the SRILM
toolkit (Stolcke, 2002) and during decoding we
used the KenLM toolkit (Heafield, 2011).

For the translation model we also trained two
models, one with EP-NC, and one with Common
Crawl. These two models were interpolated and
used as a single model at decoding time, based on
perplexity minimization interpolation (Sennrich,
2012), see details in Section 4. The transla-
tion models were trained using the Moses toolkit
(Koehn et al., 2007), with standard settings with
5 features, phrase probabilities and lexical weight-
ing in both directions and a phrase penalty. We ap-
plied significance-based filtering (Johnson et al.,
2007) to the resulting phrase tables. For decod-
ing we used the Docent decoder with random ini-
tialization and standard parameter settings (Hard-
meier et al., 2012; Hardmeier et al., 2013), which
beside translation and language model features in-
clude a word penalty and a distortion penalty.

Parameter optimization was performed using
MERT (Och, 2003) at the document-level (Stymne
et al.,, 2013a). In this setup we calculate both
model and metric scores on the document-level
instead of on the sentence-level. We produce k-
best lists by sampling from the decoder. In each
optimization run we run 40,000 hill-climbing it-
erations of the decoder, and sample translations
with interval 100, from iteration 10,000. This
procedure has been shown to give competitive re-
sults to standard tuning with Moses (Koehn et
al., 2007) with relatively stable results (Stymne
et al.,, 2013a). For tuning data we concate-
nated the tuning sets news-test 2008—-2010 and
newssyscomb2009, to get a higher number of doc-
uments. In this set there are 319 documents and
7434 sentences.

To evaluate our system we use newstest2012,
which has 99 documents and 3003 sentences. In
this article we give lower-case Bleu scores (Pap-
ineni et al., 2002), except in Section 6 where we
investigate the effect of different recasing models.



Cleaning Sentences  Reduction
None 2,399,123

Basic 2,271,912 5.3%
Langid 2,072,294 8.8%
Alignment-based 1,512,401 27.0%

Table 1: Size of Common Crawl after the different
cleaning steps and reduction in size compared to
the previous step

4 Cleaning of Common Crawl

The Common Crawl (CC) corpus was collected
from web sources, and was made available for the
WMT13 workshop. It is noisy, with many sen-
tences with the wrong language and also many
non-corresponding sentence pairs. To make better
use of this resource we investigated two methods
for cleaning it, by making use of language identi-
fication and alignment-based filtering. Before any
other cleaning we performed basic filtering where
we only kept pairs where both sentences had at
most 60 words, and with a length ratio of maxi-
mum 3. This led to a 5.3% reduction of sentences,
as shown in Table 1.

Language Identification For language identifi-
cation we used the off-the-shelf tool langid.py (Lui
and Baldwin, 2012). It is a python library, cover-
ing 97 languages, including English and German,
trained on data drawn from five different domains.
It uses a naive Bayes classifier with a multino-
mial event model, over a mixture of byte n-grams.
As for many language identification packages it
works best for longer texts, but Lui and Bald-
win (2012) also showed that it has good perfor-
mance for short microblog texts, with an accuracy
of 0.89-0.94.

We applied langid.py for each sentence in the
CC corpus, and kept only those sentence pairs
where the correct language was identified for both
sentences with a confidence of at least 0.999. The
total number of sentences was reduced by a further
8.8% based on the langid filtering.

We performed an analysis on a set of 1000 sen-
tence pairs. Among the 907 sentences that were
kept in this set we did not find any cases with
the wrong language. Table 2 shows an analysis
of the 93 sentences that were removed from this
test set. The overall accuracy of langid.py is much
higher than indicated in the table, however, since
it does not include the correctly identified English
and German sentences. We grouped the removed
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sentences into four categories, cases where both
languages were correctly identified, but under the
confidence threshold of 0.999, cases where both
languages were incorrectly identified, and cases
where one language was incorrectly identified.
Overall the language identification was accurate
on 54 of the 93 removed sentences. In 18 of the
cases where it was wrong, the sentences were not
translation correspondents, which means that we
only wrongly removed 21 out of 1000 sentences.
It was also often the case when the language was
wrongly identified, that large parts of the sentence
consisted of place names, such as “Forums about
Conil de la Frontera - Cadiz.” — “Foren iiber Conil
de la Frontera - Cadiz.”, which were identified as
es/ht instead of en/de. Even though such sentence
pairs do correspond, they do not contain much use-
ful translation material.

Alignment-Based Cleaning For the alignment-
based cleaning, we aligned the data from the pre-
vious step using GIZA++ (Och and Ney, 2003)
in both directions, and used the intersection of
the alignments. The intersection of alignments is
more sparse than the standard SMT symmetriza-
tion heuristics, like grow-diag-final-and (Koehn et
al., 2005). Our hypothesis was that sentence pairs
with very few alignment points in the intersection
would likely not be corresponding sentences.

We used two types of filtering thresholds based
on alignment points. The first threshold is for the
ratio of the number of alignment points and the
maximum sentence length. The second threshold
is the absolute number of alignment points in a
sentence pair. In addition we used a third thresh-
old based on the length ratio of the sentences.

To find good values for the filtering thresholds,
we created a small gold standard where we man-
ually annotated 100 sentence pairs as being cor-
responding or not. In this set the sentence pairs
did not match in 33 cases. Table 3 show results for
some different values for the threshold parameters.
Overall we are able to get a very high precision
on the task of removing non-corresponding sen-
tences, which means that most sentences that are
removed based on this cleaning are actually non-
corresponding sentences. The recall is a bit lower,
indicating that there are still non-corresponding
sentences left in our data. In our translation sys-
tem we used the bold values in Table 3, since it
gave high precision with reasonable recall for the
removal of non-corresponding sentences, meaning



Identification Total Wronglang. Non-corr Corr Languages identified

English and German < 0.999 15 0 7 8

Both English and German wrong 6 2 2 2 2:nales, 2:et/et, 1: es/an, 1:es/ht
English wrong 13 1 6 6 5: es 4: fr 1: br, it, de, eo
German wrong 59 51 3 5 51:en3: es2:ml 1: af, Ia, Ib
Total 93 54 18 21

Table 2: Reasons and correctness for removing sentences based on language ID for 93 sentences out of
a 1000 sentence subset, divided into wrong lang(uage), non-corr(esponding) pairs, and corr(esponding)

pairs.
Ratio align  Min align  Ratio length | Prec. Recall F Kept
0.1 4 2 070  0.77 0.73  70%
0.28 4 2 094 0.72 0.82 57%
0.42 4 2 1.00  0.56 072 41%
0.28 2 2 091 073 0.81 59%
0.28 6 2 094 0.63 0.76  51%
0.28 4 1.5 094  0.65 0.77  52%
0.28 4 3 091 075 0.82 60%

Table 3: Results of alignment-based cleaning for different values of the filtering parameters, with pre-
cision, recall and F-score for the identification of erroneous sentence pairs and the percentage of kept

sentence pairs

that we kept most correctly aligned sentence pairs.

