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Introduction

Welcome to the NAACL 2022 Student Research Workshop.

The NAACL 2022 Student Research Workshop (SRW) is a forum for student researchers in computatio-
nal linguistics and natural language processing. The workshop provides a unique opportunity for student
participants to present their work and receive valuable feedback from the international research commu-
nity as well as from faculty mentors.

Following the tradition of the previous student research workshops, we have archival and non-archival
tracks for research papers and thesis proposals. The research paper track is a venue for Ph.D. students,
Masters students, and advanced undergraduates to describe completed work or work-in-progress along
with preliminary results. The thesis proposal track is offered for advanced Masters and Ph.D. students
who have decided on a thesis topic and are interested in feedback on their proposal and ideas about future
directions for their work.

This year, we received 96 submissions in total: 8 thesis proposals and 88 research papers. We accepted
5 thesis proposal and 41 research papers, resulting in an acceptance rate of 63% for thesis proposals and
47% for research papers. Out of the 41 research papers, 9 were non-archival and 33 are presented in these
proceedings. Out of the 5 thesis proposals, 1 was non-archival and 4 are presented in these proceedings.

Mentoring is at the heart of the SRW. In line with previous years, we had a pre-submission mentoring
program before the submission deadline. A total of 28 papers participated in the pre-submission mento-
ring program. This program offered students the opportunity to receive comments from an experienced
researcher to improve the writing style and presentation of their submissions.

We are deeply grateful to our sponsors, the National Science Foundation, Microsoft and Google. We
thank the program committee members for their careful reviews of each paper and all of the mentors for
donating their time to provide feedback to the student authors. We thank our faculty advisors, Danqi Chen
and Nianwen Xue, for their essential advice and guidance, and the NAACL 2022 organizing committee
for their support. Finally, we thank all the student authors for submitting their work and participating in
the NAACL 2022 edition of the SRW.
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Systematicity Emerges in Transformers when Abstract Grammatical Roles
Guide Attention

Ayush Chakravarthy*
Department of Computer Science
University of California Davis
akchakravarthy@ucdavis.edu

Jacob Russin*
Center for Neuroscience
University of California Davis
jlrussin@ucdavis.edu

Randall O’Reilly
Department of Computer Science
Center for Neuroscience
University of California Davis
One Shields Ave. Davis, CA 95616
oreilly@ucdavis.edu

Abstract

Systematicity is thought to be a key inductive
bias possessed by humans that is lacking in
standard natural language processing systems
such as those utilizing transformers. In this
work, we investigate the extent to which the fail-
ure of transformers on systematic generaliza-
tion tests can be attributed to a lack of linguistic
abstraction in its attention mechanism. We de-
velop a novel modification to the transformer
by implementing two separate input streams: a
role stream controls the attention distributions
(i.e., queries and keys) at each layer, and a filler
stream determines the values. Our results show
that when abstract role labels are assigned to in-
put sequences and provided to the role stream,
systematic generalization is improved.

1 Introduction

Transformers have achieved state-of-the-art per-
formance on many natural language processing
(NLP) tasks (Brown et al., 2020; Devlin et al., 2019;
Vaswani et al., 2017), but it has been suggested
that they remain inferior to human language learn-
ers when it comes to sample efficiency (Linzen,
2020) and more difficult generalization problems
(Baroni, 2020; Lake and Baroni, 2018; Lake et al.,
2019; Keysers et al., 2020). These architectures
have proven to scale remarkably well (Brown et al.,
2020), but may lack the strong inductive biases that
contribute to these human abilities (Battaglia et al.,
2018; Lake et al., 2017).

Systematicity, or the capacity to leverage struc-
tural or grammatical knowledge to compose famil-
iar concepts in novel ways (Fodor and Pylyshyn,
1988; Smolensky, 1990), has been highlighted as
one potential inductive bias present in humans

*equal contribution

1

(Lake et al., 2019; O’Reilly et al., 2021) that deep
learning architectures may lack (Lake and Baroni,
2018; Lake et al., 2017). It has been argued that in
humans, the ability to understand sentences such as
“John loves Mary” necessarily implies the ability
to understand certain other sentences, e.g., those
that are constructed from the same elements and
grammatical relations such as “Mary loves John”
(Fodor and Pylyshyn, 1988).

The SCAN dataset (Lake and Baroni, 2018) was
introduced to evaluate the systematic generaliza-
tion capabilities of deep neural networks. In SCAN,
instructions generated from an artificial grammar
must be translated into action sequences, and train-
test splits require models to generalize to novel
compositions of familiar words. Although deep
learning models achieve good generalization per-
formance when train and test data are split ran-
domly, their performance suffers on these system-
atic generalization tests (Lake and Baroni, 2018),
even though humans perform well on analogous
generalization problems (Lake et al., 2019).

The mechanisms underlying human systematic-
ity remain unclear, but a number of candidates
have been proposed, including tensor-product rep-
resentations (Schlag et al., 2019; Smolensky, 1990)
and specialized attention mechanisms (Goyal et al.,
2019; Bengio, 2017; Russin et al., 2020; Webb
et al., 2021). Attention is central to the transformer
architecture (Vaswani et al., 2017) and has been
leveraged in mechanisms resembling systematic
symbolic processing (Graves et al., 2014; Webb
et al., 2021), thus making it a key potential target
for encouraging systematicity (Russin et al., 2020).

In this work, we explore the connection between
attention and systematicity using a novel trans-
former architecture designed to leverage structural
or abstract information in its attention mechanism.

Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: Student Research Workshop, pages 1 - 8
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Train: every instruction without “jump”, plus 10% basic “jump” command

jump
run left
walk around right

—> RTURN WALK RTURN WALK RTURN WALK RTURN WALK

look thrice LOOK LOOK LOOK

run opposite left and walk LTURN RUN LTURN RUN WALK

look around left after walk twice WALK WALK LTURN LOOK LTURN LOOK LTURN LOOK LTURN LOOK
Test: every instruction with “jump”

jump left C=> LTURN JUMP

jump around right C—> RTURN JUMP RTURN JUMP RTURN JUMP RTURN JUMP

jump thrice —> JUMP JUMP JUMP

jump opposite left and walk

C—> LTURN JUMP LTURN JUMP WALK

look around left after jump twice —> JUMP JUMP LTURN LOOK LTURN LOOK LTURN LOOK LTURN LOOK

Figure 1: Examples from the add-jump split of SCAN. All except the simplest instructions with the word “jump”
are held out of the training set, requiring models to generalize its usage to more complicated constructions.

We hypothesized that systematicity would improve
if attention distributions in the transformer were
strictly determined from abstract inputs containing
minimal token-specific information, as this may
prevent memorization of spurious relationships in
the training data. Previous work has experimented
with incorporating additional linguistic inputs into
NLP systems (e.g., Sachan et al., 2021), but here
we propose a novel way of utilizing additional lin-
guistic knowledge: a separate “role” input stream
is introduced to the transformer, which determines
the attention distributions at each layer but is kept
separate from the typical (“filler”) input stream
used to directly generate outputs. Many kinds of in-
formation can be passed to the role input stream (in-
cluding the original tokens themselves), thereby al-
lowing us to explore the kinds of inputs that, when
used to determine attention, result in improved sys-
tematicity. In our preliminary work, we explore
the use of abstract grammatical roles to determine
attention in the transformer on the SCAN dataset.

2 Related Work

2.1 SCAN

The SCAN dataset (see Figure 1) uses a simple
finite phrase-structure grammar to generate instruc-
tion sequences that must be translated into se-
quences of actions (Lake and Baroni, 2018). In
the simple split, train and test examples are sam-
pled randomly from the set of all possible instruc-
tions. In the systematic generalization test called
the add-jump split, all instruction sequences con-
taining one of the primitive verbs (“jump”) are sys-
tematically held out of the training set, except in
its simplest form (“jump” — JUMP). The original

work showed that recurrent neural networks such
as long short-term memory (LSTM) succeed at the
simple split but fail on the add-jump split (Lake
and Baroni, 2018).

Subsequent work introduced a new framework
for generating systematic generalization tests called
distribution-based compositionality assessment,
and showed that transformers perform poorly on
these tests in addition to the original add-jump split
(Keysers et al., 2020). Although standard deep
learning architectures consistently fail at this task,
a number of non-standard approaches have demon-
strated some success, including a meta-learning
(Lake, 2019), recurrent networks that factorize
alignment and translation (Russin et al., 2020) or
are designed for primitive substitution (Li et al.,
2019), masked language model pretraining (Fur-
rer et al., 2021); iterative back-translation (Guo
et al., 2020), use of analytic expressions (Liu et al.,
2020), and auxiliary sequence prediction (Jiang
and Bansal, 2021). Our preliminary work presents
a new approach that has many commonalities with
these previous ideas.

2.2 Utilizing Linguistic Knowledge

Prior work has shown that a remarkable amount of
linguistic structure emerges in the representations
learned by large transformers self-supervised on
natural language (Linzen and Baroni, 2021; Man-
ning et al., 2020; Tenney et al., 2019), and that
transformers can learn to approximate a composi-
tional process for solving math problems (Russin
et al., 2021). These findings may cast doubt on the
idea that injecting explicit linguistic structure will
aid these models in producing the kinds of system-



atic behavior observed in human language learners.
However, given their poor systematic generaliza-
tion performance observed on tasks like SCAN
(Lake and Baroni, 2018), and their reliance on cer-
tain syntactic heuristics that lead to predictable fail-
ures on challenging sentences (McCoy et al., 2019;
Linzen and Baroni, 2021), it stands to reason that
these models may benefit from access to explicit
linguistic knowledge (Sachan et al., 2021).

Some work has attempted to incorporate
linguistically-informed labels such as part-of-
speech tags or syntactic parses into the inputs or
training regiments of deep learning models (Sachan
et al., 2021; Sennrich and Haddow, 2016; Strubell
et al., 2018), showing some improvements on ma-
chine translation (Sennrich and Haddow, 2016) and
semantic role labeling (Strubell et al., 2018). A
number of methods have been used to inject lin-
guistic knowledge into these models, including the
use of graph neural networks (Marcheggiani and
Titov, 2017; Sachan et al., 2021) and multi-task
learning (Strubell et al., 2018). In this work, we
develop a novel approach that attempts to establish
an explicit link between linguistic structure and the
attention mechanism of transformers to improve
their systematic generalization capabilities.

3 Methods

3.1 Architecture

The transformer architecture (Vaswani et al., 2017)
utilizes multi-head attention layers that take as in-
put query (@), key (K), and value (V) vectors:

T
Vi

where dy, is the dimension of the keys (K). Note
that the probability distribution over the sequence
length produced by the softmax is determined by
the queries (@) and keys (K) alone. We modified
the existing transformer architecture by separating
two streams of processing (see Figure 2): 1) the
“filler” stream determines the values at each layer,
which will be averaged according to the weights
given by the attention distributions and contribute
directly to the output of the model, and 2) the “role”
stream determines at each layer the queries (Q)) and
keys (K) — and therefore the attention distribu-
tions — but otherwise does not directly contribute
to the output of the model. This was achieved by
introducing a separate set of embeddings for each
input stream (M for the fillers and X for the roles).

Attn(Q, K, V) = softmax( W1

The existing attention mechanism was modified so
that the roles in layer [ 4 1 are determined from a
weighted combination of the keys in layer (:

M = Attn(Q, K, V)

2
X =Attn(Q, K, K)

This ensures that no information from the filler
stream can enter into the determination of the atten-
tion distributions at each layer, and that the roles
can only affect the output of the model through
their control over the attention, similar to Russin
et al. (2020). The attention at each layer can have
multiple heads in the usual way (Vaswani et al.,
2017), and the separation between the two streams
is maintained throughout both the encoder and the
decoder (see Figure 2). Because the role stream
determines the way information from the input to-
kens will be combined throughout the architecture
(through its influence on the attention distributions),
positional encodings are added to the role embed-
dings rather than the filler embeddings.

Note that this setup allows us flexibility in terms
of the kind of information that is passed to the
role input stream. The original tokens themselves
can be embedded separately and passed to the role
stream, in which case the architecture becomes
very similar to the original transformer, with the
exception of the modification to the attention de-
picted in Figure 2. Here, we embed abstract roles
for the tokens in the SCAN dataset to investigate
the relationship between abstraction in the attention
mechanism and systematic generalization behavior.

3.2 Role Auxiliary Loss

Each transformer layer returns two sets of vectors
(X and M). The output of the filler stream (M)
is a sequence of target predictions that are used to
compute the usual cross entropy loss before back-
propagation (“Filler loss”). The output of the role
stream (X)) can optionally be used in an auxiliary
cross-entropy loss on the roles assigned to the target
sequence (“Role loss”). We performed experiments
with and without this auxiliary loss, and results are
reported for both.

3.3 Thresholded Attention

Drawing inspiration from Rahaman et al. (2021),
we also experimented with thresholding the
encoder-decoder attention:

Aij if Aij > T
0 otherwise

threshold(A;;) = { 3)
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Where 7 isTthe attention threshold and A =
softmax(% ). The thresholded attention matrix
is then re-normalized and multiplied by the value

matrix as in equation 1.

3.4 Implementation Details

The encoder and decoder had 2 layers with 8 at-
tention heads and used a thresholding parameter
(1) of 0.08. The embedding dimension was 256,
the hidden dimension was 512, and the dimen-
sion of the query, key and value vectors was 256.
The model was optimized for 400 epochs using
Adam (Kingma and Ba, 2015) with a learning rate
of 2.5 x 10~4. Experiments were performed us-
ing both absolute positional encodings (Vaswani
et al., 2017) and relative positional embeddings
(Dai et al., 2019); absolute positional encodings
were found to lead to slightly better performance
with reduced variance, so for simplicity we only
report those results.

4 [Experiments

To test our hypothesized link between attention, lin-
guistic abstraction, and systematic generalization,
we developed abstract roles to label each token
in the SCAN vocabulary, and performed experi-
ments testing our architecture with and without

these abstract roles. We report results on the diffi-
cult add-jump split of the SCAN dataset, and com-
pare against previous work. Our main purpose is
to show that systematic generalization is improved
in the transformer when linguistic abstractions are
used as inputs to the role stream for determining
attention, and that there is an asymmetry in the
transformer such that these abstractions should be
used to determine attention (i.e., keys and queries)
and not to directly produce outputs (i.e., values).

4.1 SCAN Roles

The phrase-structure grammar used in SCAN is
very simple, so the grammatical roles used as ad-
ditional inputs were relatively straightforward to
implement. In the case of the add-jump split, we hy-
pothesized that the best abstract role scheme would
be one that assigned all primitive verbs to a sin-
gle role (“prim”) in both the instructions (source)
and the actions (target). Except where indicated
(section 4.2.2), all results used this scheme.

4.2 Results

Our main results are shown in Table 1. We re-
produce previous work and show that the baseline
transformer (Vaswani et al., 2017) achieves perfect
accuracy on the simple split of the SCAN dataset,



Model Simple Add jump
LSTM+Attn (Keysers et al., 2020) 999 +2.7 0.0+ 0.0

Syntactic Attention (Russin et al., 2020) 100.0 = 0.0 78.4 +27.4
CGPS-RNN (Li et al., 2019) 99+00 988+14
T5-11B (Furrer et al., 2021) X 98.3 +3.3
Semi-Sup (Guo et al., 2020) X 100.0 + 0.0
LANE (Liu et al., 2020) 100.0 £ 0.0 100.0 £ 0.0
Aux. seq. (Jiang and Bansal, 2021) X 98.32 £ 0.3
Transformer 100.0 £ 0.0 0.19 £0.18
Filler loss, no thresh (ours) 99.9 +0.01 16.2 +25.1
Filler loss, thresh (ours) 999 £0.01 85.6+1.15
Filler + Role loss, no thresh (ours) 99+002 874+56
Filler + Role loss, thresh (ours) 1000 £0.0 927+3.3

Table 1: Performance (average accuracy + standard deviation) on the simple and add-jump splits of SCAN.

but fails dramatically on the add-jump split testing
its systematic generalization capabilities. Our ar-
chitecture improves performance on the add-jump
split when the role labels are used as inputs to
the role stream. Marginal improvement relative to
baseline was observed without the use of attention
thresholding and without backpropagating the aux-
iliary role loss (“Filler loss, no thresh”). Each of
these two tweaks improved performance (“Filler
loss, thresh”, “Filler + Role loss, no thresh”) and
when both were used (“Filler + Role loss, thresh”),
the architecture achieved 92.7% accuracy on the
test set of the add-jump split.

4.2.1 Abstraction in Roles vs. Fillers

To further investigate the connection between atten-
tion and systematicity, we varied the inputs used
in each of the filler and role streams of the ar-
chitecture (see Table 2). When the filler tokens
(i.e., the words from the original SCAN vocabu-
lary) were used as inputs to both the role and filler
streams, our architecture resembled the original
transformer architecture, as these inputs were used
to simultaneously determine the outputs (i.e., the
values) and the attention (i.e., the keys and queries)
at each layer. This was confirmed in the perfor-
mance on the SCAN task, where using the fillers in
both streams (“Fillers-Fillers™) resulted in similar
performance to the baseline transformer.

As a sanity check, we also reversed the role and
filler inputs, so that the role labels were inputs to
the filler stream and the words from the original
SCAN vocabulary were used as inputs to the role
stream (“Roles-Fillers”). In this case, performance
again matched the baseline transformer on the add-
jump split, confirming our intuition that linguistic

Model Simple Add jump
Transformer  100.0 £ 0.0 0.19 £0.18
Fillers-Fillers 100.0 00 2.8+ 1.6

Roles-Fillers 100.0 £ 0.0 0.22 +0.16
Fillers-Roles  100.0 £ 0.0 92.7£3.3

Table 2: Performance on the add-jump split only im-
proved when abstract annotations were used in the role
stream (“Fillers-Roles”).

abstractions are best used to determine attention
distributions, not values.

4.2.2 Varying the Level of Abstraction

We believe that the previous result highlights a
strength of our setup, as it allows us the flexibility
to diverge from the original transformer in a con-
tinuous way by varying the amount of abstraction
used in the inputs to the role stream. For exam-
ple, in a natural language task it would be possible
to vary the kinds of abstract labels or annotations
supplied as input to the role stream from highly
abstract part-of-speech tags to more complex anno-
tations from more sophisticated automated parses.

To test this idea in the SCAN setting, we experi-
mented with different schemes for assigning roles
that varied in their level of abstraction, as measured
by the empirical entropy of the resultant source role
vocabulary (see Figure 3). After our initial role-
assignment scheme, we made roles progressively
more abstract by assigning additional instruction
words to the same role (e.g., “left” and “right” to
“dir”, “twice” and “thrice” to “num?”, etc.). Results
validated the assumption that the best scheme was
one that used a single role for each of the primitive
verbs, and assigned a different role to each of the
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other words (entropy = 3.127). This experiment
shows that there is an ideal level of abstraction to
use in the role stream: too much abstraction results
in an inability to distinguish relevant distinctions,
and too little results in the unsystematic memoriza-
tion typical of the vanilla transformer.

5 Conclusion

Our preliminary work establishes a connection be-
tween linguistic abstraction, the attention mecha-
nism used in transformers, and systematic general-
ization behavior as measured by performance on
the SCAN dataset: when abstract roles are assigned
to inputs and used to determine the attention at each
layer, systematic generalization improves. We de-
veloped an architecture that may facilitate greater
understanding of the original transformer (Vaswani
et al., 2017) by allowing more precise investigation
into the relative contributions of attention distribu-
tions and representation learning. Future work will
test our setup on other compositional or systematic
generalization tasks (Keysers et al., 2020; Kim and
Linzen, 2020) and determine the kinds of linguistic
abstraction that allows success on these tasks. In
addition, future work will experiment with using
our novel architecture on natural language datasets
using varying levels of linguistic abstraction.

The extent to which human-level language un-
derstanding requires stronger inductive biases than
those currently implemented in deep learning sys-
tems remains an open question. Our work shows
that utilizing linguistic abstraction in the attention
mechanism of transformers may be a promising ap-
proach for improving the systematic generalization
capabilities of deep neural networks.
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Grounding in social media: An approach to building a
chit-chat dialogue model

Ritvik Choudhary
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Abstract

Building open-domain dialogue systems capa-
ble of rich human-like conversational ability is
one of the fundamental challenges in language
generation. However, even with recent advance-
ments in the field, existing open-domain gener-
ative models fail to capture and utilize external
knowledge, leading to repetitive or generic re-
sponses to unseen utterances. Current work
on knowledge-grounded dialogue generation
primarily focuses on persona incorporation or
searching a fact-based structured knowledge
source such as Wikipedia. Our method takes
a broader and simpler approach, which aims
to improve the raw conversation ability of the
system by mimicking the human response be-
havior through casual interactions found on so-
cial media. Utilizing a joint retriever-generator
setup, the model queries a large set of filtered
comment data from Reddit to act as additional
context for the seq2seq generator. Automatic
and human evaluations on open-domain dia-
logue datasets demonstrate the effectiveness of
our approach.

1 Introduction

Humans have long wanted to talk with the machine
and have them comprehend and generate natural
language. The task of chit-chat dialogue response
generation can be described as one of the major
goals in natural language processing. As such,
there has been considerable interest in the sub-field
of open-domain dialogue models.

Nevertheless, the existing dialogue response gen-
eration models still suffer from some very funda-
mental problems: lack of interesting (“Ok”, “I see",
etc.) or uninformative responses (“I don’t know")
(Li et al., 20164, Shao et al., 2017, Ghazvininejad
et al., 2017). The primary cause for this is that,
unlike humans, the models do not have access to
knowledge, experience about out-of-domain topics
or human conversational habits and hence can only
produce limited unengaging generic responses.
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Recent work has proposed considering addi-
tional context information such as multi-turn con-
versational history (Zhang et al., 2018), persona (Li
et al., 2016b) or a fact-based knowledge base (Di-
nan et al., 2019). Among these, our work ap-
proaches this problem from a more general stand-
point of improving the raw conversational ability
of generative models. We attempt this by taking
inspiration from how humans learn to converse, i.e.,
through mimicking social interactions. Applying
this in the context of dialogue models, we use a
human-readable external knowledge base consist-
ing solely of unstructured social media interactions
(hereinafter referred to as SMIkb), which tends
to include a more diverse language structure and
hence improve generated responses.

For our approach, we jointly train a generator-
retriever model where the retriever searches
through pre-indexed SMIkb and feeds the related
information together with the input utterance to the
generative seq2seq model, allowing for additional
context at the time of generation.

In particular, we utilize the Dense Passage Re-
triever proposed by Karpukhin et al. (2020) on top
of BART (Lewis et al., 2020a) as our generational
model trained on a mix of open-domain dialogue
datasets, together with a collection of Reddit sub-
missions and comments as our main source of so-
cial interactions. Experiments showed that our ap-
proach outperformed the existing vanilla seq2seq
baseline (BART) across all of the automatic and
human evaluation metrics. By making use of in-
teractions grounded in social media, the generated
responses were not only more engaging but were
also shown to be much more relevant and natural,
thus establishing the effectiveness of our approach.

2 Related Work

Dialogue Systems In recent years, major break-
throughs beginning with the Transformer (Vaswani
et al., 2017) and BERT (Devlin et al., 2019) have
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SMikb (Document Indexed)

It's simple really. You just
have to be exceptionally lucky.
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Figure 1: Our proposed dialogue response generation approach grounded in SMIkb through a jointly trained
retriever-seq2seq generator setup. Utterance u is encoded and matched against titles (in red) where the respective
comments (k, in blue) are retrieved from the SMIkb. These act as an additional context for the generator to generate

the final dialogue response 7.

quickly shifted the landscape of modern NLP re-
search. These were shortly followed by auto-
regressive seq2seq models (T5 (Raffel et al., 2020),
BART) that significantly improved performance on
generation-based tasks such as dialogue systems.
We adopt the widely accessible BART as our strong
baseline.

Knowledge-based Conversational Models In-
corporating additional context or external informa-
tion into existing models has been a field of much
interest lately. Persona-chat (Zhang et al., 2018)
or Empathetic Dialogues (Rashkin et al., 2019)
take into account persona or empathetic informa-
tion. Furthermore, advancements making use of
knowledge bases in the area of open-domain di-
alogue systems have become increasingly com-
mon (Ghazvininejad et al., 2017; Dinan et al.,
2019). The closest work to ours, in terms of includ-
ing a retrieval step for dialogue generation, is We-
ston et al. (2018), which proposed an approach
involving pre-training the retriever and generat-
ing only over the candidates retrieved in advance
from the training set. More recently Roller et al.
(2021) also tested retrieval-based dialogue genera-
tion. However, similar to Weston et al. (2018), they
utilized a retrieval model that was kept fixed during
training. Our work meanwhile follows a different
direction that does not require pre-training of the
retriever but fine-tunes it along with the generator
to retrieve over a much larger knowledge base of
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interactions at generation time.

We would also like to mention Shuster et al.
(2021), which investigates factual hallucination in
dialogue retrieval-generation models with a fact-
based knowledge base such as Wikipedia. Our
work takes a more generalized approach, focusing
solely on improving the raw conversational ability
of dialogue models. Instead of factual accuracy,
we propose a simple approach for generating an
engaging conversation grounded in unstructured
social media interactions.

3 Proposed Approach

In this section, we discuss our approach to intro-
ducing social media interactions as an external
knowledge base (SMIkb) to ground in for more
natural and human-like response generation. We
begin with formulating the task of dialogue genera-
tion and then proceed to explain our joint retriever-
generator model as the proposed setup for utilizing
the aforementioned unstructured data source. Note
that in this work, we primarily focus on response
generation for single-turn dialogues or dialogues.
We decided that other settings such as a multi-turn
case were best addressed in future work.

3.1 Task Formulation

Our task of response generation grounded in ex-
ternal knowledge can be formulated as training a
model to predict a response r = (11,79, ..., T, ) of



m words when given an input utterance u and a set
of documents D that might contain relevant knowl-
edge. We define our goal as to allow the model to
learn the parameters such that when given an input
utterance u and a knowledge base D, the model
can generate a response r following the probability
p(riju, r<;, D; 0), where 0 refers to the parameters
of the model.

3.2 Model

Inspired by recent advances in retrieval assisted
QA (Guu et al., 2020; Lewis et al., 2020b), we
adopt a simple joint retriever-generator setup to
the task of dialogue generation. Concretely, we
utilize BART, a seq2seq model pre-trained on a
denoising objective, as our generative model along
with the pre-trained neural Dense Passage Retriever
(DPR) (Karpukhin et al., 2020) as the retriever of
choice. DPR is a highly efficient neural retriever
pre-trained for retrieving the top-k similar docu-
ments to an input query u. It executes this by
encoding both the query and the entire knowledge
base through independent BERT-based encoders
(as t). Furthermore, we follow Karpukhin et al.
(2020) to build an offline searchable dense vector
index of these embeddings for our SMIkb using
the FAISS (Johnson et al., 2017) library for faster
lookup. An overview of our architecture is shown
in Figure 1. Application of our model to dialogue
response generation can be formulated as a two-
step process: (1) the retriever searching top-%k docu-
ments from the pre-indexed interaction knowledge
base, relevant to the input utterance, and (2) the
generator predicting the response to the previous
utterance along with the retrieved context.

Following the notion set in Section 3.1, the prob-
ability of generating the response r given the utter-
ance u and each of the top-k documents d; from
the knowledge base D can be defined as

p(rlu; 0,0) = 35 pa(d;lu; \) TT; po(rilu, r<i, djs 0),

()
where 6 and )\ are parameters for the generator and
retriever, respectively. They are both fine-tuned
jointly in an end-to-end fashion, with the retriever
providing additional context that is concatenated
together with the input at the time of generation.
As there is no “correct” document source in the
knowledge base, we consider it to be a latent vari-
able. Therefore, during decoding we marginalize
these probabilities over all the retrieved documents
to return the most probable (best) response using
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Dataset Total (turns) Train Valid Test
DailyDialog 76,743 53,721 11,511 11,511
DailyDialog++ 39,913 27,939 5987 5987
Cornell Movie-Dialogs 221,088 154,762 33,163 33,163
Reddit (pseudo extracted) 200,000 140,000 30,000 30,000

Table 1: Overview of datasets in use.

beam search.

4 Experiments

We evaluate our model together with various ex-
ternal knowledge datasets on a mixture of open-
domain dialogue datasets. The results are then
compared with two BART-based baselines.

4.1 SMIkb

Aiming to improve the raw communication ability
of dialogue systems by mimicking human response
behavior, we built our external knowledge base of
unstructured social media interactions (SMIkb). It
comprises of entries from top thread titles and their
top 100 comments from Reddit, an American social
news aggregation and discussion site, throughout
2020 (January-November). A total of 1.6 million
entries were first scraped through the open-sourced
Pushshift API (Baumgartner et al., 2020) of which
a random selection of 600,000 (due to memory
limitations) makes up our SMIkb. A snapshot of
the same is shared in Table 5.

Furthermore, to verify the effectiveness of us-
ing a conversational knowledge base like Reddit,
we compared ours to a pure Wikipedia knowledge
base (ref. “Wiki”’) of the same size (random sam-
ple of 600k entries) containing the wiki page title
and the leading 100 words. Additionally, we also
tested a 1:1 combination of the above two bases
(ref. “Mix™).

4.2 Datasets

We fine-tune our models on a variety of open-
domain and scraped dialogue datasets.

Open-domain datasets We use a combination
of DailyDialog (Li et al., 2017) and DailyDia-
log++ (Sai et al., 2020) as high-quality daily life-
based dialogue sets. We also consider the Cornell
Movie-Dialogs Corpus (Danescu-Niculescu-Mizil
and Lee, 2011), which is a corpus of scripts of
movie dialogues.

Reddit Furthermore we extract another 200,000
comment pairs from Reddit, distinct from the



Model Setup Training Knowledge Base BLEU-4 Dist-1 Dist-2
Data (Retrieval)
Baseline 1 ODD None 1.31 0.20 0.96
Baseline 2 ODD + SMIkb  None 1.05 0.12 0.47
k=3 k=5 k=717

BLEU-4 Dist-1 Dist-2 BLEU-4 Dist-1 Dist-2 BLEU-4 Dist-1 Dist-2
Ours (SMIkb) ODD SMIkb 9.78 2.80 16.90 10.51 550 26.63 10.48 5.51  26.62
Ours (Wiki) ODD Wiki 6.93 2.57 1491 7.14 494  23.38 7.11 5.02  23.79
Ours (Mix) ODD SMIkb + Wiki 6.03 245  14.08 6.20 471 2225 6.21 471 2223

Table 2: Automatic evaluation of generated responses across various values of & for top-k document retrieval. The
baselines do not have a retrieval step and therefore do not have an effect due to changing %. bold refers to the best
scores across all kK among the generated responses. ODD is the collection of Open-Domain Datasets from Section

4.2.

Model Setup Human Eval.

Relevance  Engagement Knowledge
Gold (Test-Data) 3.50 3.33 3.47
Baseline 1 2.82 2.35 3.00
Baseline 2 3.03 3.02 2.89
Ours (SMIkb) 3.84 3.75 3.60
Ours (Wiki) 3.40 3.75 3.76
Ours (Mix) 3.62 3.80 3.71

Table 3: Human evaluation of responses for the best
k =5.

SMIkb, to act as a pseudo dialogue dataset to sup-
plement our knowledge base.
An overview of the datasets is listed in Table 1.

4.3 Experimental Setup

Implementation Details Our joint retriever-
generator model consists of a pre-trained Dense
Passage Retriever and BART-large (24 layers,
406M), which are later fine-tuned together on
SMIkb and dialogue datasets. The model is trained
mostly with the default parameters, batch size of 1,
and an initial learning rate of 3 x 1075, We further
experiment with various values of k for our top-k
document retrieval, while beam search with size of
5 is used as our response decoding strategy.

Baseline We consider two strong baselines based
on a vanilla BART-large with no retriever to inves-
tigate the effectiveness of our approach. The first is
fine-tuned solely on the datasets mentioned in Sec-
tion 4.2 (ref. “Baseline 1’) with no SMIkb. Next
to confirm the effectiveness of our providing exter-
nal data through our retriever-generator setup, we
merge the entire SMIkb interactions into our train-
ing data, and simply fine-tune the vanilla model on
this new extended set. (ref. “Baseline 2”). Note
that although we choose BART as our generator
and baseline for its size and relative ease in training,
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our proposed SMIkb based modeling setup could
possibly also be extended to larger models.

4.4 Evaluation

To measure the impact of social media interactions,
the generated responses were evaluated through
both automatic and human evaluations. The results
are compiled in Tables 2 and 3.

Automatic We perform a series of automatic
evaluations on the generated responses. Starting
with the BLEU (Papineni et al., 2002) score for
relevancy, we also calculate Distinct-N (Li et al.,
2016a) for the amount of diversity introduced.

Human It has been widely reported that auto-
matic metrics do not sufficiently evaluate the actual
quality of the generated outputs (Liu et al., 2016).
Thus, we additionally performed human evaluation
of the responses with the highest BLEU (k = 5)
through Amazon Mechanical Turk, on the follow-
ing three metrics: Relevance, whether the response
is relevant to the utterance; Engagement, whether
the response makes the conversation engaging; and
Knowledge, whether the response seems knowl-
edgeable or sensible. The evaluators were asked
to score 100 responses selected at random from
the test set, on a scale of 1-5. Each response was
scored by 7 different evaluators, and their average
was calculated. We selected our evaluators to be
English speakers from the United States with an
approval rate of over 90%.

4.5 Discussion

First, with automatic evaluation, we observe that
our method of introducing social interactions
through a retriever at generation time maintains
task performance and allows for a more diverse set
of responses, as shown with an increase in all of the



Input Utterance

SMIkb

Wiki

Mix

Baseline

Here comes the birth-
day cake.

Wow, what a lovely
cake. I’ll have a piece.

Wow, what a beauti-
ful cake. It must have
tasted as good as I ex-
pected.

Really? Wow. Happy
birthday to you! You
look so healthy.

Thank you.

I’d better go. I gotta get
up early. Go over to my
parents’.

What are you going to
do for breakfast?

You mean you don’t
wanna go with me?

Why don’t you stay at
my place? I’ll cook din-
ner.

I don’t think so.

Something’s burning?

Oh my goodness, it’s on
fire!

Oh my goodness, it ’ s
burning!

Oh, my bread! It’s burn-
ing!

No, it’s not.

Would you mind if we
just called it an early
night?

Even I couldn’t. I have
work tomorrow.

I’d love to. But I've got
to work tomorrow.

What are you talking
about? We just ate?

I don’t think so.

Isn’t it wonderful walk-
ing here?

What do you mean?
Was it bad?

Not at all. The air
is fresh, the walk is
easy and the sunshine is

Yes, you can see the
whole city from here.

Yes, it’s very beautiful.

kind.

Table 4: A comparison of responses generated from various sources.

SMIkb

title

text

LPT: If you borrow something like a tool or a generator
from someone, return it in BETTER shape than you got it.

My dad always said that returning something in the
same condition you received it is the absolute bare minimum.

SoftBank Nears $40 Billion Deal to Sell Arm Holdings to Nvidia

Nvidia is priced decentlyfor what they offer.

Apple to Give Employees Paid Time Off to Vote in U.S. Election

This exactly. A large majority of disenfranchised
communities work jobs that don’t observe federal holidays.

Apple may be working on a foldable iPhone

I can confirm that Apple would be stupid to not be working on one.
Whether they ever release one is up for debate,
but they’re definitely working on one.

Table 5: Snapshot of SMIkb.

measured metrics over both the baselines. More-
over, our Reddit-based SMIkb model outperformed
other combinations, confirming an increase in re-
sponse quality. Furthermore, experiments compar-
ing the effect of top-k on generation quality showed
k = 5 as the sweet spot with the highest BLEU,
which was then evaluated further.

Similar to the automatic evaluation, all of the
proposed combinations showed improvements over
the baseline in human evaluation. In line with our
initial hypothesis, the SMIkb model recorded the
highest score in terms of conversational relevance.
Meanwhile, the mix of SMIkb and Wikipedia
seems to find the appropriate balance between con-
versational ability and “knowledgeability” with the
metrics even exceeding the gold score. We hy-
pothesize that this is not just due to high genera-
tion quality but also the nature of our task, which
might make our model responses more relevant

to a worker when assessed in a single-turn con-
text. Overall, the results verified our proposed
approach of learning directly from social media
interactions leading to large improvements over the
baseline in all metrics of interest. Furthermore,
significance tests of bootstrap re-sampling showed
that the above evaluation score differences between
baselines and our models were statistically signifi-
cant (p < 0.01). Examples of the various generated
responses across all the models are shared in Table
4.

