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Preface

Welcome to the 12th International Conference on “Recent Advances in Natural Language
Processing” (RANLP 2019) in Varna, Bulgaria, 2-4 September 2019. The main objective of
the conference is to give researchers the opportunity to present new results in Natural
Language Processing (NLP) based on modern theories and methodologies.

The Conference is preceded by the First Summer school on Deep Learning in NLP (29-30
August 2019) and two days of tutorials (31 August — 1 September 2019).

The Summer School lectures are given by Kyunghyun Cho (New York University), Marek
Rei (University of Cambridge), Tim Rocktéschel (University College London) and Hinrich
Schiitze (Ludwig Maximilian University, Munich). Training in practical sessions is provided
by Heike Adel (Stuttgart University), Alexander Popov (Institute of Information and
Communication Technologies, Bulgarian Academy of Sciences), Omid Rohanian and Shiva
Taslimipoor (University of Wolverhampton).

Tutorials are given by the following lecturers: Antonio Miceli Barone (University of
Edinburgh) and Sheila Castilho (Dublin City University), Valia Kordoni (Humboldt
University, Berlin), Preslav Nakov (Qatar Computing Research Institute, HBKU), Vlad
Niculae and Tsvetomila Mihaylova (Institute of Telecommunications, Lisbon).

The conference keynote speakers are:
e Kyunghyun Cho (New York University),
e Ken Church (Baidu),
e Preslav Nakov (Qatar Computing Research Institute, HBKU),
e Sebastian Pado (Stuttgart University),
e Hinrich Schiitze (Ludwig Maximilian University, Munich).

This year 18 regular papers, 37 short papers, 95 posters, and 7 demos have been accepted for
presentation at the conference. The selection rate of accepted papers is: regular papers 8,7%,
short papers 26,7%, posters and demo papers — 72%.

The proceedings cover a wide variety of NLP topics, including but not limited to: deep
learning; machine translation; opinion mining and sentiment analysis; semantics and
discourse; named entity recognition; coreference resolution; corpus annotation; parsing and
morphology; text summarisation and simplification; event extraction; fact checking and
rumour analysis; NLP for healthcare; and NLP for social media.

In 2019 RANLP hosts four post-conference workshops on influential NLP topics: the 2nd
Workshop on Human-Informed Translation and Interpreting Technology (HiT-IT 2019), the



12th Workshop on Building and Using Comparable Corpora (BUCC), the Multiling 2019
Workshop: Summarization Across Languages, Genres and Sources as well as an Workshop
on Language Technology for Digital Historical Archives with a Special Focus on Central-,
(South-)Eastern Europe, Middle East and North Africa. The International Conference
Biographical Data in a Digital World 2019 is another event held on 5-6 September 2019 in
parallel with the RANLP post-conference Workshops.

We would like to thank all members of the Programme Committee and all additional
reviewers. Together they have ensured that the best papers were included in the Proceedings
and have provided invaluable comments for the authors.

Finally, special thanks go to the University of Wolverhampton, the Institute of Information
and Communication Technologies at the Bulgarian Academy of Sciences, the Bulgarian
National Science Fund, Ontotext and IRIS.Al for their generous support of RANLP.

Welcome to Varna and we hope that you enjoy the conference!

The RANLP 2019 Organisers
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Abstract

In this paper, we present a relationship
extraction based methodology for table
structure recognition in PDF documents.
The proposed deep learning-based method
takes a bottom-up approach to table recog-
nition in PDF documents. We outline the
shortcomings of conventional approaches
based on heuristics and machine learning-
based top-down approaches. In this work,
we explain how the task of table structure
recognition can be modeled as a cell re-
lationship extraction task and the impor-
tance of the bottom-up approach in rec-
ognizing the table cells. We use Multi-
layer Feedforward Neural Network for ta-
ble structure recognition and compare the
results of three feature sets. To gauge the
performance of the proposed method, we
prepared a training dataset using 250 ta-
bles in PDF documents, carefully select-
ing the table structures that are most com-
monly found in the documents. Our model
achieves an overall accuracy of 97.95%
and an F1-Score of 92.62% on the test
dataset.

1 Introduction

Usage of digital documents have elevated dras-
tically over the last two decades and a need for
automatic information extraction from these doc-
uments has increased. Portable Document For-
mat (PDF) has been introduced by Adobe in 1993.
PDF documents are the most common format of
digital documents and are extensively used in sci-
entific research, finance, enterprises etc. As the
production and usage of PDF documents have in-
creased massively, substantial research work has
focused on automating the methods for docu-
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ment analysis (Correa and Zander, 2017; Kava-
sidis et al., 2018).

Tabular data is a powerful way to represent the
data, among other elements of a document like
charts, images etc. Tables are found in a variety
of classes of digital documents and are very use-
ful to readers to capture, search and compare the
facts, summarizations and draw conclusions. Au-
tomatically extracting the information from the ta-
bles and representing the information in more con-
venient formats for digital consumption add im-
mense value in the field of document understand-
ing (Gilani et al., 2017; Hao et al., 2016).

Tables contain structured data but often are ren-
dered as semi-structured and unstructured on the
digital documents for human consumption. Data
can be represented using a variety of layouts in ta-
bles without losing the meaning of data (Anand
et al., 2019). The layout of tables can vary in
alignment, line and word spaces, column and row
spans, borders and other styling information. De-
pending on the type of documents and authors, the
tables may not contain any border lines and the
structure of the tables will still be understandable
to readers. The data represented by the tables in
itself can have different semantics. For example,
in a table, a column may contain a list of prices
in dollars, indicating that all the values of that col-
umn contain numeric data only. Similar seman-
tic information is embedded in the table rows as
well. Further, a column may have multiple sub-
columns, making the original column to span mul-
tiple table cells horizontally. In rare cases, rows
can also span multiple table cells vertically. All
these characteristics of a table make the automatic
extraction of table information more challenging.

Table extraction is a sub-problem of document
understanding, that deals with information extrac-
tion and representation of tabular data. Extraction
of information from tables in documents has chal-
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lenged the researchers over the last two decades.
An ample amount of research work has been car-
ried out leading to a diverse list of approaches in-
cluding heuristics, rule-engine, and recently ma-
chine learning based proposals.

We believe, generalizing the patterns across the
variety of table layouts in diverse type of doc-
uments, is best solved by machine learning ap-
proach. We propose a bottom-up approach for ta-
ble structure recognition as a cell relation extrac-
tion task between the table text tokens using deep
learning. The way a human understands the ta-
bles can be analogous to the proposed approach.
Often, relation extraction task involves classifica-
tion of an entity pair to a set of known relations,
using documents containing mentions of the en-
tity pair (Kumar, 2017). By considering the table
recognition task as a relationship extraction prob-
lem, we introduce a novel approach suitable for
several document understanding solutions.

The proposed method deals with the basic
building blocks of any table, the table cells. With
this approach, we hope to solve the column and
row spanning, the presence or absence of borders,
and other challenges mentioned earlier. The table
recognition system operates at token-level and in-
volves learning the complex patterns in order to
extract the cell relationships among the table text
tokens using deep learning.

2 Related Work

According to the well-known ICDAR 2013 Table
Competition (Gbel et al., 2013), the problem of
table understanding can be split into table location
detection, table structure recognition, and table in-
terpretation. Each of these sub-problems has at-
tracted a great deal of attention from researchers
and has extensive work.

A peek at the literature shows that many heuris-
tic solutions have been proposed for table struc-
ture recognition. Most of those work consider
the white space and layout analysis. Yildiz et al.
(2005) propose an algorithm to recognize the
columns of a table using distances between lines
and then identify the cells to find the rows. The al-
gorithm makes a few assumptions about the struc-
ture of the tables. The work of Kriipl and Her-
zog (2006) takes a bottom-up approach towards
structure recognition using heuristics but works on
browser-rendered documents. The methodology
aggregates words into columns by considering the

spatial distance of neighboring words.

Klampfl et al. (2014) experimented with two un-
supervised approaches for table recognition and
showcased the importance of spatial distances be-
tween words of a table using vertical and horizon-
tal histogram projection of words coordinates.

Experiments using rule-engine has been pro-
posed by Shigarov (2015), considers the physi-
cal layout of a rendered table, and the logical lay-
out representing the relationships between the ele-
ments of a table, differently. Another work of Shi-
garov et al. (2016) shows promising results in rec-
ognizing the columns and rows of tables by using
the word and line distances, the order of appear-
ance of text chunks. The methodology makes use
of configurable thresholds in its heuristic decision
making.

The heuristic and rule-based solutions make
various assumptions on the visual, type and con-
tent, structural details of tables and the thresholds
used in the algorithms. These assumptions may
not hold on heterogeneous documents and may
even break the system.

Perez-Arriaga et al. (2016) have made use of
both k-nearest neighbor and layout heuristics,
making it a hybrid methodology to recognize the
table structure. The method groups the words
into rows and columns using spatial distances of
words heuristically. Interestingly, the spatial dis-
tance thresholds are learned using the k-nearest
neighbor algorithm. Their work also proposes a
heuristic method to identify the headers of the ta-
ble. Deep learning based semantic segmentation
has been used by Schreiber et al. (2017) where
an image of a document is fed to the neural net-
work to identify the rows and columns of a ta-
ble. However, the work makes use of a heuristic
post-processing step to improve the table structure
recognition.

Clinchant et al. (2018) have made an exten-
sive comparison of three different Machine Learn-
ing approaches to recognize the table structure
in hand-written register books. The method first
recognizes the cell locations and then groups the
cells into rows. The experimentations do a thor-
ough comparison of CREF, a variation of Graph-CN
called Edge-CN, and conventional Logistic Re-
gression algorithms. However, the method works
on already recognized headers and columns of the
table and addresses only row recognition task.

To the best of our knowledge, most of the re-



lated work of table recognition try to identify the
columns and rows of tables first and then locate the
intersections of rows and columns as table cells.
A few heuristics based works have considered the
grouping of words into blocks and then aggregat-
ing blocks into rows and columns. A common
downside of these methodologies is that they fail
to capture the information about rows and columns
spanning multiple table cells. Few of the heuristic
approaches do try to solve this issue however, they
fail to generalize the solution.

We propose a purely bottom-up approach by
building the table structure by recognizing the in-
dividual cells of the table and their location in the
document. The task of recognizing the table cells
is addressed as cell-relation extraction between the
tokens present in the table.

3 Methodology

In this section, we first explain how we modeled
the table structure recognition as a relation extrac-
tion task, then the training data preparation, and
finally describe how the binary relationship clas-
sification is modeled using a Multilayer Feedfor-
ward Neural Network.

3.1 Cell Relationship Extraction in Table
Structure Recognition

Humans will recognize the table structure even
without a need for borders, based on visual clues,
spatial distances and the content of the cells.
These visual clues present in the tables help the
readers to recognize the location of table cells eas-
ily, by bringing all the words of a cell together both
visually and semantically. The proposed method is
based on this idea of identification of cell relation-
ship among the table words. The first step towards
the recognition of rows or columns is the identifi-
cation of table cells and thus the whole process of
table structure recognition is a bottom-up process.
This reasoning is based on the underlying defini-
tion of any table: Unit of a table is a cell, hori-
zontal and vertical alignment of cells forms rows
and columns, respectively. Tokens are generated
by using white-space and new-line characters as
delimiters. In this paper the terms token and word
are used interchangeably.

Relation extraction is a well-known task in Nat-
ural Language Processing, which deals with clas-
sifying whether a given set of n samples have any
of m different relationships. For example, in lin-

guistics, determining whether two or more expres-
sions in a text refer to the same person or thing,
is a relation extraction task. We take the idea of
relation extraction and formulate the task of ta-
ble structure recognition as identifying the cell-
relationship among all the content of individual
cells of a table. When the tokens that are part of
a table are considered as the smallest possible ele-
ments of a table, the relation extraction task will be
to identify whether given two tokens of table text,
belong to the same cell or not. If two tokens be-
long to the same cell, then those two tokens have a
belong-to-same-cell relation. In our experiments,
this task of binary relationship extraction is con-
sidered as a binary classification problem.

For every pair of tokens, the goal of binary rela-
tionship classifier is to determine whether the two
tokens belong to the same cell or not. An impor-
tant thing to note here is that this relationship be-
tween the two tokens is transitive. If a token A is
related to the token B and the token B is related
to the token C, then the token A is related to C.
Hence, we don’t need to generate feature vectors
of all the possible pairs of tokens in a cell to deter-
mine all the tokens of a cell, we only need to make
sure that all the tokens of a cell are connected via
a chain of such transitive dependencies.

Once we predict the belong-to-same-cell rela-
tion between token pairs, we group all the table
tokens into different cells. This is a simple task of
aggregating different token pairs into their respec-
tive cells. Using this data of all the table cells and
the tokens in each of the cells, we can model the
recognition of rows and columns of the table again
as a relation extraction task between the pairs of
table cells themselves. However, in this work, we
concentrate only on cell recognition.

3.2 Data Preparation

Detecting Tables and Training Data
Generation

The detection of the location of tables in PDF doc-
uments is the first task in the process of table ex-
traction and this location information is prerequi-
site to our system. There are several open source
and free of charge tools for detecting table loca-
tions in PDF documents. In our experiments, we
used Tabula to obtain the location details of a table
in the document. The location of a table is repre-
sented by five values, pageNum, (startX, startY)
and (endX, endY). All the coordinates are assigned
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Figure 1: Features used in cell-relation extraction. A) T0O, TO1, T02,...
are the tiles in the first column of tile matrix. C) (x1,y1) and (x2,y2) are the

matrix. B) T0O, T10, T20,...
start and end coordinates of a token. D) sameCell=1,

are the tiles in the first row of tile

Pair of tokens which have sameCell relationship.

E) samceCell=0, Pair of tokens which do not have sameCell relationship.

with respect to a Cartesian plane centered at the
top-left corner of the document page. We used an
off-the-shelf library to get the content in a PDF
document inside a given region, that, along with
the coordinates of characters (x,y), provides the
font style for every character in the document. The
characters along with their coordinates and font
styles are further aggregated into tokens, by using
the white-space and new-line characters as delim-
iters.

With the help of table location and the loca-
tion of individual tokens in the document, only
those tokens which are within the given table loca-
tion are collected by comparing their correspond-
ing coordinate values. Specifically, all the to-
kens, whose x coordinate is between startX and
endX and whose y coordinate is between startY
and endY are collected as table text tokens.

After collecting all the tokens from table text
using the table coordinates, we generate the train-
ing data for the binary relationship classification.
Training data requires a pair of tokens and a tar-
get label indicating whether or not those two to-
kens belong to the same cell or not. Once we have
a list of all the tokens that are part of the table,

for every token, we create a pair of current to-
ken with every token, which is located within an
imaginary rectangular window around the current
token. The size of this imaginary rectangular win-
dow will help us determine the number of pairs of
tokens to generate.

Training sample is a vector of all the features of
a pair of tokens as denoted by 1.

V = [WLF;, W1 F;, sameCell] €))

Where, W1 F; are n features of first token, Wo F;
are n features of second token, and sameCell is the
target class indicating True if the two tokens be-
long to the same cell, False otherwise (see Figure
1).

The target class, sameCell is captured using Da-
toin’s WYSIWYG annotation tool, that allows to
select a sequence of words on the PDF document
and tag those words as a table cell. The training
data is generated using the annotated PDF doc-
uments and the target label sameCell is assigned
accordingly for all the pair of words.

Cell Relationship Features

For each token in the table, we generate a set of lo-
cational and visual features. Use of semantic fea-



tures of tabular data along with the mentioned fea-
tures of this work can be one of the future works
with the intention of improving the accuracy of the
system.

We group the features used in the relation learn-
ing task as four categories as below.

Location and Tile features(LTF). The absolute
location of a token is important evidence to in-
dicate that it is indeed part of the table. Along
with the absolute location, a more generalized po-
sitional information of tokens relative to the docu-
ment makes the contextualization and localization
of tokens easier for a reader.

To capture these relative location and distance
information, for each token in the table, we con-
sider (x,y) of starting of the token, and (x,y) of
the ending of the token in documents (see Figure
1). In order to incorporate contextual information
about a token, we split the entire document page
into an imaginary matrix of tiles of size (n X m)
and for each tile, we assign a tile number. For
each table token, based on its coordinates we find
in which tile the token is located, and we include
its tile number, the row, and columns of the tile as
features of that token (see Figure 1).

Neighborhood features(NF). The position of the
surrounding tokens of a given token indicates the
relative position of a token to its neighbors and
captures the empty spatial distance around a to-
ken. For a given table token, we find a list of n
nearest tokens in all the four directions, left, right,
top and bottom based on the neighboring tokens’
spatial distances with respect to the current token
(see Figure 1). The horizontal and vertical rela-
tive distances between these neighboring tokens
are used as features. The Location and Tile fea-
tures of neighboring tokens are also included as
part of the given token’s feature set. This feature
ensures that there exists a chain of transitive de-
pendency connecting all the tokens of a cell.

Clustering and Alignment features(CAF). A hu-
man reader makes use of the relative closeness
and horizontal and vertical alignments of a given
word, especially when a table is not completely
bordered, to decide which cell the word belongs
to. The proximity of a pair of tokens and the pres-
ence of neighboring tokens for each token in four
different directions captures the information about
the relative closeness.

Among all the neighborhood tokens, we iden-
tify whether a given token is nearer to the left

neighbor or right neighbor. Similarly, we identify
whether that token is nearer to the top neighbor or
bottom neighbor (see Figure 1). We have used the
absence of neighborhood tokens as a set of four
categorical features as well, indicating whether or
not a given token has left, right, top and bottom
neighbor token.

Type and Style features(TSF). Another signifi-
cant visual clue used by humans in determining
whether two words belong to the same cell or not
is the content and the styles used in the words. A
binary feature representing whether a token is a
number or not was used to capture the data simi-
larity within a row or a column. For every pair of
tokens, the comparison of font size and bold styles
are used to indicate whether the two tokens have a
similar font style or not. Use of semantic features
of the content of words could be another important
clue in differentiating the words into cells.

We find that Neighborhood, Clustering and
Alignment features play a critical role in distin-
guishing the tokens that do not belong to the same
cell. All of the feature generation techniques are
based on the coordinates of each of the tokens and
the coordinates of the table itself. The number of
tiles and the number of neighboring tokens are the
parameters which can be tuned to achieve better
table structure recognition accuracy.

3.3 Relation Classification Using Multilayer
Feedforward Neural Network

We have used a Multilayer Feedforward Neural
Network to model the binary relationship classifier
in the experiments. In order to learn the complex
patterns that exist in the table layouts, and gen-
eralize these patterns we decided that deep learn-
ing is the right tool. Working at token-level, we
have huge training data as well and deep neural
networks seemed a right candidate for the task.

The generated training data is fed into the Mul-
tilayer Feedforward Neural Network that uses relu
activation function in the hidden layers and a sig-
moid activation function in the output layer. The
models were trained using Adam optimizer and Bi-
nary cross-entropy loss function as defined in 2
(Zhang, 2019).

Loss = — [ylog(p) + (1 — y)log(1 = p)] (2)

Where y is a binary indicator of correct predic-
tion of a sample, p is the predicted probability for
a training sample.



Feature Parameter

Value

Window size for token pair generation
Number of tiles

Number of left, right, top and bottom neighbor tokens | 1

30 x 30 pixels
20 tile rows x 20 tile columns

Table 1: Word-level feature generation parameters

The input feature vector of N dimension is fed
into the network and the sigmoid output value is
decoded as binary classes, 0 indicating that the two
tokens do not belong to the same cell, 1 indicating
that the two tokens belong to the same cell. In
our experiments, the Multilayer Feedforward neu-
ral network has been built using Keras backed by
Tensorflow, for quick experimentation and devel-
opment.

4 Experiments and Results

4.1 Dataset and Evaluation Metrics

Due to the lack of publicly available datasets that
suit our methodology, we prepared the training
data on our own. The dataset used for the experi-
ments contains a total of 250 PDF documents, hav-
ing one table per document. We ensured that the
tables present in our dataset represent the possi-
ble diverse type of tables that are most commonly
used. Our dataset has tables with and without bor-
ders, with and without column headings, with col-
umn and row spans, with all types of text align-
ments, varying line, and word spacing, and font
styles. All the PDF documents were annotated us-
ing Datoin’s WYSIWYG annotation tool.

Using the parameters listed in Table 1, we cre-
ated approximately 0.3 million training samples
from all the tokens of 250 tables, containing 83
different features. Training samples are split by a
9 to 1 ratio for training and testing, keeping ap-
proximately 30,000 samples for testing.

Training data | Test Data
True Class 60,000 9,000
False Class 2,10,000 21,000
Samples size | 2,70,000 30,000

Table 2: Approximate distribution of target labels

The distribution of target labels in our training
and testing dataset is shown in Table 2. The imbal-
ance in the distribution of classes makes sense be-
cause for every token in the table, within an imag-
inary rectangular window around that token, the

number of tokens that are in the same cell will be
less than the number of tokens that are not in the
same cell.

Measuring how many predicted cells are actual
cells in a given table, would be a more explana-
tory metric for evaluation. However, if one to-
ken among all the tokens of a cell is wrongly pre-
dicted by the relationship classification model as
belonging to a different cell, then measuring the
correctness of this prediction at a cell-level would
be challenging. So we decided to use the accu-
racy of the binary classification model itself as our
evaluation metric. This token-level metric is sim-
pler and straightforward.

4.2 Hyperparameters

We have experimented with the hyperparameters
of the neural network architecture itself. Table 3
defines the set of hyperparameters used in our ex-
periments. In terms of the number of weights, Set-
1 is a simpler network with fewer weights to learn
and Set-2 is a more complex network.

Hyperparameter | Set-1 | Set-2
Number of layers | 4 5
Number of Epochs | 200 300
Batch size 300 100
Learning Rate 0.001 | 0.001

Table 3: Hyperparameters used in Multilayer
Feedforward Neural Network

Feature Set | Features

LTF Location and Tile features

NF_CAF Neighborhood features,
Clustering and
Alignment features

TSF Type and Style features

Table 4: Feature sets used in the experiments

It is important to note here that a smaller batch
size and a higher number of epochs do increase the
F1-Scores and help the model to learn more com-



Feature Set Class Precision Recall F1-Score
LTF True 77.89% 91.33% 83.51%
False 95.13% 8591% 90.29%
LTF & NF_CAF True 93.65% 89.50% 91.07%
False 94.07% 96.10% 95.73%
LTF, NF_.CAF & TSF True 94.10% 90.85% 92.62%
False 97.56% 98.27% 98.15%

Table 5: Results of binary relation classification using Hyperparameter Set-2

plex patterns in the data, at the cost of increased
training time.

4.3 Experiments

We have experimented with many combinations of
feature sets and feature generation parameters and
selected the best three sets of features, as listed in
Table 4. The Neighborhood features and Cluster-
ing and Alignment features are combined into one
set because both the features measure the togeth-
erness of two given table tokens.

In each of these experiments, we have further
experimented with 2 sets of neural network hyper-
parameters listed in Table 3.

4.4 Results and Discussion

All the experiments with the two sets of neural
network hyperparameters listed in Table 3, indi-
cated that Set-2 outperforms the Set-1. So, we
have listed only the results of experiments carried
out using hyperparameters Set-2 in Table 5.

Multiple experiments indicated that neighbor-
hood features have sufficient information to cap-
ture the table structure and the use of visual clues
does increase accuracy. However, one experiment
showed that increasing the number of neighboring
tokens for each token, reduces the Recall measure
of True class. Increased number of False classes
could be a possible explanation for this behavior.
Also, increasing the number of hidden layers or
hidden units of the network did not improve the
accuracy further.

The model achieved an overall accuracy of
97.95% on the test set after training the network
for about an hour. Clearly, the model is predicting
the cell-relationships on unseen token pairs with
very high accuracy. A set of 20 documents con-
taining a variety of tables, which are not part of
training documents, are considered as a validation
set.

The F1-Score of False class is much better than

that of True class. One possible reason for this
could be, the tokens that are not likely to be in the
same cell will clearly have a distinguishable set of
locational and neighboring features. It is clear that
the recall of True class is causing the F1-Score to
be low. Our training dataset has comparably fewer
training samples for the True class this could be a
possible reason for the low recall scores.

Manual verification of individual table cells
with the prediction of the relation classifier shows
that the model is able to generalize the cell recog-
nition task across a variety of table cells. The
cell relationships are identified accurately irre-
spective of the presence of borders lines, column,
and row spans and text alignments. The rela-
tionship among the tokens of a table is learned
by the model based on Neighborhood, Clustering
and Alignment features of the tokens. However,
for a few tokens where the neighborhood features
do not have a clear separation with tokens from
nearby cells, the model combines the tokens from
adjacent cells, producing wrong predictions. Be-
cause of the absence of visual separation among
the tokens of two closely aligned cells, the model
predicts those multiple cells as a single cell.

5 Conclusion and Future Work

By applying the idea of relation extraction in ta-
ble structure recognition task, we have shown the
possibility of high accuracy information extraction
in unstructured documents. Table structure recog-
nition as relation extraction task is a novel ap-
proach in table extraction process and to the best
of our knowledge has never been explored. We
have taken the first step towards this direction and
have proved that a bottom-up approach of cell re-
lationship extraction is the right way towards ta-
ble structure recognition task. We have compared
three sets of features and showcased the signifi-
cance of cognitive features in our experiments.
For a few of the tables, closely aligned adja-



cent cells are wrongly identified as one cell. In-
corporating the semantic features of the content of
the words, especially using Natural Language Pro-
cessing, will enrich the feature vector and should
help the model to do better generalizations. Ex-
ploring the different layout and visual features and
improving the accuracy of the proposed method
could be one of the possible future works.

Building on top of cell-relationship recognition
work, we hope to explore the table structure ex-
traction further. The knowledge of table cells can
be used to build up the rest of the table structures
from bottom-up. We believe that the relation ex-
traction methodologies apply to other document
understanding tasks and we hope to explore them
as well.
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Abstract

Social media plays a great role in news dis-
semination which includes good and bad
news. However, studies show that news,
in general, has a significant impact on
our mental stature and that this influence
is more in bad news. An ideal situation
would be that we have a tool that can help
to filter out the type of news we do not
want to consume. In this paper, we provide
the basis for such a tool. In our work, we
focus on Twitter. We release a manually
annotated dataset containing 6,853 tweets
from 5 different topical categories. Each
tweet is annotated with good and bad la-
bels. We also investigate various machine
learning systems and features and evaluate
their performance on the newly generated
dataset. We also perform a comparative
analysis with sentiments showing that sen-
timent alone is not enough to distinguish
between good and bad news.

1 Introduction

Social media sites like Twitter, Facebook, Reddit,
etc. have become a major source of information
seeking. They provide chances to users to shout
to the world in search of vanity, attention or just
shameless self-promotion. There is a lot of per-
sonal discussions but at the same time, there is
a base of useful knowledgeable content which is
worthy enough to consider for the public inter-
est. For example in Twitter, tweets may report
about news related to recent events such as natural
or man-made disasters, discoveries made, local or
global election outcomes, health reports, financial
updates, etc. In all cases, there are good and bad
news scenarios.

Studies show that news, in general, has a signif-
icant impact on our mental stature (Johnston and
Davey, 1997). However, it is also demonstrated
that the influence of bad news is more significant
than good news (Soroka, 2006; Baumeister et al.,
2001) and that due to the natural negativity bias,
as described by (Rozin and Royzman, 2001), hu-
mans may end up consuming more bad than good
news. Since bad news travels faster than good
news (Kamins et al., 1997; Hansen et al., 2011) the
consumption may increase. This is a real threat to
the society as according to medical doctors and,
psychologists exposure to bad news may have se-
vere and long-lasting negative effects for our well
being and lead to stress, anxiety, and depression
(Johnston and Davey, 1997). (Milgrom, 1981;
BRAUN et al., 1995; Conrad et al., 2002; Soroka,
2006) describe crucial role of good and bad news
on financial markets. For instance, bad news about
unemployment is likely to affect stock markets and
in turn, the overall economy (Boyd et al., 2005).
Differentiating between good and bad news may
help readers to combat this issue and a system that
filters news based on the content may enable them
to control the amount of bad news they are con-
suming.

The aim of this paper is to provide the basis to
develop such a filtering system to help readers in
their selection process. We focus on Twitter and
aim to develop such a filtering system for tweets.
On this respect the contributions of this work are:

e We introduce a new task, namely the distinc-
tion between good and bad news on Twitter.

e We provide the community with a new gold
standard dataset containing 6,893 tweets.
Each tweet is labeled either as good or bad.
To the best of our knowledge, this is the first
dataset containing tweets with good and bad
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labels. The dataset is publicly accessible and
can be used for further research’.

e Provide guidelines to annotate good/bad
news on Twitter.

e We implement several features approaches
and report their performances.

e The dataset covers diverse domains. We also
show out-of-domain experiments and report
system performances when they are trained
on in-domain and tested on out-of-domain
data.

In the following, we first discuss related work.
In Section 3 we discuss the guidelines that we use
to annotate tweets and gather our dataset. Sec-
tion 4 provides description about the data itself.
In Section 5 we describe several baseline systems
performing the good and bad news classification
as well as features used to guide the systems. Fi-
nally, we conclude the paper in Section 7.

2 Related Work

In terms of classifying tweets into the good and
bad classes no prior work exists. The clos-
est studies to our work, are those performing
sentiment classification in Twitter (Nakov et al.,
2016; Rosenthal et al., 2017). Kouloumpis et al.
(2011) use n-gram, lexicon, part of speech and
micro-blogging features for detecting sentiment in
tweets. Similar features are used by Go (2009).
More recently researchers also investigated deep
learning strategies to tackle the tweet level sen-
timent problem (Severyn and Moschitti, 2015;
Ren et al., 2016). Twitter is multi-lingual and
in Mozeti€ et al. (2016) the idea of multi-lingual
sentiment classification is investigated. The task,
as well as approaches proposed for determining
tweet level sentiment, are nicely summarized in
the survey paper of Kharde et al. (2016). How-
ever, Balahur et al. (2010) reports that there is no
link between good and bad news with positive and
negative sentiment respectively.

Thus, unlike related work, we do tweet level
good vs. bad news classification. We also show
that similar to Balahur et al. (2010), there is no ev-
idence that positive sentiment implies good news
and negative sentiment bad news.

'https://github.com/aggarwalpiush/
goodBadNewsTweet

.
L —
The #UCSF 2018 Medical Mgmt of #HIV
#AIDS and #hepatitis conference is under
way! Dr. Diane Havlir closes top ten issues in
HIV medicine: "Though we have miles to go,
we are making progress." Globally, 75% of
persons know status, 21.7M on treatment,
<1M deaths/yr @ VIMAIDSHEP

9:12 AM - 6 Dec 2018 from San Francisco, CA
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Figure 1: Good news tweet
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Indian cities and towns became less clean after Prime Minister
Narendra Modi's Swaach Bharat mission #SwachhBharat
Q2 12:21 PM - Dec 7, 2018 - Guwabhati, India

p-3 Se-other Tweets

Figure 2: Bad news tweet

3 Good vs Bad News

News can be good for one section of society but
bad for other section. For example, win or loss re-
lated news are always subjective. In such cases,
agreement towards news types (good or bad) is
quite low. On the other hand, news related to
natural disaster, geographical changes, humanity,
women empowerment, etc. show very high agree-
ment. Therefore, while defining news types, topi-
cality plays an important role.

We consider news as good news if it relates to
low subjective topics and includes positive over-
tones such as recoveries, breakthroughs, cures,
wins, and celebrations (Harcup and ONeill, 2017)
and also beneficial for an individual, a group or
society. An example of good news is shown in
Figure 1. In contrary to that, the bad news is de-
fined as when it relates to the low subjective topic
and include negative overtones such as death, in-
jury, defeat, loss and is not beneficial for an in-
dividual, a group or society. An example of bad
news is shown in Figure 2. Based on these defini-
tions/guidelines we have gathered our dataset (see
next Section) of tweets containing the good and
bad labels.

4 Dataset

Data collection To collect tweets for annotation,
we first choose low subjective ten topics which
can be divided into five different categories. Then,
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Category Topics Collected Annotated
Ebola 892 852

Health Hiv 663 630
. Hurricane Harvey 2,073 1,997

Natural Disaster Hurricane Irma 795 772
Terrorist Attack Macerata oohmm 668 625
Stockholm Attack 743 697

AGU17 652 592

Geography and Env. ¢ 0 hh Bharat 21 21
. 10T 627 602
Science and Edu. Nintendo 73 65
Total 7,212 6,853

Table 1: Categories, their topics, and distributions for the dataset generation.

we retrieve the examples from Twitter using its
API. Next, we discard non-English tweets and
re-tweets. We also remove duplicates based on
lower-cased first four words of tweets keeping
only the first one. Thereafter, we filter only those
tweets which can be regarded as news by using an
in house SVM classifier (Aggarwal, 2019). This
classifier is trained on tweets annotated with the
labels news and not news. We use this classifier to
remove not news tweets from the annotation task?.
We select only tweets where the classifier predic-
tion probability is greater than or equal to 80%. In
Table 1, we provide information about the topics
and categories as well as statistics about the col-
lected tweets that will be used for annotation (col-
umn collected).

Data Annotation For data annotation, we use
the figure-eight crowdsourcing service*. Before
uploading our collected examples, we carried out a
round of trial annotation of 300 randomly selected
instances from our tweet collection corpus. The

aim of the trial annotation was

e to ensure the newsworthiness quality of our
collected examples.

e to create test questions to ensure the qual-
ity of the annotators, for the rest of the data,
which was carried out using crowdsourcing.

e to test our guidelines described in Section 3.

’https://www.tweepy.org

3Since we want humans to annotate tweets as good and
bad news we apply this approach to filter tweets that are not
news at all and so avoid our annotators spending valuable
time on annotating tweets that are not our target.

*nttps://www.figure-eight.com/

We ask three annotators” to classify the selected
examples into good and bad news. We also al-
lowed a third category cannot say. We computed
Fleiss’ kappa Fleiss (1971) on the trial dataset for
the three annotators. The value is 0.605 which in-
dicates rather a high agreement. We used 247 in-
stances agreed by all the three annotators as test
questions for the crowdsourcing platform.

During the crowd annotation, we showed each
annotator 5 tweets per page and paid 3 US Cents
per tweet. For maintaining quality standards, in
addition to the test questions, we applied a re-
striction so that annotation could be performed
only by people from English speaking countries.
We also made sure that each annotation was per-
formed maximum by 7 annotators and that an an-
notator agreement of min. 70% was met. Note if
the agreement of 70% was met with fewer anno-
tators then the system would not force an anno-
tation to be done by 7 annotators but would fin-
ish earlier. The system requires 7 annotators if
the minimum agreement requirement is not met.
We only choose instances that are annotated by at-
least 3 annotators. In addition to the good and bad
news categories we also ask annotators to manda-
tory provide their confidence score (range between
0-100%) for the label they have annotated®. We
discarded all the tweets where we did not have
at least 3 annotators with each having min. 50%
confidence value. We also discarded tweets that
are annotated by less than three annotators. We

S All are post-graduate students who are fluent in English
and use Twitter to post information on a daily basis.

SWe found this strategy better than providing the option
cannot say and later allowed us to discard annotations where
the confidence score was less than 50%.
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use a total 7,212 tweets to annotate. After all fil-
terings, we remained with 6,853 instances which
were classified as good and bad news. Topic-wise
number of successful annotations are displayed in
the fourth column of Table 1.

Inter Annotator Agreement To calculate
agreement between the annotators of the crowd-
sourcing annotation results, we select the top
three confident annotator labels for each sample.
Based on this, we record an agreement of 0.614
as Fleiss’ Kappa (Fleiss, 1971) score indicating a
good agreement among the annotators. We also
claim stability in our annotation task because of
the score similarity with that of trail annotation.

5 Method

We experiment with several machine learning ap-
proaches and features. Before using the tweets in
decision making, we also apply a simple prepro-
cessing on them. In the following, we briefly out-
line these.

5.1 Preprocessing

We use the ArkTokenizer (Gimpel et al., 2011) to
tokenize the tweets. In addition to tokenization,
we do lowercasing and remove digits if available
in text.

5.2 Features

We extract nine features for each tweet and di-
vide them into Structural, TF-IDF and Embed-
dings features.

5.2.1 Structural features

Emoticons: We extract all the emoticons from
the training data and use them as a binary feature,
i.e. does a tweet contain a particular emoticon or
not.

Interjections: We use existing list of interjec-
tions’ and use them similar to Emoticons as binary
feature.

Lexicons: We use existing positive and negative
lexicons® and use them as a binary feature.

"https://www.vidarholen.net/contents/
interjections/

$http://www.cs.uic.edu/~1iub/FBS/
sentiment-analysis.html

Sentiment: We use the textblob® tool to com-
pute sentiment score over each tweet. The score
varies between -1 (negative) to 1 (positive).

POS-Tag: This feature includes 36 different
pos-tags (uni-gram) and are used as binary fea-
tures.

Significant terms: Using tf-idf values we also
extract the top 300 terms (uni-gram and bi-gram,
300 in each case) from the training data and use
them as binary features. Note, we extract for good
and bad news separate uni-grams and bi-grams.

Tweet Characteristics: This feature contains
tweet specific characterstics such as the number
of favorite counts, tweet replies count and number
of re-tweets.

5.2.2 TF-IDF

In this case, we simply use the training data to cre-
ate a vocabulary of terms and use this vocabulary
to extract features from each tweet. We use tf-idf
representation for each vocabulary term.

5.2.3 Embeddings

Finally, we also use fasttext based embedding
(Mikolov et al., 2018) vectors which are trained
on common crawl having 600 billion tokens.

5.3 Classifiers

We investigate 8 classifiers for our task including
Multi-Layer Perceptron (MLPC), Support Vector
Machine with linear (LSVC) and rbf (SVC) ker-
nel, K Nearest Neighbour (KNN), Logistic Re-
gression (LR), Random Forest (RF), XGBoost
(XGB) and Decision Tree (DT). In addition, we
also fine-tune BERT-base model (Devlin et al.,
2018). Each classifier, except the BERT, has been
trained and tested on each possible combination of
the three feature types.

6 Results

Overall results We performed a stratified 5-
fold cross-validation. We evaluate each result-
ing model on a held-back development dataset
containing 264 good news postings and 764 bad
news ones. The 5-fold cross validation has been
performed on the training data containing 4,332
bad news and 1,493 good news instances. For

‘https://textblob.readthedocs.io/en/
dev/
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Feature set SVC XGB LSVC KNN RF MLPC DT LR

Structural 78 .78 a7 a7 .17 .63 7478
Embeddings .88 .86 .87 .86 .85 .85 72 87
TF-IDF .86 .85 .86 83 .84 .84 83 .87
Structural + Embeddings .86 .85 .87 79 .86 .86 78 .87
Structural + TF-IDF .87 .87 .87 .80 .87 .86 .81 .87
Embeddings + TF-IDF .89 .87 .89 .87 .88 .87 .81 .89
ALL .88 .88 .89 .82 .87 .86 .82 .88

BERT-base model with its pre-trained embedding features: .92

Table 2: F(macro) scores of different classifiers on different feature types evaluated on the test data. Multi-
Layer Perceptron (MLPC), Support Vector Machine with linear (LSVC) and rbf (SVC) kernel, K Nearest
Neighbour (KNN), Logistic Regression (LR), Random Forest (RF), XGBoost (XGB) and Decision Tree

(DT).

each model, we use grid-search method to se-
lect the hyper-parameters with best model’s effi-

ciency. The results reported are those obtained on Bad news | Good news
the test data and are summarized in Table 2. Over- fake services

all we see that the performances of the classifiers racism cured

are all highly satisfactory. Among the more tra- fox resistant
ditional approaches, the best performance is ob- attack energy
tained through SVC, LSVC, and LR. We see also migrants support
that these approaches work best when embeddings fears arrested

along with tf-idf features are used, although LSVC
achieves the same results when all features are
used. However, the best performance is achieved
with the BERT-base model leading to 92% F}
score. We computed also significance test using
paired t-test between BERT and more traditional
machine learning approaches'’. However, after
Bonferroni correction (p < 0.007) we found no

Table 3: Top uni-grams from the good and bad
news significant term lists.

significant difference between BERT and the other 0.71

systems. 0.7 [] b
Structural feature analysis We also evaluate g 0.6l ]
the structural features of the task independently s

(Figure 3). For this, we use the SVC classifier as it E

is one of the best performing traditional methods. 0.5 0.48 i
From the figure, we see that the significant term 0.44 43 043 043 0.43
feature gives the best performance. The difference 04l ﬂ ﬂ ﬂ |
to the other features is greater than the 23% F} T T e e o o
score. The differences are also significant after & %@% .\\00‘\ &\\o 4}*000' é\é‘& Q'&Q
Bonferroni correction (p < 0.008). In Table 3 . @‘“ W &I &é\?’

we list some frequent uni-grams from the signif- g\oé‘\ & N

icant good and bad term lists. From the table, we
see that the terms are certainly good indicators for
distinguishing between the two classes.

1%We always use the best result for every system.

Figure 3: Structural features’ performance using
the SVM classifier evaluated on the test set.
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Figure 4: Out-of-domain performance of different
systems.

Sentiment for good-vs-bad news We also
tested whether sentiment score can predict good
vs. bad news as Naveed et al. (2011) found a re-
lationship between these two. For this, we use the
textblob sentiment scorer and classify any tweet
as good news when its sentiment score is greater
than O otherwise bad. Using this strategy we could
only achieve an F score of 55%. This shows that
tackling the good/bad news classification task us-
ing sentiment scores is not appropriate. This also
confirms the findings of Balahur et al. (2010).

Out-of-domain experiments We also investi-
gate how stable the models are when they are
trained on in-domains and tested on out-of-domain
data. For this purpose, we split our dataset into a
training set consisting of all examples except in-
stances belonging to the health category. We use
four of the best-performing systems (BERT, SVC,
LSVC, and LR) to train on this training set. The
resulting models are tested on the held-out health
data. Results are shown in Figure 4. From Figure
4 we see that BERT is stable and achieve an F}
score of 84%. The performance of the other sys-
tem drop by a great margin to the max. 67% F}
score. From this, we can conclude that BERT is a
better system to use for good-vs-bad Twitter news
classification.

Detailed analysis on BERT Our overall but also
the out-of-domain experiments show that BERT is
outperforming the more traditional machine learn-
ing approaches. On the overall (1,028 testing in-
stances) results, BERT fails only to classify 63
cases correctly. Using t-SNE distribution (van der
Maaten and Hinton, 2008), we analyse BERT’s

12th layer embedding vectors (having 300 dimen-
sions) for random 100 test points (Figure 5). The
analysis shows that BERT can classify semantics
of good and bad news instances correctly even the
instances are in proximity. From Figure 5, we see
that mostly outliers are misclassified.

7 Conclusion and Future Work

In this paper, we presented a new dataset having
6,853 tweet post examples annotated with good
and bad news labels. This dataset will be publicly
available for the research community. We also pre-
sented a comparative analysis of supervised clas-
sification methods. We investigated nine differ-
ent feature types and 8 different machine learning
classifiers. The most robust result in our analysis
was the contribution of the BERT-base model in
in-domain but also in out-of-domain evaluations.
Among structural features, significant terms sig-
nificantly outperform the rest. We also showed
that sentiment scores are not appropriate to clas-
sify good-vs-bad news.

In our future work, we plan to expand our inves-
tigation by including other features. We also plan
to propose this model for the good-bad classifica-
tion of news articles.
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Abstract

The quality of Neural Machine Translation
(NMT), as a data-driven approach, mas-
sively depends on quantity, quality and
relevance of the training dataset. Such
approaches have achieved promising re-
sults for bilingually high-resource scenar-
ios but are inadequate for low-resource
conditions. This paper describes a round-
trip training approach to bilingual low-
resource NMT that takes advantage of
monolingual datasets to address training
data scarcity, thus augmenting transla-
tion quality. We conduct detailed experi-
ments on Persian-Spanish as a bilingually
low-resource scenario. Experimental re-
sults demonstrate that this competitive ap-
proach outperforms the baselines.

1 Introduction

Neural Machine Translation (NMT) has made
considerable progress in recent years. However,
to achieve acceptable translation output, large sets
of aligned parallel sentences are required for the
training phase. Thus, as a data-driven paradigm,
the quality of NMT output strongly depends on the
quality as well as quantity of the provided train-
ing data (Bahdanau et al., 2015). Unfortunately,
in practice, collecting such parallel text by human
labeling is very costly and time consuming (Ah-
madnia and Serrano, 2017).

Low-resource languages are those that have
fewer technologies and datasets relative to some
measure of their international importance. The
biggest issue with low-resource languages is
the extreme difficulty of obtaining sufficient re-
sources. Natural Language Processing (NLP)
methods that have been created for analysis of
low-resource languages are likely to encounter
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similar issues to those faced by documentary and
descriptive linguists whose primary endeavor is
the study of minority languages. Lessons learned
from such studies are highly informative to NLP
researchers who seek to overcome analogous chal-
lenges in the computational processing of these
types of languages.

Assuming that large monolingual texts are
available, an obvious next step is to leverage
these texts to augment the NMT systems’ per-
formance. Various approaches have been devel-
oped for this purpose. In some approaches, target
monolingual texts are employed to train a Lan-
guage Model (LM) that is then integrated with
MT models trained from parallel texts to enhance
translation quality (Brants et al., 2007; Giilcehre
et al., 2015). Although these approaches utilize
monolingual text to train a LM, they do not ad-
dress the shortage of bilingual training datasets.

In other approaches, bilingual datasets are au-
tomatically generated from monolingual texts by
utilizing the Translation Model (TM) trained on
aligned bilingual text; the resulting sentence pairs
are used to enlarge the initial training dataset
for subsequent learning iterations (Ueffing et al.,
2008; Sennrich et al., 2016). Although these ap-
proaches enlarge the bilingual training dataset,
there is no quality control and, thus, the accuracy
of the generated bilingual dataset cannot be guar-
anteed (Ahmadnia et al., 2018).

To tackle the issues described above, we ap-
ply a new round-tripping approach that incorpo-
rates dual learning (He et al., 2016) for automatic
learning from unlabeled data, but transcends this
prior work through effective leveraging of mono-
lingual text. Specifically, the round-tripping ap-
proach takes advantage of the bootstrapping meth-
ods including self-training and co-training. These
methods start their mission from a small set of
labelled examples, while also considering one or

Proceedings of Recent Advances in Natural Language Processing, pages 18-24,
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two weak translation models, and makes improve-
ment through the incorporation of unlabeled data
into the training dataset.

In the round-tripping approach, the two transla-
tion tasks (forward and backward) together make
a closed loop, i.e., one direction produces infor-
mative feedback for training the TM for the other
direction, and vice versa. The feedback signals—
which consist of the language model likelihood of
the output model and the reconstruction error of
the original sentence—drive the process of itera-
tive updates of the forward and backward TMs.

For the purpose of evaluation, we apply this ap-
proach to a bilingually low-resource language pair
(Persian-Spanish) to leverage monolingual data in
a more effective way. By utilizing the round-
tripping approach, the monolingual data play a
similar role to the bilingual data, effectively re-
ducing the requirement for parallel data. In par-
ticular, each model provides guidance to the other
throughout the learning process. Our results show
that round-tripping for NMT works well in the
Persian-Spanish low-resource scenario. By learn-
ing from monolingual data, this approach achieves
comparable accuracy to a NMT approach trained
from the full bilingual data for the two translation
tasks (forward and backward).

The remainder of this paper is organized as fol-
lows; Section 2 presents the previous related work.
In Section 3, we briefly review the relevant mathe-
matical background of NMT paradigm. Section 4
describes the round-trip training approach. The
experiments and results are presented in Section 5.
Conclusions and future work are discussed in Sec-
tion 6.

2 Related Work

The integration of monolingual data for NMT
models was first proposed by (Giilgehre et al.,
2015), who train monolingual LMs independently,
and then integrate them during decoding through
rescoring of the beam (adding the recurrent hid-
den state of the LM to the decoder state of the
encoder-decoder network). In this approach, an
additional controller mechanism controls the mag-
nitude of the LM signal. The controller parameters
and output parameters are tuned on further paral-
lel training data, but the LM parameters are fixed
during the fine tuning stage.

Jean et al. (2015) also report on experiments
with reranking of NMT output with a 5-gram LM,

19

but improvements are small. The production of
synthetic parallel texts bears resemblance to data
augmentation techniques, where datasets are often
augmented with rotated, scaled, or otherwise dis-
torted variants of the (limited) training set (Rowley
et al., 1998).

A similar avenue of research is self-training
(McClosky et al., 2006). The self-training ap-
proach as a bootstrapping method typically refers
to the scenario where the training dataset is en-
hanced with training instances with artificially
produced output labels (whereas we start with neu-
ral network based output, i.e., the translation, and
artificially produce an input). We expect that this
is more robust towards noise in MT.

Hoang et al. (2018) showed that the quality of
back translation matters and proposed an iterative
back translation, in which back translated data are
used to build better translation systems in forward
and backward directions. These, in turn, are used
to reback translate monolingual data. This process
is iterated several times.

Improving NMT with monolingual source data,
following similar work on phrase-based SMT
(Schwenk, 2008), remains possible future work.
Domain adaptation of neural networks via contin-
ued training has been shown to be effective for
neural language models by (Ter-Sarkisov et al.,
2015).

Round-tripping has already been utilized in
SMT by (Ahmadnia et al., 2019). In this work,
forward and backward models produce informa-
tive feedback to iteratively update the TMs during
the training of the system.

3 Neural Machine Translation

NMT consists of an encoder and a decoder. Fol-
lowing (Bahdanau et al., 2015), we adopt an
attention-based encoder-decoder model, i.e., one
that selectively focuses on sub-parts of the sen-
tence during translation. Consider a source sen-
tence X = {z1,z2,...,x7} and a target sentence
Y = {y1,v2,...,yr}. The problem of translation
from the source language to the target is solved
by finding the best target language sentence ¢ that
maximizes the conditional probability:

y = argmax P(y|z) (1)

y

The conditional word probabilities given the
source language sentence and preceding target lan-
guage words compose the conditional probability



as follows:

1

P(ylz) = Hp(yi\yq,ﬂﬁ)
i=1

2)

where y; is the target word emitted by the decoder
atstepiand y<, = (Y1, Y2, .-, Yi—1)-

To compose the model, both the encoder and de-
coder are implemented employing Recurrent neu-
ral Networks (RNNs) (Rumelhart et al., 1986), i.e.,
the encoder converts source words into a sequence
of vectors, and the decoder generates target words
one-by-one based on the conditional probability
shown in the Equation (2). More specifically, the
encoder takes a sequence of source words as inputs
and returns forward hidden vectors E;(l <j<J)
of the forward-RNN:

— —
hj = f(hj-1,)
Similarly, we obtain backward hidden vectors

}Tj(l < j < J) of the backward-RNN, in the re-
verse order.

3)

;?j f(;ij—lv .’E)

These forward and backward vectors are con-

catenated to make source vectors hj(1 < j < J)
based on Equation (5):

“4)

%

hy = [y ] (5)

The decoder takes source vectors as input and
returns target words. It starts with the initial hid-
den vector h; (concatenated source vector at the
end), and generates target words in a recurrent
manner using its hidden state and an output con-
text.

The conditional output probability of a target
language word y; is defined as follows:

P(yily<i, x) = softmax (f(di,yi—1,¢:))  (6)

where f is a non-linear function and d; is the hid-
den state of the decoder at step i:

di = 9(di—1,Yi-1,¢) (7)

where ¢ is a non-linear function taking its previ-
ous state vector with the previous output word as
inputs to update its state vector. c¢; is a context
vector to retrieve source inputs in the form of a
weighted sum of the source vectors h;, first tak-
ing as input the hidden state d; at the top layer of
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a stacking LSTM (Hochreiter and Schmidhuber,
1997). The goal is to derive a context vector ¢;
that captures relevant source information to help
predict the current target word y;.

While these models differ in how the context
vector ¢; is derived, they share the same subse-
quent steps. ¢; is calculated as follows:

J
= ajh;
j=1

where h; is the annotation of source word x; and
oy j is a weight for the 4t source vector at time
step t to generate y;:

®)

exp (score (d;, hj))
Z}']/:1 exp (score (di, hjr))

The score function above may be defined in a va-
riety of ways as discussed by Luong et al. (2015).
In this paper, we denote all the parameters to be
optimized in the neural network as © and denote C'
as the dataset that contains source-target sentence
pairs for the training phase. Hence, the learning
objective is to seek the optimal parameters ©*:

at7] -

&)

I
O = arg max Z Z log P(yt|y<t, z; ©)
(z.y)€C (i=1)
(10)

4 Method Description

Round-tripping involves two related translation
tasks: the outbound-trip (source-target direction)
and the inbound-trip (target-source direction). The
defining traits of these forward and backward tasks
are that they form a closed loop and both pro-
duce informative feedback that enables simultane-
ous training of the TMs.

We assume availability of: (1) monolingual
datasets (C'x and Cy) for the source and target
languages; and (2) two weak TMs (emergent from
training on initial small bilingual corpora) that
bidirectionally translate sentences from source and
target languages. The goal of the round-tripping
approach is to augment the accuracy of the two
TMs by employing the two monolingual datasets
instead of a bilingual text.

We start by translating a sample sentence in one
of the monolingual datasets, as the outbound-trip
(forward) translation to the target language. This
step generates more bilingual sentence pairs be-
tween the source and target languages. We then



translate the resulting sentence pairs backward
through the inbound-trip translation to the original
language. This step finds high-quality sentences
throughout the entirety of the generated sentence
pairs. Evaluating the results of this round-tripping
approach will provide an indication of the qual-
ity of the two TMs, and will enable their enhance-
ment, accordingly. This process is iterated for sev-
eral rounds until both TMs converge.

We define K x as the number of sentences in
Cx and Ky as the number of sentences in Cly.
We take P(.|S;©xy) and P(.|S; Oy x) to be two
neural TMs in which © xy and Oy x are supposed
as their parameters. We also assume the existence
of two LMs for languages X and Y, trained in
advance either by using other resources or using
the monolingual data (C'x and Cy). Each LM
takes a sentence as input and produces a real num-
ber, based on target-language fluency (LM correct-
ness) together translation accuracy (TM correct-
ness). This number represents the confidence of
the translation quality of the sentence in its own
language.

We start with a sentence in C'x and denote
Ssample as a translation output sample. This step
has a score as follows:

Rl = LMY(Ssample) (11)

The R, score indicates the well-formedness of the
output sentence in language Y.

Given the translation output Sgumple, We em-
ploy the log probability value of s recovered from
the Sgample as the score of the construction:

Ry = 1Og P(S|Ssample; @YX) (12)

We then adopt the LM score and construction
score as the total reward score:

Rtotal = aR1 + (1 — O[)RQ (13)

where « is an input hyper-parameter.

The total reward score is considered a function
of S, Ssamplev O xy and Oy x. To maximize this
score, we optimize the parameters in the TMs uti-
lizing Stochastic Gradient Descent (SGD) (Sutton
et al., 2000). According to the forward TM, we
sample the s44mpe and then compute the gradi-
ent of the expected score (E|[Ryotq1]), where E is
taken from Sgqpie:

v@xy E [Rtotal] =

E[RtotaZVGXy IOg P(Ssample’S; ®XY)] (14)

v@yx E [Rtotal] =

E[(l — Oé)V@YX 10g P(S|Ssample; @YX)] (15)

Algorithm 1 shows the round-tripping procedure.

Algorithm 1 Round-trip training for NMT
Input: Monolingual dataset in source and target
languages (Cx and Cy), initial translation
models in outbound and inbound trips (O xy
and Oy x), language models in source and tar-
get languages (LM x and L My), trade-off pa-
rameter between 0 and 1 («), beam search size
(IV), learning rates (1, and 72 ¢).
1: repeat:
2:t=t+1.
3: Sample sentences Sy and Sy from Cx and
Cy respectively.
4: // Update model starting from language X.
Set S = Sx.
5: // Generate top-N translations using © xy .
Generate sentences Ssample, 15 ---
6: forn=1,..., N do
7. // Set LM score for n'* sampled sentence.
Rl,n = LMY(Ssample,n)-
8: // Set TM score for n'* sampled sentence.
RQ,n = lOgP(S‘Ssample,n; @YX)-
9: // Set total score of n'"* sampled sentence.
R, =aRin+ (1 —a)Ryy.
10: end for
11: // SDG computing for © xy.
v@xyE [Riotal] = % 27]1\[:1
[anexy log P(Ssample,n S; @XY)]-
12: // SDG computing for Oy x.
VeYXE [Rtotal] = % Zfzvzl
[(1 - a)v@yx log P(S|Ssample,n§ @YX)]-
13: // Model update. R
Oxy < Oxy + 71,tVeoyy E[Riotall-
14: // Model update. R
Oyx + Oyx +72:Vey x E[Riotall-
15: // Update model starting from language Y .
Set S = Sy.
16: Go through lines 5 — 14 symmetrically.
17: until convergence.

) Ssample,N-

To achieve reasonable translations we use beam
search. We generate N-best sample translations
and use the averaged value on the beam search re-
sults to estimate the true gradient value.'

"We used beam sizes 500 and 1000.



S Experiments and Results

We apply the round-trip training approach to bilin-
gual Persian-Spanish translation, and evaluate the
results. We used the Persian-Spanish small bilin-
gual corpora from the Tanzil corpus (Tiedemann,
2012),> which contains about 50K parallel sen-
tence pairs. We also used 5K and 10K parallel sen-
tences extracted from the OpenSubtitles2018 col-
lection (Tiedemann, 2012), as the validation and
test datasets, respectively. Finally, we utilized 70K
parallel sentences from the KDE4 corpus (Tiede-
mann, 2012),4 as the monolingual data.

We implemented the DyNet-based model ar-
chitecture (Mi et al., 2016) on top of Mantis
(Cohn et al., 2016) which is an implementation of
the attention sequence-to-sequence (Seq-to-Seq)
NMT. For each language, we constructed a vo-
cabulary with the most common 50K words in
the parallel corpora, and OOV words were re-
place with a special token <UNK>. For mono-
lingual corpora, sentences containing at least one
OOV word were removed. Additionally, sentences
with more than 80 words were removed from the
training set.> The encoders and decoders make
use of Long Short-Term Memory (LSTM) with
500 embedding dimensions, 500 hidden dimen-
sions. For training, we used the SGD algorithm
as the optimizer. The batch size was set as 64
with 20 batches pre-fetched and sorted by sentence
lengths.