This cleaning method is more aggressive than
the other cleaning methods we described. For the
gold standard only 57% of sentences were kept,
but in the full training set it was a bit higher, 73%,
as shown in Table 1.

Phrase Table Interpolation To use the CC cor-
pus in our system we first trained a separate phrase
table which we then interpolated with the phrase
table trained on EP-NC. In this way we could al-
ways run the system with a single phrase table. For
interpolation, we used the perplexity minimization
for weighted counts method by Sennrich (2012).
Each of the four weights in the phrase table, back-
ward and forward phrase translation probabilities
and lexical weights, are optimized separately. This
method minimizes the cross-entropy based on a
held-out corpus, for which we used the concate-
nation of all available News development sets.

The cross-entropy and the contribution of CC
relative to EP-NC, are shown for phrase transla-
tion probabilities in both directions in Table 4. The
numbers for lexical weights show similar trends.
For each cleaning step the cross-entropy is re-
duced and the contribution of CC is increased. The
difference between the basic cleaning and langid is
very small, however. The alignment-based clean-
ing shows a much larger effect. After that cleaning
step the CC corpus has a similar contribution to
EP-NC. This is an indicator that the final cleaned
CC corpus fits the development set well.
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p(SIT)  p(TIS)
Cleaning CE 1P CE IP
Basic 318 0.12 331 0.06
Langid 317 013 329 0.07
Alignment-based 3.02 047 3.17 0.61

Table 4: Cross-entropy (CE) and relative interpo-
lation weights (IP) compared to EP-NC for the
Common Crawl corpus, with different cleaning

Results In Table 5 we show the translation re-
sults with the different types of cleaning of CC,
and without it. We show results of different corpus
combinations both during tuning and testing. We
see that we get the overall best result by both tun-
ing and testing with the alignment-based cleaning
of CC, but it is not as useful to do the extra clean-
ing if we do not tune with it as well. Overall we
get the best results when tuning is performed in-
cluding a cleaned version of CC. This setup gives
a large improvement compared to not using CC at
all, or to use it with only basic cleaning. There is
little difference in Bleu scores when testing with
either basic cleaning, or cleaning based on lan-
guage ID, with a given tuning, which is not sur-
prising given their small and similar interpolation
weights. Tuning was, however, not successful
when using CC with basic cleaning.

Overall we think that alignment-based corpus
cleaning worked well. It reduced the size of the
corpus by over 25%, improved the cross-entropy
for interpolation with the EP-NC phrase-table, and



Testing
Tuning notused basic langid alignment
not used 14.0 139 139 14.0
basic 14.2 145 143 14.3
langid 15.2 15.3 15.3 15.3
alignment | 12.7 15.3 15.3 15.7

Table 5: Bleu scores with different types of clean-
ing and without Common Crawl

gave an improvement on the translation task. We
still think that there is potential for further improv-
ing this filtering and to annotate larger test sets to
investigate the effects in more detail.

5 Tunable Distortion Limits

The Docent decoder uses a hill-climbing search
and can perform operations anywhere in the sen-
tence. Thus, it does not need to enforce a strict
distortion limit. In the Docent implementation, the
distortion limit is actually implemented as a fea-
ture, which is normally given a very large weight,
which effectively means that it works as a hard
constraint. This could easily be relaxed, however,
and in this work we investigate the effects of using
soft distortion limits, which can be optimized dur-
ing tuning, like other features. In this way long-
distance movements can be allowed when they are
useful, instead of prohibiting them completely. A
drawback of using no or soft distortion limits is
that it increases the search space.

In this work we mostly experiment with variants
of one or two standard distortion limits, but with a
tunable weight. We also tried to use separate soft
distortion limits for left- and right-movement. Ta-
ble 6 show the results with different types of dis-
tortion limits. The system with a standard fixed
distortion limits of 6 has a somewhat lower score
than most of the systems with no or soft distortion
limits. In most cases the scores are similar, and
we see no clear affects of allowing tunable lim-
its over allowing unlimited distortion. The system
that uses two mono-directional limits of 6 and 10
has slightly higher scores than the other systems,
and is used in our final submission.

One possible reason for the lack of effect of al-
lowing more distortion could be that it rarely hap-
pens that an operator is chosen that performs such
distortion, when we use the standard Docent set-
tings. To investigate this, we varied the settings of
the parameters that guide the swap-phrases opera-
tor, and used the move-phrases operator instead of
swap-phrases. None of these changes led to any

DL type Limit Bleu
No DL - 15.5
Hard DL 6 15.0
One soft DL 6 15.5
8 14.2
10 15.5
Two soft DLs 4.8 15.5
6,10 15.7

Bidirectional soft DLs 6,10 15.5

Table 6: Bleu scores for different distortion limit
(DL) settings

improvements, however.

While we saw no clear effects when using tun-
able distortion limits, we plan to extend this work
in the future to model movement differently based
on parts of speech. For the English—-German lan-
guage pair, for instance, it would be reasonable to
allow long distance moves of verb groups with no
or little cost, but use a hard limit or a high cost for
other parts of speech.

6 Corpus Selection for Recasing

In this section we investigate the effect of using
different corpus combinations for recasing. We
lower-cased our training corpus, which means that
we need a full recasing step as post-processing.
This is performed by training a SMT system on
lower-cased and true-cased target language. We
used the Moses toolkit to train the recasing system
and to decode during recasing. We investigate the
effect of using different combinations of the avail-
able training corpora to train the recasing model.

Table 7 show case sensitive Bleu scores, which
can be compared to the previous case-insensitive
scores of 15.7. We see that there is a larger effect
of including more data in the language model than
in the translation model. There is a performance
jump both when adding CC data and when adding
News data to the language model. The results
are best when we include the News data, which
is not included in the English-German translation
model, but which is much larger than the other cor-
pora. There is no further gain by using News in
combination with other corpora compared to using
only News. When adding more data to the trans-
lation model there is only a minor effect, with the
difference between only using EP-NC and using
all available corpora is at most 0.2 Bleu points.
In our submitted system we use the monolingual
News corpus both in the LM and the TM.

There are other options for how to treat recas-
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Language model
™ EP-NC EP-NC-CC News EP-NC-News EP-NC-CC-News
EP-NC 13.8 14.4 14.8 14.8 14.8
EP-NC-CC 13.9 14.5 14.9 14.8 14.8
News 13.9 14.5 14.9 14.9 14.9
EP-NC-News 13.9 14.5 14.9 14.9 14.9
EP-NC-CC-News 13.9 14.5 14.9 14.9 15.0

Table 7: Case-sensitive Bleu scores with different corpus combinations for the language model and

translation model (TM) for recasing

ing. It is common to train the system on true-
cased data instead of lower-cased data, which has
been shown to lead to small gains for the English—
German language pair (Koehn et al., 2008). In this
framework there is still a need to find the correct
case for the first word of each sentence, for which
a similar corpus study might be useful.