In addition, we looked at cases where our model
struggles or fails at generating a natural response,
a select few of which are compiled in Table 6. In
some of these particular cases, the baseline gener-
ations, although generic, turn out to be more rel-
evant. We believe some of these long responses
with unrelated information to be an artifact of our
generation model being overly dependent on the
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Input Utterance SMiIkb Wiki

Mix Baseline

Who was the conduc- Oh speaking of the con-

tor? ductor, he was indeed a
genius. A descendent of
Chinese.

name.

I don’t remember the

Oh, speaking of the con- I know.
ductor, he did an excel-

lent job.

Ahahah! We need a fit-
ness instructor.

Oh god you scared me!

I’'m sorry.

Sorry. I was trying to
scare you.

Is something wrong?

Table 6: Selected examples where the proposed model struggles or fails at generating a relevant response.

knowledge base. While social media may simulate
human-like conversations in a large variety of sit-
uations, it is still far from being a perfect stand-in
for real-life dialogue. Therefore, our future work
in this direction should look at not only the quality
and scope of the knowledge base, but also consider
selecting when to ground and make use of the said
knowledge during response generation.

5 Conclusion

We aimed to improve the raw conversational ability
of dialogue systems by grounding the responses in
much more human-like social media interactions.
Our approach involved a neural retriever-seq2seq
generator model fine-tuned jointly, where relevant
knowledge was retrieved at the time of generation
to assist a more engaging and natural dialogue re-
sponse. Our experiments showed significant im-
provements with both automatic and human evalu-
ation metrics ranking the SMIkb-grounded replies
to be much more diverse, engaging, and relevant.
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Abstract

Neural models trained with large amount of
parallel data have achieved impressive per-
formance in abstractive summarization tasks.
However, large-scale parallel corpora are ex-
pensive and challenging to construct. In this
work, we introduce a low-cost and effective
strategy, ExtraPhrase, to augment training
data for abstractive summarization tasks. Ex-
traPhrase constructs pseudo training data in
two steps: extractive summarization and para-
phrasing. We extract major parts of an input
text in the extractive summarization step and
obtain its diverse expressions with the para-
phrasing step. Through experiments, we show
that ExtraPhrase improves the performance of
abstractive summarization tasks by more than
0.50 points in ROUGE scores compared to
the setting without data augmentation. Ex-
traPhrase also outperforms existing methods
such as back-translation and self-training. We
also show that ExtraPhrase is significantly ef-
fective when the amount of genuine training
data is remarkably small, i.e., a low-resource
setting. Moreover, ExtraPhrase is more cost-
efficient than the existing approaches'.

1 Introduction

Neural encoder-decoders have achieved remark-
able performance in various sequence-to-sequence
tasks including machine translation, summariza-
tion, and grammatical error correction (Bahdanau
et al., 2015; Rush et al., 2015; Yuan and Briscoe,
2016). Recent studies indicated that neural meth-
ods are governed by the scaling law for the amount
of training data (Koehn and Knowles, 2017; Brown
et al., 2020). In short, the more training data we
prepare, the better performance a neural model
achieves. In this paper, we address increasing the
training data for summarization to improve the per-
formance of neural encoder-decoders on abstractive
summarization tasks.

"The datasets used in our experiments are available at
https://github.com/loem-ms/ExtraPhrase.
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In sequence-to-sequence tasks, we need a paral-
lel corpus to train neural encoder-decoders. Since
it is too costly to construct genuine (i.e., human-
generated) parallel corpora, most studies explored
the way to construct pseudo training data automati-
cally. Back-translation is a widely used approach
to construct pseudo training data for sequence-to-
sequence tasks (Sennrich et al., 2016a; Edunov
et al., 2018; Caswell et al., 2019). In the back-
translation approach, we construct a model gen-
erating a source side sentence from a target side
sentence, and apply the model to a target side cor-
pus to generate a pseudo source side corpus. In
addition to machine translation, back-translation
is also used in grammatical error correction (Kiy-
ono et al., 2019) and summarization (Parida and
Motlicek, 2019) tasks. However, back-translation
on summarization is an unrealistic problem because
a model is required to restore deleted information
in the given summary without any guide.

He et al. (2020) indicated that the self-training
approach, which makes a model generate target
sentences from source sentences and use the pairs
to train a model, can improve the performance
on machine translation and summarization. How-
ever, pseudo data generation for summarization
by self-training is hard to generate diverse sum-
maries (Gu et al., 2018). Moreover, self-training
and back-translation approaches require expensive
computational cost because we need to train addi-
tional neural encoder-decoders on a large amount
of training data to obtain high-quality pseudo
data (Imankulova et al., 2019).

To solve these issues, we propose a novel strat-
egy: ExtraPhrase consisting of extractive summa-
rization and paraphrase to construct pseudo train-
ing data for abstractive summarization. Firstly, Ex-
traPhrase extracts an important part from a source
text as a summary without requiring additional
model training. Then, we apply a paraphrasing
technique to the extracted text to obtain diverse

Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: Student Research Workshop, pages 16 - 24
July 10-15, 2022 ©2022 Association for Computational Linguistics



Extractive
Summarization

Chinese men’s team have put
a major step towards a new
title at the military pentathlon
world championships.

have put

=

men’s team—— Chinese

a step AE

The depth of this tree is 6, thus,
we prune nodes deeper than 3.

major
new
towards a title

Chinese men’s team
have put a major step
towards a new title.

Chinese men’s team

have put a major step
towards a new title.

En-De Translation

Chinese men’s team
has taken a big step
towards a new title.

Paraphrasing

Chinese men’s team
has taken a big step
towards a new title.

De-En Translation

Die chinesische Herrenmannschaft
hat einen groflen Schritt in Richtung
eines neuen Titels gemacht.

Figure 1: Example of pseudo summary generated by ExtraPhrase. The upper part shows output sentences in each
step of ExtraPhrase. Paraphrased words after paraphrasing (round-trip translation) in step-2 are highlighted in blue.

pseudo summaries.

We conduct experiments on two summarization
tasks: headline generation and document sum-
marization tasks. Experimental results show that
pseudo training data constructed by our proposed
strategy improves the performance on both tasks.
In detail, the pseudo data raises more than 0.50 in
ROUGE F1 scores on both tasks. Moreover, we
show that ExtraPhrase is robust in low-resource set-
tings and is much more cost-efficient than previous
self-training and back-translation approaches.

2 Proposed Method: ExtraPhrase

As described in Section 1, our ExtraPhrase consists
of two steps: extractive summarization and para-
phrasing. Figure 1 illustrates the overview of Ex-
traPhrase briefly. ExtraPhrase receives a (genuine)
sentence as an input, and generates a pseudo sum-
mary corresponding to the input sentence. When
we construct a pseudo summary from a document,
we independently apply ExtraPhrase to multiple
sentences included in the given document.

2.1 Step-1: Extractive Summarization

In this extractive summarization step, we extract
important parts of a given source sentence with
sentence compression. Previous studies proposed
various sentence compression methods such as rule-
based methods (Dorr et al., 2003), the approach
detecting important parts in a syntax tree (Turner
and Charniak, 2005; Filippova and Altun, 2013;
Cohn and Lapata, 2009), sequential labeling ap-
proach (Hirao et al., 2009), and neural-based meth-
ods (Filippova et al., 2015; Kamigaito et al., 2018).

In this study, we adopt the most straightforward
approach: a rule-based method based on the syntax
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tree of the given sentence. Because the rule-based
approach does not require any training corpus, we
can use it in the situation where we do not have
genuine parallel corpus. We emphasize that we can
use more sophisticated way if we need because we
do not have any restrictions for the summarization
method in this step.

We define a rooted subtree of the syntax tree for
the given sentence as important parts of the sen-
tence. First, we parse the given sentence to obtain
its dependency tree. Follow Filippova and Altun
(2013), we combine functional words with their
heads on the dependency tree. Then, we prune the
dependency tree to obtain a smaller rooted subtree.
We can roughly control the output summary length
(the number of words) by the depth of the subtree.
The left lower part of Figure 1 illustrates these pro-
cesses. Finally, we linearize the extracted rooted
subtree to obtain its sequential representation by
following the word order of the original sentence.

2.2 Step-2: Paraphrasing

The constructed summaries by the previous step
consist of words included in the source sentences
only. To increase the diversity of the summaries,
we apply the paraphrasing method to the sum-
maries. For paraphrasing, we adopt the approach
using machine translation models (Sun and Zhou,
2012; Mallinson et al., 2017) because some studies
published high-quality neural machine translation
models (Ott et al., 2018; Ng et al., 2019). In this
approach, we obtain paraphrases by conducting
round-trip translation that translates a sentence into
a different language and the translated sentence
into the original language. The right lower part of
Figure 1 illustrates this process.



3 Experiments

To investigate the effect of ExtraPhrase, we conduct
experiments on two summarization tasks: headline
generation and document summarization tasks.

3.1 Datasets

For the headline generation task, we use the de-
facto headline generation dataset constructed by
Rush et al. (2015). The dataset contains pairs of
the first sentence and headline extracted from the
annotated English Gigaword (Napoles et al., 2012).
We use the same splits for train, valid, and test as
Rush et al. (2015). We use the byte pair encod-
ing (Sennrich et al., 2016b) to construct a vocabu-
lary set with the size of 32K by sharing vocabulary
between source and target sides.

For the document summarization task, we use
CNN/DailyMail dataset (See et al., 2017). The
training set contains 280K pairs of news articles
and abstractive summary extracted from CNN and
DailyMail websites. We construct a vocabulary set
with the byte pair encoding (Sennrich et al., 2016b)
and set the vocabulary size to 32K with sharing
vocabulary between source and target sides.

3.2 Comparison Methods

We compare ExtraPhrase with several existing
methods to increase the training data size as fol-
lows. We use the training set of each dataset de-
scribed in Section 3.1 to construct pseudo data.

Oversampling This strategy is the simplest ap-
proach to increase the dataset size. We sample
source-summary pairs from the genuine training
set and add the sampled instances to training data.
Thus, the training data constructed by this approach
contains genuine data only.

Back-translation In back-translation, we train a
neural encoder-decoder that generates a source text
from a summary by using each training set. Then,
we input summaries in the training set to the neural
encoder-decoder to generate corresponding source
texts”. We use the pairs of pseudo source texts and
genuine summaries as pseudo training data.

2For the back-translation approach in machine translation,
we generate sentences in the source language from monolin-
gual corpus in the target language. In the abstractive sum-
marization, we need summaries as sentences in the target
language but it is hard to obtain corpus containing summaries
only. Thus, we use genuine summaries in training data as an
input of back-translation.
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Self-training In self-training, we train a neural
encoder-decoder that generates a summary from a
source text by using each training set. Then, we
input source texts in the training set to the neu-
ral encoder-decoder to generate the corresponding
summaries. We use the pairs of pseudo summaries
and genuine source texts as pseudo training data.

ExtraPhrase We apply ExtraPhrase to each train-
ing set. In the headline generation task, we con-
struct pseudo summaries from the source sentence
in the training data. Because ExtraPhrase generates
pseudo summary in sentence unit, the number of
sentences in generated summary is not reduced in
the case of multi-sentence source text. Thus, we
use the first three sentences in the source document
to reduce the number of input sentences beforehand
in the document summarization task. As described
in Section 2, we apply ExtraPhrase to each sen-
tence one-by-one, and then concatenate them in
the original order. In this study, we use spaCy>
(Honnibal et al., 2020) for dependency parsing and
prune nodes whose depths are deeper than half
of the dependency tree in the extractive summa-
rization step. For the paraphrasing step, we use
English-to-German and German-to-English trans-
lation models* constructed by Ng et al. (2019). We
translate sentences with beam width 5.

For all pseudo training data, we attach a special
token, <Pseudo>, to the front of the source text
because Caswell et al. (2019) indicated that this
strategy improves the performance in training on
pseudo data.

3.3 Encoder-Decoder Architecture

We use the de-facto standard neural encoder-
decoder model, Transformer (Vaswani et al., 2017)
in our experiments. We also use the Transformer
for back-translation and self-training in addition to
each abstractive summarization model. We use the
Transformer-base setting described in Vaswani et al.
(2017) as our architecture. The setting is widely
used in studies on machine translation (Vaswani
etal., 2017; Ott et al., 2018). In detail, we use the
implementation in the fairseq® (Ott et al., 2019) for
our experiments.

*https://spacy.io/

“nttps://github.com/pytorch/fairseq/
tree/main/examples/translation

Shttps://github.com/pytorch/fairseq



Headline Generation

Document Summarization

Method Training Data  R-1 R-2 R-L  Training Data R-1 R-2 R-L
Genuine only 3.8M 37.95 18.80 35.05 280K 39.76  17.55 36.75
Oversampling 7.6M 38.26 19.14 3541 560K 40.14 17.86 37.05
Back-translation ~ 7.6M (3.8M) 38.49 19.24 35.63 560K (280K) 3993 17.74 36.85
Self-training 7.6M (3.8M) 38.32 19.06 35.37 560K (280K) 40.19 17.87 37.21
ExtraPhrase 7.6M (3.8M) 38.51 19.52 35.72 560K (280K) 40.57 18.22 37.51
w/o paraphrasing 7.6M (3.8M) 38.85 19.43 35.86 560K (280K) 40.32 17.94 37.28
w/o extractive 7.6M (3.8M) 38.52 19.32 3571 560K (280K) 40.33 18.10 37.38

Table 1: ROUGE F1 scores (R-1, 2, and L) for the headline generation and document summarization tasks. The
number of genuine training data is shown in parentheses.

3.4 Results

Table 1 shows F1 based ROUGE-1, 2, and L scores
for each setting on the headline generation and
document summarization tasks. We use the same
size of training data for each method except for
Genuine only.

Table 1 indicates that Oversampling outperforms
Genuine only. This result indicates that the more
training data we prepare, the better performance an
encoder-decoder achieves even if the training data
contains many duplications. For Back-translation
and Self-training, they achieve better performance
than Genuine only, but their scores are compara-
ble to ones of Oversampling in both tasks. These
results imply that the improvements in their ap-
proaches are not based on the quality of their gener-
ated pseudo data, but based on the increase of train-
ing data. Since Back-translation and Self-training
require training an additional model to construct
pseudo data, these approaches are more costly than
Oversampling.

In contrast, our ExtraPhrase achieves better per-
formance than other approaches. In particular, our
pseudo training data significantly improves the
ROUGE-2 score compared to Genuine only set-
ting in the headline generation. For the document
summarization, our pseudo training data signifi-
cantly improves all ROUGE scores®. These results
indicate that ExtraPhrase is more effective than
existing approaches including oversampling, back-
translation, and self-training to construct pseudo
data for the abstractive summarization tasks.

In addition to configurations described in Sec-
tion 3.2, we also report results when using each
step of the proposed method to generate pseudo
training data to investigate the effect of each step.

®These results are statistically significant according to Stu-
dent’s t-test (p < 0.05) in comparison with Genuine only.
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ExtraPhrase w/o paraphrasing in Table 1 refers
to applying only the extractive summarization de-
scribed in 2.1 on source articles of genuine training
data to obtain pseudo summaries. Similarly, Ex-
traPhrase w/o extractive refers to applying only
the paraphrasing described in 2.2 on summaries of
genuine training data.

For the headline generation task, ExtraPhrase
w/o paraphrasing achieves better performance than
Genuine only setting. Surprisingly, although with
a small margin, this result also outperforms Ex-
traPhrase, where the paraphrasing step is applied af-
ter the extractive summarization, in ROUGE-1 and
ROUGE-L. ExtraPhrase w/o extractive achieves
comparable ROUGE-1 and ROUGE-L scores com-
pared to ExtraPhrase, but with a decrease in
ROUGE-2 score. However, this result is better
than Oversampling, where duplicated data is used,
which infers that the paraphrasing step effectively
boosts the diversity in augmented training data.

For the document summarization task, summa-
rization performance decreases in both ExtraPhrase
w/o paraphrasing and ExtraPhrase w/o extractive.
These results imply that ExtraPhrase is better than
using each composing step alone.

4 Analysis

4.1 Low-resource Setting

In this section, we investigate the effectiveness of
ExtraPhrase when the amount of genuine training
data is small.

We randomly sample 1K source text and sum-
mary pairs from each training set in the head-
line generation and document summarization tasks.
Then, we conduct the same experiments in Section
3 by using the sampled 1K instances as genuine
training data. We construct pseudo training data
from the rest of each training data and combine



Headline Generation

Document Summarization

Method Training Data R-1 R-2 R-L  Training Data  R-1 R-2 R-L
Genuine only 1K 484 058 466 1K 248 029 245
Oversampling 3.8M 9.89 1.39 930 280K 13.63 0.89 12.63
Back-translation ~ 3.8M (1K) 12.19 243 1131 280K (1K) 9.73 050 892
Self-training 3.8M (1K) 727 107 698 280K (1K) 1437 152 13.36
ExtraPhrase 3.8M (1K) 23.58 6.56 21.12 280K (1K) 34.47 1291 31.36
w/o paraphrasing  3.8M (1K) 22.56 525 19.87 280K (1K) 3295 12.07 29.44
Extractive - 1872 426 17.09 - 28.52 8.02 23.83

Table 2: ROUGE F1 scores (R-1, 2, and L) for the headline generation and document summarization tasks in
low-resource setting. The number of genuine training data is shown in parentheses.

Task Method BLEU BERTScore
Headline generation Self-training  28.64 92.44
ExtraPhrase 1.51 86.19
Document summarization Self-training - 19.91 20.02
ExtraPhrase 5.89 87.33

Table 3: BLEU scores and F1 based BERTScores between genuine and pseudo training data.

the pseudo data with the sampled genuine data for
training. For Self-training and Back-translation,
we train neural encoder-decoders with the sampled
1K instances, and then apply them to the rest of
training data for the pseudo data construction.
Table 2 shows the F1 based ROUGE scores of
each method on the headline generation and docu-
ment summarization tasks when we have a small
amount of genuine training data. This table indi-
cates that Back-translation and Self-training out-
perform Genuine only. These results are consistent
with the result in Section 3.4. However, the per-
formance improvement by Back-translation and
Self-training are smaller compared to ExtraPhrase.
These results show that Back-translation and Self-
training tend to be ineffective when the amount of
genuine training data is small (see appendix A).
For ExtraPhrase, it achieves significantly better
performance than others in both tasks. Thus, Ex-
traPhrase is more effective when the amount of the
genuine training data is small. The lowest parts of
Table 2 shows the results of ExtraPhrase without
paraphrasing for the ablation study. In ExtraPhrase
w/o paraphrasing setting, we train the model with
genuine and pseudo training data generated by Ex-
traPhrase without the paraphrasing step. Moreover,
Extractive in these parts shows the ROUGE scores
of summaries generated by the extractive summa-
rization step. These parts indicate that ExtraPhrase
outperforms the one without paraphrasing. Thus,
we need the paraphrasing step to improve the qual-
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ity of the pseudo training data, although the setting
excluding paraphrasing significantly outperforms
others. Moreover, ROUGE scores of Extractive
are much lower than ones of ExtraPhrase. This re-
sult implies that we need to train a neural encoder-
decoder by using the pseudo data as the training
data to generate better abstractive summaries.

4.2 Diversity of Pseudo Summaries

We assume that our ExtraPhrase can generate more
diverse summaries in comparison with the self-
training approach. To verify this assumption, we
compare pseudo summaries generated by Self-
training and ExtraPhrase.

Table 3 shows BLEU scores (Papineni et al.,
2002) between genuine summaries in each training
data and generated pseudo summaries. In addition,
this table also shows F1 based BERTScores (Zhang
et al., 2020) of them as the indicator of seman-
tic similarities. This table indicates that both
BERTScores of Self-training and ExtraPhrase are
remarkably high. This result implies that the gener-
ated summaries are semantically similar to genuine
summaries. Thus, generated summaries are suit-
able as pseudo data semantically.

In contrast, the BLEU score of ExtraPhrase is
much lower than one of Self-training. This re-
sult indicates that ExtraPhrase generates pseudo
summaries that contain many different phrases
from the genuine summaries in comparison with
Self-training. Therefore, ExtraPhrase can generate



Task Method Training Generation Cost
Back-translation 256 H 7H 333USD
Headline generation Self-training 256 H 4H 328 USD
ExtraPhrase - TH 12 USD
Back-translation 384 H 16 H 511USD
Document summarization  Self-training 320 H 8H 417USD
ExtraPhrase - I5SH 26USD

Table 4: Cost on pseudo data generation using Amazon Elastic Compute Cloud (Amazon EC2). Consuming times

are calculated in case of one GPU.

much more diverse summaries than Self-training.

S Efficiency of Pseudo-data Generation

Our proposed ExtraPhrase does not require addi-
tional neural encoder-decoders such as the back-
translation and self-training approaches. We dis-
cuss the advantage of this property.

Table 4 shows time required by each pseudo data
construction method. This table also shows costs
when we use Amazon EC2, which is a cloud com-
puting service, to construct pseudo data. This table
indicates that Back-translation and Self-training
require much time to train their neural encoder-
decoders. In contrast, for ExtraPhrase, we do not
spend any time on such training. Therefore, Ex-
traPhrase is much more cost-efficient than others.

6 Related Work

Data Augmentation Back-translation and self-
training are widely used techniques in data aug-
mentation for sequence-to-sequence tasks (Sen-
nrich et al., 2016a; Kiyono et al., 2019; Parida and
Motlicek, 2019; He et al., 2020).

Sennrich et al. (2016a) proposed back-
translation to augment training data for machine
translation by translating monolingual data on the
target side to generate source side pseudo data.
Edunov et al. (2018) reported the effectiveness
of the back-translation approach in large-scale
monolingual settings for machine translation.
In addition, Hoang et al. (2018) introduced an
iterative version by repeatedly applying back-
translation several times. Back-translation is an
effective approach for machine translation but it
is unrealistic to apply the approach to abstractive
summarization.

In self-training, we train a model on genuine
data and apply it to generate pseudo data. Zhang
and Zong (2016) applied self-training to enlarge
parallel corpus for neural machine translation. He
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et al. (2020) introduced noisy self-training that uses
dropout as the noise while decoding in self-training.
These studies reported the effectiveness of self-
training but self-training is hard to generate diverse
pseudo data (Gu et al., 2018).

Perturbation Using perturbation that is a small
difference from genuine data can be regarded as
data augmentation (Kobayashi, 2018). Takase and
Kiyono (2021) investigated the performance of var-
ious perturbations including adversarial perturba-
tions (Goodfellow et al., 2015), word dropout (Gal
and Ghahramani, 2016), and word replacement on
various sequence-to-sequence tasks. Since these
perturbations are orthogonal to our ExtraPhrase,
we can combine them with ours. In fact, Takase
and Kiyono (2021) reported that simple perturba-
tions such as word dropout are useful on pseudo
data generated by back-translation.

7 Conclusion

This paper proposes a novel strategy, ExtraPhrase,
to generate pseudo data for abstractive summa-
rization tasks. ExtraPhrase consists of two steps:
extractive summarization and paraphrasing. We
obtain the important parts of an input by the ex-
tractive summarization, and then obtain diverse
expressions by the paraphrasing. Experimental re-
sults indicate that ExtraPhrase is more effective
than other pseudo data generation methods such as
back-translation and self-training. Moreover, we
show that ExtraPhrase is much more cost-efficient
than others in pseudo data construction.
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Ratio Difference R-1 R-2 R-L
Headline generation

0.86 -5 35.14 15.13 28.59
Document summarization
0.81 297  13.76 1.09 13.07

Table 5: F1 based ROUGE scores (R-1, 2, and L) be-
tween source texts generated by back-translation and
genuine source texts. Ratio and Difference are compar-
isons between the number of tokens in generated source
texts and genuine ones.

A Quality of Back-translation

As described in Section 1, the back-translation ap-
proach for the abstractive summarization task is
essentially impossible because it requires restoring
source texts from summaries without any additional
information. Thus, we investigate the quality of
source texts generated by Back-translation.

Table 5 shows the length difference and ratio be-
tween genuine and source text generated by Back-
translation. This table indicates that the generated
source texts are shorter than the original genuine
data. This result implies that Back-translation fails
to restore the full information in the genuine data.
In other words, this result implies that it is difficult
to generate source texts from summaries.

Table 5 also shows ROUGE scores of source
texts generated by Back-translation when we regard
the genuine source texts as the correct instances to
investigate whether the generated texts correspond
to the genuine data. For the document summariza-
tion, ROUGE scores are extremely low. This result
also indicates that Back-translation fails to generate
source texts.

On the other hand, ROUGE scores on the head-
line generation are much higher than ones on the
document summarization. This result implies that
Back-translation might restore the core parts of
source texts from summaries. Because the headline
generation is the task of generating a headline from
a given sentence, the summary (headline) often
contains the dominant part of the source sentence.
We consider this property causes such high scores.
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Abstract

Including memory banks in a natural language
processing, architecture increases model capac-
ity by equipping it with additional data at infer-
ence time. In this paper, we build upon kNN-
LM (Khandelwal et al., 2020), which uses a
pre-trained language model together with an
exhaustive kNN search through the training
data (memory bank) to achieve state-of-the-art
results. We investigate whether we can improve
the KNN-LM performance by instead training
a LM with the knowledge that we will be using
a kNN post-hoc. We achieved significant im-
provement using our method on language mod-
eling tasks on WIKI-2 and WIKI-103. The
main phenomenon that we encounter is that
adding a simple L2 regularization on the activa-
tions (not weights) of the model, a transformer
(Vaswani et al., 2017), improves the post-hoc
kNN classification performance. We explore
some possible reasons for this improvement. In
particular, we find that the added L2 regular-
ization seems to improve the performance for
high-frequency words without deteriorating the
performance for low-frequency ones.

1 Introduction

The problem of language modeling (LM) usually
consists of two main challenges. Firstly, mapping
the context, i.e. the sentence prefixes, to a vector
representation, and secondly using this representa-
tion to predict the subsequent word. In Khandelwal
et al. (2020), the authors claim that the first problem
is much easier to solve. Hence, given a pre-trained
LM, they post-hoc modify the representation using
a k-nearest neighbor scheme (kNN) and achieve
significant improvements on challenging datasets,
such as WIKI-103.

Given that kNN improves the overall language
modeling of a pre-trained network, we examine
training strategies that can make the underlying
network’s representations more amenable to the

*Work done as an intern at Apple
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kNN step. Our results show improvements over
applying kNN to a generic LM network.

We first explore a simple learning scheme for
the language model, where during training we in-
tentionally push representations that predict the
same word closer together in the L2 sense, using a
Momentum Contrastive (MOCO) (He et al., 2020)
style implementation. We go on to note that this
MOCO style learning can be replaced by simply
adding L2 regularization to the activation of the
layer used for kNN, eliminating implementation
complexity. Lastly, we present some initial experi-
ments toward understanding why this L2 regular-
ization brings improved performance.

2 Background

Our work builds upon £NN-LM (Khandelwal et al.,
2020). In essence, kNN-LM tackles the problem of
how to improve a trained LM’s representations,
and how to adapt LMs to capture non-frequent
sentences that are usually forgotten by the model
during training. KNN-LMs achieve significantly
higher performance through a simple interpolation
between the original LM predictions and the kNN
predictions.

At inference time, given a new context sentence,
kNN-LM works as follows:

1. The context sentence c; is passed through the
pre-trained network to produce a representa-
tion reontert ¢ R as well as the correspond-
ing logits y** to predict the next word.

contert jg ysed to find the k-nearest neighbors

T
in the training data. The logits y*V are com-
puted by a weighted average of the neighbors’
labels, using the inverse exponential distance

as the weight for each neighbor.

. The logits are interpolated to give the final
prediction:

Yfinal = )‘ykNN + (1 - A)yLM

)
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where ) is the interpolation parameter that can
be tuned on validation data.

This simple post-hoc implementation allows Khan-
delwal et al. (2020) to improve upon the SOTA
in LM by a significant margin. One thing to note
about KNN-LM is that they do not need to retrain
the LM and hence the whole algorithm can be run
on CPU only. Furthermore, KNN-LM uses FAISS,
which is an efficient library that allows them to
quickly find £NNs.

One detail to note in (Khandelwal et al., 2020)
which was crucial for this work was that the au-
thors tried both the inner product and the L2 for
their distance metric in kNN. They concluded that
L2 worked significantly better. This observation
implies the fact that the default training recipe of
LMs implicitly prefers one distance over the other.
Given that we know that a post-hoc kNN adapta-
tion significantly improves the performance, it is
natural to ask whether we could train a LM with
this in mind. In the next section, we describe how
to adapt the training of the LM for this purpose.

3 Proposed Method

In our initial attempt, we experimented with the
idea of explicitly minimizing the L2 distance be-
tween context vectors that predict the same target
word. This strategy directly mirrors the use of con-
text vectors at the kNN step, and we hoped that
training the representations in a way similar to test-
ing will further improve the effectiveness of kNN
LM. However, a naive implementation of it is infea-
sible due to having to store all the representation in
memory. We then resorted to a MOCO-(He et al.,
2020) style training scheme. Specifically, for each
target word w, we construct a queue () of fixed
length L, which stores the recent L context repre-
sentations for w. During training, we optimize a
regularized objective as follows:

N L
»Cnew = LCE' +WZZ HSQ(Q:UJ) - Tsza

j=1i=1

(D

where N is the batch size, r; is the context rep-
resentation of the jth word, Q}U'i is the ith item
in the queue corresponding to the jth target word
wj; w is the regularization parameter; sg(-) is the
stop gradient operator. Specifically, () is updated
with a momentum target encoding network which
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is initialized with the same parameters of the LM,
similar to MOCO (He et al., 2020).

Empirically, we found that Equation 1 provides
a practical solution and yields improved represen-
tations for the kNN LM, as shown in Fig 1. In
particular, we see from the figure that there is an
optimal value for w for which the added regulariza-
tion seems to improve the kNN LM model perplex-
ity significantly i.e. from 76 to 70 at w = 2 (orange
line). The interesting part to note in this case, is
the fact that the standard LM (without post-hoc
kNN) does not vary much up to w = 5, leading
us to conclude that the added regularization has
changed the representation in a way that kNN can
more effectively exploit the neighbors.

However, the use of the queue and momentum
target network still adds overhead to a large-scale
model training as we are required to access the
queue for each batch. Hence we tried to decrease )
and L, which interestingly did not decrease the per-
formance at all and therefore, to promote efficiency,
we tested an even simpler formulation, where we
replace () with all zero vectors. This eliminates the
need to explicitly construct and update the queue,
while instead encouraging the model to learn con-
servative representations w.r.t. the L2 norms of its
context representations. The corresponding loss is
as follows:

N
£new = LCE + wz HerQ'
7=1

2

To our surprise, Equation 2 yields similar perfor-
mance to Equation 1 in practice see Table 1, while
being much easier to implement and tune. This is a
new interesting finding that we will try to explain
in the ablation study below. We thus use Equation
2 as the default loss function in our experiments
unless otherwise mentioned.

4 Experiments

We tested our method on the WIKI-2 and
WIKI-103 datasets, which are widely used bench-
marks for language modeling. We are interested
in demonstrating two empirical results: improved
performance using our approach over that of KNN-
LM, and exploring a possible mechanism for this
improved performance.

4.1 Experimental setup

Dataset WIKI-2 is a benchmark with 30k word
vocabulary and consists of 2M tokens. WIKI-103



ENN-LM (w=0) w=0.1

w=1.0 w=10.0

Train Ppl. LM 19.99
Valid Ppl. LM 75.96
Valid Ppl. kNN-LM 74.11

20.05 20.11 21.37
75.68 76.37 81.29
73.13 70.63 80.52

Table 1: Experiments on WIKI-2 with corresponding validation perplexity using L2 regularization. We see that a
weighting of w = 1 yields the best performance for our method

Perplexity with different regularization weighting
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—— Validation + KNN
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~ ~ ~
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L
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~
N
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70 +

T T T
4 6 10
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Figure 1: Validation perplexity on WIKI-2 of the LM
before (blue) and after (orange) adding ANN. NOTE:
weight=0 corresponds to the standard version that
does not include our added MOCO-style regularization
term i.e. kNN-LM from Khandelwal et al. (2020)

is a benchmark with 250k word vocabulary and
consisting of 103M tokens (Merity et al., 2016).

Language Model Architecture For the lan-
guage model architecture, we will be using the ex-
act setup as described in (Khandelwal et al., 2020).
This setup consists of the language model (Baevski
and Auli, 2018), which consists of 16 layers, each
with 16 self-attention heads, 1024 dimensional hid-
den states, and 4096 dimensional feedforward lay-
ers. Thus, following (Baevski and Auli, 2018), this
LM has adaptive inputs and an adaptive softmax
(Joulin et al., 2017) with tied weights (Press and
Wolf, 2016) for all our experiments. We trained
the each language model on a Tesla V100 with
40GB of RAM.

In addition, we follow the exact same training
procedure as in (Khandelwal et al., 2020) and re-
fer to their paper for further details on the training
parameters. The only difference in terms of imple-
mentation is the MOCO style learner as well as the
L2 regularization added to the final layer. Lastly,
we would like to note that while crossvalidating
though the interpolation parameter A we note that
for all models, A = 0.3 works the best which is
similar to the finding in (Khandelwal et al., 2020).
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4.2 Experiments on WIKI-2

We first apply our proposed method on the standard
WIKI-2 dataset, where we run each configuration
5 times and plot the standard deviation, as seen in
Figure 1. Note that w = 0 in Figure 1 corresponds
to the standard ANN-LM version, i.e. without the
added term in the loss. Comparing Figure 1 and
Table 1, we see that the MOCO and L2 approaches
produce similar results. From these results, we note
the following phenomena:

1. A clear "U"-shape demonstrating the added
benefit of our loss term on the validation per-
plexity of the LM for moderate values of w.

Training performance does not decrease for
moderate values of w, showing that the extra
term does not destroy training and generaliza-
tion of the standard LM.

There is no difference in terms of validation
perplexity between the standard LM and our
version before applying kNN, but there is
a significant difference after applying KNN.
Our approach likely finds a different local min-
imum for the language model that is better
suited for KNN.

The above finding supports our belief that using our
added regularization, we are able to find better rep-
resentations, that can subsequently be used more
efficiently when for kNN LM. Next, we apply our
methods on the much bigger data WIKI-103.

4.3 Experiments on WIKI-103

We illustrate our findings on the more challeng-
ing WIKI-103 dataset and demonstrate that our
L2 fix significantly improves the performance of
the LM. In the Table 2, we illustrate that when
changing the regularization strength we again see
a significant gain in performance when adding our
regularization during training of the LM. Due to
the computational costs when training these mod-
els, we resort to the same hyperparameters as in



ENN-LM (w=0) kNN-LM (w=1)

kNN-LM (w=10)

Train Ppl. LM 11.31
Valid Ppl. LM 18.00
Valid Ppl. kNN-LM  16.09

11.24 11.07
17.95 17.71
15.89 17.46

Table 2: Experiments on WIKI-103. We report the training and validation perplexities for standard kNN-LM i.e.
(w = 0) as well as our weighted versions. Here we show that our method is much better once we apply kNN

the WIKI-2 dataset and hence present fair com-
parisons of the different variants of the model.

Note that again, we see significant improvements
in terms of validation perplexity when using the
kNN-LM scheme by simply adding an L2 regular-
ization when training the language model.

On another note, when taking a closer look at
the validation perplexity before applying kNN, we
note that w = 10 seems to have the lowest vali-
dation perplexity. This better generalization phe-
nomenon is interesting and has recently been noted
in the machine vision community in the context
of investigating the regularization effects of batch
normalization in classification settings (Dauphin
and Cubuk, 2021). This also relates to the findings
of (Merity et al., 2017), those who used L2 regular-
ization in LSTMs. In this paper, we found initial
indications that the L2 regularization on the activa-
tions might be useful for Transformer models.

Finally, we believe that these two standard bench-
mark datasets in language modeling are sufficient
evidence to demonstrate the merit our of findings.
Further studies with more hyperparameters could
be done on WIKI-103, however, due to computa-
tional costs, we leave this for future work.

4.4 Further investigations into the
representations and possible explanations

To get a better understanding of why the L2 regu-
larization on the activations seems to improve the
performance of kNN-LM, we looked closer at the
learned representations for WIKI-02.