Below we compare the system based on
the optimized round-trip training (round-tripping)
through two translation systems; the first one is the
standard NMT system (baseline), and the second
one is the system that generates pseudo bilingual
sentence pairs from monolingual corpora to assist
the training step (self-training). For the pseudo-
NMT we used the trained NMT model to generate
pseudo bilingual sentence pairs from monolingual
text, removed sentences with more than 80 words
(as above), merged the generated data with the
original parallel training data, and then trained the
model for testing. Each of the translation systems
was trained on a single GPU until their perfor-
mances stopped improving on the validation set.
This approach required an LM for each language.

*http://opus.nlpl.eu/Tanzil.php

3http://opus.nlpl.eu/OpenSubtitles-v2018.php

*http://opus.nlpl.ew/KDE4-v2.php

>The average sentence length is 47; an upper bound of 80
ensured exclusion of non-sentential and other spurious mate-
rial.
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We trained an RNN-based LM (Mikolov et al.,
2010) for each language using its corresponding
monolingual corpus. The LM was then fixed and
the log-likelihood of a received message was uti-
lized for scoring the TM.

To start the round-trip training approach, the
systems are initialized using warm-start TMs
trained from initial small bilingual data. The goal
is to see whether the round-tripping augments the
baseline accuracy. We retrain the baseline systems
by enlarging the initial small bilingual corpus: we
add the optimized generated bilingual sentences to
the initial parallel text. The new enlarged transla-
tion system contains both the initial and optimized
generated bilingual text. For each translation task,
we train the round-trip training approach.

We employ Bilingual Evaluation Understudy
(BLEU) (Papineni et al., 2001) (using multi-
bleu.perl script from Moses) as the evaluation
metric. BLEU is calculated for individual trans-
lated segments by comparing them with a data set
of reference translations. The scores of each seg-
ment, ranging between 0 and 100, are averaged
over the entire evaluation dataset to yield an es-
timate of the overall translation quality (higher is
better).

The baseline systems for Persian-Spanish are
first trained, while our round-trip method conducts
joint training. We summarize the overall perfor-
mances in Table 1:

NMT systems | Pe-Es Es-Pe
baseline 31.12  29.56
self-train 29.29 27.36
round-trip 3491 3343

Table 1: BLEU scores for Persian-Spanish trans-
lation task and vice-versa.

As seen in Table 1, the round-tripping systems
outperform the others in both translation direc-
tions. In Persian to Spanish translation, the round-
tripping system outperforms the baseline by about
3.87 BLEU points and also outperforms the self-
training system by about 6.07 BLEU points. In the
back translation from Spanish to Persian, the im-
provement of the round-tripping outperforms both
the baseline and self-training by about 3.79 and
5.62 BLEU points, respectively.

These results demonstrate the effectiveness of
the round-trip training approach. The baseline sys-
tems outperform the self-training ones in all cases



because of the noise in the generated bilingual sen-
tences used by self-training. Upon further exami-
nation, this result might have been expected given
that the aim of round-trip training is to optimize
the generated bilingual sentences by selecting the
high-quality sentences to get better performance
over self-training systems. When the size of bilin-
gual corpus is small, the round-tripping makes a
larger improvement. This outcome is an indication
that round-trip training approach makes effective
use of monolingual data.

Table 2 shows the performance of the base-
line alongside of the enlarged translation systems,
where the latter leverages the training text of the
baseline and the round-tripping systems as well.

NMT systems | Pe-Es Es-Pe
baseline 31.12  29.56
enlarged 3421 33.03

Table 2: BLEU scores comparing the baseline and
enlarged NMT systems for Persian-Spanish trans-
lation task and vice-versa.

As seen in Table 2, the BLEU scores of the en-
larged NMT systems are better than the baseline
ones in both translation directions. The enlarged
system in the Persian-Spanish direction outper-
forms the baseline by about 3.47 BLEU points,
and outperforms the baseline by about 3.09 BLEU
points in the back translation. The improvements
show that the optimized round-trip training system
is promising for tackling the training data scarcity
and it also helps to enhance translation quality.

6 Conclusions and Future Work

In this paper, we applied a round-tripping ap-
proach based on a retraining scenario to tackle
training data scarcity in NMT systems. An excit-
ing finding of this work is that it is possible to learn
translations directly from monolingual data of the
two languages. We employed a low-resource lan-
guage pair and verified the hypothesis that, re-
gardless of the amount of training resources, this
approach outperforms the baseline. The results
demonstrate that round-trip training is promising
and better utilizes the monolingual data.

Many Artificial Intelligence (Al) tasks are natu-
rally in dual form. Some examples are: (1) speech
recognition paired with text-to-speech; (2) image
captioning paired with image generation; and (3)
question answering paired with question gener-
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ation. Thus, a possible future direction would
be to design and test the round-tripping approach
for more tasks beyond MT. We note that round-
tripping is not restricted to two tasks only. Indeed,
the key idea is to form a closed loop so feedback
signals are extracted by comparing the original in-
put data with the final output data. Therefore, if
more than two associated tasks form a closed loop,
this approach can applied in each task for improve-
ment of the overall model, even in the face of un-
labeled data.
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Abstract

Phrases play a key role in Machine Trans-
lation (MT). In this paper, we apply a
Long Short-Term Memory (LSTM) model
over conventional Phrase-Based Statistical
MT (PBSMT). The core idea is to use
an LSTM encoder-decoder to score the
phrase table generated by the PBSMT de-
coder. Given a source sequence, the en-
coder and decoder are jointly trained in
order to maximize the conditional prob-
ability of a target sequence. Analyti-
cally, the performance of a PBSMT sys-
tem is enhanced by using the conditional
probabilities of phrase pairs computed by
an LSTM encoder-decoder as an addi-
tional feature in the existing log-linear
model. We compare the performance of
the phrase tables in the PBSMT to the
performance of the proposed LSTM and
observe its positive impact on translation
quality. We construct a PBSMT model us-
ing the Moses decoder and enrich the Lan-
guage Model (LM) utilizing an external
dataset. We then rank the phrase tables
using an LSTM-based encoder-decoder.
This method produces a gain of up to 3.14
BLEU score on the test set.

1 Introduction

The three most essential components of a Sta-
tistical Machine Translation (SMT) system are:
(1) Translation Model (TM); (2) Language Model
(LM); and (3) Reordering Model (RM). Among
these models, the RM plays an important role in
Phrase-Based SMT (PBSMT) (Marcu and Wong,
2002; Koehn et al., 2003), and it still remains
a major focus of intense study (Kanouchi et al.,
2016; Du and Way, 2017; Chen et al., 2019).
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The RM is required since different languages
exercise different syntactic ordering. For instance,
adjectives in English precede the noun, while they
typically follow the noun in Spanish (the cloudy
sky versus el cielo nublado); in Persian the verb
precedes the subject, and in Chinese the verb
comes last. As a result, source language phrases
cannot be translated and placed in the same order
in the generated translation in the target language,
but phrase movements have to be considered. This
is the role of the RM. Estimating the exact distance
of movement for each phrase is too sparse; there-
fore, instead, the lexicalized RM (Koehn, 2009)
estimates phrase movements using only a few re-
ordering types, such as a monotonous order, where
the order is preserved, or a swap, when the order
of two consecutive source phrases is inverted when
their translations are placed in the target side.

Neural Machine Translation (NMT) has been
receiving significant attention due to its impressive
translation performance (Bahdanau et al., 2015).
NMT differs from SMT in its adoption of a large
neural network to perform the entire translation
process in one shot, for which an encoder-decoder
architecture is widely used. In this approach, a
source sentence is encoded into a continuous vec-
tor representation. Subsequently, the decoder uses
that representation to generate the corresponding
target translation.

NMT’s word-by-word translation generation
strategy makes it difficult to translate phrases.
This is a significant MT challenge as the mean-
ing of a phrase is not always deducible from the
meanings of its individual words or parts. Unfor-
tunately, current NMT systems are word-based or
character-based where phrases are not considered
as translation units. By contrast, phrases are more
effective than words as translation units in SMT.
Indeed, leveraging phrases has had a significant
impact on translation quality (Wang et al., 2017).
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Recurrent Neural Networks (RNNs) (Rumel-
hart et al., 1986) are a class of artificial neural net-
work that has recently resurfaced in the field of
MT (Schwenk, 2012). Unlike feed-forward net-
works, RNNs leverage recurrent connections that
enable the network to refer to prior states and,
thus, to process arbitrary sequences of input. The
cornerstone of RNNs is their ability to connect
previous information to the present task. For ex-
ample, given a LM that predicts the next word
based on previous words, no further context is
needed to predict the last word in the clouds are
in the sky.

When the gap between the relevant information
and the place that it is needed is small, RNNs learn
the next word from past information. But there are
cases where more context is needed, e.g., in the
prediction of the last word in I grew up in Spain
and I speak fluent Spanish. The word Spain sug-
gests that the last word is probably the name of a
language, but to narrow down that language, ac-
cess to a larger context is needed. It is entirely
possible for the gap between the relevant informa-
tion and the point where it is needed to become in-
definitely large. Unfortunately, as that gap grows,
RNNs are increasingly unable to learn to connect
the information.

Long Short-Term Memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997) are an ex-
tension of RNNs, capable of learning such long-
term dependencies. RNNs are a chain of repeat-
ing modules of neural network and, in their sim-
plest form, the repeating module has a single layer.
LSTMs also have this chain-like structure, but the
repeating modules have four interacting layers.

This paper presents a PBSMT model based on
the Moses decoder (Koehn et al., 2007) with a LM
that is enriched by an external dataset. Scoring of
the phrase table generated by Moses is achieved
through a LSTM encoder-decoder, and the result
is then evaluated in an English-to-Spanish trans-
lation task. Specifically, the model is trained to
learn the translation probabilities between English
phrases and their corresponding Spanish ones.
The trained model is then used as a part of a
classical PBSMT system, with each phrase pair
scored in the phrase table. Our evaluation proves
that this approach enhances the translation perfor-
mance. Although Moses itself is able to score
phrases as a part of the coding process, our ap-
proach includes the scoring of phrases using the
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LSTM-based encoder-decoder, thus yielding im-
provements in quality. Sentences with the highest
scores are selected as the translation output.

The rest of this paper is organized as follows:
Section 2 discusses the previous related work.
Sections 3 and 4 describe our PBSMT framework
and LSTM encoder-decoder integration, respec-
tively. Section 5 presents the key elements of our
approach, bringing together PBSMT and LSTM
encoder-decoder for phrase scoring. The experi-
mental results are covered in Section 6. Finally,
Section 7 presents conclusions and future work.

2 Related Work

Recently, various neural network models have
been applied to MT. However, few approaches
have made effective use of neural networks to en-
hance the translation quality of SMT.

Sundermeyer et al. (2014) designed a neural TM
that uses LSTM-based RNNs and Bidirectional
RNNs, wherein the target word is conditioned not
only on the history but also on the future source
context. The result was a fully formed source sen-
tence for predicting target words.

Feed-forward neural LMs, first proposed by
Bengio et al. (2003), were a breakthrough in lan-
guage modeling. Mikolov et al. (2011) proposed
the use of recurrent neural network in language
modeling, thus enabling a much longer context
history for predicting the next word. Experimen-
tal results showed that the RNN-based LM signifi-
cantly outperforms the standard feed-forward LM.

Schwenk (2012) proposed a feed-forward neu-
ral network to score phrase pairs. They em-
ployed a feed-forward neural network with fixed-
size phrasal inputs consisting of seven words, and
with zero padding for shorter phrases. The sys-
tem also had fixed-size phrasal output consisting
of seven words. Similarly, Devlin et al. (2014)
utilized a feed-forward neural network to gener-
ate translations, but they simultaneously predicted
one word in a target phrase. The use of feed-
forward neural networks demands the use of fixed-
size phrases to work properly.

Zou et al. (2013) also proposed bilingual learn-
ing of word and phrase embeddings, which were
used to compute the distance between phrase
pairs. The result was an additional annotation to
score the phrase pairs of an SMT system.

Chandar et al. (2014) trained a feed-forward
neural networks to learn the mapping of an in-



put phrase to its corresponding output phrase us-
ing a bag-of-words approach. This is closely re-
lated to the model proposed by Schwenk (2012),
except that their input representation of a phrase
was a Bag-Of-Words (BOW). A similar encoder-
decoder approach that used two RNNs was pro-
posed by Socher et al. (2011), but their model was
restricted to a monolingual setting.

More recently, an encoder-decoder model us-
ing an RNN was proposed by Auli et al. (2013),
where the decoder was conditioned on a represen-
tation of either a source sentence or a source con-
text. Kalchbrenner and Blunsom (2013) proposed
a similar model that uses the concept of an encoder
and decoder. They used an n-gram LM for the en-
coder part and a combination of inverse LM and
an RNN for the decoder part. The evaluation of
their model was based on rescoring the K-best list
of the phrases from the SMT phrase table.

3 From SMT to PBMST

Our enhancement to SMT takes a noisy chan-
nel model as a starting point, where translation is
modeled by decoding a source text, thereby elim-
inating the noise (e.g., adjusting lexical and syn-
tactic divergences) to uncover the intended trans-
lation. However, as in our prior work (Ahmad-
nia et al., 2017), we adopt a more general, log-
linear variant to accommodate an unlimited num-
ber of features and to provide a more general
framework for controlling each feature’s influence
on the overall output. Standard probabilities are
scaled to their logarithmic counterparts that are
then added together, rather than multiplying, fol-
lowing standard logarithmic rules. The log-linear
model is derived via direct modelling of the poste-
rior probability P(y{|z{):

(D

N Iy..J
§ = argmax P(y][{)
vi
where z is a source sentence.

The PBSMT model is an example of the noisy
channel approach, where the translation hypothe-
sis y is presented as the target sentence (given x as
a source sentence), and the log-linear combination
of feature functions is maximized:

} (2)

M
{Z Amhon (27, y1)

m=1
In the log-linear model of Equation (2), A, cor-
responds to the weighting coefficients of the log-
linear combination. Feature functions h,, (7, yi)

9 = arg max
I
v
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correspond to a logarithmic scaling of the proba-
bilities of each model. The translation process in-
volves segmenting the source sentence into source
phrases z, each of which is translated into a tar-
get phrase y, and reordering these target phrases to
yield the target sentence ¢j. This model is consid-
ered superior in comparison to the noisy-channel
model because of the ability to adjust the impor-
tance of individual features, thus controlling each
feature’s influence on the overall output.

In the PBSMT model, the TM is factored into
the translation probabilities of matching phrases
in the source and target sentences (Ahmadnia
and Serrano, 2015). These are considered ad-
ditional features in the log-linear model and are
weighted accordingly to maximize the perfor-
mance as measured by Bilingual Evaluation Un-
derstudy (BLEU) (Papineni et al., 2001). The neu-
ral LM Bengio et al. (2003) has become a commu-
nity standard for SMT system development, i.e.,
neural networks have been used to rescore trans-
lation hypotheses (k-best lists). Recently, how-
ever, there has been an emerging interest in train-
ing neural networks to score the translated phrase
pairs using a source-sentence representation as an
additional input (Zou et al., 2013). We adopt this
approach for our own PBSMT enrichment, as fur-
ther detailed below.

4 Integration of LSTM Encoder-Decoder

Following Ahmadnia et al. (2018), we enhance
NMT performance by estimating the conditional
probability P(yﬂa:j) where (zj,...,z;) is a
source sequence and (y;, ..., yy) is its correspond-
ing target sequence whose length I may dif-
fer from J. The LSTM computes this con-
ditional probability by first obtaining the fixed-
dimensional representation v of the source se-
quence given by the last hidden state of the LSTM,
and then computing the probability of the target
sequence with a standard LSTM as the neural LM
formulation whose initial hidden state is set to the
representation v of the source sequence. This is
specified as follows:

I

P(yflz)) =[] P(wilv, v
=1

3)

where the P(y;|v,yi™") distribution is represented

with a softmax over all words in the vocabulary.
To compose the model, both the encoder and

decoder are implemented employing RNNs, i.e.,



the encoder converts source words into a sequence
of vectors, and the decoder generates target words
one-by-one based on the conditional probability
shown in Equation (3). Specifically, the encoder
takes a sequence of source words as inputs and re-
turns forward hidden vectors fZ(l <j<J)of
the forward-RNN:

By = f(hy1,) “

Similarly, backward hidden vectors E(l <7<
J) of the backward-RNN are obtained, in reverse

order.
hy = f(hy1, ) 5)

These forward and backward vectors are con-
catenated to make source vectors hj(l <j<J
based on Equations (4) and (5):

By b ©

hj = [h]’;

The decoder takes source vectors as inputs and
returns target words, starting with the initial hid-
den vector h;.! Target words are generated in a
recurrent manner using the decoder’s hidden state
and an output context. The conditional output
probability of a target language word y; is defined
as follows:

Py(yt|y<i, X) = softmaz (Wshy) — (7)

where Wy is a parameter matrix in the output layer
and h; is a vector:

iLt = tCth(Wc[Ct; ht]) (8)

where W, is a parameter matrix and h;
g(ht—1,yt—1). Here, g is an RNN function that
takes its previous state vector and previous output
word as input and updates its state vector. c¢; is a
context vector to retrieve source inputs in the form
of a weighted sum of the source vectors h;, first
taking as input the hidden state h; at the top layer
of a stacking LSTM.

The goal of the approach above is to derive a
context vector ¢; that captures relevant source in-
formation, thus enabling the prediction of the cur-
rent target word y;. While a variety of models may
be used to derive a range of different context vec-
tors ¢y, the same subsequent steps are taken. Equa-
tion (8) defines our choice for ¢;:

S
Ct = E Oéijhj
Jj=1

'Concatenated source vector at the end.

9
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where «;; is a weight for the 4" source vector at
time step ¢ to generate y;:

exp (score (hg, hj))
Z}J,:l exp (score (hy, hjr))

Qi = (10)

The score function above is calculated as follows:>

score(hg, hj) = htThj (11

Given training data with K bilingual sen-
tences, we train the model by maximizing the log-
likelihood as follows:

K

D

k=1

5 Phrase Scoring by LSTM

J
L(0) =) log P(yflyt,,«*)  (12)
=1

The centerpiece of our PBSMT enhancements is
the inclusion of two stages: (1) training of a LSTM
encoder-decoder on a phrase table; and (2) subse-
quent use of training output scores as additional
features in the log-linear model when tuning the
SMT decoder.

During LSTM encoder-decoder training, the
frequencies of each phrase pair in the original cor-
pora are ignored. This measure is taken to re-
duce the computational expense of randomly se-
lecting phrase pairs from a large phrase table ac-
cording to the frequencies. Additionally, this mea-
sure ensures that the LSTM encoder-decoder does
not learn to rank each phrase pair according to its
frequency of occurrence.

Regarding the latter point, one reason behind
this choice is that the existing translation proba-
bility in the phrase table already reflects the fre-
quency of phrase pair occurrence in the origi-
nal corpus. With a fixed capacity of the LSTM
encoder-decoder, we need to ensure that most of
the capacity of the model is focused on learning
linguistic regularities, i.e., distinguishing between
translations, or learning the manifold® of transla-
tions. Once the LSTM encoder-decoder is trained,
we add a new score for each phrase pair to the ex-
isting phrase table. This allows the new scores to
enter into the existing tuning algorithm with mini-
mal additional overhead in computation.

An alternative to what is described above is the
replacement of the existing phrase table with the

>The decoder puts more attention (weights) on source
vectors close to the state vector.
3Region of probability concentration.



LSTM encoder-decoder. In such an approach, the
problem would be recast in the form of the fol-
lowing implementation: given a source phrase, the
LSTM encoder-decoder generates a list of target
phrases (Schwenk, 2012). However, in this al-
ternative, an expensive sampling procedure must
be performed repeatedly. In our approach, the
only phrase pairs that are rescored are those in the
phrase table.

6 Experiments and Results

Numerous large resources are available for build-
ing an English-Spanish SMT system, many of
which have become community standards, used in
translation tasks in annual workshops and confer-
ences on SMT hosted by ACL, NAACL, EACL,
and EMNLP (SMT 2006-2015 and WMT 2016-
2019). Bilingual datasets include Europarl, News-
Commentary, UN, and two crawled corpora.* For
our purposes, we have trained the Spanish LM us-
ing about 700M words of crawled newspaper ma-
terial.>

We select a subset of 350M words for language
modeling as well as a subset of 300M words for
training the LSTM encoder-decoder. We use the
test set newstest2011 and newstest2012 for data
selection and weight tuning with Minimum Er-
ror rate Training (MERT) (Och, 2003), and new-
stest2013 as our test set. Each set has more than
70K words and a single reference translation.

For training the neural networks, including our
LSTM encoder-decoder, we limited the source and
target vocabulary to the most frequent 10K words
for both English and Spanish. This covers ap-
proximately 90% of the dataset. All the Out-Of-
Vocabulary (OOV) words were mapped to a spe-
cial token (<UNK>).

The baseline PBSMT system is built on top of
Moses (Koehn et al., 2007) with default settings.
Moses is an SMT decoder that enables automatic
training of TMs for any language pair using a large
parallel corpus. Once the model is trained, an ef-
ficient search algorithm finds the highest proba-
bility translation among the exponential number
of candidates. Training the Moses decoder yields
a phrase model as well as a TM which, together,
support translation between source and target lan-
guages. Moses scores each phrase in the phrase
table with respect to a given source sentence and

“These two corpora are quite noisy.
>Word counts refer to Spanish words, after tokenization.
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produces the best-scored phrases as output.
For the training phase of SMT, we apply the fol-
lowing steps:

e Tokenization: Insert spaces and punctuation
between words.

o True-casing: Convert initial words in each
sentence to their most probable casing, to re-
duce data sparsity.

e Cleaning: Remove both long and empty sen-
tences, as they may cause misalignment is-
sues within the training pipeline.

The LM is built with the target language (in
our case-study, Spanish is the target language) to
ensure fluent and well-formed output. KenLM
(Heafield, 2011), which comes bundled with the
Moses toolkit, is used for building our LM. Also
to train the TM, GIZA++ (Och and Ney, 2003) is
used for word alignment. Finally, the phrases are
extracted and scored as well. The generated phrase
table is later used to translate test sentences that
are compared to the results of the LSTM encoder-
decoder.

The following steps are applied to build the
NMT system with the LSTM Encoder-Decoder:

e Vocabulary building: Generate vocabulary
corpus for both source and target sides.

e Corpus shuffle: Shuffle the vocabulary cor-
pus of both source and target languages.

e Dictionary building: Create dictionary by
leveraging an alignment file to replace the
<UNK> words.

The files mentioned above are fed to the LSTM
encoder for the training phase of the NMT system.
The number of epochs is set to 1000. LSTM cells
are used with the Adam optimizer (Kingma and
Ba, 2014), also 0.001 and 512 are as error rate and
batch size, respectively. The validation split of 0.1
is used for the training as well. After the training
step, the LSTM decoder will be used to translate
given sentences.

In order to analyze the improvement of the
performance of LSTM encoder-decoder over the
SMT system analyzing the scores of the phrase
pairs, we did the same as (Cho et al., 2014); se-
lecting those phrase pairs that are scored higher
by the LSTM encoder-decoder compared to the



SMT system with respect to a given source sen-
tence. The scoring of the phrases provided by the
LSTM encoder-decoder is similar to the scoring
of the phrases provided by the phrase table of the
SMT system as the quality of the translation is ap-
proximately the same.

We employ BLEU (Papineni et al., 2001) as the
evaluation metric. BLEU is calculated for individ-
ual translated segments by comparing them with a
dataset of reference translations. The scores, be-
tween 0 and 100 are averaged over the whole eval-
uation dataset to reach an estimate of the transla-
tion overall quality. Table 1 shows the results on
both development set as well as test set.

Model BLEU-dev BLEU-test
PBSMT 30.84 28.51
NMT-baseline 31.95 30.53
LSTM 33.49 31.65

Table 1: BLEU scores computed on the develop-
ment and test sets using PBSMT, NMT-baseline
and LSTM systems.

LSTM encoder-decoder scores indicate in over-
all improvement in translation performance in
terms of BLEU scores. As seen in Table 1, our
LSTM encoder-decoder outperforms the NMT-
baseline by 1.12 BLEU points while it outper-
forms the PBSMT by 3.14 BLEU points. Our
LSTM encoder-decoder is able to score a pair of
sequences (in terms of a conditional probability)
or to generate a target sequence given a source se-
quence.

We evaluated the proposed model with the SMT
task, using the LSTM encoder-decoder to score
each phrase pair in the phrase table. Qualita-
tively, we showed that this model captures linguis-
tic regularities in the phrase pairs and also that
the LSTM encoder-decoder proposes well-formed
target phrases. We also found that the LSTM
encoder-decoder contribution is orthogonal to the
existing use of neural networks in the SMT sys-
tem. We conclude that further performance im-
provements are likely if we were to use the LSTM
encoder-decoder and the neural LM together.

7 Conclusions and Future Work

In this paper, we described a PBSMT implementa-
tion within which the phrase table is generated by
using an LSTM encoder-decoder, and sentences
with the highest scores are selected as output. We
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compared the resulting translation quality of the
LSTM against PBSMT and a NMT baseline, and
demonstrated a BLEU score increase of up to 3.14
and 1.12, respectively. We also noticed that SMT
works well for long sentences while NMT works
well for short sentences.

Since NMT systems usually have to apply a
certain-sized vocabulary to avoid time-consuming
training and decoding, such systems suffer from
OOV issues. Furthermore, NMT lacks a mech-
anism to guarantee/control translation of all the
source words and favors short translations, result-
ing in fluent but inadequate translations.

Issues outlined above are fodder for future
work. For example, the incorporation of SMT fea-
tures into the NMT model within the log-linear
framework may be a future next step to address
the training/decoding issue above.
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Abstract

Semantic role labeling (SRL) is an im-
portant task for understanding natural lan-
guages, where the objective is to analyse
propositions expressed by the verb and to
identify each word that bears a semantic
role. It provides an extensive dataset to en-
hance NLP applications such as informa-
tion retrieval, machine translation, infor-
mation extraction, and question answer-
ing. However, creating SRL models are
difficult. Even in some languages, it is in-
feasible to create SRL models that have
predicate-argument structure due to lack
of linguistic resources. In this paper, we
present our method to create an automatic
Turkish PropBank by exploiting parallel
data from the translated sentences of En-
glish PropBank. Experiments show that
our method gives promising results.

1 Introduction

Semantic role labeling (SRL) is a well defined
task that identifies semantic roles of the words
in a sentence. Event characteristics and partici-
pants are simply identified by answering “Who did
what to whom” questions. Having this semantic
information facilitates NLP applications such as
machine translation, information extraction, and
question answering. After the development of sta-
tistical machine learning methods in the area of
computational linguistics, learning complex lin-
guistic knowledge has became feasible for NLP
applications. Recent semantic resources specifi-
cally for SRL which provides input for develop-
ing statistical approaches are FrameNet (Fillmore
et al., 2004), PropBank (Kingsbury and Palmer,
2002) (2003), (2005), (Bonial et al., 2014) and
NomBank (2004). These resources enables us to
understand language structure by providing a sta-
ble semantic representation.
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Among these resources PropBank is a com-
monly used semantic resource which includes
predicate - argument structure by stating the roles
that each predicate can take along with the anno-
tated corpora. It has been applied to more than 15
different languages. However, manually creating
such semantic resource is labor-intensive, time-
consuming and most importantly requires a pro-
fessional linguistic perspective. Also limited lin-
guistic data further blocks generating PropBank-
like resources.

Various studies such as Zhuang and Zong
(2010), Van der Plas et al. (2011) (2014),
Kozhevnikov and Titov (2013), Akbik et al.
(2015), which transfer semantic information using
parallel corpus, are presented to cope with these
problems. In this way, semantic information pro-
jected from a resource-rich language (English) to
a language with inadequate resources and Prop-
Bank of the target language is automatically gen-
erated. Here the assumption is translated parallel
sentences generally share same semantic informa-
tion. Word and constituent based alignment tech-
niques are widely used to construct mapping be-
tween source and target languages for annotation
projection. Previous studies report translation di-
vergences and language specific differences affect
the quality of the projection. Filtering projections
using learning methods is suggested to increase
precision. In this paper, we present our study to
create automatic Turkish PropBank using parallel
sentences from English PropBank.

This paper is organized as follows: we first
give brief information about English and Turk-
ish PropBanks in Section 2. In Section 3, Stud-
ies for the automatic proposition bank generation
are discussed. In the next section proposed meth-
ods are presented. First, we explain the annota-
tion projection using parallel sentence trees. Then,
we propose methods for aligning parallel sentence
phrases not aligned with tree structure. Finally, in
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Section 5, we conclude with the results.

2 PropBank

2.1 English PropBank

PropBank is the bank of propositions where
predicate-argument information of the corpora is
annotated and semantic roles or arguments that
each verb can take are posited. It is constituted
on the Penn Treebank (Marcus et al., 1993) Wall
Street Journal [WSJ]. The primary goal is to la-
bel syntactic elements in a sentence with specific
argument roles to standardize labels for the simi-
lar arguments such as the window in John broke
the window and the window broke. PropBank
uses conceptual labels for arguments from Arg0 to
Arg5. Only Arg0 and Argl indicate the same roles
across different verbs where Arg0 means agent
or causer and Argl is the patient or theme. The
rest of the argument roles can vary across differ-
ent verbs. They can be instrument, start point, end
point, beneficiary, or attribute.

Moreover, PropBank uses ArgM’s as modifier la-
bels where the role is not specific to the verb group
and generalizes over the corpora such as location,
temporal, purpose, or cause etc. arguments. The
first version of English PropBank, named as The
Original PropBank, is constructed for only ver-
bal predicates whereas the latest version includes
all syntactic realizations of event and state se-
mantics by focusing different expressions in form
of nouns, adjectives and multi-word expressions
to represent complete event relations within and
across sentences.

2.2 PropBank Studies for Turkish

There have been different attempts to construct
Turkish PropBank in the literature. Sahin (2016a;
2016b), Sahin and Adali (2017) report semantic
role annotation of arguments in the Turkish de-
pendency treebank. They construct PropBank by
using ITU-METU-Sabanci Treebank (IMST). In
these studies, frame files of Turkish PropBank are
constructed and extended by utilizing crowdsourc-
ing. 20,060 semantic roles are annotated in 5,635
sentences. The size of the resource is stated as a
drawback in the study. Recently, Ak et al. (2018)
construct another Turkish Proposition Bank using
translated sentences of English PropBank. So far,
9,560 of 17,000 translated sentences are annotated
with semantic roles. Also, framesets are created
for 1,330 verbs and 1,914 verb senses. These stud-

34

ies constitute a base for Turkish proposition bank,
but their size is limited and construction of these
proposition banks consumed a lot of time.

3 Automatic PropBank Generation
Studies

PropBanks are also generated automatically for
resource-scarce languages by using parallel cor-
pus. In this section, proposition bank studies for
automatic generation are presented. Zhuang and
Zong (2010) proposed performing SRL on parallel
corpus of different languages and merging the re-
sult via a joint inference model can improve SRL
results for both input languages. In the study an
English and Chinese parallel corpus is used. First
each predicate is processed by monolingual SRL
systems separately for producing argument candi-
dates. After the candidates formed, a Joint Infer-
ence model selects the candidate that is reasonable
to the both languages. Also, a log-linear model is
formulated to evaluate the consistency. This ap-
proach increased F1 scores 1.52 and 1.74 respec-
tively for Chinese and English.

Van der Plas et al. (2011) presents cross-lingual
semantic transfer from English to French. En-
glish syntactic-semantic annotations were trans-
ferred using word alignments to French language.
French semantic annotations gathered from the
first step were then trained with a French joint
syntactic-semantic parser along with the French
syntactic annotations trained separately. Joint
syntactic-semantic parser is used for learning the
relation between semantic and syntactic structure
of the target language and reduces the errors aris-
ing from the first step. This approach reaches 4%
lower than the upper bound for predicates and 9%
for arguments.

Kozhevnikov (2013) shows SRL model transfer
from one language to another can be achieved
by using shared feature representation. Shared
feature representation for language pairs is con-
structed based on syntactic and lexical informa-
tion. Afterwards, a semantic role labeling model
is trained for source language and then used for
the target language. As a result SRL model of the
target language is generated. Process only requires
a source language model and parallel data to con-
struct target SRL model. Approach is applied for
English, French, Czech and Chinese languages.
In the next study, Van der Plas (2014) improves the
labeling results with respect to the previous work



(Van der Plas et al., 2011) by building separate
models for arguments and predicates. Also, prob-
lems of transferring semantic annotations using
parallel corpus is examined in the paper. Token-to-
token basis annotation transfer, translation shifts,
and alignment errors in the previous work is re-
placed with a global approach that aggregates in-
formation at corpus level. Instead of using En-
glish semantic annotations of roles and predicate
together with French PoS tags to generate French
semantic annotations, English annotations of pred-
icates and roles used separately to generate one
predicate and one role semantic annotations sep-
arately.

Akbik et al. propose a two stage approach (Ak-
bik et al., 2015). In the first stage only filtered
semantic annotation is projected. Since high con-
fidence semantic labels projected, resulting target
semantic labels will be high in precision and low
in recall. In the next stage, completed target lan-
guage sentences sampled and a classifier is trained
to add new labels to boost recall and preserve pre-
cision. Proposed system is applied on 7 different
languages from 3 different language family. These
languages are Chinese, Arabic, French, German,
Hindi, Russian, and Spanish.

4 Methods

Among the studies for Turkish proposition bank,
Ak et al. (2018) is constructed on parallel English
- Turkish sentences from the Original English
PropBank. We have used the corpus provided in
this study to automatically generate proposition
bank.

4.1 Automatic Turkish PropBank Using
Parallel Sentence Trees

Penn Treebank structure offers advantages for
building fully tagged data set in accordance with
syntactic labels, morphological labels and parallel
sentences. We used this structure to add English
PropBank labels for each word in the corpus. In
this manner, we exploited this parallel dataset to
transfer English PropBank annotations to an auto-
matic Turkish PropBank.

4.1.1 English PropBank Labels

Original English PropBank corpus (Palmer et al.,
2004) is accessible through Linguistic Data Con-
sortium (LDC). This resource is the initial version
of the English PropBank and it only includes the
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relations with verbal predicates. In the newer ver-
sions adjective and noun relations are also anno-
tated. Since we compare projection results with
manually annotated corpus (Ak et al., 2018) which
only contains verbal relations, we use the ini-
tial version of the English PropBank. We down-
loaded this dataset and imported annotations for
the selected sentences. After this step 6,060 sen-
tences among 9,558 were enhanced with the En-
glish annotations. Below in Figure 1, a sample
sentence is presented. English annotations are in-
serted inside “englishPropbank™ tags right after
Turkish annotations which reside in “propbank”
tags. Some of the words have only English an-
notation, because there is no word translated in
the Turkish sentence for this node. As an exam-
ple, “their” in Figure 1 has annotations in the en-
glishPropbank tag but there is no equivalent trans-
lation in Turkish, presented as “*NONE*”, so
propbank tag does not exist. English tags have
predicate information that annotation belongs to.
“Miisterilerinin” (customers) in the same exam-
ple has “ARGOS$like_01#ARG1$think 01 in the
englishPropbank tag which means there exists at
least two words whose root is in verb form. Here
the word is annotated with respect to “like” and
“think” separately. We have separated multiple
annotations with “#” sign and in each annotation
predicate label and role is distinguished by “$”
sign. In the Turkish annotation, WordNet id of the
predicate was used instead of predicate label.

4.1.2 Transfering Annotations to Automatic
Turkish PropBank Using Parallel
Sentences

After importing English annotations, it is neces-
sary to determine predicate(s) of the Turkish sen-
tences. Morphological structures of the words are
examined to detect predicate candidates. Words
were morphologically and semantically analyzed
in translated Penn TreeBank. We have used “mor-
phological Analysis” tag to check the morpholog-
ical structure of the words. In Figure 1, sample
morphological structure is displayed.

The word which has a verb root and verb ac-
cording to last inflectional group is treated as the
predicate of the sentence. Once we found a word
suitable for these conditions, we gathered English
PropBank annotation. If it is also labeled as predi-
cate in English proposition bank, we got the predi-
cate label, e.g. like_01, to find annotations with re-
spect to this predicate. We searched for the found
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Figure 1: Part of a sentence tree : English PropBank annotations reside in “englishPropBank™ tags.

predicate label in the annotations and transfered
annotations matching with the predicate label. If
we could not find a predicate in Turkish sentence
or the corresponding English label did not contain
Predicate role annotation, we skipped to the next
predicate candidate.

During the transfer, a mapping was needed due
to the difference between English and Turkish (Ak
et al., 2018) argument labeling. English PropBank
corpus has “-” sign in ArgM’s like ARGM-TMP
and also some of the arguments from Argl to Arg5
are labeled with the prepositions such as ARG1-
AT, ARG2-BY etc. We processed these differ-
ences and then transferred labels into the “prop-
bank” tags. After analyzing Turkish sentences
we found out some sentences have more than one
predicate, so we continued to search for another
predicate in the sentence and ran the same proce-
dure for each predicate candidate.

4.1.3 Experiments

Annotations gathered from the English sentence
were compared with the Turkish hand-annotated
proposition bank (Ak et al., 2018). Comparisons
were done at the word level by checking the an-
notations for each corpus. Among the 6,060 sen-
tences enhanced with English PropBank roles,
848 sentences did not have a predicate in Turk-
ish proposition bank. Therefore, in 5,212 sen-
tences, 44,779 word annotations were compared.
31,813 annotations were transferred from English
to Turkish. Results of the comparison are pre-
sented in Table 1. 19,373 words annotated with
PropBank roles correctly . 6,441 annotations are
incorrect, PropBank tags are different in both cor-
pus. 5,999 annotations are undetermined, valid
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PropBank labels transferred from English annota-
tions but no annotation exists in hand annotated
proposition bank. Annotations to be compared is
not valid so we did not include this set in the eval-
uation.

Transferred Untransferred
Correct 19,373 NotHA. | 8,837
Incorrect 6,441
Undetermined | 5,999 | H-A. 4,129
Total 31,813 | Total 12,966

Table 1: Results of the comparison between auto-
matic proposition bank and hand annotated (H.A.)
proposition bank.

When we remove undetermined 5,999 words in
the comparison; 19,373 annotations from 25,814
annotations are correct, which gives us ~75% ac-
curacy for transferred and comparable set. These
5,999 annotations may be hand-annotated and re-
compared for validity of the transferred annota-
tions.

In Table 2, we present occurrences of erroneous
annotation transfers. Only top ten occurrences are
presented. Arg0-Argl transfers are the most oc-
curred incorrect transfers 1,843 among 6,441 in-
correct annotations. Second most occurred error
is in Argl-Arg?2 labels. Errors in Arg0-Argl and
Argl-Arg2 labels forms ~44% of the transfer er-
rors.

On the other hand, when we look at the all
word results, 12,966 roles were not transferred.
If we take these untransferred instances as incor-
rect; 19,373 annotations out of 38,780 annotation
are true and the accuracy drops to ~50%. How-
ever, 8,837 of untransferred annotation are not an-



Different Arguments | # of Occurrence
ARGO0-ARG1 1,843
ARG1-ARG2 961
ARG2-ARGMEXT 462
ARGI1-PREDICATE 255
ARGO0-ARG2 229
ARG4-ARGMEXT 226
ARG1-ARGMPNC 220
ARG1-ARGMMNR 186
ARG1-ARGMTMP 160
ARG1-ARGMLOC 148

Table 2: Counts of different argument annotations
between transferred annotations and hand annota-
tions.

notated in the hand-annotated corpus. Only 4,129
are valid PropBank arguments. In this respect, if
we count only valid arguments for untransferred
annotations, accuracy is ~65%.

4.2 Automatic Turkish PropBank Using
Parallel Sentence Phrases

In the previous method, annotation projection us-
ing parallel sentence trees is discussed. However,
finding such a resource in a special format is diffi-
cult especially if you are working with a resource-
scarce language. Most of the time creating a for-
matted parallel resource like tree structured sen-
tences complicates translation procedure. In this
section, automatic generation with translated sen-
tences without tree structure will be examined.

4.2.1 Phrase Sentence Structure

For the phrase sentences, English sentences re-
translated without tree structure. Prior the an-
notation projection, linguists in the team anno-
tated phrase sentences and populated “propbank”
and “shallowParse” tags so that we check the cor-
rectness after the annotation transfer. 6,511 sen-
tences among 9,557 phrase sentences have pred-
icate according to hand annotations for newly
translated sentences. However, only 5,259 sen-
tences have English PropBank annotation, so we
take this set to transfer annotations. As you re-
member, the same number in the previous section
was 5,212. Here translation and annotation differ-
ences change the processed sentence count.

Tag structure of Penn Treebank is preserved
to simplify morphologic and semantic analysis
requirements during the annotation transfer. In
Figure 2, sample phrase sentence can be seen.
Unlikely Figure 1, syntactic tags which indicate
tree structure are not included. We used original
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tree formatted English sentence to extract English
propbank annotations. However, since the target
sentence do not have tree structure definition we
used other word alignment methods to determine
annotation projection.

4.2.2 Semantic Alignment Using WordNet

In order to transfer annotations, first we tried to
match predicates of English sentence and Turk-
ish translation. Again we utilize “morphological-
Analysis” tags to determine predicate candidates
in the phrase sentence. Words which have a verb
root and verb according to last inflectional group
is treated as the predicate candidates of the sen-
tence. Once we found all the words ensuring these
conditions, we gathered all English PropBank an-
notation labels which are tagged as “Predicate” in
‘englishPropbank™ tag. To align predicates in dif-
ferent languages, we tried to exploit WordNet’s
(Ehsani et al., 2018) interlingual mapping capa-
bilities. For each predicate in English sentence
we find Turkish translation by searching English
synset id in the WordNet. English synset id is lo-
cated in englishSemantics tags as in the sample
in Figure 1. If there exists any translation in the
WordNet, we take Turkish synset id and search it
in the predicate candidates found for phrase sen-
tence. Whenever translation found, we align pred-
icates and try to transfer annotation with respect
to aligned English label. For annotation transfer of
other arguments we again align words using Word-
Net’s interlingual mapping. An example WordNet
record is presented in Figure 3.

First results gathered with only WordNet map-
ping were very low. True annotation count is
2,195 among 29,168 annotations tagged manually
which yields 7.53%. However, transferred false
annotation count is only 342. System heavily re-
lies on semantic annotations for both English and
Turkish words where some of the words failed to
have semantic annotation. We look deeper into
dataset provided by Ak et al. (2018), 11,006 En-
glish words do not have semantic annotation so we
failed to match these words with Turkish counter-
parts.

Some words are not annotated semantically
such as, proper nouns, time, date, numbers, or-
dinal numbers, percentiles, fractional numbers,
number intervals, and reel numbers. Most of
these words are same in Turkish translation so
we matched English and Turkish words by string
match. For example if a sentence contains proper



{turkish=bilmek]

{morphologicalAnalysis=bil+VERE+POS~DE+NOUN+INF+A3SG+EFNON+NOM}

{metaMorphemes=bil+mik}
{semantics-TUR10-0104510}
{namedEntity=NONE}
{propbank=ARG1$TUR10-0197500}
{shallowParse=NESNE}
{turkish-isteyeceginizi}

{morphologicalinal yais=1iste+VERB+POS~DE+NOUN+FUTPART+A3SG+P2FL+ACC
{metaMorphemes=iste+yRAcRk+HnHz+vH}

{gemantics-TUR10-0205320}
{namedEntity=NONE}
{propbank=ARG15TUR10-01597500)
{shallowParse=NESNE}

{ turkish=diigiindiik}

{morphologicalAnalysis=digint+VERE+POS+FAST+ALFL}

{metaMorpheme s=diigiin+DH+k }
{gemantics-=TUR10-0197500}
{namedEntity=NONE}

{propbank=FPREDICATESTURL0-0197500}

{shallowParse=YUKLEM}

Figure 2: Part of a phrase sentence : Translated words in Turkish tags. Helper tags gives additional

information for each word.

<SYNSET>
<ID>TUR10-0682580</ID>
<SYNONYM>
<LITERAL>sevmek<3SENSE>H</SENSE></LITERAL>
</ SYNONYM>
<POS>v</P0OS>
<ILR>ENG31-01779085-v<TYPE>SYNONYM</TYPE></ILR>
<ILR>ENG31-01779456-v<TYPE>SYNONYM</TYPE></ILR>
<ILR>ENG31-01780873-v<TYPE>SYNONYM</TYPE></ILR>
<ILR>ENG31-01781131-v<TYPE>SYNONYM</TYPE></ILR>
<DEF>Y¥erini, gartlarini uygun bulmak</DEF>
<EXAMPLE>Bu afag nemli ortami sever.</EXAMPLE>
<,-'rSYNSET>|

Figure 3: Sample WordNet record found by
searching “ENG31-01781131-v”, English synset
id, from the sentence in Figure 1.

noun “Dow Jones”, the same string also exists in
the Turkish translation too. However, it may take
additional suffixes, so we only check whether En-
glish words starts with Turkish root word. Also,
translational differences are encountered like deci-
mal separator in English is ““.” where some Turkish
translations “,” is used. We replace this differences
by looking whether the first morphological tag is
“NUM?”. After these tunings, we rerun the proce-
dure and get 2,680 true and 531 false annotations
which increases true annotations to 9.19%. An-
other problem is erroneous semantic annotations.
If English and Turkish semantic annotation is not
right, alignment is not possible. Even in the best
scenario where both word is annotated, if Word-
Net mapping is incomplete, an alignment can not

be established.
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As an alternative we decided to reinforce an-
notation transfer by using constituent boundaries
identified with shallowParse tags by our linguist
team mates. Example of shallowParse tags can
be seen in Figure 2. Prior to the annotation trans-
fer, phrase sentences are annotated for constituent
boundaries which can be used to group argument
roles in the sentence. After transferring annota-
tions with respect to semantic annotations, we run
another method over phrase sentences which cal-
culates maximum argument types for each con-
stituent and tags any untagged word with the cal-
culated max argument role within the constituent
boundary. This procedure further enhance true an-
notations to 4,255 but also increase false annota-
tions to 1,202. After constituent boundary cal-
culation, correct annotation transfer percent is in-
creased to ~14.59%. In Figure 4 annotation of
the sentence 7076.train is presented. Untagged
words in “Ozne” and *“Zarf Tiimleci” constituent
boundaries are tagged with the found argument
role within the boundary. Note that, we did not
use the constituent types but we use boundaries of
the constituents.

4.2.3 Word Alignment Using IBM Alignment
Models

Word alignment through semantic relation re-
quires fair semantic annotation for both languages
and also sufficient semantic mapping between lan-
guages. We search different word alignment meth-
ods between English and Turkish sentences. IBM



1)

[The less-rigorous Senate version]ArGo
[would]arem-Mop [defer]predicare [the deductibility]arci
for [roughly five years.]arGo-for

2

[Daha az siki tiirden bir Senato versiyonule,me - subject

[asagr yukar1 bes yil i¢in]zarf Tumieci - Adverbial Clause
[du§uleblhrhgl]NeSne - Object [ertelerdL]Yﬁklem - Predicate

3)

[Daha az siki tirden Dbir]none  [Senato]arco
[versiyonu]nvone  [asafi  yukariJarcz  [besInone
[yll]ARGZ [l({‘ll'l dU§u1€blhﬂlgl]NoNE [ertelerdi.]pREDICATE

“)

[Daha az siki tiirden bir Senato versiyonu]arco
[asag1r yukar1 bes yil iginJarce [diisiilebilirligi]none
[ertelerdi.]prEDICATE

Figure 4: Annotation reinforced with respect to
constituent boundaries: (1) English sentence (2)
constituent boundaries identified with shallow-
Parse tags for sentence in 7076.train, (3) Argu-
ment roles for the same sentence after annotation
transfer, (4) Argument roles for the same sentence
after reinforce method.

alignment models offer solution to our word align-
ment problem. IBM Models are mainly used for
statistical machine translation to train a transla-
tion model and an alignment model. IBM Model 1
(Brown et al., 1993) is the primary word alignment
model offered by IBM. It is widely used for solv-
ing word alignments while working with parallel
corpora. It is a generative probabilistic model that
calculates probabilities for each word alignment
from source sentence to target sentence. It takes a
corpus of paired sentences from two languages as
training data. These paired sentences are possible
translation of the sentences from source language
to target. With this training corpus, parameters of
the model estimated using EM (expectation maxi-
mization). IBM Model 2 has an additional model
for alignment and introduce alignment distortion
parameters. We decided to use IBM model 1 &
2 to establish word alignments instead of Word-
Net’s interligual mapping. We input sentence pairs
and gather alignment probabilities for each En-
glish word to Turkish equivalent. 244,024 word
pairs are taken as output where for each English
word, 10 most probable Turkish words are listed.
Alignment probabilities for word “Reserve” is pre-
sented in Table 3 and 4 for IBM Model 1 and 2
respectively.

After gathering alignment data, we transfer an-
notations to phrase sentences from English Prop-
Bank labels in the tree structured sentences. All

39

English Word  Turkish Word Probability

Reserve Reserve 0.72270917
Reserve Rezerv 0.15328414
Reserve mevduat 0.03056293
Reserve Bankas1’nin 0.02731664
Reserve kuruluglarindaki ~ 0.01375332
Reserve komisyonlari 0.01375332
Reserve Bankasinin 0.00611259
Reserve kuruluglarinda 0.00458444
Reserve komisyon 0.00458444
Reserve Federe 0.00458444

Table 3: Word alignment probabilities for English
word “Reserve” calculated by IBM Model 1.

English Word  Turkish Word  Probability
Reserve Reserve 0.67700755
Reserve Rezerv 0.14360766
Reserve Federe 0.06154614
Reserve Bankasi 0.05265972
Reserve tasarruf 0.03072182
Reserve kuruluglarina  0.02117394
Reserve tizerindeki 0.01111856
Reserve bu 0.00212005
Reserve kurumlarina 0.00004452
Reserve Merkez 0.00000002

Table 4: Word alignment probabilities for English
word “Reserve” calculated by IBM Model 2.

words tagged with “PREDICATE” tag in English
sentence are stored into a map which includes
predicate label from the “englishPropbank™ tag
e.g. “like_01” and English word from the “en-
glish” tag e.g. “like”. Then we search alignments
for each found English predicate. Here we ob-
served that aligned Turkish words may not occur
in the phrase sentence as they found in the align-
ment table. Words may include additional suffixes,
so we use Finite State Machine(FSM) morpholog-
ical analyzer available in our NLP Toolkit of Ak
etal. (2018) to extract roots of the aligned Turkish
words. Since we have several possible morpho-
logical parse for each aligned word, we created
an array for possible roots. In parallel, we found
predicate candidates from the phrase sentence as
we stated in the previous methods. Then we tried
to match aligned words and possible roots with the
found predicate candidates. If there exists a predi-
cate candidate that matches with the aligned word
or one of its roots in the array, we tagged the can-
didate as “PREDICATE” and update map as pred-
icate label and synset id of Turkish predicate.
After finishing predicate discovery, we transfer
annotations for found predicates. To do that we
look for the annotations with respect to the predi-
cate labels in the map. For each record in map we



took the predicate label and corresponding Turk-
ish synset id. When we found an annotation with
this predicate label, first we extract the argument
and try to find aligned word for the processed En-
glish word. For the alignment again we find the
most probable word from the table and use FSM
morphological analyzer to extract possible roots.
Then for each word we search Turkish sentence to
match words with aligned word or possible roots
extracted. If matched Turkish words do not have
argument annotation, we transfer argument with
the synset id found in the map record.

As we discuss in the previous annotation trans-
fer procedure 4.2.2, some of the English words
such as proper nouns, time, date, numbers, ordinal
numbers, percentiles, fractional numbers, number
intervals, and reel numbers stay same or take ad-
ditional suffixes in Turkish translation. So we in-
clude the same method used for matching these
words. In a case words are not aligned with the
information from alignment table, and a valid an-
notation present in English word, we search exact
string match or any word starts with the root of
English word in the Turkish sentence.

We run our procedure with IBM Model 1 & 2
separately. We add reinforce step previously used
in Section 4.2.2. Unlikely previous attempts, af-
ter examining language structure we decided to
add rules to tag any untagged words after anno-
tation transfer. We observed argument types affect
noun inflections, for some argument types the last
word in constituent boundary is taking certain suf-
fixes. So first we find untagged word and select
the last word in its constituent boundary. Since
we run reinforce step beforehand, only untagged
constituents exists in the sentence. In this respect,
we set the following rules to determine argument
annotation for untransfered words;

e For nouns and proper nouns:

Have no suffix then ARGO

Last morpheme tag is “ACCUSATIVE” (-(y)H,
-nH) or “DATIVE” (-(y)A, -nA) then ARG1
Last morpheme tag is “LOCATIVE” (-DA, -
nDA) or “ABLATIVE” (-DAn, -nDAn ) then
ARGMLOC

Last morpheme tag is “INSTRUMENTAL” (-
(Y)1A) then ARG2

e For all word types

— Morphological parse contains date, time then
ARGMTMP

— Morphological parse contains cardinal number,
fraction, percent,
range, real number,
ARGMEXT

ordinal number then
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We use these rules to tag any untagged word.
After applying these rules annotation transfer re-
sult is as shown in Table 5 and 6. Results show
that rules applied slightly change the correct an-
notations. For model 1 rules output much more
correct annotation than the incorrect ones whereas
in model 2 the number of correct and incorrect an-
notations gathered are nearly same. However, pre-
cision for model 1 is improved to 59.44% and for
model 2 precision become 59.86%.

IBM Model 1 + Reinforce + Rules
Transferred Untransferred
Correct 17,340 | NotH.A. | 1,151
Incorrect 9,664
Undetermined | 14,384 H.A. 2,170
Total 41,388 | Total 3,321

Table 5: Results for IBM Model 1 alignment.

IBM Model 2 + Reinforce + Rules
Transfered Untransfered
Correct 17464 | NotH.A. | 1,078
Incorrect 9,635
Undetermined | 14,457 H.A. 2,075
Total 41,556 | Total 3,153

Table 6: Results for IBM Model 2 alignment.

5 Conclusion

We proposed methods to generate automatic
Turkish proposition bank by transferring cross-
language semantic information. Using the paral-
lelism with English proposition bank gives us an
opportunity to create a proposition bank in a short
time with less effort. We currently have 64% ac-
curacy with the hand-annotated proposition bank
(Ak et al., 2018) for parallel sentence trees. When
we consider only transferred annotations, accu-
racy is rising to ~75%. We also present annotation
projection to phrase sentences using WordNet and
IBM alignment models. WordNet alignment heav-
ily relies on semantic annotations, correct anno-
tations transferred after this method is ~14.59%.
However, 4,255 correct argument roles are trans-
ferred among 5,457 arguments which means 79%
of the transferred roles are correct. To increase
annotation transfer for phrase sentences, we have
also proposed alignment with IBM Model 1 and
2. Both models yields ~60% correct annotations.
Annotations transferred with these methods can
provide a basis for proposition bank creation in
resource-scarce languages. Annotations may then



be checked quickly by the annotators and proposi-
tion bank reach the final state.

References

Meyers A., R. Reeves, C. Macleod, R. Szekely,
V. Zielinska, B. Young, and R. Grishman. 2004.
The nombank project: An interim report. In HLT-
NAACL 2004 Workshop: Frontiers in Corpus Anno-
tation. Association for Computational Linguistics,
Boston, Massachusetts, USA, pages 24-31.

K. Ak, O. T. Yildiz, V. Esgel, and C. Toprak. 2018.
Construction of a Turkish proposition bank. Turk-
ish Journal of Electrical Engineering and Computer
Science 26:570 — 581.

A. Akbik, L. Chiticariu, M. Danilevsky, Y. Li,
S. Vaithyanathan, and H. Zhu. 2015. Generating
high quality proposition banks for multilingual se-
mantic role labeling. In ACL (1). The Association
for Computer Linguistics, pages 397-407.

C. Bonial, J. Bonn, K. Conger, J. D. Hwang, and
M. Palmer. 2014. Propbank: Semantics of new
predicate types. In Proceedings of the Ninth In-
ternational Conference on Language Resources and
Evaluation (LREC-2014). European Language Re-
sources Association (ELRA).

P. F. Brown, V. J. D. Pietra, S. A. D. Pietra, and R. L.
Mercer. 1993. The mathematics of statistical ma-
chine translation: Parameter estimation. Comput.
Linguist. 19(2):263-311.

G. G. Sahin. 2016a. Framing of verbs for turkish prop-
bank. In TurCLing 2016 in conj. with 17th Interna-
tional Conference on Intelligent Text Processing and
Computational Linguistics (CICLING 2016).

G. G. Sahin. 2016b. Verb sense annotation for turkish
propbank via crowdsourcing. In 17th International
Conference on Intelligent Text Processing and Com-
putational Linguistics (CICLING 2016).

G. G. Sahin and E. Adali. 2017. Annotation of seman-
tic roles for the Turkish proposition bank. Language
Resources and Evaluation .

R. Ehsani, E. Solak, and O. T. Yildiz. 2018. Construct-
ing a wordnet for Turkish using manual and auto-
matic annotation. ACM Transactions on Asian Low-
Resource Language Information Processing 17(3).

C. J. Fillmore, J. Ruppenhofer, and Collin F. Baker.
2004. FrameNet and Representing the Link be-
tween Semantic and Syntactic Relations, Institute of
Linguistics, Academia Sinica, Taipei, pages 19-62.
Language and Linguistics Monographs Series B.

P. Kingsbury and M. Palmer. 2002. From treebank to
propbank. In LREC. European Language Resources
Association.

41

P. Kingsbury and M. Palmer. 2003. Propbank: The next
level of treebank. In Proceedings of Treebanks and
Lexical Theories. Vixjo, Sweden.

M. Kozhevnikov and I. Titov. 2013. Cross-lingual
transfer of semantic role labeling models. In
ACL (1). The Association for Computer Linguistics,
pages 1190-1200.

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini.
1993. Building a large annotated corpus of en-
glish: The penn treebank. Computational linguistics
19(2):313-330.

M. Palmer, D. Gildea, and P. Kingsbury. 2005. The
proposition bank: An annotated corpus of semantic
roles. Comput. Linguist. 31(1):71-106.

M. Palmer, P. Kingsbury, O. Babko-Malaya, S. Cotton,
and B. Snyder. 2004. Proposition bank i. Philadel-
phia: Linguistic Data Consortium. LDC2004T14.