7 Comparison to Moses

So far we have only shown results using the Do-
cent decoder on its own, with a random initializa-
tion, since we wanted to submit a Docent-only sys-
tem for the shared task. In this section we also
show contrastive results with Moses, and for Do-
cent initialized with stack decoding, using Moses,
and for different type of tuning.

Previous research have shown mixed results for
the effect of initializing Docent with and with-
out stack decoding, when using the same feature
sets. In Hardmeier et al. (2012) there was a drop
of about 1 Bleu point for English-French trans-
lation based on WMT11 data when random ini-
tialization was used. In Stymne et al. (2013a),
on the other hand, Docent gave very similar re-
sults with both types of initialization for German—
English WMT13 data. The latter setup is similar
to ours, except that no Common Crawl data was
used.

The results with our setup are shown in Ta-
ble 8. In this case we lose around a Bleu point
when using Docent on its own, without Moses ini-
tialization. We also see that the results are lower
when using Moses with the Docent tuning method,
or when combining Moses and Docent with Do-
cent tuning. This indicates that the document-
level tuning has not given satisfactory results in
this scenario, contrary to the results in Stymne et
al. (2013a), which we plan to explore further in
future work. Overall we think it is important to
develop stronger context-sensitive models for Do-
cent, which can take advantage of the document
context.
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Test system Tuning system  Bleu
Docent (random)  Docent 15.7
Docent (stack) Docent 159
Moses Docent 15.9
Docent (random) Moses 159
Docent (stack) Moses 16.8
Moses Moses 16.8

Table 8: Bleu scores for Docent initialized ran-
domly or with stack decoding compared to Moses.
Tuning is performed with either Moses or Docent.
For the top line we used tunable distortion lim-
its 6,10 with Docent, in the other cases a standard
hard distortion limit of 6, since Moses does not al-
low soft distortion limits.

8 Conclusion

We have presented the Uppsala University system
for WMT 2013. Our submitted system uses Do-
cent with random initialization and two tunable
distortion limits of 6 and 10. It is trained with the
Common Crawl corpus, cleaned using language
identification and alignment-based filtering. For
recasing we used the monolingual News corpora.

For corpus-cleaning, we present a novel method
for cleaning noisy corpora based on the number
and ratio of word alignment links for sentence
pairs, which leads to a large reduction of corpus
size, and to small improvements on the transla-
tion task. We also experiment with tunable dis-
tortion limits, which do not lead to any consistent
improvements at this stage.

In the current setup the search algorithm of
Docent is not strong enough to compete with
the effective search in standard decoders like
Moses. We are, however, working on developing
discourse-aware models that can take advantage of
the document-level context, which is available in
Docent. We also need to further investigate tuning
methods for Docent.
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Abstract

We present 5 systems of the Munich-
Edinburgh-Stuttgart! joint submissions to
the 2013 SMT Shared Task: FR-EN, EN-
FR, RU-EN, DE-EN and EN-DE. The
first three systems employ inflectional gen-
eralization, while the latter two employ
parser-based reordering, and DE-EN per-
forms compound splitting. For our ex-
periments, we use standard phrase-based
Moses systems and operation sequence
models (OSM).

1 Introduction

Morphologically complex languages often lead to
data sparsity problems in statistical machine trans-
lation. For translation pairs with morphologically
rich source languages and English as target lan-
guage, we focus on simplifying the input language
in order to reduce the complexity of the translation
model. The pre-processing of the source-language
is language-specific, requiring morphological anal-
ysis (FR, RU) as well as sentence reordering (DE)
and dealing with compounds (DE). Due to time
constraints we did not deal with inflection for DE-
EN and EN-DE.

The morphological simplification process con-
sists in lemmatizing inflected word forms and deal-
ing with word formation (splitting portmanteau
prepositions or compounds). This needs to take
into account translation-relevant features (e.g. num-
ber) which vary across the different language pairs:
while French only has the features number and
gender, a wider array of features needs to be con-
sidered when modelling Russian (cf. table 6). In
addition to morphological reduction, we also apply
transliteration models learned from automatically

'The language pairs DE-EN and RU-EN were developed
in collaboration with the Qatar Computing Research Institute
and the University of Szeged.

mined transliterations to handle out-of-vocabulary
words (OOVs) when translating from Russian.

Replacing inflected word forms with simpler
variants (lemmas or the components of split com-
pounds) aims not only at reducing the general com-
plexity of the translation model, but also at decreas-
ing the amount of out-of-vocabulary words in the
input data. This is particularly the case with Ger-
man compounds, which are very productive and
thus often lack coverage in the parallel training
data, whereas the individual components can be
translated. Similarly, inflected word forms (e.g. ad-
jectives) benefit from the reduction to lemmas if
the full inflection paradigm does not occur in the
parallel training data.

For EN-FR, a translation pair with a morpho-
logically complex target language, we describe a
two-step translation system built on non-inflected
word stems with a post-processing component for
predicting morphological features and the genera-
tion of inflected forms. In addition to the advantage
of a more general translation model, this method
also allows the generation of inflected word forms
which do not occur in the training data.

2 Experimental setup

The translation experiments in this paper are car-
ried out with either a standard phrase-based Moses
system (DE-EN, EN-DE, EN-FR and FR-EN) or
with an operation sequence model (RU-EN, DE-
EN), cf. Durrani et al. (2013b) for more details.
An operation sequence model (OSM) is a state-
of-the-art SMT-system that learns translation and
reordering patterns by representing a sentence pair
and its word alignment as a unique sequence of
operations (see e.g. Durrani et al. (2011), Durrani
et al. (2013a) for more details). For the Moses sys-
tems we used the old train-model perl scripts rather
than the EMS, so we did not perform Good-Turing
smoothing; parameter tuning was carried out with
batch-mira (Cherry and Foster, 2012).
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p—

Removal of empty lines

2 | Conversion of HTML special characters like
&quot; to the corresponding characters

3 | Unification of words that were written both

with an @ or with an oe to only one spelling
4 | Punctuation normalization and tokenization

5 | Putting together clitics and apostrophes like
[’ord’ tol’and d’

Table 1: Text normalization for FR-EN.

lall’/les — le
un/ une — un

Infl. form — lemma
e . g.au—ale
Reduced to
non-inflected

verb participle form
ending in é

Definite determiners
Indefinite determiners
Adjectives
Portmanteaus

Verb participles
inflected for gender
and number

ending in ée/és/ées

Clitics and apostroph- d’ — de,
ized words are converted | qu’ — que,
to their lemmas n’ —ne, ...

Table 2: Rules for morphological simplification.