Effect of the target word frequency on the loss:
Figure 2 shows a histogram of word frequency,
where the color represents the respective losses
each word incurred. More concretely, each bar rep-
resents the number of words with a given frequency.
For a given histogram bar, we compute the loss for
each of these corresponding words. The colors rep-
resent the loss i.e. if we have a darker violet color,
we incurred a higher loss for these words, and the
lighter color the bar the smaller the error. Note that
firstly, there is little difference in the loss for the
less frequent words (right tail end of the histogram).
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If we shift our attention to the more frequent words
(left side of the histogram) however, we see a differ-
ent picture. Looking at our L2 regularized model,
we note that for the most frequent words, our model
seems to incur lower loss (see the brighter colors
bars at the peak of the histograms) compared to the
standard LM with kNN. This observation suggests
that the main differences in terms of representa-
tions come from the frequent words rather than
rare ones. This is an indication that L2 regulariza-
tion helps representations cluster and hence when
performing the interpolation between the predic-
tions of the LM and kNN, the resulting kNN LM is
more confident in these predictions hence leading
us to obtain lower perplexities for common words.

Secondly, knowing that the main differences are
within the words that are most frequent, we in-
vestigated these representations in more detail. In
particular, we analyzed the most frequent words
and divided the data into "high loss/score i.e.
loss > —10" meaning they contributed a lot to
the loss (bad predictions) and "low loss/score i.e.
loss < —10" meaning they are good predictions i.e.
they contributed a little to the loss.

We employed a simple mixture of Gaussians
model (GMM) (m 10) and used the log-
likelihood as an indicator for how well the data
are clustered. GMMs allow us to put probability
mass on each of the representations and given that
we are using a mixture of Gaussians, we inherently
capture clusters. Intuitively, this means that if the
likelihood of the GMM is high, the representations
can be easily captured using a mixture of Gaus-
sians, which is indicative of being more clustered
i.e. close to one of the gaussian mixture means.

In Figure 3 we compare the distributions of the
loglikelihoods for the representations that have
been trained using the standard LM and our modi-
fied L2 regularization. In particular, for each repre-
sentation, we obtain the corresponding likelihood
from the GMM (z-axis on Figure 3). As mentioned
before, we split the words into "high loss/scores"
and "low loss/scores" and plot their histograms in
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Figure 2: Frequency/Loss histograms. The x-axis denotes the frequency of the word with high-frequency words to
the left. The y-axis denotes the number of words with x frequency and the colors of each bar represent the loss
accumulated. (LEFT) Standard LM after kNN, (RIGHT) Our L2 regularized LM after KNN.
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Figure 3: z-axis denotes the Loglikelihood under the Gaussian Mixture. y-axis denotes the normalized histogram.
(LEFT) Standard training of the Language Model (RIGHT) using an L2 regularization for the Language Model.

blue and orange respectively. Fig. 3 demonstrates
one key finding, which is that the difference be-
tween the likelihoods of the "high loss/scores" and
"low loss/scores" varies much more dramatically
in the L2 regularized case. Recall that the higher
the likelihood, the higher the "clusterness" is. By
noting that the likelihood differs much more in the
L2 regularized case, we can conclude that the rep-
resentations in the latter are more clustered (for the
low scores) due to the regularization, which could
be one potential explanation why kNN LM is im-
proved. Hence, one of our hypotheses is that kKNN-
LM improves the classification accuracy mostly for
the non-frequent words (Khandelwal et al., 2020),
whereas our proposed method with L2 regulariza-
tion, in addition, also improves the classification
accuracy of the frequent words by clustering them
closer together and hence improving KNN-LM.

5 Conclusion

In conclusion, we propose a useful training mecha-
nism that is inspired by the fact that the post-hoc
application of kNN seems to significantly improve
the performance of standard LMs. We have found
that training a LM with L2 regularization at the
final layer, i.e. layer which is used for the post-
hoc kNN search, improves validation performance.
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We have also found initial indications that the L2
regularization mostly improves performance for
the most frequent, lower-loss words. In addition,
we have found further evidence for the hypothesis
proposed (Dauphin and Cubuk, 2021) which states
that L2 regularization helps generalization in vi-
sion tasks. This paper found similar results when
working with Transformer models in NLP tasks.

There are, however, some shortcomings in our
work. Firstly, we have only given a preliminary
explanation for why the added L2 regularization
significantly improves upon standard KNN LM, but
we believe that we have given sufficient evidence
that our proposed method promotes clustering of
the representations which subsequently improves
the KNN. Secondly, even though we have found
great and promising improvement using our find-
ings on WIKI-2, further work with more com-
pute should be done on WIKI-103. We however
leave this for future work due to computational
constraints. Lastly, we believe that training models
with post-hoc kNN in mind is a promising area
and hence future work will consider more diverse
datasets from the NLP literature. These findings
motivate exploring various regularizations in differ-
ent Transformer architectures and LM tasks.
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Abstract

Earlier NLP studies on framing have focused
heavily on shallow classification of issue fram-
ing, while framing effect arising from prag-
matic cues remains neglected. We put forward
this latter type of framing as pragmatic fram-
ing. To bridge this gap, we take presupposition-
triggering adverbs such as ‘again’ as a study
case, and investigate how different German
newspapers use them to covertly evoke differ-
ent attitudinal subtexts. Our study demonstrates
the crucial role of presuppositions in framing,
and emphasizes the necessity of more attention
on pragmatic framing in future research.

1 Introduction

Framing, i.e., intentionally selecting certain aspects
of an issue and making them more salient in a
communicating text (Entman, 1993), is ubiquitous
in political discourse. The release of corpora with
manual annotation — mostly based on the codebook
of issue framing by Boydstun et al. (2014) — has
popularized the task of issue framing classification
(see Section 2), e.g., classifying whether influx
of migrants is presented from the perspective of
economy or domestic security. However, the heavy
focus on classification accuracy in earlier studies
has resulted in very few in-depth investigations of

the effects of individual linguistic cues in framing.

Yet, in a study on framing strategies employed by
different German newspapers in the discourse of
the “European Refugee Crisis”!' (2014-2018), we
observed from an exploratory reading that iterative
adverbs, including erneut ‘again’, immer wieder
‘again and again’, and schon wieder ‘yet again’, can
act as subtle but effective cues of framing. Consider
sentence (1):

(D) Erneut dutzende Fliichtlinge ertrunken
‘Again dozens of refugees drowned’
(BILD, Feb. 8, 2016)

"For details on the event: https://en.wikipedia
.org/wiki/2015_European_migrant_crisis
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Iterative adverbs like ‘again’ in (1) are known as
presupposition-triggers in theoretical pragmatics,
as they carry presuppositions (see, e.g., Levinson,
1983; Beaver et al., 2021). A presupposition of an
utterance is background information that is “taken
for granted” by the speaker, i.e., information that is
not explicitly uttered but assumed by the speaker to
be shared belief of all discourse participants (Stal-
naker, 1972; Beaver, 1997; Zeevat, 2002). The
word ‘again’ in sentence (1) triggers the presup-
position P below, as its usage assumes that all
discourse participants already know P.

2)

P = ‘It has already happened before (at
least once) that refugees got drowned.’

We argue from two aspects that presuppositions
and their triggers are crucial devices for framing.
First, presuppositions can smuggle additional in-
formation into hearers’ belief systems: It is well
studied in theoretical pragmatics that presupposi-
tions can be accommodated, i.e., in many cases
where the presupposition of an utterance conveys
information that is new instead of known to its
hearers, the hearers will just tacitly admit to this
information in order to make sense of the utterance
(Lewis, 1979, Stalnaker, 2002; von Fintel, 2008).
A reader that did not know P above at the time
of reading sentence (1) will normally admit to P
silently in order to understand the author’s usage of
‘again’. Second, given a certain political context,
presuppositions may bring up attitudinal subtextual
messages as a concomitant: Once P above is in the
belief system of the readers of sentence (1) (either
because they already knew P before the reading,
or because they accommodated P), the attitudinal
subtext A4 below is likely to be evoked in their mind.
We use ~~ to denote the pragmatic relation that P
does not logically entail A, but can plausibly give
rise to A. Concomitant attitudinal subtexts of this
kind can covertly bias the hearers’ opinion towards
the issue and thus give rise to framing effect.
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3)

P ~ (A = ‘Refugees are in urgent need of
help as their safety is severely threatened.”)

Such framing effects that arise indirectly from
cues with significant pragmatic effects, e.g.,
presupposition-triggers discussed above, remain
neglected in existing studies on framing. We put
forward this type of framing as pragmatic fram-
ing (see Section 3 for detailed discussion). The
automated detection of pragmatic framing is yet a
challenging task: It can be only found via a close
examination of the relevant linguistic cues, and
(weakly-)supervised models as proposed by numer-
ous earlier studies (see Section 2) are not neces-
sarily able to capture the effect of such cues, as
these cues can be extremely sparse. Following our
observation on the iterative adverbs, this work quan-
titatively investigates whether iterative adverbs in
different newspapers give rise to different attitudi-
nal subtexts via presupposition, and thus result in
different pragmatic framing styles. With this study,
we aim at a) validating the argued importance of
presupposition in framing, and b) exploring the
possibility of automatically detecting pragmatic
framing. Our contribution is two-fold:

1) Theoretically, we put forward the notion of
pragmatic framing, and demonstrate its signifi-
cance for research on framing detection via our
case study on presupposition-triggering adverbs.
To the best of our knowledge, this is also the first
study on the role of presuppositions in framing.

2) Methodologically, we show that consciously
combining theoretically motivated linguistic cues
with NLP methods can yield crucial information
for more in-depth framing detection.

2 Earlier NLP Studies on Framing

Along with the release of large-scale corpora anno-
tated with issue frames (e.g., Card et al., 2015; Liu
et al., 2019), numerous studies have been done on
(weakly-)supervised classification of issue framing.
The methods used vary from linear classifiers such
as in Baumer et al. (2015) (naive Bayes) and Field
et al. (2018) (logistic regression), probabilistic soft
logic as in Johnson et al. (2017), neural networks
such as in Naderi and Hirst (2017) (LSTM) and Ji
and Smith (2017) (RNN), to transformer-based lan-
guage models such as BERT and RoBERTa (e.g.,
Khanehzar et al., 2019; Huguet Cabot et al., 2020;
Akyiirek et al., 2020; Mendelsohn et al., 2021).
Despite the classification accuracy of these pro-
posed models, there still lacks an in-depth drilling
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down into the effects of individual linguistic com-
ponents. A few earlier studies have attempted to
incorporate features that are motivated by theo-
retical linguistics: Baumer et al. (2015) validated
the positive impact of various semantic and prag-
matic features (including factive verb, assertive
word, entailment and hedging) on the performance
of a naive Bayes classifier for frame classifica-
tion. Demszky et al. (2019) investigated the usage
of expressions for necessity modality (including
should, must, have to and need to) among tweets
about mass shooting events, as necessity modality
bears the illocutionary force of calling for action
or change in the discourse under discussion. Ziems
and Yang (2021) examined the usage of agent-less
passive constructions (e.g., using ‘He was killed’
instead of ‘He was killed by police’) in the dis-
course of police violence in view of the fact that
such constructions obscure the actor entirely and
thus remove blame from the actor.

Nevertheless, in the last decades theoretical lin-
guistic researchers have uncovered many more
pragmatic cues which have fundamental effects on
conveying attitudes and steering the discourse de-
velopment. Such cues are highly relevant for fram-
ing but remain unstudied, especially because many
of them are stop words and prone to be dismissed
in NLP practice. These include, but are not lim-
ited to, the aforementioned presupposition-triggers
like again or too (Levinson, 1983; Beaver et al.,
2021), focus particles like even or only (Rooth,
1985), modal particles like indeed (Zeevat, 2004;
Zimmermann, 2011), and conventional implicature-
bearing words like luckily or confidentially (Bach,
1999; Potts, 2005). With our case study on iterative
adverbs, we aim at bridging this gap between NLP
and theoretical linguistics.

3 Pragmatic Framing as a New Dimension
of Framing

As described in Section 2, earlier NLP studies on
framing detection are centered around issue fram-
ing, i.e., what aspects of an issue are covered in
the discourse. However, our observation on the
effect of presupposition-triggers in political dis-
course suggests that certain subtle pragmatic cues
can evoke implicit, second-level subtextual commu-
nication, and this phenomenon remain neglected
in the research on framing. We argue that such
subtextual communication also constitutes a type
of framing, as they covertly smuggle extra informa-



tion into the discourse besides the information con-
veyed by the surface form of the text (see Section
1). Grounded in this observation, we propose the
notion of pragmatic framing as a new dimension
of framing besides the issue framing. Pragmatic
framing differs from issue framing in two aspects:
1) Locus: Issue framing is a content-level phe-
nomenon. It is typically defined as describing
what specific perspectives, values or facts of an
issue are presented (see, e.g., Entman, 1993; Nel-
son et al., 1997; Druckman, 2011; Boydstun et al.,
2014). However, pragmatic framing is a linguistics-
level phenomenon and describes what specific lin-
guistic devices are employed strategically in order
to reinforce a certain perspective, value or fact.
Pragmatic framing is rooted in the usage of fine-
grained pragmatic cues, and it contributes to the
conveyance of issue frames in a rhetorical sense.
2) Accessibility: Whereas issue framing are
mostly directly accessible from the surface form of
the text, pragmatic framing goes beyond the surface
form and can only be reached indirectly through
pragmatic procedures triggered by specific cues
(e.g., hearer’s accommodation of presuppositions
as mentioned in Section 1, or hearer’s pragmatic
enrichment of a certain utterance as described in
Grice, 1975). From the perspective of NLP, auto-
matically identifying pragmatic framing requires
close examination of particular pragmatic cues.
The notion of pragmatic framing also applies
to a wide range of other theoretical linguistic fea-
tures that trigger very specific types of discursive
inferencing, such as those mentioned in Section 2.
We believe that more attention on in-depth prag-
matic devices will be a valuable enrichment of the
research on framing, as the particular ways of pre-
senting information are the core of framing, and
the usage of subtle linguistic devices is in turn an
essential part of information presentation.

4 Experiment

Our study focuses on the usage of iterative adverbs
in political discourse as a case of pragmatic fram-
ing, and aims at examining whether iterative ad-
verbs give rise to different attitudinal subtexts via
presuppositions in different newspapers. The data
and experimental setup are described below.

4.1 Data

We used a dataset comprising of articles about the
“European Refugee Crisis” published between 2014
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to 2018 by the three most circulated newspapers in
Germany (Statista, 2021): BILD, Frankfurter All-
gemeine Zeitung (FAZ), and Siiddeutsche Zeitung
(S8Z). All three are nation-wide daily newspapers,
and they build a balanced sample of differing styles
and political orientations.

From each newspaper, we first collected arti-
cles with at least one match of the following quasi-
synonyms of ‘refugee’: {Fliichtling, Gefliichtete,
Migrant, Asylant, Asylwerber, Asylbewerber}. We
then removed articles that were: 1) duplicated, 2)
from non-political sections such as Sport, and 3)
with a ratio of the ‘refugee’-synonyms lower than
0.01. Criterion 3) was experimentally defined, and
it allowed us to remove most articles that mention
the European Refugee Crisis only as a side-topic.

Following the observation from our exploratory
reading mentioned in Section 1, we then extracted
from the dataset all sentences that contain the it-
erative adverbs erneut, immer wieder, and schon
wieder. We refer to these extracted sentences as
iterAdv-S. Duplicated sentences in each newspaper
were removed. Table 1 summarizes the dataset.”

name type #articles #tokens #sentences  #iterAdv-S
BILD C,T 12,109 3,059,123 180,555 1,138
FAZ C,B 6,700 3,342,609 168,725 558

SZ L, B 4561 1,766,921 93,224 557

Table 1: Overview of the dataset. (C = conservative; L
= liberal; T = tabloid; B = broadsheet)

4.2 Experimental Setup

As the pragmatic framing evoked by iterative ad-
verbs is a sentence-level phenomenon and we thus
focus on iterAdv-S for our quantitative analysis de-
scribed below, topic modelling approaches such as
LDA would be inadequate due to their deficiency
in handling short documents (Tang et al., 2014).
Thus, we used a combination of clustering and
keyword-mining methods. The experimental setup
is described below stepwise. Additional details of
hyperparameters are provided in Appendix A.

Vectorizing iterAdv-S Vectorizing the iterAdv-S
is the basis of all following computational steps.

The newspaper articles were purchased from their respec-
tive publishers. Unfortunately, due to their copyright regula-
tions, we cannot make the dataset publicly available. But the
code and model of our study are available in the following
repository. All results reported in this paper can also be found
in the Jupyter Notebook files there: https://github.c
om/gi-yu/framing-by-presuppositions



Given the success of transformer-based language
models in issue framing classification (see the stud-
ies cited in Section 2), we decided to fine-tune the
bert-base-german-cased model® (12 lay-
ers, 768 hidden units, 12 attention heads) to achieve
the vectorization. Considering that all articles in
our dataset are labeled with sources (i.e., BILD,
FAZ, & SZ), we decided to fine-tune the BERT
on a source classification task using all articles, so
that the model weights better represent the overall
linguistic characteristics of our very topic-specific
dataset. As BERT limits the input to be no longer
than 512 tokens (tokens here refer to WordPieces
generated by BERT-tokenizer, and the special to-
kens [CLS] and [SEP]), whereas numerous articles
exceed this limit, we divided each article into seg-
ments of maximally 200 words long as inspired by
Pappagari et al. (2019) to circumvent the limit. This
resulted in 45,402 segments in all (BILD: 18,131;
FAZ: 17,641; SZ: 9,630). We used these segments
as input to BERT and classified each with their
sources. The segments were split into training set
and validation set in an 80/20 fashion. The accu-
racy on the validation set reached 0.87, indicating
that the fine-tuned model was able to capture the
major linguistic characteristics of the dataset.
Next, we vectorized the iferAdv-S by inputting
each sentence to the fine-tuned BERT and extract-
ing the embedding of the [CLS]-token of the 11th
layer. The decision of using the [CLS] of the
11th layer was based on earlier studies which have
shown that: 1) the embedding of [CLS] performs
better as sentence representation than the average
embedding of all tokens (Kalouli et al., 2021), and
2) semantic features are mostly captured by higher
layers of BERT, whereas the last (12th) layer is
very close to the actual classification task and thus
less suitable as semantic representation (Kalouli
et al., 2021; Jawahar et al., 2019; Lin et al., 2019).

K-Means Clustering For each newspaper, we
then conducted a k-means clustering on the vector-
ized iterAdv-S using scikit-learn (Pedregosa et al.,
2011). The clustering allows us to divide these
sentences into latent subgroups and to investigate
them at a finer granularity.

As a validation of the clustering results, for
each newspaper we used the optimal cluster
amount found by applying silhouette coefficient
(Rousseeuw, 1987). Silhouette coefficient is a

‘https://huggingface.co/bert-base-ger
man—-cased
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method for validating the consistency of clusters
generated by clustering algorithms. For each sam-
ple ¢ which is assigned to cluster A by a certain
clustering algorithm, its silhouette coefficient s(7)
is defined as the equation below, where (%) stands
for the average distance between 7 and all other
items in A (also known as intra-cluster distance),
and b(i) stands for the average distance between i
and all items in the second-nearest cluster besides
A (also known as inter-cluster distance):

b(i) — a(i)

max{a(i),b(i)}
The value of s(7) ranges between [-1, 1]. The closer
itis to 1, the better ¢ matches the cluster A. A neg-
ative value occurs when the intra-cluster distance
a(1) is greater than the inter-cluster distance b(i),
indicating that assigning i to A is suboptimal.

We monitored the silhouette coefficient of each
item (i.e., each vectorized iterAdv-S) with respect
to cluster amounts & € [2, 50]. For all newspapers,
the optimal amount found was 3. Additional details
are provided in Appendix B.

s(i) =

Mining Keywords of Each Cluster Though the
clustering divided the iterAdv-S into smaller sub-
groups, manually examining the sentences in each
cluster would still be challenging, as each cluster
still contains hundreds of sentences (see Section 5).
To ease the evaluation, we further used the keyword
mining approach PMI-freq (Jin et al., 2020) to find
the most representative keywords of each cluster in
each newspaper. PMI-freq builds upon the measure
of pointwise mutual information (PMI; Church and
Hanks, 1990) by incorporating the document fre-
quency of each word into the calculation, and thus
overcomes PMI’s shortage of preferring rare words.
Given a word w and a cluster C, the PMI-freq of
w with respect to C' is defined as follows, where
df (w) stands for the document frequency of w:

Pw|C)

PMIfreq(w; C) = log(df (w)) - log 557 5

Prior to applying PMI-freq, all iterAdv-S were
tokenized and lemmatized using NLTK (Bird et al.,
2009), and stop words, numbers and punctuations
were removed.*

*These preprocessing steps were not applied at the sen-
tence vectorization stage, as they would cause a loss of contex-
tual information for BERT. However, here they are relevant, as

the keyword mining step aims at examining the lexical usage
of each cluster to find out their semantic characteristics.



5 Results and Discussion

Table 1 shows that the iferAdv-S are fairly scarce
in all newspapers. However, our approach is still
able to reveal stark contrasts between the pragmatic
framing styles arising from them. Table 2 shows the
top 15 words by PMI-freq in each cluster of each
newspaper (translated into English; See Appendix
C for the original German version together with the
PMI-freq score of each word).

BILD The largest cluster (#2) of BILD indi-
cates the salience of violence issues among the
iterAdv-S in BILD, as shown by keywords like
‘ISIS’, ‘aggressive’ (German: aggressiv), ‘violence’
(Gewalt) and ‘riot’ (randalieren). We also found
out that iterAdv-S which contain the keywords ‘ini-
tial reception center’ (Erstaufnahmeeinrichtung)
and ‘refugee camp’ (Fliichtlingsunterkunft) are of-
ten about violent incidents in refugee camps. This
salience of violence issues is furthermore reflected
by several keywords in Cluster #3 including ‘inci-
dent’ (Zwischenfall), ‘attack’ (Ubergriff) and ‘per-
petrate’ (veriiben). Example (4) depicts the typical
effect of iterative adverbs in violence-related sen-
tences: They evoke a negative subtext that refugees
are a persistent threat of the domestic security.

4 Im Bahnhof [...]
wieder Fliichtlinge.
‘Refugees rioted at the train station

again and again.” (BILD, Sep. 1, 2018)

randalierten immer

‘P = ‘Refugees have been rioting before.’
~ A = ‘Refugees continuously threaten
the public order.’

Moreover, the keywords ‘ship’ (Schiff), ‘deadly’
(todlich) and ‘port’ (Hafen) in Cluster #3 show a
slight focus of the iterAdv-S in BILD on security
issues at the Mediterranean route. As shown before
in Example (1), iterative adverbs in this context
evoke the subtext that the refugees need help.

FAZ Keywords in the largest cluster (#3) of FAZ
show a mixed focus on both the security situation at
the Mediterranean route, e.g., ‘Greece’ (Griechen-
land), ‘human trafficker’ (Schlepper) and ‘smug-
gler’ (Schmuggler), as well as on violence issues,
e.g., ‘foreigner’ (Ausldnder, often used in reports
on attacks against foreigners), ‘police’ (Polizei),
and ‘violence’ (Gewalt). However, while two of
three clusters in BILD address violence and secu-
rity issues (#2 and #3), two of three clusters in FAZ
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(#1 and #2) show a clear focus on asylum policies.
This is reflected by policy-specific words like ‘right
of asylum’ (Asylrecht, #1), names of political ac-
tors like ‘Prime Minister’ (Ministerprdsident, #2),
as well as words related to political negotiations
like ‘reproach’ (vorwerfen, #1) and ‘conversation’
(Gesprdch #2). Example (5) depicts the typical
effect of iterative adverbs in sentences containing
these keywords: A closer check indicates that it-
erative adverbs there often evoke the subtext that
the execution of refugee policies is hard (and some-
times rendered as inefficient) because of repeating
conflicts of interest between parties or countries.
5) Italien wird immer wieder vorgeworfen, es
setze die EU-Vorschrift nicht durch.

‘Italy is again and again accused of not exe-
cuting EU-regulation.” (FAZ, Sep. 7, 2015)

‘P = ‘Italy has been criticized at least once.’
~ A = ‘Italy is a stumbling block in exe-
cuting the EU immigration policy’.

SZ The largest cluster (#2) in SZ shows the
salience of security issues at the Mediterranean
route among the ifrerAdv-S, as indicated by key-
words like ‘Mediterranean Sea’ (Mittelmeer),
‘refugee boat’ (Fliichtlingsboot), ‘coast’ (Kiiste),
‘Libyan’ (libysch) and ‘Greece’ (Griechenland). In
the sentences containing these keywords, iterative
adverbs evoke the same humanitarian leaning sub-
text as illustrated in Example (1). Moreover, the
top 2 keywords ‘man’ (Mann) and ‘young’ (jung)
of Cluster #3 indicate an interesting emphasis on
the demographic characteristics of the refugees. In
a closer check, we found out that these keywords,
besides being used in narrative texts about indi-
vidual experiences of the refugees, often occur in
context concerning the social integration of young
male refugees. Sentence (6) shows an example: In
such context, the iterative adverbs evoke a subtext
that appeals to immediate action to facilitate the
integration. Overall, the focus on security and inte-
gration issues indicates SZ’s tendency of framing
the Refugee Crisis from a humanitarian aspect.

(6) Wenn diese jungen |[...] zu lange
ohne Beschdftigung herumsitzen, kommt
es immer wieder zu Streit und Massen-
priigeleien.

‘When these young people are idle for
too long, quarrels and brawls happen



BILD

Cluster #2: 428 Samples

Cluster #3: 381 Samples

Cluster #1: 329 Samples

today, yesterday, o’clock, direction, ex-
plain, speaker, ISIS, Syrian, aggres-
sive, Asylum, around, planned, person,
Athens, start (v.), initial reception center,
thousand, violence, riot (v.), flame, grand
coalition, Hannover, standing, flare up,
press conference, evening, commit (a
crime)/beat, refugee camp, advertise

attempt (v.), give, incident, name (n.),
bring, big, get, situation, hear, ship,
deadly, know, story/history, government,
port, think, calm (down), help (v.), arise,
manage (to do), find, attack (n.), speak,
perpetrate, politics, past (n.), past (adj.)

Angela, Friday, Merkel, reject (v.),
refugee policy, controversial, CSU, Mon-
day, upper limit, attack (v.), Greece, res-
cue, end (n.), Seehofer, chancellor

FAZ

Cluster #3: 223 Samples

Cluster #1: 204 Samples

Cluster # 2: 131 Samples

give, attract attention, money, aid agency,
see, foreigner, help (n.), police, Greece,
situation, lead, say, stand, policeman,
confirm, lacking (adj.), refugee accom-
modation, human trafficker, smuggler,
week, violence, The Greens, Austria, last
(adj.), together, Greek, prognosis, civil
servant, camp, security force, report (n.),
accommodation, because, new

far, stay, name (v.), right of asylum, be-
long, go, chancellor, speak, reproach
(v.), Turkey, let, number, manage (to do),
country, get, The Left, Bavarian, open-
ness, boat, yield, Munich, always, port,
game, appeal to, planned, municipality,
bring, show, do

city, day, Prime Minister, institution,
Frankfurt, old, state government, Mayor,
conversation, end (n.), population, year,
letter, located, Heidelberg, non-party,
inquiry, district, reason, accommodate,
tell, difficulty, wild, euro, refugee policy,
open (adj.), live (v.), Italian, possible, de-
velopment, search (v.), political, without,
demonstrate, homeland

Sz

Cluster #2: 217 Samples

Cluster #3: 187 Samples

Cluster #1: 153 Samples

person, Mediterranean Sea, refugee
boat, Calais, coast, weekend, Sunday,
asylum seeker, European Commission,
Libyan, thousand, Greek, Angela, pres-
sure, Greece, Merkel, get into, Fed-
eral Office, deportation, Italy, migration,
boat, before, attack (n.), number

man, young, month, past (adj.), report
(v.), stand (v.), new, year, just, prevent,
group, money, sentence, hear, lead, sel-
dom, call (v.), experience (n.), along, at-
titude, message, find, attempt (v.)

know, Federal Office for Migration and
Refugees, Bavaria, Horst, Seehofer, po-
litical, Thursday, Hungary, place (n.),
correct (adj.), Wednesday, name (v.), Fri-
day, solidarity, speak, time/once, decide,
let, human rights group, international,
if possible, mouth, EU state, complain,
own, CSU, demand

Table 2: The top 15 keywords by PMI-freq in each cluster of each newspaper. The clusters in each newspaper are
ordered by their size from left to right. The words are separated by a comma, and additional explanation is given in
parenthesis. Note that multiple words can have equal PMI-freq score.

again and again.” (SZ, Feb. 19, 2016)

P = ‘Quarrels and brawls have happened
at least once.’

~» A = ‘To avoid such violence, the inte-
gration of refugees into the labor market
should be taken priority.’

6 Conclusion

Grounded in established pragmatics theory, we
argued for the importance of presuppositions in
framing, and put forward the notion of pragmatic
framing. This was validated by our computational
study on the case of iterative adverbs. Given the
sparsity of the iterative adverbs, such pragmatic
framing would be difficult to detect with many of
the (weakly-)supervised classification approaches
pursued in earlier studies, but we showed that it

can be uncovered via consciously combining deep
linguistic knowledge with NLP approaches. We
see our work as a step towards successfully incor-
porating theoretical linguistic insights into NLP
applications.
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A Hyperparameters

All hyperparameters used in our experiment de-
scribed in Section 4.2 are listed below:

Fine-Tuning BERT The BERT model was fine-
tuned for 4 epochs with a learning rate of 2e-5 and
a batch size of 16.

K-Means Clustering The k-means algorithm
was run 100 times with different centroid seeds.
The maximum iteration number was set to 2000,
and the random state was set to 42.

B Silhouette Coefficient for Optimal
Cluster Amount Searching

As described in Section 4.2, we applied silhou-
ette coefficient to find the optimal cluster amount
for clustering the iterAdv-S and experimented with
cluster amounts k£ € [2,50]. Figure 1 visualizes
the distribution of the silhouette coefficients under
k € [2,5] using the Python package Yellowbrick
(Bengfort et al., 2018), with each color standing
for one cluster. It can be observed that the average
silhouette coefficient decreases continuously when
k increases (This trend continues for all k& € [2, 50],
but in order to avoid redundancy, we only show the
visualization of k € [2,5] here). The best trade-
off between the average silhouette coefficient and
the amount of suboptimally clustered items (repre-
sented by the colored areas that stretch to left) is 3
for all three newspapers.

C Keywords of Each Cluster in German

Figure 2, 3 and 4 shows the original German key-
words that are ranked top 15 by PMI-freq in BILD,
FAZ and SZ, respectively. The plots in each figure
are ordered by the cluster size from left to right.
The bars stand for the PMI-freq score. The words
are separated by a comma. Multiple words as-
signed to one bar indicate that they have equal
PMI-freq score.
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Figure 1: Silhouette coefficients (represented by the horizontal axis) with respect to cluster amount k € [2, 5]
(represented by the vertical axis). The red dash line represents the average silhouette coefficient.
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Abstract

Despite their outstanding performance, large
language models (LLMs) suffer notorious flaws
related to their preference for simple, surface-
level textual relations over full semantic com-
plexity of the problem. This proposal investi-
gates a common denominator of this problem
in their weak ability to generalise outside of the
training domain. We survey diverse research
directions providing estimations of model gen-
eralisation ability and find that incorporating
some of these measures in the training objec-
tives leads to enhanced distributional robust-
ness of neural models. Based on these findings,
we present future research directions towards
enhancing the robustness of LLMs.

1 Introduction

The advances in language processing that we ob-
serve in recent years, mostly led by the instances of
large language models (LLMs) based on the trans-
former architecture (Vaswani et al., 2017) raise a
deserved attention of the scientific community. We
find studies concluding that LLLMs fine-tuned for
a specific task can align with, or even outperform
human accuracy on complex tasks such as ques-
tion answering (Rajpurkar et al., 2016), paraphrase
identification (Bowman et al., 2015), machine trans-
lation (Bahdanau et al., 2016) and others.

In contrast, critical studies demonstrate that
many of the models reaching a state-of-the-art on
a given task perform poorly on data sets drawn
from different distribution(s). This is due to var-
ious reasons, such as training data set biases in-
cluding spurious linguistic correlations (McCoy
et al., 2019), different text stylistics or typos (Be-
linkov and Bisk, 2018), where a broad preference
of LLMs towards fitting non-representative, yet
easy-to-learn surface-level relations cause them to
under-perform even shallow networks (Bojanowski
et al., 2016). A lack of generalisation can also
be caused by procedural reasons, such as training
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process instability, causing a convergence to local
minima of distinct generalisation quality (McCoy
et al., 2020). Low robustness of the consequential
model towards out-of-distribution (OOD) samples
limits their practical usability to the samples drawn
from the training distribution, which is often im-
possible to ensure.

Despite that the complex language models strike
an impression of a black-box, an extensive branch
of research demonstrated that internal representa-
tions of LLMs correspond well to a human tax-
onomy in terms of morphological and syntactic
decomposition (Clark et al., 2019a), or that the
depth of the internal representation correlates well
with the complexity of the problem as perceived by
humans (Tenney et al., 2019).

The reported agility support the central presump-
tion of this proposal; that LLMs can avoid the prob-
lems mentioned above under additional regularisa-
tion. We argue that such regularisation could also
strenghten the implicit property of LLMs learning
compositional language features and thus enhance
an interpretability of their decision-making.

In this proposal, we survey literature from the
broader area of neural networks for the reasons
for better generalisation of the neural model. We
find that many measures reported to correlate well
with model’s OOD performance can also enhance
neural model generalisation when utilised within
the model’s training objective, as regularisers, or
additional components of the training cost function.
Inspired by this finding, this proposal outlines a
path towards identification and utilisation of gener-
alisation measures aimed to enhance robustness of
LLMs towards distribution shift.

RQ1: “Can we estimate the performance of LLMs
on data from OOD, without a collection of
annotated data or expert feedback?”

RQ2: “Can we adjust the process of training
LLMs to perform better on OOD samples?”
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In Section 2.1 we survey the studies aiming to
estimate robustness of neural models with no re-
strictions on a domain of application. Subsequently,
in Section 2.2, we survey the training techniques
reported to enhance the robustness of the trained
model. Based on these findings, in Section 3 we
identify promising directions and respective chal-
lenges specific for estimating (§3.1) and enhancing
(§3.2) the robustness of LLMs.

1.1 Applicability

This proposal grounds the notion of model gener-
alisation to its ability to perform well on samples
drawn from distributions different than the training
distribution (OOD). In this context, the term of a
distribution, used interchangeably with domain, is
commonly described by a specific shared property,
such as topic, style, genre, or linguistic register
(Ramponi and Plank, 2020).

This proposal focuses on distributional robust-
ness in two branches of applications of current
LLMs: generative tasks, where the problem is to
generate a sequence of tokens, and discriminative
tasks, where the task is to infer a discrete decision
for each token or a sequence of tokens. Generative
tasks include summarization, dialogue generation
or machine translation, while discriminative tasks
include classification, extractive question answer-
ing or named entity recognition.

In both cases, we propose to estimate the impact
of given adjustment on model generalisation by
measuring a difference in the model’s performance
on a set of distinct OOD domains. We note that
such estimation is still only a pointwise estimation
of model generalisation as some properties of the
domains drawn for evaluation remain uncontrolled.

2 Background

2.1 Estimating Model Robustness (RQ1)

Having a set of true labels for some set of OOD
samples X; of target domain(s) D;, the robustness
of the model M can be estimated using standard
qualitative measures, such as accuracy. This raises
questions about the representativeness of the draw
of X;: do these cover all the domains of application
of M, and are these domains accurately weighted
in evaluation?

The problem is circumvented by generalisation
measures based on latent properties of M, that do
not require any labelled data of D;. However, such
an approach might come at the price of accuracy:
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according to Jiang et al. (2020), the Spearman’s
rank correlation of any unsupervised measure with
out-of-distribution accuracy does not exceed 0.5 on
average. The accuracy of the estimator improves
using supervised approaches (Stefanik et al., 2021),
but these already require some labelled data.

The situation presents a common dilemma in ro-
bustness evaluation: Ground-truth evaluation must
involve a representative selection of test data. This
problem can be avoided with unsupervised esti-
mations based on the model properties, but such
proxies are burdened by a certain level of inac-
curacy. In the following sections, we review the
measures introduced directly for evaluating model
generalisation (§2.1.1) and for estimating model’s
expected output quality (§2.1.2), more commonly
used in NLP.