. Van der Plas, M. Apidianaki, and C. Chen. 2014.
Global methods for cross-lingual semantic role and
predicate labelling. In COLING. ACL, pages 1279-
1290.

. Van der Plas, P. Merlo, and J. Henderson. 2011.
Scaling up automatic cross-lingual semantic role an-
notation. In ACL (Short Papers). The Association
for Computer Linguistics, pages 299-304.

T. Zhuang and C. Zong. 2010. Joint inference for bilin-
gual semantic role labeling. In Proceedings of the
2010 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Stroudsburg, PA, USA, EMNLP
’10, pages 304-314.



Multilingual Sentence-Level Bias Detection in Wikipedia

Desislava Aleksandrova 2

Francois Lareau '

Pierre-André Ménard

L' OLST, Université de Montréal, first.lastname@umontreal .ca
2 Computer Research Institute of Montreal, first .lastname@Qcrim.ca

Abstract

We propose a multilingual method for
the extraction of biased sentences from
Wikipedia, and use it to create corpora
in Bulgarian, French and English. Sift-
ing through the revision history of the ar-
ticles that at some point had been con-
sidered biased and later corrected, we re-
trieve the last tagged and the first un-
tagged revisions as the before/after snap-
shots of what was deemed a violation of
Wikipedia’s neutral point of view policy.
We extract the sentences that were re-
moved or rewritten in that edit. The ap-
proach yields sufficient data even in the
case of relatively small Wikipedias, such
as the Bulgarian one, where 62k arti-
cles produced Sk biased sentences. We
evaluate our method by manually anno-
tating 520 sentences for Bulgarian and
French, and 744 for English. We as-
sess the level of noise and analyze its
sources. Finally, we exploit the data with
well-known classification methods to de-
tect biased sentences. Code and datasets
are hosted at https://github.com/
crim-ca/wiki-bias.

1 Introduction

Our goal is to automatically detect neutral point
of view (NPOV) violations at the sentence level
with a procedure replicable in multiple languages.
Sentence-level bias detection is a type of senti-
ment analysis, closely related to subjectivity de-
tection (Riloff and Wiebe, 2003; Wiebe and Riloff,
2005; Wilson and Raaijmakers, 2008; Murray and
Carenini, 2009; Lin et al., 2011; Al Khatib et al.,
2012), where an opinion is considered subjective,
and a fact, objective. Yet, as far as bias in writing
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is concerned, both subjective opinions and objec-
tive fact reporting (cf. §5) may, in some cases, be
sources of impartiality. The importance of the con-
text is one of the main difficulties in detecting bias
at the sentence level. Some types of point-of-view
bias are equally challenging for humans to detect.
Partisanship in editorials, for example, tends to go
unnoticed when in line with the reader’s own ideas
and beliefs (Yano et al., 2010). A further compli-
cation arises from the ambiguity of the term bias,
which stands for a lack of fairness or neutrality in
realms as varied as human cognition (Tversky and
Kahneman, 1974), society (Ross et al., 1977), me-
dia (Entman, 2007), internet (Baeza-Yates, 2018;
Pitoura et al., 2018) or statistical models and algo-
rithms (O’Neil, 2016; Shadowen, 2019), to name
a few. With so many different types of bias and
their varying definitions, it is not trivial to set the
scope of a bias-detection study.

The majority of the work on this task is per-
formed on news articles (Hirning et al., 2017; Baly
et al., 2018; Bellows, 2018) and political blogs
(Yano et al., 2010; Iyyer et al., 2014) rather than
Wikipedia, because of the relative scarcity of ex-
amples an encyclopedia provides. Yet, unlike al-
ternative data sources, Wikipedia comes with a
definition of bias outlined in its content policy
for neutrality of point of view (NPOV). The
core guidelines in NPOV are to: (1) avoid stat-
ing opinions as facts, (2) avoid stating seriously
contested assertions as facts, (3) avoid stating facts
as opinions, (4) prefer nonjudgemental language,
and (5) indicate the relative prominence of oppos-
ing views. In addition, Wikipedia provides lists of
bias-inducing words to avoid,' such as positively
loaded language (puffery) in the form of peacock
words (e.g., best, great, iconic); unsupported attri-
butions, or weasel words (e.g., some people say,

'nttps://en.wikipedia.org/wiki/
Wikipedia:Manual_of_Style/Words_to_watch

Proceedings of Recent Advances in Natural Language Processing, pages 42-51,
Varna, Bulgaria, Sep 24, 2019.

https://doi.org/10.26615/978-954-452-056-4_006


https://doi.org/10.26615/978-954-452-056-4_006

it is believed, science says); uncertainty mark-
ers, known as hedges (e.g., very, much, a bit, of-
ten, approximately), editorializing (e.g., without a
doubt, arguably, however) and more. When an
article is considered biased, an editor can flag it
by adding a tag such as {{POV}} to its source,
which displays a disputed neutrality warning ban-
ner on the page. These explicit guidelines (and
the editors who apply them) help reduce biased
language in Wikipedia over time through a con-
tinuous process of collaborative content revision
(Pavalanathan et al., 2018). Still, new instances of
bias are introduced just as often as old ones are
overlooked because of humans’ inherent difficulty
with subtle expressions of point-of-view partiality.
Recasens et al. (2013) showed that when presented
with a biased sentence from Wikipedia, annotators
manage to correctly identify the loaded word in
only 37% of the cases.

2 Related Work

Bias detection approaches vary primarily in terms
of corpora, vectorization methods, and classifica-
tion algorithms. We present a review of the related
literature along this division.

2.1 Corpora

Among those who tackle NPOV violations in
Wikipedia, some rely on available datasets
(Vincze, 2013), others perform manual annotation
(Hube and Fetahu, 2018; Ganter and Strube, 2009;
Herzig et al., 2011; Al Khatib et al., 2012), still
others attempt to automatically extract labeled ex-
amples (Ganter and Strube, 2009; Recasens et al.,
2013; Hube and Fetahu, 2018). Our approach is in
line with the latter.

Using existing corpora, while being the cheap-
est method, predetermines which types of bias
will be explored and in which languages. Vincze
(2013) uses WikiWeasel, the Wikipedia subset
of the CoNLL-2010 Shared Task corpora (Farkas
et al., 2010) to study discourse-level uncertainty
by manually annotating linguistic cues for three
overt manifestations of bias: weasel, hedge and
peacock words. Ganter and Strube (2009) focus on
detecting hedges in a corpus of 1000 extracted sen-
tences tagged with {{weasel}}, Bhosale et al.
(2013) try to detect promotional content, while
Kuang and Davison (2016) train their model on
the English corpus of Recasens et al. (2013).

Manual annotation ensures higher quality but
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is too costly for large multilingual datasets.
Hube and Fetahu (2018) learn to detect bias in
Wikipedia on a manually annotated corpus of sen-
tences from the inherently biased Conservapedia,
with a precision of 0.74. When tested on an unla-
beled dataset extracted from Wikipedia however,
the classifier obtains a precision of 0.66 for the
sentences classified with a certainty over 0.8.
Recasens et al. (2013) first propose a heuristic to
automatically build a labeled corpus with biased
sentences. Out of all revisions of NPOV-tagged
articles, they identify the bias-driven edits based
on the comments the editors left at commit. Al-
though reliable, this method yields a fairly small
set of examples for English (2,235 sentences) and
none for smaller Wikipedias, first because of its
dependence on revision comments (which are op-
tional), and second, because it limits the examples
to bias-driven edits containing five or fewer words.

2.2 Vectorization

As for data vectorization, previous work on bias
detection relies either on features from pre-trained
language models, custom feature-engineering or
both. Bellows (2018) finds no significant dif-
ference in performance for classifiers trained on
Word2vec, GloVe, or fastText representations.
Several studies (Recasens et al., 2013; Ganter and
Strube, 2009; Hube and Fetahu, 2018) employ
multiple lexical, contextual, and linguistic features
which, while boosting performance, remain de-
pendant on handcrafted word lists, specialized lex-
ical resources such as SentiWordNet (Baccianella
et al., 2010), subjClue (Gitari et al., 2015), etc.,
and grammatical parsers that often cover only En-
glish. Yano et al. (2010) combine word vector
representations from GloVe (as semantic features),
32 boolean lexicon-based features from Recasens
et al. (2013) and document vector representations
(as contextual features) to distinguish between dif-
ferent uses of the same word. They find that when
training a logistic regression classifier, the seman-
tic features alone perform better than both the con-
textual and the combination of the two.

2.3 Classification Algorithms

Also performing bias classification at the sentence
level, Vincze (2013) detects sentences containing
weasel, hedge or peacock words from the Wiki-
Weasel corpus with a precision of 0.74, recall of
0.69 and F; of 0.71, by using a dictionary lookup
approach. Bellows (2018) reports an accuracy of



0.68 on a corpus of 2,143 biased sentences from
news articles, vectorized using tf-idf and classified
with a Mutlinomial Naive Bayes, and an accuracy
of 0.77 for a CNN and 0.78 with a RNN. Finally,
Hube and Fetahu (2018) achieve an F; measure of
0.70 using Random Forest on 686 manually anno-
tated sentences from Conservapedia.

3 Dataset Description

We propose a procedure to semi-automatically de-
rive a labeled corpus of biased sentences from a
Wikipedia dump in any language, which, for this
paper, we applied to the April 2019 dumps? for
Bulgarian, French and English.

3.1 Tagset Curation

First, we manually compile a list of NPOV-
related tags for each of the target languages us-
ing the names of relevant Wikipedia maintenance
templates® ({{pov}}, {{NPoV}}, {{neutral
point of view}}, {{peacock}},etc.).

Most tags, however, vary in spelling, not only
based on the context (e.g., inline or at the be-
ginning of an article), but also because of the
open and collaborative nature of Wikipedia. Ta-
ble 1 shows the sixteen most frequent “weasel” tag
variations, only five of which (in bold) are docu-
mented on Wikipedia. While the official tag is the
most frequently used, the unofficial variations ac-
count for almost 35% of the most frequent ways to
tag a page containing weasel words.

While it may be effortless for human editors
to interpret the meaning of these variations, it
is not trivial to automatically identify all NPOV-
related ones. Simply extracting all the tags starting
with the official form of “weasel” yields unrelated
tags such as “weasel, back-striped” (an animal) or
“weasel, ben” (a punk singer). For that reason, we
automatically compiled exhaustive tag frequency
lists in each language, and then manually selected
the relevant variations of each.

3.2 Revision Extraction

We look for occurrences of the selected tags across
all revisions of each page, going forward from the
oldest one. When a biased revision is found, we
follow its evolution until the POV tag disappears,
at which point we assume the problematic con-
tent has been either rewritten or edited out. Next,
https://dumps.wikimedia.org

For English, see https://en.wikipedia.org/
wiki/Category:Neutrality_templates
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Tag Count Ratio
weasel 201,092 0.5748
weasel-inline 89,352 0.2554
weasel words 21,755 0.0622
weasel word 16,991 0.0486
weasel section 3,954 0.0113
weasel-section 3,743 0.0107
weasel inline 2,631 0.0075
weaselinline 2,213 0.0063
weasel-words 2,176  0.0062
weasel-word 2,102 0.0060
weaselword 1,967 0.0056
weasel-name 956 0.0027
weaselwords 503 0.0014
weasel_section 225 0.0007
weasel_words 124 0.0004
weasel_word 80 0.0002

Table 1: “Weasel” tag variation in English

we extract the tag together with the pair of adja-
cent revisions, where the older one is tagged as
biased and the newer one is not. We opted for
this diachronic retrieval method, rather than re-
lying on the repertoire of articles in Wikipedia’s
“NPOV dispute” section (Herzig et al., 2011; Re-
casens et al., 2013) since the latter only features
currently tagged articles, while our method digs
NPOV violations from revision histories.

3.3 Processing and Filtering

Each of these revision pairs undergoes a clean-
ing process using regular expressions to strip as
much of the Wikipedia markup, links, and page
references as possible, while preserving visible
text and essential punctuation. At this point, we
proceed to tokenize the text and split it into sen-
tences using the rule-based tokenizer and senten-
cizer methods of spaCy (Honnibal and Montani,
2017), whose 2.1.3 version supports 51 languages.
Finally, we replace all numbers with a special to-
ken (numtkn), strip all remaining punctuation,
and convert everything to lowercase.

Our algorithm also extracts revision pairs where
the second member was the subject of a redirect or
vandalism, which we filter out. We then compare
the revisions to obtain the lists of deleted and in-
serted sentences for each pair. In about 20% of
the cases, the difference consists in simply delet-
ing the NPOV tag, which we believe is an artifact
of editorial wars (Sumi et al., 2011; Yasseri et al.,



2012), given the contentiousness of most NPOV-
flagged topics. Another 20% of the revision differ-
ences we set aside are punctuation or case-related.

We further clear the dataset from outliers
(mostly acts of vandalism) by removing those
with more than 400 edited sentences. Finally,
we exclude revision pairs with minor differ-
ences (character-based Levenshtein distance of 1),
which are spelling corrections rather than bias res-
olution. Table 2 gives the number of initial, final
and excluded revisions per language.

Revision pairs BG FR EN
initial number 1,021 46,331 197,953
tag removal =257 -10,255 -61,397
punct./case -194 5,967 -44,345
redir./vandalism -56 -1,524 -17,154
deletions only -33 2,740 -11,331
insertions only -28 2,819 2,938
spelling -3 -136 —400
outliers -2 -153 -609
Total pairs 448 22,737 59,779

Table 2: Number of revision pairs per language

To build the final corpora, we take all removed
and added sentences (under 300 tokens) from the
pre-filtered revisions for the positive and negative
classes respectively. We balance the dataset by
using unchanged sentences (also treated as nega-
tives), as shown in Table 3.

Sentences BG FR EN
Removed 4,756 105,939 800,191
Added 3,288 72,183 494,993
Unchanged 1,468 33,756 305,198
Total 9,512 211,878 1,600,382

Table 3: Number of sentences per language

4 Dataset Evaluation

Once we have collected the tagged/untagged re-
vision pairs for each language (as per §3.2), we
evaluate their potential for automatic bias detec-
tion. Our intuition is that the sentences that were
removed together with the NPOV tag in the same
edit likely contain some form of bias. Insertions,
on the other hand, come with little guarantee of
neutrality, so we focus on the removed sentences.
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4.1 Protocol

For each language, we distribute the tagged/
untagged revision pairs into four bins, based on
the number of sentences that were removed in the
edit (bin 1: 1 or 2 sentences removed, bin 2: 3—
6, bin 3: 7-15, bin 4: 16 or more; these val-
ues were determined empirically to yield balanced
bins in terms of revision pairs). Each annotator la-
beled 296 randomly picked sentences for a given
language, distributed equally across the four bins.
72 of these sentences (24%) were shared by all
annotators working on the same language, while
the remaining 224 were labeled by a single anno-
tator (cf. Table 4), thus allowing us to annotate
more sentences while maintaining enough over-
lap to measure inter-annotator agreement (IAA).
The Bulgarian sample was annotated by two native
speakers, English by three with near-native profi-
ciency, and French by two natives.

Lang All Annl Ann2 Ann3 Total
BG 72 224 224 — 520
FR 72 224 224 — 520
EN 72 224 224 224 744

Table 4: Number of sentences per annotator

The annotators were given identical instruc-
tions. For each sentence in their sample, they had
to say whether it violated any of the NPOV prin-
ciples stated in §1. The annotators were always
presented with the full revision pair, so they had
access to the context.

4.2 Dataset Evaluation Results

Since we had three annotators for English, we used
Fleiss’ k to measure IAA. Tables 5 and 6 give the
rate of positive annotations and IAA per language
and per bin. On average, across all languages and
bins, the annotators found 48% of positives in their
samples, with an overall IAA of 0.41. Leaving out
BG bin 4 (the only one with a negative k), we get
an average positive rate of 47% (std=0.08) and
an average r value of 0.46 (std=0.14). Our IAA
coefficients are consistent with Vincze (2013),
who had 200 English Wikipedia articles annotated
by two linguists for weasel, peacock and hedge
words, with IAA rates of 0.48, 0.45 and 0.46, re-
spectively, and higher than the 0.35 reported by
Hube and Fetahu (2018), who crowdsourced the
annotation of sentences from Conservapedia into
biased and unbiased. Identifying such phenomena



is thus not trivial but reasonable agreement can be
expected.

Bin BG EN FR | avg std
1 034 051 047|044 0.07

2 0.64 045 045|052 0.09

3 063 045 038|048 0.11

4 0.63 052 034050 0.12
avg 056 048 041|048 0.06
std 0.13 0.03 0.05|0.03 0.10

Table 5: Positives in annotations

Bin BG EN FR | avg std
1 0.32 0.55 0.67 | 0.51 0.15

2 022 058 044041 0.15

3 0.32 031 0.61| 041 0.14

4 -023 039 0.68|0.28 0.38
avg 0.16 046 0.60 | 041 0.18
std 023 0.11 0.10 | 0.08 0.21

Table 6: Inter-annotator agreement (Fleiss’ x)

About half of the annotated sentences turn out
to be neutral. Below, we discuss the sources of the
noise we have observed in our dataset (including
the added sentences).

4.3 Sources of Noise

We identified two types of noise: pipeline-related
and human-related. Pipeline-related noise is either
noise introduced at the pre-processing phase (e.g.,
due to inconsistent sentence segmentation) or
noise that remains despite our filtering and clean-
ing efforts (e.g., NPOV-unrelated edits longer than
one character, differences resulting from the in-
troduction of an infobox, differences consisting in
changing the spelling of numbers).

Human editor-related noise comes from the data
itself and stems from the behaviour of Wikipedia’s
editors. It includes edits which introduce bias (of-
ten intentionally, as in (1) below), vandalism, cor-
rections of factual mistakes unrelated to bias, re-
placing bias with another bias (cf. (2)), and collat-
eral edits, i.e., neutral sentences neighbouring bi-
ased ones indirectly targeted by a large-scope edit
(cf. (3)). Below are some examples.

1) a.
b.

(before) cardinal health inc is a holding company
(after) cardinal health is a healthcare company ded-
icated to making healthcare safer and more pro-
ductive
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(2) a. (before) its support is low only in the cholla
province which has for nearly numtkn years sup-
ported kim dae jung a well known leftist politician
born in that province who also served as president
of south korea numtkn numtkn

(after) its support is low only in the jeolla province
which has for nearly numtkn years supported kim
dae jung a well known progressive politician born
in that province who also served as president of

south korea numtkn numtkn

(3) a. (before) from the numtkn th century confucianism
was losing its influence on vietnamese society
monetary economy began to develop but unfortu-
nately in negative ways

(after) from the numtkn th century confucianism
was losing its influence on vietnamese society and

a monetary economy began to develop

5 Expressions of Bias

The manual annotation also highlighted the vari-
ety of bias expression. Previously, Recasens et al.
(2013) had identified two major classes: episte-
mological and framing bias (subjective intensi-
fiers and one-sided terms), where they considered
the first one to group more implicit expressions
such as factive and assertive verbs, entailment and
hedges. Based on their work and Wikipedia’s
Manual of Style, we present biased examples from
our corpus* and discuss them in terms of the overt/
covert nature of the biased statement, its length
(one or more words), and its level of ambiguity.

Subjective intensifiers are mostly expressed
through single-word verbal and nominal modifiers
(adverbs and adjectives) as in (4) and (5), but may
also take the form of superlatives or quantifiers.
They explicitly undermine tone neutrality by in-
troducing overstatements and exaggerations (6).

(4) a. (before) some prominent liberals including scott
reid were strongly critical of volpe s response
b. (after) some prominent liberals including scott reid

criticized volpe s response
(5) (before) he is truly one of the greatest americans

(6) a. (before) this is an absurd statement because the
cavalry of any age is designed first and foremost to

run over the enemy and separate them as to make

“Examples are taken from the English evaluation subsets,
where sentences are in lowercase, stripped of punctuation and
numbers are replaced by numt kn.



them far more vulnerable to being overwhelmed and
overrun

(after) this is wrong because the cavalry of any age
is designed first and foremost to run over the enemy
and separate them as to make them far more vulner-

able to being overwhelmed and overrun

Clichés and jargon tend to be non-ambiguous
but introduce low-frequency words in the corpus,
as a result of being discouraged by Wikipedia.

(7) (before) x force was concocted by illustrator rob liefeld
who started penciling the new mutants comic book in

numtkn

Describing or analyzing rather than reporting
events is a form of partiality harder to model, as it
may not necessarily contain explicitly proscribed
vocabulary.

(8) (before) he was a former club rugby and an opening
batsman in club cricket but did not have the ability to
make it all the way to the top level these two sports have
become his particular area of expertise however he is

very knowledgable on all sports that are played

(9) (before) however the most important consequence of the
battle was that president lincoln was able to sieze upon
the victory claim it as a strategic victory for the north

and release his emancipation proclamation

Active voice may be used in cases like (10) to
stress the agency of a participant in a situation,
alongside a positively loaded support verb.

(10) a. (before) the united states department of justice in-
dicted the company but amway secured an ac-
quittal

b. (after) the united states department of justice in-

dicted the company but amway were acquitted

To state a fact as an opinion is to use a weasel
word to undermine the fact (11) or hide its source.
While previous research shows the success of
word-lists in detecting this particular type of bias
(Recasens et al., 2013; Ganter and Strube, 2009),
Vincze (2013) warns against the ambiguity of
many of them. For example, most can be a weasel
word (Most agree that...), a hedge (most of his
time), a peacock (the most touristic beach) or neu-
tral (He did the most he could.)

(11) a. (before) in the first invasion operation litani in
numtkn the israeli military and south lebanon army

sla occupied a narrow strip of land ostensibly as a
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security zone

(after) in the first operation litani in numtkn the
israel defense forces and south lebanon army oc-
cupied a narrow strip of land described as the se-

curity zone

To state an opinion as a fact may be done with
the use of an adverb (12) or an omission (13).
(12) a. (before) in fact the need for fast and secure fund
transfers is growing and in the next year instant
payments will quickly become the new normal for
electronic fund transfers

(after) it is predicted that in the next year instant
payments will become the standard for electronic

fund transfers

13) a. (before) in numtkn the journal won the praise of
J p

fascist leaders

(after) there are some authors who retain that

the journal won the praise of fascist leaders

Intentional vagueness or the omission of fac-
tual information (14), is arguably the hardest type
of bias expression to detect not only for machines,
which are expected to recognize the lack of data
as an informative feature, but also for humans,
since filling factual gaps requires a fair amount of
domain-specific knowledge.

(14) a. (before) as of numtkn it is the ethnic minority party
in romania with representation in the romanian
parliament

(after) as of numtkn it is the ethnic minority party
in romania with representation in the romanian
parliament and is part of the governing coalition
along with the justice and truth alliance and the

conservatives

6 Classification Experiments

The goal of the experiments is to assess the useful-
ness of the dataset in a sentence classification task.
Our hypothesis is that having similar examples in
both the biased and non-biased classes would help
to single out discriminative words targeted by the
NPOV-related edits.

Each dataset was split into a training set (80%),
a development set (10%) on which we tuned the
parameters, and a test set (10%) on which we ran
a single evaluation with the best parameters.



6.1 Embeddings

We used fastText’s classification function (Joulin
et al., 2017), which implements a multinomial lo-
gistic regression algorithm on top of pretrained
word embeddings. It uses word and character level
embeddings to predict the class value of an in-
stance. The parameter optimization was done by
altering values for epoch (5, 10, 25), learning rate
(0.1, 0.01, 0.05), word n-grams (1 to 5), minimum
count (1-5), embedding dimensions (100, 300),
loss function (softmax, ns, hs), minimum charac-
ter level n-gram size (2, 3), using pretrained vec-
tors or not, and learning rate update rate (50, 100).

When applying fastText’s pretrained vectors,’
we obtained comparable results for English and
French without any significant gain, and with
lower performance on Bulgarian. Thus, the fi-
nal model chosen for its overall best performance
across all three languages was trained without the
use of an additional language model. The best per-
forming values were then tried out on the test set.

6.2 Bag-of-Words Vectorization

We also experimented with classic bag-of-word
vectorization with the stochastic gradient descent
(SGD) (LeCun et al., 1998) and logistic regres-
sion (Hosmer and Lemeshow, 2000) algorithms.
Each algorithm was run with the same settings
on all three datasets to get the best average over-
all performances for precision, recall and F; mea-
sure. Parameter optimization was done using a
grid search. Stop word lists were used for each
language, which is the only language-specific as-
pect of the experiment.

The optimization for SGD ran 72 permutations
with the following parameters:

e Bag-of-word n-gram size: unigrams only, un-
igrams and bigrams, unigrams to trigrams.

e Bag-of-word size: 100, 150, 300, 500, 1,000
and 3,000.

e Use idf reweighting or not.

e « value: 0.01, 0.001.

All the other parameters were set to their default
values.® For logistic regression, 504 permutations
were tested using the following settings:

e Same BOW n-gram size and BOW size and
value type as SGD.

5 Available for 157 languages, pretrained on Common
Crawl and Wikipedia (Grave et al., 2018) https://
fasttext.cc/docs/en/crawl-vectors.html

%Version 0.21.2 of the sklearn toolkit.
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e C: 1.0e-3, 1.0e-2, 1.0e-1, 1.0e0, 1.0e+1,
1.0e+2 and 1.0e+3.
e Solver: sag, saga.

Using the training and development sets to run
the grid search optimization on all three lan-
guages, the average F; measure was used to see
which parameter values offered the best average
performance across the board. The selected values
were then used to run the same algorithm once on
each language’s training and test sets.

7 Results and Discussion

Table 7 shows the results for the experiments
detailed in §6 for the SGD, fastText and logis-
tic regression (LR) algorithms. For each perfor-
mance measure, dataset section, algorithm and
language, we provide results with respect to the
biased class. The highest performance obtained
on the test dataset of each language is in bold.

For the LR algorithm, the best performances
were obtained using a C value of 0.001 with the
saga solver using a unigram model of 100 fea-
tures without inverse document frequency (idf)
reweighting. The best parameters for the SGD
used a model of unigrams to trigrams, with an «
of 0.001 and idf reweighting. For fastText, the best
performing parameter set used the default values’
and a minimum of 5 occurrences per token.

Overall, the similar results between the devel-
opment and test sets for each algorithm confirm
that they did not overfit. Furthermore, all three
measures have relatively low variance across lan-
guages, except for recall with SGD, which is con-
siderably lower for Bulgarian (also impacting F;)
than for the other two languages.

We observe that FastText’s vectorization and
classification methods deliver higher precision
upon larger datasets, but SGD and LR assure a
much higher recall regardless of the number of ex-
amples.

While relatively better, the SGD performance
level on the test set leaves room for improvement.
This is likely due to the noise level in the sentences
labeled as biased, which count many non-biased
examples (see §4.2). The results are equally likely
affected by the lexical and contextual ambiguity of
the biased expressions, as discussed in §5. How-
ever, we do observe comparable best performance

"For version 083 of https://github.com/
facebookresearch/fastText



Measure Lang. Dev-SGD Test-SGD Dev-fastText Test-fastText Dev-LR Test-LR
Precision BG 0.5387 0.5886 0.5324 0.5330 0.5182  0.5032
FR 0.5059 0.5087 0.5533 0.5520  0.5151 0.5161
EN 0.5112 0.5083 0.5656 0.5634 0.5230  0.5224
Recall BG 0.4318 0.5049 0.4752 0.4937  0.6219  0.6303
FR 0.8877 0.8363 0.5724 0.5721 0.6751 0.6739
EN 0.8357 0.8277 0.5686 0.5718 0.5344  0.5354
Fy BG 0.4794 0.5435 0.5022 0.5126  0.5653 0.5596
FR 0.6444 0.6146 0.5627 0.5619  0.5844  0.5845
EN 0.6334 0.6291 0.5671 0.5676  0.5286  0.5288

Table 7: Results for each language, dataset and classification method for the biased class

across corpora of varying size and languages from
different families.

On the test set, our best overall average F;
measure ranged between 0.56 and 0.62. This is
lower than Vincze (2013)’s 0.71 or Hube and Fe-
tahu (2018)’s 0.70, but our approach uses a large
corpus, automatically derived from Wikipedia in
any language with minimal language-specific in-
put, applied to sentence-level bias detection, while
Vincze (2013) used a monolingual, dictionary-
based approach, and Hube and Fetahu (2018) re-
lied on language-specific resources to extract mul-
tiple lexical and grammatical features. Our re-
sults set the baseline for sentence-level bias de-
tection across the three languages of this corpus.
Higher performance for a specific language may
be achieved by a reconfiguration of the parameters
or by the introduction of additional features.

8 Conclusion and Future Work

We presented a semi-automatic method to extract
biased sentences from Wikipedia in Bulgarian,
French and English. As this method does not
rely on language-specific features, apart from the
NPOV tag list and a stop word list, it can be easily
applied to Wikipedia archives in other languages.
It relies on the tags added by human editors in the
articles that they considered biased. We retrieve
the last tagged revision and the untagged revision
following it and regard them respectively as biased
and unbiased. By comparing the revisions, we get
the lists of removed and added sentences.

We manually annotated 1,784 of the removed
sentences, for all three languages combined, and
found that only about half of them were actually
biased. An average Fleiss’ « of 0.41 (0.46 if ig-
noring an outlier), consistent with the literature,

49

indicates that the task is not trivial even for hu-
mans.

Using our corpora, we tested three classification
algorithms: bag-of-word vectorization with SGD,
fastText, and logistic regression.

In future work, we would like to improve the
quality of the dataset by addressing issues uncov-
ered during the human evaluation, such as incoher-
ent sentence segmentation, enumerations, minor
edits and remaining noise. Another conceivable
optimization is to segment the dataset into two or
more subsets according to the main forms of bias
expression (e.g., explicit vs implicit). It would al-
low to explore and evaluate different forms of bias
separately, which in turn might motivate differen-
tial classification techniques. Finally, populating
the negative examples class with sentences from
Wikipedia’s Featured Articles (in line with Bhos-
ale et al. 2013) might help reduce class ambiguity
by reinforcing the contrast between neutral ency-
clopedic tone and expressions of bias.
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Abstract

Morphological segmentation of words is
the process of dividing a word into smaller
units called morphemes; it is tricky es-
pecially when a morphologically rich or
polysynthetic language is under question.
In this work, we designed and evaluated
several Recurrent Neural Network (RNN)
based models as well as various other ma-
chine learning based approaches for the
morphological segmentation task. We
trained our models using annotated seg-
mentation lexicons. To evaluate the effect
of the training data size on our models, we
decided to create a large hand-annotated
morphologically segmented corpus of Per-
sian words, which is, to the best of our
knowledge, the first and the only seg-
mentation lexicon for the Persian lan-
guage. In the experimental phase, using
the hand-annotated Persian lexicon and
two smaller similar lexicons for Czech and
Finnish languages, we evaluated the effect
of the training data size, different hyper-
parameters settings as well as different
RNN-based models.

1 Introduction

Morphological analysis must be tackled somehow
in all natural language processing tasks, such as
machine translation, speech recognition, and in-
formation retrieval. Morphological segmentation
of words is the process of dividing a word into
smaller units called morphemes. Morphological
segmentation task is harder for those languages
which are morphologically rich and complex like
Persian, Arabic, Czech, Finnish or Turkish, espe-
cially when there are not enough annotated data
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for those languages. In this paper, we designed
and evaluated various supervised setups to per-
form morphological segmentation using a hand-
annotated segmented lexicon for training.

The efficiency of supervised approaches (espe-
cially of deep neural network models) is naturally
highly dependent on the size of training data. In
order to evaluate the effect of the training data
size on our segmentation models, we created a
rich Persian hand-annotated segmentation lexicon,
which is, as far as we know, the first and the only
such computer-readable dataset for Persian. Per-
sian (Farsi) is one of the languages of the Indo-
European language family within the Indo-Iranian
branch and is spoken in Iran, Afghanistan, Tajik-
istan and some other regions related to ancient
Persian. In addition, we evaluated our models on
Czech and Finnish, however, the amount of anno-
tated data for them is substantially lower.

Automatic morphological segmentation was
firstly introduced by Harris (1970). More re-
cent research on morphological segmentation has
been usually focused on unsupervised learning
(Goldsmith, 2001; Creutz and Lagus, 2002; Poon
et al.,, 2009; Narasimhan et al., 2015; Cao and
Rei, 2016), whose goal is to find the segmenta-
tion boundaries using an unlabeled set of word
forms (or possibly a corpus too). Probably the
most popular unsupervised systems are LINGUIS-
TICA (Goldsmith, 2001) and MORFESSOR, with
a number of variants (Creutz and Lagus, 2002;
Creutz et al., 2007; Gronroos et al., 2014). An-
other version of the latter which includes a semi-
supervised extension was introduced by (Kohonen
et al., 2010). Poon et al. (2009) presented a log-
linear model which uses overlapping features for
unsupervised morphological segmentation.

In spite of the dominance of the unsupervised
systems, as soon as even just a small amount of
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segmented training data is available, then the en-
tirely unsupervised systems tend not to be com-
petitive.  Furthermore, unsupervised segmenta-
tion still has considerable weaknesses, including
over-segmentation of roots and erroneous segmen-
tation of affixes (Wang et al., 2016). To deal
with those limitations, recent works show a grow-
ing interest in semi-supervised and supervised
approaches (Kohonen et al., 2010; Ruokolainen
et al.,, 2013, 2014; Sirts and Goldwater, 2013;
Wang et al., 2016; Kann and Schiitze, 2016; Kann
et al., 2018; Cotterell and Schiitze, 2017; Gronroos
et al., 2019) which employ annotated morpheme
boundaries in the training phase.

In our work we designed and evaluated various
machine learning models and trained them using
only the annotated lexicon in a supervised manner.
Our models do not leverage the unannotated data
nor context information and only use the primary
hand-annotated segmentation lexicons.

Experimental results show that our Bi-LSTM
model perform slightly better than other models in
boundary prediction for our hand-segmented Per-
sian lexicon, while KNN (K-Nearest Neighbors al-
gorithm) performs better when the whole word ac-
curacy is under question.

The paper is organized as follows: Section 2
addresses the related work on morphological seg-
mentation. Section 3 describes the methodology
and machine learning models used in this work.
Section 4 introduces our hand-segmented Persian
lexicon as well as related preprocessing phases.
Section 5 presents the experiment results com-
pared to some other baseline systems and finally
Section 6 concludes the paper.

2 Related Work

Supervised morphological segmentation, i.e. us-
ing a lexicon (or a corpus) with annotated mor-
pheme boundaries in the training phase, has at-
tracted increasing attention in recent years. One
of the most recent successful research directions
on supervised morphological segmentation is the
work of (Ruokolainen et al., 2013), whose au-
thors employ CRF (Conditional Random Fields), a
popular discriminative log-linear model to predict
morpheme boundaries given their local sub-string
contexts instead of learning a morpheme lexicon.
(Ruokolainen et al., 2014) extended their work
to semi-supervised learning version by exploiting
some available unsupervised segmentation tech-
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niques into their CRF-based model via a feature
set augmentation. (Ruokolainen et al., 2014)

Long Short Term Memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997) have recently
achieved great success in sequence learning tasks,
including outstanding results on sequential tasks
such as machine translation (Sutskever et al.,
2014). Wang et al. (2016) proposed three types
of window-based LSTM neural network models
named Window LSTM, Multi-window LSTMs
and Bidirectional Multi-Window LSTMs, in or-
der to automatically learn sequence structures and
predict morphological segmentations of words in a
raw text. They used only word boundary informa-
tion without any need for extra feature engineer-
ing in the training phase. The authors compared
their models with selected supervised models as
well as with an LSTM architecture (Wang et al.,
2016), and similarly to the work of Ruokolainen
et al. (2013), their architecture is based on the
whole text and context information instead of us-
ing only the lexicon. Cotterell and Schiitze (2017)
increased the segmentation accuracy by employ-
ing semantic coherence information in their mod-
els. They used RNN (Recurrent Neural Network)
to design a composition model. They also found
that using RNN with dependency vector has the
best results on vector approximation (Cotterell and
Schiitze, 2017).

Recently, using encoder-decoder models Bah-
danau et al. (2014) (attention-based models) made
some great successes in machine translation sys-
tems. Kann and Schiitze (2016) used an encoder-
decoder model which encodes the input as a se-
quence of morphological tags of source and tar-
gets and feeds the model by sequence of letters of
a source form. They select the final answer using
a majority voting amongst their five different en-
sembled RNN encoder-decoder models. Kann and
Schiitze (2016), proposed a seq2seq (sequence-to-
sequence network) architecture for the word seg-
mentation task. They used a bi-directional RNN
to encode the input word (i.e. sequence of charac-
ters) and concatenated forward and backward hid-
den states yielded from two GRUs and pass the re-
sult vector to decoder part. The decoder is a single
GRU which uses segmentation symbols for train-
ing. She introduced two multi-task training ap-
proaches as well as data augmentations to improve
the quality of the presented model. She shows that
neural seq2seq models perform on par with or bet-



ter than other strong baselines for polysynthetic
languages in a minimal-resource setting. Their
suggested neural seq2seq models constitute the
state of the art for morphological segmentation in
high-resource settings and for (mostly) European
languages (Kann et al., 2018).

The main studied language in our work is Per-
sian, which belongs to morphologically rich lan-
guages and which is powerful and versatile in
word building. Having many affixes to form new
words (over a hundred), and the ability to build af-
fixes and especially prefixes from nouns, the Per-
sian language is considered as an agglutinative
language since it also frequently uses derivational
agglutination to form new words from nouns, ad-
jectives, and verbal stems. Hesabi (1988) claimed
that Persian can derive more than 226 million
words (Hesabi, 1988).

To the best of our knowledge, the research
on morphology of the Persian language is very
limited. Rasooli et al. (2013) claimed that per-
forming morphological segmentation in the pre-
processing phase of statistical machine transla-
tion could improve the quality of translations for
morphology rich and complex languages. Al-
though they segmented very low portion of Per-
sian words (only some Persian verbs), the qual-
ity of their machine translation system increases
by 1.9 points of BLEU score. Arabsorkhi and
Shamsfard (2006) proposed a Minimum Descrip-
tion Length (MDL) based algorithm with some
improvements for discovering the morphemes of
Persian language through automatic analysis of
corpora.

3 Our Machine Learning Models

In this work we decided to evaluate selected ma-
chine learning models including those feature-
based machine learning approaches in which the
task of word segmentation is reformulated as
a classification task, as well as various deep-
learning (DL for short) neural network models.

Because of huge number of learned parame-
ters in DL, having enough training data is critical.
The fact that we decided to create a large hand-
annotated dataset for Persian allows evaluating the
effect of the training data size on a relatively wide
scale, as described in Section 4.

We convert all segmentations into a simple
string format in which letters “B” and “L” en-
code the presence of the boundary letter and
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the continuation letter, respectively. For exam-
ple for word “goes”, the encoded segmentation
is “LLBL”, which shows that there is a segmen-
tation boundary in front of the third letter (“e”).
While in our model we consider only morpholog-
ically segmented lexicon and we do not employ
any other information like corpus contexts or lists
of unannotated words, this encoding is sufficient
and make the specification of boundary location
easy.

In the case of presence of a semi-space let-
ter (a feature specific for the Persian written lan-
guage), the semi-space letter is always considered
as a boundary letter. An experiments focused on
this feature is described in Subsection 5.2.3, which
shows that our models could perform better when
this information exists in the annotated lexicon.

3.1 Classification-Based Segmentation
Models

In the first setup, we convert the segmentation task
(the task of segmenting a word into a sequence
morphemes) simply to a set of independent bi-
nary decisions capturing the presence or absence
of a segmentation boundary in front of each let-
ter in the word. For this task, we use various
standard off-the-shelf classifiers available in the
Scikit-learn toolkit (Pedregosa et al., 2011).

So far, we provide the classifiers only with fea-
tures that are extractable from the word alone.
More specifically, we use only character-based
features. These character-based features include
letters and letter sequences (and their combina-
tions) before and after under the character under
question, which is subsequently assigned one out
of two classes: “B” for boundary characters, and
“L” which stands for continuation characters. The
main task of these methods is then to train a classi-
fication model to classify all characters in the word
into those two classes, given binary features based
on surrounding characters. For example, for the
fifth character of word “hopeless”, some of our
features could be: “e”, “le”, and “ope”. The classi-
fication predictions are performed independently.

3.2 Deep Neural Network Based Models

Besides the classification-based segmentation
models, we designed and evaluated five DL mod-
els based on GRU, LSTM, Bi-LSTM, seq2seq and
Bi-LSTM with the attention mechanism, respec-
tively. The first three models are illustrated in Fig-
ures 1 and 2. The presented seq2seq model, is



similar to the model described in (Gronroos et al.,
2019). The last presented model is an attention
based model, which is shown in Figure 3. In this
model, we use Bi-LSTM as encoder and LSTM as
attention layer, and finally, outputs of encoder and
attention layers are added together.

Figure 1: The schema of the LSTM/GRU models
used in this experiments.

Figure 2: The schema of the Bi-LSTM model used
in this experiments.

Output
T 4
f <%)= W
f W
’ Bi-LSTM LSTM
A A A j <j <J
' Input ‘

Figure 3: The schema of the Bi-LSTM with the
attention mechanism model used in this experi-
ments.

4 Morphological Segmentation Lexicons

In this section, the rich Persian hand-annotated
dataset and the existing Finnish datasets from
the Morpho-Challenge shared task 2010 (Virpioja
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et al., 2011) as well as the Czech dataset used in
our experiments are described.

4.1 Persian Hand-Annotated Morphological
Segmentation Dataset

We extracted our primary word list from three dif-
ferent corpora. The first corpus contains sentences
extracted from the Persian Wikipedia (Karimi
et al., 2018). The second one is popular Persian
mono-lingual corpus BijanKhan (Bijankhan et al.,
2011), and the last one is Persian-NER! (Poostchi
et al., 2018).

For all introduced corpora, using Hazm tool-
set (Persian preprocessing and tokenization tools)>
and the stemming tool presented by Taghi-Zadeh
et al. (2015), we extracted and normalized all
sentences and in the final steps using our rule-
based stemmer and a Persian lemma collection, all
words are lemmatized and stemmed. Finally all
semi-spaces are automatically detected and fixed.
Words with more than 10 occurrences in the cor-
pora were selected for manual annotation. We
decided to send all 80K words to our 16 anno-
tators in the way that each word is checked and
annotated by two independent persons. Annota-
tors decided about the lemma of a word under
question, segmentation parts, plurality, ambiguity
(whether a word has more than one meaning) or
they might delete the word if they think is not a
proper Persian word. Moreover, some segmenta-
tions predicted by our automatic segmentator with
high confidence score were offered to our annota-
tors. We removed almost 30K words which were
selected to be deleted by both annotators. And re-
maining 50K words sent for inter-annotation com-
parison part. In this step, all disagreements were
checked and corrected by the authors of this paper
and finally all words were quickly reviewed by two
Persian linguists. The whole process took around
six weeks. In order to use a hand-annotated lex-
icon in our work, we extracted the segmentation
part from the dataset and converted it to our binary
model which is described in Section 3.

The total number of words we used in our Per-
sian dataset is 40K. The dataset is publicly avail-
able in the LINDAT/CLARIN repository (Ansari
et al., 2019).

"https://github.com/HaniehP/
PersianNER
’https://github.com/sobhe/hazm



4.2 Existing Finnish and Czech Segmentation
Datasets

We downloaded the Finnish segmentation dataset
from the Morpho-Challenge shared task 2010°
(Virpioja et al., 2011) and converted them into our
binary format. The Finnish dataset contains 2000
segmented words. While comparing to our hand-
annotated Persian dataset these datasets are small,
we used them to see the efficiency of our presented
models when the size of training dataset is limited.

The Czech dataset results from a prototype seg-
mentation annotation of Czech words. A sample
of 1000 lemmas were selected randomly from De-
riNet, which is a lexical database focus on deriva-
tion in Czech (Zabokrtsk}’/ et al.,, 2016). The
lemmas were manually segmented by two inde-
pendent annotators, and all annotation differences
were resolved subsequently during a third pass
through the data. The annotation resulted in 4.6
morphemes per word, partially as a result of the
fact that the lemmas were sampled uniformly, re-
gardless of their corpus frequency, and thus the se-
lection is biased towards longer words.

5 Experimental Results

To partition our dataset (Persian, Czech and
Finnish) into training, development and test sets
a commonly used method is used (Ruokolainen
et al., 2013), which involves sorting words accord-
ing to their frequency and assigning every eighth
term starting from the first one into the test set
and every eighth term from the second into the de-
velopment set, while moving the remaining terms
into the training set.

In order to evaluate the effect of the training
data size, we randomly select the first 1/64, 1/32,
1/16, 1/8, 3/8, 1/4, 1/2, 3/4 and all amount of data
from the training set to carry out experiments with
different training sizes. In all experiments, we re-
port three evaluation measures: the number of cor-
rectly predicted morpheme boundaries (in terms of
precision, recall, and f-measure), the percentage
of correct binary predictions on all characters, and
the percentage of correctly segmented words.

As described in Section 2, some previous works
reported accuracy in terms of the number of cor-
rect predictions (boundary and word) in a running
text, instead of considering unique words sampled
from a lexicon. Hence we decided to also report

*http://morpho.aalto.fi/events/
morphochallenge2010/datasets.shtml
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such accuracy in our experiments in addition to
our lexicon evaluation. For this new experiment,
we selected a part of a mono-lingual text and after
removing all presented words in the text from our
training lexicon, the remaining segmented words
are considered as the training set and finally ac-
curacy of word segmentation of words in test sen-
tences is reported separately.

5.1 Baselines

We used two baseline systems which we selected
to compare our models with. The first base-
line is an unsupervised version of MORFESSOR,
which is introduced and implemented by Creutz
et al. (2007). The second baseline is FlatCat
(Gronroos et al., 2014), which is a well-known
semi-supervised version of MORFESSOR that
uses the Hidden Markov Model for segmentation.
In addition to the annotated data, semi-supervised
MORFESSOR (i.e. FlatCat) uses a set of 100,000
word types following their frequency in the cor-
pus as their unannotated training dataset. For both
baselines, the best performing model is selected
and compared with our neural network based mod-
els.

5.2 Results and Discussion

As described in Section 4, we designed vari-
ous models for the morphological segmentation
task. In the following subsections, different ex-
periments done in this work are reviewed. In all
tables, the column entitled by W% indicates the
proportion of perfectly segmented words. The
column entitled by Ch% indicated the accuracy
of characters which are classified as boundary or
non-boundary. Finally, P%, R%, and F% indi-
cate precision, recall and F-measure score respec-
tively for the morpheme boundary detection, natu-
rally excluding the trivial final position characters
from our evaluation.

5.2.1 Comparison of Different Models

Table 1 shows the evaluation results of mor-
phological segmentation using our Persian hand-
annotated dataset if the whole training data is
used. For each model, only results of the best-
performing hyperparameter configuration are re-
ported. As is shown in Table 1, our Bi-LSTM
model performs slightly better than the rest in
boundary prediction, however, the classification
models are surprisingly almost on the par with our
complex DL model. Considering word accuracy,



Table 1: Result of applying our models on small
Persian segmented lexicon. P%, R%, and F%
indicate precision, recall and F-measure score re-
spectively. W% means the percentage of number
of correct predicted words and Ch % indicated the
the accuracy of characters which are classified in
two boundary or non-boundary classes.

classification models are performing better than
DL models. A possible explanation for this is that
the classification models make use of n-gram fea-
tures and handle the characteristics of the whole
word more efficiently than sequence-based mod-
els. Moreover, regarding our experiments, the pre-
sented seq2seq model does not perform well. An
explanation could be that while there is not any
available context information, the used attention
mechanism does not have any far parts to make a
relation between them. Moreover, our Bi-LSTM
with the attention mechanism does not perform
better than normal Bi-LSTM either. Finally, Ta-
bles 2 and 3 show the results of this experiment on
two other languages, Finnish and Czech, for which
the sizes of training data are very limited compar-
ing the Persian dataset. As we expected, with so
small training data, the classification methods per-
form better than more complex DL strategies.

Table 4 shows a comparison of our DL models,
when different LSTM output sizes and drop-out
thresholds are tested. Only two best-performing
models (LSTM and Bi-LSTM) are shown.

As is seen in the tables, the classification mod-
els perform well when compared to more complex
DL models. One explanation for this evidence is
the lack of any external information (other than
a segmented lexicon) which limits the number of

Model P%/ R% ! F% W% Ch% Model P%/ R% ! F% W% Ch%
LSTM 90.09 /87.55 / 88.80 64.10 93.20 LSTM 99.67/29.08 / 44.98 03.58 81.57
GRU 85.43/84.50/84.96 58.35 91.44 GRU 99.99/28.01/45.01 03.59 81.60
Bi-LSTM 92.50/88.65/90.53 66.51 94.37 Bi-LSTM 86.96 /32.82/ 47.66 04.88 81.30
Seq2Seq 88.04 / 84.04 / 86.09 59.10 91.65 Bi-LSTM with Attention 81.50/44.18/57.30 05.53 78.26
Bi-LSTM with Attention 92.57/85.85/89.08 65.30 93.52 SVC, Kernel: linear 78.39/76.83/77.31 38.11 91.16
SVC, Kernel: linear 85.86/82.20/83.94 73.08 94.45 SVC, Kernel: poly, Degree: 2 89.00/77.62/82.23 47.55 93.63
SVC, Kernel: poly, Degree: 2 89.57/85.86/87.67 78.72 95.72 SVC, Kernel: rbf 90.06/74.83/81.74 45.92 93.34
SVC, Kernel: rbf 89.71/84.42/86.99 77.61 95.52 SVC, Kernel: poly, Degree: 5 91.35/64.71/75.75 35.83 91.75
SVC, Kernel: poly, Degree: 5 89.77/83.91/86.74 77.17 95.45 SVC, Kernel: poly, Degree: 3 89.70/ 76.56 /82.61 46.57 93.58
SVC, Kernel: poly, Degree: 3 89.58/85.89/87.70 78.70 95.73 Logistic Regression, Solver: sag 82.43/69.37/75.34 31.92 90.95
Logistic Regression, Solver: sag 87.55/79.66/83.42 72.60 94.39 Logistic Regression, Solver: liblinear 82.43/69.37/75.34 31.92 90.95
Logistic Regression, Solver: liblinear 87.55/79.60/83.42 72.63 94.39 Logistic Regression, Solver: Ibfgs 82.43/69.37/75.34 31.92 90.95
Logistic Regression, Solver: Ibfgs 87.49/79.78 /1 83.46 72.64 94.39 KNeighbors, Neighbors: 5 82.56/71.23/76.48 33.55 91.27
KNeighbors, Neighbors: 5 86.22/ 82.47/ 84.30 73.12 94.56 KNeighbors, Neighbors: 10 82.56/71.23/76.48 33.55 91.27
KNeighbors, Neighbors: 10 86.22/82.47/84.03 73.12 94.56 KNeighbors, Neighbors: 30 82.56/71.23/76.48 33.55 91.27
KNeighbors, Neighbors: 30 90.23/86.69 / 88.42 78.64 95.73 Ada Boost, Estimators: 100 76.45/38.48/51.19 16.28 85.38
Ada Boost, Estimators: 100 83.34/64.10/72.46 58.21 90.83 Decision Tree 79.58/76.29/77.90 39.41 91.38
Decision Tree 88.25/87.05/87.65 76.83 95.38 Random Forest, Estimators: 10 87.41/68.44/76.77 37.45 91.75
Random Forest, Estimators: 10 89.75/84.87/87.15 76.08 95.30 Random Forest, Estimators: 100 88.08 /72.83/79.73 44.29 92.62
Random Forest, Estimators: 100 89.93/85.92/87.88 77.37 95.54 Bernoulli Naive Bayes 64.27/76.43 / 69.82 26.38 86.84
Bernoulli Naive Bayes 78.38 /88.31/83.05 66.71 93.21 Perceptron Maxlteration: 50 73.22/75.36/74.27 31.92 89.60
Perceptron Maxlteration: 50 83.98/74.45/78.93 65.07 92.52 Unsupervised MORFESSOR 25.85/89.87/40.15 00.32 30.53
Unsupervised MORFESSOR 69.58 /81.10/74.90 29.01 83.28 Supervised MORFESSOR 70.48 /79.67 / 714.79 31.49 87.68
Supervised MORFESSOR 82.13/92.94/87.20 59.56 91.60
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Table 2: Result of applying our models on small
Finnish segmented lexicon.

Model P% /! R% /! ¥% W% Ch%
LSTM 69.64/36.44 / 47.82 04.19 69.77
GRU 74.72/27.23/39.92 00.59 63.86
Bi-LSTM 68.56/48.33/56.69 05.38 67.45
Bi-LSTM with Attention 66.62/71.16/ 68.81 08.98 72.16
SVC, Kernel: linear 84.28/70.84 /76.98 20.95 83.88
SVC, Kernel: poly, Degree: 2 91.42/69.46 / 78.94 31.73 85.90
SVC, Kernel: rbf 91.39/67.40/77.59 30.53 85.19
SVC, Kernel: poly, Degree: 5 94.03/48.71/64.18 20.35 79.32
SVC, Kernel: poly, Degree: 3 90.95/60.37/72.57 25.14 82.64
Logistic Regression, Solver: sag 90.69 / 66.89 / 76.99 25.04 84.80
Logistic Regression, Solver: liblinear 90.69 / 66.89 / 76.99 25.04 84.80
Logistic Regression, Solver: 1bfgs 90.69 / 66.89 / 76.99 25.04 84.80
KNeighbors, Neighbors: 5 82.18/79.93/81.04 28.74 85.77
KNeighbors, Neighbors: 10 87.50/76.15/81.24 29.34 86.62
KNeighbors, Neighbors: 30 82.18/79.93/81.04 28.74 85.77
Ada Boost, Estimators: 100 88.85/57.46/69.79 16.16 81.08
Decision Tree 78.46/56.26 / 65.53 15.56 77.49
Random Forest, Estimators: 10 91.42/65.86/76.57 29.34 84.67
Random Forest, Estimators: 100 91.76 /1 68.78 / 76.82 29.34 85.77
Bernoulli Naive Bayes 85.94/74.44179.77 26.94 85.64
Perceptron Maxlteration: 50 80.45/72.04/76.01 19.16 82.71
Unsupervised MORFESSOR 44.28/99.33/61.25 00.59 44.61
Supervised MORFESSOR 67.12/77.43/71.91 05.95 73.33

Table 3: Result of applying our models on the
Czech segmented lexicon.

Model Parameters P% /R% | F% W% Ch%
Bi-LSTM Outstate: 25 Dropout: 0.2 89.44/82.80 / 86.00 59.44 91.73
Bi-LSTM Outstate: 50 Dropout: 0.2 88.79/87.89/88.34 62.57 92.86
Bi-LSTM Outstate: 70 Dropout: 0.2 91.39/88.85/90.10 64.51 93.70
Bi-LSTM Outstate: 70 Dropout: 0.5 92.50/88.65/90.53 66.51 94.37
LSTM Outstate: 25 Dropout: 0.2 91.69/83.00/87.13 62.32 92.45
LSTM Outstate: 50 Dropout: 0.2 93.09/82.29/87.36 60.82 92.67
LSTM Outstate: 70 Dropout: 0.2 90.09 / 87.55 / 88.80 64.10 93.20
LSTM Outstate: 70 Dropout: 0.5 87.86/88.59/88.22 62.19 92.72
Table 4: Effect of using different hyper-

parameters on LSTM and Bi-LSTM models, two
best performing deep neural network models for
Persian dataset

possible features from the training data. For ex-
ample there is no information about some previ-
ous words, and consequently RNN-based models
can not learn any information about distant pre-
vious characters in the training phase. Possibly,



this also explains the inferior performance of our
seq2seq model compared to the Bi-LSTM model
implemented for this work.

Finally, Table 5 shows results of selected mod-
els when the segmentation is done on all words
occurring in a corpus instead of a segmented lexi-
con. In this experiments we expected those words
with more frequency has higher effect on results
comparing with less frequent words.

5.2.2 Effect of Training Data Size

In order to evaluate the effect of the training data
size on our DL models, different amount of train-
ing data are selected from and feed to our models.
Figure 4 and Figure 5 demonstrate an experiment
in which the baseline line is the results of unsu-
pervised version of MORFESSOR for similar test
dataset. Only four best performing feature-based
models in addition to two DL-based models are
selected to be shown here. As this figure shows,
after having more than 10K training instances, in-
creasing the training data further does not have a
substantial effect any more.

5.2.3 Semi-Space Feature for Persian Words

An important feature of the Persian and Arabic
languages is the existence of semi-space. For ex-
ample word “lbolS™ (books) is a combination of
word “oS™ and “l»”, in which the former is Per-
sian translation of word “book” and the latter is
morpheme for a plural form. We can say these
semi-space signs segment words into smaller mor-
phemes. However, in formal writing and in all Per-
sian normal corpora, this space is neglected fre-
quently and it could make a lot of problems in
Persian and Arabic morphological segmentation
task. For example both forms for the previous
example, “lbolS™ and “lLS™ , are considered
correct in Persian text and have the same mean-
ing. To deal with this problem and in order to
improve the quality of our segmentation dataset,
we implemented a preprocessor to distinguish this

Model

LSTM

Bi-LSTM

SVC, Kernel: poly, Degree: 3
KNeighbors, Neighbors: 30
Random Forest, Estimators: 100

P%/ R% /| F%

94.42/92.93/93.67
95.97/93.69 / 94.89
93.88/92.11/92.99
94.50/92.77/93.63
94.32/91.99/93.10

Table 5: Experiment results when a model is used
to predict boundaries of Persian words of a small
corpus instead of lexicon words. Only five best
performing models are shown.
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kind of space in Persian words and consequently
our hand-annotated dataset contains these semi-
spaces correctly. While we wanted to test the ef-
fect of having this prior knowledge in the lexicon,
we evaluated our models in two different forms. In
the first case, we used our hand annotated dataset
as is. In the second case, we removed all semi-
spaces from the lexicon. Table 6 shows a compar-
ison for deploying our models on these two dif-
ferent datasets and as could be seen in this table,
having the accurate dataset which is created by our
preprocessing strategy could improve results dras-
tically.