The development data consists of the concate-
nated news-data sets from the years 2008-2011.
Unless otherwise stated, we use all constrained data
(parallel and monolingual). For the target-side lan-
guage models, we follow the approach of Schwenk
and Koehn (2008) and train a separate language
model for each corpus and then interpolate them
using weights optimized on development data.

3 French to English

French has a much richer morphology than English;
for example, adjectives in French are inflected with
respect to gender and number whereas adjectives
in English are not inflected at all. This causes data
sparsity in coverage of French inflected forms. We
try to overcome this problem by simplifying French
inflected forms in a pre-processing step in order to
adapt the French input better to the English output.

Processing of the training and test data The
pre-processing of the French input consists of two
steps: (1) normalizing not well-formed data (cf.
table 1) and (2) morphological simplification.

In the second step, the normalized training data
is annotated with Part-of-Speech tags (PoS-tags)
and word lemmas using RFTagger (Schmid and
Laws, 2008) which was trained on the French tree-
bank (Abeillé et al., 2003). French forms are then
simplified according to the rules given in table 2.

Data and experiments We trained a French to
English Moses system on the preprocessed and
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System BLEU (cs) | BLEU (ci)
Baseline 29.90 31.02
Simplified French* 29.70 30.83

Table 3: Results of the French to English system
(WMT-2012). The marked system (*) corresponds
to the system submitted for manual evaluation. (cs:
case-sensitive, ci: case-insensitive)

simplified constrained parallel data.

Due to tractability problems with word align-
ment, the 10° French-English corpus and the UN
corpus were filtered to a more manageable size.
The filtering criteria are sentence length (between
15 and 25 words), as well as strings indicating that
a sentence is neither French nor English, or other-
wise not well-formed, aiming to obtain a subset of
good-quality sentences. In total, we use 9M par-
allel sentences. For the English language model
we use large training data with 287.3M true-cased
sentences (including the LDC Giga-word data).

We compare two systems: a baseline with reg-
ular French text, and a system with the described
morphological simplifications. Results for the
WMT-2012 test set are shown in table 3. Even
though the baseline is better than the simplified
system in terms of BLEU, we assume that the trans-
lation model of the simplified system benefits from
the overall generalization — thus, human annotators
might prefer the output of the simplified system.

For the WMT-2013 set, we obtain BLEU scores
of 29,97 (cs) and 31,05 (ci) with the system built
on simplified French (mes-simplifiedfrench).

4 English to French

Translating into a morphologically rich language
faces two problems: that of asymmetry of mor-
phological information contained in the source and
target language and that of data sparsity.

In this section we describe a two-step system de-
signed to overcome these types of problems: first,
the French data is reduced to non-inflected forms
(stems) with translation-relevant morphological fea-
tures, which is used to built the translation model.
The second step consists of predicting all neces-
sary morphological features for the translation out-
put, which are then used to generate fully inflected
forms. This two-step setup decreases the complex-
ity of the translation task by removing language-
specific features from the translation model. Fur-
thermore, generating inflected forms based on word
stems and morphological features allows to gener-



ate forms which do not occur in the parallel training
data — this is not possible in a standard SMT setup.

The idea of separating the translation into two
steps to deal with complex morphology was in-
troduced by Toutanova et al. (2008). Fraser et
al. (2012) applied this method to the language
pair English-German with an additional special
focus on word formation issues such as the split-
ting and merging of portmanteau prepositions and
compounds. The presented inflection prediction
systems focuses on nominal inflection; verbal in-
flection is not addressed.

Morphological analysis and resources The
morphological analysis of the French training data
is obtained using RFTagger, which is designed
for annotating fine-grained morphological tags
(Schmid and Laws, 2008). For generating inflected
forms based on stems and morphological features,
we use an extended version of the finite-state mor-
phology FRMOR (Zhou, 2007). Additionally, we
use a manually compiled list of abbreviations and
named entities (names of countries) and their re-
spective grammatical gender.

Stemming For building the SMT system, the
French data (parallel and monolingual) is trans-
formed into a stemmed representation. Nouns,
i.e. the heads of NPs or PPs, are marked with
inflection-relevant features: gender is considered
as part of the stem, whereas number is determined
by the source-side input: for example, we expect
source-language words in plural to be translated by
translated by stems with plural markup. This stem-
markup is necessary in order to guarantee that the
number information is not lost during translation.
For a better generalization, portmanteaus are split
into separate parts: au — a+le (meaning, “to the”).

Predicting morphological features For predict-
ing the morphological features of the SMT output
(number and gender), we use a linear chain CRF
(Lavergne et al., 2010) trained on data annotated
with these features using n-grams of stems and part-
of-speech tags within a window of 4 positions to
each side of the current word. Through the CRF,
the values specified in the stem-markup (number
and gender on nouns) are propagated over the rest
of the linguistic phrase, as shown in column 2 of
table 4. Based on the stems and the morphological
features, inflected forms can be generated using
FRMOR (column 3).
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Post-processing As the French data has been
normalized, a post-processing step is needed in or-
der to generate correct French surface forms: split
portmanteaus are merged into their regular forms
based on a simple rule set. Furthermore, apostro-
phes are reintroduced for words like le, la, ne, ... if
they are followed by a vowel. Column 4 in table 4
shows post-processing including portmanteau for-
mation. Since we work on lowercased data, an
additional recasing step is required.

Experiments and evaluation We use the same
set of reduced parallel data as the FR-EN system;
the language model is built on 32M French sen-
tences. Results for the WMT-2012 test set are given
in table 5. Variant 1 shows the results for a small
system trained only on a part of the training data
(Europarl+News Commentary), whereas variant 2
corresponds to the submitted system. A small-scale
analysis indicated that the inflection prediction sys-
tem tends to have problems with subject-verb agree-
ment. We trained a factored system using addi-
tional PoS-tags with number information which
lead to a small improvement on both variants.

While the small model is significantly better than
the baseline? as it benefits more from the general-
ization, the result for the full system is worse than
the baseline®. Here, given the large amount of
data, the generalization effect has less influence.
However, we assume that the more general model
from the inflection prediction system produces bet-
ter translations than a regular model containing a
large amount of irrelevant inflectional information,
particularly when considering that it can produce
well-formed inflected sequences that are inaccessi-
ble to the baseline. Even though this is not reflected
in terms of BLEU, humans might prefer the inflec-
tion prediction system.

For the WMT-2013 set, we obtain BLEU scores
of 29.6 (ci) and 28.30 (cs) with the inflection pre-
diction system mes-inflection (marked in table 5).

5 Russian-English

The preparation of the Russian data includes the
following stages: (1) tokenization and tagging and
(2) morphological reduction.

Tagging and tagging errors For tagging, we use
a version of RFTagger (Schmid and Laws, 2008)

ZPairwise bootstrap resampling with 1000 samples.
3However, the large inflection-prediction system has a
slightly better NIST score than the baseline (7.63 vs. 7.61).



