Abstract
Measuring the performance of automatic speech recognition (ASR) systems requires manually transcribed data in order to compute the word error rate (WER), which is often time-consuming and expensive. In this paper, we propose a novel approach to estimate WER, or e-WER, which does not require a gold-standard transcription of the test set. Our e-WER framework uses a comprehensive set of features: ASR recognised text, character recognition results to complement recognition output, and internal decoder features. We report results for the two features; black-box and glass-box using unseen 24 Arabic broadcast programs. Our system achieves 16.9% WER root mean squared error (RMSE) across 1,400 sentences. The estimated overall WER e-WER was 25.3% for the three hours test set, while the actual WER was 28.5%.- Anthology ID:
- P18-2004
- Volume:
- Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
- Month:
- July
- Year:
- 2018
- Address:
- Melbourne, Australia
- Editors:
- Iryna Gurevych, Yusuke Miyao
- Venue:
- ACL
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 20–24
- Language:
- URL:
- https://aclanthology.org/P18-2004
- DOI:
- 10.18653/v1/P18-2004
- Cite (ACL):
- Ahmed Ali and Steve Renals. 2018. Word Error Rate Estimation for Speech Recognition: e-WER. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 20–24, Melbourne, Australia. Association for Computational Linguistics.
- Cite (Informal):
- Word Error Rate Estimation for Speech Recognition: e-WER (Ali & Renals, ACL 2018)
- PDF:
- https://preview.aclanthology.org/nschneid-patch-1/P18-2004.pdf
- Code
- qcri/e-wer