6 Conclusion

The main task of this work is to evaluate different
supervised models to find the best segmentation
of a word when only a segmented lexicon without
any extra information is available in the training
phase. In recent years, recurrent neural networks
(RNN) attracted a growing interest in morpholog-
ical analysis, that is why we decided to design
and evaluate various neural network based mod-
els (LSTM, Bi-LSTM, GRU, and attention based
models) as well as some machine learning classi-
fication models including SVM, Random Forest,
Logistic Regression and others for our morpho-
logical segmentation task. While a critical point
in any DL model is the training data size, we de-
cided to create a rich hand annotated Persian lex-
icon which is the only segmented corpus for Per-
sian words. Using this lexicon we evaluated our
presented models as well as the effect of train-
ing data size on results. Moreover, we evaluated
and tested our models on some limited datasets for
Czech and Finnish languages. Experimental re-
sults show our Bi-LSTM model performs slightly
better in boundary prediction, however the results
of classification-based approaches overcome the
DL models in percentage of completely correctly
segmented words.
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Figure 4: The effect of Persian training data size on boundary detection F-measure.
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Figure 5: The effect of Persian training data size on whole-word segmentation accuracy.

Model with semi without semi

P% [ R% [ F% W% Ch% P% I R% | F% W% Ch%
LSTM 90.09 /87.57/ 88.80 64.10 93.20 91.15/74.76 / 82.15 51.42 89.53
Bi-LSTM 92.50/ 88.65 /90.53 66.51 94.37 89.19/77.18 /82.75 52.58 89.64
SVC, Kernel: linear 85.86/82.20/83.94 73.08 94.45 81.67/77.75179.66 68.17 92.62
SVC, Kernel: poly, Degree: 2 89.57/85.86/87.67 78.72 95.72 86.52/82.96/84.71 75.66 94.43
SVC, Kernel: rbf 89.71/84.42/86.99 77.61 95.52 86.34/80.96 / 83.56 74.39 94.08
SVC, Kernel: poly, Degree: 5 89.77/83.91/86.74 77.17 95.45 86.11/80.11/83.00 73.00 93.90
SVC, Kernel: poly, Degree: 3 89.58/85.89/87.70 78.70 95.73 86.30/83.02/84.63 75.30 94.39
Logistic Regression, Solver: sag 87.55/79.66/83.42 72.60 94.39 83.83/75.75/79.58 68.61 92.77
Logistic Regression, Solver: liblinear 87.55/79.60/83.42 72.63 94.39 83.84/75.75/79.59 68.63 92.78
Logistic Regression, Solver: Ibfgs 87.49/79.78 / 83.46 72.64 94.39 83.74/75.59/79.46 68.47 92.73
KNeighbors, Neighbors: 5 82.47/86.22/84.30 73.12 94.56 82.19/76.34/79.15 67.36 92.52
KNeighbors, Neighbors: 10 86.22/82.47/84.30 73.12 94.56 82.19/76.34/79.15 67.36 95.52
KNeighbors, Neighbors: 30 90.23/86.69 / 88.42 78.64 95.73 82.19/76.34/79.15 67.36 92.52
Ada Boost, Estimators: 100 83.34/64.10/72.46 58.21 90.83 75.17/51.87/61.39 52.95 87.87
Decision Tree 88.25/87.05/87.65 76.83 95.38 88.24/86.05/87.13 75.92 95.21
Random Forest, Estimators: 10 89.75/84.87/87.15 76.08 95.30 85.04/78.17/81.46 70.83 93.38
Random Forest, Estimators: 100 89.93/85.92/87.88 77.37 95.54 85.21/79.66/82.34 71.95 93.65
Bernoulli Naive Bayes 78.38 /88.31/83.05 66.71 93.21 75.63/84.91/80.00 62.01 92.01
Perceptron MaxIteration: 50 83.98/74.45/78.93 65.07 92.52 75.41/77.28176.34 62.51 90.05
Unsupervised MORFESSOR 69.58 /81.10/74.90 29.01 83.28 71.16/81.88/76.14 30.33 83.48
Supervised MORFESSOR 82.13/92.94/87.20 59.56 91.60 81.60/92.24 /86.60 58.84 90.80

Table 6: The effect of considering semi-space on training data when all training data are used.
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Abstract

Word Sense Induction (WSI) is the task
of grouping of occurrences of an ambigu-
ous word according to their meaning. In
this work, we improve the approach to
WSI proposed by Amrami and Goldberg
(2018) based on clustering of lexical sub-
stitutes for an ambiguous word in a par-
ticular context obtained from neural lan-
guage models. Namely, we propose meth-
ods for combining information from left
and right context and similarity to the am-
biguous word, which result in generating
more accurate substitutes than the origi-
nal approach. Our simple yet efficient im-
provement establishes a new state-of-the-
art on WSI datasets for two languages.
Besides, we show improvements to the
original approach on a lexical substitution
dataset.

1 Introduction

Ambiguity, including lexical ambiguity, is one of
the fundamental properties of natural languages
and is a central challenge for NLP and its appli-
cations. Lexical ambiguity is a common situation
when a single word has several meanings which
can be either closely related (coffee as a plant, as
a drink, or as beans for preparing that drink) or
entirely unrelated (band as a musical group or as
a strip of material). Consider the word book in
book a flight or buy a book. Depending on the
expressed meaning, machine translation systems
should translate this word differently, search en-
gines should find different information, personal
digital assistants should take different actions, etc.

Word sense induction (WSI) is the task of
clustering of occurrences of an ambiguous word
according to their meaning. For evaluation of

62

WSI systems, text fragments containing ambigu-
ous words are hand-labeled with senses from some
sense inventory (a dictionary or a lexical ontol-
ogy). WSI systems are given text fragments only
and should cluster them into some a priori un-
known number of clusters (unlike Word Sense
Disambiguation systems, which are also given the
sense inventory).

Words that can appear instead of an ambigu-
ous word in a particular context, also known
as lexical contextual substitutes, are very helpful
for WSI because possible substitutes strongly de-
pend on the expressed meaning of the ambigu-
ous word. For instance, for the word build pos-
sible substitutes are manufacture, make, assem-
ble, ship, export if it is used in the manufactur-
ing some goods sense and erect, rebuild, open
for the constructing a building sense. Baskaya
et al. (2013) proposed generating substitutes using
n-gram language models and had shown one of
the best results at the SemEval-2013 WSI shared
task for English (Jurgens and Klapaftis, 2013).
Later Amrami and Goldberg (2018) proposed
generating contextual substitutes with a bidirec-
tional neural language model (biLM) ELMo (Pe-
ters et al., 2018). With several other improve-
ments, they had achieved new state-of-the-art re-
sults on the same dataset. However, their method
simply unites substitutes generated independently
from probability distributions P(w;|w;_1...w1)
and P(w;|wit1...wp) estimated by the forward
and the backward ELMo LM independently, each
given only one-sided context. This results in noisy
substitutes when either left or right context is short
or non-informative.

The main contribution of this paper is an ap-
proach that combines the forward and the back-
ward distributions into a single distribution and
fuses the similarity to the ambiguous word into
the combined distribution. This allows taking into

Proceedings of Recent Advances in Natural Language Processing, pages 62-70,
Varna, Bulgaria, Sep 24, 2019.

https://doi.org/10.26615/978-954-452-056-4_008


https://doi.org/10.26615/978-954-452-056-4_008

account all information we have about a partic-
ular ambiguous word occurrence for better sub-
stitutes generation. We compare several methods
for combining distributions. Substitutes retrieved
from the combined distribution perform much bet-
ter for WSI achieving the a state-of-the-art on the
SemEval 2013 dataset for English as well two
datasets for Russian.

2 Related Work

The first methods to word sense induction were
proposed already in the late 90s (Pedersen and
Bruce, 1997; Schiitze, 1998; Lin, 1998) with sev-
eral competitions being organized to systemat-
ically evaluate various methods, including Se-
mEval 2007 task 2 (Agirre and Soroa, 2007), Se-
mEval 2010 task 14 (Manandhar et al., 2010)
and SemEval 2013 task 13 (Jurgens and Kla-
paftis, 2013) for the English language, and RUSSE
2018 (Panchenko et al., 2018) for the Russian lan-
guage.! Navigli (2012) provides a survey of word
sense induction and related approaches. Methods
for word sense induction can be broadly classified
into three groups: context clustering approaches,
word (ego-network) clustering, and latent variable
models. We discuss these approaches below. Also,
note that methods for learning word sense embed-
ding (Camacho-Collados and Pilehvar, 2018) can
be used to induce vector representations of senses
from text.

2.1 Context/Vector Clustering Methods

This methods from this group represent a word in-
stance by a vector that characterizes its context,
where the definition of context can vary greatly.
These vectors are subsequently clustered.

Early approaches, such as (Pedersen and Bruce,
1997; Schiitze, 1998; Reisinger and Mooney,
2010) used sparse vector representations. Later
approaches dense vector representations were
adopted, e.g. Arefyev et al. (2018) and Kutuzov
(2018) used weighted word embeddings (Mikolov
et al., 2013) pre-trained on a large corpus to rep-
resent context of an ambiguous target word. An-
war et al. (2019) used contextualized (Peters et al.,
2018) and non-contextualized (Mikolov et al.,
2013) word embeddings to cluster occurrences of
ambiguous occurrences of verbs according to their
semantic frames.

"https://russe.nlpub.org
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The approach presented in this paper is also
an instance of vector clustering methods. More
specifically, it exploits contextual substitutes for
the ambiguous word to differentiate between its
senses. Baskaya et al. (2013) proposed using sub-
stitute vectors for WSI, and their system AI-KU
was one of the best-performing systems at Se-
mEval 2013. Alagi¢ et al. (2018) proposed another
approach which leverages lexical substitutes for
unsupervised word sense induction. They perform
clustering of contexts using the affinity propaga-
tion algorithm (Dueck and Frey, 2007). The sim-
ilarity between instances is measured using three
different measures based on cosine similarities be-
tween pre-trained word embeddings by Mikolov
et al. (2013). One measure relies on an average of
embeddings of context words. Another one relies
on an average of embeddings of lexical substitutes
(also combination of both measures is tested). Fi-
nally, Amrami and Goldberg (2018) proposed us-
ing neural language models and dynamic symmet-
ric patterns establishing a new best result on this
dataset. Their approach is described in details in
Section 3 as a starting point for our method.

2.2  Word/Graph Clustering Methods

This group of methods cluster word ego-networks
consisting of a single node (ego) together with
the nodes they are connected to (alters) and all
the edges among those alters. Nodes of an ego-
network can be words semantically similar to the
target word or context features relevant to the
target. This line of work starts from the sem-
inal work of (Widdows and Dorow, 2002) who
used graph-based methods for unsupervised lexi-
cal acquisition. In this work, senses of the word
were defined as connected components in a graph
which excludes the ego. Véronis (2004), Biemann
(2006), and Hope and Keller (2013) further devel-
oped this idea by performing clustering of nodes
instead of the simple search for connected com-
ponents. Pelevina et al. (2016) proposed to trans-
form word embeddings to sense embeddings using
graph clustering (Biemann, 2006). The obtained
sense embeddings were used to solve the WSI task
based on similarity computations between the con-
text and the induced sense.

2.3 Latent Variable Methods

Methods from this group, define a generative pro-
cess of the documents which include word senses
as a latent variable and then perform estimation



of the model from unlabeled textual data. For in-
stance, Lau et al. (2013) relies on the Hierarchical
Dirichlet Process (HDP) (Teh et al., 2006). Latent
topics discovered in the training instances, spe-
cific to every word, are interpreted as word senses.
Since the HDP is generative, also new instances
can be assigned a sense topic. Latent variable
model of Bartunov et al. (2016) is a Bayesian ex-
tension of Skip-gram (Mikolov et al., 2013) that
automatically learns the number of word senses;
it relies on the stick-breaking process. Amplayo
et al. (2019) propose another graphical model
which tackles the sense granularity problem, set-
ting new state-of-the-art results for the SemEval
2010/2013 WSI datasets.

3 Bayesian Fusion of Lexical Substitutes
from Bidirectional Language Models

In this section, we describe the method of word
sense induction proposed by Amrami and Gold-
berg (2018), which is based on lexical substitutes
generated given left and right context separately
and then united together. Then we propose sev-
eral methods to build a combined distribution in-
corporating information from left and right con-
text as well as the similarity to the target word
for better substitutes generation. For qualitative
comparison, Table 1 lists lexical substitutes gener-
ated by different methods for several randomly se-
lected sentences from the TWSI dataset (Biemann,
2012). For readability, we select either the top 10
predictions from the combined distributions or the
union of the top 5 predictions from the forward
and the backward distributions. The actual num-
ber of substitutes may be smaller due to duplicates
appearing after lemmatization of substitutes.

3.1 Baselines: No Fusion (Union of
Substitutes)

We base our approach on the method by Amrami
and Goldberg (2018) (named original hereafter),
which has achieved state-of-the-art results on the
SemEval-2013 dataset for English WSI. Suppose
c is the target ambiguous word and [, r are its left
and right contexts. First, the method employs pre-
trained forward and backward ELMo LMs (Peters
et al., 2018) to estimate probabilities for each word
w to be a substitute for ¢ given only the left context
Ppypa(wl|l) or only the right context Ppy,q(w|r).
Second, from the top K most probable words of
each distribution L substitutes are sampled. This
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is done S times resulting in S representatives of
the original example consisting of 2L substitutes
each. Then TF-IDF BoW vectors for all represen-
tatives of all examples of a particular ambiguous
word are built. Finally, agglomerative clustering
is performed on the obtained representations with
a fixed number of clusters. To provide more infor-
mation to the LMs the target word can be included
in the context using the technique called dynamic
patterns. For example, given the sentence These
apples are sold everywhere instead of "These _’ the
forward LM receives "These apples and _’ and in-
stead of ’_ are sold everywhere’ the backward LM
receives '_ and apples are sold everywhere’. The
underscore denotes the position for which the lan-
guage model predicts possible words.

Thus, lexical substitutes are obtained indepen-
dently from the forward and the backward LM
and then united. For soft clustering required by
the SemEval-2013 dataset, the probability distri-
bution over clusters for each example is estimated
from the number of representatives of this example
put in each cluster. For the RUSSE (the Russian
WSI) datasets we further convert soft clustering
into hard clustering by selecting the most proba-
ble cluster for each example.

The second baseline (named base) simplifies
the original method by skipping sampling and us-
ing S = 1 representative consisting of the union of
the top K predictions from each LM. While being
simpler and deterministic, this modification also
delivers better results on RUSSE. Additionally,
we have found that baselines with dynamic pat-
terns translated into Russian perform worse than
their counterparts without patterns (original-no-
pat and base-no-pat) on RUSSE. This is in line
with the ablations study from Amrami and Gold-
berg (2018) who found that the patterns are use-
ful for verbs and adjectives but almost useless for
nouns which the RUSSE datasets consist of. Inter-
estingly, our best models perform better without
dynamic patterns on all datasets.

3.2 Fusion at the Level of LM Distributions

During preliminary experiments, we have found
that uniting substitutes retrieved from the forward
and the backward LM independently results in
lots of substitutes not related to the target word
sense. For instance, consider the first example
in Table 1 where the ambiguous word is the last
word of the sentence. The backward LM simply



base-no-pat base

BComb-LMs BComb-3

It offers courses at the Undergraduate and Post Graduate levels in various subjects.

sept, industry, feb, univer-
sity, discipline, nov, dec,
language, field, oct

offer, course, teach, subject,
style, topic, background,
size, include, provide

profession, subject, indus- | field, occupation, lan-
try, university, discipline, | guage, discipline, sector,
sector, guise, language, | guise, profession, subject,

field, department department, industry

Wakeboards with a three - stage rocker push more water in front of the wakeboard, making
the ride slower but riders are able to jump higher off the water.

slightly trip perfect be-
come journey climb trek bit
speed

faster landing climb bend rid
harder speed walk bike

jump incline slope climb

dive incline climb trek slope

bend trek journey crawl

The couple were married on the bride’s family estate at Ballyhooly, Cork, Ireland; after-

wards the couple set up home at Caddington Hall.

tree bear residence holiday
wedding vacation live farm
cottage

marry mansion be live castle
farm cottage move divorce

farm ranch residence wed-
ding croft cottage home-
stead

honeymoon croft ranch
vineyard homestead resi-
dence farmhouse wedding
farm cottage

Table 1: Examples of generated lexical substitutes: baselines and our models. Contexts are from the
TWSI dataset. Ambiguous word is underlined, substitutes intersecting with human-generated are bold.
Here base is the baseline approach of Amrami and Goldberg (2018) and base-no-pat is its simplified
version without patterns, while BComb-LMs and BComb-3 are our models described in Section 3.

predicts all words which can appear before dot re-
sulting mostly infrequent abbreviations. Dynamic
patterns help a little, but there is still no context
available for the backward LM to disambiguate
the target word. To solve this problem we pro-
pose combining distributions from the forward and
the backward LM first and then taking the top K
words from this combined distribution. We exper-
iment with the following combinations.

3.2.1 Average (avg)

This straightforward method of fusion of two dis-
tributions computes an average of forward and
backward distributions (no information about the
target word is used):

Plull,r) = S (Pl + Pluwlr) N
= %(wad + Powd)-

3.2.2 Bayesian Combination of LMs
(BComb-LMs)

Using Bayes’ rule and supposing left and right
context are independent given possible substitutes
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we estimate fused distribution as follows:

P(l,r|w)P(w)
P(l,r)
_ P(Uw)P(r]w) P(w)
P(l,r)
P(w|l)P(w[r)
P(w)

P(w|l,r) =

2
XX

The numerator is estimated as Pfy,q P4, but pre-
trained ELMo LMs don’t contain frequencies of
the words in the vocabulary, so we cannot directly
estimate the denominator. Instead we approximate
it with Zipf distribution (the vocabulary is sorted
by frequency):

1
(k + rank(w))s’

P(w) o« 3)
where k£ and s are hyperparameters: the first is
needed to perform adjustment for frequent words
while the second defines how quickly word fre-
quency drops as its rank grows.

3.2.3 Three-Way Bayesian Combination
(BComb-3)

Substitutes should not only be compatible with
context, but also similar to the target word c. Am-
rami and Goldberg (2018) integrate information



about the target word using dynamic patterns, but
here we propose a probabilistic approach of fusion
of forward and backward distribution with the in-
formation about the target word. Namely, we esti-
mate similarity using a scaled dot product of out-
put embeddings from ELMo:

T
emb;, emb,

),

where Temperature is a hyperparameter which
allows scaling this distribution to fit to the LM dis-
tributions. Similarly to BComb-LMs and suppos-
ing the target word is independent from the con-
text given possible substitutes (which can be inter-
preted as fixing a particular sense of the target):

P(wl|ec) o exp( 4)

Temperature

wl|) P(w|r)P(w|e)

P(wll,¢,r) il &)

P2(w)

0.28

0.26

» 0.24
>
<<
0.22
method === base-no-pat
== = original — V]
0.20 original-no-pat === BComb-LMs
base BComb-3

8 10
n_clusters

12 14

Figure 1: SemEval 2013 task 13: geometric aver-
age of fNMI and fB? with respect to the number of
clusters per word. Hyperparameters are selected
on the TWSI dataset (Biemann, 2012).

4 Evaluation and Results

To evaluate the quality of our proposed approach,
we performed three experiments. Two of them are
based on WSI datasets coming from the shared
tasks for English (Jurgens and Klapaftis, 2013)
and Russian (Panchenko et al., 2018). The last
experiment compares substitutes generated by the
original and our methods to the human-generated
substitutes using a lexical substitution dataset for
English (Biemann, 2012).

4.1 Experiment 1: SemEval 2013 WSI Task

4.1.1 Experimental Setup

First, we evaluate our methods on the SemEval-
2013 dataset for English WSI (Jurgens and Kla-
paftis, 2013). The dataset contains contexts for 50
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ambiguous words, including 20 nouns, 20 verbs,
and 10 adjectives. It provides 20-100 contexts
per word, and 4,664 contexts in total, which were
gathered from the Open American National Cor-
pus and annotated with senses from WordNet. We
used this dataset as the test set and tuned all hy-
perparameters except for the number of clusters on
the TWSI dataset (Biemann, 2012).

Evaluation metrics. Performance is measured
with two cluster comparison measures: Fuzzy
NMI (fNMI) and Fuzzy B-Cubed (fB?) as defined
in (Jurgens and Klapaftis, 2013).

4.1.2 Discussion of Results

Figure 1 shows a geometric average (AVG) be-
tween Fuzzy Normalized Mutual Information
(fNMI) and Fuzzy B-Cubed F1 (fB3) depending
on the number of clusters. Following Amrami
and Goldberg (2018), Table 2 reports the results
for the number of clusters equal to 7 which is
the average number of senses in SemEval-2013.
BComb-3 shows the best results closely followed
by BComb-LMs, while the avg combination meth-
ods performs worse but still outperforms baseline
methods.

4.2 Experiment 2: RUSSE 2018 WSI Task
4.2.1 Experimental Setup

For the Russian language we test our methods
on the active-dict and the bts-rnc datasets from
the RUSSE 2018 WSI shared task (Panchenko
et al., 2018). These datasets are split into dev
and test parts containing non-overlapping ambigu-
ous words. The bts-rnc dataset relies on con-
texts sampled from the Russian National Corpus
(RNC)? and annotated based on the sense inven-
tory of the Large Explanatory Dictionary of Rus-
sian®. The dev set contains 30 ambiguous words
and 3,491 contexts. The test set contains 51 am-
biguous words and 6,556 contexts. The active-dict
dataset is based on the Active Dictionary of Rus-
sian, which is an explanatory dictionary (Apres-
jan, 2011). For each sense, contexts were ex-
tracted from the glosses and examples of this dic-
tionary. The train/development set has 85 ambigu-
ous words and 2,073 contexts. The test set has 168
ambiguous words and 3,729 contexts.

http://ruscorpora.ru/en
*http://gramota.ru/slovari/info/bts



Model | fNMI B AVG
One sense for all 0.000 0.623 0.000
One sense per instance 0.071 0.000 0.000
Best competition results (Jurgens and Klapaftis, 2013)
AI-KU 0.065 0.390 0.159
Unimelb 0.060 0.483 0.170
Best after-competition results
(Amrami and Goldberg, 2018) | 0.113 0.575 0.254
(Amplayo et al., 2019) 0.096 0.622 0.244
This paper
avg 0.120 0.562 0.260
BComb-LMs 0.139 0.566 0.280
BComb-3 0.135 0.586 0.281

Table 2: SemEval 2013 task 13: comparison to the previous best results. Following Amrami and
Goldberg (2018) the number of clusters is 7, other hyperparameters are selected on the TWSI dataset.

bts-rnc

Zo0.25
020 2/ =T
0.15 method == base-no-pat
W LamBESE == = original — aVg
0.10 = original-no-pat === BComb-LMs

base BComb-3

8
n_clusters

10 12

14

ARI

active-dict

0.20

0.15

0.10
method

== = original

original-no-pat

base

== base-no-pat

— aVg

=== BComb-LMs
BComb-3

0.05

8
n_clusters

10 12 14

Figure 2: RUSSE-2018 development sets: ARI with respect to the number of clusters per word. Hyper-

parameters are selected on the TWSI dataset.

Evaluation metrics. Performance is measured
using Adjusted Rand Index (ARI) (Hubert and
Arabie, 1985).

4.2.2 Discussion of Results

Figure 2 shows results on the development set us-
ing the same hyperparameters used for SemEval-
2013. Despite being selected on an English WSI
dataset, they perform surprisingly well. Similarly
to SemEval-2013, on active-dict BComb methods
outperform Avg by a large margin. However, on
bts-rnc dataset, Avg seems to be the best perform-
ing method which we attribute to suboptimal hy-
perparameters. For our final submissions to the
leaderboard reported in Table 3 we selected hy-
perparameters on the development set correspond-
ing to each dataset and with these hyperparame-
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ters BComb methods are indeed better than Avg.
We report results for (i) a fixed number of clusters
(selected on the development sets) and for (ii) in-
dividual number of clusters for each word selected
by maximizing the silhouette score of clustering*.
Using individual number of clusters consistently
improves results for all our methods.

4.3 Experiment 3: TWSI Lexical
Substitution

4.3.1 Experimental Setup

In the third experiment, we evaluated the quality of
lexical substitutes generated by our methods com-
paring them with human-generated ones from the

*https://scikit-learn.org/
stable/modules/clustering.html#
silhouette-coefficient



bts-rnc active-dict

Model Test Test
avg 0.355/0.436 0.254/0.255
BComb-LMs 0.464/0.502 0.304/0.331
BComb-3 0.455/0.473 0.300/0.332

post compet’n best results
competition 1 best result
competition 2™ best result

0.348 0.307
0.351 0.264
0.281 0.236

Table 3: RUSSE 2018 test sets: comparison to the previous best results. The number of clusters is
selected on corresponding development sets (like other hyperparameters) / using silhouette score.

TWSI dataset by Biemann (2012). Version 2.0
of the dataset was used in our experiments. The
dataset is composed of 1,012 frequent nouns with
2.26 senses per word on average. For these nouns,
the dataset provides 145,140 annotated sentences
sampled from Wikipedia. Besides, it features a
sense inventory, where each sense is represented
with a list of words that can substitutes.

Evaluation Metrics Performance is measured
using precision and recall among top K = 10 lex-
ical substitutions.

4.3.2 Discussion of Results

Table 4 reports the results. One should carefully
interpret these results since humans generate pre-
cise but not exhaustive lists of substitutes. For
instance, for the sentence Henry David Thoreau
wrote the famous phrase, “In wildness is the
preservation of the world.” BComb-3 model gen-
erates the following substitutes: dictum, proverb,
poem, motto, epitaph, slogan, quote, aphorism,
maxim from which only slogan and maxim were
generated by humans. As one may observe, ac-
cording to metrics, both base methods with pat-
terns and BComb-3 generate much more human-
like substitutes than their counterparts that do not
take into account the target word (base-no-pat and
BComb-LMs) with BComb-3 being a little better.
Examples of generated substitutes are shown in
Table 1.

5 Conclusion

We proposed a new method for neural word sense
induction which improves the approach of Am-
rami and Goldberg (2018). We show that sub-
stantially better results can be obtained if the in-
formation from the forward and the backward
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Model | rec.@10 prec.@10
base 0.115 0.035
base-no-pat 0.058 0.020
avg 0.093 0.032
BComb-LMs | 0.073 0.025
BComb-3 0.127 0.041

Table 4: TWSI lexical substitution: compari-
son our method to the baseline model by Amrami
and Goldberg (2018) on the dataset of human-
generated lexical substitutes.

LMs is combined in a more principled way us-
ing Bayesian fusion of distributions rather than
a simple union of substitutes generated indepen-
dently from each distribution. More specifically,
this work shows that integration of the forward and
the backward distributions retrieved from neural
LMs and the similarity to the target word results in
better-generated substitutes for ambiguous words,
which enabled achieving a new state-of-the-art for
WSI for two languages.
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Abstract

For the spell correction task, vocabulary
based methods have been replaced with
methods that take morphological and gram-
mar rules into account. However, such
tools are fairly immature, and, worse, non-
existent for many low resource languages.
Checking only if a word is well-formed
with respect to the morphological rules of a
language may produce false negatives due
to the ambiguity resulting from the pres-
ence of numerous homophonic words. In
this work, we propose an approach to de-
tect and correct the “de/da” clitic errors
in Turkish text. Our model is a neural se-
quence tagger trained with a synthetically
constructed dataset consisting of positive
and negative samples. The model’s perfor-
mance with this dataset is presented accord-
ing to different word embedding configu-
rations. The model achieved an F; score
of 86.67% on a synthetically constructed
dataset. We also compared the model’s per-
formance on a manually curated dataset of
challenging samples that proved superior
to other spelling correctors with 71% accu-
racy compared to the second best (Google
Docs) with 34% accuracy.

1 Introduction

Misspellings can change the meanings of words
and, consequently, of sentences, which can lead
to major miscommunication and frustration. This
paper focuses on a common spelling error in Turk-
ish, namely the spelling of the “de/da” clitic. Its
written form (“‘de” and “da”) depends on the vowel
harmony rule that is based on the last vowel of the
word previous to the conjunction. When the final
vowel of the prior word is in {e,i,0,ii} the clitic is
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written as “de”, otherwise (in {a,1,0,u}) it is written
as “da”. For example, in the sentence “Selin de
burada” meaning “Selin is also here”, the last word
before the clitic (“de”) is “Selin” whose final vowel
is “1”. Thus, the clitic is written as “de”’. Whereas,
in the sentence “Fatma da burada” meaning “Fatma
is also here”, the last word before the clitic (“‘da”™)
is “Fatma” whose final vowel is “a”, causing the
clitic to be written as “da”.

The “de/da” clitic in Turkish is a conjunction
when it is written separately and has the same mean-
ing as "as well", "too", and "also" in English. In
addition to being a conjunction, the “de” and “da”
homonyms may be used as locative suffixes mean-
ing “at” or “in”. For example, the word ‘“‘araba”
(car) with the suffix “-da” (“‘arabada’) means “in
the car”. Although the “de/da” clitic in the meaning
of conjunction must always be written separately,
it is commonly confused with the locative suffix
"de/da" and incorrectly written concatenated to the
previous word.

The misspelling of the "de/da" clitics alter the
meaning of a sentence, and possibly render it mean-
ingless. For example, when the clitic in the sen-
tence "Araba da gordiim" is misspelled as "Arabada
gordiim", changes the meaning from “I also saw
a car” to “I saw it in the car”. This type of mis-
spelling happens to be one of the most pervasive
and annoying misspellings in Turkish. One can
frequently encounter expressions of criticism and
frustration in this regard.

Morphological analysis is not very useful in
spelling correction of “de/da” since in most cases
new meaningful words form when it is written as
a suffix. As such, most of the Turkish spell check-
ers perform poorly or not at all. The only way to
differentiate between them is to take the sentence
context into account.

This work proposes a neural sequence tagger
model to detect and correct “de/da” errors. The
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model employs a conditional random field (CRF)
for choosing the best prediction based on score
vectors that are provided by a multilayered bidi-
rectional LSTM. Words in input sentences are re-
placed with word embeddings trained with differ-
ent algorithms. The model is tested with various
combinations of these pretrained embeddings on
a synthetically constructed dataset, where the best
scores were obtained when all three embeddings
were used that yielded an F1-Measure of 86.67%.
It was also tested on a manually created more chal-
lenging dataset.
The main contributions of this work are:

state-of-the-art spelling corrector that handles
the “de/da” misspellings in Turkish,

a comparative analysis of alternative word em-
bedding models for spell checking Turkish
sentences,

a dataset of Turkish sentences with difficult to
detect “de/da” errors, and

a demo website for spellchecking sentences
including “de/da” cases.

The remainder of the paper is organized as follows:
Section 2 presents background information needed
to follow this work, Section 3 discusses the state-of-
the-art and current solutions to spelling corrections
in Turkish, Section 4 discusses the model and ex-
periments, Section 5 presents an evaluation of the
proposed model, Section 6 reflects on observations
and provides insights about the future work, and
finally concluding remarks are given in Section 7.

2 Background

2.1 Clitic, Conjunction and Locative Suffix

A clitic is a morpheme that is syntactically inde-
pendent but phonologically dependent and attached
to a host. It has the syntactic characteristics of a
word, but depends phonologically on another word
or phrase.

A conjunction is a word that syntactically con-
nects other words or larger constituents while also
expressing a semantic relationship between them.
Some conjunction examples from English include
and, or, but and if. The clitic “de/da” can be given
as an example conjunction in Turkish.

The locative suffix indicates the locative case,
which is the grammatical case that conveys a loca-
tion. In Turkish, the locative case is specified by
the suffix “-de/-da”.
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Our model focuses on the Turkish clitic “de/da”
that means “also, as well, too” and must always be
written separately. It is commonly confused with
the locative suffix “de/da” that means “at” or “in”
as explained in Section 1.

2.2 The CoNLL Sentence Representation

In 2003 a data format was introduced for the
CoNLL-2003 shared task: Language-independent
named entity recognition (Kim Sang and De Meul-
der, 2003). In this format, each word is on a sep-
arate line with an empty line after each sentence.
The first item of a line is a word, the second is a
part-of-speech (POS) tag, the third is a syntactic
chunk tag, and the fourth is the named entity tag.
To represent sequences of meaningful words, the
chunks and entities use B-TYPE to indicate the
beginning and I-TYPE to indicate being inside the
phrase. The TYPE refers to the type of the entity
(i.e., person). Numerous datasets for NLP tasks
utilize this format for interoperability. A word with
tag “O” (outside) is considered as not being a part
of a phrase. The CoNLL format is often used for
publishing datasets. We use a variant of this for-
mat for representing correct and incorrect sentence
samples as detailed in Section 4.1.

2.3 Word Embeddings

Word embeddings are the vector representations of
different sets of words. They are one of the most
widely utilized methods used for language repre-
sentation. Word embeddings are capable of captur-
ing the semantic and syntactic similarity between
words. In this work the word embeddings that
are used are GloVe (Pennington et al., 2014), fast-
Text (Grave et al., 2018) and Word2Vec (Mikolov
etal., 2013).

Global Vectors for Word Representation
(GloVe) (Pennington et al., 2014) is an unsu-
pervised learning algorithm to acquire word
vectors form words. It works on word to word
global co-occurrence matrices and is successful
in capturing semantic information. It combines
global matrix factorization and local context
window methods to create word embeddings.

FastText (Grave et al., 2018) is an open-source,
lightweight library for very fast text classification
introduced by Facebook in 2016. FastText is pro-
posed as an extension of Word2Vec that trains
models given labeled texts, performs predictions,
and evaluates models. It is a hierarchical classifier
where labels are represented in a binary tree that



Benim | ben+Pron+Pers+Alsg+Pnon+Gen
de de+Conj

aklim | akil+Noun+A3sg+P1sg+Nom
sende | sen+Pron+Pers+A2sg+Pnon+Loc
kaldi kal+Verb+Pos+Past+A3sg

Table 1: The morphological analysis of a Turkish
sentence (My mind also remains with you) with
both the clitic and the affix forms of “de”.

facilities much faster model training without loss
of accuracy. FastText breaks words into n-grams
creating sub-words that are fed to the model to ob-
tain the embeddings of each word. The tri-grams
of the word selam are sel, ela, and lam. In this
way information about patterns within words are
captured, which enables out of vocabulary words
to be processed.

Word2Vec models generate word embeddings
with a two-layer neural network that creates a set
of feature vectors for words in a corpus.

2.4 Turkish Language

Turkish is an agglutinative language, where com-
plex words are derived by stringing together mor-
phemes. In agglutinative languages a sequence of
affixes are attached to the end of the words. Ta-
ble 1 shows the morphological analysis of the sen-
tence (using the ITU NLP pipeline (Eryigit, 2014)):
“Benim de aklim sende kaldi1.”, which roughly trans-
lates to “My mind remains with you too” (a manner
of expressing that one’s thoughts are with some-
one). More literally it translates to “Also, my mind
has remained with you.” This sentence includes
both forms of “de”, which are shown in bold. The
“de” following “Benim” refers to "also”. The affix
“de” within “sende” is locative and means at you
(in English this is expressed as with you).

The morphological analysis of Turkish sentences
can get very complex. It is rather difficult for
non native speakers to learn the ordering of affixes
and to distinguish among the clitics. Even native
speakers may have trouble distinguishing the in-
tended meaning and will need to clarify the con-
text. These complexities present significant chal-
lenges to building language supporting tools for
Turkish. Although, machine learning approaches
show promise.
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3 Related Work

Zemberek is a collection of natural language pro-
cessing tools for Turkish and is capable of various
tasks including morphological analysis, tokeniza-
tion and sentence boundary detection and basic
spell checker. It is also used as the spell checker for
LibreOffice. However, it is not capable of detecting
the misspelling of the clitic "de/da" as it does not
make a semantic analysis on the sentence.(Akin
and Akin, 2007)

ITU Turkish Natural Language Processing
Pipeline can make syntactic and morphological
analysis of raw Turkish sentences, although it is
not capable of making a semantic analysis and thus
fails to classify and correct spellings of Turkish
"de/da" clitic (Eryigit, 2014).

The spelling correctors for Turkish do not satis-
factorily correct misspellings of the “de/da” clitic
as they are limited to the morphological analysis of
words which is insufficient for accurately classify
them. Google, Microsoft Office, and LibreOffice
all have different spell checkers for Turkish but
none of them present satisfactory results in the case
of handling the “de/da” clitics in Turkish. Their
accuracy is significantly lower compared to our
model as will be detailed in Section 5.

4 Experiments and Results

4.1 Data

To train the model, sentences with both correct and
incorrect spellings of the clitic “de/da” are required.
For this purpose, incorrect sentences have been
generated from the correct sentences from a cor-
pus consisting of approximately 75 million Turkish
sentences extracted from various websites, novels
and news sites (Yildiz et al., 2016). Since the cor-
pus was extracted from novels and news sites, the
sentences are assumed to include only a few or
no orthographic errors. Thus, the spellings of the
“de/da” cases are considered to be correct when
written separately, attached as a locative suffix, or
used as a conjunction. Note that some words sim-
ply end with “de/da” and these suffixes are not due
to locative morphemes (i.e., ‘ziyade’ meaning plen-
tiful). However, such cases are few and considered
negligible.

To generate incorrectly spelled forms of “de/da”
samples, two simple actions are performed: (1)
append the separately written “de/da” to its pre-
ceding word and (2) separate the “de/da” suffixes



Train Dev Test
Sentences | 15,203 3,729 2,070
Tokens 383,066 | 94,232 | 51,226

Table 2: The number of sentences and tokens for
the training, development, and test dataset used in
training our models.

from the words that contain them. For example,
for the sentence “Kedi de goérdiim” (meaning “I
also saw a cat”), the sentence “Kedide gordiim”
(meaning “I saw it at the cat”) is generated by con-
catenation. Both are syntactically correct sentences
but have very different meanings. The sentence
“Evde kaliyorum” meaning “I am staying at home”
which uses the locative suffix “de/da” correctly, the
sentence “Ev de kaliyorum” is generated. The re-
sulting sentence is an incorrectly separated “de/da”,
which translates to “I am staying also home”, which
doesn’t make sense.

The generated sentences are tagged in a manner
like the CoNLL NER tags (Section 2.2). We tag in-
correctly spelled terms with “B-ERR” and all others
with “O” (other), such as:

Correct sentence Incorrect sentence

Onlar O Onlarda B-ERR
da O 'Sende O
'Sende O kalsin O
kalsin O , savciliga O

, savciliga O verirsin O

verirsin O 'O

'O dediler O
dediler O . O

. O

The dataset consisting of sentences whose words
are tagged with “B-ERR” and “O” are divided into
training, development, and test sets (Table 2).

In addition to the this synthetically constructed
dataset, a dataset consisting of 100 Turkish sen-
tences with misspelled forms of “de/da” is formed
manually. The sentences in this second dataset is
created so that they are syntactically correct but
semantically challenging to understand’.

4.2 Model

A multilayered bidirectional LSTM and CRF based
model (Akbik et al., 2018) that uses pretrained
embeddings was considered suitable for our prob-

"Both this and the synthetic dataset is shared at https:
//github.com/derlem/kanarya
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lem since it achieved the state-of-the-art results for
named entity recognition, part-of-speech tagging
and chunking tasks.

4.3 Experimental Setup

The initial task was to train the model with Turkish
word embeddings. For this task, GloVe was used
with the dimension size of 300 and window size of
15. The pretrained word vectors for Turkish were
obtained from the model trained on Common Crawl
and Wikipedia using fastText (Grave et al., 2018).
The pretrained Word2Vec vectors are for Turkish
with dimension size 300 (Giingor and Yildiz, 2017).
The models were trained using Continuous Bag of
Words (CBOW), with position-weights, dimension
size of 300, character n-grams of length 5, and a
window size of 5 and 10 negatives.

Parameter optimization was performed to
achieve the best F; scores. During hyperparam-
eter optimization, the training was performed for
10 epochs using fastText embeddings for all possi-
ble configurations for the following criteria:

¢ batch size: [8, 16, 32, 64]

* RNN layer size: [1, 2, 3, 4]

* learning rate: [0.05, 0.1, 0.15, 0.2]
* hidden size: [16, 32, 64, 128, 256]

The hyperparameters with the highest F; score
are: batch size=16, RNN layer size=2, learning
rate=0.2, and hidden size=256. These parameter
values were used to train models with different
word embedding configurations for 150 epochs. All
models were trained on a PC with GPU GeForce
RTX2080 with 32 GB RAM. A single training took
approximately 10 hours to complete.

5 Results and Evaluation

A total of seven different models were trained with
the optimal parameters. The embedding types
used were GloVe (Pennington et al., 2014), fast-
Text (Grave et al., 2018) and Word2Vec. These
embeddings were also combined by concatenat-
ing them to form a new embedding with a higher
number of dimensions. Furthermore, two baseline
models were used for comparison purposes. Base-
line model baseline; considers only the separately
written “de/da” as correct, falsely classifying the
correctly spelled locative suffix “de/da” as a mis-
spelling. Baseline model baseline, considers only



Model BL P R F,
GIfTWI1 2 (%) (%) (%)
+ 10.60 25.67 15.00
+ 59.89 74.32 66.33
+ 87.09 81.53 84.22
+ 87.05 79.73 83.23
+ 87.67 79.50 83.39
+ + 90.55 81.98 86.05
+ + 89.79 81.83 85.63
+ + 87.59 80.03 83.64
+ + + 91.56 82.28 86.67

Table 3: A comparison of the results our model
trained with various combinations of the Glove (G),
fastText (fT) and Word2Vec(W) methods on a syn-
thetically constructed dataset against two baseline
models (BL-1 & BL-2). P, R and F'; refer to the
precision, recall, and F'; measures.

the suffix form of “de/da” to be correct, falsely clas-
sifying the correctly spelled “de/da” conjunction
as a misspelling. The results of these models are
shown in Table 3.

Figure 1 shows some of the challenging sen-
tences that where spelling errors and were correctly
identified using our best model. The erroneous
words are shown with a red bounding box. In these
examples, the second sentence correctly identifies
“cokta” as an error. In Turkish, when “-de/da” is to
follow a work that ends with of the letters “p, ¢, t,
k, s, s, h, £, “-de/da” becomes “-te/-ta”. However,
as a grammatical term it is referred to as “de/da”
and is the more common case.

Finally, we examined the performance of various
configurations of our model with other well-known
spellcheckers for the 100 manually curated chal-
lenging sentences. Table 4 shows that our models
performed significantly better than others. The best
model utilizes the Word2Vec embeddings with an
accuracy of 71% while the second best accuracy
was achieved by Google Docs with 34%.

6 Discussion and Future Work

The work presented in this paper created a state-of-
the-art model that achieved a much higher accuracy
in detecting the “de/da” misspellings in Turkish
when compared to existing spell correctors. Our
model currently only addresses the misspelling of
the “de/da” clitic. Further work is needed to in-
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Maga baglamistik aslinda ama

olmadi.

Bu adam 6yle aslinda koti bir adam
degil.

Ya ders calis c¢ik disarida oyna.
Sonunda derin 6grenmeye gegctik.
Kalemleri ve kitabi kalmus.

Belkide) Galatasaray’t sampiyonluktan

ettik.

yaptiginda gidebilirsin.

Figure 1: The errors caught by our model with the
best configuration on challenging sentences.

tegrate this work with morphological analysis to
yield a more complete spell checker for Turkish.

Recently, much success is being reported regard-
ing the use of BERT (Devlin et al., 2019), which
we are currently working on to obtain word em-
beddings, which we expect to further increase the
performance of our model.

The proposed model can be integrated with vari-
ous platforms, ranging from text editors to social
media to messaging platforms. The “de/da” dis-
tinctions can be especially difficult for foreigners
who are attempting to learn Turkish as a second
language. Such spellcheckers could be very useful
in assisting learning. We are also working on devel-
oping and API and a demo service that make this
work more accessible. The scope of access will be
limited by the resources we are able to acquire.

7 Conclusions

We developed a deep learning model to detect or-
thographic errors caused by the misspelling of the
clitic “de/da” in Turkish. This model uses various
word embeddings to train a model for the named en-
tity recognition task for this clitic. The best model
achieved an F; score of 86.67% on a synthetically
constructed dataset. To our knowledge, this is the
state-of-the-art result for spelling correction for the
misspellings of “de/da” clitics in Turkish. These re-
sults are very encouraging. We intend to extend the
model with a similar case as well as make all the
resources related to this work accessible as open
source.



Ours Others Acc
G T W ITU| G| [ (%)
+ 55

+ 64

+ 71
+ | + 66
+ + 67

+ | + 69

+ | + | + 65
+ 34

+ 29

+ 0

+ 0

Table 4: Results of spell checking of semantically
challenging sentences. G, fT, and W refer to Glove,
fastText and Word2Vec respectively. ITU is the
ITU NLP Pipeline for Turkish, and the icons G, (W}
and [= the spellcheckers of Google Docs, Microsoft
Office, and LibreOffice.
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Abstract

Propaganda of various pressure groups
ranging from big economies to ideological
blocks is often presented in a form of ob-
jective newspaper texts. However, the real
objectivity is here shaded with the sup-
port of imbalanced views and distorted at-
titudes by means of various manipulative
stylistic techniques.

In the project of Manipulative Propaganda
Techniques in the Age of Internet, a new
resource for automatic analysis of stylistic
mechanisms for influencing the readers’
opinion is developed. In its current ver-
sion, the resource consists of 7,494 news-
paper articles from four selected Czech
digital news servers annotated for the pres-
ence of specific manipulative techniques.

In this paper, we present the current state
of the annotations and describe the struc-
ture of the dataset in detail. We also of-
fer an evaluation of bag-of-words classifi-
cation algorithms for the annotated manip-
ulative techniques.

1 Introduction

State and pressure groups propaganda is a very
well studied phenomenon from the sociologi-
cal point of view (Herman and Chomsky, 2012;
Zhang, 2013; Paul and Matthews, 2016). With the
spread of digital media, the influence of propa-
ganda news grows rapidly (Helmus et al., 2018)
and the consequences of public opinion manip-
ulation reach new levels (Woolley and Howard,
2017).

The main way of self-protection against such
propaganda influence lies in careful verification
of the presented information sources. Neverthe-
less, psycholinguistic evidence (Fazio et al., 2015)

77

shows that a prevailing opinion often outweighs
even direct knowledge. Computational tools that
could warn against possible manipulation in the
text can thus offer an invaluable help even to an
informed reader.

In the following text, we are presenting the first
results of a research project aimed at automatic
analysis of the style of a newspaper text to identify
a presence of specific manipulative techniques. In
the first phase, a specific tool for expert annota-
tions of selected news from 4 Czech internet me-
dia sites was developed (Baisa et al., 2017). This
tool has now been used to obtain 7,494 annotated
articles with detailed manipulative techniques an-
notations of texts expressing e.g. blaming, demo-
nizing, relativizing, labelling, or fear mongering.
The following Section 2 provides detailed infor-
mation about the dataset characteristics and con-
tent. In Section 3, an evaluation of 10 classifica-
tion techniques and their results with the bench-
mark dataset is presented.

2 The Benchmark Dataset

The Propaganda benchmark dataset currently con-
tains data from two successive years. The first part
is based on two sets of articles from 2016. The
newspaper texts were extracted from four newspa-
per media domains' which were previously scru-
tinized by annotators as possible sources of pro-
Russian propaganda. The downloaded cleaned
data were merged with the annotation data stored
separately in a SPSS? format (converted with the
GNU PSPP tool?) which is used widely in Social
science research. The result is a corpus with meta-
data (structure attributes) available for full-text

lsputnik .cz,parlamentnilisty.cz,ac24.cz
and www . svetkolemnas.info.

Mttps://www.ibm.com/products/
spss—statistics

Shttps://www.gnu.org/software/pspp/

Proceedings of Recent Advances in Natural Language Processing, pages 77-83,
Varna, Bulgaria, Sep 24, 2019.

https://doi.org/10.26615/978-954-452-056-4_010


https://doi.org/10.26615/978-954-452-056-4_010

Query fulltext: Trump

4564

203

]
]
..... )
000 ] ] & g
— w = —
~ E uwy =
Looo{ 8 B 3 .:.5 2 E 10
I s s
- [T:] o E o
on on = w on on on = =
£ £ 8 £ £ £ £ 8 =8
= =] o ™ ™ (e = =
E 3 8 8 & = &8 EB §
== g [=] =} = =3 o
m E @ E E L] 5 =]
- E L ] [3:]
@ @ E [
=] =] @ =
= @
< s

7494
7494
7494
7494
7494

&
L
(3]
[} [ SR Bt B ]
g0, ~ 881818,
- Bg ﬁ-—-—w—-—
s N g
[on < T+ o < T < - N - A — S
=1 = =
§ ¢ w € @ £ 2 s &
" 2 4 = 2 @@ 5 E £
Ugn?_.LIJ'_(DLL';E
5 T &
ma‘
™
)
(k]
-
L]

Figure 1: Numbers of articles with significant attribute values (not null, neutral or missing) in the whole
collection of 7,494 documents. The first (yellow) columns show numbers for the whole collection and the
second (blue) columns show an example of a filtered subset of articles containing the word " Trump".

search in the Sketch Engine corpus manager (Kil-
garriff et al., 2014). As far as we know, this is the
first corpus of propaganda text annotated for de-
tailed ensemble of manipulative techniques. The
full document texts were thus supplemented with
the following attributes (see Figure 1 for represen-
tation of particular attributes in the dataset):

a) Blaming: does the text accuse someone of
something?

b) Labelling: the text uses specific labels —
short and impactful phrases or words — to de-
scribe a person or a group.

Argumentation: does the text present facts
or arguments (logical, emotional, etc.) to
support the main claim?

Emotions: What is the main emotion the text
is trying to evoke in the reader? Anger, hate,
fear.

d)

e) Demonizing: is the “enemy” and/or his/her
goals or interests presented in the text as be-

ing evil?

f) Relativizing: are the presented actions of a
person, group or party being relativized?
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g) Fear mongering: is the text trying to appeal
to fear, uncertainty or other threat?

h) Fabulation: does the text contain unsub-
stantiated, overstated or otherwise incorrect
claims?

i) Opinion: does the author of the text present
his or hers personal opinion?

j) Location: what is the main location the text
talks about?

k) Source: is the text presented as being based
on a specific source?

1) Russia: is the topic related to Russia?

m) Expert: is the text or opinion in the text pre-
sented as being supported by an expert?

n) Attitude to a politician: neutral, negative,
positive for up to 3 mentioned politicians.

o) Topic: migrant crisis, domestic politics, etc.
p) Genre: report, interview, or commentary.

q) Focus: foreign, domestic, can’t be deter-

mined.



To je bordel, Zze jo? Tereza Spencerova
sleduje nadupanou cestu Zemana do

Ruska a ma co fict zapadnim
demokratim

parlamentnilisty.cz &'

osobné je to ,Sumak”. A pokud se tu nesesbira néjaka

reprezentativni delegace slozena z téch, co Majdan kdysi tak

horlivé a osobné podporovali, a nevyrazi do Kyjeva gratulovat.

Next unannotated document

X demonizing

tak to bude znamenat jediné. Nezajima to uz nikoho. Tedy, s

wyjimkou ukrajinskych oligarchi a nacionalist(, ktefi se

tehdejsi puéem dostali k lizu. A ti ted s nap&tim &ekaji na dalsi

prachy — Svétova banka, svolog, uz své limity penéz pro

ukrajinskou éernou diru vycerpala a nové ani nehleda, zato

Mezinarodni ménovy fond je pry ochotny cosi

Jrestrukturalizovat” a najit daldi miliardy, ale pry jen za

podminky, Ze Kviev protlaéi reformy, které nedokazal protlacit

X =motions
&tyfi roky... Jsou to sami zradci!

Range aftributes Set all to NO
Location (D other / cannot de =
Blaming (e 2 yes
Labelling (FE=0 2 yes
Argumentation [Py £3 yes
Emetions (Freg 23 grievance -
Demonizing (g 239 yes
Relativizing (e 3 yes

Fear mongering (e no

Fabulation (Feg) no

Opinicn (D 89 yes

source (DB yes

Russia (D neutral ~
Expert CEIES) £33 yes
Politician 1 (I £ Donald . Trump
Attitude 1 neutral -

Figure 2: An example of (a part of) an annotated article with ranges showing demonizing and grievance

as a value of the emotions attribute.

r) Overall sentiment: neutral, negative, or pos-
itive.

The second part, articles from the same domains
published in 2017, has undergone a fine-grained
annotation using a specific data processing and an-
notating tool (Baisa et al., 2017), which requires
the annotators not only to specify the respective
attribute values but also enrich them with partic-
ular phrase examples. The annotators were asked
to amend each significant attribute value (not null,
neutral or missing) by marking a particular block
(or blocks) of text that offer the evidence of the
value. The attributes are split into two groups. The
attributes a) to n), denoted as range attributes, are
bound to a sequence of words from the text, the
attributes o) to r), i.e. the document attributes, are
related to the article as a whole. An example of
annotated range attributes can be seen in Figure 2.
Unfortunately, due to the complexity of the anno-
tation process, there was only one annotator per
document and the inter-annotator agreement could
not be decided.

The text of the articles has been extracted from
the media server web pages, then tokenized using
unitok (Michelfeit et al., 2014) and morphologi-
cally annotated using majka (Smerk, 2009) and
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Table 1: Text statistics of the two parts of the
benchmark dataset.

2016 2017 Total
Tokens 2,774,178 930,304 | 3,704,482
Words 2,331,116 781,725 | 3,112,842
Sentences 144,097 49,140 193,237
Paragraphs 50,554 17,264 67,818
Documents 5,500 1,994 7,494

desamb (§merk, 2010). The dataset thus allows
complicated full-text search in the articles. The
size of the data (sub)sets is in Table 1.

3 Dataset Evaluation

We have performed the dataset evaluation to ex-
press the baseline accuracy of assigning the labels
automatically using 10 machine learning classi-
fiers. The classifiers were trained with the 20,000
most frequent lemmata present in the corpus, with
the text transformed to a numerical vector format
using bag-of-words using TF-IDF weighting.



Table 2: Classifier Accuracy

50 5

s, L £ 2
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s 2 B 2 B £ 5 B E g 2 £ & & B 8 B g
m — < b A ~ 0 = O — ©vn & [ = Qo = O w
dummy 59 79 69 81 96 93 91 74 86 41 .60 .70 74 32 89 53 75 .63
bernoulli_nb 67 78 59 74 87 85 84 75 84 56 63 73 63 53 91 72 72 80
multinomial _nb 67 79 70 81 96 93 91 74 86 52 60 71 74 54 89 86 .75 72
nearest_centroid 66 71 62 63 74 80 75 71 75 58 60 55 67 56 .80 .66 .65 .73
passive_aggressive .70 .79 .72 .77 96 94 92 78 84 74 67 79 80 .69 95 .8 .73 .92
random_forest 69 81 74 81 96 93 92 77 87 .67 68 .80 80 .63 .92 85 .76 .88
ridge 72 82 75 81 96 94 92 79 89 75 70 80 .81 .71 96 .87 .78 091
sgd_elasticnet J1 82 73 81 96 94 92 78 89 .76 .70 .82 80 .71 96 .87 .77 .93
sgd 11 0 81 72 81 96 94 92 78 89 .76 .70 .82 81 .70 96 .87 .77 .94
sgd_12 70 82 73 81 96 94 92 78 .89 .76 .70 81 80 .71 96 87 .77 92

3.1 Selected Classifiers

For the evaluation, we have chosen a representa-
tive subset of classification techniques, which are
often employed in bag-of-words tasks for attribute
value estimation. The resulting set of classifiers
includes:

dummy: a baseline, classifies every instance
as the majority class present in the input data.

passive_aggressive: an efficient Per-
ceptron-like classifier (Crammer et al., 2006).

Two Naive Bayes variants: bernoulli_nb
assumes that the data is Bernoulli distributed,
while multinomial_nb assumes a Multi-
nomial distribution (McCallum et al., 1998).

Three different Support Vector Machine
classifiers trained using stochastic gradi-
ent descent: sgd_11 with L1 regulariza-
tion, sgd_12 with L2 regularization and
sgd_elasticnet with Elasticnet regular-
ization (Zhang, 2004).

ridge is a regularized linear regression
based classifier (Rifkin and Lippert, 2007).

random_forest: An ensemble of decision
tree classifiers is built on samples drawn from
the training set. The resulting class during the
classification is obtained by taking the most
common class as assigned by each of the de-
cision trees (Breiman, 2001).

nearest_centroid: computes a per-
class mean of examples during training, the
classification then assigns class according to
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Table 3: Examples of word sentiment data used in
the experiment.

Czech English  Positive Negative
neschopny incapable 0 0.75
cisty clean 0.5 0
pomérny proportional  0.25 0.5
hojny abundant 0.125 0
pfijatelny  acceptable  0.625 0
zavadny harmful 0 0.375
pfistupny  accessible  0.625 0
zastréeny  inserted 0.125 0
usluzny obliging 0.75 0

the closest mean (Mclntyre and Blashfield,
1980).

3.2 Evaluation Strategy

The final accuracy scores have been obtained by
stratified 3-fold cross validation to evaluate the
performance of the classifiers. In the 3-fold cross
validation, documents were first grouped by their
classes. Each of these classes was then divided
into 3 parts. The training set for the investigated
classifier then consists of two parts of all groups
and the test set consists of the remaining parts of
all groups. There are three different ways to select
which of the parts will go into the training and the
evaluation sets. Each classifier has been evaluated
three times, once with each of these ways or folds.
The resulting score was computed as the average
of the three scores obtained for each of the folds.



Table 4: Classifier prediction accuracy sorted by the weighted F1-score which takes into account im-
balanced attribute classes. The resulting accuracy is compared to the baseline accuracy of the majority

class.

best classifier ~weighted F1 accuracy baseline difference
Demonizing sgd_12 .85 .96 .96 .00
Genre sgd_elasticnet .84 .96 .89 .07
Server sgd_11 .83 94 .63 31
Relativizing sgd_elasticnet .82 94 .93 .01
Fear mongering passive_ .81 92 91 .01

aggressive
Opinion sgd_12 .79 .89 .86 .03
Focus ridge 77 .87 .53 .34
Labelling ridge 73 .82 .79 .03
Expert ridge 73 .81 74 .07
Russia sgd_11 71 .82 .70 12
Emotions ridge .70 .81 .81 .00
Fabulation ridge .70 .79 74 .04
Overall sentiment ridge .70 78 75 .04
Location sgd 12 .68 .76 41 .36
Argumentation ridge .65 75 .69 .06
Blaming ridge .65 12 .59 13
Topic sgd_elasticnet .64 g1 32 .39
Source ridge .63 70 .60 .10

3.3 Evaluation Metrics

Each trained classifier predicts the class for a doc-
ument based on its text. By comparing the re-
sults to the dataset gold standard data, each of the
classifier was evaluated by means of its attribute-
related accuracy, precision, recall, and F1 score.
The accuracy results are summarized in Table 2
and compared with the dummy baseline accuracy
in Table 4.