2.1.1 Generalisation Measures

Traditionally, the ability of neural networks to gen-
eralise was related to the measures of their capac-
ity, where the lower capacity might imply the lower
generalisation gap (Jiang et al., 2020), i.e. a drop of
performance under distribution shift. The capacity
can be quantified in terms of complexity given by a
number of model parameters, expressive power or
others. A standard example of such a measure is a
degree of a polynomial; the higher the degree, the
better is the fit, but it comes at the price of generali-
sation loss. This group of measures is referred to as
Vapnik—Chervonenkis dimension (VC-dimension),
introduced by Vapnik (1999).

A large body of work aims to find such VC-
dimensions that correspond well with OOD per-
formance even with modern, over-parametrised
networks. For instance, norm-based approaches
(Neyshabur et al., 2015b) propose to use the p-
norms used in regularisation of the training as the
anchor value of generalisation and support this in
theory by connecting such measure with a limi-
tation of network capacity. Bartlett et al. (2017)
conclude that a spectral complexity measure, that
is inferred from eigenvalues of a matrix of the net-
work weights, can be used as one of such complex-
ity measures.

A collateral line of work, starting with Shawe-
Taylor et al. (1998) show that generalisation
bounds, denoting a range of expected performance
of the given model on an arbitrary test set, can be
provably associated with VC-bounds. Harvey et al.
(2017) show that the tightness of such bounds for a
linear subset of networks can be theoretically found.



Furthermore, Dziugaite and Roy (2017) propose a
method to optimize PAC-Bayesian bounds, optimis-
ing the model for as tight bounds as possible.

Despite these proofs, error bounds based on VC-
dimensions remain vacuous in practice (Dziugaite
and Roy, 2017; Jiang et al., 2020): such estimates
of OOD performance are too wide to be used in
practice. Additionally, it is now widely observed
(Novak et al., 2018; Neyshabur et al., 2015a), that
in practice, an effect of over-parametrisation is in
contrast with traditional VC-dimension theory and
in multiple cases, over-parametrisation leads to bet-
ter reported generalisation (Neyshabur et al., 2019).

Existing work attempts to ground error bounds
in the underlying causal model that describes the
target domains of interest. Meinshausen (2018)
introduces a term of Structural equation model
(SEM) defining the causal interventions consistent
with a given world and relates domain general-
isation to the model’s robustness to the interven-
tions defined by such SEM. Additionally, given that
SEM produces a class of distributions Q, a model
M robust on Q is a causal inference model for
Q, connecting distributional robustness to a weak
form of causal inference (Dziugaite et al., 2021).
Similarly, Bithimann (2018) ascribes the ability of
causal inference on Q to any model whose repre-
sentation is invariant to any domain D € Q and
proposes a method of selecting a subset of invariant
features that picks such subset of attributes from a
given set.

Practical observations of errors suggest that em-
pirical error bounds are in fact significantly tighter
than what can be proven in theory. Dziugaite et al.
(2021) locate all bounds between the two extremes:
theoretically-supported, yet vacuous bounds of
methods based solely on the model property (VC-
bounds) or behaviour (PAC-Bayesian bounds) and
empirical, yet strictly data- and model-dependent
evaluation on sample set(s) X; € D;.

2.1.2 Quality Estimation

Quality estimation (QE) measure predicts model
output quality in the absence of ground-truth refer-
ence (Fomicheva et al., 2020). Although not com-
monly used in this manner, QE measures also re-
flect on model robustness, making this branch of
research applicable for OOD performance estima-
tion (RQ1).

A significant line of work grounds quality es-
timation in model confidence, which can be esti-
mated using Bayesian networks (Mackay, 1992)
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where standard scalar weights of the network are
replaced with random variables, modelling the out-
put distribution. This approach is accurate but
not computationally feasible for larger networks.
A branch of work approximates parametric distri-
butions (Graves, 2011; Tran et al., 2019) making
such uncertainty estimation practically feasible.

Model uncertainty can also be computed by en-
sembling variations of a given model in multiple
trials, commonly referred to as Monte Carlo (MC)
methods. Monte Carlo dropout (Gal and Ghahra-
mani, 2016) applies dropout on inference randomly
among multiple inference trials yielding an estima-
tion of the distribution of network output, based on
which the uncertainty is approximated. Lee et al.
(2015) build such ensembles of estimators using
bagging, i.e. training the ensembled models on
different train sub-sets.

Model-variational methods fit well into the cen-
tral PAC-Bayesian theory (Valiant, 1984), stating
that if the error of the classifier can be bound, then
also a performance of an ensemble of such clas-
sifiers can be upper-bound with arbitrarily-small
bound e (Guedj, 2019).

Confidence estimation can be utilised in en-
hanced model robustness, where prediction confi-
dence is used as a regularizer of the main objective;
in augmentation (Szegedy et al., 2014), confidence
calibration (Gong et al., 2021), or in a training for
consistency (Xie et al., 2019).

Jiang et al. (2020) propose to measure a regu-
larisation decay of the weights, together with a
measure of sharpness, reflecting on a volume of
change in the model evaluation when the limited
surrounding of the learnt parameter space min-
ima is permuted (Keskar et al., 2017). Another
introduced measure reflects a variance of gradi-
ents measured on a train set after a first training
iteration. This work is the first large-scale study
evaluating correlation of selected generalisation
measures with true OOD performance and con-
cludes that the mentioned sharpness and gradient-
based measures correlate highest with the measured
OOD performance. Consecutively, Dziugaite et al.
(2021) support these findings on sharpness-based
and PAC-Bayesian measures as the best-correlated
in the similar methodology.

An important application of QE techniques lays
in neural machine translation, where avoiding criti-
cal errors in translation remains an open problem.
Such errors deviate the meaning of the translation



in a way that may carry health, safety, legal or other
implications (Specia et al., 2021). Kim et al. (2017)
train a token-level estimator of machine translation
output quality concurrently with the neural trans-
lation model. Fomicheva et al. (2020) additionally
propose to predict output quality from entropy of
attention activations of transformer model, but they
find this approach not more accurate than the one
based on simple output entropy (Kim et al., 2017),
or than the MC dropout method.

2.2 Training Robust Models (RQ2)

A problem of training a model that performs
well on out-of-distribution (OOD) samples can be
found in the literature under the terms of out-of-
distribution generalisation (Yi et al., 2021), do-
main generalisation (Gong et al., 2021), distribu-
tional robustness (Meinshausen, 2018), or simply
generalisation (Foret et al., 2021). The variety of
terminology points to the fact that the standards in
this branch of research are not yet clearly set.

Despite imperfect correlations of generalisa-
tion measures with measured OOD performance,
we find these measures already incorporated in
novel training objectives reaching attractive en-
hancements of model robustness; Neyshabur et al.
(2015b) investigate the impact of incorporating
norm-based measures into the loss, obtaining gener-
alisation guarantees of £o-norm. Foret et al. (2021)
enrich the cross-entropy loss with a complementary
component reflecting a sharpness of local optimum,
based on a difference to local . Keskar et al. (2017)
also demonstrate that the sharpness of the objec-
tive’s optima corresponds to the model’s robustness,
and flatter optima can also be reached by noising
the update steps by smaller training batch size.

Objective adjustments creatively utilising PAC-
-Bayesian measures also confirm reported corre-
spondence of these measures to generalisation. Hin-
ton (2002) proposes a Product of Experts (PoE)
framework where an ensemble of identical shallow
estimators eliminate model-specific biases in a dot
product of ensembled outputs, resulting in superior
OOD performance. Sanh et al. (2021) show an ap-
plication of PoE eliminating the systematic biases
on adversarial NLI data sets. Dagaev et al. (2021)
adopt similar approach in debiasing image clas-
sification from heuristical shortcuts. Utama et al.
(2020) eliminate model reliance on domain-specific
attributes in a two-step process: by identifying the
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biased samples by model over-confidence, and their
subsequent down-weighting.

Rather than encouraging specific model fea-
tures, others have investigated the impact of spe-
cific training strategies, which becomes particu-
larly relevant in multi-step training strategies of
LLMs. Wang and Sennrich (2020) enhance robust-
ness of the translation by fine-tuning for sentence-
level Minimum Risk Training objective instead of
the common token-level cross-entropy. Tu et al.
(2020) show on adversarial data sets that: a) longer
fine-tuning eliminates model fragility on under-
represented samples, and b) multitask learning
has a positive impact on transformer generalisa-
tion to adversarial data sets. Compliant results are
reported by Xie et al. (2019) with multitask learn-
ing for both classification and output consistency
to augmented samples, or by Raffel et al. (2020) on
generative language multitask learning, or in cross-
lingual settings by Clark et al. (2019b); Conneau
et al. (2019); Lewis et al. (2020).

Similar results are reported in work address-
ing dataset biases. Utama et al. (2020); Nie et al.
(2019); Teney et al. (2020) report that addressing
only one bias in domain adaptation hurts the model
generalisation on other domains. On the other hand,
Wau et al. (2020) find that addressing multiple biases
at once can enhance OOD generalisation, although
they draw this conclusion from a single domain.

A different branch of work attempts to enhance
the robustness by training strategies that work with
knowledge of domain distinction. Gong et al.
(2021) propose to approximately cover the class
of all possible target domains D; by source do-
mains Dy and to learn the calibration of output
probabilities from D, that will allow to associate
samples of a new target domain D; to some known
Ds. Yi et al. (2021) propose to use the adversarial
framework, learning indistinguishable final-layer
representation for different domains.

3 Research Proposal

Following the referenced studies on evaluation and
enhancement of the generalisation of neural mod-
els, this section outlines directions in measuring
and improving robustness of LLMs, respectively.

3.1 Estimating Model Robustness (RQ1)

Recently, the measures of generalisation of neural
networks struck increasing attention (Jiang et al.,
2020; Dziugaite et al., 2021). However, none of the



referenced studies evaluates the measures on the
case of LLMs. Especially within a standard pre-
training + fine-tuning framework of modern NLP
applications, quality of the measures might differ
compared to the experiments on relatively small
convolutional networks trained for image classifi-
cation from scratch.

Hence, we first focus on evaluating the estab-
lished generalisation measures, such as the ones
based on spectral complexity, variance of gradi-
ents or sharpness in the case of pre-trained LLMs.
A major challenge is to scale such experiments
to a representative evaluation framework covering
a broad set of tasks, domains, and model types. For
instance, other training parameters will likely im-
pact the metrics’ quality; such covariates will have
to be identified and controlled. However, even ex-
tensive evaluation will likely fail to identify some
of such covariates; Due to this reason, we will de-
limit the scope of our results to the estimation and
enhancement of robustness with respect to the enu-
merated covariates, even though it contrasts with
the methodology of previous work.

We will give preference to the generalisation
measures that correspond to linguistic and seman-
tic language properties, as the practical deployment
of such measures in evaluation also addresses a de-
sire for enhancing interpretability of the LLMs’
behaviour. Instances of linguistically-motivated
measures can be a largest common ancestor be-
tween the parse trees of reference and hypothesis
of generative model, or a coherence of output of
discriminative model when a negation is introduced
in the input.

In the evaluation of robustness of generative
LLMs, we will prioritise foken-level measures over
conventional segment-level ones such as BLEU,
as incorporating accurate token-level measures
in training objectives could complement the clas-
sic token-level cross-entropy loss in sequence-to-
sequence objective with its specific flaws, such as
exposure bias (Wang and Sennrich, 2020).

The evaluation methodology will closely follow
the one of Dziugaite et al. (2021), which reflects
on a correlation of the measure with the measured
OOD performance. If these measures reach high
correlations, they might be applied directly in train-
ing regularisation or model selection. Even in cases
of measures not reaching a high correlation, these
can still bear the potential to improve model robust-
ness (Foret et al., 2021).
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3.2 Training Robust Models (RQ2)

Following the referenced examples adjusting train-
ing objectives with accurate generalisation mea-
sures (§2.2), e.g. norm-based measures (Neyshabur
et al., 2015b), PAC-Bayesian measures (Sanh et al.,
2021; Dagaev et al., 2021; Utama et al., 2020),
or sharpness measure (Foret et al., 2021), we will
use the accurate generalisation measures of LLMs
(§3.1) as regularizers and complementary objec-
tives of the training.

Locatello et al. (2019) theoretically prove that
full distributional robustness is not possible with-
out an explicit exposition of both the data and the
model biases. Recently, Bengio et al. (2020) the-
oretically and empirically demonstrated that the
model could utilise data biases to expose the under-
lying causal structure of the data in an experiment
where such a structure is preliminarily known.

We will introduce training objectives that expose
domain-specific data biases to the model in more
explicit ways. The most direct approach is to com-
plement the task-specific objective with another
objective of distinguishing the domain(s) of ori-
gin. The domain-distinctive objective can shape a
form of a binary classifier or a similarity loss of se-
lected model representations (e.g. KL-divergence
(Kullback and Leibler, 1951)).

We will investigate the impact of the pre-
training, and fine-tuning objectives on the model’s
eventual robustness over multiple application tasks,
domains and architectures, in a methodology sim-
ilar to the generalisation measures evaluation of
(Dziugaite et al., 2021).

Additionally, we will replace or complement the
objectives of generative LLMs with token-level
measures well-correlated with the OOD perfor-
mance and compare the resulting models with
computationally-expensive sentence-level objec-
tives optimising the measures such as BLEU as
their objectives.

In the case of discriminative models, we will
evaluate robustness to surface-level heuristics us-
ing adversarial datasets like HANS (McCoy et al.,
2019), or PAWS (Zhang et al., 2019) designed to
expose the commonly-learnt biases of LLMs. For
generative LLMs, we will evaluate a performance
of the model on domain(s) different from the train-
ing domain; for instance, we will train a translation
model on subtitles parallel corpus and evaluate on
a domain of news articles. We will also evaluate
the trained model(s) for its inclination to critical



errors as a probability of generating a translation
containing a severe error (Specia et al., 2021) in
enforced generation.

4 Conclusion

Our work outlines potential directions in enhanc-
ing distributional robustness of LLMs to mitigate
a performance drop under distribution shift. We sur-
vey and identify accurate generalisation measures
(§2.1) and find multiple studies demonstrating that
utilisation of these measures in the training objec-
tives positively impacts model robustness (§2.2).

Following this observation, we propose to iden-
tify generalisation measures best-suitable for LLMs
(§3.1) and outline ways how to utilise these mea-
sures in the training process. Additionally, we iden-
tify a set of other methods reported to enhance
OOD performance of LLMs that we propose to
compare to in the outlined methodology for evalu-
ating generalisation measures.

Similarly, we propose methodologies for robust-
ness estimation of both generative and discrimina-
tive LLMs (§3.2); These methodologies are based
on a quality assessment on the domains covered
by the enclosed set of variables, and on the robust-
ness towards the data set(s) constructed to expose
enclosed set of models’ biases.
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acquisition, strong scalability, and low train-
ing cost. Although existing RAG models have
been applied to various knowledge-intensive
NLP tasks, such as open-domain QA and dia-
logue systems, most of the work has focused
on retrieving unstructured text documents from
Wikipedia. In this paper, I first elaborate on the
current obstacles to retrieving knowledge from
a single-source homogeneous corpus. Then, I
demonstrate evidence from both existing liter-
ature and my experiments, and provide multi-
ple solutions on retrieval-augmented generation
methods across heterogeneous knowledge.

1 Introduction

In recent years, large pre-trained language models
(PLMs), such as TS5 (Raffel et al., 2020) and GPT-
3 (Brown et al., 2020), have revolutionized the field
of natural language processing (NLP), achieving
remarkable performance on various downstream
tasks (Qiu et al., 2020). These PLMs have learned a
substantial amount of in-depth knowledge from the
pre-training corpus (Petroni et al., 2019), so they
can predict the outputs on downstream tasks with-
out access to any external memory or raw text, as
a parameterized implicit knowledge base (Roberts
et al., 2020). The way of fine-tuning PLMs using
only input-output pairs of target data is often re-
ferred to as close-book setting (Petroni et al., 2019).

While this development is exhilarating, such
large-scale PLMs still suffer from the following

* This is a thesis proposal paper presented at the student
research workshop (SRW) at NAACL 2022 in Seattle, USA.

Number of parameters (Million, Billion, Trillion)

Figure 1: The RAG methods significantly outperform
large-scale PLMs on three open-domain QA tasks while
trained with much fewer parameters than PLMs.

drawbacks: (i) They are usually trained offline,
making the model agnostic to the latest informa-
tion, e.g., asking a chat-bot trained from 2011-2018
about COVID-19 (Yu et al., 2022b). (ii) They
make predictions by only “looking up information”
stored in its parameters, leading to inferior inter-
pretability (Shuster et al., 2021). (iii) They are
mostly trained on general domain corpora, mak-
ing them less effective on domain-specific tasks
(Gururangan et al., 2020). (iv) Their pre-training
phase can be prohibitively expensive for academic
research groups, limiting the model pre-training to
only a few industry labs (Izsak et al., 2021).

The solution that seems obvious at first glance is
to allow language models free access to open-world
resources, such as encyclopedias and books. The
way of augmenting the input of PLMs with external
information is often referred to as open-book set-
ting (Mihaylov et al., 2018). A prominent method
in the open-book setting is retrieval-augmented
generation (RAG) (Lewis et al., 2020b; Yu et al.,
2022c¢), a new learning paradigm that fuses PLMs
and traditional IR techniques, which has achieved
state-of-the-art performance in many knowledge-
intensive NLP tasks (Petroni et al., 2021). Com-
pared with large-scale PLMs counterparts, e.g.,
GPT-3, the RAG model has some remarkable ad-
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vantages: (i) The knowledge is not implicitly stored
in model parameters, but is explicitly acquired in a
plug-and-play manner, leading to great scalability;
(i1) Instead of generating from scratch, the model
generates outputs based on some retrieved refer-
ences, which eases the difficulty of text generation.
Although the RAG models have been widely
used in the existing literature, most of the work
has focused on retrieving unstructured text from
general domain corpus, e.g., Wikipedia. However,
the performance is often limited by the coverage
of only one certain knowledge. For example, only
a finite portion of questions could be answered
from Wikipedia passages in many open-domain
QA datasets, while the remaining could only rely
on the input question because no supportive doc-
uments could be retrieved (Oguz et al., 2022). In
this paper, I first elaborate on the current obstacles
to retrieving knowledge from a single-source ho-
mogeneous corpus. Then, I demonstrate several
pieces of evidence from both existing literature and
my own experiments, and provide multiple poten-
tial solutions on retrieval-augmented generation
methods across heterogeneous knowledge.

2 Background

I will first provide a formal definition of the RAG
framework and list necessary notations. RAG aims
to predict the output y based on the source input
x (z, y are from a corpus D), while a document
reference set Z is accessible (e.g., Wikipedia). Be-
sides, the association between a document z € Z
and the tuple (z,y) € D is not necessarily known,
though it could be provided by human annota-
tions (Dinan et al., 2019) or weakly supervised
signals (Karpukhin et al., 2020).

Overall, a general RAG framework has two ma-
jor components: (i) a document retriever and (ii)
a text generator, as shown in Figure 2. The objec-
tive of the RAG is to train a model to maximize
the likelihood of y given x and Z, In practice, Z
often contains millions of documents, rendering
enumeration over z impossible. Therefore, the
first step of RAG is to leverage a document re-
triever, e.g., DPR (Karpukhin et al., 2020), to nar-
row down the search to a handful of relevant doc-
uments. The retriever takes x and Z as input and
yields relevance scores {s1, - , sk} of the top-K
documents Z = {2(1), -+, 2(k)}- Then, the sec-
ond step of RAG is to use a text generator, e.g.,
BART (Lewis et al., 2020a) and T5 (Raffel et al.,
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Figure 2: Compared with PLMs, RAG models directly
seeks knowledge (e.g., texts, tables and KGs) from ex-
ternal information sources to help answer questions.

2019), to produce desired output y by taking both
input x and retrieved document set Z as conditions.

Document Retriever. A neural document retriever
typically employs two independent encoders like
BERT (Devlin et al., 2019) to encode the query
and the document separately, and estimates their
relevance by computing a single similarity score
between two encoded representations. For exam-
ple, in DPR (Karpukhin et al., 2020), the docu-
ments Z and context queries = are mapped into the
same dense embedding space. The relevance score
s(x, z) for each document z is computed as the vec-
tor inner product between document embedding &,
and query embedding h,, i.e., s(z,2) = hL x h,.

Text Generator. It can use any encoder-decoder
framework, such as BART (Lewis et al., 2020a)
and T5 (Raffel et al., 2019). The model takes in-
put sequence, as well as the support documents to
generate the desired output. A naive method for
combining the input sequence with the support doc-
uments is to concatenate them sequentially (Lewis
et al., 2020a). Howeyver, this method suffers from
the input sequence length limitation and high com-
putation cost. FiD (Izacard and Grave, 2021) pro-
cessed passages independently in the encoder, per-
formed attention over all the retrieved passages,
which demonstrated state-of-the-art performance
on many knowledge-intensive NLP tasks.

3 Proposed Work

3.1 Background and Motivation

Despite achieving remarkable performance, pre-
vious efforts of retrieval-augmented generation
(RAG) works mainly exploit only a single-source
homogeneous knowledge retrieval space, i.e.,
Wikipedia passages (Karpukhin et al., 2020; Lewis
et al., 2020b; Petroni et al., 2021; Izacard and



Grave, 2021; Yu et al., 2022a). However, their
model performance might be limited by the cover-
age of only one certain knowledge. For example,
only a finite portion of questions can be answered
from the Wikipedia passages in many open-domain
QA datasets, while the remaining can only rely
on the input query because no supportive docu-
ments can be retrieved (Oguz et al., 2022). Since
much useful information cannot be fulfilled based
on Wikipedia alone, a natural solution is to ex-
pand the retrieval corpus from Wikipedia to the en-
tire World Wide Web (WWW). However, suffering
from the long-tail issue and the cost of a massive
workforce, it is not wise to improve the coverage
by expanding the number of entries in a single-
source knowledge (Piktus et al., 2021; Lazaridou
et al., 2022). For example, as shown in Table 1,
increasing the retrieval space from Wikipedia (22M
documents) to the web-scale corpus CCNet (906 M
documents) even hurts model performance on NQ
and HotpotQA datasets. This is most likely due to
the lower quality (where quality could mean truth-
fulness, objectivity, lack of harmful content, source
reliability, etc) of the web corpus, compared with
the Wikipedia corpus (Piktus et al., 2021).

Instead of expanding the number of entries in
a single-source knowledge, an alternative solution
is resorting to heterogeneous knowledge sources.
This is also in line with our human behavior of
answering questions that often seek a variety of
knowledge learned from different sources. There-
fore, grounding generation across heterogeneous
knowledge sources is a natural solution to improve
knowledge coverage and have more room to se-
lect appropriate knowledge. It is worth mentioning
that no knowledge type can always perform the
best. The most suitable knowledge depends on the
case, in which multiple knowledge might need to
be combined for answering one question.

3.2 Evidence from Existing Literature

There are several studies in the existing litera-
ture that combine multiple knowledge to enhance
language models, such as augmenting common-
sense reasoning with knowledge graphs (Yu et al.,
2022d), and introducing multi-modal visual fea-
tures to enhance emotional dialogue (Liang et al.,
2022). However, most of them use aligned knowl-
edge from different sources (e.g., graph-text pairs,
image-text pairs), without retrieving knowledge
from a large-scale heterogeneous corpus.
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Table 1: With a larger corpus of unstructured text re-
trieval — CCNet, the model performs even worse than re-
trieving from Wikipedia alone on the NQ and HotpotQA
datasets. The model used in the table is DPR+FiD.

No. | Source | #docs | NQ | TQA | HotpotQA
1 | Wikipedia | 22M | 514 | 71.0 |  36.9
2 | CCNet | 906M | 48.6 | 73.1 31.6

3

Table 2: Exact match (EM-score) of retrieving hetero-
geneous knowledge for three open-domain QA bench-
marks. The model used in the table is DPR+FiD.

No Knowledge type Dataset

" | Text | Table | KG || NQ | TQA | WebQ
1 Vv 49.0 | 64.0 50.6
2 Vv 36.0 | 345 41.0
3 Vv 279 | 354 55.2
4 Vv Vv 54.1 | 65.1 50.2
5 Vv Vv vV 54.0 | 64.1 57.8

The most relevant works to this proposal are
UniK-QA (Oguz et al., 2022) and PLUG (Li et al.,
2021). In UniK-QA, Oguz et al. (2022) proposed
to retrieve information from a merged corpus of
structured (i.e., KG triples), semi-structured (i.e.,
tables) and unstructured data (i.e., text passages)
for open-domain QA (Oguz et al., 2022). Their
experiments were conducted on multiple open-
domain QA benchmark datasets, including Nat-
uralQuestions (NQ) (Kwiatkowski et al., 2019),
TriviaQA (TQA) (Joshi et al., 2017) and WebQues-
tions (WebQ) (Berant et al., 2013).

The results in the first three lines in Table 2 high-
light the limitation of current state-of-the-art open-
domain QA models which use only one informa-
tion source. Among the three types of knowledge
sources, text-only methods perform best on NQ
and TQA datasets, and KG-only methods perform
best on WebQ datasets. This is because most of
the questions in WebQ are collected from Freebase.
The results in the last two lines show that adding
semi-structured and structured information sources
significantly improves the performance over text-
only models on NQ and TQA datasets. This indi-
cates tables and knowledge graph triples contain
valuable knowledge which is either absent in the
unstructured texts or harder to extract from them.

It is worth mentioning that knowledge het-
erogeneity can be defined not only by the for-
mat of knowledge data (i.e., structured and un-
structured knowledge), but also by the scope of
knowledge data (i.e., encyclopedic and common-



Table 3: Commonly used knowledge sources.

Unstructured | (Semi-)structured
Encyclopedic Wikipedia, Wikidata,
knowledge AMiner Freebase
Commonsense ConceptNet, OMCS, ARC,
knowledge CSKG, Atomic Wiktionary

Table 4: Accuracy of retrieving heterogeneous knowl-
edge for commonsense reasoning over entity tasks.

o Knowledge source Dataset
" | Commonsense ‘ Encyclopedia || CREAK ‘ CSQA2.0
1 4 86.55 59.28
2 vV 82.28 58.23
3 V4 4 87.57 60.49

sense knowledge). Table 3 shows common knowl-
edge sources under two categories. In addition
of combining structured and unstructured knowl-
edge, combining encyclopedic and commonsense
knowledge also brings benefits for many NLP
tasks, such as commonsense reasoning over entities.
Some preliminary experiments were conducted on
CREAK (Onoe et al., 2021) and CSQA2.0 (Tal-
mor et al., 2021) datasets. CREAK is a dataset
of human-authored English claims about entities
that are either true or false, such as “Harry Pot-
ter can teach classes on how to fly on a broom-
stick (True).” The model is supposed to bridge
fact-checking about entities with commonsense in-
ferences. An entity fact relevant to this statement,
“Harry Potter is a wizard and is skilled at riding a
broomstick”, can be retrieved from Wikipedia. A
commonsense knowledge, “if you are good at a
skill you can teach others how to do it”, can be
retrieved from the ATOMIC (Sap et al., 2019). By
leveraging both commonsense knowledge and en-
cyclopedic knowledge in the first-step retrieval, as
shown in Table 4, the RAG model can achieve su-
perior performance than only using either of them.

3.3 Proposed Solutions

As mentioned above, heterogeneous knowledge
is often required when solving open-domain QA
and many other knowledge-intensive NLP tasks.
One natural assumption is to expand knowledge
sources and add more data to increase the coverage
of relevant contexts, thereby improving the end-
to-end performance. In this section, I will present
three potential solutions for grounding generation
across heterogeneous knowledge.
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3.3.1 Homogenize Different Knowledge to a
Unified Knowledge Representation

The first solution is to homogenize different knowl-
edge source data into a unified data format — un-
structured text. This transformation will then re-
quire only one retriever, enable relevance compari-
son across different types of data, and offer textual
knowledge to easily augment the input of genera-
tion models by concatenation. Table 3 shows some
commonly used knowledge sources. For example,
semi-structured tables and structured knowledge
graph triples can be converted into the unstructured
text by template-based methods (Bosselut et al.,
2019; Oguz et al., 2022) or neural data-to-text meth-
ods (Wang et al., 2021; Nan et al., 2021).

First, the template-based method is easy to im-
plement and requires no training process. For ex-
ample, a relation triplet in a knowledge graph con-
sists of subject, predicate, and object. It can be
serialized by concatenating the surface form of the
three elements to be a sequence of words. Be-
sides, a table can also be hierarchically converted
into text format: first, concatenate cell values of
each row separated by commas; then combine these
rows’ text forms delimited by semicolons. Al-
though the template-based method is simple but
may suffer from incorrect syntax and incomplete
semantics. On the contrary, the neural graph-to-
text and table-to-text generation methods rely on
pre-trained language models that may ensure syn-
tax correctness and semantic completeness. Once
either type of the methods converts the structured
and semi-structured data to unstructured text, a
dense retriever model such as DPR (Karpukhin
et al., 2020) can be used to index all of them and
retrieve relevant knowledge. The reader model will
concatenate the retrieved text with original input
and compute full attention over the entire represen-
tations through a T5 (Raffel et al., 2020) decoder.
This unified knowledge index allows the models
to learn knowledge of various formats and scopes
of data, and the model can simultaneously retrieve
information from a unified index of multiple knowl-
edge sources to improve the knowledge coverage.

3.3.2 Multi-virtual Hops Retrieval over
Heterogeneous Knowledge

Retrieved data are expected to bridge the gap be-
tween inputs and outputs of generation models. In
other words, retrievers are trained to provide in-
formation that is found with the inputs as queries
and related to the outputs. Ideally, they find the



output-related information just once. However,
that may actually take multiple hops of retrieval
across knowledge sources. Thus, the second solu-
tion is to iteratively retrieve knowledge from dif-
ferent sources. Regarding an entity, encyclope-
dic knowledge usually contains its attribute infor-
mation (e.g., age, duration), while commonsense
knowledge includes universally recognized facts in
human’s daily life. For example, the entity “soup’
in Wikipedia is described as “a primarily liquid
food, generally served warm or hot, made by com-
bining ingredients of meat or vegetables with stock,
milk, or water”’; and in the OMCS corpus (Singh
et al., 2002), it contains a well-known fact “soup
and salad can be a healthy lunch”. Therefore, to
answer the question “What are the common ingredi-
ents in a healthy lunch?”, the encyclopedic corpus
and commonsense corpus can provide complemen-
tary knowledge that should be both leveraged.

>

Besides, it also might be necessary to first read
a subset of the corpus to extract the useful infor-
mation, and then further retrieve information from
other knowledge sources. For example, given in-
put ¢, it may take k steps, each step retrieving
data d; from source s; € S with an incremental
query ¢; = q P di & --- ®di—1 ¢ < k) until
the final d;, contains the information that can di-
rectly augment the generation of outputs o. Here
S includes various sources such as text corpora,
tables, and knowledge graphs. To achieve this,
however, the primary challenge for training such
a multi-hop retriever is that it cannot observe any
intermediate document for supervision but only the
final output. So, the multi-virtual hops retrieval
(MVHL) needs to perform multi-hop retrieval with-
out any intermediate signal. I will discuss two
promising designs as below. First, the MVHL ap-
proach will dynamically determine when the multi-
hops retrieval finishes. I denote the relevance score
between query ¢; and data d; from source s; by
r(d;; qi, $i). The search continues at the i-th step,
if r(di; qi, si) > r(di; gi—1, Si—1 U s;); because d;
brings new relevant information that was not able
to be retrieved at the (¢ — 1)-th step or any previ-
ous steps. Second, the MVHL can use sequential
models instead of heuristics to control the multi-
hops search. The search is expected to finish at
step 4, when the relevance between the retrieved
data d; and output o, which can be computed by
BERTScore (Zhang et al., 2020), achieves a local
maximum. In order to model the relationship be-
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Query: What was the occupation of Lovely Rita in the Beatles song?
Wikiepdia: Lovely Rita is a song by the English rock band the Beatles
from their album Sgt. Pepper’s Lonely Hearts Club Band. It was writ-
en and sung by Paul McCartney and credited to Lennon-McCartney.
It is about a female traffic warden and the narrator’s affection for her.
Wikidata:

)
2‘0 ~
(¢ /
A
A i

{4

o,
7 Lovely Rita

is a member of

Traffic warden

o
ocCUPation

Figure 3: Reasoning over retrieved documents on struc-
tured knowledge provides explicit knowledge ground-
ing to help answer questions. For example, in WebQ,
46.9%/56.1% of the questions can be solved by one/two-
hop neighbors on the query-document subgraph.

tween this target relevance 7, (d;) and the retrieval
score 7(d;; g, S; ), a straightforward solution is to
train a multi-hop retriever with only the output o us-
ing a fixed number of hops K (5 or 10) and use the
validation set to choose the best model. With that
model, I can observe the K -length series of r and
T, and train an RNN model that predicts r,(dy)
based on the first £ elements in the r series. The
search terminates when the predicted 7, decreases.

3.3.3 Reasoning over Retrieved Documents
Based on Structured Knowledge

Traditional reader modules typically concatenate
the input query and retrieved documents sequen-
tially, and then feed them into a pre-trained genera-
tion model, such as T5. Although the token-level
attention can implicitly learning some relational pat-
terns between the input query and retrieved docu-
ments, it does not fully utilize the structured knowl-
edge that can provide more explicit grounding. As
shown in Figure 3, the relational information be-
tween important entities in the input query (i.e.,
Lovely Rita) and the retrieved documents (i.e., traf-
fic warden) may require reasoning over structured
knowledge that is not explicitly stated in the con-
text. So, the third solution is to perform multi-hop
reasoning on structured knowledge, e.g., Wikidata,
to learn relational patterns between the input query
and retrieved documents. In this way, the represen-
tation of retrieved documents is further enriched
by structured knowledge. To perform knowledge
reasoning over retrieved documents, the idea is
to first extract a query-document subgraph since
direct reasoning on the entire knowledge graph is
intractable. Entities on the subgraph can be mapped
by given hyperlinks in Wikipedia passages. Then,
a multi-relational graph encoder iteratively updates



the representation of each entity node by aggre-
gating information from its neighboring nodes and
edges. Then, the embedded node and relation repre-
sentations, as well as the query and document rep-
resentations, are then fused into the reader model.
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Abstract

Information Retriever (IR) aims to find the rel-
evant documents (e.g. snippets, passages, and
articles) to a given query at large scale. IR
plays an important role in many tasks such
as open domain question answering and dia-
logue systems, where external knowledge is
needed. In the past, searching algorithms based
on term matching have been widely used. Re-
cently, neural-based algorithms (termed as neu-
ral retrievers) have gained more attention which
can mitigate the limitations of traditional meth-
ods. Regardless of the success achieved by neu-
ral retrievers, they still face many challenges,
e.g. suffering from a small amount of training
data and failing to answer simple entity-centric
questions. Furthermore, most of the existing
neural retrievers are developed for pure-text
query. This prevents them from handling multi-
modality queries (i.e. the query is composed of
textual description and images). This proposal
has two goals. First, we introduce methods
to address the abovementioned issues of neu-
ral retrievers from three angles, new model ar-
chitectures, IR-oriented pretraining tasks, and
generating large scale training data. Second,
we identify the future research direction and
propose potential corresponding solution'.

1 Introduction

The convenience and advance of internet not only
speed up the spread of information and knowl-
edge, but also the generation of new information.
Such phenomenon also boosts humans needs of
knowledge and frequency of acquiring informa-
tion, which makes Information retrieval (IR) an
important task in human life. IR aims to find rel-
evant information from a large corpus to satisfy
an information need. It also plays an important
role in other tasks such as open domain question

'Since previous work use context, documents or knowl-
edge to represent the retrieved information given a query, we
use these two terms interchangeably.
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answering and open domain dialogue, where ex-
ternal knowledge are needed. Not only that, IR
can also assistant other systems to achieve a tough
goal. By providing external knowledge, IR can
help numerical reasoning systems to reach the cor-
rect answer (Mishra et al., 2022) , and IR can en-
rich or update the knowledge of large pretrained
language models (PrLMs) (Petroni et al., 2019;
Sung et al., 2021). By filtering and selecting exam-
ples (Liu et al., 2021; Lin et al., 2022), IR can assist
in-context learning (ICL), a process allows large
PrLMs do a new task instructed by prompts and few
examples with few-shot tuning (Gao et al., 2021)
or without any fine-tuning (Brown et al., 2020).