SMT-output predicted | generated after post- gloss
with stem-markup in bold print features forms processing
avertissement<Masc><Pl> [N] Masc.P1 avertissements | avertissements warnings
sinistre[ADJ] Masc.Pl sinistres sinistres dire

de [P] - de du from

le [ART] Masc.Sg le the
pentagone<Masc><Sg> [N] Masc.Sg pentagone pentagone pentagon
sur [P] - sur sur over

de [P] - de d of
éventuel [ADJ] Fem.Pl éventuelles éventuelles potential
réduction<Fem><PI>[N] Fem.PI réductions réductions reductions
de[P] — de du of

1le [ART] Masc.Sg le the
budget <Masc><Sg> [N] Masc.Sg budget budget budget
de[P] - de de of
1le[ART] Fem.Sg la la the
défense<Fem><Sg> [N] Fem.Sg défense défense défense

Table 4: Processing steps for the input sentence dire warnings from pentagon over potential defence cuts.

that has been developed based on data tagged with
TreeTagger (Schmid, 1994) using a model from
Sharoff et al. (2008). The data processed by Tree-
Tagger contained errors such as wrong definition
of PoS for adverbs, wrong selection of gender for
adjectives in plural and missing features for pro-
nouns and adverbs. In order to train RFTagger, the
output of TreeTagger was corrected with a set of
empirical rules. In particular, the morphological
features of nominal phrases were made consistent
to train RFTagger: in contrast to TreeTagger, where
morphological features are regarded as part of the
PoS-tag, RFTagger allows for a separate handling
of morphological features and POS tags.

Despite a generally good tagging quality, some
errors seem to be unavoidable due to the ambiguity
of certain grammatical forms in Russian. A good
example of this are neuter nouns that have the same
form in all cases, or feminine nouns, which have
identical forms in singular genitive and plural nom-
inative (Sharoff et al., 2008). Since Russian has no
binding word order, and the case of nouns cannot
be determined on that basis, such errors cannot be
corrected with empirical rules implemented as post-

System BLEU (ci) | BLEU (cs)
1 | Baseline 2491 23.40
InflPred 25.31 23.81
InflPred-factored 25.53 24.04
2 | Baseline 29.32 27.65
InflPred* 29.07 27.40
InflPred-factored 29.17 27.46

Table 5: Results for French inflection prediction
on the WMT-2012 test set. The marked system (*)
corresponds to the system submitted for manual
evaluation.
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processing. Similar errors occur when specifying
the case of adjectives, since the suffixes of adjec-
tives are even less varied as compared to the nouns.
In our application, we hope that this type of error
does not affect the result due to the following sup-
pression of a number of morphological attributes
including the case of adjectives.

Morphological reduction In comparison to
Slavic languages, English is morphologically poor.
For example, English has no morphological at-
tributes for nouns and adjectives to express gender
or case; verbs have no gender either. In contrast,
Russian is morphologically very rich — there are
e.g. 6 cases and 3 grammatical genders, which
manifest themselves in different suffixes for nouns,
pronouns, adjectives and some verb forms. When
translating from Russian into English, many of
these attributes are (hopefully) redundant and are
therefore deleted from the training data. The mor-
phological reduction in our system was applied to
nouns, pronouns, verbs, adjectives, prepositions
and conjunctions. The rest of the POS (adverbs,
particles, interjections and abbreviations) have no
morphological attributes. The list of the original
and the reduced attributes is given in Table 6.

Transliteration mining to handle OOVs The
machine translation system fails to translate out-of-
vocabulary words (OOVs) as they are unknown to
the training data. Most of the OOV are named en-
tities and transliterating them to the target language
script could solve this problem. The transliteration
system requires a list of transliteration pairs for
training. As we do not have such a list, we use
the unsupervised transliteration mining system of
Sajjad et al. (2012) that takes a list of word pairs for



Original corpus

SYS WMT-2012 | WMT-2013

GIZA++ 32.51 255

TA-GIZA++ 33.40 25.9%
Morph-reduced

SYS WMT-2012 | WMT-2013

GIZA++ 31.22 243

TA-GIZA++ 31.40 24.45

Part of Attributes Reduced

Speech RFTagger attributes

Noun Type Type
Gender Gender
Number Number
Case Case
nom,gen,dat,acc,instr,prep gen,notgen
Animate
Case 2

Pronoun Person Person
Gender Gender
Number Number
Case Case
nom,gen,dat,acc,instr,prep nom,notnom
Syntactic type
Animated

Verb Type Type
VForm VForm
Tense Tense
Person Person
Number Number
Gender
Voice Voice
Definiteness
Aspect Aspect
Case

Adjec- Type Type

tive Degree Degree
Gender
Number
Case
Definiteness

Prep- Type

osition Formation
Case

Conjunc- | Type Type

tion Formation Formation

Table 6: Rules for simplifying the morphological
complexity for RU.

training and extracts transliteration pairs that can
be used for the training of the transliteration system.
The procedure of mining transliteration pairs and
transliterating OOVs is described as follows: We
word-align the parallel corpus using GIZA++ and
symmetrize the alignments using the grow-diag-
final-and heuristic. We extract all word pairs which
occur as 1-to-1 alignments (Sajjad et al., 2011) and
later refer to them as a list of word pairs. We train
the unsupervised transliteration mining system on
the list of word pairs and extract transliteration
pairs. We use these mined pairs to build a transliter-
ation system using the Moses toolkit. The translit-
eration system is applied as a post-processing step
to transliterate OOVs.

The morphological reduction of Russian (cf. sec-
tion 5) does not process most of the OOVs as they
are also unknown to the POS tagger. So OOVs that
we get are in their original form. When translit-

Table 7: Russian to English machine translation
system evaluated on WMT-2012 and WMT-2013.
Human evaluation in WMT13 is performed on the
system trained using the original corpus with TA-
GIZA++ for alignment (marked with *).

erating them, the inflected forms generate wrong
English transliterations as inflectional suffixes get
transliterated too, specially OOV named entities.
We solved this problem by stemming the OOVs
based on a list of suffixes (2, om, b1, e, oid, ¥) and
transliterating the stemmed forms.

Experiments and results We trained the sys-
tems separately on GIZA++ and transliteration
augmented-GIZA++ (TA-GIZA++) to compare
their results; for more details see Sajjad et al.
(2013). All systems are tuned using PROv1 (Nakov
et al., 2012). The translation output is post-
processed to transliterate OOVs.

Table 7 summarizes the results of RU-EN trans-
lation systems trained on the original corpus and
on the morph-reduced corpus. Using TA-GIZA++
alignment gives the best results for both WMT-
2012 and WMT-2013, leading to an improvement
of 0.4 BLEU points.

The system built on the morph-reduced data
leads to decreased BLEU results. However, the per-
centage of OOVs is reduced for both test sets when
using the morph-reduced data set compared to the
original data. An analysis of the output showed
that the morph-reduced system makes mistakes in
choosing the right tense of the verb, which might
be one reason for this outcome. In the future, we
would like to investigate this issue in detail.