3.4 Correlations of Attributes and Sentiment
Coefficients

The set of article attributes contains several items
which express sentiment values, either to the arti-
cle as a whole or to a mentioned politician. We
have evaluated the possibility of using the article
sentiment analysis to predict the corresponding at-
tribute values for the texts.

The paragraph sentiment analysis results were
explicitly expressed as an average score of posi-
tivity and negativity of particular words. A list of
6,261 words was prepared as projections of Senti-
WordNet (Baccianella et al., 2010) scores via the
Czech WordNet (Rambousek et al., 2018; Horak
et al., 2008) database, see Table 3 for examples.
Each paragraph received an average value of only
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positive words, only negative words and of their
average score computed as a difference between
word positivity and negativity. The overall doc-
ument scores were then computed as a maximum
positive paragraph score, maximum negative para-
graph score and maximum and minimum of the
average word score for each paragraph.

Each of the resulting document sentiment scores
were evaluated for a correlation* with positive and
negative values of the selected attributes annotated
in the data. The results are presented in Table 5.
None of the attributes has proven really strong cor-
relation, but several attributes partly correlate with
the maximum negative sentiment of the document.
Interestingly, there is no correlation in case of the
emotions attribute.

4 Conclusion and Future Directions

We have introduced a new benchmark dataset
for propaganda manipulative techniques detection
in Czech newspaper texts. The dataset contains
7,494 documents annotated for the presence of
eight manipulative techniques and 10 document
attributes relevant for propaganda detection. The

*Computed as Spearman’s correlation coefficient with
statistical significance.



Table 5: Correlations of selected attributes and document sentiment analysis scores. The { symbol
denotes statistically significant values (p < 0.05) of Spearman’s correlation coefficient.

Attribute max positive max negative max average min average
blaming 0.18 7 023 1 0.17 7 -0.23 ¢
demonizing 0.11 7§ 0.13 0.11 ¥ -0.12 §
fear mongering 0.16 7 018 1 0.16 7 -0.18 ¢
emotions compassion  0.02 -0.00 0.03 -0.00
emotions fear -0.07 ¢ 0.02 -0.07 i -0.02
emotions hate 0.06 7 0.04 0.06 -0.04
emotions grievance -0.00 -0.05 -0.00 0.05
overall sentiment 0.16 018 0.16 -0.18 7
attitudel 0.04 7 0.04 0.04 7 -0.04
attitude2 0.10 7 015 0.09 7 -0.16
attitude3 0.13 7 013 ¢ 0.11 7 -0.13 7§
attitude avg 0.13 0.14 1 0.11 -0.15 7§

dataset is currently being expanded with the third
part of documents from 2018 and it is planned to
be released for public access after this expansion.

We have evaluated the current data with 10 cur-
rent classification techniques. Regularized linear
regression and Support vector machines are able
to classify the data with the best accuracies, even
though the manipulative techniques need to em-
ploy extra features to significantly improve over
the baseline.

In the currently running experiments, we are
preparing new evaluation of the dataset using de-
tailed stylometric features and distributed seman-
tic representations of the texts.

Acknowledgments.

This project was partially supported by the Grant
Agency of Masaryk University within the project
MUNI/G/0872/2016.

References

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-
tiani. 2010. Sentiwordnet 3.0: an enhanced lexical
resource for sentiment analysis and opinion mining.
In Proceedings of LREC 2010. pages 2200-2204.

Vit Baisa, Ondfej Herman, and Ales Horak. 2017. Ma-
nipulative Propaganda Techniques. In Proceedings
of Recent Advances in Slavonic Natural Language
Processing, RASLAN 2017. pages 111-118.

Leo Breiman. 2001. Random forests. Machine learn-
ing 45(1):5-32.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. 2006. Online

82

passive-aggressive algorithms. Journal of Machine
Learning Research 7(Mar):551-585.

Lisa K Fazio, Nadia M Brashier, B Keith Payne, and
Elizabeth J Marsh. 2015. Knowledge does not pro-
tect against illusory truth. Journal of Experimental
Psychology 144(5):993—-1002.

Todd C Helmus, Elizabeth Bodine-Baron, Andrew
Radin, Madeline Magnuson, Joshua Mendelsohn,
William Marcellino, Andriy Bega, and Zev Winkel-
man. 2018. Russian Social Media Influence: Under-
standing Russian Propaganda in Eastern Europe.
Rand Corporation.

Edward Herman and Noam Chomsky. 2012. A propa-
ganda model. Media and cultural studies: Keyworks
pages 204-230. Reproduced from Manufacturing
Content, 1988.

AleS Horéak, Karel Pala, and Adam Rambousek. 2008.
The Global WordNet Grid Software Design. In Pro-
ceedings of the Fourth Global WordNet Conference,
University of Szegéd. pages 194—199.

Adam Kilgarriff, Vit Baisa, Jan BuSta, Milos
Jakubicek, Vojtéch Kovét, Jan Michelfeit, Pavel
Rychly, and Vit Suchomel. 2014. The Sketch En-
gine: ten years on. Lexicography 1(1):7-36.

Andrew McCallum, Kamal Nigam, et al. 1998. A com-
parison of event models for naive bayes text classi-
fication. In AAAI-98 workshop on learning for text
categorization. pages 41-48.

Robert M MclIntyre and Roger K Blashfield. 1980.
A nearest-centroid technique for evaluating the
minimum-variance clustering procedure. Multivari-
ate Behavioral Research 15(2):225-238.

Jan Michelfeit, Jan Pomikalek, and Vit Suchomel.
2014. Text tokenisation using unitok. In Ale$ Hordk
and Pavel Rychly, editors, RASLAN 2014. Tribun
EU, Brno, Czech Republic, pages 71-75.



Christopher Paul and Miriam Matthews. 2016. The
Russian “firehose of falsehood” propaganda model.
Rand Corporation pages 2—7.

Adam Rambousek, AleS Hordk, and Karel Pala. 2018.
Sustainable long-term WordNet development and
maintenance: Case study of the Czech WordNet.
Cognitive Studies/Etudes cognitives (18).

Ryan M Rifkin and Ross A Lippert. 2007. Notes on
regularized least squares. Computer Science and
Artificial Intelligence Laboratory Technical Reports
https://dspace.mit.edu/handle/1721.1/37318.

Pavel Smerk. 2009. Fast Morphological Analysis of
Czech. In Petr Sojka and Ales Horak, editors, Third
Workshop on Recent Advances in Slavonic Natural
Language Processing. Masaryk University, pages
13-16.

Pavel Smerk. 2010. K pocitacové morfologické analyze
Cestiny (in Czech, Towards Computational Morpho-
logical Analysis of Czech). Ph.D. thesis, Faculty of
Informatics, Masaryk University.

Samuel C Woolley and Philip N Howard. 2017. Com-
putational propaganda worldwide: Executive sum-
mary. Working Paper 2017(11).

Tong Zhang. 2004. Solving large scale linear predic-
tion problems using stochastic gradient descent al-
gorithms. In Proceedings of the twenty-first interna-
tional conference on Machine learning. ACM, page
116.

Jianqing Zhang. 2013. The Propaganda Model and the
Media System in China. Dartmouth College.

83



Diachronic Analysis of Entities by Exploiting Wikipedia Page revisions

Pierpaolo Basile
University of Bari Aldo Moro
Dept. of Computer Science
Bari, Italy

pierpaolo.basile@Quniba.it

Seamus Lawless
ADAPT Centre
Trinity College Dublin
Dublin, Ireland

seamus.lawless@adaptcentre.ie

Abstract

In the last few years, the increasing avail-
ability of large corpora spanning several
time periods has opened new opportunities
for the diachronic analysis of language.
This type of analysis can bring to the light
not only linguistic phenomena related to
the shift of word meanings over time, but
it can also be used to study the impact
that societal and cultural trends have on
this language change. This paper intro-
duces a new resource for performing the
diachronic analysis of named entities built
upon Wikipedia page revisions. This re-
source enables the analysis over time of
changes in the relations between entities
(concepts), surface forms (words), and the
contexts surrounding entities and surface
forms, by analysing the whole history of
Wikipedia internal links. We provide some
useful use cases that prove the impact of
this resource on diachronic studies and de-
lineate some possible future usage.

1 Introduction

The availability of large corpora spanning differ-
ent time periods has encouraged researchers to
analyse language from a diachronic perspective.
Language is dynamic and detecting significant lin-
guistic shifts in the meaning and usage of words
is a crucial task for both social and cultural stud-
ies and for Natural Language Processing applica-
tions. Recent work focusing on the automatic de-
tection of the semantic shift of words has adopted
diachronic (or dynamic) word embeddings (Kim
etal., 2014; Hamilton et al., 2016b; Kulkarni et al.,
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2015). This type of work represents words as
vectors in a semantic space where the proxim-
ity between word vectors indicate the existence
of a semantic relationship between the terms in-
volved. The diachronic analysis is then performed
by building a different semantic space for each pe-
riod of investigation and aligning vectors belong-
ing to different spaces in order to make them com-
parable. The variations in the similarity between
the word vectors in two different spaces marks
possible changes in the context of appearance of
that word. This is used as a proxy indicator of
change, either cultural, social or semantic, asso-
ciated with the occurrence of that specific word.
This kind of work has generated a variety of re-
sources for the diachronic analysis of word mean-
ings, covering different time periods, languages,
and genres.

While the broader area of automatic detection
of semantic shift of words is gaining momentum,
only little effort has focused on the more specific
problem of analysing the semantic shift of named
entities. This problem has a huge impact on the
correct identification of entities in context, with
repercussions on many natural language process-
ing problems, such as entity linking and search,
aspect-based sentiment analysis and event detec-
tion (Kanhabua and Ngrvag, 2010b; Tahmasebi
et al., 2012; Georgescu et al., 2013).

Generally, an entity has a clear referent and
what evolves is the context in which it appears
or the surface form used to refer to it. In this
work, we build a resource that tracks how the sur-
face forms used to link an entity change over time
by taking into account the revisions of Wikipedia
pages. In doing so, we also extract time-dependent
contexts of each mention of a link in Wikipedia

Proceedings of Recent Advances in Natural Language Processing, pages 84-91,
Varna, Bulgaria, Sep 24, 2019.
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pages. The Wikipedia page history, sometimes
called revision history or edit history, tracks the
order in which changes were made to any editable
Wikipedia page. We believe that this corpus can
help researchers to design approaches for track-
ing entities usage over time. This resource can be
functional to promote new research for dynamic
embeddings of named entities. We propose some
preliminary case studies for proving the potential-
ity of this resource.

The paper is structured as follows: Section 2 re-
views the state of the art, while Section 3 describes
the methodological aspects of our approach. Sec-
tion 4 shows some use cases of our resource fol-
lowed by some final remarks.

2 Related Work

The diachronic analysis of language via word em-
beddings has been an active area of research dur-
ing the past decade that has generated many re-
sources for several time periods, languages and
genres. Kim et al. (2014) used Google Ngram
as a diachronic resource to build word embed-
dings via Word2Vec on a random sample of the
10 million 5-grams from the English fiction por-
tion of the corpus. The authors made the resource
available, but due to space limitations, they re-
leased the word embeddings only for the 5-year
time period. A similar approach was proposed
by Grayson et al. (2016), where Word2Vec em-
beddings are trained on the Eighteenth-Century
Collections Online corpus (ECCO-TCP) by tak-
ing into account five twenty-year periods for 150
million words randomly sampled from the “Liter-
ature and Language” section of the corpus. Hamil-
ton et al. (2016b) also trained word embeddings on
the Google Ngram for detecting semantic changes.
The authors analysed four different languages, i.e.
English, French, German and Chinese, and cre-
ated a resource which has been successfully used
in subsequent studies (Garg et al., 2017; Hamilton
et al., 2016a). A different approach to detect the
semantic shift of words was adopted by Kulkarni
et al. (2015). The authors adopt a change point
detection algorithm on the time series generated
by computing the cosine similarity between word
embeddings trained on several corpora, such as:
Twitter, Amazon reviews, and the Google Book
Ngrams. A similar approach is proposed in Basile
and McGillivray (2018), in which the Temporal
Random Indexing (TRI) is adopted for building
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a distributed, time-based, word representation for
the JISC UK Web Domain Dataset (1996-2013)
corpus.

Other research efforts have been directed to
release resources and applications for the visual
analysis and querying of these diachronic collec-
tions. The Google Ngram viewer (Michel et al.,
2011) was released as a tool for allowing users to
query the Google Ngram corpus, a collection of
ngram occurrences spanning several years and lan-
guages extracted from the Google Book project.
Hellrich and Hahn (2017) proposed a system that
allows users to explore different corpora via a di-
achronic semantic search. They used the Cor-
pus of Historical American English, the Deutsches
Textarchiv “German Text Archive”, and the Royal
Society Corpus, in addition to the Google Books
Ngram Corpus.

Research directed toward the specific problem
of detecting changes in the context surrounding
named entities has attracted limited attention com-
pared to the broader area of automatic detection
of the semantic shift of words. Some previous
work on named entities focused on problems re-
lated to searching (Berberich et al., 2009; Kan-
habua and Ngrvag, 2010a; Zhang et al., 2016).
Tahmasebi et al. (2012) proposed an interesting
approach to identify the evolution of named en-
tities. Berberich et al. (2009) defined a method
for query reformulations able to paraphrase the
user’s information need using terminology preva-
lent in the past. In this work, the original dataset
is enriched with annotated phrases extracted from
the text by using Wikipedia page titles. In Kan-
habua and Ngrvag (2010a), Wikipedia internal
links and redirect pages are exploited for finding
synonyms across time by using different snapshot
of Wikipedia. The identified synonyms are used
for query expansion in order to increase the re-
trieval effectiveness. In some respects, this ap-
proach is similar to ours. However, it does not
use page revisions and the relation between con-
cepts, surface forms and contexts. Zhang et al.
(2016) described an approach to find past simi-
lar terms closest to a given present term. The
goal was to improve the retrieval effectiveness in
archives and collections of past documents. In this
work, Wikipedia is only functional to the creation
of the test set, where only the information about
the entity lifetime is used (e.g. the time when the
name of a country or a company changed). Re-



garding named entity evolution, Tahmasebi et al.
(2012) proposed a method to capture the evolution
of one name into another by using a sliding win-
dow of co-occurrence terms. The corpus used for
the evaluation is the New York Times Annotated
Corpus. Lansdall-Welfare et al. (2017) analysed
a collection of historical data spanning 150 years
of British articles. The authors focus on historical
and cultural changes that are tracked via a quan-
titative analysis of word frequencies. However,
they expand their methodology to a “semantic”
level by working on named entities extracted from
text. The work proposed in Szymanski (2017)
is the first attempt to highlight the potential of
diachronic word embeddings for solving analogy
tasks involving entities and relationships, although
this work does not seek to capture named entities
in an explicit way. Moreover, Caputo et al. (2018)
applied a method to recognise and linking named
entities in the whole New York Times corpus. The
Temporal Random Indexing is then applied on the
annotated corpus in order to build a semantic vec-
tor representation for entities and tracking signifi-
cant shift in their contexts. An explicit representa-
tion of named entities is also provided in (Bianchi
et al., 2018) where the authors tackle the problem
of incorporating time in the Knowledge Graph em-
beddings in order to provide a similarity measure
between entities that accounts for temporal fac-
tors.

3 Methodology

The revision history associated with each
Wikipedia page opens the way to different di-
achronic analyses of the highly interconnected
concepts represented by its pages. In Wikipedia,
pages are interconnected by internal links man-
ually created by users that consist of a surface
form and a target. The target is another Wikipedia
page, and can be regarded as a “conceptual” link
created by the user between the surface form and
a specific concept (the Wikipedia page). The
same surface form can link several entities and
the same entity can be linked to several surface
forms. Moreover, since a surface form occurs
in a specific context, we can define the surface
context as a window of n words to the left and
to the right of the surface form. Each page has
multiple revisions created every time a user edits
that page, and each revision page is associated
with a timestamp, so that it is possible to track
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the changes over time of the temporal relation
existing between the surface form, the target
and context. For example, it is possible to track
the change over time of different surface forms
linking to a specific target or to detect the change
in the target context. All these capabilities open
several possibilities to the analysis of entities
using a diachronic perspective.
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Figure 1: Flowchart of the dataset creation.

Figure 1 depicts the process followed for the
creation of our resource. The starting point is the
Wikipedia meta history dump which includes all
the page revisions in XML format. The dump
is composed of several XML files containing the
page revisions in Mediawiki syntax. Each XML
file is parsed using the DKPro-JWPL API', which
is able to produce the accurate Abstract Syntax
Tree (AST) of each page revision. From the
AST, we extract all the internal links that refer
to standard®> Wikipedia pages; each internal link
has a surface form and the name of the linked
Wikipedia page. In addition, we extract the year
from the revision timestamp and the context as
the n words around the internal link. The con-
text is processed using the StandardAnalyzer pro-
vided by the Apache Lucene API®. Each extracted
internal link is saved in a CSV file as a record con-
sisting of: year, pageld, target, surface form, left
context and right context.

An example of a row in a CSV file is reported
below:

"https://github.com/dkpro/dkpro—jwpl

2We remove links to special pages, such as category and
user pages.

3http://lucene.apache.org/



2003 11057 forge forge forging
term shaping metal use heat
hammer basic smithy contains
sometimes called hearth heating
metals commonly iron steel
malleable temperature

The row meaning is that in page /7057 in the
year 2003 the target forge is linked by the surface
form forge with the right context forging, term, ...
and the left context sometimes, called, ....

Since the tuple <year, surface form, target>
can occur multiple times, we aggregate multiple
tuple occurrences in a single record. The aggrega-
tion step is performed several times, one time for
each dump file plus a final step that aggregates all
the records in a single file that represents our final
dataset.

In the final file, information is stored as follows:

e A row starting with the sequence #T
<TAB>T; which identifies the beginning of a
sequence of rows in the file that are related to
the page (concept) 7; (until a new row start-
ing with #T is encountered). T; represents the
Wikipedia page title;

e A sequence of rows containing several val-
ues separated by the fabular character in the
form: year yy, surface form s;, the number
of time that the surface s; is used for link-
ing T; in the year y;. Then, we build a Bag-
of-Word (BoW) from the words occurring in
the context, and in the same row we provide
the BoW size followed by all the words in
the BoW represented as a sequence of pairs
<word, occurrences>.

A row in the aggregate format is shown in the
following example:

#T Apple Computer
2018 Apple Computer 2 30 freedos
1 x 1 supports 1 support 3
officially 1 10 1 s 1 programming
1 91 scsi 1 bda 1 2005 1 usb
2 mac 3 announced 2 storage 2
august 1 31 1 ray 2 advanced 1 os
3 its 2 interface 2 blu 2 joined
1 aspi 1 march 1 8.5.1 1 disc 2
mass 2
2018 Apple 1 21 developed 1
computer 1 years 1 independently
1 group 1 computer’s 1 1987
1 he 1 while 1 advanced 1

henson 1 associates 1 eric 1
tracking 1 facial 1 technology

1 collaborated 1 six 1 starting 1
worked 1 animation 1

The aggregated format shows that the surface
form Apple Computer was used twice for link-
ing the target Apple Computer, while the surface
form Apple was used only once. The BoW follows
each surface form. In the first aggregation step,
an aggregated file is created for each segment of
the Wikipedia dump, then in the second aggrega-
tion step, all the segments are merged in the final
dataset.

In this first version of the dataset we do not take
into account disambiguation pages and redirects.
Managing redirects is a very challenging problem
since they are not consistent over dumps.

Relying on this final dataset, we built a search
API for easily retrieving all the information related
to the target, the surface form and the context ac-
cording to a specific time period®.

We exploit the meta history dump dated Ist
February 2019; the first Wikipedia pages are dated
2001. The original dump size is about 950GB, the
total size of the CSV files is about 30GB, while
the final dataset obtained by aggregating data from
the CSVs is about 47GB. We set to 10 the dimen-
sion of the context window. Since a page can have
multiple revisions in the same year, in building our
resource we consider only the latest one for each
year. It is possible to perform a more fine-grained
analysis by taking into account more revisions per
year (e.g. a revision for each month). The to-
tal number of distinct targets is about 31M, which
is larger than the effective number of Wikipedia
pages for several reasons: 1) some targets are a
redirect to other targets; 2) some pages have been
removed or renamed over the years; 3) some tar-
gets are a link to a specific section of a page. In
this release, we do not take into account these is-
sues, which we plan to tackle in a future release.

The search API can be used for building sev-
eral applications, such as a RESTful Web Services
for remotely querying the data, data analysis for
discovering when named entities or surface forms
change their usage, and data visualisation.

It is important to underline that the proposed ap-
proach is completely unsupervised and language
independent since it does not require any NLP pre-

“The dataset and the source code are available here
https://github.com/pippokill/dae
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processing step. Moreover, the proposed method-
ology is intrinsically multi-language because it is
possible to rely on the specific Wikipedia dump of
the language under analysis. In addition, it is pos-
sible to exploit multi-language Wikipedia links for
comparing the evolution of named entities across
different languages.

One limit of our approach is the short time
frame taken into account since Wikipedia was
launched in 2001. However, our approach is in-
cremental and the dataset can grow when new
Wikipedia dumps are available. Moreover, the
dataset is not only useful for diachronic analysis
of entities, but the detection of semantic changes
over a short period of time can be exploited to
improve the performance of several algorithms,
such as entity linking, relation extraction and on-
tology/knowledge graph population.

4 Use cases

In this section we report some use cases that have
emerged from an exploratory analysis of the pro-
posed dataset. We perform the analysis by index-
ing the 1M most frequent targets extracted from
the final dataset. We build an API for querying the
dataset by using the Apache Lucene library. Each
following subsection reports details about a spe-
cific use case.

4.1 Concepts linked by a surface form

The first use case concerns the analysis of the con-
cepts linked by a surface form over time. Table
1 shows the concepts linked by the surface form
“Donald Trump”. While before 2015 there is only
one concept linked by this surface form, since
2016, the concepts related to the presidential cam-
paign have emerged, with the concept “Presidency
of Donald Trump” occurring in the first top-5 con-
cepts since 2018. It is important to underline that
the first column (2015) reports only one concept
since no other concepts are related to the surface
form “Donald Trump” in the 2015. This is due to
the fact that in this preliminary study we limited
our analysis to the 1M most frequent targets and
not the whole set of 33M targets. A reverse analy-
sis shows the usage of the surface form “President
Trump” to refer to the concept “Donald Trump”
since 2017.
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4.2 Contexts of a given target

Another interesting analysis concerns the change
over time of the contexts of a given target. In this
case, it is possible to compute the displacement
over time of the target concept by computing the
cosine similarity between the context BoWs. For
each pair of years, we build a BoW vector for the
context of the target concept. Then, we generate a
time series by computing the cosine similarity be-
tween the BoW of two consecutive years (BoW,,
and BoW), ). Figure 2 reports the time series
generated for the concept “Donald Trump”; we
observe a change point corresponding to a drop in
similarity between 2015 and 2016.
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Figure 2: BoW cosine similarity time series for the
concept “Donald Trump”.
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Figure 3: BoW cosine similarity time series for the
concept “Arnold Schwarzenegger”.

A similar analysis performed for the concept
“Arnold Schwarzenegger” shows a change point
between 2002-2003 and 2003-2004, as reported
in Figure 3. Through the analysis of the most
frequent words in the BoWs of the contexts of
“Arnold Schwarzenegger” in the period 2002-
2004, it emerged that while the most frequent
words in 2002 were film, actor, movie, terminator,
in 2003 new words such as governor and Califor-
nia related to “Arnold Schwarzenegger” political



2015 2016 2017 2018 2019

Donald Trump | Donald Trump pres- | Donald Trump Donald Trump Donald Trump
idential campaign,
2016

Protests against Don-
ald Trump

Protests against Don-
ald Trump

Protests against Don-
ald Trump

Donald Trump pres-
idential campaign,
2016

Donald Trump sexual
misconduct allegations

Donald Trump pres-
idential campaign,
2016

Donald Trump pres-
idential campaign,
2016

Protests against Don-
ald Trump

Political positions of
Donald Trump

Donald Trump sexual
misconduct allegations

Donald Trump sexual
misconduct allegations

Donald Trump sexual
misconduct allegations

Stop Trump movement

Donald Trump (Last
Week Tonight)

Presidency of Donald

Trump

Presidency of Donald
Trump

Table 1: Top-5 concepts linked by the surface form “Donald Trump”.

activity have started to appear, to become the most
frequent words in the BoWs since 2004.

Another interesting use case is the analysis of
the BoWs of the targets linked by the same sur-
face form. This analysis may highlight changes
in the way common words are used for referring
to named entities. For example, analysing the us-
age of the surface form “tweet”, we observe that
since 2012 it has been used to refer to the concept
“Twitter”, while before 2012 it did not refer to any
concept.

4.3 Similarity between two entities over time

The last scenario shows the possibility to compute
the similarity between two entities over time as the
cosine similarity between the target contexts. Fig-
ure 4 reports the time series of similarities between
three pairs of entities (Apple-Microsoft, Apple-
IBM, IBM-Microsoft). It is interesting to observe
that the similarity between IBM and Microsoft is
higher then the similarity between Apple and the
other two entities, although Apple is equally re-
lated to both of them.
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0.3

== Apple-IBM

== Apple-MS
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Figure 4: Comparison between pair of entities.

Finally, the plots in Figure 5 show the cosine
similarity between the BoWs of two different tar-

&9

gets (concepts). Using this approach it is possi-
ble to show how the similarity between two tar-
gets changes over time. In particular, for each time
point we build the BoW of each concept and then
we compute the similarity between the BoWs. It is
important to point out that the target BoW is built
by taking into account the context around each oc-
currence of the target in the corpus. In this way,
if two targets occur in similar contexts their BoWs
will be similar. We adopt two strategies:

point-wise: each BoW is built by taking into ac-
count only the target occurrences at time ¢;;

cumulative: each BoW is built by taking into ac-
count all the target occurrences up to time %;,
including time ¢;. The idea is to take into ac-
count all the previous history of the target and
not only the time period under analysis.

Observing the plots in Figure 5, it is possible
to note that the similarity between United States-
U.S. President and United States-Donald Trump is
constant across time, while we observe an incre-
ment in similarity between U.S. President-Donald
Trump after the year 2018. This increment is
clearly evident in the point-wise analysis (Figure
5a), as we expected. It is important to underline
that in Figure 5a some points are near zero (2009-
2014) this means that the targets do not occur in
similar contexts in that periods and indeed the two
BoWs share just a few words. Figure 5b show a
different trend, since we take into account all the
previous target occurrences before the time ¢; by
exploiting the cumulative approach.

The promising results obtained in this prelimi-
nary case study about BoW similarity suggest that
it is possible to build effective “time-dependent”
embeddings by using our resource.
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Figure 5: BoW analysis of pair of targets: plot over time of the cosine similarity between BoWs of two
targets with point-wise (a) and cumulative (b) strategy.

5 Conclusions and Future Work

In this paper, we described the construction and
utilisation of a new resource built upon Wikipedia
page revisions that enables the diachronic analy-
sis of entities. Using the timestamp provided by
each revision, we tracked Wikipedia internal links
in order to extract the temporal relations between
surface forms, contexts, and concepts (Wikipedia
pages). We provided some preliminary use cases
which show the effectiveness of this resource.
These preliminary results show the potentiality of
our methodology and open several research sce-
narios that can be investigated as future work, such
as semantic change point detection of entities, en-
tity linking in diachronic collections, event detec-
tion, and temporal entity search. The preliminary
version of our dataset has some issues that we plan
to fix in future versions such as redirects, disam-
biguation pages and character encoding issues.

Acknowledgement

This work is partially funded by the “TALIA - Ter-
ritorial Appropriation of Leading-edge Innovation
Action” project, Interreg-Mediterranean program
for increasing transnational activity of innovative
clusters and networks of key sectors of the MED
area (2018-2019) and by the ADAPT Centre for
Digital Content Technology, funded under the SFI
- Science Foundation Ireland Research Centres
Programme (Grant SFI 13/RC/2106) and is co-
funded under the European Regional Development
Fund and by the EU2020 - European Unions Hori-
zon 2020 research and innovation programme un-
der the Marie Skodowska-Curie grant agreement
No.: EU2020-713567.

90

References

Pierpaolo Basile and Barbara McGillivray. 2018. Dis-
covery Science, Springer-Verlag, volume 11198 of
Lecture Notes in Computer Science, chapter Exploit-
ing the Web for Semantic Change Detection.

Klaus Berberich, Srikanta J Bedathur, Mauro Sozio,
and Gerhard Weikum. 2009. Bridging the terminol-
ogy gap in web archive search. In WebDB.

Federico Bianchi, Matteo Palmonari, and Debora
Nozza. 2018. Towards encoding time in text-
based entity embeddings. In Denny Vrandecic,
Kalina Bontcheva, Mari Carmen Sudrez-Figueroa,
Valentina Presutti, Irene Celino, Marta Sabou,
Lucie-Aimée Kaffee, and Elena Simperl, editors,
The Semantic Web — ISWC 2018. Springer Interna-
tional Publishing, pages 56-71.

Annalina Caputo, Gary Munnelly, and Séamus Law-
less. 2018. Temporal entity random indexing. In
Jonathan Girén Palau and Isabel Galina Russell,
editors, Digital Humanities 2018, DH 2018, Book
of Abstracts, El Colegio de México, UNAM, and
RedHD, Mexico City, Mexico, June 26-29, 2018.
Red de Humanidades Digitales A. C., pages 460—
461.  https://dh2018.adho.org/en/temporal-entity-
random-indexing/.

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and
James Zou. 2017. Word Embeddings Quantify 100
Years of Gender and Ethnic Stereotypes. PNAS 115.
http://arxiv.org/abs/1711.08412.

Mihai Georgescu, Nattiya Kanhabua, Daniel Krause,
Wolfgang Nejdl, and Stefan Siersdorfer. 2013. Ex-
tracting event-related information from article up-
dates in wikipedia. In Pavel Serdyukov, Pavel
Braslavski, Sergei O. Kuznetsov, Jaap Kamps, Ste-
fan Riiger, Eugene Agichtein, Ilya Segalovich, and
Emine Yilmaz, editors, Advances in Information Re-
trieval. Springer Berlin Heidelberg, Berlin, Heidel-
berg, pages 254-266.

Siobhdn Grayson, Maria Mulvany, Karen Wade, Gerar-
dine Meaney, and Derek Greene. 2016. Novel2Vec



: Characterising 19th Century Fiction via Word Em-
beddings. In 24th Irish Conference on Artificial In-
telligence and Cognitive Science (AICS’16), Univer-
sity College Dublin, Dublin, Ireland, 20-21 Septem-
ber 2016.

William L. Hamilton, Jure Leskovec, and Dan Jurafsky.
2016a. Cultural shift or linguistic drift? comparing
two computational measures of semantic change. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Associ-
ation for Computational Linguistics, pages 2116—
2121. https://doi.org/10.18653/v1/D16-1229.

William L Hamilton, Jure Leskovec, and Dan Juraf-
sky. 2016b. Diachronic word embeddings reveal
statistical laws of semantic change. arXiv preprint
arXiv:1605.09096 .

Johannes Hellrich and Udo Hahn. 2017. Exploring Di-
achronic Lexical Semantics with J E S EM E. In
Proceedings of ACL 2017, System Demonstrations.
pages 31-36. http://aclweb.org/anthology/P17-
4006.

Nattiya Kanhabua and Kjetil Ngrvag. 2010a. Exploit-
ing time-based synonyms in searching document
archives. In Proceedings of the 10th annual joint
conference on Digital libraries. ACM, pages 79-88.

Nattiya Kanhabua and Kjetil Ngrvag. 2010b. Quest:
Query expansion using synonyms over time. In
José Luis Balcazar, Francesco Bonchi, Aristides
Gionis, and Michele Sebag, editors, Machine
Learning and Knowledge Discovery in Databases.
Springer Berlin Heidelberg, Berlin, Heidelberg,
pages 595-598.

Yoon Kim, Yi-I Chiu, Kentaro Hanaki, Darshan Hegde,
and Slav Petrov. 2014. Temporal Analysis of Lan-
guage through Neural Language Models. Arxiv
pages 61-65. http://arxiv.org/abs/1405.3515.

Vivek Kulkarni, Rami Al-Rfou, Bryan Perozzi, and
Steven Skiena. 2015. Statistically significant de-
tection of linguistic change. In Proceedings of the
24th International Conference on World Wide Web.
ACM, pages 625-635.

Thomas Lansdall-Welfare, Saatviga Sudhahar, James
Thompson, Justin Lewis, FindMyPast Newspaper
Team, and Nello Cristianini. 2017. Content analy-
sis of 150 years of British periodicals. Proceedings
of the National Academy of Sciences 114(4):E457—
E465.

Jean-Baptiste Michel, Yuan Kui Shen, Aviva Presser
Aiden, Adrian Veres, Matthew K Gray, Joseph P
Pickett, Dale Hoiberg, Dan Clancy, Peter Norvig,
Jon Orwant, et al. 2011. Quantitative analysis of
culture using millions of digitized books. science
331(6014):176-182.

Terrence Szymanski. 2017. Temporal word analo-
gies: Identifying lexical replacement with di-
achronic word embeddings. In Proceedings of the

91

55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers). As-
sociation for Computational Linguistics, pages 448—
453. https://doi.org/10.18653/v1/P17-2071.

Nina Tahmasebi, Gerhard Gossen, Nattiya Kanhabua,
Helge Holzmann, and Thomas Risse. 2012. Neer:
An unsupervised method for named entity evolution
recognition. Proceedings of COLING 2012 pages
2553-2568.

Yating Zhang, Adam Jatowt, Sourav S Bhowmick,
and Katsumi Tanaka. 2016. The past is not a for-
eign country: Detecting semantically similar terms
across time. IEEE Transactions on Knowledge and
Data Engineering 28(10):2793-2807.



Using a Lexical Semantic Network for the Ontology Building
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LIRMM / LIMICS LIMICS LIRMM
74 rue Marcel Cachin 860 rue de St Priest
93017 Bobigny 34095 Montpellier
Abstract cept corresponds to a set of individuals sharing sim-

Building multilingual ontologies is a hard task as on-
tologies are often data-rich resources. We introduce
an approach which allows exploiting structured lex-
ical semantic knowledge for the ontology building.
Given a multilingual lexical semantic (non ontolog-
ical) resource and an ontology model, it allows min-
ing relevant semantic knowledge and make the on-
tology building and enhancement process faster.

1 Introduction

Nowadays, termino-ontological resources are in-
creasingly rich in terms of data they rely upon. The
scientific community works intensively on data ac-
quisition for the ontology building. In particular, the
NeOn project! has been set up to provide a method-
ology for the ontology engineering by integrating
preexisting knowledge resources into an ontology
building process. The NeOn methodology contains
a consistent framework for modular ontology build-
ing as well as for setting up ontology networks. Here
we focus on exploiting Lexical Semantic Networks
(LSNs) to enrich an ontology or accompany the
ontology building process. We assume that LSNs
represent knowledge as it is expressed through the
human language whereas ontologies provide a for-
mal description (specification) of a conceptualiza-
tion (concepts and relationships between those con-
cepts) shared by a community of agents. A con-

'http://neon-project.org/nw/About_NeOn.html
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ilar characteristics and may or may not be lexical-
ized. Thus, the ontology labels cannot be polyse-
mous. The strength of ontologies is in their for-
mal consistency. The weaknesses are linked to their
coverage, size (as stated in (Raad and Cruz, 2015),
“large ontologies usually cause serious scalability
problems”), and human effort needed for their build-
ing. The potential of the LSNs is linked to the large
amount of explicit semantic information they con-
tain. However, a filtering process is needed to dis-
criminate irrelevant information (polysemy, noise).

2 State of the Art

The opportunity of ontology construction empow-
ered by the use of Natural Language Processing
(NLP) techniques and tools has been explored for
more than 20 years. Among the achievements, one
can distinguish the tools which take into account the
difference between the lexical term and the ontol-
ogy concept (differentiated tools) and those that do
not make such distinction. Differentiated tools and
methods suggest extracting the terminological units
from texts and organizing them as a network using
a set of hierarchical and equivalence relation types.
Such network guides the ontology expert through
the conceptualisation and ontology building pro-
cess. Such process relies on an intermediary struc-
ture, a termino-ontology (for instance, the Termi-
nae suite, (Szulman, 2012)). Undifferentiated tools
use some statistical information to suggest the can-

Proceedings of Recent Advances in Natural Language Processing, pages 92-101,
Varna, Bulgaria, Sep 24, 2019.
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didate concepts. They exploit such methods as for-
mal concept analysis (Mondary, 2011) or knowledge
based methods (for instance, TextToOnto®). “Lex-
ical ontologies” (Abu Helou et al., 2014) are suc-
cessfully used for ontology building. Numerous ap-
proaches targeted at high level ontology or informa-
tion retrieval ontology based on general knowledge
(such as (Marciniak, 2013)) rely on PWN. Others
use PWN and domain specific semantic lexicons for
forming the concepts (Turcato et al., 2000). Many
other ontology learning techniques use distributional
semantics to learn lightweight ontologies, for exam-
ple, (Wong, 2009).

In the framework of corpora based approaches to
the ontology building such as described in (Kietz
et al., 2000), the idea of notable (salient, relevant)
element or relevant piece of knowledge (RPK) has
been introduced. It corresponds either to the fre-
quent terms appearing in a corpus and to the tacit
knowledge contained in texts. Such tacit knowl-
edge corresponds to the semantic relationships (sub-
somption relationship and other specialized relation-
ships). Their presence in texts may take the form of
”indices”. In contrast, the explicit elements may re-
veal the presence of concepts. The main drawback
such definition of RPKs is that it relies on the fea-
tures defined or recorded for a particular language.
In addition, statistical criteria are often preferred and
it is difficult to qualify such RPKs from the semantic
point of view and in a language independent man-
ner. In this paper, we will detail the experiments we
conducted to provide a new definition of the RPKs
based on the structured lexical semantic information
and describe the way so defined RPKs can be used
to help the top down ontology building process.

3 Ressources

In the present section, we will describe the resources
we used in our experiments.

The RezoJDM (Lafourcade, 2007) is a lexical se-
mantic network (LSN) for French built using crowd-

https://sourceforge.net/p/texttoonto/wiki/
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sourcing methods and, in particular, games with a
purpose (GWAPS) such as JeuxDeMots® and addi-
tional games . This commons sense network has
been built since 2007. It is a directed, typed and
weighted graph. At the time of our writing, Rezo-
JDM contains 2.7 millions of terms that are modeled
as nodes of the graph and 240 millions of relations
(arcs).

The MLSN (Bebeshina-Clairet, 2019) is a multilin-
gual LSN (it covers French, English, Spanish, and
Russian) with an interlingual pivot built for the cui-
sine and nutrition domain. This network is inspired
by the RezoJDM in terms of its model. Structurally
speaking, the MLSN is a directed, typed, and val-
uated graph. It contains k sub-graphs correspond-
ing to each of the k languages it covers and a spe-
cific sub-graph which fulfills the role of the interlin-
gual pivot. Similar to the RezoJDM, we call terms
the nodes of the MLSN and relations - its typed,
weighed, and directed arcs. The MLSN nodes may
correspond to one of the following types : lexi-
cal items (garlic), interlingual items (pertaining
to the interlingual pivot and also called covering
terms), relational items (i.e. relationship reifica-
tions such as salad[r_has_part]garlic), and category
items parts of speech or other morpho-syntactic fea-
tures (i.e. Noun:AccusativeCase).

As it has been difficult to set up the pivot using
a multilingual embedding (joining multiple spaces,
one per language) as well as to avoid pairwise align-
ment based on combinatorial criteria, the pivot has
been started as a natural one using the English edi-
tion of DBNary (Sérasset, 2014). It incrementally
evolves to become interlingual. The pivot evolution
relies on sense-based alignments between the lan-
guages of the MLSN and aims at taking into account
the difference of sense ’granularity” in different lan-
guages. For example, as stewin English can be trans-
lated as into French as pot-au-feu and ragoiit. It
reflects the conceptualization discrepancy as ragotit
refers to sauté the ingredients and then add water

*http://www. jeuxdemots.org



whereas pot-au-feu refers to boiling them together in
a larger amount of water than used for the ragoiit. In
the MLSN pivot we have the interlingual term cor-
responding to stew (which covers the English term)
with two hyponyms corresponding to Orench terms.
The alignments are progressively obtained through
external resources or by inference. Thus it can be
considered as a union of word senses lexicalized or
identified in the languages covered by the MLSN.
. Even though we assume the pivot as being inter-
lingual, it is still close to a natural one. A relation
r € R is a sextuplet r =< s,t,type,v,ls,l; >
where s and ¢ correspond respectively to the source
and the target term of the relation. The relation
type is a typical relation type. It may model differ-
ent features such as taxonomic and part-whole re-
lations (r_isa, r_hypo, r_has_part, r_matter, r_holo),
possible predicate-argument relations (typical object
r_object, location r_location, instrument r_instr of an
action), “modifier” relations (typical characteristic
r_carac, typical manner r_manner) and more*. The
relationship valuation v corresponds to the charac-
teristics of the relation which are its weight, con-
fidence score, and annotation. The relation weight
may be negative in order to model noise and keep the
information about erroneous relations easy to access
programmatically so they could not affect the infer-
ence processes. The confidence score is a score at-
tributed to a particular data origin (external resource,
inference process). In practice, this feature is an ar-
ray as different origins may provide the same rela-
tion. The confidence information is provided as an
argument to the function that maps from some ex-
ternal knowledge resource to the MLSN. In case of
relation calculated by an inference process, it cor-
responds to the precision evaluated on a sample of
candidate relations returned by this process. To an-
notate a relation we add a complementary informa-
tion that allows qualifying this relation. The figure 1
details and exemplifies the annotation scheme.

The labels /5 and I; correspond to the language (sub-

*We also introduced more specific relation types such as r_entailment,
r_cause, r_telic_role, r_incompatible, r_before, r_after etc.

r_annotation r_annotation

reification
«s[r_type]t »

r_carac

Figure 1: MLSN: relationship annotation scheme.

graph) labels. At the time of our writing, the MLSN
contains 821 781 nodes and 2 231 197 arcs. It covers
4 languages : English, French, Russian, and Span-
ish.

MIAM (Despres, 2016)° is a modular termino-
ontology for the digital cooking. It provides knowl-
edge necessary for the elaboration of general nutri-
tional suggestions. The knowledge model of this
ontology gathers expert knowledge on food, food
transformation, cooking actions, relevant dishes that
reflect french culinary tradition, recipes necessary
to cook such dishes. MIAM contains about 7
000 nodes and 30 000 semantic (non subsump-
tion/ontological is-a) relations.

4 Method: Immersion - Projection

4.1 Summing up the Method

Our method is built upon the idea of projecting a
model (the MIAM model) onto a multilingual or
monolingual LSN (respectively MLSN and Rezo-
JDM) in order to extract an intermediary resource
that can be used by ontology or domain experts in
the scope of information retrieval or validation of the
automatically suggested pieces of knowledge.

Our method differs from others by the definition of
the RPK and by the use of a non ontological seman-
tically structured resource for ontology building. We
define RPK as follows : “a relevant piece of knowl-
edge is either a term or a relation or a semantic
structure which is known as qualified and qualify-
ing”. Qualified refers to the possibility to describe

‘http://www-limics.smbh.univ-parisl3.fr/

ontoMIAM/
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the RPK in a discrete way (i.e. by enumerating the
typed relations). If the RPK is a term, it needs to
have a high in-degree (which reveals its conceptual
role as it is used to define other terms of the net-
work). If the RPK is a relation, it needs to be con-
textualized (through the annotation mechanism rep-
resented on the figure 1 or through the constraints
put on source and/or target terms of the relation). If
the presumed RPM is a graph structure (path, sub-
graph), it needs to possess a certain number of oc-
currences in the network. Qualifying refers to the
possibility to use the candidate RPK for endogenous
inference process. If the RPK is a term, it needs
to have hypernyms, hyponyms, synonyms among its
neighbours. It has to be aligned with other terms
pertaining to the other languages of the LSN (if such
LSN is multiligual). If the RPK is a relation, it must
not be unique (other real or potential® relations must
exist in the network). If the candidate RPK is a struc-
ture, its terms and relations must be qualifying.

Here we detail the experiments that have been con-
ducted on the basis of the MLSN in order to pro-
pose “pseudo-class” and pseudo-property” candi-
date RPKs to enhance the MIAM ontology and those
concerning the enrichment of an ontology draft us-
ing the monolingual LSN, RezoJDM (Lafourcade,
2007). These experiments rely on lexical knowl-
edge. Therefore, the resulting RPKs have no pre-
tension to the ontological validity. The decision per-
tains to the human expert.

4.2 Immersion

The projection of a given ontology model onto a
LSN starts by the immersion of such model. The
immersion mechanism uses a set of manually de-
fined mapping rules. It is possible to generate them
automatically for the ontological resources that ex-
ploit standard vocabularies (such as RDFS, SKOS
and other machine readable formats). The input of
the immersion algorithm is the reference ontology
(MIAM) and the set of mapping rules whereas its

®Relations that can be calculated using inference.

output is the action of inferring terms and relations
in the target LSN (MLSN, RezoJDM).

In their general form, the mapping rules state: “If
x and y are respectively domain and range of an
Object Property p of the ontology to be immersed
and y is a subclass of C, then x has a relation R
with y and y has a relation is-a with C in the re-
ceiving (target) LSN”. Such rules have been de-
fined for the multilingual experiment for two rea-
sons. First, for each of the 93 MIAM proper-
ties, we determined relevant MLSN semantic re-
lation types (or set of types). Thus, the Ob-
ject Property aPourProduitInitial (haslni-
tialProduct) corresponds to the substance and part-
whole meronymy (MLSN relations typed r_has_part
and r_matter). Second, we mapped the ontology
labels to the MLSN terms by coincidence (3 930
terms; i.e. poulet basquaise formally denotes a
MIAM concept, a lexical item with the same la-
bel already exists in the MLSN) or by composition
(4 135 terms, i.e.: unité mesure capacité doesn’t
correspond to any existing MLSN term because it
doesn’t correspond to any commonly used colloca-
tion in French; this label is split and integrated into
MLASN with the semantic relations that link its parts.

As part of the monolingual experiment, 115 descrip-
tors have been automatically expressed in French
on the basis of their Uniform Resource Identifier
(URI) strings. All the terms except one were al-
ready present in the RezoJDM network. We ex-
ploited the relations typed r_carac (typical charac-
teristic) for this experiment. This relation has been
annotated using the URIs of the ontology properties
aPourDescripteurBruit (hasSoundDescrip-
tor is immersed as follows: croiite r_carac :: bruit
croustillant (”croiite has typical characteristic linked
to the noise croustillant”’). The premises of the
mapping rules rely on the contextualization of the
LSN relations. Such contextualization is possible
when using sets of hypernyms and neighborhood se-
mantic relations of the source and target terms of a

"crust has typical characteristic linked to the sound crusty
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relation. Meta-information attached to the LSN re-
lations (annotations, weight) may also be used. For
instance: pétrir r_object pdte N pétrir r_isa tech-
nique de base A pate r_isa préparation®).

As part of the immersion process the ontology labels
become LSN terms that can be polysemous.

4.3 Projection

4.3.1 Inference in the LSN Context

In the MLSN context we set up several algorithms
to discover relevant pieces of knowledge (RPK) of
the types “class/individual” (ci) and ~ontology prop-
erty”’(op). To discover the RPK(ci) we compare
the neighborhood terms inside an hierarchical chain
which goes up to a high level MIAM concept im-
mersed into the LSN. For the RPK(op) we look for
(real or possible) MLSN relations similar to the im-
mersed MIAM properties. The inference scheme we
use is the abduction scheme. When we have two
similar terms (such as cohyponyms) the relations de-
tained by one of them can be proposed for the other.
For a term T, the abduction implies selecting a set of
similar terms (according to some criteria) in order to
propose the relations detained by those similar terms
toT.

4.3.2 Discovering the RPK(ci)

In MIAM, the general axioms concern the disjunc-
tion between the MIAM classes which is the basis of
the ontology consistence. To translate them in terms
of MLSN, we considered the labels of the classes
listed in the axioms in order to identify the crite-
ria that could have determined the disjunction. We
manually analyzed a subset of the MIAM axioms
and came up with the following criteria: affiliation
(r_has_part i.e. a specific label (organic)), trans-
formation (r_carac i.e. boiled mixture, cubed veg-
etable), composition (r_matter i.e. produit a base de
poisson “fish based product”), category based dis-
tinctions (r_hypo i.e. volaille type dinde turkey type

Figure 2: Hierarchy chain validation. 7; are the terms of the
hierarchy chain. We check by triangulation their semantic
relatedness and use a subset of relations types (such relations

poultry”). This analysis allowed selecting a subset
of relation types to consider during the experiment.
The RPK(ci) inference includes two steps: valida-
tion of the hierarchical chain (figure 2) and RPK(ci)
candidate suggestion.

are noted R) for that.

8knead r_object dough N knead r_isa basic technique N dough r_isa

mixture
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We calculated and validated hierarchical chains cor-
responding to 1 322 top MIAM concepts pertaining
to the Aliment module. First we obtained 132 213
chains. After filtering them by weight, the set has
been reduced to 53 749 chains (40% of the initial
set). Still, a certain number of redundancies may ex-
ist inside this statistically pre-filtered set since a long
chain may include several shorter ones. The logical
filtering by triangulation left us with a set containing
9 600 hierarchical chains (18% of the number of sta-
tistically filtered chains and 7% of the initial number
of candidates).

Hierarchical chain examples after filtering:

(1) "baguette compléte— pain complet —
pain—ingrédient de recette de cuisine— aliment”
(2) "angélique— confiserie—bonbon”.

RPK(ci) examples:

truffe chocolat subClassOf chocolat

pomme a cidre subClassOf pomme

sucre de pomme subClassOf confiserie

The analysis and validation of the hierarchical
chains corresponds to the important memory load.
The complexity of the algorithm depends on the im-
portance of the MIAM concept being processed as
well as on the length of the hierarchical chains that
are considered. The use of a subset of the seman-
tic relations types available in the MLSN reduces
the number of combinations to process. Thus, given



that the highest in-degree typed r_isa in the French
sub-graph of the MLSN is 5 264 (for the term al-
iment) and that the maximum length [ = 9, the
complexity in the worst case would be O(dl,, or
O(5264%) = 3,103436942 x 1033,

The table 1 introduces the results obtained for the
discovery of RPK(ci) related to the top level concept
Aliment in the French sub-graph of the MLSN. The

#valid
11 289

% valid
98%

%o new
42%

#new
4741

#candidates
11 520

Table 1: The RPK(ci) discovery.

automatic evaluation of the proposed RPK(ci) would
mostly rely on similarity measures. However, the
projection step implicitly relies on relatedness and
similarity between the LSN terms. Thus, in our fu-
ture work, the RPK(ci) evaluation will need human
expert decisions.

4.3.3 The RPK(op) Discovery

The RPK(op) discovery seems to be particularly
useful in the context of multilingual ontology
building or localization of an existing ontology.
In our experience, each module of the MIAM
ontology has its own hierarchy of properties. While
immersing them into the MLSN, these properties
have been expressed in terms of semantic relations
contextualized using annotations. The choice of
the MLSN semantic relation type made for these
properties allows us to distinguish the following
cases for the MIAM Object Properties (OPs):
composition based (aPourProduitInitial,
“hasInitialProduct”); related to processes (
aPourMethodeDeConservation, “has-
ConservationMethod”);  temporal and spatial
relation based (aPourMoisPrimeur, “hasEar-
lyMonth”); characteristic based (aPourEtat,
“hasState”); OPs with a specific sub-graph®
(aPourAlimentAmi, "hasFriendlyFoodltem”).

°A subset of MLSN terms connected through semantic relations.
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The MIAM ontology we try to enrich counts 21 565
instances of Object Properties. Once they are im-
mersed into the MLSN, one could consider that we
have the same number of inference rule instances
that can be used for the cross-lingual RPK(op) dis-
covery. A naive approach would be setting up a
cross-lingual inference mechanism. However, such
approach would be error-prone due to the poten-
tial alignment and polysemy issues. In addition,
as MIAM has been built according to the top-down
methodology by a community of domain experts, it
contains a variable number of instances per property.
The naive approach would reiterate this imbalance.

To refine the RPK(op) discovery, we experimented
a rule based approach. First, the validity of the rule
for the source language is calculated. Second, struc-
tures similar to those specified by the rule are being
discovered in the MLSN (in other languages).

The rule has the following form:
property=aPourEtatPhysique

(property name)

src=?s (domain, set of terms)
reltype=r_carac (relation type)
tgt="o(range, set of terms)
source_isa=aliment(src hypernyms)
target_isa=etat physique

(tgt hypernyms)

annotation=int:physical state
(meta-information)
src_feat=0UT/r_pos/int :Noun

(in and out relations that characterize terms in the
source set)

tgt_feat=0UT/r_pos/int:Ad7j (in and out
relations that characterize terms in the target set)

If a given rule allowed detecting enough structures
in the source language (at least, 2 structures), it is
considered as a valid one and can generate the qual-
ifying object. Thanks to this object, candidate struc-
tures are detected in the other language sub-graphs
of the MLSN. The mechanism of RPK(op) discov-
ery reveals the following elements that allowed dis-
covering new pieces of knowledge : possibly anno-
tated semantic relation (case of the properties such



as aPresencelactose, aPresenceGluten);
specific pattern (defined by rules); complex struc-
ture for properties related to processes. The results
obtained using possibly annotated relations(in par-
ticular, Data Properties)) are presented in the table
2. the potential improvement is estimated as an in-
crease compared to the initial number of property
instances (impr.%).

#DP #MIAM | #RPK(op) filt. +%
aTeneurLipide 0 4741 3271 -
aPresencelactose 2593 530 408 +16%
aPresenceGluten 289 820 762 +263%

Example of the output of the rule-based algorithm:
ru:jarkoje  aPourProduitDiscriminant  podlivka
("stew  hasDiscriminatingProduct sauce”) and
en:stew aPourProduitlnitial en:vegetable (produce)
(’stew haslnitialProduct vegetable”).  Our rule-
based RPK(op) experiment (given the actual state of
the MLSN) yielded the results listed in the table 3.

Fully automated structure-based evaluation such as
described in (Ferndndez et al., 2009) may be cho-
sen to compare to other resources available on the
Web such as (Dooley et al., 2018). To address the
ontology accuracy, completeness, conciseness, ef-
ficiency, consistency, and other features (Raad and
Cruz, 2015), a combination of methods is needed. In
particular, gold standard ontology, specific tasks and
corpora may be used for evaluation. A task-based
evaluation such as semantic analysis (Bebeshina-
Clairet, 2019), dietary conflict detection from dish
titles (Clairet, 2017) have been used for the MLSN.
To evaluate the output of the immersion- projection
method, we need to organize our triples into a fully
structured ontology. This will be one of the priorities
of our future work.

Table 2: The RPK(op) discovery on the basis of simple se-
mantic relations.
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4.3.4 Towards the Automatic Suggestion of the
RPKs(op)

To extend the RPK discovery experiment, we tried
to automatically suggest pseudo ontology proper-
ties to be submitted to the domain and ontology hu-
man experts. We considered the ontology Senso-
MIAM!'C for this experiment. This ontology is a
MIAM module but we considered it as a "draft” on-
tology as the sensory aspect modeling is a flourish-
ing research and development area and the Senso-
MIAM could be improved. We used the monolin-
gual LSN (RezoJDM). The SensoMIAM contains
sensory descriptors such as DescripteurTact
("TactileDescriptor”) = {astringent, filandreux,
..., nerveux}; DescripteurSubstance (”Sub-
stanceDescriptor”)= {aéré, dense, ..., épais}

To calculate the RPK descriptors RPK(desc), we
explored the semantics of the source terms of the
relations typed r_carac. If the set of outgoing
relations of such terms connects them to a food
item and if they have a set of typical character-
istics shared with other terms with an hypernym
~ “food”, the target term of their outgoing rela-
tions typed r_carac that is not present in the Senso-
MIAM can be suggested as a potential RPK(desc).
The relation typed r_carac is annotated. The pro-
cess is represented on the figure 3. The experi-
ence allowed to suggest the RPK(desc) such as:
Descript eurArome={sucré—salé, mielle, ...,
vinaigré} or DescripteurTact = {écailleux,
spongieux,. . ., floconneux}.

We automatically suggested and semi-automatically
validated 342 RPKs(desc). We explored the pos-
sibility of suggesting relevant RPKs to human ex-
perts. We defined 3 pseudo-properties for test-
ing: aPourComposantFlaveur ("hasFlavourCompo-
nent”), aPourComposantToucher (“hasTouchCom-
ponent”), and aPourComposantAspect ("hasAspect-
Component”). To populate them, we explored the
RezoJDM relations typed r_has_part and r_matter
and considered the characteristics that can be shared

www—limics.smbh.univ-parisl3.fr/sensoMIAM/
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m | prop #in en fr es ru #Hout Yoaug
A | aPourProdInit. 2031 | 292 | 1208 | 203 | 2245 | 3039 | +149%
A | aPourEtatPhys. 543 30 29 10 53 85 +16%
A | aPourForme 39 77 78 5 37 132 +338%
A | aPourLabel 114 15 11 3 1 29 26%
A | aPourMethodC. 115 94 101 13 156 309 +269%
A | aPourMois 116 117 221 23 28 116 +288%
A | aPourRegion 289 98 71 2 57 216 +75%
A | aPourProdCon. 98 256 302 | 143 103 570 +582%
A | aPourProdInitialA. 41 94 147 12 567 259 +633%
P | aPourTypeDeCuis. 23 155 124 80 285 686 | +2986%
P | aPourDomCul. 82 112 92 120 | 1313 | 1276 | +1557%
P | aPourDecoupe 82 82 78 56 77 272 +332%
S | aPourSaveur 752 51 78 47 98 232 +31%
S | aPourDescripteurBr. 119 67 80 10 6 159 +134%
S | aPourCouleur 233 192 451 59 423 911 +391%
S | aPourAspectSurf. 176 40 35 12 52 101 +58%
S | aPourSensationT. 54 84 77 21 12 155 +287%
- | Total 5388 | 2384 | 3960 | 937 | 4953 | 9531 +177%

Table 3: Rule-based approach. m -name of module (Aliment (A), Preparation (P), Sensory (S)), prop - property, #in -
MIAM triples, en, fr, es, ru - MLSN sub-graphs. #out - overall number of suggested RPK(op) after filtering, %aug -
potential improvement.

pseudo-property (it must be related to the terms
“flavour”, “touch”, and “aspect”) and by checking
the sufficient intersection size between the relation

sets typed r_carac of the "whole” and its “part”.