IR has a long history and the first automated in-
formation retrieval system can be traced back to the
1950s. In this work, we call information retrieval
methods or systems as retrievers. Traditional re-
trievers are mainly based on term-matching, i.e.
searching for information that has an overlap with
terms in the query. TF-IDF and BM25 (Robertson
and Zaragoza, 2009) are two strong and efficient
algorithms in this category. Although these algo-
rithms consider the importance and frequency of
terms in query and document, they suffer from
term-mismatch issues and lack of semantic under-
standing of the query and document (Chang et al.,
2020). Using neural models to represent the con-
catenation of query and passage is a promising way
to achieve semantic matching (Nogueira and Cho,
2019; Banerjee and Baral, 2020). These methods
are only applicable at small scale retrieval but not
at large scale. Recently, dual-encoder architecture
retrievers based on large pretrained language mod-
els (PrLMs), such as BERT (Devlin et al., 2019)
have shown capability to do semantic matching and
can be applicable at large scale (Karpukhin et al.,
2020; Guu et al., 2020; Lewis et al., 2020). Such
neural retrievers (NR) involve two PrLMs which
are used to compute the vector representation of
queries and documents respectively. Neural retriev-
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Dual-encoder dense retrievers

Late-interaction retrievers

Re-ranking retrievers

Figure 1: Architectures of three major types of retrievers. For simplicity, some lines in the figures are not drawn.
Blue blocks represent the encoding for question, and the green blocks represent context or documents.

ers are trained in such a way that the documents
which best answer a query maximize the dot prod-
uct between the two representations. Despite the
success of neural retrievers, they still face many
challenges. In the next Section, we will present a
brief overview of five types of retrievers and the
efforts made toward building stronger retrievers.
Section 3 describes four limitations of current NRs
and promising solutions. Section 4 discusses three
more research directions and potential solutions.
We conclude the proposal in Section 5.

2 Retrievers in General

In general, the modern retrievers can be catego-
rized in five classes (adapted from (Thakur et al.,
2021)). Lexical retrievers such as BM25 are based
on token-matching between two high-dimensional
sparse vectors. The sparse vectors are represented
based on the frequency of the terms in documents
and thus does not require any annotated training
data. Regardless of the simplicity of the algo-
rithms, such methods perform well on new do-
mains (Thakur et al., 2021). Dual-encoder dense
retrievers consists of two encoders where the
query encoder and context encoder generate a sin-
gle dense vector representation for query and con-
text respectively. Then the score can be computed
by inner-dot product or cosine-similarity between
the two representations (Karpukhin et al., 2020;
Xiong et al., 2020; Hofstitter et al., 2021). Lan-
guage models such as BERT (Devlin et al., 2019)
are preferred choices for encoders. Sparse re-
trievers use sparse representations instead of dense
representations for query and document (Dai and
Callan, 2020; Zhao et al., 2021; Nogueira et al.,
2019). Late-interaction retrievers different from
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dense retrievers who use sequence-level representa-
tions of query and document, they use token-level
representations for the query and passage: a bag of
multiple contextualized token embeddings (Khat-
tab and Zaharia, 2020). The late-interactions are
aggregated with sum of the max-pooling query
term and a dot-product across all passage terms.
Re-ranking retrievers include two stages, coarse-
search by efficient methods (e.g. BM25) and fine-
search by cross-attentional re-ranking models. The
re-ranking model takes input as the concatenation
of the query and one candidate given by the first
stage and produce a score based on the cross repre-
sentation (e.g. the [CLS] token), and such process
is repeated for every candidate, and finally re-rank
candidates based on the generated scores.

Without changing the architectures, different ef-
forts have been made toward learning better rep-
resentation of dense vectors and improving the ef-
ficiency in terms of training resources as well as
short inference time. One way to improve the rep-
resentation of dense vectors is to construct proper
negative instances to train a neural retriever. In-
batch negative training is a frequently used strategy
to train dense retrievers, and the larger the batch
size is, the better performance a dense retriever can
achieve (Karpukhin et al., 2020; Qu et al., 2021).
Using hard negative candidates is better than us-
ing random or simple in-batch negative samples,
for example, Karpukhin et al. (2020) mine nega-
tive candidates by BM25 and (Xiong et al., 2020)
mine negative candidates from the entire corpus
using an optimized dense retriever. Hofstitter et al.
(2021) selects the negative candidates from the
same topic cluster, such a balanced topic aware
sampling method allows the training with small



batch size and still achieves high quality dense rep-
resentation. ColBert (Khattab and Zaharia, 2020)
is proposed to improve the efficiency of the ranking
model. Since every token can be pre-indexed, it
prevents inference time from getting representation
of context. While Colbert is faster than single-
model, it is slower compared to dual-models, thus,
it is not suitable for retrieval at large scale. On
the other hand, Nogueira et al. (2019) shortens the
inference time by using sparse representation for
queries. Zhang et al. (2021) integrates dense pas-
sage retriever and cross-attention ranker and use
adversarial training to jointly both module.

Above methods are usually used to retrieve a
document (e.g. a paragraph in Wikipedia) which
can potentially contain the answer to a query. Some
other retrievers directly retrieve the answer phrase
(or entities) so that they can be directly used to
answer questions without a reader (Seo et al.,
2019; Lee et al., 2020; De Cao et al., 2020, 2021).
While such methods can reduce the latency, it also
increases the memory to store potential phrases
which will be much larger than the number of raw
documents. On the other hand, Lee et al. (2021a,b)
use generative model to generate the entities which
largely reduce the memory.

3 Research Gaps and Solutions

In this section, we will describe multiple research
gaps and the proposed methods introduced in (Luo
et al., 2021a,b, 2022b).

I~ %@ o cal
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Figure 2: Poly-DPR, the context encoder uses K repre-
sentations to capture the information in context.

3.1 Is One Dense Vector Enough to Capture
Information?

Most of the neural retrievers use one dense repre-
sentation for context (Karpukhin et al., 2020; Guu
et al., 2020; Lewis et al., 2020). Previous work
found that one dense vector is not enough to cap-
ture enough information in the context, especially
for a long context. One dense representation is
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also hard to be applied to exact word matching
so that it fails on entities-centric questions (Sci-
avolino et al., 2021). To close the gap of existing
NRs, we propose a new model called Poly-DPR
which builds upon two recent developments: Poly-
Encoder (Humeau et al., 2020) and Dense Passage
Retriever (Karpukhin et al., 2020).

Method In Poly-DPR (see Figure 2), the context
encoder represents each context using K vectors
and produces query-specific vectors for each con-
text. In particular, the context encoder includes
K global features (mj,ma,- - ,my), which are
used to extract representation v, Vi € {1---k}
by attending over all context tokens vectors.

vi = Z wy'*hy,, where (1)
(W] ..., w™) = softmax(m! - hi,...,m’ - hy).
2

After extracting K representations, a query-
specific context representation v. 4 is computed
by using the attention mechanism:

Veg = Zwkvf, where 3
k
(wi,...,wg) = softmax(vg ol ,vqT k).
“)

To enable efficient search in inference (e.g. us-
ing MIPS (Shrivastava and Li, 2014) algorithms),
instead of computing query-specific context repre-
sentation, we simply use the inner-dot product of
each K representations with the query embeddings,
and apply max pooling function to get the score.

Result We evaluate Poly-DPR on
BioASQ8 (Nentidis et al.,, 2020) dataset to
see how effective the model is. Instead of using the
full corpus which has 19M PubMed articles, we
construct a small corpus with 133,084 articles for
efficient and comprehensive experiments purpose.
We also examine the impact of changing the value
of K on the performance. Furthermore, we design
two context length, one is two sentences no more
than 128 tokens (short) and the other one is up to
256 tokens (long). In Table 1, we have three values
for K, where value O is the same as the original
DPR. We see that in both settings, Poly-DPR is
better than the original DPR, and a larger value of
K leads to better performance.
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CL K B1

0 62.06
6 6292
12 65.22

0 61.70
Long 6 63.95
12 63.83

B2

61.81
58.79
60.86

58.28
59.51
57.81

B3

61.85
62.94
62.59

58.62
62.98
62.72

B4

66.69
70.30
70.50

67.33
66.71
70.00

BS

61.30
63.39
66.21

61.48
62.80
63.64

Avg.

62.74
63.67
65.08

61.48
63.19
63.60

Short

Table 1: Comparison among different values of K for
Poly-DPR in both short and long context settings of
BioASQS8 dataset using MRR metric. B: stand for dif-
ferent testing batch.

3.2 IsIR-oriented Pretraining Important?

PrLLMs are trained on general tasks, such as masked
language prediction, and next sentence predic-
tion (Devlin et al., 2019). While these pretraining
tasks help the model to learn the linguistic knowl-
edge, the model might still lack of specific skill
to perform down-stream tasks, e.g. match similar
words or characterize the relation between the ques-
tion and answer. Chang et al. (2020) has shown
that IR-oriented pretraining tasks can help model
to develop basic retrieval skill. However, their pro-
posed methods require specific document structure,
e.g. the document includes external hyperlinks.

Method We propose two new IR-oriented pre-
training strategies (Figure 3). Our pre-training
tasks are designed such that they can be used both
for long contexts as short contexts. In Expanded
Title Mapping (ETM), the model is trained to
retrieve an abstract, given an extended title 7’
as a query. T’ is obtained by extracting top-
m keywords from the abstract based on the TF-
IDF score, denoted as K = {ki,ko, - ,kn},
and concatenating them with the title as: 7"
{T,k1,ko,-- ,kn}. The intuition behind ETM
is to train the model to match the main topic of
a document (keywords and title) with the entire
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RSM is
CL PT Bl B2 B3 B4 B5 Avg.
5 - 5448 50.51 53.8 59.06 48.71 53.31
% RSM 65.94 57.43 61.89 69.01 58.23 62.50
- 35.69 32.66 32.26 38.28 30.87 33.95
2 ICT 54.44 47.37 52.61 53.69 44.38 50.50
S ETM 56.63 46.63 52.79 56.97 49.61 52.53

Table 2: Effect of pre-training tasks (PT) on the perfor-
mance of Poly-DPR with two context lengths (CL) on
the BioASQ dataset.

abstract. Reduced Sentence Mapping (RSM) is
designed to train the model to map a sentence from
an abstract with the extended title 7”. For a sen-
tence .S from the abstract, we first get the weight of
each word W = {w1,ws, - -+ ,wy,} by the normal-
ization of TF-IDF scores of each word. We then
reduce S to S’ by selecting the words with the top-
m corresponding weights. The intuition behind a
reduced sentence is to simulate a real query which
usually is shorter than a sentence in an abstract.

Result We test on BioASQ dataset and use the
similar experimental setting as in §3.1, where we
use both short and long context length settings.
From Table 2, we see that in both settings, using
our pretraining tasks are much better than without
any pretraining with large margins. Furthermore,
in the long context setting, we also compare our
method with ICT (Lee et al., 2019) pretraining task,
and we see that ETM beats than ICT on average
with better performance on 4 out of 5 batches.

3.3 How to Obtain Enough Training Data?

While the pretraining makes language models more
easily adapted to new tasks, a decent amount of
domain-specific data for fine-tuning is still cru-
cial to achieve good performance on downstream
tasks (Howard and Ruder, 2018; Clark et al., 2019).
Collecting annotated data is expensive and time
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consuming. Moreover, for some domains such
as biomedical, annotation usually requires ex-
pert knowledge which makes the data collection
harder (Tsatsaronis et al., 2012). To address this
problem, Ma et al. (2021) uses a question genera-
tion model trained on existing large scale data to
obtain synthetic question-answer pairs using do-
main articles. Still, the style of the generated ques-
tions are far away from the target-domain and limit
the models’ performance.

Method To address the domain adaptation issue,
we propose a semi-supervised pipeline to generate
questions using domain-templates (Figure 4). To
do so, we assume a small amount of domain anno-
tated question-answer data is given. We first extract
templates from the questions by using a name en-
tity recognition model to identify question-specific
entities and removing such entities. A template
selection model is trained to select the template
for a new passage. Finally a generative model (e.g.
T5) is trained to generate questions conditioned on
this template and a text passage. The questions
generated using domain templates are much better
than the previous question generation method.

Result Again, we use BioASQ8 as testbed with
similar settings as previous experiments. We com-
pare our method with an existing question genera-
tion method which extracts answer span first and
then generates questions (Chan and Fan, 2019).
In Table 3, we compare three models trained on
two generated questions as well as the training
dataset of BioASQS8, and our proposed method is
better than the other two especially with large gain
(10%+) in long context setting.

3.4 How to Retrieve Information for
Multi-modality Queries?

Previous discussion focuses on retrieving relevant
documents to text-only queries, while in current
society, lots of information is presented by multi-
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CL PT FT B1 B2 B3 B4 B5 Avg.
« RSM B 6594 5743 6189 69.01 5823 6250
S RSM A 5684 5579 5752 58.68 5515 56.80
“ RSM T 6471 6492 6428 7311 6629 66.66
w ETM B 5663 4663 5279 5697 49.61 52.53
5§ ETM A 5444 4995 4842 58.15 5260 5271
= ETM T 6457 5851 64.02 6844 62.60 63.62

Table 3: Comparison of fine-tuning on different down-
stream training data B: BioASQ A: AnsQG and T: Tem-
pQG) on the performance of Poly-DPR with two context
lengths (CL) on the BioASQ small corpus test set.

modalities such as text, image, speech, and video.
Therefore, retrieving relevant documents to multi-
modality queries can have wide application in hu-
man’s life. For instance an image of a milkshake
and a complementary textual description “restau-
rants near me” should return potential matches of
nearby restaurants serving milkshakes. In litera-
ture, OK-VQA (Marino et al., 2019) is a task that
requires external knowledge to answer visual ques-
tions (i.e. the query is composed of image and
text.). To find the relevant knowledge for such a
query, current neural retrieval can not be directly
applied since the text part in the query is not com-
pleted to understand the information needs and the
model is unable to look at the image information.
To address this issue, we propose three types of
retrievers to handle multi-modality queries.

Method Term-based retriever, we first extract
the image information by using a captions gen-
eration model (Li et al.,, 2020). Then we con-
catenate the question and the caption as a query
and obtain knowledge by BM25. The other two
multi-modality retrievers are adopted from the DPR
model. Image-DPR: we use LXMERT (Tan and
Bansal, 2019) as the question encoder, which takes
image and question as input and outputs a cross-
modal representation. Caption-DPR: similar to the
strategy we use in term-based retrievers, we con-
catenate the question with the caption of an image
as a query and use standard BERT as a query en-
coder to get the representation. In both /mage-DPR
and Caption-DPR, we use standard BERT as con-
text encoder. Figure 5 shows a comparison between
these two retrievers. We find that the performance
of Caption-DPR is better than Image-DPR, and the
term-based retriever performs worst.

Result We evaluate three retrievers on OK-VQA
dataset and use the knowledge base (with 112,724
pieces of knowledge) created in (Luo et al., 2021b)



# of Retrieved Knowledge

Model 1 5 10 20 50 80 100
BM25 37.63 37.63 3521 5672 3403 67.02 3262 7590 2999 8456 2846 8821 27.69 89.91
Image-DPR  33.04 33.04 31.80 6252 31.09 73.96 3025 83.04 28.55 90.84 2740 93.80 2675 94.67

41.62 41.62 3942 7152 3794 8151 36.10 88.57 3294 94.13 31.05 96.20 30.01 96.95

Caption-DPR

Table 4: Evaluation of three proposed visual retrievers on Precision (P) and Recall (R): Caption-DPR achieves the
highest Precision and Recall on all number of retrieved knowledge.
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Figure 5: Comparison of two multi-modality.

as the corpus. We retrieve 1/5/10/20/50/80/100
knowledge for each question. Table 4 shows that
the two neural retrievers are better than simple term-
based retriever, and the Caption-DPR is the best
model in all cases.

4 Future Work

Previous section describes multiple research prob-
lems for neural retrievers, while we provide some
solutions, each problem can be further investigated.
In the following, we identify more research direc-
tions and propose potential solutions.

Document Expansion Previous work (Nogueira
et al., 2019) has shown BM25 with expended doc-
uments using generated questions is an efficient
way to retrieve documents. Such a method also
showed good generalization across different do-
mains (Thakur et al., 2021). The template-based
question generation proposed in this work has bet-
ter domain adaptation than the previous question
generation method. It is interesting to see how
each module in the pipeline performs on new do-
main without further fine-tuning. For example, can
the template selection model select good templates
for passage from new domain; can the question
generation model generate good questions given a
new template? Evaluating how our template-based
question generation pipeline works when apply it to
document expansion is an interesting future work.

Distinguish Between Negative Samples Many
training data only provide positive candidates but
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not the negative candidates. Section 2 summarizes
existing methods to construct negative candidates;
however, the negativeness of different candidates
are different. For instance, if some candidates have
the same topic as the queries while others do not,
then in such cases, the former candidates should be
less negative compared to the later. We propose to
label the negativeness of candidates by using the
similarity between the questions and the candidates
and use such labels to train neural retrievers.

Generalization of Neural IR Previous work has
shown that neural retrievers perform well on the
same domain of the training data (IID) but poorly
in out-of-domain (Thakur et al., 2021). In fact,
generalization is a common issue in many other
tasks such as image classification and question an-
swering (Gokhale et al., 2022; Luo et al., 2022a).
A range of methods including data augmentation,
data filtering, and data debiasing methods have
been proposed to improve the generalization ca-
pacity of models. Applying these methods to train
neural retrievers can potentially improve their gen-
eralization capacity. Prompting or instruction learn-
ing has shown good generalization performance on
many NLP tasks (Mishra et al., 2021) or in low-
resource domain (Parmar et al., 2022), yet applying
such method on retrieval task is less investigated,
and it will be an interesting direction to explore.

5 Conclusion

In this proposal, we focus on an important task: in-
formation retrieval. From word-matching retrievers
to neural retrievers, many efforts have been made
toward building stronger retrievers that can achieve
high recall and precision. We summarize five types
of modern retrievers and methods to address some
existing issues. While the development in this field
is exciting, retrievers still have a long journey to
go. We hope this proposal can shed some light on
building a more capable retriever in future.
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Abstract

Cognitive distortions are counterproductive pat-
terns of thinking that are one of the targets of
cognitive behavioral therapy (CBT). These can
be challenging for clinicians to detect, espe-
cially those without extensive CBT training or
supervision. Text classification methods can ap-
proximate expert clinician judgment in the de-
tection of frequently occurring cognitive distor-
tions in text-based therapy messages. However,
performance with infrequent distortions is rela-
tively poor. In this study, we address this spar-
sity problem with two approaches: Data Aug-
mentation and Domain-Specific Model. The
first approach includes Easy Data Augmenta-
tion, back translation, and mixup techniques.
The second approach utilizes a domain-specific
pretrained language model, MentalBERT. To
examine the viability of different data augmen-
tation methods, we utilized a real-world dataset
of texts between therapists and clients diag-
nosed with serious mental illness that was an-
notated for distorted thinking. We found that
with optimized parameter settings, mixup was
helpful for rare classes. Performance improve-
ments with an augmented model, MentalBERT,
exceed those obtained with data augmentation.

1 Introduction

Data augmentation first became a popular topic
in computer vision, where deep neural networks
have performed remarkably well. Complex archi-
tectures, such as AlexNet (Krizhevsky et al., 2012),
VGG-16 (Simonyan and Zisserman, 2014), ResNet
(He et al., 2016), DenseNet (Huang et al., 2017),
generally require sufficient training data for model
convergence, even with the help of dropout regu-
larization and batch normalization. This situation
also occurs in natural language processing (NLP)
with deep learning methods and can become more
problematic when limited to small datasets by data
collection or data annotation constraints. In imag-
ing, data augmentation, involving transformations
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such as cropping and shearing, is a common strat-
egy to expand the amount of data available for
training. Analogously, several methods have been
proposed to perform data augmentation in NLP, in-
cluding Easy Data Augmentation (Wei and Zou,
2019), Back Translation (Sennrich et al., 2015),
GPT-2 Augmentation (Anaby-Tavor et al., 2020),
and mixup (Zhang et al., 2017). Kumar et al.
(2020) applied some of these methods to pretrained
transformer models and showed an average im-
provement in accuracy of 1-6%. However, the low-
resource scenario was simulated by simply con-
straining the training data from large corpuses. It
remains unclear how these methods might perform
when used in realistic applications, where certain
classes may be of very low frequency. One exem-
plary case concerns NLP analysis of online therapy
sessions, where large amounts of patient-generated
texts must be classified, but only well-trained spe-
cialists with relevant mental health domain knowl-
edge can perform annotation manually to ensure
clinical accuracy. In this study, we used a dataset
from text message conversations between clients
and therapists, previously used for detecting dis-
torted thoughts (Tauscher et al., 2022). Besides
the limitation in size, we found that some types of
distorted thinking are very rare, resulting in worse
classification performance. To address these issues,
we investigate the extent to which data augmen-
tation methods can improve performance of the
best-performing BERT model from these experi-
ments. We compare the utility of this augmentation
approach to the use of a domain-specific pretrained
language model, MentalBERT. In doing so, we
evaluate the utility of data augmentation techniques
and a domain-specific model to improve the identi-
fication of rare classes in the context of real-world
data.
Our main contributions are as follows:

* We compared different augmentation methods
in a low-resource dataset. We found improve-
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ments with majority classes and that mixup
can improve performance for rare classes.

* We adapted a domain-specific pretrained lan-
guage model, Mental BERT, and showed the
highest performance for majority classes, and
better results for rare classes.

* We explored the hyperparameter «, control-
ling mixing proportions, for mixup and
showed that a low « setting is helpful for dom-
inant classes, and a high « for rare classes.

2 Low-resource Corpus

From our previous work (Tauscher et al., 2022),
we utilized data from a randomized controlled trial
of a community-based text-message intervention
for individuals with serious mental illness (Ben-
Zeev et al., 2020). Data were collected from 39
participants enrolled in the active intervention arm
of this trial between December 2017 and October
2019. As part of the study, clients participating
in standard care engaged with trained clinicians in
text-message conversations up to three times a day
for 12-weeks. In total, 14,312 messages were sent
between clinicians and clients with 7,354 coming
from clients. To build a predictive model for dis-
torted thoughts, five common distortions were se-
lected (Burns, 1999): Mental Filter (MF), Jumping
to Conclusions (JC), Catastrophizing (C), Should
Statements (SM), Overgeneralization (O). In ad-
dition, we added the label Any Distortion (AD),
generated in accordance with the other assigned
distortions. Two mental health specialists anno-
tated all messages from clients by assigning these
six categories, which are not mutually exclusive
(Tauscher et al., 2022). This provided ground truth
for labels. It is worth noting that any message could
be identified as having multiple distortions, or no
distortions at all, making this a multi-label multi-
class problem. Table 1 shows the label frequency
and inter-rater reliability.

AD C MF JC (0] SM
Frequency 24.4% 14.8% 8.6% 8.1% 3.6% 2.6%
kappa 051 044 033 053 046 0.39

Table 1: Label frequency and inter-rater reliability

3 Methods

Based on results by Tauscher et al. (2022), we used
BERT as a starting point for our study, since it
outperformed support vector machines and logistic

regression (with L2 regularization), which had been
used in prior work (Shickel et al., 2020; Shreevas-
tava and Foltz, 2021). All models in this study were
trained with the previously identified best hyper-
parameter settings for the dataset (Tauscher et al.,
2022) (Section 3.1). Given the observed frequen-
cies (Table 1), we combined results for six cate-
gories into three bins by frequency, to distinguish
between effects on frequent and infrequent classes.
The three bins are “high freq:AD,C”, “medium
freq:-MFEJC”, and “low freq:O,SM”. For evalua-
tion, we chose area under the precision-recall curve
(AUPRC) over F} scores, because F] scores are
special cases of AUPRC for a predefined cutoff
and AUPRC is threshold-agnostic. For rare classes,
the receiver operating characteristic curve (ROC)
may lead to overly optimistic performance esti-
mates, especially when class frequency drops to
1%, which is not the case with the precision-recall
curve (Ozenne et al., 2015). Thus, we used AUPRC
over others as our main metric. Macro-averaged
AUPRC was calculated for each of the bins. This
metric was also used to evaluate overall model per-
formance.

We used two approaches to data augmentation,
differing in the point at which augmentation occurs.
The first involves directly augmenting the original
text and outputting augmented examples as plain
text, to be added to the original data (Section 3.2).
The second approach involves augmentation in the
hidden spaces of a deep neural network, and its
outputs are vectors in the hidden space, rather than
plain text (Section 3.3). For domain-specific model,
we utilized a domain-specific pretrained language
model with additional linguistic knowledge perti-
nent to the task at hand (Section 3.4).

3.1 BERT-based Classification

The baseline model we used is BERT (bert-base-
uncased ') (Devlin et al., 2018). A classification
layer was added on top of BERT’s output and used
for classifying all five cognitive distortions (“MF”,
“JC”, “C”, “SM”, “0”) and “AD”. The maximum
sequence length was set to 120 (word pieces).
The main framework for evaluation is 5-fold
cross validation, and out-of-sample predictions
were collected for the whole dataset. Following
the original paper (Tauscher et al., 2022), we used
the best hyperparameter settings for each of the
iterations, as shown in Table 2. Also, losses were

1https ://huggingface.co/bert-base-uncased



weighted inversely proportional to label frequen-
cies.

Iteration #1 #2  #3  #4 #5
number of epochs | 14 14 10 14 8
dropout 02 03 01 02 02

Table 2: BERT hyperparameter settings

We repeated 5-fold cross validation five times
with fixed folds but different random instantiations
of the classification layer to assess the robustness
of the results. This is the base setting for our exper-
iments and was used across all other methods. This
baseline model is labeled as “BERT (no aug)”.

3.2 Augmentation of text data

3.2.1 EDA: Easy Data Augmentation

Wei and Zou (2019) proposed Easy Data Augmen-
tation (EDA), which comprises of four main opera-
tions on the original text: Synonym Replacement
(SR), Random Insertion (RI), Random Swap (RS),
and Random Deletion (RD). EDA was evaluated
on five different tasks and showed an increased
performance of 0.8% on average.

We adopted authors’ recommended setting for
the parameter «, 0.1, that controls the percentage of
words in a sentence changed by each augmentation
method. This is labeled as “BERT (EDA)”.

3.2.2 Back Translation

Sennrich et al. (2015) proposed Back Translation
for data augmentation, where sentences are first
translated into another language and then back to
the original language. This technique has been
explored for the task of neural machine transla-
tion (Sugiyama and Yoshinaga, 2019). To generate
new texts, we applied Back Translation with two
intermediate languages: German and Spanish. Dur-
ing the augmentation, each original message was
translated into German or Spanish and then back to
English to get a corresponding message. Class la-
bels of the original text were inherited. We did not
repeat these experiments because we found little to
no variation in generated texts upon repetition. The
two backtranslation models are labeled as “BERT
(BT:German)” and “BERT (BT:Spanish)”.

3.2.3 GPT-2

Anaby-Tavor et al. (2020) propose using GPT-2
for data augmentation, by fine-tuning the model to
generate text corresponding to a class of interest.
Following their proposed approach, and using a
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publicly available GPT-2 model?, we implemented
two variations of GPT-2 for data augmentation.
Context-agnostic GPT-2: we first reconstructed
our text messages as follows:

Yi[SEP]z;[EOS]

for each of the messages 7, where y; indicates the
label of a message, and x; the message content.
GPT-2 was then fine-tuned on this new structure of
data for 20 epochs. New messages were generated
by feeding in the prompt of “y[SEP|”. This is
labeled as “BERT (GPT-2: no context)”.

Contextual GPT-2: Texts in our dataset are de-
rived from conversations. To utilizing this contex-
tual information, we reorganized inputs as follows:

where z;_1 is the previous message. The GPT-2
model was then fine-tuned on this structure. Given
the prompt of “y;[SEP]z;—1[SEP]”, new mes-
sages were generated according to the class label
y; and and the preceding message for a representa-
tive example as context. This is labeled as “BERT
(GPT-2: contextual)”.

For text generation, we followed same steps de-
scribed in Kumar et al. (2020). Due to computa-
tional time requirements, we did this once only.

3.3 Augmentation of Hidden Spaces: mixup

Zhang et al. (2017) proposed mixup for data aug-
mentation. The authors claim that this method ex-
tends the training distribution by incorporating the
prior knowledge that linear interpolations of fea-
ture vectors should lead to linear interpolations of
the associated targets, providing data are modeled
on vicinity relation across examples of different
classes. mixup operates as follows:

T =Ax;+ (1= Nz,
g=Xyi+ (L= Ny,

where A\ ~ Beta(a, a) for « € (0,+00). This
paper did not examine the hyperparameter o across
different NLP applications, with results reported
only for Google speech commands, a dataset of
65,000 one-second utterances>. However, the

authors did report improved results when using

2https://huggingface.co/gptz

3https://ai.googleblog.com/2017/08/
launching-speech-commands-dataset.html



a = 0.3 for this task, and in general proposed a
small o € [0.1, 0.4], based on results on ImageNet-
2012. They also acknowledge that model error is
less sensitive to large o when increasing model
capacity. Sun et al. (2020) applied mixup to the
transformer architecture and showed improvements
on eight GLUE benchmarks. Across all of their
experiments, o was fixed at 0.5, which is a reason-
able extension from the originally proposed range
(Zhang et al., 2017).

From the previous two studies (Zhang et al.,
2017; Sun et al., 2020), it is not clear what hyper-
parameter setting of « should be used with other
data sets. Given the probability density function
controlled by a (demonstrated in Supplementary
Figure 1), other settings when « is large may make
more sense for scenarios in which we want to make
two examples contribute more evenly. This leads
to augmented examples lying in the margin be-
tween two categories, which may be appropriate
for categories that are difficult to distinguish. In
our case, the cognitive distortion dataset is rela-
tively small compared with those evaluated previ-
ously, and some classes (O, SM) are quite rare. We
wished to assess whether the mi xup method could
help with data augmentation in this context. We
did an extended search in the hyperparameter space
of a: 0.02,0.2,0.5, 1, 2, 4, and 8. The models are
labeled as “BERT (mixup: alpha = X)”.

3.4 Domain-Specific Model: Mental BERT

To investigate the utility of domain-specific mod-
els for transfer learning, we identified a domain-
specific pretrained language model. Ji et al. (2021)
describe Mental BERT and MentalRoBERTa, two
language models developed specifically for men-
tal health NLP. Starting with pretrained base mod-
els, and following standard BERT and RoBERTa
pretraining protocols, Mental BERT and Mental-
RoBERTa were further pretrained on subreddits in
the mental health domain, including “r/depression”,
“r/SuicideWatch”, “r/Anxiety”, “r/offmychest”,
“r/bipolar”, “r/mentalillness”, and “r/mentalhealth”.
These subreddits made up a pretraining corpus of
over 13 million sentences. Upon evaluation, this
additional pretraining improved performance in
classifying mental conditions, including depres-
sion, stress, and anorexia. However, the evaluation
sets used texts from online or SMS-like platforms,
which were not fully annotated by specialists. In
our work, we used Mental BERT, available from
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HuggingFace 4. The same hyperparameters as the
BERT model were used for comparison purposes.
The baseline MentalBERT model is referred as
“Mental BERT (no aug)”. We also applied the best-
performing data augmentation methods to Mental-
BERT, including back translation (Spanish) and
explored some « settings for mixup.

4 Results

Performance for all models is shown in Table 3.
BERT: For the baseline BERT model, BERT
(no aug), we obtain an AUPRC of 0.5179 for the
most frequent classes (AD,C). When frequency de-
creases (classes MF,JC), the AUPRC also drops
to 0.3718, and it drops further to 0.2139 for the
rarest class of O,SM. This trend applies to all mod-
els. When data augmentation is applied to the
base BERT model, we see improved results with
different models. For the most frequent class of
AD,C, back translation using Spanish achieves the
highest AUPRC of 0.5208, followed by mixup:
a = 0.02. However, none of these results are sig-
nificant improvements over baseline BERT. For the
less frequent classes (MF,JC), back translation out-
performs baseline BERT by 1.5%. mixup does not
offer a performance boost here. When it comes to
the rarest classes (O,SM), improvement is clearer:
EDA, back translation (Spanish), and most settings
of mixup can offer a boost in AUPRC. Among
them, mixup (o = 4) shows the biggest improve-
ment in AUPRC by around 1.6%, which is statis-
tically significant (¢(8) = 3.24, p-value = .012
from ¢ test). It is also notable that both GPT-2
based data augmentation methods decrease the per-
formance of the base BERT model substantially
(0.47 vs 0.52 for AD,C and 0.14 vs 0.21 for O,SM).
MentalBERT: When comparing Mental BERT
results with BERT results, we can see improved per-
formance for all classes, with the highest change
for AD,C and MFE,JC of 1.3%-1.8%. Similar to
BERT models, performance is highly related to
class frequencies, with highest being 0.5359 for the
most frequent class of AD,C, dropping to 0.3846
for ME,JC then 0.2171 for O,SM. This trend holds
for different augmentation settings. For augmenta-
tion effects, the base model performs best for both
AD,C and MFEJC, as compared with augmented
models. For rare class of O,SM, there is a small
improvement from back translation (Spanish) of

4https ://huggingface.co/mental/
mental-bert-base-uncased



AUPRC AUPRC AUPRC

model (high freq:AD,C) (medium freq:MF,JC) (low freq:O,SM) macro-AUPRC
BERT (no aug) 0.518 + 0.0055 0.372 + 0.0054 0.214 + 0.0039 0.368 + 0.0030
BERT (EDA) 0.517 4+ 0.0062 0.378 + 0.0071 0.228 +0.0091*  0.374+ 0.0067
BERT (BT: German) 0.517 0.375 0.216 0.369

BERT (BT: Spanish) 0.521 0.386 0.222 0.376

BERT (GPT-2: contextual) 0.472 0.290 0.143 0.302

BERT (GPT-2: no context) 0.460 0.306 0.155 0.307

BERT (mixup: a = 0.02) 0.519 + 0.0013 0.372 4+ 0.0026 0.218 4+ 0.0078 0.370 4+ 0.0041
BERT (mixup: a = 0.2) 0.515 + 0.0060 0.369 + 0.0027 0.218 + 0.0061 0.367 £ 0.0041
BERT (mixup: a = 0.5) 0.510 + 0.0058 0.367 + 0.0058 0.213 4+ 0.0034 0.363 + 0.0033
BERT (mixup: a = 1) 0.504 4 0.0072 0.367 £ 0.0076 0.221 + 0.0047 0.364 + 0.0055
BERT (mixup: a = 2) 0.505 + 0.0043 0.366 + 0.0046 0.222 4+ 0.0054*  0.364 + 0.0021
BERT (mixup: a = 4) 0.505 + 0.0048 0.367 + 0.0027 0.229 4+ 0.0081*  0.367 + 0.0038
BERT (mixup: a = 8) 0.504 + 0.0045 0.366 + 0.0057 0.218 4+ 0.0059 0.363 4+ 0.0030
MentalBERT (no aug) 0.536 + 0.0029* 0.385 + 0.0059* 0.217 £+ 0.0018 0.379 + 0.0032*
MentalBERT (BT: Spanish) 0.520 0.380 0.222 0.374
MentalBERT (mixup: @ = 0.02) | 0.529 &+ 0.0050* 0.379 + 0.0031* 0.211 + 0.0052 0.373 + 0.0022*
MentalBERT (mixup: o = 0.2) 0.523 4+ 0.0033 0.382 + 0.0049* 0.216 4+ 0.0030 0.374 + 0.0030%*
MentalBERT (mixup: o = 1) 0.520 + 0.0064 0.381 + 0.0056* 0.214 4+ 0.0068 0.372 4+ 0.0020*
MentalBERT (mixup: o = 4) 0.515 + 0.0028 0.379 + 0.0021* 0.215 4+ 0.0063 0.370 + 0.0028
MentalBERT (mixup: a = 8) 0.515 + 0.0049 0.377 + 0.0037 0.213 4+ 0.0060 0.368 + 0.0044

Table 3: AUPRC (mean =+ std) for combined labels by frequency. *: significantly > BERT (no aug), unpaired ¢-test.

0.5%. None of the mixup configurations provide
a benefit over the base MentalBERT model.

mixup: We explored an extensive range of the
hyperparameter o with the BERT model. In Ta-
ble 3, the best results usually come with a small
« (0.02) for the dominant classes of AD,C and
MEJC. This best setting shows an increase of 1-
2%. With an increasing «, the performance drops.
For the rare classes of O,SM, a small « is no longer
favored. The performance of AUPRC is not mono-
tonic: with an increasing «, it first increases then
drops, with its peak of 0.2285 at o« = 4. A similar
trend is also observed for the Mental BERT model,
although mixup did not perform best in this case.