6 German to English and English to
German

We submitted systems for DE-EN and EN-DE
which used constituent parses for pre-reordering.
For DE-EN we also deal with word formation is-
sues such as compound splitting. We did not per-
form inflectional normalization or generation for
German due to time constraints, instead focusing
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our efforts on these issues for French and Russian
as previously described.

German to English German has a wider diver-
sity of clausal orderings than English, all of which
need to be mapped to the English SVO order. This
is a difficult problem to solve during inference, as
shown for hierarchical SMT by Fabienne Braune
and Fraser (2012) and for phrase-based SMT by
Bisazza and Federico (2012).

We syntactically parsed all of the source side
sentences of the parallel German to English data
available, and the tuning, test and blindtest sets.
We then applied reordering rules to these parses.
We use the rules for reordering German constituent
parses of Collins et al. (2005) together with the
additional rules described by Fraser (2009). These
are applied as a preprocess to all German data.

For parsing the German sentences, we used the
generative phrase-structure parser BitPar with opti-
mizations of the grammar, as described by Fraser
et al. (2013). The parser was trained on the Tiger
Treebank (Brants et al., 2002) along with utilizing
the Europarl corpus as unlabeled data. At the train-
ing of Bitpar, we followed the targeted self-training
approach (Katz-Brown et al., 2011) as follows. We
parsed the whole Europarl corpus using a grammar
trained on the Tiger corpus and extracted the 100-
best parse trees for each sentence. We selected the
parse tree among the 100 candidates which got the
highest usefulness scores for the reordering task.
Then we trained a new grammar on the concatena-
tion of the Tiger corpus and the automatic parses
from Europarl.

The usefulness score estimates the value of a
parse tree for the reordering task. We calculated
this score as the similarity between the word order
achieved by applying the parse tree-based reorder-
ing rules of Fraser (2009) and the word order indi-
cated by the automatic word alignment between
the German and English sentences in Europarl.
We used the Kendall’s Tau Distance as the simi-
larity metric of two word orderings (as suggested
by Birch and Osborne (2010)).

Following this, we performed linguistically-
informed compound splitting, using the system of
Fritzinger and Fraser (2010), which disambiguates
competing analyses from the high-recall Stuttgart
Morphological Analyzer SMOR (Schmid et al.,
2004) using corpus statistics. We also split German
portmanteaus like zum — zu dem (meaning fo the).

system BLEU | BLEU | system name
(ci) (cs)

DE-EN (OSM) 27.60 26.12 MES

DE-EN (OSM) 27.48 25.99 | not submitted

BitPar not self-trained

DE-EN (Moses) 27.14 25.65 | MES-Szeged-
reorder-split

DE-EN (Moses) 26.82 25.36 | not submitted

BitPar not self-trained

[ EN-DE (Moses) [ 19.68 [ 18.97 [ MES-reorder ]

Table 8: Results on WMT-2013 (blindtest)

English to German The task of mapping En-
glish SVO order to the different clausal orders in
German is difficult. For our English to German
systems, we solved this by parsing the English and
applying the system of Gojun and Fraser (2012) to
reorder English into the correct German clausal or-
der (depending on the clause type which is detected
using the English parse, see (Gojun and Fraser,
2012) for further details).

We primarily used the Charniak-Johnson gener-
ative parser (Charniak and Johnson, 2005) to parse
the English Europarl data and the test data. How-
ever, due to time constraints we additionally used
Berkeley parses of about 400K Europarl sentences
and the other English parallel training data. We
also left a small amount of the English parallel
training data unparsed, which means that it was
not reordered. For tune, test and blindtest (WMT-
2013), we used the Charniak-Johnson generative
parser.

Experiments and results We used all available
training data for constrained systems; results for
the WMT-2013 set are given in table 8. For the
contrastive BitPar results, we reparsed WMT-2013.

7 Conclusion

We presented 5 systems dealing with complex mor-
phology. For two language pairs with a morpho-
logically rich source language (FR and RU), the
input was reduced to a simplified representation
containing only translation-relevant morphologi-
cal information (e.g. number on nouns). We also
used reordering techniques for DE-EN and EN-DE.
For translating into a language with rich morphol-
ogy (EN-FR), we applied a two-step method that
first translates into a stemmed representation of
the target language and then generates inflected
forms based on morphological features predicted
on monolingual data.
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Abstract

Supervised approaches to NLP tasks rely
on high-quality data annotations, which
typically result from expensive manual la-
belling procedures. For some tasks, how-
ever, the subjectivity of human judgements
might reduce the usefulness of the an-
notation for real-world applications. In
Machine Translation (MT) Quality Esti-
mation (QE), for instance, using human-
annotated data to train a binary classifier
that discriminates between good (useful
for a post-editor) and bad translations is
not trivial. Focusing on this binary task,
we show that subjective human judge-
ments can be effectively replaced with an
automatic annotation procedure. To this
aim, we compare binary classifiers trained
on different data: the human-annotated
dataset from the 7" Workshop on Statis-
tical Machine Translation (WMT-12), and
an automatically labelled version of the
same corpus. Our results show that human
labels are less suitable for the task.

1 Introduction

With the steady progress in the field of Statistical
Machine Translation (SMT), the translation indus-
try is now faced with the possibility of significant
productivity increases (i.e. amount of publishable
output per unit of time). One way to achieve this
goal, in Computer Assisted Translation (CAT) en-
vironments, is the integration of (precise, but of-
ten partial) suggestions obtained through “fuzzy
matches” from a Translation Memory (TM), with
(complete, but potentially less precise) translations
produced by an MT system. Such integration can
loosely consist in presenting translators with un-
ranked suggestions obtained from the MT and the
TM, or rely on tighter combination strategies. For

instance, MT and TM translations can be automat-
ically ranked to ease the selection of the most suit-
able one for post-editing (He et al., 2010), or the
TM can be used to constrain and improve MT sug-
gestions (Ma et al., 2011). In all cases, the ef-
fectiveness of the integration is conditioned by:
i) the quality of MT, and ii) the accuracy in au-
tomatically predicting such quality. Higher pro-
ductivity increases depend on the capability of the
MT system to output useful material that is close
to be publishable “as is” (Denkowski and Lavie,
2012), and the capability to automatically identify
and present to human translators only such sug-
gestions.

Recognizing good translations falls in the scope
of research on automatic MT Quality Estimation
(QE), which addresses the problem of estimating
the quality of a translated sentence at run-time,
without access to reference translations (Specia et
al., 2009; Soricut and Echihabi, 2010; Bach et al.,
2011; Specia, 2011; Mehdad et al., 2012b). In
recent years QE gained increasing interest in the
MT community, resulting in several datasets avail-
able for training and evaluation (Callison-Burch et
al., 2012), the definition of features showing good
correlation with human judgements (Soricut et al.,
2012), and the release of open-source software.!