Conclusion and Perspectives

............... (2) r_cause

We described a method that attaches an intermediary
Figure 3: (1) relation annotation. (2) RPK(op) suggestion, ~ fesource containing relevant pieces of knowledge
harvested from semantically structured resources in
different languages to the main building process.
The method suits for other domains of knowledge
and the amount of work necessary for the immersion
process is proportional to the size and to the type of
the ontological resource to be enhanced. It is also
possible to use such resources as WordNets !! as the
basis for the intermediary resource. Among the dif-
ficulties linked to our method appear the differences
between formal representation paradigms as well as
the availability of well structured and semantically
rich resources.

by a “whole” and its “parts”’. We tried to gener-
alize to the “whole” some of the characteristics of
its parts. Automatically suggested toy triples: veau
Orloff aPourComposantFlaveur lard from
{gras, viande} “’veal Prince Orloff has a component
that influences its flavour lard because they share
fat, meat’”; gratin aPourComposantAspect fro-
mage from {gratiné, gras, brilé} "gratin has a com-
ponent that influences its aspect cheese as they share
characteristics grilled, fat, burned”. We automat-
ically suggested 1 709 RPKs(op) for the pseudo-
properties we explored. They have been automat-
ically validated by constraining the range of the "nttp://globalwordnet.org/

99



References

Mamoun Abu Helou, Mustafa Jarrar, Matteo Palmonari,
and Ch Fellbaum. 2014. Towards building lexical ontol-
ogy via cross-language matching. pages 346-354.

Keith Allan. 2001. Natural Language Semantics. Black-
well.

Nadia Bebeshina-Clairet. 2019.  Construction d’une
ressource termino-ontologique multilingue pour les do-
maines de la cuisine et de la nutrition. Theses, Université
Paris 13.

Christian Biemann. 2005. Ontology learning from text:
A survey of methods. LDV Forum 20:75-93.

Nadia Clairet. 2017. Dish classification using knowledge
based dietary conflict detection. In RANLP 2017.

Sylvie Despres. 2016.  Construction d’une ontolo-
gie modulaire. application au domaine de la cuisine
numérique. Revue d’Intelligence Artificielle 30(5):509—
532. https://doi.org/10.3166/ria.30.509-532.

Zhendong Dong, Qiang Dong, and Changling Hao.
2010. Hownet and its computation of mean-
ing. In Proceedings of the 23rd International
Conference on Computational Linguistics: Demon-
strations. Association for Computational Linguistics,
Stroudsburg, PA, USA, COLING ’10, pages 53-56.
http://dl.acm.org/citation.cfm?id=1944284.1944298.
Damion Dooley, Emma Griffiths, Gurinder S. Gosal,
Pier Luigi Buttigieg, Robert Hoehndorf, Matthew
C. Lange, Lynn M. Schriml, Fiona S. L. Brinkman, and
William W. L. Hsiao. 2018. Foodon: a harmonized
food ontology to increase global food traceability, qual-
ity control and data integration. npj Science of Food 2.
https://doi.org/10.1038/s41538-018-0032-6.

Miriam Ferndndez, Chwhynny Overbeeke, Marta Sabou,
and Enrico Motta. 2009. What makes a good ontology? a
case-study in fine-grained knowledge reuse. In Asuncién
Gomez-Pérez, Yong Yu, and Ying Ding, editors, The Se-
mantic Web. Springer Berlin Heidelberg, Berlin, Heidel-
berg, pages 61-75.

E. Gaillard, J. Lieber, and E. Nauer. 2015. Improv-
ing ingredient substitution using formal concept analysis
and adaptation of ingredient quantities with mixed linear
optimization. In Computer Cooking Contest Workshop.
Frankfort, Germany. https://hal.inria.fr/hal-01240383.
J.U. Kietz, A. Maedche, and R. Volz. 2000. A method for
semi-automatic ontology acquisition from a corporate in-
tranet. EKAW-2000 Workshop Ontologies and Text, Juan-
Les-Pins, France, October 2000 .

Mathieu Lafourcade. 2007. Making people play for Lex-
ical Acquisition with the JeuxDeMots prototype. In
SNLP’07: 7th International Symposium on Natural Lan-
guage Processing. Pattaya, Chonburi, Thailand, page 7.
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00200883.

100

Mathieu Lafourcade. 2011. Lexique et analyse
sémantique de textes - structures, acquisitions, calculs,
et jeux de mots. (Lexicon and semantic analysis of texts
- structures, acquisition, computation and games with
words). https://tel.archives-ouvertes.fr/tel-00649851.

Ora Lassila and Deborah McGuinness. 2001. The role of
frame-based representation on the semantic web. Techni-
cal report, Knowledge Systems Laboratory Report KSL-
01-02, Stanford University, Stanford (USA).

Jacek Marciniak. 2013. Building wordnet based ontolo-
gies with expert knowledge. In LTC.

Thibault Mondary. 2011.  Construction d’ontologies
a partir de textes. L’apport de [’analyse de con-
cepts formels.. Theses, Université Paris-Nord - Paris
XIII. Equipe RCLN. https://tel.archives-ouvertes.fr/tel-
00596825.

Joe Raad and Christophe Cruz. 2015. A Survey on On-
tology Evaluation Methods. In Proceedings of the Inter-
national Conference on Knowledge Engineering and On-
tology Development, part of the 7th International Joint
Conference on Knowledge Discovery, Knowledge Engi-
neering and Knowledge Management . Lisbonne, Portu-
gal. https://doi.org/10.5220/0005591001790186.

Lionel Ramadier. 2016. Indexation and learning of terms
and relations from reports of radiology. Theses, Uni-
versité de Montpellier. https://hal-lirmm.ccsd.cnrs.fr/tel-
01479769.

Christophe Roche. 2007. Le terme et le concept : fonde-
ments d’une ontoterminologie. In TOTh 2007 : Ter-
minologie et Ontologie : Théories et Applications. An-
necy, France, pages 1-22. 22 pages. https://hal.archives-
ouvertes.fr/hal-00202645.

Gilles Sérasset. 2014. DBnary: Wiktionary as a Lemon-
Based Multilingual Lexical Resource in RDF. Semantic
Web — Interoperability, Usability, Applicability pages —.
To appear. https://hal.archives-ouvertes.fr/hal-00953638.

Robyn Speer and Catherine Havasi. 2012. Represent-
ing general relational knowledge in ConceptNet 5. In
Proceedings of the Eighth International Conference on
Language Resources and Evaluation (LREC-2012). Eu-
ropean Languages Resources Association (ELRA), Istan-
bul, Turkey, pages 3679-3686.

Sylvie Szulman. 2012.  Logiciel Terminae - Ver-
sion 2012. TERMINAE est une plateforme d’aide
a la construction de ressources termino-ontologiques
a partir de ressources textuelles. https://hal.archives-
ouvertes.fr/hal-00719453.

Andon Tchechmedjiev. 2016. Semantic Interoperability
of Multilingual Lexical Resources in Lexical Linked Data.
Theses, Université Grenoble Alpes. https://tel.archives-
ouvertes.fr/tel-01681358.



Davide Turcato, Fred Popowich, Janine Toole, Dan Fass,
Devlan Nicholson, and Gordon Tisher. 2000. Adapting
a synonym database to specific domains. In ACL-2000
Workshop on Recent Advances in Natural Language Pro-
cessing and Information Retrieval. Association for Com-
putational Linguistics, Hong Kong, China, pages 1-11.
https://doi.org/10.3115/1117755.1117757.

Piek Vossen. 2012. Ontologies. The Ox-
ford  Handbook of Computational  Linguistics
https://doi.org/10.1093/0xfordhb/9780199276349.013.0025.
Wilson Wong. 2009. Learning lightweight ontologies
from text across different domains using the web as back-
ground knowledge. Ph.D. thesis.

Manel Zarrouk. 2015. Endogeneous Consolidation of
Lexical Semantic Networks. Theses, Université de Mont-
pellier. https://hal-lirmm.ccsd.cnrs.fr/tel-01300285.

101



Naive Regularizers for Low-Resource Neural Machine Translation

Meriem Beloucif', Ana Valeria Gonzalez?, Marcel Bollmann?, and Anders Sggaard’

"Language Technology Group, Universitit Hamburg, Hamburg, Germany
2Dpt. of Computer Science, University of Copenhagen, Copenhagen, Denmark

Abstract

Neural machine translation models have
little inductive bias, which can be a disad-
vantage in low-resource scenarios. They
require large volumes of data and often
perform poorly when limited data is avail-
able. We show that using naive regular-
ization methods, based on sentence length,
punctuation and word frequencies, to pe-
nalize translations that are very different
from the input sentences, consistently im-
proves the translation quality across mul-
tiple low-resource languages. We ex-
periment with 12 language pairs, vary-
ing the training data size between 17k to
230k sentence pairs. Our best regularizer
achieves an average increase of 1.5 BLEU
score and 1.0 TER score across all the
language pairs. For example, we achieve
a BLEU score of 26.70 on the IWSLT15
English—Vietnamese translation task sim-
ply by using relative differences in punc-
tuation as a regularizer.

1 Introduction

One of the major challenges when training neu-
ral networks is overfitting. Overfitting is what
happens when a neural network in part memo-
rizes the training data rather than learning to gen-
eralize from it. To prevent this, neural machine
translation (NMT) models are typically trained
with an Ly or Ly penalty, dropout, momentum,
or other general-purpose regularizers. General-
purpose regularizers and large volumes of training
data have enabled us to train flexible, expressive
neural machine translation architectures that have
provided a new state of the art in machine transla-
tion.

For low-resource language pairs, however,
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where large volumes of training data are not avail-
able, neural machine translation has come with
diminishing returns (Koehn and Knowles, 2017).
The general-purpose regularizers do not provide
enough inductive bias to enable generalization, it
seems. This is an area of active research, and other
work has explored multi-task learning (Firat et al.,
2016; Dong et al., 2015), zero-shot learning (John-
son et al., 2016), and unsupervised machine trans-
lation (Gehring et al., 2017) to resolve the data
bottleneck. In this paper, we consider a fully com-
plementary, but much simpler alternative: naive,
linguistically motivated regularizers that penalize
the output sentences of translation models depart-
ing heavily from simple characteristics of the input
sentences.

The proposed regularizers are based on three
surface properties of sentences: their length (mea-
sured as number of tokens), their amount of
punctuation (measured as number of punctuation
signs), and the frequencies of their words (as mea-
sured on external corpora). While there are lan-
guages that do not make use of punctuation (e.g.,
Lao and Thai), in general these three properties
are roughly preserved across translations into most
languages. If we translate a sentence such as (1),
for example:

(1) That dog is a Chinook.

it is relatively safe to assume that a good trans-
lation will be short, contain at most one dot, and
contain at least one relatively frequent word (for
dog) and at least one relatively infrequent word
(for Chinook). This assumption is the main mo-
tivation for our work.

Contributions Our contribution is three-fold:
(a) We propose three relatively naive, yet lin-
guistically motivated, regularization methods for
machine translation with low-resource languages.

Proceedings of Recent Advances in Natural Language Processing, pages 102-111,
Varna, Bulgaria, Sep 24, 2019.
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Two of the regularizers are derived directly from
the input, without relying on any additional lin-
guistic resources. This makes them adequate for
low-resource settings, where the availability of lin-
guistic resources can generally not assumed. Our
third regularizer (frequency) only assumes access
to unlabeled data. (b) We show that regulariz-
ing a standard NMT architecture using naive regu-
larization methods consistently improves machine
translation quality across multiple low-resource
languages, also compared to using more standard
methods such as dropout. We also show that com-
bining these regularizers leads to further improve-
ments. (c) Finally, we present examples and analy-
sis showing how the more linguistically motivated
regularizers we propose, help low-resource ma-
chine translation.

2 Related Work

End-to-end neural machine translation is based on
encoder—decoder architectures (Sutskever et al.,
2014; Cho et al., 2014; Luong et al., 2015a, 2017),
in which a source sentence x = (1,2, ..., Zp)
is encoded into a vector (or a weighted average
over a sequence of vectors) z = (21, 22, ..., Zn)-
The hidden state representing z is then fed to the
transducer (also called decoder) which generates
translations, noted as y = (Y1, Y2, -, Ym)-

Neural machine translation has achieved state-
of-the-art performance for various language pairs
(Luong et al., 2015a; Sennrich et al., 2015; Lu-
ong and Manning, 2016; Neubig, 2015; Vaswani
et al., 2017), especially when trained on large vol-
umes of parallel data, i.e., millions of parallel sen-
tences (also called bi-sentences), humanly trans-
lated or validated. Such amounts of training data,
however, are difficult to obtain for low-resource
languages such as Slovene or Vietnamese, and in
their absence, neural machine translation is known
to come with diminishing returns, suffering from
overfitting (Koehn and Knowles, 2017).

In order to avoid overfitting, NMT models are
often trained with L; or Lo regularization, as well
as other forms of regularization such as momen-
tum training or dropout (Srivastava et al., 2014;
Wang et al., 2015; Miceli Barone et al., 2017).
However, these regularization methods are very
general and do not carry any language specific in-
formation.

On the other hand, it has been shown that trans-
fer learning approaches using out of domain data,
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such as the European Parliament data', to regu-
larize the learning helps improve the translation
quality (Miceli Barone et al., 2017). This ap-
proach produces good results, but it is not appli-
cable in low-resource settings because it requires
large amounts of data in the language of interest.
To the best of our knowledge, our work is the first
to introduce naive, linguistically motivated regu-
larization methods such as sentence length, punc-
tuation and word frequency.

3 Model Description

3.1 Baseline

In order to show the impact that our regulariz-
ers have on the translation quality, we use an
off-the-shelf NMT system described by Luong
et al. (2017) as our baseline. The model con-
sists of two multi-layer recurrent neural networks
(RNNSs), one that encodes the source language and
one that decodes onto the target language. For
the encoder cell, we use a single Long Short-Term
Memory (LSTM) layer (Hochreiter and Schmid-
huber, 1997) and output the hidden state, which
then gets passed to the decoder cell.

We train our models to minimize the cross-
entropy loss and back-propagate the loss to up-
date the parameters of our model. We update net-
work weights using Adam optimization (Kingma
and Ba, 2014), which calculates the exponential
moving average of the gradient and squared gradi-
ent, and combines the advantages of AdaGrad and
RMSProp. For the purpose of comparison, we set
the dropout to 0.2, similar to Luong et al. (2015b).

3.2 Regularized NMT

To apply our new regularizers, we add each reg-
ularizer to the loss function during the training of
the NMT model (Luong et al., 2015a; Luong and
Manning, 2016; Luong et al., 2017). Since we
aim to minimize the cross-entropy loss, this means
that we favor training instances which have a low
penalty from the regularizers (e.g., a small length
difference). Importantly, we do not use dropout
in this scenario, as we want to contrast our naive,
but linguistically motivated signals with a tradi-
tional, but not linguistically motivated regulariza-
tion method, i.e., dropout.

Furthermore, we do not explore alternative
ways for adding regularizers to the loss func-
tion here (other alternatives could be to have a

"http://www.statmt.org/europarl/



weighted penalty which is then tuned to find the
best penalty and added to the loss function for test-
ing). The main purpose of this work is to study
the effect of naive linguistically motivated regu-
larizers and show that they can improve translation
quality; we leave it to future work to find the op-
timal configuration of regularizers that maximizes
the overall translation quality.

4 Naive Regularizers

4.1 Length-Based Regularizer

NMT models have shown to suffer “the curse of
sentence length”, and it has been hypothesized that
this is due to a lack of representation at the de-
coder level (Cho et al., 2014; Pouget-Abadie et al.,
2014). Our proposed sentence-length-based regu-
larizer penalizes relative differences between the
input and the MT output lengths during the train-
ing of the NMT model:

(D

Here, [y and [; represent the input sentence and the
MT output sentence lengths, respectively, as mea-
sured by the number of words (not to be confused
with Ly and Ly regularization methods).

Note that this regularizer is different from the
word penalty feature in phrase-based machine
translation (Zens and Ney, 2004), which only pe-
nalizes the target sentence length. The relative dif-
ference between the input and the MT output sen-
tence lengths is also used as a feature in Marie and
Fujita (2018).

I'€€length = |l0 - ll’

4.2 Punctuation-Based Regularizer

The punctuation-based regularizer penalizes train-
ing instances whenever the amount of punctua-
tion marks in the input sentence differs from the
amount in the MT output sentence. It is computed
as follows:

)

Here, pg and p; is the total number of punctuation
marks in the input and the MT output sentence,
respectively.

Unfortunately, the only available methods to
generate more efficient NMT models have in-
cluded data intensive methods such as sentence
alignment (Bahdanau et al., 2014). Some very
early research done in alignment used simple

T'e€punct = |p0 - p1|
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methodologies such as punctuation-based align-
ment (Chuang et al., 2004). Our second regular-
izer is based on this simple idea, as it penalizes
training instances where the quantities of punctu-
ation marks differ between input and MT output
sentences. Example (2) is taken from the training
set of the French—-English translation task:

(2) IN  Pas parce qu’ils sont moins bons, pas
parce qu’ils sont moins travailleurs.

REF And it’s not because they’re less smart,

and it’s not because they’re less diligent.

OuT And

We note that the punctuation in the French input
sentence matches the punctuation of the desired
English reference. However, during an early train-
ing step, the NMT model translates the input to a
sequence containing six times the number of punc-
tuation marks in the input sentence, which is ob-
viously incorrect. Our punctuation regularizer fur-
ther penalizes examples like this one.

4.3 Frequency-Based Regularizer

Our last regularizer is based on the distribution of
word frequencies between the source and the tar-
get sentences. Generally speaking, if the source
sentence contains an uncommon word, we assume
that its translation in the target language is also
uncommon. The intuition behind this regularizer
is that if the source sentence contains one uncom-
mon word and three common words, then its ac-
curate translation should contain similar word fre-
quencies. The example below is extracted from
the English—French translation task:

(3) IN  But now there is a bold new solution to
get us out of this mess.
REF Mais il exist une solution audacieuse
pour nous en sortir.
OUT Mais maintenant il y a une solution pour
nous en sortir.

The English sentence contains the frequent word
there and the less frequent word bold. The French
output sentence is acceptable, but it is not accu-
rate since the English word bold (audacieuse in
the reference translation) was omitted in the out-
put. During training, the frequency regularizer pe-
nalizes such cases that have a big divergence be-
tween the word frequencies in the input and output
sentences.

The purpose of our frequency-based regularizer



Languages #Words
Czech 1.7M
English 85.5TM
French 55.72M
German 35.47M
Russian 2.5M
Slovene 1.45M
Vietnamese 3.5M

Table 1: The size of the Wikipedia dumps
(#words) used to calculate word frequencies for
each language.

is to calculate how different the MT output sen-
tence is from the source input in terms of vocab-
ulary distribution. For instance, the frequency of
using the word chauve-souris in French is almost
similar to the frequency of using its English trans-
lation bat in English. The same could be applied
for the more frequent words such as et in French
and its English translation and.

We start by computing the frequency vectors
o and Toy, containing the frequency for every
word w; in the input and MT output sentence, re-
spectively:

T = (f(w),..., flwn)) 3)

To calculate the word frequencies f(w) for each
language, we use the Wikipedia database” as an
external resource. Table 1 contains the size of
the datasets (in number of words) used to estimate
these. We note that there is considerably more data
for English and French than for e.g. Vietnamese
(cf. Table. 1); we discuss the effect that this might
have on the results in Sec. 6.

We interpret the resulting frequency vectors o
as distributions, for which we now calculate the
Kullback-Leibler (KL) divergence to obtain our
regularization term:

“4)

Essentially, this regularizer penalizes transla-
tions if their word frequency distributions diverge
too strongly from those of the source sentence.

— —
I€€freq = Dy (Vin, Vout)

(4) IN It was a big lady who wore a fur around
her neck
REF C’était une dame forte qui portait une

fourrure autour du cou

*https://en.wikipedia.org/wiki/Wikipedia:Database

105

Languages Sentence Pairs

Train Development  Test
Czech 122,382 480 1,327
French 232,825 890 1,210
German 206,112 888 1,080
Russian 178,165 887 1,701
Slovene 17,125 1,144 1,411
Vietnamese 133,317 1,553 1,268

Table 2: The size of the training data in sentence
pairs. To test our proposed models, we experi-
ment by translating to/from English for every non-
English language.

OuT C’était une femme forte portant une
fourrure autour du cou

Example (4) shows an input sentence and its MT
output, for which we would compute the fre-
quency vectors as follows:

= (fCi0),  f(was), ... f(neck)
Tou = (f(0éit), fune’), ....f(cou))

5 Experiments

5.1 Data

The purpose of our experiments is to show that sig-
nals such as sentence length, punctuation or word
frequency help improve the translation quality of
a standard neural machine translation architecture.
To that effect, we experiment with 12 translation
tasks, translating from English to six low-resource
languages, and vice versa.

The six languages represent the following lan-
guage families: Slavic, Romance, Germanic, and
Austro-Asian. We further vary the size of the
training data to test how our regularization meth-
ods affect the quality of the MT output in differ-
ent setups. Table 2 contains the size of the train-
ing, development and test set for every language
pair. Note that the training sets vary considerably
in size, from 17k sentence pairs for Slovene to al-
most 233k for French.

The data is from the International Workshop
on Spoken Language Translation (IWSLT), ex-
cept for Russian, Slovene and Vietnamese which
are from IWSLT 2015, the data for the remain-
ing translation tasks is from IWSLT 2017 (Cettolo
etal., 2012).



Preprocessing The purpose of our experiments
is to learn how to efficiently translate low-resource
languages. For that purpose, we do not use any
advanced preprocessing for any of our translation
tasks except tokenization where we use the script
from the Moses toolkit (Koehn et al., 2007). We
also set the maximum sentence length to 70 tokens
and the vocabulary size to 50k.

5.2 Training Details

We use the attention-based model described in Lu-
ong et al. (2015b). Our model is composed of two
LSTM layers each of which has 512-dimensional
units and embeddings; we also use a mini-batch
size of 128. Adding an attention mechanism in
neural machine translation helps to encode rele-
vant parts of the source sentence when learning the
model. We propose to add additional regularizers
on top of the attention-based model at each trans-
lation step.

We have noticed that the convergence highly de-
pends on the language pairs involved. While our
baseline model is identical to the NMT model de-
scribed by Luong et al. (2015b), we deviate from
their training procedure by continuing the training
until convergence, which for us took 15 epochs in-
stead of the 12 epochs described by the authors.
The convergence in our case is measured by the
models having no improvements on the develop-
ment set over five epochs.

Table 3 shows that our baseline is +1.5 BLEU
points better than the scores reported by Luong
etal. (2015b). On top of that, our length-based and
punctuation-based models produce a statistically
significant improvement over the baseline (+0.5
BLEU points).

We train all our models automatically until con-
vergence. In Table 4, we report the number of
epochs it took to converge by translation task
when translating to/from English. We note that
except for Czech and Slovene, which converged
the quickest, most of the translation tasks took be-
tween 15k and 20k steps to converge.

6 Evaluation

In order to show that the naive regularizers which
we propose in this paper significantly boost the
translation quality, we test the machine transla-
tion output using the toolkit MultEval defined in
Clark et al. (2011). In this paper, we report the
results using three commonly used metrics: the n-
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System BLEU
Luong et al. (2015) 23.30
Luong et al. (2017) (dropout=0.2)  25.10
Baseline (dropout=0.2) 26.43
+ Length 26.77
+ Punct 26.71
+ Frequency 26.12
+ Combined 27.13
Table 3: Baseline vs. our proposed models on

the English—Vietnamese translation task, using the
same dataset as Luong et al. (2015b). The re-
sults in bold represent statistically significant re-
sults compared to the baseline according to Mul-
tEval (Clark et al., 2011).

Translation Task #Steps

Lang— English

Czech 12K
French 20K
German 20K
Russian 22K
Slovene 10K
Vietnamese 15K
English—Lang

Czech 12K
French 22K
German 20K
Russian 18K
Slovene 11K
Vietnamese 15K

Table 4: Number of steps it took until the models
stopped improving for all the translation tasks.

gram based metrics BLEU (Papineni et al., 2002)
and METEOR (Banerjee and Lavie, 2005), as well
as the error-rate based metric TER (Snover et al.,
2006). The evaluation metric BLEU (Papineni
et al., 2002) is based on n-gram matching between
the input and the output, whereas the error-rate
based metric TER (Snover et al., 2006) measures
how many edits are needed so that the machine
translation resembles the man-made reference.

6.1 Results

Table 5 shows the results for all language pairs and
all metrics. We observe an improvement over the



System Languages
Czech French German Russian Slovene Vietnamese
Baseline 14.01 32.13 22.07 12.87 5.60 26.43
EN—Lan Length 14.65 32.32 21.64 12.81 4.98 26.77
€ Punct 1498  32.79 22.89 13.06 5.64 26.71
Frequency 14.75  33.47 22.14 13.50 1.95 26.12
Baseline 21.32 31.51 24.41 15.39 8.85 24.94
Lang—EN Length 21.83 31.09 24.56 15.29 9.05 25.87
g Punct 21.96 3243 25.17 16.36 9.63 25.32
Frequency  21.88 32.26 24.87 15.90 9.18 24.35
(a) BLEU
Baseline 17.62  51.11 40.47 16.12 26.52 11.46
EN—Lan Length 18.41 51.10 39.93 16.80 27.03 12.01
€ Punct 18.43  51.67 41.18 16.77 27.00 12.30
Frequency 18.16  52.10 40.57 16.79 26.95 12.29
Baseline 24.66 31.77 27.23 20.63 16.28 28.11
Lang—EN Length 25.07 31.55 27.11 20.65 15.95 28.71
g Punct 2510 3231 27.75 21.45 17.05 28.48
Frequency 25.27  32.16 27.43 20.80 16.85 27.86
(b) METEOR
Baseline 62.64  49.21 57.17 70.17 77.20 54.29
EN—sLan Length 62.18  48.96 57.90 70.85 79.51 53.93
€ Punct 61.69  48.57 57.24 70.04 77.02 54.03
Frequency 6246  48.87 57.63 69.40 87.20 54.99
Baseline 57.06  46.42 53.31 63.62 72.46 53.66
Lang—EN Length 55.68 46.44 53.29 63.31 72.54 52.74
g Punct 56.29  45.37 52.31 62.24 72.11 53.51
Frequency  57.32 45.55 52.75 62.10 75.73 54.72
(¢) TER

Table 5: Contrasting our three proposed models to the baseline (NMT; Luong et al., 2017) across 12
translation tasks. We evaluate all the models using BLEU, METEOR and TER. The bold values rep-
resent the models that show statistically significant improvements over the baseline (p < 0.001; Clark
et al., 2011). Note that for BLEU and METEOR, higher is better, while for TER, lower is better. All
regularization schemes almost consistently lead to improvements, with the punctuation-based regularizer

achieving the highest gains.

baseline across almost all language pairs for all
models and across all metrics. We obtain statis-
tically significant results for almost all translation
tasks for at least one regularization method.

More specifically, the punctuation regularizer
outperforms all the other models on all transla-
tion tasks except for French—-English and English—
French. For the latter, we observe that the word
frequency regularizer is better than the other sys-
tems. This could be explained by the fact that
the English vocabulary has many words borrowed
from French, which makes the word frequency
regularizer a better signal than punctuation or sen-
tence length for this specific task. It also could
be due to the fact that both English and French
have the largest vocabulary for training the word
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frequencies (cf. Table 1; English has around 80M
words and French has around 50M words, whereas
all other languages have much less data).

The most challenging translation tasks are
Slovene-English and English-Slovene, especially
in terms of error rate. The results show that
with 17k sentence pairs as a training set, it be-
comes more challenging to efficiently learn any-
thing. The results we obtained are between 2
and 5 BLEU points when translating from En-
glish. The Slovene output contained many non-
translated words. Specifically, this task greatly
suffers when using the word frequency regularizer,
with an error increase of about 10 TER points from
English to Slovene. We do not observe such losses
for the Czech—English and English—Czech transla-



tion tasks, even though the vocabulary size for es-
timating the word frequencies is lower for Czech.
We hypothesize that this is due to the Czech train-
ing set being seven times larger than the Slovene
one. We hypothesize that this is due to the fact
that for Slovene we only have 17K sentence pairs
for the training step; whereas for Czech, we have
122K sentence pairs, which helped control the
model compared to Slovene.

One case where the punctuation regularizer suc-
ceeds consistently is on the English—-German and
German—English translation tasks, with an error
reduction of about 1 TER point. This reflects the
similarity in punctuation between these languages.
Although we also observe improvements using the
other regularization methods, e.g. the length-based
method, these are not statistically significant here
as calculated by MultEval (Clark et al., 2011).

Table 3 shows the BLEU scores of seven differ-
ent systems including the one where we combine
our three regularizers on the English—Vietnamese
translation task. The combined regularizer does
not only produce a statistically significant im-
provement of almost 1-BLEU point over the at-
tention based baseline, but it also outperforms all
the other regularizers achieving a BLEU score of
27.23.

7 Translation Examples

The punctuation regularizer outperforms the base-
line in most cases, and all of our regularization
methods show statistically significant improve-
ments in at least one language. Below we present
examples, extracted from the test data, of how
each of the regularization methods affects the out-
put in comparison to the baseline model. The pur-
pose of the examples is to show how each objec-
tive function in the learning component affects the
performance component.

7.1 Frequency-Based Regularizer

The frequency-based regularization method penal-
izes cases where the distribution of the target vo-
cabulary greatly differs from the source vocabu-
lary. We have noted a significant improvement
for this specific regularizer when translating from
French to English and vice-versa. Examples (5)
and (6) show how this regularizer is improving the
translation output.

®)IN 90 % de notre temps entourés par

1’architecture .

REF That’'s 90 percent of our time sur-
rounded by architecture .

BASE <unk> percent of our time via archi-
tecture .

FREQ <unk> percent of our time sur-
rounded by architecture .

(6) IN Débloquer ce potentiel est dans
P’intérét de chacun d’entre nous .

REF Unlocking this potential is in the inter-
est of every single one of us .

BASE <unk> that potential is in all of us .

FREQ <unk> that potential is in the interest

of all of us .

More precisely, entourés in French is almost as
frequent as surrounded in English, which is a word
that our model with frequency-based regulariza-
tion translates correctly, while the baseline does
not. Additionally, in Example (6), our model has
a better fluency and adequacy than the baseline
since it not only correctly translates [’intérét to in-
terest, but also correctly produces of all instead of
in all, as in the baseline output.

7.2 Punctuation-Based Regularizer

The punctuation-based regularization performs
best in the German—English and English—-German
translation tasks. This regularizer penalizes cases
where the difference in the number of punctuation
between the source and the target sentences is par-
ticularly large. As seen in Example (7), simply
introducing this bias into a translation model leads
to an output which more closely matches the punc-
tuation of the source and target sentences.

(7) IN  Und die Antwort , glaube ich , ist ja .
["F=TV St "]. Was Sie ger-
ade sehen , ist wahrscheinlich die beste
Entsprechung zu E = mc? fiir Intelli-
genz , die ich gesehen habe .
And the answer , I believe , is yes .
["F=TV ST "] What you're see-
ing is probably the closest equivalent to
an £ = mc? for intelligence that I've
seen .
BASE And the answer , I think , is yes .
PUNC And the answer , I think ,isyes. [" R
=T T <unk> " | What you’re looking
at is probably the best <unk> <unk>
<unk> of intelligence that I’ve seen .

REF

The baseline MT output completely fails to cap-



ture anything from the input except for the first
part up to “...is yes.” Our punctuation-based
model, however, manages to capture most parts of
the sentence.

7.3 Length-Based Regularizer

Finally, the length-based regularization method
leads to noticeable improvements in the Czech—
English and English—Czech translation tasks. Ex-
ample (8) shows that introducing an input sen-
tence length bias led to an MT output that is much
closer to the reference than the baseline. The input
sentence consists of 12 tokens (including punctu-
ation), the baseline output consists of 10 tokens,
while our length based regularization model pre-
serves the length of 12 tokens.

(8) IN V roce 2009 jsem ztratila nékoho ,
koho jsem velmi milovala .
REF In 2009 , I lost someone I loved very

much .
BASE In 2009, I lost somebody who I loved .
LEN 1In 2009, I lost somebody who I loved
very much .

7.4 General Improvements

The Slovene dataset is our smallest with about
17k sentence pairs for training. Despite the low
amount of resources available in Slovene, we
found that introducing very naive linguistic biases
into our machine translation models actually leads
to subtle differences that result in an output closer
to the reference, not only lexically, but also seman-
tically. In Example (9), we compare the output
of the frequency based system against the baseline
for the Slovene to English translation:

) IN In kaj potem ?
REF And so, what after that ?
BASE And then then ?
FREQ And then , what ?

In this particular case, the frequency based regu-
larization model takes care of the translation of the
word what, and although the word so is not trans-
lated, the overall meaning of the source is pre-
served.

(10) IN Imeti mora$ otroke , da prezivis .
REF You need to have children to survive .
BASE Well you have the kids that you

need to educate .
FREQ You have to have kids to educate .

109

Example (10) shows another case of how the out-
put of the frequency-based regularization system
actually shows overall improvements in an ex-
tremely low-resource language. The output of our
system is semantically closer to the reference than
the baseline output, up to the word educate. In ad-
dition, the system preserves a similar length as the
source sentence.

(11) IN Mi smo tu na vrhu .
REF We are here on top .
BASE What we are at the top .
FREQ We are here at the top .

Finally, Example (11) shows a low-resource case
where our system manages to make subtle changes
in order to reach the correct translation, whereas
the baseline system does not.

8 Conclusion

We have shown that using naive regularization
methods based on sentence length, punctuation,
and word frequency consistently improves the
translation quality in twelve low-resource transla-
tion tasks. The improvement is consistent across
multiple language pairs and is not dependent on
the language family. We have reported and dis-
cussed examples demonstrating why and how each
regularizer is improving the translation quality.

Our proposed approach shows that even naive,
but linguistically motivated, regularizers help
improve the translation quality when training
NMT models. We believe this shows the useful-
ness of using task-related regularizers for improv-
ing neural models, and opens the door for future
work to exploit these regularization methods in an
even more efficient manner by experimenting with
different ways of combining the regularizers with
the loss function.
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Abstract

We describe a new approach to semantic
parsing based on Combinatory Categorial
Grammar (CCG). The grammar’s se-
mantic construction operators are defined
in terms of a graph algebra, which allows
our system to induce a compact CCG lex-
icon. We introduce an expectation max-
imisation algorithm which we use to fil-
ter our lexicon down to 2500 lexical tem-
plates. Our system achieves a semantic
triple (Smatch) precision that is competit-
ive with other CCG-based AMR parsing
approaches.

1 Introduction

Parsing sentences to formal meaning representa-
tions, known as Semantic Parsing, is a task at the
frontier of Natural Language Understanding. Ab-
stract Meaning Representation (AMR) is a mean-
ing representation language that represents sen-
tence semantics in the form of graphs. Research
on AMR parsing systems has been very productive
in recent years with many competing approaches.

Current AMR parsers vary regarding the extent
to which they rely on a formal grammar. Some
of the most successful systems generate AMRs
through an end-to-end neural architecture, with no
explicit symbolic derivations (Zhang et al., 2019).
Other parsers employ transition systems with lim-
ited explanatory power (Peng et al., 2018). Con-
structing grammar-based semantic analyses that
can be understood in terms of linguistic theory is a
more difficult task than end-to-end AMR parsing
because of the additional structural requirements
on the output and the algorithmic constraints im-
posed thereby.

In this paper, we explore how semantic parsers
can be built to be interpretable and transparent.
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Interpretability means that our system exposes
rich symbolic information in the form of CCG de-
rivations. Transparency means that it works with
a compact and intuitively plausible lexicon. The
lexicon is itself an artifact that can be inspected.

We achieve these goals by equipping CCG with
graph-based semantics. Meaning reprentations are
constructed through the operations of a simple
graph algebra, which effectively constrains the
search space for parsing and lexicon induction and
makes the available operations and resulting lex-
ical items easy to understand.

Technical contributions of this paper include
a modified expectation-maximisation (EM) al-
gorithm to induce compact delexicalised CCG lex-
ica, a technique for training a syntactic-semantic
supertagger with incomplete labels, and a hybrid
update mechanism for training the linear parsing
model.

1.1 Related Work

This work builds upon the concept of graph-
algebraic CCG, which has so far been tested only
in the context of lexicon induction (Beschke and
Menzel, 2018). We extend the lexicon induction
process by delexicalisation and EM filtering and
demonstrate the first end-to-end parsing system
based on graph-algebraic CCG. The idea of ap-
plying graph algebras to AMR parsing has also
been applied in the context of Interpreted Regular
Tree Grammar (Groschwitz et al., 2018). Further-
more, improved definitions of graph-composing
CCG combinators have been proposed (Blodgett
and Schneider, 2019) to cover a wider range of se-
mantic phenomena.

Other systems that apply CCG to AMR pars-
ing use an encoding of AMR graphs to A-calculus
expressions (Artzi et al., 2015; Misra and Artzi,
2016). One drawback of these systems is that lex-
icon induction is coupled to the training loop of a
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Figure 1: An example graph-algebraic CCG deriv-
ation.

parser, which makes it compute-intensive and dif-
ficult to manage. We address this issue by per-
forming lexicon induction in a separate step.

Besides AMR parsing, CCG has also been used
for joint syntactic-semantic parsing in other con-
texts (Krishnamurthy and Mitchell, 2014; Lewis
etal., 2015).

2 Background

This paper uses Combinatory Categorial Gram-
mar (CCG) to derive Abstract Meaning Repres-
entations (AMR) using a graph-algebraic modific-
ation of CCG’s syntax-semantics interface. These
concepts are briefly introduced in this below.

2.1 CCG for Semantic Parsing

Combinatory Categorial Grammar (CCG) de-
scribes syntax and semantics as part of the same
derivation process (Steedman, 2000). CCG deriv-
ations are trees where every node is annotated with
both a syntactic and a semantic category. The cat-
egories at the leaves of the tree are drawn from a
lexicon, while categories at the inner nodes result
from the application of combinatory rules to the
child nodes’ categories. The syntax-semantics in-
terface in CCG is transparent, meaning that the
same rule is always applied to syntactic and se-
mantic categories.

In CCG, categories are understood as n-ary
functions. Syntactic categories essentially express
the type of the associated semantic category by
specifying the types of constituents that can be
accepted as arguments, either to the right of the
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constituent or to the left. This directionality is ex-
pressed by forward and backward slashes. E.g.,
given the atomic syntactic categories S for sen-
tences and NP for noun phrases, the complex cat-
egory (S\NP)/NP represents a transitive verb,
accepting first an NP to the right and then another
NP to the left to produce a sentence.

Semantic categories contain building blocks for
sentential meaning representations. Traditionally,
A-calculus is used to represent the compositional-
ity of semantic categories, while the object lan-
guage that is being composed is a logical repres-
entation of sentence meaning. This paper deviates
from that tradition by using a graph representation
for semantic categories which is defined Section
2.3.

2.2 Abstract Meaning Representation

The Abstract Meaning Representation (AMR;
Banarescu et al., 2013) is a meaning representa-
tion language that underlies much recent work in
semantic parsing. In AMR, meaning is annotated
on the sentence level in the form of a labeled, dir-
ected graph. While the nodes of the graph rep-
resent instances of concepts, edges represent roles
that these entities play with respect to each other.

2.2.1 Evaluation of AMRSs

AMR parsers are usually evaluated with respect to
the Smatch metric (Cai and Knight, 2013), which
measures precision and recall of semantic triples
in an AMR graphs with respect to a gold standard
graph. The computation of Smatch relies on find-
ing an optimal alignment between the two graphs,
which is usually approximated.

2.3 Graph-Algebraic CCG

Graph algebras are an established means to model
the derivation of AMRs (Koller, 2015). A modi-
fication of CCG that applies graph-algebraic oper-
ators to semantic categories has first been presen-
ted by Beschke and Menzel (2018). They define a
set of semantic operators that apply to s-graphs,
which contain specially marked source nodes,
which are consecutively indexed starting from 0.
They also define three semantic operators:

e Application, which 1) merges the root of
an argument graph with the highest-indexed
source node of the function graph and 2)
merges all source nodes that have the same
index.



Combinator Left Operand Right Operand Result
> XY :O—( v: = O—>
< v xX\Y : O— (0) = x:0—"
B> XY O— ()  v/Z2:—(0) = X/Z : O—<>— (0)
B, < Y/Z:<>—><O> X\Y : O— (0) = W
B2> XY :O=(0) (V/2)/Z2: Dz (0) = X/Z1 W (0)
(1) (1)
conj conj : conj = 0y X :0O—(0) =  X\X: conj — (1)
(1) (0)
rp X Q LE = X:
Ip 1€ X: Q = X: g

Table 1: The set of binary combinators used in our system. Circles and diamonds correspond to arbitrary
AMR subgraphs. X and Y represent arbitrary syntactic categories. The conj node represents any concept
corresponding to a conjunction, such as and or contrast. Edge labels are omitted.

The combinators Forward Application (>), Backward Application (<), Forward Composition (B>),
Backward Crossed Composition (B <), and Forward Generalised Composition (B2>) all use the Ap-
plication semantic operator. The Conjunction (conj) combinator uses the Conjunction semantic operator,
and Left and Right Punctuation (Ip, rp) use Identity.

e Conjunction, which 1) merges the root of an
argument graph with the 1-indexed source
node of the conjunction graph, and 2) re-
names the 0-indexed source node of the con-
junction graph so that it becomes the highest-
indexed source node in the combined graph
(thus becoming accessible for application).

Identity, in which the function graph is
empty and the argument graph is returned un-
changed.

An overview of the rules as well as how they are
applied in the context of CCG derivations is given
in Table 1.

An example derivation is given in Figure 2.

3 Lexicon Induction

For parsing with graph algebraic CCG, a lexicon
must first be obtained. We achieve this using the
recursive splitting algorithm by Beschke and Men-
zel (2018), which uses the following information
to induce lexical items from an AMR-annotated
sentence:

e The sentence’s AMR

e A syntactic CCG parse obtained from a syn-
tax parser
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o A set of alignments linking tokens in the sen-
tence to nodes in the meaning representation,
obtained from automatic alignment tools

A set of lexical items explaining the sentence
can then be obtained by walking down the syn-
tactic parse tree, starting at the root with the full
sentential meaning representation. At each binary
derivation step, the meaning representation is par-
titioned into two subgraphs by unmerging nodes
as appropriate. Each split is done in such a way
that it can be reversed using a graph algebraic
combinator and the token-to-node alignments are
honored.

For any token, this procedure may generate sev-
eral or no lexical entries. If the alignments do not
uniquely specify how the meaning representation
should be divided in a splitting step, all alternat-
ives are explored. Also, splitting may abort at an
inner node of the derivation if there is no combin-
ator that satisfies the alignment constraint.

This work adds two steps to the lexicon induc-
tion process: the delexicalisation of lexical items,
followed by filtering for the most probable deriva-
tion for each sentence according to EM estimates.

3.1 Delexicalisation

We achieve generalisation over content words by
delexicalising lexical entries. We follow the ap-



proach from Kwiatkowski et al. (2011) which di-
vides lexical entries into templates and lexemes. A
template is a graph wherein up to one node has
been replaced by a lex marker. A lexeme z—y is a
pair of a word x and a node label y. For examples
of templates and lexemes, see Table 2.

The idea of the delexicalisation algorithm is that
a node in the graph which corresponds to the lex-
ical meaning of the lexical entry is replaced by a
marker, converting it into a template. Since it is
not known in advance which node carries the lex-
ical meaning, we replace every node in turn and
add all resulting templates to the lexicon. Every
replaced node label is associated with the token
currently under consideration and stored as a lex-
eme.

Not all lexical entries contain a node with lex-
ical meaning, e.g. in the case of function words.
Therefore, the original meaning representation is
also added to the lexicon as a template along with
an empty lexeme.

Special lexemes are also added that map any
word to a node labeled by the word’s lemma, its
surface form in quotes, or any of the propbank
frame names associated with its lemma.

This process creates a large amount of super-
flous template/lexeme pairs. Therefore, the lex-
icon is subsequently filtered using Expectation
Maximisation.

3.2 Expectation Maximisation

Both splitting and delexicalisation generate spuri-
ous templates and lexemes. We wish to keep only
those that generalise well by being broadly applic-
able. In contrast, noise introduced during gram-
mar induction should be removed.

This noise manifests itself in spurious deriva-
tions for the sentences of the training set. Expect-
ation Maximisation (EM) is applied to identify a
single most likely derivation per sentence. Every
template and lexeme that in not used in at least one
of these derivations is deleted.

We use a variant of the inside-outside algorithm
(Baker, 1979) to estimate multinomial distribu-
tions P; for templates and P, for lexemes. From
these, we derive a probability distribution over de-
rivations:

P)= [ PORO

(t,l)eLEX(d)

where LEX(d) gives all template-lexeme pairs
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Algorithm 1 Variation of the inside-outside al-
gorithm to estimate parameters over CCG deriv-
ations. See Section 3.2 for function definitions.
Input: Data set S; scoring function SCORE’
Output: Distributions P}+1 and Pfrl

1: countr[j] < 0for0 < j < |T)|

2: countr,[j] 0 for0 < j < |L]|

3: for s € S do

4: chart < SPLIT(s)
50 likelihood < 37 ¢ a0 s —1) N (€)
6: for e € chart d(o) e
SCORE'(e)oUT*
7: C < Thelihood —
8: for (¢,1) € DELEX(e) do
9: countp[t] < countp|t] + ¢
10: countr[l] < countp[l] + ¢
11: end for
12: end for
13: end for ’
. i+1 _ countr |t
. i+1 o countr(l]
15: Pi (l)—mforle[;

instantiated by the derivation.

Our inside-outside algorithm operates on split
charts, which keep track of all derivation nodes
created during recursive splitting. A split chart ¢
for a sentence s contains cells c[i, j] with 0 < i <
J»7 < |s|. A cell contains a number of entries e,
each of which is associated with a meaning rep-
resentation MR (e) and a (possibly empty) set of
child pairs (I,7) € CLD(e), which are in turn
entries. An entry can also have several parents
¢ € PAR(e), in which case it also has a neighbour
NB(e, ¢’) for every parent €’.

To compute a probability for an entry, we em-
ploy a function DELEX which decomposes the
entry’s meaning representation into all possible
template-lexeme pairs.

Inside and outside probabilities for entries are
calculated recursively as follows:

IN“T1(e) = SCORE'(e)

>

(I,r)eCLD(e)

+ INTTH(D) - INTHL ()
outl(e) = > ourl(¢)
e’€PAR(e)
- INTTL(NB(e, ¢))

where



SCORE!(e) = Pp(t)Pr(1)

2.

(t,l)eDELEX(MR(e))

A given meaning representation MR(e) can be
created by either instantiating a lexical entry with
probability SCORE‘(e), or by deriving it using
any of its pairs of children (/,r) with probability
INY(1)IN?(r). All of these are alternative choices;
therefore, the probabilities are summed to make
up the inside probability. The outside probability
is composed of the entry’s parents’ outside prob-
abilities and the entry’s neighbours’ inside prob-
abilities.

Algorithm 3.2 describes how an updated set of
parameters is estimated using these calculations.

4 Parsing

Our parser uses a CKY-style chart parsing al-
gorithm to parse sentences to AMR. For each
token, template-lexeme pairs are drawn from the
lexicon. Recursively, derivation nodes are created
according to CCG/AMR rules. All candidate de-
rivation nodes are evaluated with respect to a lin-
ear model. A beam search limitation is applied,
meaning that only the top n candidates from each
chart cell are kept.

The flip side of using a delexicalised lexicon is
that every template can now be applied to every
token. To limit the number of leaves that have
to be considered, we employ a supertagger which
predicts the most suitable template for each token.
We then limit our search to the most probable tem-
plates as predicted by the supertagger.

4.1 Supertagging

For supertagging, we use a single-layer BILSTM.
For inputs, the raw tokens and syntactic CCG cat-
egories predicted by a CCG supertagger are used.
The model is then trained to predict the template
instantiated by each token.

The following preprocessing steps are applied:

e Tokens are embedded using the third layer
produced by ELMo (Peters et al., 2018).

e CCG supertags, as well as templates, that oc-
cur in less than two sentences are replaced by
UNK.

To predict supertags on the dev and test sec-
tions, we train the supertagger on the entire train
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section and output the predicted token-wise su-
pertag distributions (clipping at 99% cumulative
probability). To obtain supertag predictions on the
train section, we employ 5-way jackknifing: the
data is split into five parts and predictions for each
part are obtained by training on the remaining four
parts.

During training, the occurrence of the correct
label within the top-10 predictions for every token
is monitored and training aborted when this meas-
ure stops improving (early stopping).

4.1.1 Limited Supervision

The grammar induction process as described in
Section 3 attempts to find lexical items for every
individual token, but may stop early if no combin-
atory rule fitting the alignment constraint is avail-
able. In this case, no supervision for training the
tagger is available at the token level. We over-
come this issue by labelling the respective tokens
as UNK (the same label used for rare templates oc-
curring only once) and masking UNK tokens in the
loss function.

This allows the tagger to fill in the gaps with
reasonable templates that are in the lexicon. How-
ever, it also means that not every sentence from the
train set can be perfectly parsed any more, because
it is possible that its meaning representation can-
not be constructed using the induced token-level
lexical entries.

5 Training

To drive the parser, we train a linear model over
graph algebraic CCG derivations. Since we do not
observe derivations in the data, this is an instance
of latent variable learning and a supervision signal
must be generated. We take a dual approach by
combining two weak supervision signals:

1. An oracle is used to heuristically generate
silver-standard derivations, which can then
be used for training.

. The derivations found by the parser are eval-
uated and used for cost-sensitive parameter
updates.

5.1 Model

We train a linear model using a structured per-
ceptron algorithm (Collins, 2002) with Adadelta
updates (Zeiler, 2012). We use features over paths
in the graph as well as the identities of invoked
templates, lexemes, and combinators.
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Table 2: Selected templates and lexemes from the induced lexicon. The templates are among the 20 most
highly scored according to EM parameters; the lexemes among the top 50.
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Figure 2: A derivation for a subsequence of PROXY_NYT_ENG_20020406_-0118

our parser.
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.25, as produced by



5.2 Oracle Parsing

In latent variable learning in structured prediction
settings, the challenge is to obtain an unobserved
derivation for a known gold-standard result. In
this case, gold-standard sentential AMRs are an-
notated in the AMR corpus, but they are not re-
lated to the sentence by a grammatical derivation.

A common approach to this challenge is forced
decoding (Artzi et al., 2015): the parser is used
to construct derivations which lead to the correct
result by pruning all hypotheses from the search
space which deviate from the gold-standard AMR.
E.g., all AMRs that contain elements not present
in the gold-standard could be pruned.

However, as noted in Section 4.1, not every
gold-standard AMR can be reconstructed perfectly
using the induced lexicon due to the incomplete-
ness of the splitting algorithm, which defies find-
ing correct parses using forced decoding.

Instead, we train the parser using an oracle
driven by a heuristic scoring function which scores
the correctness and completeness of an intermedi-
ate hypothesised AMR. We parse the sentence us-
ing CKY with beam search, ranking intermediate
results according to the harmonic mean of the fol-
lowing values:

e Triple precision: the proportion of node-
edge-node triples in the intermediate result
that also occur in the gold standard meaning
representation.

Alignment recall: the proportion of node la-
bels that are linked by an alignment edge to
one of the intermediate result’s tokens that
also occur in the intermediate result.

This scoring function is designed to rank res-
ults in proportion to their deviation from the gold
standard, achieving a soft form of pruning.

Having obtained a set of derivations using or-
acle parsing, we finally re-rank these derivations
by their Smatch f1 scores and use the best deriva-
tion to perform a parameter update using an early
update strategy (Collins and Roark, 2004).

5.3 Cost-Sensitive Update

Another approach to training with weak super-
vision for structured prediction are cost-sensitive
updates. While the gold-standard to update to-
wards is unknown, an evaluation metric is avail-
able for the AMR that results from a specific
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derivation. Cost-sensitive updates let the parser
search for complete derivations and enforce a
margin between the best derivations in the beam
and all the others. We follow Singh-Miller and
Collins (2007) by implementing a cost-sensitive
perceptron algorithm which weights hypotheses
according to their Smatch f1 score.

5.4 Combined Update Strategy

While early updates are efficient, our oracle is im-
perfect. To allow the parser to improve over oracle
parses, we use a cost-sensitive update whenever a
parse has been found whose Smatch f1 score sur-
passes that of the oracle parse.

6 Experimental Setup

We evaluate our parser' on the proxy section of

the AMR 1.0 corpus (LDC2014T12; Knight et al.,
2014). This section consists of newswire texts.

Sentences are tokenised and lemmatised us-
ing Stanford NLP (Manning et al., 2014). We
use EasyCCG to obtain CCG parses and super-
tags (Lewis and Steedman, 2014). Token-to-
AMR alignments are obtained by combining out-
puts generated by the JAMR aligner (Flanigan
et al., 2014) and the ISI aligner (Pourdamghani
et al., 2014), as described by Beschke and Men-
zel (2018).

First, we induce a CCG/AMR lexicon from
the entire proxy-training section, delexicalise the
entries, and filter for the best derivations using
EM, as described in Section 3. We perform 100 it-
erations of EM. Sentences longer than 100 tokens
are filtered out. The resulting lexicon contains
15630 templates and 10504 lexemes.

Next, we extract template tag sequences and
train our suppertagger on them. First, tags for the
training data are predicted using 5-way jackknif-
ing. Then, a model is trained on the entire training
section and used to predict tags for the dev and test
sections of the corpus. Since only templates are
predicted that occur in at least two training sen-
tences, a set of 2453 templates is used for predic-
tion. The top-10 recall of the annotated supertags
is 96.4% on a randomly chosen held-out portion
of the training set.

Finally, the induced lexicon as well as the pre-
dicted tag sequences are used to parse the proxy-
test section of the AMR corpus. We use a beam

! For information on reproducing the experiments, see
https://gitlab.com/nats/gramr-ranlpl9/.



System P R F
This paper 0.688 0.423 0.524
Artzi et al. (2015) 0.668 0.657 0.663
Misra and Artzi (2016) 0.681 0.642 0.661
Liu et al. (2018) - - 0731

Table 3: Smatch results on the proxy-test section
of LDC2014T12. Liu et al. (2018) did not report
precision and recall in their paper. P stands for
precision, R for recall, F for fI score.

size of 15 during parsing and 20 for finding oracle
derivations (see Section 5.2). Parses whose root
categories do not match any of the top-10 deriva-
tions produced by EasyCCG are dropped from the
parser output’.

The smatch tool’is used to calculate Smatch
precision, recall, and f1 scores for the parser out-
put.

7 Results

We compare our system to two previous CCG-
based AMR parsers (Artzi et al., 2015; Misra and
Artzi, 2016), as well as the current state of the art
in AMR parsing on this data set (Liu et al., 2018).
The results are shown in Table 7. The system in-
troduced in this paper achieves comparable preci-
sion to the other CCG-based systems, but lower
recall.

This gap is largely, but not completely, ex-
plained by sentences that were not parsed at all:
when unparsed sentences are excluded from the
evaluation, our system achieves a precision of
0.701 and a recall of 0.615*. Oracle parsing
achieves a Smatch precision of 0.886 and an f1
score of 0.706.

The evaluation set contains 823 sentences in
total, of which 170 were not parsed, resulting
in a coverage of 79%. Of these sentences, 68
were skipped because they were longer than 40
tokens. The remaining 102 are unparsed because
the parser failed to find a complete parse.

2This restriction was included because the parser tended
to favour interpretations of sentences as NP instead of S.

Shttps://github.com/snowblinkl4/smatch,
revision ad7e655

“The precision improves when unparsed sentences are
excluded because the smatch tool does not permit empty
AMREs to be specified. Unparsed sentences are therefore rep-
resented by single-node placeholder AMRs, which are penal-
ised in terms of precision.
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7.1 Discussion

The parser output in Figure 5 shows some of
the most common errors produced by our parser.
Firstly, the sequence International Science and
Technology Center is not recognised as a contigu-
ous named entity. Additionally, Technology Cen-
ter is misrecognised as a country. Both of these
issues can be classified as supertagging errors, as
they result from the templates chosen from the lex-
icon. In this specific case, the supertagger’s beha-
viour could likely be improved by adding named
entity features to its input. In general, the super-
tagging task is challenging, especially in the case
of function words, which tend to be highly poly-
semous.

Additionally, the scopes of and and of are inver-
ted. This can be interpreted as a weakness of the
parsing model, which misjudges the probability of
the respective scope assignments. Although one
would hope for a semantic parser to improve pre-
cisely upon these semantically informed syntactic
decisions, this behaviour is perhaps to be expected
given that we train a sparse linear model with a re-
latively small amount of training data. Replacing
the linear classifier with a neural model that com-
putes embeddings of graph meanings, such as the
architecture proposed by (Misra and Artzi, 2016),
could improve the parser’s judgment.

8 Conclusion

We have introduced a pipeline for training a CCG
parser which jointly models syntax and semantics.
A central element of our architecture are efforts to
reduce the lexicon size. With 2453 delexicalised
templates, our parser uses a relatively small lex-
icon despite the templates being induced automat-
ically. We employ a semantic construction mech-
anism that is less powerful with A-calculus, but
still achieve competitive precision.

Future directions in this line of work could in-
clude applications that make use of the system’s
transparency, such as the interactive training of
parsers without gold-standard annotations, or the
application of external constraints such as contex-
tual knowledge to the parser.
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Abstract

While contextualized embeddings have
produced performance breakthroughs in
many Natural Language Processing (NLP)
tasks, Word Sense Disambiguation (WSD)
has not benefited from them yet. In this pa-
per, we introduce QBERT, a Transformer-
based architecture for contextualized em-
beddings which makes use of a co-
attentive layer to produce more deeply
bidirectional representations, better-fitting
for the WSD task. As a result, we are
able to train a WSD system that beats the
state of the art on the concatenation of all
evaluation datasets by over 3 points, also
outperforming a comparable model using
ELMo.