Overall model performances is consistent with
some of the preceding observations: (1) data aug-
mentation improves overall performance, but only
by a small margin; (2) in-domain pretraining of
the language model (MentalBERT) provides the
most improvement in performance; (3) for mixup,
a small « is favored (0.02 for BERT and 0.2 for
Mental BERT).

5 Discussion

We examined several data augmentation meth-
ods and explored their applications in BERT and
MentalBERT for detecting distorted thinking in
a modestly-sized set of text-based therapy mes-
sages. Grouping distortion classes by frequency,
we found that most of data augmentation methods
do not improve performance for frequent classes
(frequency: 8-25%). For rare classes (3%), mixup
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significantly improved AUPRC results by 1.6%.
In comparison, the domain-specific pretrained lan-
guage model, Mental BERT, offered the highest ben-
efit for dominant classes. However, Mental BERT
also performs relatively poorly with rare classes.
This may be due to the limited number of train-
ing examples. Another reason might be the fact
that our text messages sometimes represent gen-
eral conversations related to case management (e.g.
appointment reminders) rather than the specific
mental health related concerns that predominate in
mental-health-related subreddits.

We also explored different settings for the hy-
perparameter « for the mixup method. For domi-
nant classes, mixup favors a small «, which cor-
responds with previous work (Zhang et al., 2017).
This indicates the model performs better with lim-
ited mixing of two random samples, generating
cases where only one example predominates. In
comparison, a larger « is favored for rare classes.
According to Supplementary Figure 1, this means
the model tends toward mixes in which the influ-
ence of individual texts is diluted, a possible way to
create more variation in this low-resource scenario
for the model to learn from. However, progress-
ing to more extreme values (o = 8) harms perfor-
mance, and this cutoff point may change in other
settings. Taken together, our results suggest that
mixup is helpful for rare classes, but may compro-
mise performance on frequent classes. Future work
with mixup should include increasing the number
of training epochs, since Zhang et al. (2017) sug-



label | Generated Text
JC Yes you understand that it’s incredibly frustrat-
ing and a lot of hard work but it’s not at all
stressful
C Okay, 1 will do that, eventually

Table 4: GPT-2 generated text

gest that errors may be further reduced with more
iterations of training.

Contrary to expectations, GPT-2-based data aug-
mentation harmed performance in this context. It
appears that GPT-2 generated texts (Table 4) do not
express cognitive distortions as intended. This is
likely because the data are not large enough to fully
train a “distorted” GPT-2 model. Another reason
may be that our prompts are not associated with
distorted text by GPT-2. Designing better prompts
may be a fruitful direction for future work.

6 Conclusions

We compared a range of data augmentation strate-
gies and a domain-specific pretrained language
model for their utility in improving identification of
infrequently observed cognitive distortions. Using
a domain-specific pretrained language model (Men-
talBERT) provided the greatest improvements, es-
pecially for dominant classes, whereas data aug-
mentation did not improve performance with this
model. In contrast, some data augmentation meth-
ods significantly improved performance with the
base BERT model, but we did not find a method to
improve performances for all classes universally,
nor did we find a consistent hyperparameter set-
ting to improve performance across these class fre-
quencies. mixup appears helpful for rare classes,
but a relatively large hyperparameter setting for
should be used. However, this may compromise
the performance on frequent classes to some de-
gree. Taken together our results suggest that the
domain-specific model may be a better strategy for
frequent classes, and that the best data augmen-
tation strategy for infrequently observed classes
varies across frequency ranges. As future work,
two areas of interest include: (1) modified loss
functions, such as the Label-Distribution-Aware
Margin (LDAM) Loss (Cao et al., 2019) and Class-
Balanced (CB) Loss (Cui et al., 2019), which have
been proposed in the field of computer vision to
address class imbalance; (2) unsupervised learning
frameworks to address the inherent uncertainty of
labels for augmented data, such as Confident Learn-
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ing (Northcutt et al., 2021) and Unsupervised Data
Augmentation (UDA) (Xie et al., 2020).
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A Appendix

Supplementary Figure 1

Figure 1: Probability Density Function of Beta(a, &)
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Abstract

We aim to overcome the lack of diversity in
responses of current dialogue systems and to
develop a dialogue system that is engaging
as a conversational partner. We propose a
generator-evaluator model that evaluates multi-
ple responses generated by a response generator
and selects the best response by an evaluator.
By generating multiple responses, we obtain
diverse responses. We conduct human evalu-
ations to compare the output of the proposed
system with that of a baseline system. The re-
sults of the human evaluations showed that the
proposed system’s responses were often judged
to be better than the baseline system’s, and indi-
cated the effectiveness of the proposed method.

1 Introduction

Dialogue systems based on deep neural networks
(DNNs) have been widely studied. Although these
dialogue systems can generate fluent responses,
they often generate dull responses such as “yes,
that’s right” and lack engagingness as a conversa-
tion partner (Jiang and de Rijke, 2018). To develop
an engaging dialogue system, it is necessary to
generate a variety of responses not to bore users.
However, dialogue systems that are capable of
generating diverse responses are difficult to auto-
matically evaluate. A commonly used evaluation
metric is BLEU (Papineni et al., 2002) used in
machine translation, which measures the degree
of n-gram agreement with the reference response.
However, due to the diversity of responses, i.e.,
the one-to-many nature of dialogue (Zhao et al.,
2017), which means the existence of multiple ap-
propriate responses to an utterance, methods that
compare the response to reference responses are
not appropriate. Therefore, there is a need for eval-
uation methods that do not use reference responses,
and one of them is supervised evaluation. It trains
DNNs using human evaluations of responses gen-
erated by humans and models (Zhao et al., 2020;
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Ghazarian et al., 2019). DNN-based evaluations
correlate to some extent with human evaluations.

We aim to develop a dialogue system that is more
engaging as a conversational partner by combining
independently studied response generation and re-
sponse evaluation models into a single dialogue sys-
tem. Specifically, we propose a generator-evaluator
model in which multiple responses are generated
by the generation model, evaluated by the eval-
uation model, and the response with the highest
evaluation score is selected. By generating mul-
tiple responses, we can obtain diverse responses.
This can be enabled by the response evaluator that
does not require reference responses.

Our methods of generating multiple responses
include a method with multiple decoding schemes
and a method that uses a model that can generate
responses with a specified Dialogue Act (DA). Gen-
erating responses by specifying various DAs leads
to a variety of responses.

To evaluate the proposed method, we conducted
human evaluation by crowdsourcing to compare
the outputs of the proposed system and a baseline
system. The evaluation results show that the pro-
posed system outputs better responses, and indicate
the effectiveness of the proposed method.

We target Japanese dialogue systems and con-
struct datasets of Japanese dialogues.

2 Related Work

Methods for evaluating responses by dialogue sys-
tems can be divided into human and automatic
evaluations. Automatic evaluation can be further
classified into evaluation with or without refer-
ence responses. As an automatic evaluation metric,
BLEU (Papineni et al., 2002) is mainly used. It
evaluates responses in terms of n-gram agreement
with the reference sentence. However, it has been
shown that there is no correlation at all between
BLEU and human evaluations (Liu et al., 2016).
One reason for this is the one-to-many nature of di-
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Multiple Responses are Generated
through Two Methods

Response1 «1‘

* Multiple Decoding Schemes
« DA-Specified Response / \
> R 2 >
w Generator  —> Vesponse/ Evaluator

‘\:,ResponseN

‘- Best Response /‘\

Figure 1: The architecture of our proposed system, the generator-evaluator model. It generates multiple responses
from the generator, evaluates them with the evaluator, and selects the best response.

alogue (Zhao et al., 2017), which means that there
are multiple appropriate responses to an utterance.
Considering this nature, a method that measures
the degree of n-gram agreement with the reference
response is inappropriate for evaluating responses.
Therefore, automatic evaluation methods without
any reference responses have been studied (Zhao
et al., 2020; Ghazarian et al., 2019). They trained
BERT (Devlin et al., 2019) on a dataset of human
evaluations to perform response evaluation that cor-
relates with the human evaluations.

DA represents the role of an utterance in a
dialogue. There are some datasets annotated
with DAs such as SwWDA (Stolcke et al., 2000)
and MRDA (Shriberg et al., 2004). However,
such datasets exist only for English, and we con-
struct a DA dataset in Japanese. Raheja and
Tetreault (2019); Ahmadvand et al. (2019) con-
structed a model that classifies a DA for an utter-
ance. Kawano et al. (2019) proposed a model to
generate responses with a specified DA. This was
achieved through adversarial learning. In this study,
we use a more straightforward method to control
responses.

3 A Generator-Evaluator Model for an
Engaging Dialogue System

3.1 Generator-Evaluator Model

We propose a generator-evaluator model that gener-
ates multiple responses, evaluates these responses,
and selects the response with the highest evaluation
score for output. The overview of the proposed
model is shown in Figure 1. Two methods are
used to generate multiple responses: multiple de-
coding schemes and a model that can generate DA
specified responses. For the evaluator, BERT is
fine-tuned with the Response-Evaluation dataset
described in Section 4.2.
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3.2 Multiple Response Generators

We use TS5 (Raffel et al., 2020) as a generator by
fine-tuning it with the method described below.

3.21

The first method for obtaining multiple responses is
to use multiple decoding schemes. Three types of
decoding methods are used: greedy search, beam
search, and sampling. In particular, to repeat sam-
pling is thought to generate diverse responses. We
use the top-50 sampling (Fan et al., 2018).

Multiple Decoding Schemes

3.2.2 DA-Specified Response Generation

The second method to obtain multiple responses
is to use a model that can generate responses with
specified DAs. We achieve such a model by train-
ing a response generation model based on utterance-
response pairs attached with prompts that specify
the DA of a response. The dataset format is as fol-
lows: (1a) represents the input and (1b) represents
the response. The italic span denotes the prompt
specifying a DA.

(1) a. Return a response of advice to tne inter-
locutor I haven’t done the assignment yet.

b. You should read this book before you do
it.

To train this model, we need a dialogue corpus
annotated with DA labels. We use the DA dataset
described in Section 4.3. A dialogue corpus with-
out DA labels is also used as responses with a gen-
eral DA. Its prompt is Return a response.

4 Dataset

Since there is not a sufficiently large corpus of
Japanese dialogues, we start from corpus construc-
tion.



Viewpoint | Response [ Amount
Relevance Twitter/decoding model 4,000/4,000
Interestingness | Twitter 2,000
Engagingness | Twitter/decoding model/DA model | 4,000/4,000/4,000
Empathy Twitter 2,000

Table 1: Amount of data for each viewpoint in the Response-Evaluation dataset. "Response"” indicates where the
response derives from. Due to the collection cost, more data were collected for the more important viewpoints.

Dialogue Act [ Description

Advice
Emotion
Opinion
Inform
Schedule
Question
Agree

advice or instruction given to the partner
emotion experienced by speaker

opinion about a particular topic

give information about oneself(speaker)
what the speaker plans to do or wants to do
questioning the partner

agree about the partner’s opinion or feeling

Table 2: DA types and their descriptions. Crowdworkers are shown this description and asked to choose which DA

applies to each response.

Dialogue Act [ Amount

Advice 853
Emotion 1,433
Opinion 1,323
Inform 1,131
Schedule 718
Question 342
Agree 1,136

Table 3: Amount of data for each DA.

4.1 Twitter Dataset

Our dialogue dataset is collected from Twitter using
the Twitter API. Some of the conversations are col-
lected from single-turn conversations only (Twitter-
Single), while the others are collected from multi-
turn conversations (Twitter-Multi).

4.2 Response-Evaluation Dataset

Our Response-Evaluation dataset contains evalua-
tions of how well a response meets certain view-
points when looking at a single-turn utterance and
response. We use the following four evaluation
viewpoints: relevance, interestingness, engaging-
ness, and empathy.

We use two types of utterance-response pairs
to ensure corpus diversity: the first is the Twitter-
Single dataset described in Section 4.1, and the
second is the utterances from the Twitter-Single
dataset and the responses generated from generator
models. We use two types of generator models:
the model with the multiple decoding schemes and
the model that can generate responses with spec-
ified DAs. In the datasets using responses from
the generator models, the evaluations of multiple
responses to an utterance are collected. They rep-
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resent how evaluations differ when different re-
sponses are generated to the same utterance. The
evaluations are collected through crowdsourcing.
We ask a five-grade question to five people, and
the average was taken as the evaluation value. The
statistics of the dataset is shown in Table 1.

4.3 DA Dataset

We assign DAs for each utterance in the Twitter-
Multi dataset described in Section 4.1. By using
the dataset of multi-turn conversations, we intended
to make a dataset to capture the transition of DAs
in a long conversation. We adopt seven DA types
shown in Table 2. The number of DA types was re-
duced to seven because the 42 types in the previous
study (Stolcke et al., 2000) were too fine-grained
to be annotated by crowdsourcing. Since there are
utterances that do not settle on a single DA, we
allow multiple DAs for each utterance. DAs are
collected through crowdsourcing. We ask a ques-
tion to five people and adopt the DA with at least
three votes. The amount of utterances for each DA
is shown in Table 3. Since the amount of data is
not sufficient to be used for training the generator
model described in Section 3.2.2, this dataset is
used to train DA classifiers that are applied to the
Twitter-Single dataset for data augmentation.

Augmentation with DA Classifiers

We build DA classifiers by fine-tuning BERT with
the DA dataset described above. These DA classi-
fiers are binary classifiers that determine whether a
response belongs to each of the DAs. The results of
DA classification by each DA classifier are shown



Dialogue Act [ Precision | Recall [ FI
Advice 0.52 0.57 | 0.54
Emotion 0.54 0.37 | 0.44
Opinion 0.60 0.51 | 0.55
Inform 0.44 0.55 | 0.49
Schedule 0.41 047 | 0.44
Question 0.88 0.51 | 0.65
Agree 0.69 0.53 | 0.60

Table 4: Results of DA classification by five-fold cross
validation.

Dialogue Act [ Amount

Advice 2,284
Emotion 4,195
Opinion 6,580
Inform 63,652
Schedule 89,990
Question 33,629
Agree 70,557

Table 5: Amount of data for each DA obtained by data
augmentation with the DA classifiers.

in Table 4. Metrics are precision, recall, and F1.
They are computed using five-fold cross validation.
From this table, the predicted DAs do not seem
sufficiently precise to be used for data augmenta-
tion. However, we manually examined a part of
predicted DAs and found that their precision was
around 70%, which made us decide to use them for
data augmentation.

We augment the DA dataset by applying the clas-
sifiers to an unlabeled dialogue corpus. We ap-
ply each binary classifier to 1.6M responses of the
Twitter-Single dataset, and assign DA labels to re-
sponses judged to be positive. The amount of data
obtained for each DA is shown in Table 5.

5 Experiments

We do the evaluation by crowdsourcing. Work-
ers are shown the outputs of the two systems and
asked which of the system they would prefer to con-
tinue the conversation with. We ask a question to
three workers and take a majority vote as the result.
The test corpus consists of 2,000 sentences from
the Twitter-Single dataset described in Section 4.1
which are not used for training.

5.1 Experimental Setup

The proposed systems use two types of genera-
tors: one by the multiple decoding schemes (DE)
and one by DA specified responses (DA). Also,
by combining DE and DA, the DA generator can
generate responses using the multiple decoding
schemes (DADE). We define DE Best, DA Best,
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Comparison [ Win | Lose [ Even
DE Best vs DE Greedy 4% | 21% | 35%
DE Best vs DE Random 50% | 24% | 26%
DA Best vs DA General 2% | 25% | 33%
DA Best vs DA Random 4% | 21% | 35%
DADE Best vs DE Greedy 44% | 43% | 12%
DADE Best vs DE Random 48% | 41% 11%
DADE Best vs DA General 49% | 33% | 17%
DADE Best vs DA random 55% | 28% 17%
DADE Best vs DADE Random || 73% | 14% | 13%
DADE Best vs DE Best 38% | 51% | 11%
DADE Best vs DA Best 45% | 32% | 22%

Table 6: Result of one-to-one comparison between a
proposed system and a baseline system.

and DADE Best, which refer to the response
judged to be the best among multiple responses by
the evaluators in DE, DA, and DADE, respectively.
Here, in DE, seven responses were generated by
repeating sampling five times in addition to greedy
search and beam search. In DA, seven responses
were obtained by generating responses for the gen-
eral DA and excluding the emotion DA, whose
classifier did not perform accurately. Multiple DAs
were allowed for dataset construction, but only one
DA was specified for generation. In DADE, seven
responses are obtained for each of the seven DAs,
resulting in a total of 49 responses. We perform a
one-to-one comparison of each proposed system’s
response with the baseline system’s response fol-
lowing Roller et al. (2021). There are five types of
responses to be compared, which are shown below.

DE Greedy a response generated by greedy
search

DE Random a randomly selected response from
seven responses

DA General a response generated by specifying
the general DA

DA Random a randomly selected response from
seven DAs responses

DADE Random a randomly selected response
from 49 responses

5.2 Training

We use TS5 (Raffel et al., 2020) pretrained with
a Japanese corpus'as a generator in DE. We fine-
tune it with 800,000 pairs from the Twitter-Single
dataset described in Section 4.1. The generator
model used in DA is further fine-tuned from the DE
generator model with the augmented DA dataset in



System Utterance

Scheme/DA Response

Eval

DE ERLWVWTT Lh, BBR. KiF
Z, (It’s delicious. Taiwanese tea. I
love it.)

Beam

HODVLSITIVET, BEBERITERL
WT$ &4, (Thank you. Taiwanese tea is
delicious.)

3.6

Sampling1

ERLWVWTT LA, KEMAPT ST,

BEBEDOHIZE L oY EMERH - T
RWTd4(~-») (t’s delicious. It tastes easy
to drink and has a little bit of luxury for the

price (*=").)

39

Sampling2

BERIERLWVWTT Ih—, K
& T9~, (Taiwanese tea is delicious! I love
it too!)

3.8

Y=

REPTSUND AR,
that the charge runs out quickly.)

DA (I see  General

RENT SYNDS DA,

JUF (You see the charge
runs out quickly, don’t you.)

34

Advice

RENTNAZS, NvTF ) —xHL 7~

JULF 33
(If it’s going to run out of

Fvw &,
charge, you should replace the battery.)

Opinion

ZREINZDOT, SHIEFBRAICLU F
(I’'m out of charge, so I'm taking the rest

‘g—o
of the day off.)

3.1

Table 7: Diverse responses from the proposed system. We think that the best responses for humans are the responses
of “Sampling1” for DE and “Advice” for DA. This best response gets the highest evaluation in DE. However, this is
not the case in DA. This may be one reason why the experimental results for DA are inferior to one for DE.

Section 4.3 and a part of the Twitter-Single dataset
as general DA responses. It has the same size as
the augmented DA dataset (270,000 pairs).

The evaluator is a fine-tuned BERT model and
constructed for each of DE and DA. The dataset
used for fine-tuning is the Engagingness data of the
Response-Evaluation dataset described in Section
4.2. It consists of 4,000 pairs derived from Twitter
and 4,000 pairs from either of the DE and DA gen-
erators. For DADE, we use the same evaluator as
DA.

5.3 Result

The evaluation results of our experiments are
shown in Table 6. It shows the effectiveness of gen-
erating multiple responses and selecting the best
response by the evaluator. However, the results of
DADE Best vs DE Greedy and DADE Best vs
DE Best show the responses of the DA generator
were not rated better than the responses of the DE
generator. This can be attributed to the fact that the
distribution of the dataset was skewed by data aug-
mentation, and further study is needed. Example
responses generated by the proposed system are
shown in Table 7.

6 Analysis

6.1 Out-of-Domain Evaluator

In the experiments in Section 5, each evaluator of
DE and DA was trained using the human evalu-

"https://huggingface.co/sonoisa/t5-base-japanese
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Comparison [ Win [ Lose [ Even
DE Best’ vs DE Greedy 47% | 24% | 28%
DE Best’ vs DE Random 47% | 27% | 26%
DA Best’ vs DA General 36% | 25% | 40%
DA Best’ vs DA Random || 45% | 25% | 30%

Table 8: One-to-one comparison between a proposed
system with an OOD evaluator and a baseline system.

Decoding Scheme | Ratio

Greedy-Search 12%
Beam-Search 15%
Sampling (x5) 73%

Table 9: Analysis of which decoding scheme is selected.
Sampling was repeated five times, and the percentage
of any of the five responses chosen was 73%.

ations of the corresponding generator responses
for each of DE and DA. However, it is not prac-
tical to use human evaluations for each generator.
Therefore, we investigate the impact of using dif-
ferent generation methods and datasets used for
evaluators. The same comparisons are made as the
comparisons in Section 5. The results are shown in
Table 8. We see that the proposed systems defeat
the baseline in this case as well.

6.2 Which Response is Chosen?

We analyzed which decoding methods or DAs are
selected by the evaluator model. The more equally
the choices are divided, the more effective the pro-
posed method is. This is because the proposed
method cannot be surpassed by using any one spe-
cific decoding scheme or DA. The results of the



DA [ Ratio
General 16%
Advice 8%
Schedule 16%
Question 11%
Inform 14%
Agree 9%
Opinion 25%

Table 10: Analysis of DA selection.

analysis are shown in Tables 9 and 10. The choices
are scattered, and thus the proposed method can
generate diverse responses.

7 Conclusion

We developed a dialogue system that can generate
engaging responses by incorporating a response
evaluator within the dialogue system. We proposed
a generator-evaluator model, which consists of mul-
tiple response generation through multiple decod-
ing schemes or specified DAs, responses evalu-
ations, and the best response selection. Human
evaluation showed that responses generated by the
generator-evaluator model are more engaging than
those by the baseline systems. However, it is still
necessary to improve the quality of responses gen-
erated with specified DAs in the future.
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Abstract

State of the art performances for entity extrac-
tion tasks are achieved by supervised learning,
specifically, by fine-tuning pretrained language
models such as BERT. As a result, annotating
application specific data is the first step in many
use cases. However, no practical guidelines
are available for annotation requirements. This
work supports practitioners by empirically an-
swering the frequently asked questions (1) how
many training samples to annotate? (2) which
examples to annotate? We found that BERT
achieves up to 80% F1 when fine-tuned on only
70 training examples, especially on biomedical
domain. The key features for guiding the selec-
tion of high performing training instances are
identified to be pseudo-perplexity and sentence-
length. The best training dataset constructed
using our proposed selection strategy shows F1
score that is equivalent to a random selection
with twice the sample size. The requirement
of only a small number of training data im-
plies cheaper implementations and opens door
to wider range of applications.

1 Introduction

Information extraction (IE) is the process of turning
unstructured texts into structured data (Jurafsky and
Martin, 2021), and is one of the most widely used
natural language processing (NLP) tasks in indus-
trial applications. Named entity recognition (NER)
is an IE task of tagging entities in text with their
corresponding types. Most existing NER methods
require either handcrafted features, and/or a large
number of annotated examples (Jurafsky and Mar-
tin, 2021), both of which are labor intensive.
Recent advances in transformers (Vaswani et al.,
2017) and BERT (Devlin et al., 2019) changed
the landscape for many NLP tasks. Significant
performance gain can be achieved by fine-tuning
language models on a small number of training ex-
amples due to transfer learning. As a result, the
pipeline of annotating — fine-tuning becomes com-
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Graz University of Technology
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mon practice. Following this pipeline, the first step
for each use case is to annotate application spe-
cific data. It is therefore beneficial to estimate in
advance how many training samples need to be
annotated, as well as which samples to annotate.

This work answers these two frequently asked
questions through empirical studies on the NER
task. Specifically, we repeatedly down-sample
benchmark datasets and fine-tune BERT models for
the downstream task of token classification. Two
benchmark datasets (1) general domain Conll2003
(F. and De Meulder, 2003) and (2) biomedical do-
main BC5CDR (Li et al., 2016) are used in this
study.

In summary, our main contributions are:

* Empirically identified the relation between
sample size and model performance on the
entity extraction task for corpora of different
domains.

Proposing key measures for selecting train-
ing examples that yield high performances in
our evaluation, which can serve as a promis-
ing starting point for many other application
scenarios.

2 Experimental Setting

The goal of the experiments is to answer before-
mentioned questions on how many and which train-
ing samples to annotate for the named entity extrac-
tion task.

We repeatedly down-sample benchmark NER
datasets and compared model performances fine-
tuned on different number of training examples
and different samples. Two datasets of different
domains, and two BERT models pretrained on dif-
ferent datasets are used in this study.

2.1 Fine-Tuning Language Models

As recommended in Devlin et al. (2019), the NER
task is formulated as a token-level classification
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CoNLL2003 (news)

BC5CDR (PubMed, PMC)

n-token n-LOC n-MISC n-ORG n-PER n-token n-Disease n-Chemical

. n-sentence n-sentence
split mean mean mean mean  mean mean mean mean
train 14042 14.50 0.51 0.24 0.45 0.47 4612 24.95 0.91 1.13
validation 3251 15.80 0.57 0.28 0.41 0.57 4607 24.81 0.92 1.16
test 3454 13.44 0.48 0.20 0.48 0.47 4819 25.02 0.92 1.12

Table 1: Number of sentences, the mean of the number of tokens and entities for CoONLL2003 and BC5CDR datasets.
On average, sentences in BCSCDR are nearly twice as long as those in CoNLL2003.

task. Namely, a pretrained BERT model is stacked
with a linear layer on top of the hidden-states out-
put, before fine-tuned on training examples. The
transformers library from Hugging Face (Wolf
et al., 2020) is used for fine-tuning. Two BERT
models are compared: (1) BERT! pretrained on
BooksCorpus (Zhu et al., 2015) and Wikipedia,
which represent general domain. (2) BioBERT?
(Lee et al., 2020) where also PubMed abstracts and
PMC articles are added to the pretraining data. As a
result, the pretraining data for BloBERT also covers
the biomedical domain. For both pretrained mod-
els, we choose the base setting with 12 transformer
layers and 768 hidden embedding sizes. Following
recommendations from both Devlin et al. (2019)
and Lee et al. (2020), the cased vocabulary is used
for the NER task.

2.2 Datasets

Two NER datasets with different domains were
used and statistics for both graphs are provided in
Table 1.

CoNLL2003 (English) dataset (F. and De Meulder,
2003)) is one of the most commonly used NER
datasets. The corpus consists of 1.4K news arti-
cles with four types of entities (LOCations, OR-
Ganizations, PERsons, and MISCellaneous) being
annotated.

BC5CDR dataset (Li et al., 2016) consists of 1.5K
PubMed articles, where two types of entities (chem-
ical and disease) are annotated.

2.3 Down-Sample

To study the relation between model performance
and training sample size, we uniformly draw N
(N € {50,150, 500, 1000, 2000}) sentences at ran-
dom from the training split, with the constraint
that at least one instance from each I0OB (In-

"https://huggingface.co/
bert-base-cased

https://huggingface.co/dmis-lab/
biobert-vl.1
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side—Outside—Beginning) class is present in the
sample.

3 Results

We first establish a baseline using the full dataset,
which also serves as an upper bound. Next, we
compare the F1 scores for each dataset for different
random sample-sizes and for the training subset
selected using our proposed method. Finally, we
conclude the analysis with a recommended work-
flow for training instance selection.

3.1 Corpora Domain for Pretraining and
Fine-Tuning

We first select a pretrained BERT model for each
dataset. Table 2 shows the best F1 score on the test
data for CoONLL2003 and BC5CDR datasets, using
pretrained BioBERT and BERT.

CoNLL2003 BCS5CDR
914 84.9
89.1 88.2

BERT
BioBERT

Table 2: F1 score on test data for CoNLL2003 and
BCS5CDR datasets, using different pretrained models
BioBERT and BERT. Best performance is observed
when the domain for pretraining matches that of the
downstream task.

Similar to previous work (Lee et al., 2020; Guru-
rangan et al., 2020), best performance is observed
when the domain for language model pretraining
matches that of the downstream task. For further ex-
periments, we choose pretrained BERT model for
CoNLL2003 dataset and BioBERT for BCSCDR
dataset.

3.2 Effect of Sample Size

Next, we fine-tune a BERT language model on the
randomly down-sampled datasets of different size,
and the F1 performance in entity extraction on the
test split is summarized in Figure 1. For sample
size below 200 sentences, the model performance
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Figure 1: Top: performance (micro F1) in entity ex-
traction on the test split for random selection of the
training data subset of different sample sizes (number
of sentences). The shading represent 95% confidence
interval over 8 different runs using the same data and
same training parameter. To reach F1 score of 80%,
only 150 and 300 sentences are needed for BCSCDR
and CoNLL2003 dataset, respectively. Bottom: F1 per
NER class as a function of the number of tokens tagged
per class. We observe a difference in performance be-
tween the NER classes, which cannot be explained by
the number of respective tokens in the training set.

increases very fast . Above 200 sentences, the in-
crease in F1 score slows down when more training
examples become available.

Different fine-tuning runs show very low vari-
ance (shown as shaded band in Figure 1). The
variance, however, increases as the sample size
decreases, as expected.

Within each sample, the number of observations
for each entity class may be different from each
other. Would the same scaling hold for each entity
class? In other words, can the differences in F1
score per class be explained by the differences in
the number of observations? Figure 1 plots F1
score per class as a function of number of tokens
tagged with that class. We observe that although
NER classes with less observations show lower F1
score than those with a larger number of observa-
tions, the curves per class do not fall on the same
line. This suggests that the difference in the num-
ber of observations is not the only reason for the
differences in F1 per NER class.

Furthermore, for CoNLL2003, the F1 score for
MISC entities shows the lowest value for all sample
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sizes. The MISC class has the lowest number of
observations (see also Table 1), which causes the
lower F1-MISC, which in turn reduces the overall
F1 score.

3.3 Effect of Sample Seed

In this experiment, we empirically investigate if
fine-tuning on different training samples results in
similar performance.

10 different random samples of size 50 are gen-
erated, following Section 2.3, and F1 performances
of the BERT models fine-tuned on the different
samples are reported in Table 3. 7 to 8 points differ-
ence in F1 score observed between best and worst
random samples, which is much higher than the
variations between different runs of the same sam-
ple. The difference is the highest for the lowest
sample size, suggesting the importance of sam-
pling optimization, especially when annotated data
is limited.

3.4 Training Instance Selection

The large difference in model performance between
different random training samples raises the pos-

BC5CDR

sample size 50 150
variation runs std 1.3 0.5
variation runs min-max 3.4 1.4
worst random 66.6 79.3
best random 744  81.3
best kernel density 78.5 834

CoNLL2003
sample size 50 150
variation runs std 2.0 1.3
variation runs min-max 5.3 3.5
worst random 61.6 735
best random 70.8  78.2
best kernel density 71.6  75.6

Table 3: F1 score on test split for CoNLL2003 and
BC5CDR datasets, finetuned on different training sam-
ples (random or selected via our proposed method) of
size 50 and 150. The best random sample shows up to 8
points higher F1 than the worst random sample, which
is much higher than the variations between 8 different
runs of the same sample. The sample guided by kernel
density (see section 3.4) improves further over the best
random sample.



sibility to improve training instance selection. In
order to identify the key features that differentiate
a "good" random sample from a "bad" one, we first
investigate several potential features to characterise
the different random samples, before selecting the
two most differential features. Finally, we propose
a sampling strategy guided by the identified key
features.

Identifying Key Features

Since the goal is to select training instances be-
fore annotation, we only include features that can
be computed without labeled data. Three types
of features are investigated for characterising the
training examples. (1) Descriptive statistics includ-
ing sentence-length and coverage over different
documents. (2) "Fluency" measures include per-
plexity and pseudo-perplexity (Salazar et al., 2020)
for masked language model like BERT, which are
computed by masking tokens one by one. (3) Di-
versity measures as recommended in Mccarthy and
Jarvis (2010).

The most differentiating features turn out to be
sentence length (number of tokens) and pseudo-
perplexity, while all three diversity measures are
very similar across different samples. Thus we
omitted diversity measures in this study and leave
it to future research.

Figure 2 top row shows median sentence-length
per random sample vs median pseudo-perplexity,
where the coloring represents F1 score on the eval-
uation split when model is trained on this random
sample. Fine-tuning model on samples on the pe-
riphery tend to result in higher F1 score than those
in the center.

Training Instance Selection

2-dimensional kernel density estimation is used
to capture the observed relation between sentence
length, pseudo-perplexity and F1 score (Figure 2
bottom). We then proceed to generate training in-
stances based on the kernel density profile®. Dif-
ferent sampling ratios are tested, and the best per-
forming setting is to sample 85% of the training
instances from the 15% sentences at the lowest den-
sity. The results on the improved training sample
can be found in Table 3.

For the BC5CDR dataset, the best sampling
achieves F1 of 78.5 and 83.4 for sample size of
50 and 150, respectively. Using the relation in

3We release all code for future studies at

https://github.com/tugraz-isds/kd
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Figure 2: Top: Median sentence-length per random
sample vs median pseudo-perplexity, where the coloring
represents F1 score on the evaluation split when model
is trained on this random sample. Fine-tuning model on
samples on the periphery result in higher F1 score than
those in the center. Bottom: Sentence-length vs pseudo-
perplexity for all training samples, colored by kernel-
density. The random samples with higher F1 scores have
median pseudo-perplexity and median sentence length
values that are located around the periphery, i.e. the
lower density area, especially for the BC5CDR dataset.

Figure 1, this level of F1 is equivalent to the perfor-
mance of a random sample with size 120 and 400,
respectively. In other words, a smart sampling is
worth more than twice as many training examples.

For the CoNLL2003 dataset, the F1 score of the
optimized sample does not consistently outperform
random sampling. Possibly because the Gaussian
kernel density estimator does not fit very well to
the map with pseudo-perplexity vs sentence length.
In addition, the CoNLL2003 dataset shows larger
variation over different finetuning runs, and con-
tains sentences that are not as "clean" as those in
the BCSCDR dataset. For instance, sentences like
"4-67-6 (7-4 )" or "

Compared to the full training set, our best sample
with sample size 150 is only 5 points lower in F1,
albeit with less than 4% of training data size.

The optimised sampling can also be intuitively
understood: (1) longer sentences have higher
chance to contain more NER tagged tokens; (2) in-
stances with higher perplexities offer more "learn-
ings" for the pretrained model; (3) samples that
weigh more on rare instances are apparently more
enabling for BERT language models.

We notice that although our best sampling leads

"



to 2 - 4 points improvement in F1 over the best
random samples, our empirical way for sample
selection is possibly only at a local maximum.

Training instance selection work flow

Based on this result, our recommended workflow
for training instance selection is summarized in
Figure 3.

input
document

1. calculate pseudo-

perplexity and 2.Kernel density

— sentence length estimation
sampled
sentences
3. Sampling weighted L
on kernel density —
L4
4. annotate

Figure 3: Recommended workflow for annotating cus-
tomised dataset.

To select the best sample for annotation, first of
all, pseudo-perplexity and sentence length should
be calculated for all unlabelled text. A kernel den-
sity estimator can then be used to fit the relation.
Finally, the optimised samples can be drawn weigh-
ing on kernel density, before being annotated.

We notice that the proposed workflow differs
from typical active learning (Olsson, 2009) ap-
proaches, in the sense that no active feedback or
interaction with oracle is included. It is thereby a
complementary simpler approach for training in-
stance selection.

4 Conclusions

It can be shown that domain-specific pre-trained
BERT performs well even when fine-tuned only
on small amounts of training samples. Initial in-
crease in amount of data leads to large performance
gain before saturating at around 200 training exam-
ples. For small data sizes, the F1 scores of different
random samples vary greatly.

A sampling strategy is proposed in this work
which uses kernel density estimate to balance the
instance selection between pseudo-perplexity and
sentence length.

The F1 scores of BERT models fine-tuned on
training sets constructed using our method are
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equivalent to the same model fine-tuned on a ran-
dom sample using twice as many training exam-
ples.

This work provides practical guidelines for an-
notation requirements, namely, data size and sam-
pling strategy. Given the reduced number of train-
ing instances needed due to sampling optimisation,
data annotation becomes less expensive and can be
achievable in more use cases.
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Abstract

Multimodal Neural Machine Translation is fo-
cusing on using visual information to translate
sentences in the source language into the target
language. The main idea is to utilise informa-
tion from visual modalities to promote the out-
put quality of the text-based translation model.
Although the recent multimodal strategies ex-
tract the most relevant visual information in
images, the effectiveness of using visual infor-
mation on translation quality changes based on
the text dataset. Due to this, this work stud-
ies the impact of leveraging visual information
in multimodal translation models of ambigu-
ous sentences. Our experiments analyse the
Multi30k evaluation dataset and calculate ambi-
guity scores of sentences based on the WordNet
hierarchical structure. To calculate the ambi-
guity of a sentence, we extract the ambiguity
scores for all nouns based on the number of
senses in WordNet. The main goal is to find
in which sentences, visual content can improve
the text-based translation model. We report the
correlation between the ambiguity scores and
translation quality extracted for all sentences in
the English-German dataset.