The proposed solutions to the QE problem rely
on supervised methods that strongly depend on the
availability of labelled data. While early works
(Blatz et al., 2003) exploited annotations obtained
with automatic MT evaluation metrics like BLEU
(Papineni et al., 2002), the current trend is to
rely on human annotations, which seem to lead
to more accurate models (Quirk, 2004; Specia et
al., 2009). Along this direction, the QE task con-
sists in predicting scores that reflect human quality
judgements, by learning from manually annotated
datasets (e.g. collections of source-target pairs la-

"http://www.quest.dcs.shef.ac.uk/
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belled according to an n-point Likert scale or with
real numbers in a given interval). Within this dom-
inant supervised framework, we explore different
ways to obtain labelled data for training a bi-
nary QE classifier suitable for integration in a
CAT tool. Since, to the best of our knowledge,
labelled data with binary judgements are currently
not available, we consider two alternative options.

The first option is to adapt an existing dataset,
checking whether it can be partitioned in a way
that reflects the distinction between good (use-
ful for the translator, suitable for post editing)
and bad translations (that need complete rewrit-
ing).>2 To this aim we experiment with the QE
data released within the 7** Workshop on Ma-
chine Translation (WMT-12). The corpus con-
sists of source-target pairs annotated with manual
QE labels (1-5 scores) indicating the post-editing
needed to correct the translations. Besides explicit
human judgements, the availability of post-edited
translations makes also possible to calculate the
actual HTER values (Snover et al., 2009), indicat-
ing the minimum edit distance between the ma-
chine translation and its manually post-edited ver-
sion in the [0,1] interval.

The second option is to automatically re-
annotate the same dataset, trying to produce labels
that reflect an objective and more reliable binary
distinction based on empirical observations.

Our analysis aims to answer the following ques-
tions:

. Are human labels reliable and coherent

enough to train accurate binary models?

Are arbitrarily-set thresholds useful to parti-

tion QE data for this task?

. Is it possible to obtain reliable binary annota-
tions from an automatic procedure?

Negative answers to the first two questions would
respectively call into question: i) the intuitive idea
that human labels are the most reliable for a super-
vised approach to binary QE, and ii) the possibility
that thresholds on a single metric (e.g. the HTER)
can be set to capture the subtle differences separat-
ing useful from useless translations. A positive an-
swer to the third question would open to the possi-
bility to create training datasets in a more coherent

*In the remainder of the paper we will consider as “good”
translations those for which post-editing requires a smaller
effort than translation from scratch. Conversely, we will label
as “bad” the translations that need complete rewriting.
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and replicable way compared to current data anno-
tation methods. By answering these questions, this
paper provides the following main contributions:

o We show that training a binary classifier on
arbitrary partitions of an existing dataset is
difficult. Our experiments with the WMT-
12 corpus demonstrate that neither following
standard indications (e.g. “if more than 70%
of the MT output needs to be edited, a trans-
lation from scratch is necessary”), nor con-
sidering arbitrary HTER thresholds, it is pos-
sible to obtain accurate binary classifiers suit-
able for integration in a CAT environment;
We propose a replicable automatic (hence
non subjective) method to re-annotate an ex-
isting dataset in a way that the resulting bi-
nary classifier outperforms those trained with
human labels.

We show that, with our method, a smaller
amount of training data is sufficient to ob-
tain similar or better performance compared
to that of the human-annotated dataset used
for comparison.

2 Binary QE for CAT environments

QE has been mainly addressed as a classification
or regression task, where a quality score (respec-
tively an integer or a real value) has to be automat-
ically assigned to MT output sentences given their
source (Specia et al., 2010). Casting the problem
in this way, the integration of a QE component
in a CAT environment makes possible to present
translators with estimates of the expected quality
of each MT suggestion. Such intuitive solution,
however, disregards the fact that even precise QE
scores would not alleviate translators from the ef-
fort of reading useless MT output (or at least the
associated score).

A more effective alternative is to use the esti-
mated QE scores to filter out poor MT suggestions,
presenting only those worth for post-editing. Bi-
nary classification, however, has to confront with
the problem of setting reasonable cut-off criteria.
The arbitrary thresholds, used in several previous
works (Quirk, 2004; Specia et al., 2010; Specia
et al., 2011) are in fact hard to justify, and even
harder to learn from human-labelled training data.

3This was a guideline for the professional trans-
lators involved in the annotation of a previous ver-
sion of the dataset used for the WMT-12 evalua-

tion (see http://www.statmt.org/wmt12/
quality-estimation-task.html).



On one side, for instance, there is no evi-
dence that the 70% HTER threshold used in some
datasets yields the optimal separation between ac-
ceptable and totally useless suggestions. Such ar-
bitrary criterion, based on the raw count of post-
editing operations, is likely to reflect a partial view
on a complex problem, disregarding important as-
pects such as the distribution of the corrections in
the MT output. However, in some cases, having
the first 30% of words correctly translated might
take less post-editing effort than having 50% of
correctly translated terms scattered throughout the
whole sentence. In these cases, a 70% HTER
threshold would wrongly consider useless trans-
lations as positive instances and vice-versa.

On the other side, when arbitrary thresholds are
used as annotation guidelines (Callison-Burch et
al., 2012), the moderate agreement between hu-
man judges might make manual labels ill-suited to
learn accurate models.

Under the constraints posed by a CAT envi-
ronment, where only useful suggestions can lead
to a significant productivity increase, the ideal
model should maximize the number of true posi-
tives (useful translations recognized as good) min-
imizing, at the same time, the number of false pos-
itives (useless translations recognized as good). To
this aim, the more the training data are partitioned
according to objective criteria, the higher the ex-
pected reliability of the corresponding cut-off and,
in turn, the higher the expected performance of the
binary classifier.

Focusing on these issues, the following sections
discuss various methods to obtain training data for
binary QE geared to the integration in a CAT en-
vironment. Partitions based on human judgements
from the WMT-12 dataset will be compared with
an automatic method to re-annotate the same cor-
pus. The suitability of the resulting training sets
for binary classification will be assessed by mea-
suring the performance of classifiers built from
each training set. Metrics sensitive to the number
of false positives will be used for this purpose.

3 Partitioning the WMT-12 dataset

Due to the lack of datasets annotated with ex-
plicit binary (good, bad) judgements about transla-
tion quality, the most intuitive way to obtain train-
ing data for our QE classifier is to adapt exist-
ing manually-labelled data. The reasonable size
of the WMT-12 dataset makes it a good candidate

for our purposes. The corpus consists of 2,254
English-Spanish news sentences (1,832 for train-
ing, 422 for test) produced by the Moses phrase-
based SMT system (Koehn et al., 2007) trained
on Europarl (Koehn, 2005) and News Commen-
taries corpora,* along with their source sentences,
reference translations and post-edited translations.
Training and test instances have been annotated by
professional translators with scores (1 to 5) indi-
cating the estimated post-editing effort (percent-
age of MT output that has to be corrected). Ac-
cording to the proposed scheme, the highest score
indicates lowest effort (MT output requires little or
no editing), while the lowest score indicates that
the MT output needs to be translated from scratch.
To cope with systematic biases among the anno-
tators,” the judgements were combined in a final
score obtained from their weighted average, re-
sulting in a labelled dataset with real numbers in
the [1, 5] interval as effort scores.