1 Introduction

Word Sense Disambiguation (WSD) is the task of
associating a word in context with the right mean-
ing among a finite set of possible senses (Navigli,
2009). Consider the following sentence, in which
SERVED is the target word:

(1) The waiter standing near the counter SERVED
the revolutionary cause well.

In WordNet (Fellbaum, 1998), the most used En-
glish computational lexicon in NLP, the following
two senses are associated (among many others) to
the verb to serve:

1. devotion: devote (part of) one’s life or efforts
to, as of countries, institutions, or ideas;

2. food: help to some food; help with some food
or drink;

The WSD system, in this case, would be tasked to
associate the target word with the correct meaning
—1.e. the devotion sense.

Currently the best WSD systems are supervised,
i.e. they leverage annotated corpora as training
data (Yuan et al., 2016; Vial et al., 2018; Melacci
et al.,, 2018). However, data labeling is a bot-
tleneck for WSD, even more so than in other
fields of NLP. Semantic annotation is a costly pro-
cess, requiring expert annotators (Taghipour and
Ng, 2015; Pasini and Navigli, 2017). If we con-
sider that neural networks, the best performing ap-
proach in virtually every task in NLP, are partic-
ularly data-hungry, it appears unlikely that there
will be much progress in WSD unless either more
data is available, or less data is needed.

Between the two directions, we believe efforts
towards the latter will prove more fruitful, firstly,
because of scalability considerations, and sec-
ondly, and more importantly, because of the re-
cent growth in the use of transfer learning, as ex-
emplified by contextualized embeddings. Con-
textualized embeddings have been shown to pro-
duce much better results on downstream tasks
compared to end-to-end training, even when less
data is provided (Peters et al., 2018; Howard
and Ruder, 2018; Devlin et al., 2019; He et al.,
2018; Akbik et al., 2018). Contextualized embed-
dings that use words as tokenization units, such
as ELMo (Peters et al., 2018), are most suited
to WSD. They are usually trained through self-
supervised Causal Language Modeling (CLM)
(Lample and Conneau, 2019): given a word se-
quence wi,ws, ..., W, the system has to use w;
to predict wo, the sequence w.2 to predict w3 and
so on. CLM is inherently unidirectional, as the
model must not be able to “peek” at the word it
has to predict. Thus to encode the left and the right
contexts two separate networks have to be used,
even if they often share part of the weights and are
jointly trained.

As regards the use of contextualized embed-
dings in WSD, this is bound to pose a problem.
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Consider the sentence (1) above. It features attrac-
tors, i.e. words or phrases pushing the sense inter-
pretation in one direction or the other, with the left
context providing a strong cue for the food sense
and the right for the devotion sense. In this pa-
per, we propose a modification of the usual CLM
architecture for transfer learning that enables us
to train a high-performance WSD system. In this
context, we make the following contributions:

e we introduce the BiTransformer, a novel
Transformer-based (Vaswani et al., 2017) co-
attentive layer allowing deeper bidirectional-

ity;

we introduce QBERT (Quasi Bidirectional
Encoder Representations from Transform-
ers), a novel Transformer-based architecture
for CLM making use of the BiTransformer;

we train a WSD model using QBERT contex-
tualized embeddings, outperforming on the
standard evaluation datasets both the pre-
viously established state of the art (by a
large margin) and a comparable model using
ELMo;

we use QBERT to beat ELMo on the re-
cently established Word-in-Context (WiC)
task (Pilehvar and Camacho-Collados, 2019).

2 Related Work

Despite the limited availability of training data, the
WSD systems offering the best performances are
supervised ones. Many of the approaches are still
end-to-end, i.e. they only make use of the infor-
mation learned during the WSD training.

End-to-end WSD Systems In WSD traditional
machine learning techniques are still very compet-
itive because they are not as data-hungry as neural
networks. The very popular It Makes Sense (IMS)
system (Zhong and Ng, 2010), based on Support
Vector Machines and hand-crafted features, per-
forms very well when word embeddings are used
as additional features (Iacobacci et al., 2016); the
classifier by Papandrea et al. (2017) also gets com-
petitive results. The system of Weissenborn et al.
(2015) attains very high performances, but only
disambiguates nouns. More recently, neural mod-
els have been developed (Kagebick and Salomon-
sson, 2016; Uslu et al., 2018; Luo et al., 2018).
Some of the most successful offer an intuitive
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framing of WSD as a tagging task (Raganato et al.,
2017a; Vial et al., 2018).

Transfer Learning WSD Systems One of the
best performing WSD systems (Yuan et al., 2016)
employs a semi-supervised neural architecture,
whereby a unidirectional LSTM was trained to
predict a masked token on huge amounts of un-
labeled data (over 100B tokens). The trained
LSTM was used to produce contextualized embed-
dings for tagged tokens in SemCor; then kNN or
a more sophisticated label propagation algorithm
was used to predict a sense. The size of the train-
ing data makes replication difficult — a reimple-
mentation attempt with a smaller corpus led to
worse results (Le et al., 2018). A similar approach
using ELMo contextualized embeddings has been
presented by Peters et al. (2018), but the results
were underwhelming. Another attempt at using
transfer learning in WSD has been carried out by
Melacci et al. (2018). The authors enhanced IMS
with context2vec (Melamud et al., 2016), obtain-
ing performance roughly on a par with Yuan et al.
(2016).

Contextualized Embeddings Most of the ap-
proaches to contextualized embeddings involve
CLM pretraining of directional (either attentive or
recurrent) networks. Very successful CLM-based
models include ELMo, in which two separate di-
rectional LSTMs are fed the output of a shared
character-based Convolutional Neural Network
(CNN) encoder (Peters et al., 2018), and Ope-
nAl GPT, using Transformers instead of LSTMs
and a BPE vocabulary (Sennrich et al., 2016) with
regular embeddings instead of the CNN encoder
(Radford et al., 2018). Another popular approach,
Flair, features character-level LSTMs, outputting
hidden states at word boundaries (Akbik et al.,
2018). As CLM architectures are normally uni-
directional, one alternative in order to guarantee a
joint encoding of the context is the Masked Lan-
guage Modeling (MLM) of BERT (Devlin et al.,
2019), which, however, requires a variety of tricks
at training time.

3 The QBERT Architecture

Similarly to other LM-based approaches to con-
textualized embeddings (Peters et al., 2018; Rad-
ford et al., 2018; Howard and Ruder, 2018; Devlin
et al., 2019), the architecture we hereby propose
has two main components, which we will refer to
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Figure 1: A high-level view of the QBERT architecture.

as Encoder and task-specific Prediction Head. In
Figure 1 we show a high-level view of our sys-
tem. Raw tokens are fed to the encoder, which em-
beds them into context-independent fixed-length
vector representations (the word embeddings, W
in Figure 1), then uses them to produce context-
dependent hidden representations (the contextual-
ized embeddings, C), where the context is some
subset of the sequence itself. The Prediction Head
exploits the vectors produced by the Encoder to
perform a task.

3.1 Encoder

As will become clear in what follows, the En-
coder of the QBERT architecture is able to com-
pute the hidden representation of a word w; in a
sequence wi., as a function of the weights and
of the whole sequence except wy itself, i.e. of
wy¢—1 and w¢t1.,. To embed tokens, the En-
coder uses the Adaptive Input layer (Baevski and
Auli, 2018). Sinusoidal positional embeddings
are added to the output and passed to two sep-
arate stacks of masked Transformers, computing
two directional encodings of the sequence, with
one (P) having past and present (wi.;) informa-
tion encoded in the present-token hidden vector
and the other (F) having present and future (wy.,)
information instead. Since in the CLM training
information about the present token must be hid-
den from the output layer, we shift and pad the
sequences in order to have only the past tokens
encoded in the output of the first stack (Ps.) and
only future tokens encoded in the output of the
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second (F.«). To combine the shifted sequences
we use a novel Transformer layer variant taking
them both as input, the BiTransformer, featuring a
co-attentive mechanism in which P attends over
F« and F attends over Ps.. The Encoder is
trained on CLM using an Adaptive Softmax layer
(Grave et al., 2017) as Prediction Head.

3.2 Transformer Variants in QBERT

In the QBERT Encoder we employ three dis-
tinct variants of the plain Transformer: the future-
masked Transformer, the past-masked Trans-
former and the BiTransformer. To introduce them
we first need to elaborate further into the inner
workings of the layer. A vanilla Transformer layer
(Vaswani et al., 2017) can be defined as a multi-
head self attention submodule followed by a time-
wise 2-layer feedforward network, with additional
residual connection (He et al., 2016) and layer nor-
malization stabilizing training (Ba et al., 2016).

Core (Self) Attention The intuition behind the
attention mechanism is very simple (Bahdanau
et al., 2015; Luong et al., 2015). We have a se-
quence of vectors (the n, queries ) of dimen-
sion d,) and we want to compute relevance scores
against some other sequence of vectors (the ny
keys K of dimension d) specific to each couple
of vectors ¢ and k. The n, x n; relevance score
matrix is then used to compute n, weighted means
of another sequence of vectors (the nj values V'
of dimension d,). So, if we pack ), K, V into
matrices, the mechanism can be distilled into the



formula:

KT
attn(Q, K, V') = softmax( @

Vi

where /dj, is a normalization factor meant to
prevent the dot products from getting too large.
In the case of the self attention mechanism (),
K, V stand for the same matrix. In the Trans-
former (Vaswani et al., 2017), multi-head attention
is used, in which n attentions (the heads) are com-
puted in parallel, concatenated and then combined
through dot product with a dyn x d, matrix W°.
For each attention head h;, there are three weight
matrices WZQ, WZ»K , Wiv, multiplying respectively
@, K and V. Formally, we define multi-head at-
tention (attnys ) as:

oo

attnMH(Q, K, V) =

Dicofimae @VEEWS)T oo
Ploftmax(= VW

)

where @ denotes concatenation along the second
dimension.

Transformer Masking In the past and future
stacks, as well as in the BiTransfomer layer, we
employ a masking mechanism on attention to en-
force directionality, i.e. to force the relevance
scores computed between () and K to be 0 for
tokens following or preceding the current one, as
needed. Masking can be implemented by per-
forming an elementwise sum between QK7 and
a ng X ny masking matrix M, whose values are
set to —oo if K; and Vj are to be excluded from
the attention computation, else 0. In our architec-
ture we employ two different masking matrices:
a future masking-matrix M which is set to —oo
when ¢ < j and a past-masking matrix M, set to
—oo when i > j; note that My = M. Mul-
tihead and masked attention can be combined by
simply using the same masking matrix in each at-
tention head. We use M in the past Transformer
stack and M), in the future stack, producing, re-
spectively, P and F'. To encourage the network
to encode comparable representations we tie the
weights between layers at the same depth on the
past and future stack.

3.2.1 Timestep Shift

Present-token information is still encoded in both
P and F. To remove it, we use a simple shift-
ing approach where we detach the nth timestep
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from P and the first from F' and add padding to
the opposite sides. This effectively shifts the hid-
den representation by one place to the left and
by one place to the right. We refer to the result-
ing sequences as, respectively, Ps, and Fic. As
a result, the th position of Ps, encodes informa-
tion from tokens wy.;—1 while Fie- encodes w;y1.y,.
Formally:
Ps =PAD ® Py.,,—1

3)
F<< :F2:n 57 PAD

where @ denotes concatenation along the timestep
dimension. The padding vector PAD is learned
during training. The process is visualized in Fig-
ure 1, where tokens are aligned according to their
shifted positions.

3.2.2 BiTransformer

To combine P and F« we employ the BiTrans-
former, a novel Transformer layer variant that uses
a masked coattentive multihead attention mecha-
nism over two sequences. Masking allows Ps
to attend over F while keeping present-token
knowledge hidden from the network, and vice
versa. This allows deeper bidirectionality in that
the resulting output is not a naive combination of
two separate directional representations but rather
the result of a whole-sequence attention, albeit
computed in a two-step process, where the first
step can be arbitrarily deep (the masked Trans-
former stacks) and the second is always shallow
(the BiTransformer). Unfortunately, BiTransform-
ers cannot be stacked as each timestep in the out-
put of the layer encodes information about every
token in the sequence but the one it has to pre-
dict in CLM, so any further use of attention would
make pretraining impossible.

The BiTransformer requires modifications to
the first part of the vanilla Transformer intramod-
ule architecture. First, both input sequences
are layer normalized separately. We compute
a masked multihead attention using the future-
masked sequence Ps. as (), the past-masked se-
quence F as K and V, using the past-masking
matrix M,,. To give an insight into what happens,
the position ¢ of the n queries, encoding informa-
tion about words 1 to 7 — 1, is allowed to look
at positions ¢ to n of the keys, encoding words
Wit+1:m, Wit2:n, and so on. Then we compute the
reverse, using F, Ps and future-masking ma-
trix M. This process results in two sequences to
which input residuals are added, and then added



together via a simple elementwise sum. The rest
of the layer works just like a regular Transformer
layer. We formally describe this coattentive mech-
anism as follows:

P{, =LayerNorm(Ps,)
F!. =LayerNorm(F)
O =attnyp g (PS, Foe, Fie, M)+
attnyarp (Foe, PS, PS, My) + Ps + Fe
“4)

O goes through the 2-layer feedforward to produce
contextualized embeddings, which are used as in-
put for the task-specific Prediction Heads. We de-
scribe them in the relevant paragraphs of Sections
4.1 and 5.

4 Experimental Setup

In what follows we first describe the Encoder ar-
chitecture hyperparameters and CLM pretraining
details (Section 4.1). In Section 4.2 we describe
the contextualized embeddings systems we use as
comparison in the WSD and Word-in-Context ex-
periments. Finally, we report the setup and results
of the experiments in Section 5.

4.1 QBERT Encoder Pretraining

CLM Prediction Head and Hyperparameters
To train the QBERT Encoder on CLM we use
an Adaptive Softmax (Grave et al., 2017) layer
as Prediction Head. Following Baevski and Auli
(2018), we tie the weights (Press and Wolf, 2017)
of the embedding matrices but not the projective
weights. Both Adaptive Input and Adaptive Soft-
max use a vocabulary of 400k words, with cutoffs
set to 35k, 100k, 200k and a shrinking factor of
4. The past and future stacks as well as the Bi-
Transformer feature an input and output size of
512, while the first layer of the internal feedfor-
ward projects the input to 2048 dimensions, the
same as the base configuration in Vaswani et al.
(2017). The masked Transformer stacks are both
5-layer deep.

Training Hyperparameters We train QBERT
on the English UMBC corpus (Han et al., 2013),
which contains around 3B tokens. In our training
loop we feed the input in batches of 5000 tokens,
splitting the corpus in sequences of max 100 to-
kens. We found it beneficial to accumulate the gra-
dient for many training steps, performing an up-
date every 16 batches, resulting in a virtual batch
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size of 80000 tokens. As an optimizer we employ
regular Nesterov-accelerated SGD, with a learn-
ing rate that first increases linearly from 1075 to 1
during a warmup phase lasting 2000 updates, and
then varies from a maximum of 1 to a minimum
of 10~° according to a Cyclical Learning Rate
(Smith, 2017) policy with cosine scheme, with a
period of 2000 updates. With each cycle, the pe-
riod is multiplied by 1.5 while both the maximum
and minimum values are halved. We train until
convergence.

We implement the system and training logic in
pytorch with the help of the fairseq library.

4.2 Comparison Systems

In our experiments we compare QBERT with three
different contextualized embeddings systems:

1. Off-the-shelf pretrained ELMo (Peters et al.,
2018). We employ a model featuring 4096-
sized bidirectional LSTMs and 512-sized
contextualized embeddings', pretrained on
the concatenation of a Wikipedia dump and a
few English monolingual news corpora®, for
a total of 5.5B tokens.

. Oft-the-shelf pretrained Flair (Akbik et al.,
2018). We employ the models the
project’s page’ refers to as mix—-forward
and mix-backward, pretrained on ‘“Web,
Wikipedia, Subtitles”*. We concatenate their
contextualized embeddings.

. SBERT (Shallowly Bidirectional Encoder
Representations from Transformers), a base-
line featuring the same architecture as
QBERT but missing the BiTransformer layer:
the outputs of the past and future stacks are
simply combined through elementwise sum
after the position shift.

We do not include in our comparison the BPE-
based systems BERT and GPT (Devlin et al.,
2019; Radford et al., 2018) as they use a different
tokenization unit, which is not suitable for WSD.

The model implementation and weights are available in
the allennlp library.

*The corpora used are the 2008 to 2012 news
crawls, available at http://data.statmt.org/
news—crawl/en/

*https://github.com/zalandoresearch/
flair

“There are no further specifications about the composition
of the training corpus.



5 Evaluation tasks

As the first and main experiment we train and eval-
uate a WSD Transformer classifier (Section 5.1.1)
using QBERT and comparison contextualized em-
beddings. To corroborate the results, as further ex-
periments we evaluate the performance of the con-
textualized embeddings on the Word-in-Context
task (Pilehvar and Camacho-Collados, 2019) (Sec-
tion 5.2).

5.1 Word Sense Disambiguation
5.1.1 Setup

To perform our WSD experiment we train a sim-
ple Transformer-based classifier, which we eval-
uate on all-words WSD benchmark datasets. We
use F1 on the test set as a measure of performance.

Architecture Our Transformer classifier takes
as input the w-weighted mean between the word
embeddings produced by the Encoder (the Adap-
tive Input layer in the case of QBERT, the
character-level CNN in the case of ELMo) and
the contextualized embeddings. We freeze the En-
coder and only train w and the weights of the
Transformer classifier. As Flair has no word em-
beddings, we concatenate the outputs of the for-
ward and backward models with GloVe embed-
dings (Pennington et al., 2014), and substitute the
weighted mean with a dense layer projecting the
concatenated matrix to the Transformer hidden
dimension. The classifier produces a probabil-
ity distribution over an output vocabulary which
includes all the possible synsets plus a special
<untagged> symbol for words with no associ-
ated tag. During training only, we treat monose-
mous words as tagged. At test time, we predict the
synset with the highest probability among those
associated with the lemma of the target word. Im-
portantly, we do not employ any Most Frequent
Sense backoff strategy.

Hyperparameters All models are trained with
Adam for a maximum of 60 epochs. We use a sim-
ilar learning rate scheduling scheme as in the CLM
training, first linearly increasing the value from
10~° to 1073, then using a cosine CLR scheduler
with period 200, maximum learning rate 103 and
minimum learning rate 10~#; with each cycle the
maximum and minimum are halved, while the pe-
riod is doubled.
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Training and Test Data For each comparison
system we train two WSD classifiers, one using
only SemCor as training corpus and the other us-
ing the concatenation of SemCor and the corpus
of WordNet’s Tagged Glosses’ (WTG). WTG in-
cludes 117659 manually disambiguated WordNet
synset glosses, with 496776 annotated tokens. We
test the performance of the models on the En-
glish all-words evaluation datasets from the Sen-
sEval and SemEval WSD evaluation campaigns,
namely Senseval-2 (Edmonds and Cotton, 2001),
Senseval-3 (Snyder and Palmer, 2004), SemEval-
07 (Pradhan et al., 2007), SemEval-13 (Navigli
et al.,, 2013), SemEval-15 (Moro and Navigli,
2015) and their concatenation (ALL). We use
SemEval-2015 as our development set, to select
the best epoch of the run. We use the version of
SemCor and the evaluation datasets included in the
WSD framework® of Raganato et al. (2017b).

5.1.2 Results

We show in Table 1 and Table 2 the results of
the evaluation on all-words WSD of the Predic-
tion Head trained on top of QBERT and the com-
parison systems. Our best model beats all the
previously established results on all evaluation
datasets. While the performance of the systems
using SBERT and ELMo are also very competi-
tive, in many cases exceeding the state of the art,
QBERT consistently outperforms them, achieving
one of the largest performance gains in years.

SemCor If we restrict the comparison to mod-
els trained on SemCor (Table 1), QBERT beats
the state of the art with a margin of 0.7 points on
Semeval-07 and 1.5 points on SemEval-13. On
our development set, SemEval-15, we get a score
2 points over the state of the art. On Semeval-2
and Senseval-3 our F1 score is in the same ballpark
as, respectively, Yuan et al. (2016) and Uslu et al.
(2018). QBERT also performs well measured
against our comparison systems. SBERT achieves
lower performance across the board, but attains
overall competitive results on all the datasets.
ELMo performs on a par with SBERT on the con-
catenation of all datasets, but gets better results
than QBERT on the development set. Flair, per-
haps as a result of its purely character-based na-
ture, is severely outperformed on most datasets.

5http ://wordnetcode.princeton.edu/
glosstag.shtml
*http://lcl.uniromal.it/wsdeval/



Systems Dev. set | S2 S3 S07 S13 S15 ALL

IMS (Melacci et al., 2018) - 0.702  0.688  0.622  0.653  0.693  0.681
IMSWE (Melacci et al., 2018) - 0722  0.699 0.629 0.662 0.719  0.696
IMSC2V  pr (Melacci et al., 2018) - 0.738 0.719 0.633 0.682 0.728  0.713
supWSDEmb (Papandrea et al., 2017) — 0.727 0.706  0.631 0.668 0.718 -
BiLSTM.uiex (Raganato et al., 2017a) S07 0720  0.694  0.637 0.664 0.724  0.699
GAS.xi(concat) (Luo et al., 2018) S07 0722 0705 - 0.672  0.726  0.706
BIiLSTM (Vial et al., 2018) WTG 0.735+ 0.709; 0.625: 0.676; 0.716; 0.705:
BiLSTM+VR (ensemble) (Vial et al., 2018) WTG 0.731 0706  0.613 0712 0.716  0.718
LSTM+LP (Yuan et al., 2016) - 0738 0.718 0.635 0695 0726 -
fastSense (Uslu et al., 2018) S2 0735 0735 0.624 0662 0732 -
SotA (single model) - 0735 0.735 0.637 0.695 0.728  0.713
SotA (ensemble) - 0735 0.735 0.637 0712 0.728 0.718
ELMo + WSD Pred. Head S15 0.719  0.718  0.607 0.703  0.762 0.714
Flair + WSD Pred. Head S15 0702 0.702 0.615 0.694 0.732  0.699
SBERT + WSD Pred. Head S15 0.731 0.719  0.640 0.694 0.741 0.715
QBERT + WSD Pred. Headx S15 0734 0732 0.644 0710 0.743  0.724

Table 1: Results of the evaluation on the English datasets of models trained on SemCor. We include as
competitors supervised systems capable of performing all-words WSD on the whole WordNet inventory.
We report in the ‘Dev set.” column the development corpus used (if any). The T symbol indicates that
the result is an average of 20 training runs. Bold means that the result is the highest one among non
ensemble models. We use % to mark significant improvement against best single model performance
on ALL according to a z-test (p < 0.05). We report in the four row blocks 1) competitor SVM-based
systems; 2) competitor neural networks; 3) state of the art as the maximum value in the previous rows;
4) QBERT and our comparison systems.

Systems Dev. set | S2 S3 S07 S13 S15 ALL
BILSTM (Vial et al., 2018) SMP 0.744; 0.708; 0.625; 0.708; 0.745; 0.719;
BiLSTM+VR (ensemble) (Vial et al., 2018) SMP 0.752 0701 0.668 0.726  0.745  0.727
SotA (single model) - 0.744 0.735 0.637 0.708 0.745 0.719
SotA (ensemble) - 0752 0.735 0.668 0.726  0.745  0.727
ELMo + WSD Pred. Headx S15 0743 0726 0.648 0.754 0.786  0.741
Flair + WSD Pred. Head S15 0.728 0.715 0.646 0.725 0.775 0.725
SBERT + WSD Pred. Headx S15 0746 0722 0.675 0.717 0.783  0.734
QBERT + WSD Pred. Head* S15 0757 0739 0.659 0.746  0.791  0.749

Table 2: Results of the evaluation on the English datasets of models trained on the concatenation of
SemCor and WTG. We use the same notation as in Table 1, employing * to mark significance against
the single model state of the art. Models from Vial et al. (2018), marked by SMP, use a random sample
of sentences from SemCor and WTG as development. In the row blocks we report 1) competitor neural
networks; 2) the state of the art as the maximum value in the previous rows and in Table 1; 3) QBERT
and our comparison systems.

SemCor and WTG When we report in the com- ~ ALL. With respect to our own comparison sys-
parison systems trained on the concatenation of  tems, QBERT performs better than ELMo, Flair
SemCor and WTG (Table 2), QBERT beats the  and SBERT in this setting as well. ELMo gets very
state of the art more consistently and by a larger =~ competitive results compared to the previous state
margin. We reach 1.3 points above the previ-  of the art, which it beats on many datasets. Com-
ous state of the art on Senseval-2, 0.4 points on  pared to QBERT, however, it gets worse results
Senseval-3, 2.4 on Semeval-07, 3.8 on Semeval- on almost every dataset, with the single excep-
13 and 4.6 on Semeval-15 (which is however our  tion of SemEval-13. Flair underperforms also in
development set). On the concatenation of all  this setting. SBERT achieves good performances,
datasets, our margin is of 3 points. Even if we con-  but still consistently lower than QBERT, except
sider the ensemble of 20 models trained on Sem-  for SemEval-07, which is however a small dataset
Cor and WTG by Vial et al. (2018), we get bet-  whose F1 scores show high variance across differ-
ter results on every dataset with the exception of  ent training runs.

SemEval-07, with a difference of 2.2 points on
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5.2 Word-in-Context

The Word-in-Context task (WiC) was recently
established by Pilehvar and Camacho-Collados
(2019). Like WSD, WiC requires identification
of a contextually appropriate meaning, but it is
framed as a simpler binary classification task:
given two contextual occurrences of the same
lemma, predict whether the pair shares the same
sense. The dataset includes 8320 context pairs, di-
vided between training and development (the test
set has not yet been released). By including the
same target word in each element of the pair, the
dataset is constructed in such a way that context-
insensitive word embeddings would not perform
better than the random baseline. Thus, the dataset
is an ideal evaluation set for assessing the quality
of the semantic information encoded in contextu-
alized embeddings.

5.2.1 Setup

Among the baselines offered by Pilehvar and
Camacho-Collados (2019), one uses ELMo con-
textualized embeddings as input to a simple two-
layer feed-forward classifier. We replicate the
same setting, but using the concatenation of
QBERT Encoder word and contextualized embed-
dings as input instead. Also, as the authors have
not yet released the gold keys for the development
set and evaluation can only be performed by up-
loading a prediction file to the Codalab competi-
tion page’, we take %0 of the training instances as
our development set, and use the provided devel-
opment set for testing. We train the system for a
max of 40 epochs, submitting the epoch with best
accuracy on the development split. WiC’s scorer
reports the accuracy calculated on the predictions.
We implement the same system employing ELMo,
Flair (using the concatenation of GloVe and con-
textualized embeddings) and SBERT as well. Per-
formance is measured by mean accuracy over 5
runs.

5.2.2 Results
In Table 3 we show the results of the evaluation on

the WiC development set.

"https://competitions.codalab.org/
competitions/20010
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System | Acc. i Acc.o

Elmo (ours) 59.97 1.41
Flair 60.23 091
SBERT 60.03 1.13
QBERT 60.74 1.22

Table 3: Results of our ELMo, SBERT and
QBERT models on the WiC dataset evaluation
dataset. We report the mean and standard devia-
tion of the accuracy for 5 runs.

In this setting ELMo performs on a par with
SBERT and Flair, while QBERT achieves the best
result. Note that the quasi-deeply bidirectional en-
coding that QBERT can exploit through the Bi-
Transformer might see its effectiveness reduced in
this setting since many pairs feature limited con-
text, even as short as 2 or 3 words. Still, the re-
sults of the WiC task corroborate those of the all-
words WSD, providing evidence that joint encod-
ing is crucial to better performance in word-level
semantics.

6 Conclusion

In this paper we showed that the use of contextu-
alized embeddings enables a WSD system to beat
the previous state of the art. Moreover, we demon-
strated that the use of the BiTransformer coat-
tentive mechanism in the QBERT contextualized
embeddings model itself results in even stronger
performance. As a result, we attain one of the
largest gains in WSD performance in years, with
a margin of 3 points over the best reported sin-
gle model on the concatenation of all datasets, and
of 2.2 points over the best ensemble model in the
literature. We leave for future work the assess-
ment of whether the gains brought about by the
use of the BiTransformer in QBERT carry over
to other tasks, helping to bridge the gap between
CLM-based and fully bidirectional MLM-based
contextualized embeddings. We release the code
to train the QBERT Encoder and the WSD clas-
sifier, along with pretrained models at https:
//github.com/mbevila/gbert.
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Abstract

In this work, we address the evaluation
of distributional semantic models trained
on smaller, domain-specific texts, particu-
larly philosophical text. Specifically, we in-
spect the behaviour of models using a pre-
trained background space in learning. We
propose a measure of consistency which
can be used as an evaluation metric when
no in-domain gold-standard data is avail-
able. This measure simply computes the
ability of a model to learn similar embed-
dings from different parts of some homoge-
neous data. We show that in spite of being a
simple evaluation, consistency actually de-
pends on various combinations of factors,
including the nature of the data itself, the
model used to train the semantic space, and
the frequency of the learned terms, both in
the background space and in the in-domain
data of interest.

1 Introduction

Distributional semantic (DS) models (Turney and
Pantel, 2010; Erk, 2012; Clark, 2015) typically
require very large corpora to construct accurate
meaning representations of words (Bengio et al.,
2003). This big data methodology presents chal-
lenges when working with text in a specific domain
or a low-resource language. In this paper, we are
interested in modeling concepts in philosophical
corpora, which are far smaller than a typical web
corpus. Instead of training directly on the philo-
sophical in-domain data, which is too sparse for
learning, we rely on a pre-trained background se-
mantic space, thus simulating a speaker with some
linguistic knowledge coming to a new domain.
Our focus is the evaluation problem encoun-
tered when working with domain-specific data.

DS models are typically evaluated on gold stan-
dard datasets containing word association scores
elicited from human subjects (e.g. Bruni et al.,
2014; Hill et al., 2015). Beside the limited prac-
tical use of such evaluation metrics (e.g. Gladkova
and Drozd, 2016), this is not a feasible method for
evaluating DS models in low-resource situations.
When domain-specific terminology is used and
the meaning of words possibly deviate from their
most dominant sense, creating regular evaluation
resources can require significant time investment
from domain experts. Evaluation metrics that do
not depend on such resources are valuable. Thus,
we introduce the metric of consistency, which re-
quires a model to learn similar word embeddings
for a given term across similar sources, for exam-
ple, two halves of a book.

Philosophical texts make a suitable case study
for out-of-domain data, as words may have very
different meanings in philosophy than in general
usage. For example, while a proposition is synony-
mous for offer or proposal in ordinary language,
in philosophy it is, among other things, a bearer
of truth-value (McGrath and Frank, 2018). Further-
more, philosophical writing is often precise and ter-
minology tends to be defined or at least discussed
in the text, so there should be enough information
for modeling meaning even when working with
small data, for instance in one or multiple works by
a particular philosopher or from a particular philo-
sophical tradition. Last but not least, the field of
philosophy could benefit from this type of model-
ing — although philosophers have not yet made
broad use of computational methods (Betti et al.,
2019), it has been shown that new insights can be
obtained using an information retrieval tool based
on a distributional semantic model of digitalized
philosophical texts (Ginammi et al., in press).

Using philosophical data, we perform a battery
of tests which reveal interesting properties of con-
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sistency. We show that in spite of being a simple
evaluation, consistency actually depends on vari-
ous combinations of factors, including the nature
of the data itself, the model used to train the seman-
tic space, and the frequency of the learned terms,
both in the background space and in the in-domain
data of interest. This leads us to conclude that the
evaluation of in-domain word embeddings from
small data has to be controlled extremely carefully
in order not to draw incorrect conclusions from ex-
perimental results.

2 Related Work

Learning embeddings for rare words is a very chal-
lenging process (Luong et al., 2013). Word2Vec
(W2V, Mikolov et al., 2013a)’s skipgram model
can learn embeddings from tiny data after modifica-
tion, as shown by Herbelot and Baroni (2017) when
it consists of just a single highly informative defini-
tional sentence. However, philosophical data is typ-
ically small data rather than tiny data. While tiny
data consists of a single definitional sentence, our
small data consists of multiple context sentences
per term that are not necessarily definitional. Her-
belot and Baroni’s (2017) Nonce2Vec (N2V) has
not been tested on this type of data. W2V has been
tested on smaller datasets, but was found to be sub-
optimal (Asr et al., 2016) and surpassed by SVD
models on a 1 million word dataset (Sahlgren and
Lenci, 2016).

Different DS evaluations test different aspects
of the learned embeddings (i.e. Wang et al., 2019).
Most existing methods are however not easily ap-
plicable to our task. The typical evaluation of com-
paring embedding similarities to a gold standard
of word similarity scores, such as the SimLex-999
dataset (Hill et al., 2015) cannot be applied, be-
cause we are interested in the representation of
specific terms: even if these terms are present in
the evaluation set, their meaning in the philosophi-
cal domain is likely to differ. Manually creating a
domain-specific resource requires labor-intensive
effort by domain experts, which makes it imprac-
tical to port standard datasets to a specific type of
corpora. This holds also for other evaluation meth-
ods such as analogy scores (Mikolov et al., 2013b),
as well as coherence (Schnabel et al., 2015), which
is based on the idea that pairs of similar words
should be close in semantic space.

Methods where human raters directly respond
to output of the model, such as comparative intrin-

sic evaluation (Schnabel et al., 2015) are interest-
ing, but require domain experts, as well as instruc-
tions that elicit the desired type of semantic rela-
tion (i.e. similarity). Extrinsic evaluation requires a
downstream task that can be evaluated, but in this
use case we are interested in the information en-
coded by the DS model itself. QVEC (Tsvetkov
et al., 2015) evaluates by aligning dimensions of
a semantic space to linguistic features, but we are
interested only in evaluating some vectors rather
than an entire space (target term vectors but not
the background space vectors), and this approach
requires language-specific resources.

Nooralahzadeh et al. (2018) evaluate domain-
specific embeddings by building a query inven-
tory for their domain from a glossary containing
synonym, antonym and alternative form informa-
tion. Unfortunately, such structured glossaries are
generally not available for specific philosophers.
Hellrich and Hahn (2016) test their models for re-
liability in a study investigating historical English
and German texts, another relatively low-resource
domain. Their reliability metric involves training
three identically parametrized models, and compar-
ing the nearest neighbors of each word in each
model using a modified Jaccard coefficient. This
metric does not require any language-specific data,
but it mainly serves as a test of the impact of the
sources of randomness in Word2Vec, and not as
a measure of the systematic semantic differences
across various data sources.

3 Consistency Metric

We propose consistency as a useful metric to eval-
uate word embeddings in the absence of domain-
specific evaluation datasets. We consider a model
to be consistent if its output does not vary when its
input should not trigger variation (i.e. because it is
sampled from the same text). Thus, a model can
only be as consistent as the input data it is trained
on and it requires the experimenter to compute data
consistency in addition to vector space consistency.

To evaluate data consistency, we create vectors
for target terms in a domain corpus under two con-
ditions: a) random sampling; b) equal split. The
‘equal split’ condition simply corresponds to split-
ting the data in the middle, thus obtaining two
subcorpora of equal size and in diachronic order.
Given a pre-trained background space kept frozen
across experiments, the vector representation of a
target is generated by simple vector addition over
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its context words. Therefore, the obtained vector
directly represents the context the target term oc-
curs in, and consequently, similar representations
(in terms of cosine similarity) mean that the target
term is used in a similar way in different parts of
a book/corpus, and is thus consistently learnable.
Crucially, though, this measure may interact with
data size. Kabbach et al. (2019) recently noted a
sum effect in the additive model, where summed
vectors are close to each other. It may be the case
that additive model vectors summed over more con-
text data contain more information and may have
higher similarity between each other, resulting in
higher consistency scores. We test this in Section 6.
When randomly sampling, we limit the number of
sentences per sample to control for this.

To evaluate space consistency, we create iden-
tically parametrized models as in Hellrich and
Hahn’s (2016) reliability metric, but over different
parts of the data, with the data being split in the
middle, as just described. We consider two ways
of comparing two vectors a1 and d3: by similar-
ity, where a higher cosine similarity indicates more
consistency, or by nearest neighbor rank, where a
higher rank of @] among the nearest neighbors of
a3 indicates more consistency. Every vector in the
background space, as well as as, is ranked by co-
sine similarity to a1 to compute this rank value.

Although it is more complex than having a sin-
gle metric, we must consider both rank and similar-
ity simultaneously: rank is a more relative metric
and helps to ground the similarity value in the local
context of the target term. A vector with 0.8 simi-
larity but lower rank is a worse result than a vector
with 0.8 similarity and a high rank, as the low rank
means that the vectors are in a dense part of the se-
mantic space and a very high similarity is required
to consistently identify which of the neighbouring
vectors refers to the same concept. Conversely, a
low-similarity, high-rank vector can be a cause for
scepticism, as it may have been placed far out from
the rest of the semantic space.

We take consistency to be a desirable property of
word embeddings at the level of a certain domain.
Of course, consistency only measures one specific
desirable property of embeddings and should thus
not be interpreted as a general quality or accuracy
score. But even taken on its own, we will show that
it exhibits complex behavior with respect to data,
background vectors and term frequency.
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4 Task Description

Our overall aim is to obtain consistent embeddings
of terms central to the works of Willard Van Or-
man Quine (1908-2000), an influential 20th cen-
tury philosopher and logician. As the meaning of
terms may differ between authors and even be-
tween books by the same author, we need to learn
such embeddings from small data, bounded by the
occurrences of the term in one particular book.

Quine datasets We build novel datasets based
on a corpus of 228 philosophical articles, books
and bundles written by Quine, with a focus om
two of Quine’s books: A System of Logistic (Quine,
1934) and Word & Object (Quine, 1960). These
Quine texts are part of a larger corpus of philo-
sophical texts, which is still being compiled, that
are central to the history of scientific ideas (Betti
and van den Berg, 2016). We focus on these partic-
ular works from the corpus because testing consis-
tency is best done on homogeneous data, and our
philosophy domain experts informed us that Quine
was a remarkably stable philosopher in his outlook
(Betti and Oortwijn, p.c.).

The first book is a formula-heavy logic book, de-
viating strongly from ordinary language. Such a
technical book is particularly likely to be internally
consistent. It contains 80,279 tokens after tokeniza-
tion and manual replacement of formulas with spe-
cial tokens. The second book is more textual and
consists of standard philosophical argumentation.
Our domain experts consider it conceptually con-
sistent. It contains 133,240 tokens after tokeniza-
tion. The full corpus of the 228 Quine articles con-
tains 1.7 million tokens and is pre-processed with
NLTK (Bird et al., 2009) for sentence splitting and
tokenization. A less common preprocessing step
we took was to remove one-character tokens from
the texts. These works contain many one-letter vari-
able names, logical symbols and other formal lan-
guage that a model might otherwise use to position
vectors of Quine terminology in particular areas
of the semantic space, as these tokens are highly
infrequent in the general domain.

To obtain terms that would be relevant to model,
we automatically extract terms from the two books’
indexes, as the most important terminology is
likely to be listed there. We include multi-word
terms, and divide the terms into 70%/30% subsets
for training and testing, resulting in a 157 / 67 split
for Logistic and a 184 / 79 split for Word & Ob-



Jject. The target terms thus differ per book, as each
book lists different terms in its index. Instead of
this automatic approach to obtaining target terms,
an expert-created resource could provide a better
set of target terms, if available. If neither this nor a
terms glossary or index of terms is available, key-
word extraction methods could be used as an al-
ternative way of obtaining terms for evaluation. In
cases where the model will not be used for any
analysis of domain-specific content downstream, it
may be sufficient to randomly select words from
the text as target terms.

Next, we derive datasets from this corpus using
our two conditions for data consistency: random
sampling and equal split. In random sampling, for
each target term that meets a frequency cutoff of 10,
we randomly select five non-overlapping samples
of up to 10 random sentences that contain the target
term, divided evenly across the samples if the term
occurs in fewer than 50 sentences. This gives us the
datasets Quine-WordObject-rnd (with Word & Ob-
ject core terms as target terms), Quine-Logistic-rnd
(with System of Logistic core terms) for our two
books of interest, and Quine-all-rnd sampled from
the full Quine corpus, where we also use the Word
& Object core terms as target terms.' In the equal
split condition, we divide a book into two halves at
a chapter boundary, and extract all sentences con-
taining index terms that meet a frequency cuf-off
of 2 in each half, resulting in the datasets Quine-
WordObject and Quine-Logistic. With random sam-
pling, we intend to capture the basic consistency
of the model. With equal split, we aim to capture
consistency across potential meaning development
throughout the book.?

Wikipedia dataset For cross-domain compari-
son, we apply our method to a 140M word pre-
processed Wikipedia snapshot using the same ran-
dom sampling process. As target terms, we used
300 randomly sampled one-word Wikipedia page
titles, following Herbelot and Baroni (2017).

5 Method

Before evaluating whether we have space consis-
tency, we must establish to what extent we have
data consistency, following our argumentation in

"Word & Object touches upon much of Quine’s work, so
its terminology can be considered representative.

2While our datasets are derived from copyrighted works
and cannot be shared, we provide replication instructions,
term lists and code here: https://bloemj.github.io/quine2vec/

Section 3. To obtain an embedding for a new tar-
get term, we use an additive model over its con-
text words, using as background space ordinary lan-
guage representations. For the in-domain context,
we use a window size of 15, with the window being
restricted to the sentence. The background space
is based on a Wikipedia snapshot of 1.6B words
trained with Word2Vec’s Gensim implementation
with default parameters, and containing 259,376
word vectors in 100 dimensions. For each target
term, context words undergo subsampling, which
randomly drops higher-frequency words.? The vec-
tors of the remaining context words are summed
to create a vector for the target term. This additive
model was used by Lazaridou et al. (2017) for their
textual data, and was shown by Herbelot and Ba-
roni (2017) to work reasonably well on tiny data.
We calculate the vectors separately per sample (or
book half), yielding comparable term vectors.

Next, we turn to space consistency. We use our
consistency metric to evaluate two models that are
suited to learning embeddings from small data:
Nonce2Vec (Herbelot and Baroni, 2017) and an
SVD-reduced count-based model over concatena-
tions of our datasets with general-domain data.

The first model, Nonce2Vec, modifies W2V’s
‘skip-gram’ model (Mikolov et al., 2013a) in a
way that is inspired by fast mapping (Carey and
Bartlett, 1978) in humans. Human learners can
acquire new words from just a single token and
this process of fast mapping appears to build on
concepts that are already known (Coutanche and
Thompson-Schill, 2014). Nonce2Vec models this
through incremental learning, an initial high learn-
ing rate, greedy processing, and parameter decay.
To simulate the existence of background knowl-
edge, Nonce2Vec maps its novel word vectors into
a previously learned semantic space, based on the
aforementioned Wikipedia snapshot and the same
subsampling procedure. Target term vectors are ini-
tialized to their sum vector from the additive model.
For each sentence, the model is trained on the target
term, only updating the weights for that term and
freezing all other network parameters. The learning
rate and context window size decay in proportion
to the number of times the target term has been
seen, and the subsampling rate increases per sen-
tence.

Secondly, we try a count-based approach, creat-

3Some promising alternative subsampling methods for tiny
data were recently discussed by Kabbach et al. (2019).
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Dataset cos-sim  rank
Quine-WordObject 0.938 1
Quine-Logistic 0907 224
Quine-WordObject-rnd 0.919 1
Quine-Logistic-rnd 0.935 1
Quine-all-rnd 0.953 1
Wiki-rnd 0.927 1.001

Table 1: Consistency metrics on different data sets
using the additive model.

ing vectors over the general-domain and in-domain
data at the same time. In this procedure, we con-
catenate a particular Quine dataset with a 140M
word Wikipedia corpus sample, in which the Quine
terms are marked with special tokens in order
to be trained separately from the same term in
the Wikipedia data. We create embeddings from
this corpus, applying PPMI weighting and singu-
lar value decomposition (SVD) to reduce the mod-
els to 100 dimensions, to match the dimensionality
of our other models and because factorized count
models have been shown to work well on smaller
datasets (Sahlgren and Lenci, 2016). We use the
Hyperwords implementation of Levy et al. (2015),
with a window size of 5, and other hyperparameters
set to the default values.

In both the above approaches, we can then com-
pute vector space consistency between different
vectors learned for the same term over different
splits of the data.

6 Consistency of Data

We start by applying the additive model to quantify
data consistency on the different datasets described
in Section 4. We compute average similarities and
nearest neighbor ranks over the vectors of all target
terms in a dataset. For the randomly sampled data
sets, we have five vectors per term, one from each
sample, and compute the metrics over all unique
combinations of 2 vectors. For the equal split set-
ting, we compare the term vectors summed over
each half of the book.

The additive model produces highly consistent
embeddings on the training data: for most terms,
the vectors summed over each book half are each
other’s nearest neighbors in the background space.
This trend is also observed for the test sets pre-
sented in Table 1, where we observe high consis-
tency for the embeddings from both books.

Using the book halves of System of Logistic
(Quine-Logistic) gives us a slightly lower data con-
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N Ccos-sim
1 0.794
2 0.837
3 0.905
4 0.923
8 0.956
all 0.987

Table 2: Data consistency for the term analytical
hypotheses in Word & Object when varying the
number of sentences per sample n.

sistency score than random sampling from that
book (Quine-Logistic-rnd), possibly because the
meaning of a term may evolve from the first half
to the second half of a book. This suggests some
utility of the data consistency measure in quanti-
fying meaning development throughout a text, as
long as other factors are controlled for. We also see
that the Wikipedia domain data (Wiki-rnd) is less
consistent than the Quine domain data (Quine-all-
rnd), which is to be expected as it contains more
diverse text.

These results seem to indicate that the addi-
tive model provides consistent embeddings. This
means that it must be possible to learn consistent
embeddings from these datasets, at least up to the
consistency values reported here, as the additive
model directly represents the contexts that predic-
tive models use for training.

As already mentioned, however, the factor of
data size may interfere with consistency. We do
observe in Table 1 that the consistency of data
sampled across the full Quine corpus is higher. Al-
though we limited our samples to 10 sentences per
term, not every core Quine term is used frequently
enough to have 5 samples with the maximum size
of 10 sentences. Specifically, in the full Quine
dataset, 68.6% of terms reach the maximum size,
while in the Word & Object dataset, only 32.1%
of terms reach it. In the Wiki set, this is 90.9%,
showing that its lower consistency is not explained
by limited data. To fully control for data size, we
would need to use artificial data: if we control for
the number of sentences, the number of words and
the number of words subsampled still affect data
size. As we are mainly interested in the quality of
models on our own philosophical corpus, we leave
this for future work.

Instead, we test the effect of data size by sum-
ming two vectors for the same term over varying
numbers of sentences, and computing the consis-



tency between them. Table 2 shows a clear effect
of data size: vectors summed over more sentences
have higher data consistency. This shows that data
consistency should ideally be computed within the
constraints of a particular data size, because vec-
tors summed over more context are more informa-
tive and thus more consistent.

7 Consistent Spaces

Having established that our data is consistent even
with fairly small samples, we proceed to use two
small data approaches to place terms consistently
in vector space. We start with Nonce2Vec (N2V),
which uses the sum vectors from the additive
model for initialization and trains only on that vec-
tor, as it does not update the vectors in the back-
ground space, only that of the target term.

For this experiment, we modified N2V in two
ways. Firstly, it now takes multiple sets of input
sentences per target term, one from each sample
or book half, and trains each term on all sets sepa-
rately, resulting in multiple term vectors, one over
each sample. Secondly, we implemented the con-
sistency metrics described in Section 3 for compar-
ing the different sample vectors and analyzing their
position in the background space.

Using N2V’s default parameters, we obtain low
consistency scores. While N2V was designed for
learning from a dataset with one sentence per term,
the terms in our dataset occur in more sentences.
A likely consequence of this difference, having
small data instead of tiny data, is that the default
parameters may include a too high learning rate
and N2V’s parameter decay may be too fast. A
learning rate that is too high can result in mod-
els with low stability. To adapt to small data, we
tune N2V’s parameters on the full Quine dataset
with the training set of target terms. We performed
a grid search following a parameter space con-
taining different learning rates ([0.1,0.5, 1, 1.5]),
the number of negative samples ([1, 3, 5]), the sub-
sampling rate ([100, 3000, 5000, 10000, 20000]),
learning rate decay ([30, 70,100, 180]), subsam-
pling rate decay ([1.0,1.3,1.9,2.5]) window de-
cay ([1, 3, 5]), window size ([15]). Bold values are
the best performing values in Herbelot and Baroni
(2017) or defaults of N2V. We obtain our best per-
formance with a learning rate of 0.1, 5 negative
samples, a learning rate decay of 30 and a subsam-
pling decay factor of 2.5.

We obtain fairly consistent embeddings with
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Dataset cos-sim  rank
Quine-WordObject 0.686 1.21
Quine-Logistic 0.748 148
Quine-WordObject-rnd 0.695 2.11
Quine-Logistic-rnd 0.743 1
Quine-all-rnd 0.717  1.59
Wiki-rnd 0.589 507.8

Table 3: Consistency metrics on different data sets
for the Nonce2Vec-based models.

Dataset COos-sim
Quine-WordObject-rnd 0.352
Quine-Logistic-rnd 0.436
Quine-all-rnd 0.440
Wiki-rnd 0.321

Table 4: Consistency on different data sets for the
SVD models.

these parameters on the test set, as shown in Ta-
ble 3: the vectors learned from the two book halves
in the Quine-WordObject and Quine-Logistic
datasets are often each other’s nearest neigh-
bour, with average nearest neighbour ranks of 1.21
and 1.48, respectively. Surprisingly, although this
model is initialized using Wikipedia background
vectors, that domain (Wiki-rnd) fares the worst in
terms of consistency, as it does in the additive
model. In general, these vector space consistency
scores are lower than the data consistency scores
we saw before, so there is room for improvement.

We therefore turn to our other approach that is
not based on the additive model: the SVD models
over the concatenation of in-domain and general-
domain data. When concatenating the datasets, we
have to ensure that the target terms in our random
samples of in-domain data are trained separately
from the same term in the general domain and in
other samples. We therefore mark them with a dif-
ferent ID for each sample. As before, we compute
cosine similarities between these target terms from
different samples to measure consistency.

Table 4 shows that the resulting embeddings are
not very consistent, with much lower average co-
sine similarities between the samples that does not
reflect the consistency of the data, as indicated by
the additive model in Table 1. The consistency
of the SVD vectors is also lower than that of the
Nonce2Vec vectors from the previous experiment.

One possible explanation for the difficulty that
both of these models have in learning from our data
is in the bridging of the domain gap between the



Group of terms similarity
System of Logistic 0.323
Word & Object 0.366
Q-High-freq W-Low-freq 0.735
Q-Low-freq W-Low-freq 0.417
Q-Low-freq W-High-freq 0.109
Q-High-freq W-High-freq 0.078

Table 5: Average similarities between Quine vec-
tors and Wiki vectors in our SVD model. Q =
Quine, W = Wiki.

Wikipedia general-domain spaces and the Quine
terminology. To quantify the difference between
domains, we selected all sentences from the Quine
corpus containing 35 target terms and concatenated
them with our 140M word Wikipedia sample, as
in the previous experiment. These terms were se-
lected to be either high-frequent or low-frequent in
the Quine domain and either high-frequent or low-
frequent in the general domain. Again, the Quine
terms were marked in order to be trained sepa-
rately from the same term in the Wikipedia domain,
and we created a SVD model. In this SVD model,
we computed the cosine similarities between each
Quine term and its Wikipedia counterpart, and take
this to be a measure of domain difference.

Table 5 shows a clear effect of term frequency.
We grouped all terms according to two factors:
their frequency in the Quine book they were se-
lected for (low, relative frequency* < 0.0005 or
high, relative frequency > 0.001) and their fre-
quency in the Wikipedia domain (low, RF <
0.000025 or high, RF > 0.00005).5 We observe
that infrequent terms with a dominant philosophi-
cal sense such as stimulus have more similar vec-
tors in both domains despite their sparsity in both
corpora. Generally, terms that are highly frequent
in the Quine-domain but have low frequency in
the Wikipedia domain are more similar between
the two domains (Q-High-freq W-Low-freq). To a
lesser extent, this is also true for terms that are low-
frequent in both domains.

This result indicates that bridging the domain
gap should be easier with these philosophical core
terms than with frequent Wikipedia terms. The fact
that our models are less consistent on Wikipedia
data also indicates that the generality of this do-
main is more relevant than any specific differences
with the Quine domain. It must therefore be possi-

4 g where F is the term frequency and C is the corpus size.

>Different thresholds are necessary for the larger corpus.
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Dataset cos-sim rank
Quine-WordObject-rnd 0.352 22,947
Quine-Logistic-rnd 0.353 24,513
Quine-all-rnd 0.382 17,262
Wiki-rnd 0.475 2,902

Table 6: Average similarities between learned
in-domain term vectors and pretrained general-
domain background vector on different data sets
for the Nonce2Vec-based models.

ble to learn good representations from this data by
using background knowledge from the Wikipedia
domain, but the models we tested did not reach the
level of consistency of the additive model.

For better or for worse, our models do move
away from what is in the background space. In
our Nonce2Vec experiment on the Quine-all-rnd
dataset, we also measured the average cosine simi-
larity and nearest neighbour rank of the pretrained
Word2Vec term vector from the background space,
compared to the vectors we learned for that same
term from the in-domain data. These numbers,
shown in Table 6, reveal that the model does not
stay close to the pre-trained background vectors
in order to achieve high consistency, which could
be a risk if consistency was used as a learning
signal in combination with an invariant initializa-
tion. Furthermore, the vectors learned from the
Wiki data are closer to the pre-trained vectors than
those learned from the Quine data. This is expected
of a good model, as there is no domain gap to
bridge when training with Wikipedia context sen-
tences into a Wikipedia background space. This
also means that the vector representations for terms
as used by Quine become more distinct after train-
ing, as our philosophy domain experts would ex-
pect of a good meaning representation of these in-
domain terms.

We must again note that consistency is not the
only desirable property of word embeddings. Un-
fortunately, other properties are more difficult to
evaluate on low-resource data. Without a domain-
specific evaluation set, we can only explore issues
with quality by examining nearest neighbors of
vectors that our metric marks as perfectly consis-
tent. We observe both in our results, illustrated
by cherry-picked examples from the Nonce2Vec
model on the Quine-WordObject dataset. Table 7
shows that the nearest neighbours for both book
half vectors for the term talking (Word & Object)
look bad. The vectors’ nearest neighbours are some



Term a1 NNs as> NNs

1 wrongfulness axiomatically
talking 2 axiomatically epiphenomenon

3 particularized impredicative

1 logophoric logophoric

2 deverbal resumptive
verbs .\ -

3 adpositions countability

4 uninflected adverbials

Table 7: Qualitative examination of some nearest
neighbours of target term vectors computed over
book halves 1 and 2 of Word & Object.

apparently unrelated words yet they are closest to
each other (similarity 0.751). We thus have high
consistency, but not a good semantic representa-
tion. The word verb is an example that does work:
all nearest neighbours from the background space
are linguistic terms. The two verbs vectors are also
closest to each other (similarity 0.625).

8 Conclusion

Our results show that it is possible to learn consis-
tent embeddings from small data in the context of
a low-resource domain, as such data provides con-
sistent contexts to learn from. Applying an addi-
tive model that sums general-domain vectors from
a pre-trained background space resulted in similar
vectors for the same terms across different contexts
from the same domain. The Nonce2Vec model also
results in consistent embeddings that are closer to
vectors of the same term trained on different con-
text sentences than to vectors of other terms. The
summed vectors from the additive model applied
to our philosophical small data are highly discrim-
inative, distinguishing the target terms from back-
ground terms almost perfectly.

Our results show the benefits of using consis-
tency as an intrinsic evaluation metric for dis-
tributional semantic models, particularly for low-
resource situations in which no gold standard sim-
ilarity scores are available. While the metric may
appear simple, it proved useful both for evaluating
the homogeneity of a dataset and for evaluating
the stability of vector spaces generated by a given
model. Consistency turns out to depend on vari-
ous combinations of factors, including the nature
of the data itself, the model used to train the seman-
tic space, and the frequency of the learned terms,
both in the background space and in the in-domain
data of interest.

For the specific purpose of modeling philosoph-
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ical terminology, consistency helps us assess the
quality of embeddings for philosophical terms,
which may differ in meaning across a book or an
author’s work, and for which no gold standard eval-
uation sets are available. These embeddings can
then be used to aid in the examination of large
volumes of philosophical text (Ginammi et al., in
press). Beyond our use case, the consistency met-
ric is quite broadly applicable — a relevant back-
ground semantic space is necessary, but this can be
constructed from out-of-domain data.

Like any metric, the consistency metric does not
answer all of our questions about the quality of our
embeddings. Although the additive model is more
consistent than the others, both its dependence on
data size and the not-always-great qualitative re-
sults show that exploring other models is worth-
while for small data. Further research is required
to determine whether the representations produced
by the additive model are useful for downstream
tasks. Using the knowledge of domain experts
in a structured evaluation task would be a good,
though resource-intensive, next step. Our metric
helps quantify the reliability of a model before in-
vesting more resources into evaluation.

Our observation that the consistency metric de-
pends on a variety of other factors shows that con-
sistency is a non-trivial aspect of the evaluation
of distributional semantic models that should not
be overlooked. In future work, we will apply the
consistency metric to evaluate other models, and
datasets from other domains.
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Abstract

Goal-Oriented Chatbots in fields such as
customer support, providing specific infor-
mation or general help with bookings or
reservations, suffer from low performance
partly due to the difficulty of obtaining
large domain-specific annotated datasets.
Given that the problem is closely related to
the domain of the conversational agent and
that data belonging to a specific domain
is difficult to annotate, there have been
some attempts at surpassing these chal-
lenges such as unsupervised pre-training
or transfer learning between different do-
mains. A more thorough analysis of the
transfer learning mechanism is justified by
the significant boost of the results demon-
strated in the results section. We de-
scribe extensive experiments using trans-
fer learning and warm-starting techniques
with improvements of more than 5% in
relative percentage of success rate in the
majority of cases, and up to 10x faster con-
vergence as opposed to training the system
without them.

1 Introduction

Goal-Oriented Conversational Agents (GO Chat-
bots) are seeing increased use to help users to
achieve predetermined goals, but they can han-
dle only very simple tasks, such as playing songs,
searching information, set alarms or reminders.
Building a dialogue agent to fulfill complex tasks
remains one of the fundamental challenges for the
Natural Language Processing (NLP) community
and Artificial Intelligence (Al) in general.