1 Introduction

In recent years, Neural Machine Translation (NMT)
model is widely used in translation tasks and repre-
sents remarkable performance in terms of fluency
and precision compared with the previous gener-
ations of machine translation. Recurrent Neural
Network (RNN)-based NMT with Attention mecha-
nism has found broad application in different fields
of NLP tasks such as machine translation. The
transformer model as a Self-attention based model
has been introduced by Google in 2017 as a new
architecture for NMT (Vaswani et al., 2017). The
self-attention mechanism uses cross-lingual atten-
tion that allows the input words to interact with
each other (self) and find out which one should
pay more attention to (attention). In addition to

89

the mechanism of cross-lingual attention, the trans-
former model uses a stacked self-attention layer
that follows with a point-wise feed-forward compo-
nent. Recently many studies in machine translation
have been increasingly focusing on using visual
content well as textual to improve the translation
quality. Therefore, Multimodal Neural Machine
Translation (MNMT) as a subarea of NMT has
been introduced to use visual information extracted
from other modalities such as speech, image or
video to translate a sentence in a source language
into the target language.

MNMT is an area of research that plays an im-
portant role in machine translation tasks since mul-
timodal resources have been increasingly used in
deep learning techniques. MNMT tries to extend
the ability of the NMT models by taking visual
context such as images as an additional input to
better translate the source text. The main idea be-
hind this is that the textual context does not pro-
vide sufficient information for the text-based NMT
model in some situations to translate ambiguous
sentences (ambiguous terms or grammatical gen-
der). Due to this, visual information can enrich
text-best NMT systems by adding extra informa-
tion to disambiguate the input words and provide
correct translations on the target side.

One of the main ideas of using multimodality in
Machine Translation is that visual information can
help the textual context to find the correct sense of
ambiguous words in the translation process of the
source sentence. For example, the word “track” in
the English sentence “A man is performing a trick
on a track” is an ambiguous word and could have
at least two different translations in German — (1)
“Ein Mann fiihrt einen Trick auf einer Strecke aus”,
and (2) “Ein Mann fiihrt einen Trick auf einem
Bahngleis aus”. Given the word “track”, the con-
text does not provide enough information to dis-
ambiguate and translate it correctly. Therefore,
multimodal resources such as images can guide the
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translation system to select the correct sense based
on the visual information. Word Sense Disambigua-
tion (WSD) is widely studied in different natural
language processing tasks. WSD analyses given
the context of an ambiguous word to assign the
correct sense based on a pre-defined sense net for
words. Visual Sense Disambiguation (VSD) as a
modified version of WSD use visual context instead
of textual to disambiguate words. Although disam-
biguation of word sense can be done directly by Ma-
chine Translation models, research on Multimodal
Machine Translation more focuses on analysing
of contributions of each modality to disambiguate
words in the translation process.

In this work, we focus on identifying ambiguous
sentences and leverage therefore the WordNet hier-
archical structure to calculate an ambiguity score
for each sentence. This is then used to study a
correlation between ambiguity and translation eval-
uation scores. Analysing the lexical ambiguity and
translation quality allowed us to identify sentences
that are more challenging in the translation process
and most likely visual content can help the text-
based NMT to translate sentences more accurate.

2 Related Work

Multimodal Machine Translation is a new trend in
machine translation tasks that aims to create mul-
timodal frameworks to use information from vi-
sual modality as well as text context (Specia et al.,
2016). Different practices were used for the vi-
sual part of the MMT framework. The common
approach is to extract visual information by using
Convolutional Neural Networks (CNN) and then in-
tegrate this information with textual features (Yao
and Wan, 2020). Many MMT models were de-
veloped based on the Transformer approach. The
transformer approach extracts the relationships be-
tween words in the source and target sentences
by using a multihead self-attention mechanism
(Vaswani et al., 2017)

In some studies, the global image features are
used in the encoder beside word sequences to use
both types of features in the decoding stage (Huang
et al., 2016) or used to initialise the hidden param-
eters of the encoder and decoder in RNN (Calixto
and Liu, 2017). (Caglayan et al., 2017) use ele-
mentwise multiplication to initialise hidden states
of encoder/decoder in the attention-based model.
(Zhou et al., 2018) links visual and correspond-
ing text semantically by using a visual attention
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mechanism.

Despite successfully using multimodal informa-
tion in MMT, recent studies show that most of
the information in the image is not related to the
text while the translation process and when there
is limited textual information, visual content plays
more important for the translation model (Caglayan
et al., 2019). The studies use visual features by
focusing on relative importance among different
modalities. (Lala et al., 2018) introduced a mul-
timodal cross-lingual word sense disambiguation
model based on Multimodal Lexical Translation
Dataset (MLTD) (Lala and Specia, 2018) to gen-
erate contextually correct translations for the am-
biguous words. MLTD includes a list of words
of the source language with multiple translations
in the training set of Multi30k. (Ive et al., 2019)
introduced a translate-and-refine mechanism by us-
ing images in a second stage decoder to refine the
text-based NMT model in the ambiguous words
listed in MLT dataset. (Calixto et al., 2019) use
a latent variable model to extract the multimodal
relationships between modalities. Recent methods
try to reduce the noise of visual information and
select visual features related to the text. (Yao and
Wan, 2020) use a multimodal transformer-based
self-attention to encode relevant information in im-
ages. To capture various relationships, (Yin et al.,
2020) propose a graph-based multimodal fusion
encoder.

3 Experimental Setup

This section provides insights on the dataset used in
this work, neural architectures and the translation
evaluation metric BLEU.

3.1 Multi30K Dataset

Multi30K (Elliott et al., 2016) is an extended ver-
sion of the Flickr30K dataset that includes images
and paired descriptions expressed by one English
sentence and translated sentences in multiple lan-
guages. Firstly, the German translation was added
to the dataset (Young et al., 2014) and then it ex-
tended to French and Czech (Elliott et al., 2017)
(Barrault et al., 2018). Many recent models in
MNMT have focused on Multi30K as it provides an
image for each sentence in English and three trans-
lation directions, i.e. in German, French and Czech.
In this study, the evaluation dataset of Multi30k
contains 1,000 instances.



3.2 Text-based NMT

OpenNMT (Klein et al., 2018) is used to train the
text-based NMT model on a general En-De dataset.
The model used a 6-layer transformer mechanism
for both the encoder and decoder stage. We trained
the model for 50,000 steps on a general dataset
and set the parameters of the model to the original
implementations of OpenNMT.

As the text-based NMT system cannot leverage
the visual information, and to ensure a broad lex-
ical and domain coverage of our text-based NMT
system, we merged existing parallel for the English-
German language pair from the OPUS web page!
into one parallel corpus, i.e., Europarl (Koehn,
2005), DGT (Steinberger et al., 2014), EMEA,
KDE4, OpenOffice (Tiedemann, 2009), OpenSub-
titles2012 (Tiedemann, 2012), and randomly se-
lected 10 million sentences for our training step.

3.3 Doubly-attentive MNMT

For the visual side, we used the model that pro-
posed in (Zhao et al., 2020) to apply semantic im-
age region features’ for MNMT. This model is
based on the Doubly-attentive mechanism (Cal-
ixto and Liu, 2017) to integrate visual and textual
features by applying 100 semantic image features
with a dimension of 2,048 at each time step. The
hidden state dimension of the visual model is 500
for both 2-layer GRU encoder and 2-layer GRU
decoder. The work also set the dimension of the
source word embedding to 500, batch size to 400,
beam size to 5, text dropout to 0.3, and image re-
gion dropout to 0.5. After training the model for
25 epochs using stochastic gradient descent with
ADADELTA (Zeiler, 2012) and a learning rate of
0.002, the model of epoch 16 has been selected
based on comparing BLEU scores of the final mod-
els.

3.4 Evaluation Metric

We report the automatic evaluation based on BLEU
for the automatic evaluation. BLEU (Papineni et al.,
2002) is calculated for individual translated seg-
ments (n-grams) by comparing them with a dataset
of reference translations. For this work we use the
sacrebleu’ library (Post, 2018).

'https://opus.nlpl.eu/

https://github.com/Zhao-Yuting/
MNMT-with-semantic—-regions

*https://github.com/mjpost/sacrebleu
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3.5 Princeton WordNet

Princeton WordNet (Fellbaum, 1998) is a manu-
ally created resource that has been used in many
different tasks and applications across linguistics
and natural language processing. WordNet’s hier-
archical structure makes it a useful tool for many
semantic applications and it also plays a vital role
in various deep learning approaches (Rychalska
et al., 2016).

3.6 Correlation Coefficients

The correlation coefficient is a measure to deter-
mine the relationship between two variables (Janse
et al., 2021). In correlated data, the change in
the magnitude of one variable leads to a change
in the magnitude of another variable either in the
same or in the opposite directions. Pearson product-
moment correlation is a typical type of correlation
for a linear relationship between two continuous
variables. The range of the correlation coefficient is
between -1 and +1, where 0 shows that there is no
correlation between the two variables. The correla-
tion coefficient near +1 and -1 shows a strong, same
or opposite, correlation respectively. The equation
for the correlation coefficient is:

D V)
V2(z—7)* 3 (y —9)?
where T and ¢ are the sample means of array X

and Y respectively.

Correl(X,Y)

4 Methodology

In this section, we explain our methodology to cal-
culate the ambiguity scores for each sentence based
on the hierarchical structure of WordNet. To find
a meaningful relationship between ambiguity and
translation quality, we analyse the correlation func-
tions between different ambiguity scores and the
translation evaluation metric BLEU. Our focus in
this work is on the inherited structure of English
nouns in WordNet. Each noun in WordNet can
be defined as a set W of pairs (w,s) where w is a
word in that language and a sense s is possible set
of meanings (synonyms or synsets) for the word
w. Table 1 shows all synset entries (11) for the
noun frack in WordNet. The inherited structure in
WordNet is a hierarchical structure to organise the
semantic relations of synsets. Furthermore, synsets
in WordNet have different hierarchical structures
from each other including hyponymy and hyper-
nymy. Figure 1 shows the WordNet inherited struc-
ture of synset entries for the word track. Entity



path, track, course
lead, track, trail

a line or route along which something travels or moves
evidence pointing to a possible solution

track a pair of parallel rails providing a runway for wheels
racetrack, racecourse, raceway, track |a course over which races are run
cut, track

track, caterpillar track, caterpillar tread
track, data track

track

track, rail, rails, runway

track, cart track, cartroad

track, running

a distinct selection of music from a recording or a compact disc

an endless metal belt on which tracked vehicles move over the ground
one of the circular magnetic paths on a magnetic disk that serve ... for writing and reading data
a groove on a phonograph recording
a bar or pair of parallel bars of rolled steel making the railway along which railroad ... can roll
any road or path affording passage especially a rough one

the act of participating in an athletic competition involving running on a track

Table 1: Synset entries (11) for the word track in the Princeton WordNet.

LEVEL 0 Entity
f

................. [ !

LEVEL 1 Abstraction Physical Entity
............ . [ O R
) ) )

LEVEL 2 Physical Feature  Communication Attribute
LEVEL3 Cognition  Event Written Shape Location Whole

..... I PP I Communlcatlon E haemmenasassasess . ? . sraaa ?
LEVEL 4 Information Act Writing Line Solid Line Artifact

............ . B B e B
& I I ! z = ; : ; )

LEVEL S Evidence Activity Section Curve  Concrete shape Track Path Track Facility Instrumentality Way
LEVEL 6 i i i

Track Dlve£S|on Passage ClOSECi:’JFVS Deprevion Track Course Implement ~ Road
LEVEL 7 Sport Excerpt Simple Closed Curve ~ Groove Track Bar Track
LEVEL 8 Track and Field Track Loop Track Track
LEVEL 9 Track Belt

................. i
LEVEL 10 Track

Figure 1: Hierarchical structure of the WordNet entry track.

(level 0), is the root node for all synset entries in
WordNet. Each path between the root node and
a synset entry has a different length that shows
the different abstraction level. For example of the
word track, min_length has a path length of
4, with six unique abstract concepts (Information,
Act, Writing, Line, Solid, Artifact). On the other
hand, min_length-1 at the path length of 3, has
six concepts as well, i.e. Cognition, Event, Writ-
ten Communication, Shape, Location, Whole. The
number of all synsets for track in WordNet is 11.
After extracting this information for each word,
we use the sum and multiply functions on all
nouns of a sentence to calculate the overall ambigu-
ity score (see example in Table 2 for the sentence
Dog runs at a track). We normalised these scores
by dividing them by the number of content words
(nouns with more than one synset in WordNet) of
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the sentence to minimise the effect of sentence
length on our experiments.

5 Results

This section provides the results of our experi-
ments. After calculating ambiguity and BLEU
scores (NMT, MNMT) for each sentence in the
test set, we analysed the correlation coefficients
between ambiguity and translation quality scores
to find a meaningful relationship between them. To
better analyse the correlation between the sentence
ambiguity and translation quality, we grouped them
into sets of 50 sentences (resulting in 20 groups)
after ranking them by the ambiguity score. The
corpus BLEU scores for NMT and MNMT on the
evaluation dataset in En-De are 30.66 and 35.80
respectively.

Table 3 illustrates the correlation score (see Sec-



Approach ‘ # of Concepts # Nouns Ambiguity

Sum(synsets) 7+ 11 2 9.0
Sum(min_length) 7+ 10 2 8.5
Sum(min_length-1) 6+6 2 6.0
Multiply(synsets) 7*11 2 38.5
Multiply(min_length) 7*10 2 35.0
Multiply(min_length-1) 6*6 2 18.0

Table 2: Examples of calculating the ambiguity score
based on the number of concepts of each word, i.e. dog
and frack, at the certain hierarchical level, normalised
with the set of nouns in the sentence.

Approach | NMT MNMT
Sum(Synsets) 0.3987 0.3841
Sum(min_length) 0.2226 0.0445
Sum(min_length-1) 0.1017 -0.0453
Multiply(Synsets) -0.5511 -0.6744
Multiply(min_length) -0.5846 -0.6020
Multiply(min_length-1) -0.5292 -0.6039

Table 3: Correlation between the calculated ambiguity
scores and BLEU metric for NMT and MNMT on 20
groups.

tion 3.6), ambiguity scores and the BLEU evalua-
tion metric for the approaches used to calculate the
ambiguity scores of the sentences. As seen in the
table, the best correlations for NMT and MNMT
are obtained by the Multiply (min_length)
and Multiply (Synsets) approaches respec-
tively. Due to this, we focused on the Multiply
approaches and provide graphs, which illustrate the
correlation between the ambiguity and translation
quality.

As seen in Figure 2 the ambiguity score cal-
culated by the WordNet hierarchy correlates with
the translation quality, i.e., if the ambiguity of a
sentence is high, the translation quality in terms
of BLEU is low. On the other hand, if the am-
biguity of a sentence is low, the translation qual-
ity in terms of the BLEU metric improves. This
can be seen for all methods used to calculate
the ambiguity, i.e. synsets, min_length,
min_length-1. In addition to that, the graphs
also illustrate the better performance of the MNMT
system (orange points) compared to the text-based
NMT system (blue points).

6 Conclusion

Recent studies in Multimodal Machine Translation
focused on using visual information to improve the
quality of translation tasks. One of the main chal-
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Figure 2: Correlation representation between the Multi-
ply approach’s ambiguity scores and the BLEU metric
for NMT and MNMT on 20 groups.

lenges for the translation systems is to find a correct
translation in terms of the context used. Despite the
progress of research in this area, the performance
of multimodal translation systems is more related
to the quality of visual content which is used along
with textual dataset. In this study, we analysed
different approaches to calculate the ambiguity of
the sentence to find a correlation between sentence
ambiguity and the translation quality in terms of
the BLEU metric. We tested different approaches
to calculate the ambiguity and observed that multi-
plying the number of entries at the minimum length
level of the WordNet hierarchy for each noun pro-
vided the best correlation to the evaluation metric
for each sentence. Within our future work, we plan
to consider the frequency and further linguistic fea-
tures of WordNet synsets. In addition to that, we
plan to leverage the Polylingual Wordnet (Arcan
et al., 2019), a large multilingual WordNet in more



than 20 European languages, to calculate the lexical
ambiguity beyond English. Furthermore, we plan
the incorporation of ImageNet (Deng et al., 2009),
which has an image dataset organised according to
the WordNet hierarchy.
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Abstract

Dialogue systems without consistent responses
are not fascinating. In this study, we build a
dialogue system that can respond based on a
given character setting (persona) to bring con-
sistency. Considering the trend of the rapidly in-
creasing scale of language models, we propose
an approach that uses prompt-tuning, which
has low learning costs, on pre-trained large-
scale language models. The results of auto-
matic and manual evaluations in English and
Japanese show that it is possible to build a di-
alogue system with more natural and person-
alized responses using less computational re-
sources than fine-tuning.

1 Introduction

Large dialogue corpora used to train dialogue sys-
tems using neural network models contain utter-
ances from various speakers. This has the disad-
vantage that the trained system is often inconsistent
in the generated utterances (Li et al., 2016b). For
example, after the system says, “I am from Tokyo,”
it might say, “I am from Kyoto.”

We aim to build a dialogue system that can re-
spond based on a persona to avoid inconsistent
utterances. A simple method of giving a persona
to a model can be to concatenate the persona to
the model’s input in natural language (Zhang et al.,
2018). However, this method is not suitable be-
cause the more persona information is added, the
longer the input text becomes. Therefore, we pro-
pose to freeze all parameters of a pre-trained lan-
guage model and add a new fixed-length prompt
before the input token sequence to embed the per-
sona information. Specifically, only the embedding
vectors of the added prompt are optimized using
a dialogue corpus in which utterances are made
based on the persona.

We conduct experiments on two languages: En-
glish and Japanese. Automatic and manual evalu-
ations show that our method can build a dialogue
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system capable of natural responses based on a
persona. Since our approach does not update the
parameters of the pre-trained model, it can reduce
the computational cost required for training. We
also show that it is possible to build a personalized
dialogue system with even a small dataset consist-
ing of hundreds to thousands of utterance-response
pairs.

2 Related Work

2.1 Prompt-Tuning

With the advent of pre-trained models such as
BERT (Devlin et al., 2019) and TS5 (Raffel et al.,
2020), a method that adapts a pre-trained model to
a target task by fine-tuning has become mainstream.
However, as the scale of models grows and the cost
of fine-tuning increases, methods for adapting a
pre-trained model to a target task without updating
their parameters are gaining attention.

Brown et al. (2020) proposed a zero/few-shot
learning method based on language models with
manually created task descriptions and zero/a few
task examples (collectively called prompt). Al-
though there are some studies on improving this
method (Reynolds and McDonell, 2021; Zhao et al.,
2021), they are inferior to fine-tuning in terms of
accuracy.

Prompt-tuning is a method for automatically op-
timizing a prompt without creating it by manual
labor. There are two kinds of methods in prompt-
tuning: one is to select the best words from a dis-
crete vocabulary (Shin et al., 2020), and the other
is to optimize continuous embedding vectors (Qin
and Eisner, 2021; Li and Liang, 2021; Lester et al.,
2021; Liu et al., 2021; Vu et al., 2021). Prefix-
tuning (Lester et al., 2021; Li and Liang, 2021)
adds a sequence of tokens, called prefix tokens,
to the beginning of the input and optimizes only
their embedding vectors. There is also a study on
multimodal prompt-tuning for images and natural

Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: Student Research Workshop, pages 96 - 105
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language (Tsimpoukelli et al., 2021).

2.2 Persona-Based Dialogue Systems

According to Roller et al. (2021), for dialogue sys-
tems to interact more naturally with humans, it
is essential to consider three perspectives: having
a consistent personality, having knowledge, and
having emotions and empathy for the interlocu-
tor. Among these three perspectives, we focus on
personality because we believe that it is the most
important to generate consistent responses.

The Persona-Chat dataset (Zhang et al., 2018) is
a dataset created with the goal of adding personality
to a dialogue system. It consists of multi-turn dia-
logues between two crowdworkers, each of whom
is given approximately five persona sentences,
which describe their character settings. There are
1,155 personas in the Persona-Chat dataset. There
are two types of persona sentences per persona:
original, which the worker used in the dialogue,
and revised, which is a paraphrased version of the
original. In the experiments conducted by Zhang
et al. (2018), models were trained using all the
data in the Persona-Chat dataset, which contains
utterances based on various personas. On the other
hand, our method uses dialogue data uttered based
on only one persona to train models. There is also a
Japanese version of the Persona-Chat dataset, JPer-
sonaChat (Sugiyama et al., 2021). Other dialogue
corpora that contain speaker persona information
include PersonalDialog (Zheng et al., 2019) and a
corpus of dialogue data from Reddit (Mazaré et al.,
2018). Zheng et al. (2019) proposed a method
to add encoded persona information to the input
before it is fed into a seq2seq model.

3 Method

This section describes our proposed method. The
detailed setup for our experiments is described in
Sections 4.1 and 4.2.

3.1 Proposed Model

We propose a Transformer-based model with an
additional embedding layer for tokens that embed
persona information. We refer to these tokens as
persona info tokens. The architecture and input-
output relation of the proposed model are shown in
Figure 1.

3.2 Datasets

Conversations in daily life are not always related to
personal information (Song et al., 2021). To allow
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Figure 1: Architecture and input-output relation of the
proposed model. All parameters of the pre-trained lan-
guage model and its embedding layer are frozen. Only
the newly added embedding layer for persona info to-
kens is tuned.

the model to generate not only utterances that are
related to the persona but also utterances that are
not related to the persona, we make a dialogue
dataset that consists of two types of datasets. The
first is a dialogue dataset where each utterance is
based on the persona, and the second is a dialogue
dataset that is not related to the persona.

3.3 Training

The newly added embedding layer embeds persona
info tokens, and the embedding layer of the pre-
trained language model embeds each pair of ut-
terance and response (which consists of tokens al-
ready generated during training). These embedding
vectors are combined and then input into the model.
During training, the cross-entropy loss is calculated
for the output tokens of the response sentence, and
only the parameters of the embedding layer for the
persona info tokens are updated.

The embedding layer for the persona info tokens
is initialized with the persona sentences included
in the Persona-Chat dataset. These sentences are
embedded into vectors by the embedding layer of
the pre-trained language model and then used for
initialization. If the number of the tokens of the per-
sona sentences is less than the length of the persona
info tokens, the persona sentences are repeatedly
arranged until the number is satisfied.

4 Experiments

Based on the method in Section 3, we build a
personalized dialogue system. We used Hugging
Face’s Transformers to build the system and the
NVIDIA A100 SXM4 GPU with a GPU memory
size of 40 GB. The main experiments are conducted
in English, and the results of additional experi-
ments in Japanese are included at the end of this
section.



4.1 Datasets Setup

We use the Persona-Chat dataset' and DailyDia-
log (Li et al., 2017)? for our experiments in En-
glish.

4.1.1 Training Datasets

First, the multi-turn dialogues in the Persona-Chat
dataset are divided into two utterances of one round
trip. We refer to this pair of two utterances as a
dialogue pair. The dialogue pairs are aggregated
according to the persona type given to the respon-
der. There are 1,155 personas in the Persona-Chat
dataset, but we use the three personas with the most
dialogue pairs in our experiments. The reason for
this is that we intend to experiment with a relatively
large number of dialogue pairs even in the small
dataset. The number of dialogue pairs based on
these three personas is 185, 167, and 166, respec-
tively. Three models corresponding to the three
personas are trained and evaluated for each exper-
imental setup. The aggregated dialogue pairs are
divided into training and evaluation pairs in a ratio
of 9:1.

The Persona-Chat dataset does not contain many
short utterances or utterances unrelated to persona.
To add utterances that are short and not related
to persona to the dataset, we also use dialogue
pairs contained in DailyDialog whose topic is Re-
lationship,® which contains many such utterances.
Among them, dialogue pairs in which the lengths
of both the utterance and the response are less than
50 characters are mixed into the training datasets in
a certain ratio. Based on the results of preliminary
experiments, we determined the ratio of dialogue
pairs added from DailyDialog to the number of
those obtained from the Persona-Chat dataset as
1:1. We call this the ratio of the training datasets.

4.1.2 Evaluation Datasets

We made two datasets for evaluation: the persona
eval dataset and the general eval dataset. The per-
sona eval dataset is 10% of the 9:1 dataset described
in Section 4.1.1. The general eval dataset consists
of dialogue pairs obtained from DailyDialog under

'https://github.com/facebookresearch/
ParlAI/tree/main/parlai/tasks/
personachat

https://aclanthology.org/I17-1099/

3Each dialogue is assigned a topic. There are ten topics:
Attitude & Emotion, Culture & Education, Finance, Health,
Ordinary Life, Politics, Relationship, School Life, Tourism,
and Work.
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Training Method | Model || Dist-1 | Dist-2
Fine-Tuning (added) 0.199 0.526
Fine-Tuning (none) GPT2-XL 0.210 | 0.568
Prompt-Tunin 0.177 0.494

P & GPT-I-6B || 0.213 | 0.595

Table 1: Results of automatic evaluation by distinct-1, 2.
The prompt-tuned GPT-J-6B model generates the most
diverse responses. “Added” and “none” mean whether
the persona sentences are added to the input sentence or
not.

the same conditions as in Section 4.1.1, but not
used for training.

4.2 Model Setup

To compare our prompt-tuning model with fine-
tuning, we use the datasets in Section 4.1 and tune
the pre-trained models of GPT series. We use two
model sizes: GPT2-XL (1.5B parameters) and GPT-
J-6B (Wang and Komatsuzaki, 2021). Fine-tuning
of the GPT-J-6B model is not tested due to the lack
of GPU memory.

The hyperparameters for prompt-tuning are
based on the settings of (Lester et al., 2021). The
length of the persona info tokens was set to 200
based on the results of preliminary experiments.
The strategy for generating the response sentences
is the greedy search. The number of epochs was
set to a value such that the loss during learning
converges. For fine-tuning, we experimented with
two methods: one is to input only dialogue pairs,
and the other is to add persona sentences before the
dialogue pair’s utterance and then input it into the
model. Other hyperparameter values are given in
Appendix B.

4.3 Results

We input the utterances of dialogue pairs from the
evaluation datasets into the trained models. We
automatically evaluate the diversity of the gener-
ated responses and manually assess whether the
responses are natural and based on the persona.

4.3.1 Automatic Evaluation

We evaluate the diversity of the generated responses
by distinct-N (Li et al., 2016a). The values of
distinct-1 and distinct-2 are shown in Table 1. The
evaluation values are the average of all the gener-
ation results of the persona, general eval datasets
from each model corresponding to the three types
of personas. The results show that the GPT-J-6B
model trained by prompt-tuning generates the most



Eval Dataset

Training Method | Model [ Fluency | Engagingness | Relevance

Fine-Tuning (none) GPT2-XL 3.52 (1.26) 3.70 (1.22) 3.30(1.27)

Persona Eval Prompt-Tuning 3.82 (1.06) 3.74 (1.17) 3.62 (1.02)
GPT-J-6B || 3.90 (0.90) 3.98 (0.95) 3.82 (0.96)

Fine-Tuning (none) GPT2-XL 3.93 (1.19) 3.82 (1.20) 3.77 (1.16)

General Eval Prompt-Tuning 4.04 (1.01) 3.81(1.19) 3.96 (1.13)
GPT-J-6B | 3.98 (1.03) 3.80 (1.01) 3.89 (1.05)

Human 4.31 (1.07) 4.25 (1.06) 4.36 (0.92)

Table 2: We evaluated the generated responses on a 5-point scale for fluency, engagingness, and relevance. We asked
five workers to answer each question, and the averages of all answers and standard deviations (in parentheses) are
shown. The prompt-tuned GPT-J-6B model scored highest in all aspects in the persona eval dataset. No significant

differences were found in the general eval dataset.

Eval Dataset

Training Method | Model [ [1,2) | [2,3) [ [34) | [4,5]

Fine-Tuning (none) 0 5 33 12

Persona Eval Prompt-Tunin GPT2-XL 0 7 41 2
ompt-iunig - "EPTYEB | 0 2 | 29 | 19

Fine-Tuning (none) 0 11 105 34

General Eval [ - . OPTZXL o | 8 | 75 | &7
p & [GPTJ6B | 0 1 | 91 | 58

Table 3: The generated responses were rated on a 5-point scale for persona consideration, and their distribution
is shown. 1 is inconsistent with the persona, 3 is irrelevant to the persona, and 5 is in line with the persona. [1, 2)
means the number of sentences scored between 1 and 2, including 1. In each setting, the number of samples from
the persona eval dataset is 50 and that from the general eval dataset is 150.

diverse responses. In fine-tuning, we also find that
the results are better when persona sentences are
not added to the input, similar to the experimental
results using the seq2seq model in the experiments
by Zhang et al. (2018).

4.3.2 Manual Evaluation

We use Amazon Mechanical Turk to manually
evaluate whether the generated responses are nat-
ural and persona-based. Following the method of
Zhang et al. (2018), the responses are rated on a
5-point scale on four aspects: fluency, engaging-
ness, relevance, and persona consideration. We ask
five workers to answer each question. In each set-
ting, the number of samples from the persona eval
dataset is 50 and that from the general eval dataset
is 150. An example of tasks given to workers is
shown in Appendix C.

The results of the first three aspects are shown
in Table 2. The human scores are taken from
the experiments by Zhang et al. (2018). In fine-
tuning, when persona sentences are added to the
input, the automatic evaluation results are worse
than when they are not, and thus we only evalu-
ate the models without persona sentences. From
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Table 2, the manual evaluation results using the
persona eval dataset show that the prompt-tuned
GPT-J-6B model achieves the best scores in all as-
pects. This can be attributed to the fact that the
larger the model size was, the more knowledge
was stored in the model through pre-training, and
the more natural responses were generated by us-
ing this knowledge. Manual evaluation using the
general eval dataset did not produce a significant
difference. This is probably because most of the
utterances in the general eval dataset are short and
general, such as greetings, and the responses are
also short and simple sentences.

For persona consideration, the distribution of
the evaluation results is shown in Table 3, where 1
is inconsistent with the persona, 3 is irrelevant to
the persona, and 5 is in line with the persona. The
average score of persona consideration is calculated
for each generated response. Table 3 shows that
the majority of the generated responses are based
on personas.

Comparing fine-tuning and prompt-tuning with
the largest models that can be trained with a fixed
GPU memory size, we can say that prompt-tuning
can build a dialogue system with more natural re-



Utterance

[ Generated Response

are you tired ?

1 am a little tired.

cool , i am eating donuts . what do you do ?

i am retired, 1 am a gym teacher. i used to teach gym.

how about the korean restaurant next to it ?

i heard it’s very good.

i used to cook paella for a kitchen in spain .

i love paella. that sounds great.
i bet it is a hard job to cook it right?

the tv news is reporting a bank robbery .

1 heard it on the radio. what a shock.

what do you like to do in your spare time ?

i volunteer at a local soup kitchen,
helping people in need.

hi , i like to keep fit and work out 5 times a week

i like to eat cheeseburgers
and watch war documentaries

stop producing cigarettes .

1 like the idea, but how can we do that?

Table 4: Response examples generated by the prompt-tuned GPT-J-6B model, which got the highest score in the
manual evaluation. We can see that both of responses based on the persona (e.g., the sixth response) and responses

unrelated to the persona (e.g., the first one) are generated.

Persona Sentence

iam a retired gym teacher.

i volunteer at a soup kitchen.

i was poor growing up.
cheeseburgers are my favorite food.
i like watching war documentaries.

Table 5: The persona used in the generated response
examples in Table 4.

Training Method | Model [ Dist-1 | Dist-2
Fine-Tuning (none) GPT2-XL 0.134 | 0.379
. 0.118 0.336
Prompt-Tuning o sravA T 0.106 | 0322

Table 6: Results of automatic evaluation by distinct-1, 2
in experiments in Japanese.

sponses based on the persona.

Table 4 shows response examples generated by
the prompt-tuned GPT-J-6B model, which got the
highest score in the manual evaluation. These
responses are generated from the model trained
with the dialogue pairs based on persona sentences
shown in Table 5. We can see that training with
small training datasets of only a few hundred pairs
can produce a response with a natural and consis-
tent personality, as shown in Table 4.

4.4 Experiments in Japanese

For our Japanese experiments, we use two
datasets:  JPersonaChat and JEmpatheticDia-
logues (Sugiyama et al., 2021).* As in the En-
glish experiments, three personas are used, and the
number of dialogue pairs from JPersonaChat are
527, 525 and 525, respectively. To create training
datasets, the same process as in the English exper-
iments is used. Since most of the utterances in

*https://github.com/nttcslab/
japanese—dialog-transformers

JEmpatheticDialogues are shorter and more gen-
eral than those in JPersonaChat, we did not set any
conditions for adding the utterances from JEmpa-
theticDialogues to the training datasets. The ratio
of the training datasets is set to 1:10 based on the
results of preliminary experiments. For the models,
we use GPT2-XL> with 1.3B parameters and Hy-
perCLOVA (Kim et al., 2021), a GPT3-like model
with 6.9B parameters.

In the automatic evaluation results shown in Ta-
ble 6, in contrast to the English experiments, Hyper-
CLOVA, which has a higher number of parameters,
tends to score lower. This can be attributed to the
fact that there were many instances in which Hyper-
CLOVA begins its response with back-channeling.

Table 7 shows the average scores for the three as-
pects within the manual evaluation results. For
both the persona eval dataset and general eval
dataset, the HyperCLOVA model with prompt-
tuning scored the highest. The distribution of per-
sona consideration is shown in Table 8. As in the
English experiments, many responses are based on
the persona and few are inconsistent with the per-
sona. Generated response examples are shown in
Appendix A.

5 Conclusion

We proposed a method for prompt-tuning a pre-
trained language model using dialogue data based
on a single persona. Automatic and manual evalua-
tions showed that we could construct a dialogue sys-
tem that can respond more naturally and persona-
based, with less computational resources than fine-
tuning. Compared to the generated responses in
English, those in Japanese look natural due to the

Shttps://huggingface.co/rinna/
Jjapanese—gpt-1Db
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Eval Dataset | Training Method \ Model

| Fluency | Engagingness | Relevance

Fine-Tuning (none) | o~ | 381 (1.12) | 363 (1.00) | 381(1.06)
Persona Eval | 3.68(1.23) | 3.67(1.13) | 3.71 (1.17)
P £ [HyperCLOVA || 3.87 (1.11) | 3.92(0.98) | 3.90 (1.08)

Fine-Tuning (none) | oo~ | #01(096) | 3.82(0.89) | 382(1.00)

General Eval | 3.99 (1.09) | 3.68(1.03) | 3.92 (1.08)
P £ [HyperCLOVA || 4.07 (1.01) | 3.86(0.95) | 4.06 (0.99)

Human

4.31 (1.07) 4.25(1.06) | 4.36 (0.92)

Table 7: Results of manual evaluation of fluency, engagingness, and relevance for the generated responses in the
Japanese experiments. We asked five workers to answer each question, and the averages of all answers and standard
deviations (in parentheses) are shown. Prompt-tuned HyperCLOVA scored highest in all aspects on both datasets.

Eval Dataset | Training Method |  Model [ [1,2) [ [2,3) [ [3,4) | [4,5]
Fine-Tuning (none) 0 5 105 40
Persona Eval . GPT2-XL 1 14 | 84 | 51
Prompt-Tuning 1w TovA | 0 | 18 | 77 | S5
Fine-Tuning (none) 0 8 122 20
General Eval . GPT2-XL 0 14 | 115 | 21
Prompt-Tuning e Gva |l o | 19 | 125 | 6

Table 8: Distribution of manually evaluated persona consideration in Japanese. In each setting, the number of
samples is 150 for both persona eval and general eval datasets.

larger persona dataset. In the future, this method
can be used not only to add personality to a dia-
logue system but also to build a dialogue system
to generate responses with emotions by making a
prompt for each emotion.
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4171-4186, Minneapolis, Minnesota. Association for
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A Generated response examples in Japanese

Response examples that generated by prompt-tuned HyperCLOVA are shown in Table 9. These responses

are generated from the model trained with the
Table 10.

dialogue pairs based on persona sentences shown in

Utterance

[ Generated Response

ZAITHIR, R S—<EPITT
AAF o U o5EATIEL WA,
(Hello. I recently got a perm and a makeover,
so I hope you’ll take a look at it sometime.)