In order to obtain suitable data for binary QE,
the WMT-12 training set (1,832 instances) has
been partitioned in different ways, leaving the test
set for evaluation (see Section 5). The goal, for
each partition strategy, was to label as bad (the as-
signed label is -1) only the translations that need
complete rewriting, keeping all the other transla-
tions as good instances (labelled with +1). Consid-
ering the averaged effort scores, the actual human
judgements, and the HTER values calculated be-
tween the translations and the corresponding post-
edited version, we experimented with the follow-
ing three partition criteria.

Average effort scores (AES). Three partitions
have been generated based on the effort scores
of 2, 2.5, and 3, labelling the WMT-12 train-
ing instances with scores below or equal to each
threshold as negative examples (-1), and the in-
stances with scores above the threshold as posi-
tive examples (+1). Partitions with thresholds be-
low 2 were also considered, including the most
intuitive partition with cut-off set to /. However,
the resulting number of negative instances, if any,
was too scarce, and the overall dataset too unbal-
anced, to make standard supervised learning meth-
ods effective The creation of highly unbalanced
data is a recurring issue for all the partition meth-

‘http://www.statmt.org/wmt11l/
translation-task.html#download

3Such biases support the idea that labelling translations
with quality scores is per se a highly subjective task.
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ods we applied to the WMT-12 corpus. Together
with the low homogeneity of human labels (even
for very poor translations the three judges do not
agree in assigning the lowest score), in most of
the cases the small number of low-quality transla-
tions in the dataset makes the negative class con-
siderably smaller than the positive one. This can
be observed in Table 1, which provides the to-
tal number of positive and negative instances for
each partition method. For instance, with our low-
est AES threshold (2) the total number of nega-
tive instances is 113, while the positive ones are
1,719. Although considering different cut-off cri-
teria aims to make our investigation more com-
plete, it’s also worth remarking that the higher the
threshold, the higher the distance of the result-
ing experimental setting from our target scenario.
While 2, as an effort score threshold, is likely
to reflect a reasonable separation between useless
and post-editable translations, higher values are in
principle more appropriate for “soft” separations
into worse versus better translations.

Human scores (HS). Five partitions have been
generated using the actual labels assigned by the
three annotators to each translation instead of the
average effort scores. In particular, we considered
the following score combinations (“X” stands for
any integer between 1 and 5): [-X-X, 2-2-2, 2-
2-X, 2-3-3, 3-3-3. Also in this case, as shown
in Table 1, partitions based on lower scores lead
to highly unbalanced datasets of limited usability,
while those based on higher scores are increas-
ingly more distant to our application scenario.®

HTER scores (HTER). Seven partitions have
been generated considering the following HTER
thresholds: 0.75, 0.7, 0.65, 0.6, 0.55, 0.5, 0.45.
In this case, being the HTER an error measure,
training instances with scores above or equal to
the threshold were labelled as negative examples
(-1), while instances with lower scores were la-
belled as positive examples (+1). Similar to the
other partition criteria, some of our threshold val-
ues reflect our task more closely than others, but
result in more unbalanced datasets. In particular,
thresholds around 0.7 substantially adhere to the
WMT-12 annotation guidelines (as far as transla-
tions that need complete rewriting are concerned)

SThe partition most closely related to our task (i.e. 1-1-1)
was impossible to produce since none of the examples was
labelled with / by all the annotators. Even for /-/-X, the
negative class contains only one example.
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and produce training data with fewer negative in-
stances. Other thresholds, which is still worth ex-
ploring since we do not know the optimal cut-off
value, are in principle less suitable to our task but
produce more balanced training data.

Training instances
Average effort scores (AES) | Positive | Negative
2 1,719 113
2.5 1,475 357
3 1,194 638
Human scores (HS) Positive | Negative
1-X-X 1,736 96
2-2-2 1,719 113
2-2-X 1,612 220
2-3-3 1,457 375
3-3-3 1,360 472
HTER scores (HTER) Positive | Negative
0.75 1,798 34
0.7 1,786 46
0.65 1,756 76
0.6 1,708 124
0.55 1,653 179
0.5 1,531 301
0.45 1,420 412

Table 1: Number of positive/negative instances for
each partition of the WMT-12 training set.

4 Re-annotating the WMT-12 dataset

As an alternative to partitioning methods, we in-
vestigated the possibility to re-annotate the WMT-
12 training set with an automatic procedure.

4.1 Approach

Our approach, which does not involve subjec-
tive human judgements, is based on the observa-
tion of similarities and dissimilarities between an
automatic translation (TGT), its post-edited ver-
sion (PE) and the corresponding reference trans-
lation (RT). Such comparisons provide useful in-
dications about the behaviour of a post-editor
when correcting automatic translations and, in
turn, about MT output quality.

Typically, the PE version of a good-quality TGT
preserves some characteristics (e.g. lexical, struc-
tural) that indicate a moderate correction activity
by the post editor. Conversely, in the PE ver-
sion of a low-quality TGT, such characteristics
are more difficult to observe, indicating an in-
tense correction activity. At the two extremes, the
PE of a perfect TGT preserves all its characteris-
tics, while the PE of a useless TGT looses most
of them. In the first case TGT and PE are iden-



tical, and their similarity is the highest possible
(i.e. sim(TGT,PFE) = 1). In the second case,
TGT and PE show a degree of similarity close to
that of TGT and a completely rewritten transla-
tion featuring different lexical choices and struc-
ture. This is where reference translations come
into play: considering RT as a good example of
rewritten sentence,’ for low-quality TGT we will
have sim(T'GT, PE) ~ sim(TGT, RT).

In light of these considerations, we hypothe-
size that the automatic re-annotation of WMT-12
training data can take advantage of a classifier that
learns a similarity threshold T such that:

e a PE sentence with sim(T'GT,PE) < T
will be considered as a rewritten translation
(hence TGT is useless, and the correspond-
ing source-TGT pair a negative example to
be labelled as “-17);

e a PE sentence with sim(TGT,PE) > T
will be considered as a real post-edition
(hence TGT is useful for the post-editor, and
the corresponding source-TGT pair a positive
example to be labelled as “+17).

Based on this hypothesis, to perform our au-
tomatic re-annotation procedure we: 1) create a
training set Z of positive and negative examples
(i.e. [TGT, correct_translation] pairs, where cor-
rect_translation is either a post-editing or a rewrit-
ten translation); 2) design a feature set capable
to capture different aspects of the s