There are two dominant approaches for solv-
ing this problem. The first one relies on (fully)
supervised learning, e.g. using sequence-to-

142

sequence (Sutskever et al., 2014) models, encod-
ing a user’s utterance and its context to decode
the answer provided by the chatbot. However,
this method does not explicitly allow to locate and
make use of specific information such as entity
recognition (e.g. a person’s workplace) and re-
quires large amounts of data in order to flawlessly
extract and process particular pieces of informa-
tion relevant for the task at hand, usually a manda-
tory requirement for GO Chatbots.

The second category entails partitioning the di-
alog system into smaller subsystems, usually im-
plemented and trained separately. An example
of such a system (Li et al., 2017) consists of
several components: Natural Language Under-
standing, Dialog Manager, and Natural Language
Generation. The Dialog Manager is often im-
plemented with the aid of reinforcement learning
(RL) based techniques, for instance using Deep Q-
Nets (DQN) (Mnih et al., 2015) and having the
main goal of learning the policy on account of
which the agent will be able to provide answers.

The first approach is used with more favourable
outcomes in the case of open-domain dialogue
systems (Serban et al., 2016) than in closed-
domain dialogue systems (Peng et al., 2017), be-
cause it does not require a method to reward the
accomplishment of the task. Instead, the suc-
cess of the conversation resides in the engage-
ment of the user, measured in the level of coher-
ence and cohesion of the dialog. The second ap-
proach better fits learning tasks having less labeled
data, where the validity of the answer can be de-
termined through evaluating the task’s completion
(e.g. making a restaurant reservation). These RL-
based dialogue systems have the ability to simu-
late conversations, thus exploring the unknown di-
alogue space efficiently.

Currently reduced performance of domain-
specific conversational agents in fields such as cus-
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tomer support, providing certain information or
general help with reservations etc., is partly due to
the difficulty of obtaining large annotated datasets.
With each new domain and each new conversa-
tion flow introduced by a new task, newly anno-
tated data need to be fed into the system in order
to assimilate them and later provide the best an-
swer for different inputs. The efforts for selecting,
categorising and annotating the data are substan-
tial, no matter the previous experience or domain-
knowledge. This paper analyses the possibility to
alleviate the data annotation endeavor through the
inter-domain transfer learning technique (Ilievski
et al., 2018). Alongside with unsupervised pre-
training and others, transfer learning has proven
a significant contribution to deliver better results,
but it has only been tested with datasets from a
small number of domains. We experiment with
larger datasets, wider scenarios and we offer a
richer understanding of the method, premises and
results for overcoming the lack of data.

In this paper, we provide a thorough study
on the impact of transfer learning in goal-
oriented chatbots, starting from the work pre-
sented by (Ilievski et al., 2018). They proposed
the possibility to reuse the knowledge gained from
a source domain to boost the training and testing
performance of a machine learning chatbot model
on a different target domain, as described in more
detail in the following sections. They identify two
cases:

e domain overlap - the source and target do-
mains are different, but share a fraction of ac-
tions, and

e domain extension - the source domain is ex-
tended by the target domain.

In both cases, there are common actions that jus-
tify the transfer learning between domains instead
of independently training models for each of them.
This approach has two effects: (1) the success rate
of the model obtained with transfer learning is sig-
nificantly higher than that of the model trained
without any prior knowledge, and (2) transfer
learning can be an alternative or complementary
to warm starting, which also requires labeled data.

The results presented by the aforementioned au-
thors represent a significant improvement for GO
Chatbots, but they are obtained with only three
domains, with relatively small datasets: Movie
Booking, Restaurant Booking, and Tourist Info.
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In order to train a model for a more complex do-
main such as customer support, the improvement
has to be validated on multiple datasets from dif-
ferent domains. Also, because the cost of anno-
tating data for such a domain is very high, trans-
fer learning methods should be studied for possi-
ble improvements that increase the automation of
domain-specific conversations with few data.

The rest of the paper is organized as follows.
Section 2 presents the related work for Goal Ori-
ented Chatbots. The model used in our exper-
iments is detailed in Section 3 and the datasets
in Section 4. The results of our experiments are
described in detail and interpreted in Section 5.
Finally, future improvements and conclusions are
presented in Section 6.

2 Related Work

We have already classified the existing solutions
used for building machine learning chatbots in two
categories, based on the learning method: super-
vised learning and reinforcement learning. In this
section, we are providing a more in depth analysis
of these two alternatives.

Serban et al. (2016) propose a solution for
non-goal-driven systems, which uses an encoder-
decoder model and word embeddings to generate
the response of the agent starting from the utter-
ance of the user as input. The architecture is com-
posed from two RNNs: one for the utterance level,
which treats the dialogue as a sequence of utter-
ances, and one at the word level, which processes
an utterance as a sequence of words. This model
is trained on movie scripts and the dialogues in-
clude the speech acts. A detail worth mention-
ing here is that the pre-training is performed on a
large related, but non-dialogue, corpus. The con-
sequence is that the model accomplishes slightly
better results compared with an initialization with
fixed word embeddings.

Another supervised learning model for chatbots
is presented by (Wen et al., 2017). The architec-
ture is significantly more complex, and is divided
in several modules. The utterances received from
the user are converted into two representations:
a probability distribution over the slot-value pairs
called the belief state, and an intent representation
generated by an intent network. A database oper-
ator selects the most probable values in the belief
state and makes a query to the database. A policy
network takes as input the intent representation,



database result, and belief state and returns a rep-
resentation of the next system action. Finally, a
generation network uses the action representation
to generate a template sequence, which is filled
with actual values from the database. This system
is very similar to the one used in the current pa-
per, but the former is trained in a supervised fash-
ion and, therefore, it is possible to fail at finding
a good policy due to the shortcomings in dialogue
exploration. Firstly, the policy is learned by a net-
work instead of using RL (our case) and, secondly,
the € — greedy policy used in our experiments en-
sures the exploration of unknown states, instead
of relying entirely on seen training data and rigid
choices.

A possible solution for the disadvantage of us-
ing supervised training in the model presented
above is proposed by Su et al. (2016). The ar-
chitecture is similar, but there is a difference in
the policy network training: it receives the current
state and predicts the next system action in a su-
pervised fashion in the first phase, followed by a
reinforcement learning phase. The purpose of the
second phase is to improve the generalization ca-
pacity of the policy by a better exploration of the
action space using reinforcement learning.

A step forward in solving complex tasks is done
by Peng et al. (2017). They introduce a hier-
archical deep reinforcement learning architecture
for solving composite tasks for travel planning,
that are a collection of subtasks such as: book
air ticket, reserve hotel room, buy train ticket,
etc. This type of tasks are a challenge for RL
approaches because of the reward sparsity, the
slot constraints between different subtasks and
the agent’s tendency to switch between different
subtasks frequently when conversing with users,
which leads to poor user experience. The dialogue
manager consists of (1) a top-level dialogue pol-
icy that selects subtasks, (2) a low-level dialogue
policy that selects the actions in a given subtask,
and (3) a global state tracker that supervises the
cross-subtask constraints.

Ilievski et al. (2018) use the transfer learning
mechanism for chatbots employing neural models
to reduce the amount of training data and speed up
the learning process for new domains. This can
be accomplished with the transfer of the param-
eters learned in a source domain to a target do-
main, which has some common actions with the
former. In order to apply the transfer, it is nec-
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essary to have the same state distribution in both
domains, therefore the bots trained on the source
domain must be aware of the actions in the target
domain. They obtain an improvement of 65% in
success rate in the case of domain extension and
20% for domain overlap. This represents a note-
worthy result and one of the reasons we chose to
study this mechanism in more detail. Another rea-
son is the faster learning resulted from the combi-
nation of transfer learning with warm start.

In a more recent paper, Wolf et al. (2019)
present the improvement brought by transfer
learning in generative tasks such as open-domain
dialog generation. A Transformer model (Vaswani
et al., 2017) is pre-trained on a large unlabeled
dataset, followed by a fine-tuning step in which
two loss functions are optimized: (1) a next-
utterance classification loss, and (2) a language
modeling loss. As a result, the model outperforms
the existing systems by a significant margin ob-
taining 51% absolute improvement in perplexity
on the validation dataset.

Given that many works successfully engage un-
supervised learning in various manners, there still
remains the question: how does unsupervised pre-
training work? An answer is formulated by (Erhan
et al., 2010) and a possible explanation is that the
pre-training guides the learning towards basins of
attraction of minima that support better general-
ization from the training dataset. Therefore, it acts
like a regularizer for the supervised fine-tunning
phase, when the parameters are restricted to a rel-
atively small space. This assumption is reinforced
by the results that show an effectiveness’ upgrade
of pre-training as the number of units per layer in-
creases, a better generalization performance, but
worse training errors, and worse performance than
random initialization for small networks, all char-
acteristics of regularization. They also show a
growth in the probability of finding a local min-
ima by increasing the depth of a network with ran-
dom initialization, compared to an unsupervised
pre-training.

The most important advantage of pre-training is
the possibility of using unlabeled data, which is
really helpful given the high costs of data annota-
tion. Therefore, the effect of pre-training with very
large datasets observed in the experiments is the
most surprising result of the paper (Erhan et al.,
2010): the early examples determine the basin of
attraction for the remainder of the training and the



supervised fine-tuning cannot escape from it. The
hypothesis is that those examples induce changes
in the magnitude of the weights, which decreases
the number of regions accessible to the stochas-
tic gradient descent procedure. This is why, in a
large-scale setting, the influence of unsupervised
pre-training is still present, in contrast to the clas-
sical regularizers, when the effect disappears with
more data.

Nevertheless, fine-tuning large pre-trained
models is parameter inefficient, because each
task requires an entirely new model. A compact
and extensible model is needed in order to solve
this shortcoming. For this purpose, (Houlsby
et al., 2019) introduce adapter-based tuning,
which achieves a mean GLUE score of 80.0
on several text classification tasks, compared
to 80.4 achieved by full fine-tuning, using 1.3
task-specific parameters in total, compared to 9.
This method also facilitates continual learning
(training on a sequence of tasks) and multi-task
learning (training on simultaneous tasks).

3 Model

The system used in this paper is a semantic frames
system (Li et al., 2017). It represents the dialogue
as a set of slot-value pairs and at each step t, given
the user utterance u;, the agent takes an action a;,
which can be either the final result or a request for
a value of an empty slot. The architecture consists
of two parts: a User Simulator module and a Di-
alogue Manager module.

The purpose of the User Simulator is to inter-
act with the Dialogue Manager in order to train a
policy for an agent. First, a user goal is chosen
randomly from the goals’ pool and is unknown for
the agent, but it tries to help the user to accom-
plish it during the dialogue. The goal consists of
two types of slots:

e inform slots - represent the constraints im-
posed by the user, hence their values are
known (e.g. {movie_name: “deadpool”, city:
”Madison Heights”, date: “saturday”, num-
ber_of_people: ”57}).

request slots - represent the values that the
agent should provide, hence they enclose
unknown values to the user (e.g. {price,
start_time, critic_rating}).

Then, the user utterance u; is generated follow-
ing the Agenda-Based model (Li et al., 2016): the
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user has an internal state s,, composed of a goal G
and an agenda A. The goal consists of constraints
C and requests R. At each step ¢, the user simulator
generates the user action a,, ; based on the current
state s, ¢ and the last agent action a,, ; and updates
the current state 5;,15-

Natural Language Generation (NLG) is the
module that generates natural language text for the
user dialogue actions. For better results, a hy-
brid approach is used, including a model-based
NLG and a template-based NLG. The model-
based NLG is an LSTM decoder, which takes a
dialogue action as input and generates a sentence
with slot placeholders. If the sentence can be
found in the predefined templates, the template-
based NLG is applied for filling the slots, other-
wise, the utterance generated by the model-based
NLG is used.

Natural Language Understanding (NLU) is
the opposite to the NLG module: it takes as in-
put an utterance and determines the user’s in-
tent and the set of slots associated with it (e.g.
{movie_name: “deadpool”, date: saturday”,
number_of_people: ’5”}), in order to form a se-
mantic frame. It is implemented with an LSTM
and its objective is to maximize the conditional
probability of the slots and the intent, given the
utterance.

The Dialogue Management (DM) includes
two submodules: Dialogue State Tracker and
Policy Learning module. The goal of the Dia-
logue State Tracker is to build a representation of
the current state for policy learning, using the se-
mantic frame received from the NLU component.
It keeps the history of the user utterances, system
actions and the query results from the Knowledge
Base.

Policy learning module generates the next ac-
tion of the system a; according to the policy 7 =
P(al|s), given the current state s;, in order to ac-
complish the user goal in the smallest number of
steps. The state s; includes the latest user action,
the latest agent action, turn information, history
dialogue turns and the available database results.
A DQN (Mnih et al., 2015) is used to approximate
the state-action function )(s,a|©) and contains
the experience replay mechanism.

4 Dataset

In order to study the impact of transfer learn-
ing in multiple domains, we choose MultiwWOZ
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Figure 1: Small number of extra slots in target domain.

2.0 (Budzianowski et al., 2018), a large-scale
multi-domain corpus of natural human-human
conversations, collected through the Wizard-of-
Oz framework (Kelley, 1984). It contains about
10000 samples from seven domains, with an av-
erage of turns per dialogue between 8.9 and 15,
depending on the domain. From this dataset, we
select the following five domains: hotel, attrac-
tion, train, taxi, hospital, and also keep movie
and tourist domains used by Ilievski et al. (2018).
These domains are grouped in source-target pairs
according to their common slots, resulting five
new opportunities for transfer learning. The total
number of slots for source and target domains, re-
spectively, as well as the amount of common slots
is presented in Table1. We call extra source/target
slots the difference between the total domain slots
and the common ones.

The goals can be divided into two categories de-
pending on whether they contain request slots or
not. In the first case, the user sends a list of inform
slots to the agent and the agent should accomplish
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the task respecting the constraints imposed by the
user. In the second case, the user sends a list of
request slots besides the list of inform slots, and
the agent should accomplish the task and answer
to the user’s questions.

Source Target Source| Target | Common
Domain Domain Slots | Slots | Slots

1| movie restaurant | 6 9 3

2| restaurant | tourist 9 9 6

3| hotel attraction | 13 9 5

4| train taxi 9 6 4

5| movie hotel 17 13 5

6| tourist hotel 9 13 6

7| attraction | hospital 9 4 3

Table 1: Number of slots per domain

This is a noteworthy detail, because it can influ-
ence the success rate through the experience ac-
cumulated in the warm start phase. In this phase,
a fixed-size buffer is filled with experiences from
positive-outcome conversations. Thus, the learn-
ing process gains a boost when having to self-
calibrate based on an experience which will lead
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Figure 2: Medium number of extra slots in target domain.

to goal-achievement. We have noticed that the
best results are obtained with warm start on no-
request goals, following that the agent will man-
age to achieve request goals during training. As
we increased the percentage of request goals in
the warm start buffer, the overall success rate
decreases and the learning curve becomes less
smooth.

The total number of goals per domain is dis-
tributed as follows:

e 3000 training and 400 testing user goals in
hotel, train and attraction;

e 2000 training and 200 testing user goals in
taxi datasets;

e 80 training and 15 testing user goals in hos-
pital dataset.

5 Experiments

The experiments are executed on overlapping do-
mains, with the setup from (Ilievski et al., 2018)
and running each experiment 10 times, with
Nepochs = 100 epochs.  The second set of ex-
periments mimic testing on extension domain by
restricting the slots in the source domain to the
common ones. The warm start technique with
experience replay buffer is used for both trans-
fer learning and scratch agent (the same version,
but without transfer learning), and the experience
buffer is flushed when the agent reaches, for the
first time, a success rate of 0.3. We also keep
the maximal number of allowed turns per dialogue
Nmaz_turns = 20 in most experiments, except in
the case of attraction domain with pre-training on
hotel. In this situation, the number of turns is too
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small compared with the number of slots from the
hotel domain, and the agent trained on the source
domain is not able to learn. Consequently, we in-
creased Nynaz turns t0 40 turns.

5.1 Different Domains

The first set of experiments aims to analyze the
convergence for the agent with and without trans-
fer learning on new domains. We group the exper-
iments in three categories, according to the num-
ber of extra slots in the target domain, as follows:
1. small number of extra slots (less than 2 slots);
2. medium number of extra slots (between 3 and
6 slots); and 3. big number of extra slots (greater
than 6 slots). We are interested in the improvement
transfer learning brings to the success rate and the
convergence pace.

Figure 1 presents the learning curve for the tar-
get domains with a small number of extra slots.
For hospital domain with pre-training on attrac-
tion, both agents converge to a success rate greater
than 95%, but the agent with transfer learning con-
verges in a few epochs (<5), while the scratch
agent needs 40 epochs to reach similar accu-
racy values. In the case of taxi domain with
pre-training on train domain, the improvement of
transfer learning is 15% for train dataset and 19%
for test dataset. In absolute terms, the success rate
increases from 80% to 91% for train dataset and
from 76% to 91% on test dataset.

For the attraction domain with pre-training on
hotel, presented in Figure 2, the model obtained
with transfer learning has a success rate 7% higher
than that of the scratch model on train dataset.
This denotes an increase from 68% to 73% in ab-
solute terms. For test dataset, transfer learning im-



proves the success rate from 68% to 76% or with
12% in relative terms.

The last category registers the lowest overall
success rate for both agents and we consider that
these results stem from the large number of extra
slots in the target domain. The learning curves are
illustrated in Figure 3 and the success rate is sim-
ilar for train and test datasets. Hotel domain with
pre-training on movie has a success rate of 27%
with transfer learning and 8.5% without transfer
learning, with an improvement of 217%. While
the same domain with tourist as source domain
of transfer learning, registers a relative boost of
737%, from 4.3% to 36%.

5.2 Same Domains, Different Number of
Slots

The second set of experiments targets the evolu-
tion of the success rate according to the number
of extra slots, both in the source and target do-
main. The selected experiment evaluates the hotel
domain with pre-training on tourist dataset, given
they each have large number of slots with few
common ones (see Tablel). We keep the setup for
the other parameters and only change the number
of extra slots in one domain, while the other re-
mains constant.

Source | Target Scratch TL Scratch TL
Slots Slots Score Score Epochs Epochs
116 6 0.81 0.88 100 40
207 6 0.81 0.86 100 70
318 6 0.81 0.84 100 70
4109 6 0.77 0.83 100 50
516 9 0.55 0.72 100 100
61 7 9 0.57 0.63 100 100
7] 8 9 0.54 0.70 80 100
819 9 0.56 0.70 100 100

Table 2: Source Slots number influence

The final success rate on the test dataset for con-
stant slots in target domain is summarized in Ta-
ble 2. When the target contains only the common
slots, we observe a decrease of the success rate
with less than 2% with each extra slot added in the
source domain, for the model trained with trans-
fer learning. However, it is still by 6.6% greater
than the success rate of the agent trained with any
other prior knowledge. An interesting fact is that
the same test with the common slots plus three
extra slots in target domain has the effect of di-
minishing the success rate by an average of 15%
compared with the previous situation. At the same
time, the improvement over the scratch agent is
equal to 24%.
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Source | Target Scratch TL Scratch TL

Slots Slots Score Score Epochs Epochs
1] 6 6 0.81 0.88 100 40
21 6 7 0.75 0.85 90 40
316 8 0.63 0.79 70 100
416 9 0.55 0.72 100 100
516 10 0.53 0.59 100 100
6] 6 11 0.09 0.52 100 90
71 6 12 0.01 0.44 90 100
8] 6 13 0.0 0.39 10 100
91 9 6 0.77 0.83 100 50
10 9 7 0.71 0.82 90 100
11 9 8 0.65 0.76 100 100
12 9 9 0.56 0.70 100 100
13 9 10 0.54 0.59 100 100
14/ 9 11 0.11 0.52 100 100
15 9 12 0.04 0.42 90 100
16| 9 13 0.04 0.36 100 60

Table 3: Target Slots number influence

As expected, the number of extra slots in tar-
get domain has a bigger influence over the final
results. Therefore, the relative average decrease of
the success rate for the agent with transfer learning
18 9.5% for each extra slot, while the source do-
main contains only common slots. Another three
slots added to the source dataset generates an aver-
age decrease of 3.6%, relative to the previous test.
In comparison with the scratch agent, the improve-
ment increases from 79% in the first case, to 274%
in the latter.

6 Conclusions

In this paper, we study the factors that influence
the success of transfer learning approach in Re-
inforcement Learning-based Goal-Oriented Chat-
bots and demonstrate the results on five new cases
of overlapping domains. We found that a big num-
ber of different slots between the source domain
and the target domain leads to a smaller success
rate. Even so, the transfer learning mechanism
brings a betterment of over 79% over the agent
trained with no prior knowledge.

The outcomes encourage the use of transfer
learning with warm start on various cases of over-
lapping and extending source and target domains.
However, the optimal selection in terms of hyper-
parameters of the system, such as the number of
epochs or the number of maximum turns in a con-
versation, need to be determined for each particu-
lar scenario. They are, after all, directly influenced
by the amount of data and its characteristics: num-
ber of slots, types and distribution of goals, and the
degree of overlapping between source and target
slots.

Further work involves developing wider exper-
iment scenarios for hierarchical deep reinforce-
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Figure 3: Big number of extra slots in target domain.

ment learning system and introducing the transfer
learning approach into this architecture when the
sub-tasks share slots. Moreover, we can imagine
other transfer learning setups such as sharing sub-
tasks as the learnt common part, instead of slots,
from one composite task to another. All these at-
tempts have the objective of gaining more context
information and better performance with less an-
notated data, which is onerous to obtain.
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Abstract

We present a novel and effective tech-
nique for performing text coherence tasks
while facilitating deeper insights into the
data. Despite obtaining ever-increasing
task performance, modern deep-learning
approaches to NLP tasks often only pro-
vide users with the final network deci-
sion and no additional understanding of
the data. In this work, we show that a
new type of sentence embedding learned
through self-supervision can be applied
effectively to text coherence tasks while
serving as a window through which deeper
understanding of the data can be ob-
tained. To produce these sentence em-
beddings, we train a recurrent neural net-
work to take individual sentences and pre-
dict their location in a document in the
form of a distribution over locations. We
demonstrate that these embeddings, com-
bined with simple visual heuristics, can be
used to achieve performance competitive
with state-of-the-art on multiple text co-
herence tasks, outperforming more com-
plex and specialized approaches. Addi-
tionally, we demonstrate that these embed-
dings can provide insights useful to writ-
ers for improving writing quality and in-
forming document structuring, and assist-
ing readers in summarizing and locating
information.

1 Introduction

A goal of much of NLP research is to create tools
that not only assist in completing tasks, but help
gain insights into the text being analyzed. This is
especially true of text coherence tasks, as users are
likely to wonder where efforts should be focused
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How coherent is it?

!

Algorithm:
If dashed line is close to diagonal, high
coherence. If far, low coherence.

!

Result:
Sentences 1 and 2 may be out of order, otherwise
it is quite close, with a coherence of 0.73.

Suggest a coherent sentence order

¥

Algorithm:
Take sentences in the order that the black dots
appear along the x-axis.

Result:
Suggested order: 2, 1,4, 3, 5, 6.
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Figure 1: This paper abstract is analyzed by our
sentence position model trained on academic ab-
stracts. The sentence encodings (predicted posi-
tion distributions) are shown below each sentence,
where white is low probability and red is high. Po-
sition quantiles are ordered from left to right. The
first sentence, for example, is typical of the first
sentence of abstracts as reflected in the high first-
quantile value. For two text coherence tasks, we
show the how the sentence encodings can easily
be used to solve them. The black dots indicate the
weighted average predicted position for each sen-
tence.

to improve writing or understand how text should
be reorganized for improved coherence. By im-
proving coherence, a text becomes easier to read
and understand (Lapata and Barzilay, 2005), and
in this work we particularly focus on measuring
coherence in terms of sentence ordering.

Many recent approaches to NLP tasks make
use of end-to-end neural approaches which ex-
hibit ever-increasing performance, but provide lit-
tle value to end-users beyond a classification or
regression value (Gong et al., 2016; Logeswaran
etal., 2018; Cui et al., 2018). This leaves open the
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question of whether we can achieve good perfor-
mance on NLP tasks while simultaneously provid-
ing users with easily obtainable insights into the
data. This is precisely what the work in this paper
aims to do in the context of coherence analysis,
by providing a tool with which users can quickly
and visually gain insight into structural informa-
tion about a text. To accomplish this, we rely on
the surprising importance of sentence location in
many areas of natural language processing. If a
sentence does not appear to belong where it is lo-
cated, it decreases the coherence and readability
of the text (Lapata and Barzilay, 2005). If a sen-
tence is located at the beginning of a document
or news article, it is very likely to be a part of a
high quality extractive summary (See et al., 2017).
The location of a sentence in a scientific abstract is
also an informative indicator of its rhetorical pur-
pose (Teufel et al., 1999). It thus follows that the
knowledge of where a sentence should be located
in a text is valuable.

Tasks requiring knowledge of sentence position
— both relative to neighboring sentences and glob-
ally — appear in text coherence modelling, with
two important tasks being order discrimination (is
a sequence of sentences in the correct order?) and
sentence ordering (re-order a set of unordered sen-
tences). Traditional methods in this area make use
of manual feature engineering and established the-
ory behind coherence (Lapata and Barzilay, 2005;
Barzilay and Lapata, 2008; Grosz et al., 1995).
Modern deep-learning based approaches to these
tasks tend to revolve around taking raw words and
directly predicting local (Li and Hovy, 2014; Chen
et al., 2016) or global (Cui et al., 2017; Li and Ju-
rafsky, 2017) coherence scores or directly output
a coherent sentence ordering (Gong et al., 2016;
Logeswaran et al., 2018; Cui et al., 2018). While
new deep-learning based approaches in text coher-
ence continue to achieve ever-increasing perfor-
mance, their value in real-world applications is un-
dermined by the lack of actionable insights made
available to users.

In this paper, we introduce a self-supervised ap-
proach for learning sentence embeddings which
can be used effectively for text coherence tasks
(Section 3) while also facilitating deeper under-
standing of the data (Section 4). Figure 1 provides
a taste of this, displaying the sentence embeddings
for the abstract of this paper. The self-supervision
task we employ is that of predicting the location
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of a sentence in a document given only the raw
text. By training a neural network on this task,
it is forced to learn how the location of a sen-
tence in a structured text is related to its syntax
and semantics. As a neural model, we use a bi-
directional recurrent neural network, and train it
to take sentences and predict a discrete distribu-
tion over possible locations in the source text. We
demonstrate the effectiveness of predicted position
distributions as an accurate way to assess docu-
ment coherence by performing order discrimina-
tion and sentence reordering of scientific abstracts.
We also demonstrate a few types of insights that
these embeddings make available to users that the
predicted location of a sentence in a news article
can be used to formulate an effective heuristic for
extractive document summarization — outperform-
ing existing heuristic methods.

The primary contributions of this work are thus:

1. We propose a novel self-supervised approach
to learn sentence embeddings which works
by learning to map sentences to a distribution
over positions in a document (Section 2.2).

2. We describe how these sentence embeddings
can be applied to established coherence tasks
using simple algorithms amenable to visual
approximation (Section 2.3).

3. We demonstrate that these embeddings are
competitive at solving text coherence tasks
(Section 3) while quickly providing access to
further insights into texts (Section 4).

2 Predicted Position Distributions

2.1 Overview

By training a machine learning model to predict
the location of a sentence in a body of text (condi-
tioned upon features not trivially indicative of po-
sition), we obtain a sentence position model such
that sentences predicted to be at a particular loca-
tion possess properties typical of sentences found
at that position. For example, if a sentence is pre-
dicted to be at the beginning of a news article, it
should resemble an introductory sentence.

In the remainder of this section we describe our
neural sentence position model and then discuss
how it can be applied to text coherence tasks.

2.2 Neural Position Model

The purpose of the position model is to produce
sentence embeddings by predicting the position in
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a text of a given sentence. Training this model re-
quires no manual labeling, needing only samples
of text from the target domain. By discovering
patterns in this data, the model produces sentence
embeddings suitable for a variety of coherence-
related NLP tasks.

2.2.1 Model Architecture

To implement the position model, we use stacked
bi-directional LSTMs (Schuster and Paliwal,
1997) followed by a softmax output layer. In-
stead of predicting a single continuous value for
the position of a sentence as the fraction of the
way through a document, we frame sentence po-
sition prediction as a classification problem.
Framing the position prediction task as classi-
fication was initially motivated by the poor per-
formance of regression models; since the task of
position prediction is quite difficult, we observed
that regression models would consistently make
predictions very close to 0.5 (middle of the doc-
ument), thus not providing much useful informa-
tion. To convert the task to a classification prob-
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lem, we aim to determine what quantile of the doc-
ument a sentence resides in. Notationally, we will
refer to the number of quantiles as (). We can in-
terpret the class probabilities behind a prediction
as a discrete distribution over positions for a sen-
tence, providing us with a predicted position dis-
tribution (PPD). When () = 2 for example, we are
predicting whether a sentence is in the first or last
half of a document. When ) = 4, we are pre-
dicting which quarter of the document it is in. In
Figure 2 is a visualization of the neural architec-
ture which produces PPDs of ) = 10.

2.2.2 Features Used

The sentence position model receives an input sen-
tence as a sequence of word encodings and out-
puts a single vector of dimension (). Sentences
are fed into the BiLSTM one at a time as a se-
quence of word encodings, where the encoding for
each word consists of the concatenation of: (1)
a pretrained word embedding, (2) the average of
the pretrained word embedding for the entire doc-
ument (which is constant for all words in a docu-
ment), and (3) the difference of the first two com-
ponents (although this information is learnable
given the first two components, we found during
early experimentation that it confers a small per-
formance improvement). In addition to our own
observations, the document-wide average compo-
nent was also shown in (Logeswaran et al., 2018)
to improve performance at sentence ordering, a
task similar to sentence location prediction. For
the pretrained word embeddings, we use 300 di-
mensional fastText embeddings', shown to have
excellent cross-task performance (Joulin et al.,
2016). In Figure 2, the notation ftxt(token) rep-
resents converting a textual token (word or docu-
ment) to its fastText embedding. The embedding
for a document is the average of the embeddings
for all words in it.

The features composing the sentence embed-
dings fed into the position model must be chosen
carefully so that the order of the sentences does
not directly affect the embeddings (i.e. the sen-
tence embeddings should be the same whether the
sentence ordering is permuted or not). This is be-
cause we want the predicted sentence positions to
be independent of the true sentence position, and
not every sentence embedding technique provides

'Available online at https://fasttext.cc/
docs/en/english-vectors.html. We used the
wiki-news-300d-1M vectors.



this. As a simple example, if we include the true
location of a sentence in a text as a feature when
training the position model, then instead of learn-
ing the connection between sentence meaning and
position, the mapping would trivially exploit the
known sentence position to perfectly predict the
sentence quantile position. This would not allow
us to observe where the sentence seems it should
be located.

2.3 Application to Coherence Tasks

For the tasks of both sentence ordering and calcu-
lating coherence, PPDs can be combined with sim-
ple visually intuitive heuristics, as demonstrated in
Figure 3.

Original Text (news article)

Islamabad , pakistani -- a 9 - month - old pakistani boy bawled as he was
fingerprinted and booked in lahore on an attempted murder charge after his
family members allegedly threw bricks at police trying to collect an unpaid
bill. The ordeal started february 1 when several police officers and a bailiff
went to a home hoping to get payment for a gas bill , said butt , a senior police
official in lahore. A scuffle ensued , during which the infant 's father , one of
his teenage sons and others in t...
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Figure 3: A visualization of our NLP algorithms
utilizing PPDs applied to a news article. To re-
order sentences, we calculate average weighted
positions (identified with black circles) to induce
an ordering. Coherence is calculated with the
Kendall’s rank correlation coefficient between the
true and induced ranking. We also show how
PPDs can be used to perform summarization, as
we will explore further in Section 4.
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2.3.1 Sentence Ordering

To induce a new ordering on a sequence of sen-
tences, S, we simply sort the sentence by their
weighted average predicted quantile, Q(s € S),
defined by:

Q
Q(s) =) ix PPD(s);, (1)

=1

where PPD(s) is the (Q-dimensional predicted
position distribution/sentence embedding for the
sentence s.

2.3.2 Calculating coherence

To calculate the coherence of a text, we employ
the following simple algorithm on top of the PPDs:
use the Kendall’s tau coefficient between the sen-
tence ordering induced by the weighted average
predicted sentence positions and the true sentence
positions:

coh = 7((Q(s), for s = S1, ..., S|s)), (1, -, S])).
()

3 Experiments

In this section, we evaluate our PPD-based ap-
proaches on two coherence tasks and demonstrate
that only minimal performance is given up by our
approach to providing more insightful sentence
embeddings.

Task Dataset Q Epochs Layer dropouts Layer widths

Order Disrcim.  Accident 5 10 0.4,0.2) (256, 256)
Earthquake 10 5 0.4,0.2) (256, 64)

Reordering NeurIPS 15 20 (0.5,0.25) (256, 256)

Table 1: The neural sentence position model hy-
perparameters used in our coherence experiments.
The following settings are used across all tasks:
batch size of 32, sentence trimming/padding to a
length of 25 words, the vocabulary is set to the
1000 most frequent words in the associated train-
ing set. The Adamax optimizer is used (Kingma
and Ba, 2014) with default parameters supplied by
Keras (Chollet et al., 2015).

Order discrimination setup. For order dis-
crimination, we use the Accidents and Earth-
quakes datasets from (Barzilay and Lapata, 2008)
which consists of aviation accident reports and
news articles related to earthquakes respectively.
The task is to determine which of a permuted



Order discrimination Reordering
Model Accident Earthquake Acc T
Random 50 50 156 0
Entiry Grid 90.4 87.2 20.1 0.09
Window network - - 41.7 0.59
LSTM _PtrNet 93.7 99.5 50.9 0.67
RNN Decoder - - 48.2 0.67
Varient-LSTM+PtrNet 94 .4 99.7 51.6 0.72
ATTOrderNet 96.2 99.8 56.1 0.72
PPDs 94 .4 99.3 549 0.72

Table 2: Results on the order discrimination and sentence reordering coherence tasks. Our approach
trades only a small decrease in performance for improved utility of the sentence embeddings over other
approaches, achieving close to or the same as the state-of-the-art.

ordering of the sentences and the original or-
dering is the most coherent (in the original or-
der), for twenty such permutations. Since these
datasets only contain training and testing parti-
tions, we follow (Li and Hovy, 2014) and perform
10-fold cross-validation for hyperparameter tun-
ing. Performance is measured with the accuracy
with which the permuted sentences are identified.
For example, the Entity Grid baseline in Table 2
gets 90.4% accuracy because given a shuffled re-
port and original report, it correctly classifies them
90.4% of the time.

Sentence ordering setup. For sentence order-
ing, we use past NeurIPS abstracts to compare
with previous works. While our validation and test
partitions are nearly identical to those from (Lo-
geswaran et al., 2018), we use a publicly available
dataset’ which is missing the years 2005, 2006,
and 2007 from the training set ((Logeswaran et al.,
2018) collected data from 2005 - 2013). Abstracts
from 2014 are used for validation, and 2015 is
used for testing. To measure performance, we re-
port both reordered sentence position accuracy as
well as Kendall’s rank correlation coefficient. For
example, the Random baseline correctly predicts
the index of sentences 15.6% of the time, but there
is no correlation between the predicted ordering
and true ordering, so 7 = 0.

Training and tuning. Hyperparameter tun-
ing for both tasks is done with a random search,
choosing the hyperparameter set with the best val-
idation score averaged across the 10 folds for or-

https://www.kaggle.com/benhamner/
nips—-papers
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der discrimination dataset and for three trials for
the sentence reordering task. The final hyperpa-
rameters chosen are in Table 1.

Baselines. We compare our results against
a random baseline, the traditional Entity
Grid approach from (Barzilay and Lapata,
2008), Window network (Li and Hovy, 2014),
LSTM+PtrNet (Gong et al., 2016), RNN Decoder
and Varient-LSTM+PtrNet from (Logeswaran
et al., 2018), and the most recent state-of-the art
ATTOrderNet (Cui et al., 2018).

Results. Results for both coherence tasks are
collected in Table 2. For the order discrimination
task, we find that on both datasets, our PPD-based
approach only slightly underperforms ATTOrder-
Net (Cui et al., 2018), with performance similar to
the LSTM+PtrNet approaches (Gong et al., 2016;
Logeswaran et al., 2018). On the more difficult
sentence reordering task, our approach exhibits
performance closer to the state-of-the-art, achiev-
ing the same ranking correlation and only slightly
lower positional accuracy. Given that the pub-
licly available training set for the reordering task
is slightly smaller than that used in previous work,
it is possible that more data would allow our ap-
proach to achieve even better performance. In the
next section we will discuss the real-world value
offered by our approach that is largely missing
from existing approaches.

4 Actionable Insights

A primary benefit of applying PPDs to coherence-
related tasks is the ability to gain deeper insights
into the data. In this section, we will demon-



Sentence

Sent# Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

The misuse of outer protective garments may have led to the exposure of a potentially deadly stra...
An employee at the center has tested positive for the bacterium, which is kept at the facility.

The employee is not sick, and Jason McDonald, a CDC spokesman, said the bacteria probably aren't ...
Inspectors from the CDC and the U.S. Animal and Plant Health Inspection Service said the misuse o...
Additionally, CDC and APHIS inspectors determined that Tulane primate center staff frequently en...

The bacterium, Burkholderia pseudomallei, was being tested on mice in a biosafety level 3 lab at ...

It can cause can cause melioidosis, also known as Whitmore's disease.

All research with the agent at the facility was suspended on February 11 and will remain suspende...
The CDC says the primate facility can resume that research when Tulane officials show inspectors ...
The CDC and U.S. Department of Agriculture say they have completed their investigation, which beg...

Six others had antibodies indicating exposure to the bacterium.

According to the CDC, 'the bacteria causing melioidosis are found in contaminated water and soil.
It is spread to humans and animals through direct contact with the contaminated source.'

It is not transmitted between humans or animals, 'and the risk of acquiring melioidosis is low,' ...
Melioidosis 'is predominately a disease of tropical climates, especially in Southeast Asia and no...

1

© N U R WN

=
o

I e
“u A WIN =

Figure 4: The PPDs for

a CNN article.

(full text available at http://web.

archive.org/web/20150801040019id_/http://www.cnn.com/2015/03/13/us/
tulane-bacteria-exposure/). The dashed line shows the weighted average predicted sentence

positions.

strate the following in particular: (1) how PPDs
can quickly be used to understand how the coher-
ence of a text may be improved, (2) how the ex-
istence of multiple coherence subsections may be
identified, and (3) how PPDs can allow users to lo-
cate specific types of information without reading
a single word, a specific case of which is extrac-
tive summarization. For demonstrations, we will
use the news article presented in Figure 4.

4.1 Improving Coherence

For a writer to improve their work, understand-
ing the incoherence present is important. Observ-
ing the PPD sequence for the article in Figure 4
makes it easy to spot areas of potential incoher-
ence: they occur where consecutive PPDs are sig-
nificantly different (from sentences 1 to 2, 6 to 7,
and 10 to 11). In this case, the writer may deter-
mine that sentence 2 is perhaps not as introduc-
tory as it should be. The predicted incoherence
between sentences 10 and 11 is more interesting,
and as we will see next, the writer may realize that
this incoherence may be okay to retain.

4.2 Identifying Subsections

In Figure 4, we see rough progressions of
introductory-type sentences to conclusory-type
sentences between sentences 1 and 10 and sen-
tences 11 and 15. This may indicate that the ar-
ticle is actually composed of two coherent subsec-
tions, which means that the incoherence between
sentences 10 and 11 is expected and natural. By
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being able to understand where subsections may
occur in a document, a writer can make informed
decisions on where to split a long text into more
coherent chunks or paragraphs. Knowing where
approximate borders between ideas in a document
exist may also help readers skim the document to
find desired information more quickly, as further
discussed in the next subsection.

4.3 Locating Information and
Summarization

When reading a new article, readers well-versed
in the subject of the article may want to skip high-
level introductory comments and jump straight to
the details. For those unfamiliar with the content
or triaging many articles, this introductory infor-
mation is important to determine the subject mat-
ter. Using PPDs, locating these types of infor-
mation quickly should be easy for readers, even
when the document has multiple potential subsec-
tions. In Figure 4, sentences 1 and 11 likely con-
tain introductory information (since the probabil-
ity of occurring in the first quantiles is highest), the
most conclusory-type information is in sentence
10, and lower-level details are likely spread among
the remaining sentences.

Locating sentences with the high-level details
of a document is reminiscent of the task of extrac-
tive summarization, where significant research has
been performed (Nenkova et al., 2011; Nenkova
and McKeown, 2012). It is thus natural to ask
how well a simple PPD-based approach performs



Model (lead baseline source)

ROUGE-1 ROUGE-2 ROUGE-L

Lead-3 (Nallapati et al., 2017) 39.2 15.7 35.5
Lead-3 (See et al., 2017) 40.3 17.7 36.6
Lead-3 (Ours) 35.8 15.9 33.5
SummaRuNNer (Nallapati et al., 2017) ((Nallapati et al., 2017)) 39.6 16.2 35.3
Pointer-generator (See et al., 2017) ((See et al., 2017)) 39.5 17.3 36.4
RL (Paulus et al., 2017) ((Nallapati et al., 2017)) 41.2 15.8 39.1
TextRank (Mihalcea and Tarau, 2004) (ours) 26.2 11.1 24.3
Luhn (Luhn, 1958) (ours) 26.4 11.2 24.5
SumBasic (Nenkova and Vanderwende, 2005) (ours) 27.8 10.4 26.0
LexRank (Erkan and Radev, 2004) (ours) 28.4 11.6 26.3
PPDs (ours) 30.1 12.6 28.2

Table 3: ROUGE scores on the CNN/DailyMail summarization task. Our PPD-based heuristic outper-
forms the suite of established heuristic summarizers. However, the higher performance of the deep-
learning models demonstrates that training explicitly for summarization is beneficial.

at summarization. To answer this question, the
summarization algorithm we will use is: select the
n sentences with the highest PPD(s € S)g value,
where S is the article being extractively summa-
rized down to n sentences. For the article in Fig-
ure 4, sentences 1, 11, and 3 would be chosen since
they have the highest first-quantile probabilities.
This heuristic is conceptually similar to the Lead
heuristic, where sentences that actually occur at
the start of the document are chosen to be in the
summary. Despite its simplicity, the Lead heuris-
tic often achieves near state-of-the-art results (See
et al., 2017).

We experiment on the non-anonymized
CNN/DailyMail dataset (Hermann et al., 2015)
and evaluate with full-length ROUGE-1, -2, and
-L F1 scores (Lin and Hovy, 2003). For the
neural position model, we choose four promising
sets of hyperparameters identified during the
hyperparameter search for the sentence ordering
task in Section 3 and train each sentence position
model on 10K of the 277K training articles (which
provides our sentence position model with over
270K sentences to train on). Test results are
reported for the model with the highest validation
score. The final hyperparameters chosen for this
sentence location model are: () = 10, epochs = 10,
layer dropouts = (0.4, 0.2), layer widths = (512,
64).

We compare our PPD-based approach to other
heuristic approaches®. For completeness, we
also include results of deep-learning based ap-
proaches and their associated Lead baselines eval-

3Implementations provided by Sumy library, available at
https://pypi.python.org/pypi/sumy.
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uated using full-length ROUGE scores on the non-
anonymized CNN/DailyMail dataset.

Table 3 contains the the comparison between
our PPD-based summarizer and several estab-
lished heuristic summarizers. We observe that
our model has ROUGE scores superior to the
other heuristic approaches by a margin of ap-
proximately 2 points for ROUGE-1 and -L and 1
point for ROUGE-2. In contrast, the deep-learning
approaches trained explicitly for summarization
achieve even higher scores, suggesting that there is
more to a good summary than the sentences sim-
ply being introductory-like.

5 Related Work

Extensive research has been done on text coher-
ence, motivated by downstream utility of coher-
ence models. In addition to the applications we
demonstrate in Section 4, established applications
include determining the readability of a text (co-
herent texts are easier to read) (Barzilay and La-
pata, 2008), refinement of multi-document sum-
maries (Barzilay and Elhadad, 2002), and essay
scoring (Farag et al., 2018).

Traditional methods to coherence modelling
utilize established theory and handcrafted linguis-
tic features (Grosz et al., 1995; Lapata, 2003). The
Entity Grid model (Lapata and Barzilay, 2005;
Barzilay and Lapata, 2008) is an influential tradi-
tional approach which works by first constructing
a sentence X discourse entities (noun phrases) oc-
currence matrix, keeping track of the syntactic role
of each entity in each sentence. Sentence tran-
sition probabilities are then calculated using this
representation and used as a feature vector as in-



put to a SVM classifier trained to rank sentences
on coherence.

Newer methods utilizing neural networks and
deep learning can be grouped together by whether
they indirectly or directly produce an ordering
given an unordered set of sentences.

Indirect ordering. Approaches in the indi-
rect case include Window network (Li and Hovy,
2014), Pairwise Ranking Model (Chen et al.,
2016), the deep coherence model from (Cui et al.,
2017), and the discriminative model from (Li and
Jurafsky, 2017). These approaches are trained to
take a set of sentences (anywhere from two (Chen
et al., 2016) or three (Li and Hovy, 2014) to the
whole text (Cui et al., 2017; Li and Jurafsky,
2017)) and predict whether the component sen-
tences are already in a coherent order. A final or-
dering of sentences is constructed by maximizing
coherence of sentence subsequences.

Direct ordering. Approaches in the direct case
include (Gong et al.,, 2016; Logeswaran et al.,
2018; Cui et al., 2018). These model are trained
to take a set of sentences, encode them using some
technique, and with a recurrent neural network
decoder, output the order in which the sentences
would coherently occur.

Models in these two groups all use similar high-
level architectures: a recurrent or convolutional
sentence encoder, an optional paragraph encoder,
and then either predicting coherence from that en-
coding or iteratively reconstructing the ordering
of the sentences. The PPD-based approaches de-
scribed in Section 2 take a novel route of directly
predicting location information of each sentence.
Our approaches are thus similar to the direct ap-
proaches in that position information is directly
obtained (here, in the PPDs), however the posi-
tion information produced by our model is much
more rich than simply the index of the sentence in
the new ordering. With the set of indirect order-
ing approaches, our model approach to coherence
modelling shares the property that induction of an
ordering upon the sentences is only done after ex-
amining all of the sentence embeddings and ex-
plicitly arranging them in the most coherent fash-
ion.

6 Conclusions

The ability to facilitate deeper understanding of
texts is an important, but recently ignored, prop-
erty for coherence modelling approaches. In an
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effort to improve this situation, we present a self-
supervised approach to learning sentence embed-
dings, which we call PPDs, that rely on the con-
nection between the meaning of a sentence and its
location in a text. We implement the new sentence
embedding technique with a recurrent neural net-
work trained to map a sentence to a discrete distri-
bution indicating where in the text the sentence is
likely located. These PPDs have the useful prop-
erty that a high probability in a given quantile indi-
cates that the sentence is typical of sentences that
would occur at the corresponding location in the
text.

We demonstrate how these PPDs can be applied
to coherence tasks with algorithms simple enough
such that they can be visually performed by users
while achieving near state-of-the-art, outperform-
ing more complex and specialized systems. We
also demonstrate how PPDs can be used to ob-
tain various insights into data, including how to
go about improving the writing, how to identify
potential subsections, and how to locate specific
types of information, such as introductory or sum-
mary information. As a proof-of-concept, we ad-
ditionally show that despite PPDs not being de-
signed for the task, they can be used to create a
heuristic summarizer which outperforms compa-
rable heuristic summarizers.

In future work, it would be valuable to evaluate
our approach on texts from a wider array of do-
mains and with different sources of incoherence.
In particular, examining raw texts identified by hu-
mans as lacking coherence could be performed,
to determine how well our model correlates with
human judgment. Exploring how the algorithms
utilizing PPDs may be refined for improved per-
formance on the wide variety of coherence-related
tasks may also prove fruitful. We are also in-
terested in examining how PPDs may assist with
other NLP tasks such as text generation or author
identification.
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Abstract

This paper presents experiments in risk
factors analysis based on clinical texts en-
hanced with Linked Open Data (LOD).
The idea is to determine whether a pa-
tient has risk factors for a specific disease
analyzing only his/her outpatient records.
A semantic graph of "meta-knowledge"
about a disease of interest is constructed,
with integrated multilingual terms (labels)
of symptoms, risk factors etc. com-
ing from Wikidata, PubMed, Wikipedia
and MESH, and linked to clinical records
of individual patients via ICD-10 codes.
Then a predictive model is trained to fore-
tell whether patients are at risk to de-
velop the disease of interest. The testing
was done using outpatient records from
a nation-wide repository available for the
period 2011-2016. The results show im-
provement of the overall performance of
all tested algorithms (kNN, Naive Bayes,
Tree, Logistic regression, ANN), when the
clinical texts are enriched with LOD re-
sources.

1 Motivation

Recently, with the improving quality of Natural
Language Processing (NLP), it is increasingly rec-
ognized as the most useful tool to extract clinical
information from the free text of scientific medical
publications and clinical records. In this way NLP
becomes an instrument supporting biomedical re-
search and new application scenarios are sought
to reveal patterns and dependencies expressed by
medical texts. Open-source NLP software ap-
pears, tailored to clinical text, and this increases
NLP dissemination and acceptance. The construc-
tion of language resources for biomedical NLP
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goes in parallel to technology development. The
large variety of medical terminology systems is
continuously transformed and integrated into stan-
dardized, structured repositories of Linked Open
Data!; de-identified data sets of electronic health
records (EHRs) are made available as open re-
sources’. Current hype in open linked data and
collective efforts for their generation allow to ben-
efit from the multilingual versions of some en-
cyclopedic datasets like Wikidata and Wikipedia.
Still there is a lack of NLP tools and linguistic re-
sources with sufficient quality for processing med-
ical texts in languages other than English but the
interest to process such texts increases too.

Our goal is to determine whether a patient has
risk factors for a specified disease, according to
the information in his/her outpatient record. We
suggest to enrich patient-related clinical narratives
with additional information sources in order to en-
able a deeper investigation of dependencies be-
tween diseases and risk factors. In general it is
difficult to predict the risk of a certain disease
from the text of a clinical record only. Patient his-
tory contains numerous facts that are documented
within a series of records but most often the med-
ical expert reads them in isolation. In addition,
many symptoms might signal various diseases.
We propose to construct semantic graphs of "meta-
knowledge" about diseases of interest, to integrate
there multilingual terms (labels) of symptoms, risk
factors etc., and to link clinical records of individ-
ual patients to this construction with the hope to
discover new hints and interrelations that are not
contained in the primary documents.

In the experiments presented here, patient
records in Bulgarian language are enhanced with

"https://lod-cloud.net/

’E.g. at BioPortal https://bioportal.
bioontology.org/ and at DBMI Data Portal
https://portal.dbmi.hms.harvard.edu/
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semantic information provided by medical ontolo-
gies and other resources in English, like scien-
tific publications and encyclopedic data. Several
data mining experiments were run on datasets con-
taining outpatient records of diabetic patients in
Bulgarian linked to encyclopedic extracts and Life
Sciences LOD in English. The results show that
LOD infuse some relations that are not found by
standard text mining techniques of clinical narra-
tives, and thus enable the discovery of associations
hinting to further risk factors for diabetes mellitus.

2 Related Work

Mining of inter-related collections of clinical texts
and LOD is still rare. On the one hand, with
hundreds of open biomedical ontologies and nu-
merous biomedical datasets made available as
LOD, there is a salient opportunity to integrate
clinical and biomedical data to better interpret
patient-related texts and to uncover associations
of biomedical interest. On the other hand, such
mining experiments require significant efforts to
make clinical data interoperable with standardized
health terminologies, biomedical ontologies and
growing LOD repositories. One of the earliest pa-
pers in this direction is (Pathak et al., 2013) which
describes how patient EHRs data at Mayo Clinic
are represented as Resource Description Frame-
work (RDF) in order to identify potential drug-
drug interactions for widely prescribed cardiovas-
cular and gastroenterology drugs. Some drug-drug
interactions of interest were identified which sug-
gest lack of consensus on practice guidelines and
recommendations. The authors of (Odgers and
Dumontier, 2015) describe how they transformed
a de-identified version of the STRIDE® EHRs
into a semantic clinical data warehouse contain-
ing among others annotated clinical notes. They
showed the feasibility of using semantic web tech-
nologies to directly exploit existing biomedical
ontologies and LOD. As far as NLP is concerned,
an open-source tool (NegEx) is used in the EHR
transformation to recognize negated terms. The
integrated search in EHR data and LOD is not yet
considered as a popular trend in the secondary use
of clinical narratives (Meystre et al., 2017) and is
still an emerging direction of research mostly due
to the complex data preparation.

3Stanford Translational Research Integrated Database
Environment including a repository for EHR data,

https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC2815452/

Information Extraction (IE) refers to the auto-
matic extraction of concepts, entities and events
as well as their relations and associated attributes
from free text. A recent review of clinical IE ap-
plications (Wang et al., 2018) notes the increas-
ing interest to NLP but lists only 25 IE systems
which were used multiple times, outside the labs
where they were created. Isolated attempts ex-
ist to apply IE in the context of EHR process-
ing in frameworks for semantic search, for in-
stance SemEHR deployed to identify contextu-
alized mentions of biomedical concepts within
EHRs in a number of UK hospitals (Wu et al.,
2018). We mention the following research pro-
totypes as experimental developments, based on
some sort of IE: (Shi et al., 2017) reports about
a system extracting textual medical knowledge
from heterogeneous sources in order to integrate
it into knowledge graphs; (Hassanpour and Lan-
glotz, 2016) describes a machine learning system
that annotates radiology reports and extracts con-
cepts according to a model covering most clini-
cally significant contents in radiology; (Jackson
et al., 2018) presents the information extraction
and retrieval architecture CogStack, deployed in
the King’s College Hospital. CogStack has func-
tionality to transform records into de-identified
text documents and applies generic clinical 1E
pipelines to derive additional structured data from
free texts.

Most of the successful systems listed above
work for clinical narratives in English. All ma-
jor resources, ontologies and terminology classifi-
cations like UMLS* and MESH? are available in
English. The comprehensive ontology SNOMED
CT® was developed initially in English and then
translated to other languages. Progress in biomed-
ical NLP for languages other than English will cat-
alyze the development of tools in the respective
languages and will enable access to medical data
presented in a variety of languages (Névéol et al.,
2018). In Europe, the European commission sup-
ports the development of multilingual platforms
like SEMCARE which performs queries on un-
structured medical data in English, German, and
Dutch (L6pez-Garcia et al., 2016).

Using Big Data (nowadays - millions of EHRs)
to advance medical research and health care prac-

*nttps://www.nlm.nih.gov/research/
umls/

Shttps://meshb.nlm.nih.gov/search

*http://www.snomed.org/
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tices is now on the rise (Kessel and Combs, 2016).
Core NLP components are already embedded in
general clinical platforms similar to CogStack
(Jackson et al., 2018). Development of high qual-
ity corpora and terminology is a key factor for
NLP progress in smaller languages. Here we em-
ploy English terminology in data mining tasks
concerning EHRs in Bulgarian language.

3 Materials

The datasets used in this study are a blend between
LOD and clinical texts in Bulgarian language that
belong to the Repository underpinning the Bulgar-
ian Diabetes Register.

The Register was automatically generated in
2015 from 260 million pseudonymized outpatient
records (ORs) provided by the National Health In-
surance Fund (NHIF) for the period 2011-2014
for more than 5 million citizens yearly, more than
7 million citizens in total (Boytcheva et al., 2017).
Updated twice with data about 2015 and 2016, to-
day the Register is maintained by the University
Specialized Hospital for Active Treatment of Di-
abetes (USHATE) - Medical University Sofia. At
present the Repository of ORs, which underpins
the Register, contains about 262 million records.
These are reimbursement requests submitted by
General Practitioners and Specialists from Ambu-
latory Care after every contact with a patient. The
average number of patients with Diabetes Mellitus
Type 2 (T2DM) per year is about 450,000.

In the primary database, from where we ex-
tract our datasets, the ORs are stored as semi-
structured files with predefined XML-format. Ad-
ministrative information is structured: visit date
and time; pseudonymized personal data and visit-
related information, demographic data etc. All di-
agnoses are given by ICD—107 codes and location
names are specified in Bulgarian according to a
standard nomenclature. However much informa-
tion is provided as free text: anamnesis (case his-
tory, previous treatments, often family history, risk
factors), patient status (summary of patient state,
height, weight, body-mass index, blood pressure
etc.), clinical tests (values of clinical examinations
and lab data listed in arbitrary order) as well as
prescribed treatment (codes of drugs reimbursed
by NHIF, free text descriptions of other drugs).

To enhance clinical information with semantic

"http://apps.who.int/classifications/
icdl0/browse/2016/en#/
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data related to diagnoses, risk factors and symp-
toms, the following open datasets are selected:

e Wikidata® - contains multilingual encyclo-
pedic information. Wikidata is a trusted
resource, providing multilingual terminolo-
gies, their association with MESH codes, and
complex relations between diagnoses, risk
factors, and symptoms. Currently Wikidata
contains descriptions of 5,227 items included
in ICD-10 and 10,517 descriptions of items
included in ICD-10-CT. The main problem
is that many duplicated entities exist. For in-
stance, for ICD-10 code 120 there are two
items "angina pectoris (Q180762)" and "is-
chaemic heart disease (Q1444550)". Using
SPARQL’ queries, from Wikidata we collect
for a given diagnosis all risk factors related
to it as well as the associated MESH codes.
From the list of risk factors that is originally
in English we produce also a list in Bulgarian
for the corresponding terms.

PubMed'? — the largest collection of scien-
tific publications in the area of biomedicine
and life sciences. From Pubmed we auto-
matically extract publication abstracts and re-
lated MESH terms via advanced queries'!
through APIL. The search is limited to 10,000
abstracts in order to keep balance between the
amounts of clinical narratives and texts of sci-
entific publications.

Wikipedia — from Wikipedia we extract auto-
matically Wikipedia pages’ summaries for a
specified query via MediaWiki RESTful web
service API'2. The information in Wikipedia
is encyclopedic and more broader, thus the
semantic information there is too vague and
shallow, in contrast to PubMed abstracts.

MESH ontology — this ontology is chose