VW&, WO WD U ERBUR O LE A
HL5, FSRELR O RLKEL,

(Okay. When is a good time? I have to work

as a housekeeper, so I can come after the evening.)

ZAZHBIITYFEHS>TEHATTR, #E LW,

(Hello! I see you have a rabbit, I'm jealous.)

Fo, #loTEY, Ry h¥av I T
—HBNL T, ZOEFENTRK £ L7,

(Yes, I have one. I fell in love with her

at first sight at a pet store and took her home with me.)

oMz I -0y NTPEL L5,
EDEPN VA TT 9?

(If you were to study painting in Europe,
which country would you prefer?)

Ty RBFER 5,
AT VEROVAL R RNTT 9
(If you like Van Gogh, why not Holland?)

KLK, HOBE S, Bho7ARITE,
ZERHE S BFIZ R o 2D 6 AR N EWZE U 7z,
(No problem, thanks. It was short, but I was really
scared because all of a sudden it went dark.)

ZhidMini, HHTEID» o7,
ZNIZLTH, EE- TALIZH S &4,
(That’s scary. I'm glad you’re safe.

Still, power outages are really annoying, aren’t they?)

NA VRSO TZARIZE PO HDHD?
(Has candy pineapple been around that long?)

Sh, TELDHEHNPSBRTR L,

(Yeah, I've been eating it since I was a kid.)

Table 9: Response examples generated by prompt-tuned HyperCLOVA.

Persona Sentence

MIEHRBIF T,
I ES LTWET,
DRy MITHETT,

(I live with

FMFERTRIZA>TWE LT,

(I am a housekeeper.)

my sister.)

(My pet is a rabbit.)
FAAEELS B NId, HRDITY AT,

(I was in the art club.)

(The person I admire is the painter Van Gogh.)

Table 10: The persona used in the generated response examples in Table 9.

B Hyperparameter

Table 11 shows hyperparameters during model training in our experiment.

Hyperparameter | Fine-Tuning (En) | Prompt-Tuning (En) | Fine-Tuning (Ja) [ Prompt-Tuning (Ja)

Optimizer Adam

Adam Adam Adam

Se-5

Learning Rate

le-3 le-5 le-3

Table 11: Hyperparameters during model training in our experiment.
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C An example of tasks used in crowdsourcing

Figure 2 shows an example of tasks used in crowdsourcing.

Shortcuts | On a scale of one to five, Evaluate whether the Response is based on the given Personas.

Personas:

+ iam in the third grade.

- mickey mouse is my favorite character.

- i play with my friends on the playground.

- i love to go to disney world every year.

- i love to sing songs from the movie frozen.

Utterance: hi i am good how are you

Response: i am good and i am doing homework.

Select an option
1 - Conflict with the Personas 1
2 2
3 - No relevance to the Personas 3
4 4

5 - Consistent with the Personas 5

Figure 2: An example of tasks given to workers on Amazon Mechanical Turk for the manual evaluation.
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Abstract

While there have been advances in Natural
Language Processing (NLP), their success is
mainly gained by applying a self-attention
mechanism into single or multi-modalities.
While this approach has brought significant
improvements in multiple downstream tasks,
it fails to capture the interaction between dif-
ferent entities. Therefore, we propose MM-
GATBT, a multimodal graph representation
learning model that captures not only the re-
lational semantics within one modality but also
the interactions between different modalities.
Specifically, the proposed method constructs
image-based node embedding which contains
relational semantics of entities. Our empirical
results show that MM-GATBT achieves state-
of-the-art results among all published papers
on the MM-IMDDb dataset.

1 Introduction

Despite the huge success of learning algorithms
for applications involving unimodal data such as
text, less is known for applications involving mul-
timodal data, i.e. scenarios where each data entity
has data attributes from multiple modes, such as
text and image. While the previous works show
that models with multimodal representation outper-
forms unimodal representation in downstream tasks
such as classification, VQA, and disambiguation,
the benefit of multimodal representation mostly
comes from only one mode (such as text), while
the other mode only contribute a marginal improve-
ment. That is, the performance difference between
text-only representation and multimodal represen-
tation is smaller than that of the image-only repre-
sentation and multimodal representation (Arevalo
etal., 2017; Vielzeuf et al., 2018; Moon et al., 2018;
Kiela et al., 2020; Singh et al., 2020; Kiela et al.,
2021).

We suspect that improper usage of image-
modality presents a limitation in creating multi-
modal representation. Existing multimodal models

delgosha}@illinois.edu

Text

Description: The War of the Ring reaches its
climax as the dark lord Sauron sets his sights on
Minas Tirith, the capital of Gondor. The
members of the fellowship in Rohan are .....

f=

Features: producer, director, writer, art director,
cinematographer

v

Predicted genres: ["Action", "Adventure", "Fantasy"]

L2 AN
" [ORD#RINGS

Ground truth: ["Action", "Adventure", "Drama", "Fantasy"]

Figure 1: Given movie poster and text information, the
problem is to predict the multilabel genres of movies.
Our method narrows down this problem into a node
classification task by constructing a multimodal entity
graph where each node represents a movie entity and
edge represents a shared feature between the movie
entities.

have been applying a self-attention mechanism or
create a graph with a single modality’s attribute.
However, these approaches ignore the interaction
among entities, multi-modalities, or both. In other
words, one modality is tied within its space and can-
not see beyond its modality space. To overcome
this limitation, we propose a novel framework by
constructing a multimodal entity graph which si-
multaneously captures the interconnection between
different data entries and data modalities. Our idea
is motivated by homophily, in which similar nodes
tend to be connected and tend to share similar la-
bels (Hamilton, 2020).

We demonstrate our claim by considering a
multilabel classification task using the MM-IMDb
dataset (Arevalo et al., 2017) as in Figure 1. In the
MM-IMDDb dataset, each movie entity is provided
with image and text, and our goal is to predict the
movie’s genre. Using this data, we construct a
graph where each node represents a movie, and is
given the movie image as an attribute. Furthermore,
we connect two nodes if the corresponding movies
share features, i.e. if they have the same producer,
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director, etc. By capturing dependency and inter-
action between the entities generated from Graph
Attention Network (GAT) (Velickovi¢ et al., 2018),
we expect to gain latent information that cannot be
extracted from the image encoder solely.

The contributions of this work are as follows: (1)
We propose a novel Multimodal Graph Attention
Network (MM-GATBT) which enables interaction
between data modalities. (2) To our best knowl-
edge, this is the first attempt to construct image-
based entity graph to enrich image representation
by capturing relational semantics between the en-
tities. (3) MM-GATBT achieves state-of-the-art
results on the multilabel classification task among
all published papers on MM-IMDb dataset.

2 Background

Multimodal Representation Joint representa-
tion is one of the most popular methods to combine
modality vectors. This method has a strong advan-
tage in implementation because it concatenates the
modalities into a single vector. (Guo et al., 2019)
explains that it is an intuitive approach to learn a
shared semantic subspace from different modalities
providing richer and complementary contexts.

(Bayoudh et al., 2021) also explains three differ-
ent fusion methods depending on the timing when
modalities are combined. Early fusion (Sun et al.,
2018) method fuses data before the feature extrac-
tor or classifier to preserve the richness of original
features. The late fusion method fuses data after ex-
tracting features from separate modalities. Hybrid
method uses both early fusion and late fusion at
some point in their architecture to take advantage
of both worlds.

Graph Neural Network Graph Neural Network
(GNN) is powered by neural message passing and
generates node embeddings. A graph G = (V, E)
is defined as a tuple such that V' is a set of vertices
and £ C V x V is a set of edges. We also employ
the node feature matrix X € R?*IV| where d is the
feature dimension. Vanilla GNN (Kipf and Welling,
2017) averages neighbor messages for each layer
using the mean aggregation function. Formally, it
is defined by the following Eq. (1) where [ is the
layer index, h! is hidden representation of node i
at layer [, and U' is a learnable parameter.

1
+1 _ aN)
h,™ =0 E —DegiU hj |- (1)

JEN;

Here, Deg; and N; denote the degree and the neigh-
bor set of node 4, respectively, and o(.) is a non-
linear activation function.

Graph Convolution Network (GCN) (Kipf and
Welling, 2017) improves vanilla GNN by employ-
ing symmetric normalization (Hamilton, 2020).
This model runs a spectral-based convolution oper-
ation. Because the spectral method assumes fixed
graph, it often leads to poor generalization ability
(Wu et al., 2021). Therefore, spatial-based mod-
els such as GraphSAGE (Hamilton et al., 2017) are
often considered to enable inductive generalization.

Wt =o(U'- (AT R 2

In Eq. (2), [AL7Y; hé-_l] denotes a concatenated
representation between the node’s previous hidden
state hi_l and an aggregated representation of local
neighbor nodes hé-*l where j € N;.

Attention Mechanism Attention mechanism
(Luong et al., 2015; Bahdanau et al., 2015)
computes a probability distribution a =
(1, aua, ...y ) over the encoder’s hidden states
k() that depends on the decoder’s current hidden
state h(*). (Luong et al., 2015) computes global
attention by

ot = P (3)

where s refers to the index number of source
hidden state and ¢ refers to the index number
of target hidden state. This method was intro-
duced to assign more importance to more rele-
vant h(®). This method has been developed into
self-attention (Vaswani et al., 2017) and GAT
(Velickovi€ et al., 2018). Self-attention mechanism
computes weighted average of the input vectors.
Similarly, GAT performs attention on the neighbor
nodes.

3 Methods

3.1 Problem Statement

We address the multilabel classification task. We
assume that n data sample are given, where each
data sample corresponds to a movie entity that has
a text and an image attribute. The goal is to classify
the movie genre. Note that this is a multilabel
classification task, as each movie can belong to
more than one genre. Therefore, given text data
X = {TY,T?,...,T"} and image data Ximg =
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Figure 2: Model architecture of MM-GATBT. The top side of the architecture encodes text descriptions. The
bottom side captures the interaction between entities by aggregating the neighbor images connected via text features.
Then, MM-GATBT concatenates text embedding and image-based node embedding to generate a joint multimodal
representation used for classifier. 1), 2), and 3) denotes token embedding, segment embedding, and positional
embedding respectively, following BERT-like tokenization method.

{I', 1%, ... I}, we train function f that predicts
binary label y; for all 7 where ¢ is an index number
of an entity and j is an index number of classes.
Binary label y; is only accessible from training set.

Our approach towards this problem is to con-
struct a graph and use graph neural networks. The
details are discussed in Section 3.3 below.

3.2 Model Overview

MM-GATBT consists of three main components:
text encoder, image encoder, and GNN. We chose
BERT (Devlin et al., 2019) as text encoder, Ef-
ficientNet (Tan and Le, 2019) as image encoder,
and GAT (Velickovi¢ et al., 2018) as GNN. The
encoded images are used as node features in GAT
to learn the relational semantics of entities. Then
we fuse text embedding and image-based node em-
bedding using MMBT (Kiela et al., 2020). We
chose this architecture because unlike ViIBERT
(Lu et al., 2019) and Visual BERT (Li et al., 2019),
encoders can be trained independently as opposed
to be trained jointly. That is, we can easily upgrade
any of these three main components in the future.
Thanks to this simple but powerful architecture,
MM-GATBT leaves considerable room to increase
its performance in the future.

3.3 Graph Construction

To represent relational semantics, we first construct
an undirected graph G = (V, E') where a vertex
represents an entity (i.e. a movie) and an edge de-
notes the presence of shared feature between the
corresponding entities (such as sharing a director).

More precisely, if A = (4;; : 1 < i < n)

denotes the adjacency matrix of G, we have

; i J
4 = {1 T O Theadd 70

0 otherwise

Here, T}eat denotes the feature set corresponding to
entity ¢. Since there can be multiple combinations
to create these feature set, we carefully chose five
features that shows the best performance empiri-
cally: director, producer, writer, cinematographer,
and art director.

For implementation purposes, we add a self
loops to isolated vertices, i.e. those vertices with
degree zero. The constructed graph G is on the
whole train and test dataset. While train vertices
are accessible to labels, we mask the labels for
test vertices to prevent the model from seeing the
ground truth during training phase.

3.4 Image-based Node Embedding (GAT)

Graphs representing relations within a single image
is a well-studied problem as in (Guo et al., 2020;
Johnson et al., 2015). However, no attempts have
been made to represent image-objects as nodes
input to a GNN. We define this novel graph as
image-based entity graph as visualized in Figure 2.

Instead of using a complex image encoder, we
use EfficientNet b4 (Tan and Le, 2019) to maximize
efficiency. Then each encoded image is fed as
node feature of an entity. Note that entire images
represent nodes, not segments of images. Related
works such as MMBT-Region (Kiela et al., 2021),
ViIBERT (Lu et al., 2019) and VisualBERT (Li
et al., 2019) employs pretrained ResNet (He et al.,
2015) based Faster-R-CNN, but they are overly
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expensive for GNN. That is because one single
channel image is sufficient to enable an effective
message passing.

While GraphSAGE (Hamilton, 2020) assigns the
equal importance to neighbor nodes, in our appli-
cation, depending on the context, different features
can have different importance. Therefore, instead
of using GraphSAGE, we employ GAT (Velickovié¢
et al., 2018) where it assigns different importance
to different neighbor edges. This is done by

eij = a([U'hl; U'RY) ©))
exp(eij)

ij = 6

T enplen) ©

Wt =o(> " aU'hL) (7)

JEN;

where a is a learnable weight vector for linear trans-
formation. For non-linear activation function o/(.),
we use LeakyReLU function.

3.5 Contextualized Text Embedding

BERT (Devlin et al., 2019) achieved remarkable
success in various downstream tasks with its unique
tokenizing method and its self-attention mecha-
nism. As visualized in Figure 2, we apply the same
BERT tokenizer to textual data by tokenizing into
1) token embedding, 2) segment embedding, and
3) positional embedding. Their aggregated result
is fed into a transformer and the final hidden state
of this classification token is used for classification
task. In figure 2, W; denotes tokenized word given
text data where 7 is sequence index.

3.6 Multimodal Bitransformer

MMBT (Kiela et al., 2020) is used as an early fu-
sion method. This model originally extends BERT
(Devlin et al., 2019) by applying BERT style tok-
enizing method into image modality as in Figure
2. For MM-GATBT, because we use image-based
node embedding, we consider each node feature /™
as a token.

After applying BERT-like tokenization method
in both Section 3.4 and Section 3.5, we concatenate
them. Note that the original MMBT (Kiela et al.,
2020) pools the image and uses multiple separate
image embeddings. However, we only use one sin-
gle output vector of image-based node embedding
per each image.

3.7 Training

To solve multi-label classification task, we optimize
binary cross-entropy loss defined as

M
1 .
Lpee = _M Z _Wm[ym log §m+

m=1

(1 - ym) log(l - Z)m)]

®)

where M is the number of classes, w,,, is the frac-
tion of samples of class m, y,, is true label, and ¢,
is predicted label. Because the MM-IMDb dataset
is an imbalanced dataset, we assign different w for
different classes.

4 Experiment

System Configuration During the training
phase, we used a single Nvidia RTX 3090 with
a batch size of 12. We implemented our model us-
ing PyTorch (Paszke et al., 2019) and DGL (Wang
et al., 2020) on top of MMBT code available on
the public repository." For every encoder, we used
pre-trained models to reduce the computational
cost and maximize their performance. In the case
of the text encoder, we used the BERT uncased
base model available from Hugginface (Wolf et al.,
2020). For the image encoder, we used pre-trained
EfficientNet b4 (Tan and Le, 2019). For GNN, we
chose GAT (Velickovic et al., 2018) available from
DGL. We pre-trained GAT before employing to
MM-GATBT. We used five features to construct
our graph, as was explained in Section 3.3 and
Eq. (4) therein. The average degree of the resulting
graph is 59 and it has 554 isolated nodes.

Experiment Setup We used Multimodal IMDb
(MM-IMDb) dataset from (Arevalo et al., 2017).
This dataset consists of 23351 movie entities. Each
movie in the dataset has a title, description, movie
poster, producer, and related genres. Note that each
movie can have multiple genres, making this task a
multi-label classification task.

Empirical results from previous works imply that
text modality carries more significant importance
than image modality (Jin et al., 2021). The dataset
is provided in a splitted format where the number
of training set and testing set are 15552 and 7799
respectively.

Data Preprocessing We followed the data pre-
processing scheme from (Kiela et al., 2020). The

"https://github.com/facebookresearch/mmbt
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Type Model Micro F1 Macro F1  Weighted F1 =~ Samples F1
Unimodal EfficientNet (Tan and Le, 2019)  0.395 0.314 0.457 0.394
BERT (Devlin et al., 2019) 0.645 0.587 0.645 0.647
GMU(Arevalo et al., 2017) 0.630 0.541 0.617 0.630
Multimodal CentralNet (Vielzeuf et al., 2018)  0.639 0.561 0.631 0.639
MMBT (Kiela et al., 2020) 0.669 0.618 - -
MFM (Braz et al., 2021) 0.675 0.616 0.675 0.673
ReFNet (Sankaran et al., 2022) 0.680 0.587 - -
Graphical GAT w/ EfficientNet 0.500 0.394 0.506 0.496
P MM-GATBT (ours) 0.685 0.645 0.683 0.686

Table 1: Experimental result shows that the proposed model outperforms against its unimodal submodels and
popular multimodal models. For GMU (Arevalo et al., 2017), CentralNet (Vielzeuf et al., 2018), MMBT (Kiela
et al., 2020), MFM (Braz et al., 2021), and RefNet (Sankaran et al., 2022), we brought the best numbers from their
papers. Missing numbers mean that the results are not shared in their papers.

raw dataset (Arevalo et al., 2017) includes a total
of 27 distinct labels from the training and testing
set. However, the literature drops entities with
News and Adult labels, leaving the training and
the testing set with 15513 and 7779 entities respec-
tively. Additionally, while labels with Reality-TV
and Talk-Show are included in the training set, they
do not appear in the testing set. Therefore, we test
with 23 distinct labels as in the literature.

Baseline Models We compare MM-GATBT with
two different types of models: unimodal models
and multimodal models. For BERT (Devlin et al.,
2019) and EfficientNet (Tan and Le, 2019) we use
the same size of models used in the main model and
compare their performance. For graphical model,
we implement GAT w/ EfficientNet which outputs
image-based node embedding used for the main
model. Then we compare it with a single Effi-
cientNet to examine the information gain from this
structural difference. Our implementation is pub-
licly available on GitHub.?

5 Result

We validated our model using the following met-
rics: micro f1, macro f1, weighted f1, and samples
fl1. The results are rounded to 3 decimal places.
We report our results as well as the state of the
art in Table 1. Table 1 shows that MM-GATBT
significantly outperforms baseline models in all
metrics. Specifically, MM-GATBT significantly
outperforms its unimodal submodels (i.e. consid-
ering text / image only) when ran separately. This

Zhttps://github.com/sbseo/mm-gatbt

Figure 3: Example of constructed graph visualized using
Pyvis (Perrone et al., 2020). Only 1 movie feature is
used for visualization purposes.

performance increase can be explained from two
perspectives. First, (Singh et al., 2020) addressed
that the performance of pretraining models plays
a critical role before fusion. As we suspected in
Section 1, using image modality solely performs
the worst, as it does not leverage the benefits of
multimodal fusion. From this perspective, image-
only embedding is upgraded into image-based node
embedding as shown in GAT w/ EfficientNet. There-
fore, as we observe, the main model performs better
when its submodel performs better. This also indi-
cates that our approach successfully captures the
interaction between the entities through message
passing.

Secondly, MM-GATBT reflects the connectiv-
ity structure of the constructed graph. As visual-
ized in Figure 3, the constructed graph consists of
both connected and isolated nodes. Therefore, it is
crucial for the architecture to address the graph’s
density and sparsity. Indeed, the text encoder on
the top of Figure 2 generates the word embedding
neglecting the graph structure, which justifies its
high performance on isolated nodes. In contrast,
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the GAT on the bottom of Figure 2 takes into ac-
count the connectivity of nodes. This well justi-
fies why MM-GATBT also performs well on non-
isolated nodes. By fusing these two embeddings,
MM-GATBT leverages both connected and iso-
lated nodes effectively. Note that neither BERT
nor image-based node embedding could achieve
the accuracy of 0.685 before they were fused.

6 Conclusion

We proposed MM-GATBT, a novel graph-based
multimodal architecture, to address the multilabel
classification task on the MM-IMDb dataset. MM-
GATBT leverages image-based node embedding
and attention mechanism during the early fusion
phase. The results show that the proposed model
successfully captures the latent information gen-
erated from the interaction between the entities
and achieves state-of-the-art results among all pub-
lished works on the MM-IMDb dataset.
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Abstract

Feature structures have been several times con-
sidered to enrich categorial grammars in order
to build fine-grained grammars. Most attempts
to unify both frameworks either model catego-
rial types as feature structures or add feature
structures on top of categorial types. We pur-
sue a different approach: using feature structure
as categorial atomic types. In this article, we
present a procedure to create, from a simplified
HPSG grammar, an equivalent abstract catego-
rial grammar (ACG). We represent a feature
structure by the enumeration of its totally well-
typed upper bounds, so that unification can be
simulated as intersection. We implement this
idea as a meta-ACG preprocessor’ .

1 Introduction

Feature structures (FSs) (Carpenter, 1992) have
been widely used to represent natural language syn-
tax, particularly by HPSGs (Head-driven Phrase
Structure Grammars, (Pollard and Sag, 1987,
1994)).

In the original ideas of categorial grammars (Aj-
dukiewicz, 1935; Bar-Hillel, 1953; Lambek, 1958),
only a few number of atomic categories are taken,
and complex categories are built on them as sim-
ple types. This approach makes it less flexible to
capture fine-grained morpho-syntactic phenomena
(e.g. agreement or case). Grammatical systems
combining categorial and feature approaches have
been developed, aiming at recovering these fine
structures and grammatical interactions, but also al-
lowing a better lexicon organization (e.g. hierarchy
inheritance) (Moortgat, 1997).

According to Moortgat (1997), first genera-
tion hybrid systems (Zeevat, 1988; Bouma, 1988;
Uszkoreit, 1986) encode categorial logic in feature
logic.

'Source code is available at https://doi.org/10.
12763/VWKNSA

By contrast, second generation hybrid systems
(Dorre et al., 1996; Dorre and Manandhar, 1995)
preserve the categorial inferential system by adding
a layer of feature structures to categorial type
atoms.”

While the general framework of feature logic
may suffer from Turing-completeness when re-
garding time complexity of parsing (Carpenter,
1991), second generation hybrids bypass this issue
by restricting feature structure power to subtyp-
ing (Buszkowski, 1988). However, this restriction
forbids the latter to exploit structure-sharing (i.e.
reentrancy).

More recent systems fall in either generation.
Unification-based General Categorial grammars
(Villavicencio, 2002; Baldridge, 2002) encode
Combinatory Categorial Grammars (Steedman,
1988) as feature structures using asymmetric de-
fault unification. Extensions of Abstract Categorial
Grammars (de Groote, 2001) to dependent prod-
uct, variant types and records model feature logic
inside type theory (de Groote and Maarek, 2007).
However, these extensions make it undecidable (de
Groote et al., 2007).

In this article, we advocate for a different, yet
intuitive combination of categorial logic and fea-
ture logic: representing feature structures as atomic
categorial types with no additional operation. Uni-
fication is not implemented, but simulated by set
intersection. This proposal is based on two ideas:

1. Restrictions on appropriateness allows us to
enumerate a representative set of any FS

2. The labor is divided into a preprocessor, han-
dling FS combinatorics, and the grammar en-
gine, performing categorial operations

This framework resembles second generation
systems, because it creates a layer between feature
2Steedman (1990) and Muskens (2001) could also be put

in the second generation. Moreover, we could mention Kraak
(1995), who models FSs via modalities (Moortgat, 1996).
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Description
with FSs

— | preprocessor |—s

Set of
representatives

Input sentence
4
—> | grammar engine |———— Parse

Picking representatives

Figure 1: Division of labor between the preprocessor and the grammar engine

logic and categorial logic. However, there is no
need to resort to unification, and it can deal with
structure-sharing. Although it does not provide a
different grammatical system, this solution has the
advantage to be easier to implement.

We focus here on Abstract Categorial Grammars
(ACGs). We present a first implementation of the
preprocessor, called meta-ACG preprocessor. As
feature structure are not yet implemented in ACGtk
(Pogodalla, 2016), this program brings the possibil-
ity to work with ACGs and FSs. We also mention
how it reduces labor when defining a grammar.

The motivation of this work is thus twofold:

1. Formalize a way to work with features struc-
tures and categorial logic, in particular ACGs

2. Improve ACGtk to be able to define feature
structures and reduce some grammar design
labor

In section 2, we present our system and its formal
proof of work. We exemplify it by exhibiting a
transformation from simplified HPSG grammars
into ACG grammars. In section 3, we present the
meta-ACG preprocessor.

2 Simulating feature structures

2.1 Feature structures as atoms

The idea of adding refinements of categorial atomic
types goes back to Lambek (1958). He distin-
guishes third-person singular nouns n from third-
person plural nouns n*, and the verb work has two
possible types: n\s and n*\s.

In systems where unification is not taken as
granted, using FSs as atoms is a cheap solution:
e.g. PPy vs. PPupout in (Morrill et al., 2011),
NP_NUM=PL in (Marsik, 2013), and npe (exis-
tentially quantified np) vs. npu (universally quanti-
fied) in (Amblard et al., 2021).

This technique relies on the grammar engine to
select the right featured type when parsing. There-
fore, no unification system has to be added. How-
ever, the main drawback is the combinatorial explo-
sion due to the many possible values the attributes

can take. For example, writing a grammar includ-
ing all possible rules for NP-VP agreement would
not only be long, but it also increases the risks
of making typos. Marsik (2013) suggests to use
meta-variables to, at least, present these rules more
compactly.

We advocate for a more generic solution: autom-
atizing the process of generation of constants and
rules with FSs as atoms. For example, from a given
description

np[AGR = x| — Vp[AGR = x| — s
we would like to generate

np[AGR = [1,sg]] — vp[AGR = [1,sg]] — s
np[AGR = [1,pl]] — vp[AGR = [1,pl]] — s
np[AGR = [2, sg]] — vp[AGR = [2,sg]] — s

€]
where np [AGR=[1, sg] ],... are taken as atomic
types.

The system we introduce works as depicted in
Fig. 1. Given a set of descriptions, the preprocessor
generates a set of representatives (like in (1)) out of
any (underspecified) input FS. Then, the grammar
engine can pick in this set when trying to parse a
sentence.

In part 2.2 we define the set selected represen-
tatives are based on. Part 2.3 introduces ranked
appropriateness, the hypothesis enabling this set
to be enumerable. Finally, we present the transfor-
mation of simplified HPSG grammars into ACG
grammars in part 2.4.

2.2 Set of representatives

We begin with some semi-formal reminders about
feature structures.

Set (T, C) an inheritance hierarchy?, and Att a
finite set of attributes. By 7 C o, we mean that
type 7 is more general than type o.

3Complementary formal definitions can be found in ap-
pendix B.
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Type Rank Specification Description

Jj-T-list 0 list of at most 5 elements (7 > 0)
j-t-ne-list | r(r)+1 | HEAD: T list of length between

G=>1 TAIL : (j — 1)-7-list | 1and j

Table 1: Data structure simulating lists of at most m elements of type 7. 0-7-list is the empty list (aka. e-list) The

inheritance hierarchy is given in Fig. 2.

0-7-list 1-1-ne-list
1-7-list 2-7-ne-list
(m — 1)-7-list m-7-ne-list

I

m-1-list

L

Figure 2: Inheritance hierarchy of types simulating lists
of at most m elements of type 7. The appropriateness
specification and ranks are given in Tab. 1.

Let us illustrate this here with NP-VP agreement,
using Att = {P, N} and the following inheritance
hierarchy:

Ist 2nd 3rd sg Pl

N | \ /

agr person number

\l/

More general types are placed here at the bottom,
e.g. person C Ist. The most general type (i.e. the
minimum) is L.

A feature structure (FS) is a pair of a type and a
list of features. A feature is a pair of an attribute
and a feature structure. We usually represent FSs as
attribute-value matrices, like in (2). Subsumption
C can be extended to FSs. The unification of two
FSs F and G is the most general FS F' U G which
is subsumed by F' and G, if it exists. We only
consider well-typed feature structures, i.e. having
restrictions on the values a feature can take. These
restrictions are expressed via an appropriateness
specification.

By X - Y we denote the set of partial functions
f from X to Y, and we write f(z)] if 2 € dom f,
i.e. if z belongs to the definition domain of f.

Definition 1 (Appropriateness specification (Car-
penter, 1992)). An appropriateness specification is
partial function Approp : Att X T -» T such that

Feature introduction: For every A € Att, there
exists Intro(A) € T s.t. Approp(A, Intro(A))]

and
and

Monotonicity: If Approp(A, o)l
ocCT, then Approp(A, 7)|
Approp(a, o) C Approp(a, 7)

Approp(A, 7) = o means that a FS of type 7 can
have attribute A valued by a FS of type o or more
specific. The following notion of totally well-typed
FSs allows us to talk about completely specified
FSs.

Definition 2. A feature structure is totally well-
typed when all its appropriate attributes are valued.

The appropriateness specification of our exam-
ple is P : person, N : number for type agr (i.e.
Approp(P,agr) = person and Approp(N,agr) =
number, and undefined elsewhere). For instance,
both FSs below are well-typed, but only the one on
the right is totally well-typed.

agr agr )
P Ist P st

N number

First-order terms can be represented by their sets
of subsumed ground terms. Similarly we could
take, to represent a potentially underspecified FS
in ACGs, its maximal (resp. or grounded) upper
bounds. However, (Carpenter, 1992) points out that
this fails because some feature structures can have
the same set of maximal (resp. grounded) upper
bounds, but still be different.

To solve this issue, we use totally well-typed
(non-necessarily sort-resolved, grounded or max-
imal) upper bounds of a FS F' to define the repre-
sentative set of F'.

Definition 3 (Totally well-typed upper-set). We
call U(F) the set of totally well-typed upper
bounds of F.
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This enables us to characterize unification as set
intersection.
Proposition 1. F U (G
UF) N UG) # 0, and
UFUG)=UF)NUG).

Proofs are given in appendix B.

exists  iff
in this case

2.3 Finite generation

We plan to model a feature structure F' by adding
a kind of copy of U(F') to an ACG grammar. The
set U (F') has then to be finite. Therefore, we need
FSs to be acyclic. Moreover, there must be no
appropriateness (subsuming) loop, i.e. no type 7
and path w € Att* such that Approp(wW,7) C 7.
To enforce this, we require types to be ranked.

Definition 4. Specification Approp is ranked if
there exists a function v : T — N such that, for all
TeT,

1. forallo, if T C o thenr(r) <r(0)

2. forall A € Att and o, if Approp(A,7) C o,
then r(1) > r(0)

r(7) is the rank of T.

Ranked appropriateness specifications allow us
to proceed by induction on the set of well-typed
feature structures.

Proposition 2. If Approp is ranked, then the set of
well-typed FSs is finite.

A proof is given in appendix B.3.

Ranking restricts the expressive power of feature
structures. However, we can still create a data
structure resembling finite lists. Set 7 a type and
m an positive integer. We define 7-lists of at most
m elements as in Tab. 1 and Fig. 2.

Ranking forbids potentially infinite elements,
like lists of arbitrary length. This limit is actually
not so restrictive because, supposing there is a rea-
sonable maximal number of words a sentence can
have, we could always resort to lists of a predefined
maximal length.

2.4 Simple HPSG into ACG

The goal of this part is to illustrate our approach
on a selected pair of language grammar formalisms
based on feature structures and categorial types
respectively.

We want to code a HPSG grammar G in an ACG
grammar ACG(G). We focus on simple HPSG char-
acteristics, following a context-free backbone. For

wr@g e

up [ s unl—:sn(
ulunl—@

if there exists [@ = [b] U [DTRS < s e >]

**)@

for all (@], [6] in the grammar

Figure 3: Simplified HPSG deduction system

cr € R(@)

whk Ccp :[0] (*)@’F
up My sy un, E M, : s, o
ul...unl—CF M1 Mn : [0] ( )@’F

ifcp € R(l) and cp M ... M, : tg,
is well-typed

for all [, [6] in the grammar and FS F

Figure 4: Image ACG deduction system. Cr M7 ... M,
is A-application.

simplicity, we do not take headedness and lexical
rules into account. We also assume that the appro-
priateness specification of G is ranked (except for
DTRS and PHON).

We assume lexical items and phrases are of the
form () and (xx).

word ()
[al | PHON w
SYNSEM [0]
phrase
PHON ..U

[b] | SYNSEM [0]

DTRS < [PHON ul}, [PHON unD

()

Feature structures of type word (x) are lexical
units. Attribute PHON specifies the phonological
realization (here the spelling), and SYSSEM the
syntactic and semantics properties.

Feature structures of type phrase (x*) represent
phrases with contiguous daughters (DTRS) [,...,
ml. The concatenation of the phonological realiza-
tions of the daughters make up the PHON of the
phrase. The syntactic and semantics properties of
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the phrase also depend on the ones of the daughters
via structure sharing (i.e. reentrancy).

See appendix A for instance examples.

The constraints on HPSG parsing can be
rephrased as the deduction system in Fig. 3 (us-
ing the notation of (x) and (xx)).

We translate this system into the ACG deduction
system in Fig. 4, using the representative sets de-
fined in def. 5. Phrase FSs are represented by a set
of second-order typed constants.

Definition 5. Given a word (@ as in (x) or a phrase
(bl as in (xx), its set of representatives is defined
by induction on its rank, as the set of ACG typed
constants:

R(@) =
R() =

{cp:tp | F el(@)}
{cp:tp — ... = tp, = IR |

F € U(t)) consistent with

F; e U{E) forall 0 < i <n}

3)
using the same [il’s as in (xx).

Fig. 4 presents an ACG grammar in the style of
A-grammars (Muskens, 2001). We give in appendix
C an alternative presentation of this grammar using
the format used by de Groote (de Groote, 2001).

Proposition 3. G and ACG(G) have the same
string language.

A proof is given in appendix B.4. A derivation
instance is displayed in appendix A.

A sample HPSG grammar modeling simple En-
glish questions in the meta-ACG language is pro-
vided in the example folder of the enclosed pro-
gram.

3 Implementation

3.1 Meta-ACG preprocessor

ACGtk (Pogodalla, 2016) is a toolkit offering an
environment to develop and test ACG grammars.
Feature structures have not been implemented yet
in this program.

We implement the preprocessor presented in part
2.1 as a python program called macg. Given an
input file written in a specially designed language,
called meta-ACG language, this program generates
an ACG grammar. This output consists in tree files:
deep syntax signature, surface syntax signature and
surface lexicon (see definition 11).

The syntax of the meta-ACG language is greatly
inspired by NLTK (Bird et al., 2009), except that
variables are declared with @. See Fig. 5 for an
example minimal code.

Type: person < 1lst, 2nd, 3rd
Type: number < sg, pl
Type: tense < prst, past
Type: agr
P : person
N : number
Type: np
AGR : agr # agreement
PRO bool # pronominal
Type: vVp
AGR agr
T : tense
Type: s
T : tense
Constant: Proper nouns
Ash nplagr[3rd, sg], —PRO]
Constant: Intransitive verbs
sleeps vplagr[3rd, sg],prst]
slept vp [past]
Rule: Clause
np [AGR=Qa] -> vp[AGR=Q@a, T=@t] \
> s[T=@t]

Figure 5: Sample code in the meta-ACG language, ex-
emplifying NP — VP agreement. Italics is put on com-
ments. Boldface identifies control keywords. bool is
the predefined type of booleans.

The meta-ACG preprocessor has two main goals:

1. Making it possible to develop and test ACG
grammars with feature structures

2. Reducing the redundancy of ACGtk grammar
design

Goal 1 is obtained through an iterator able to gen-
erate all unfolded totally well-typed upper bounds
of a feature structure description. These upper
bounds are written as distinct atomic types in the
output files. For example, constant slept of
Fig. 5 yields 4 x 3 = 12 deep syntax constant:
SLEPT_person_number_past
SLEPT_person_sg_past

SLEPT_person_pl_past
SLEPT_1st_number_past

vp_person_sg_past
vp_person_pl_past
vp_1lst_number_past

SLEPT_3rd_pl_past vp_3rd_pl_past

Similarly, rules are mapped to deep syntax con-
stants of empty surface realization for every possi-
ble variable assignment. For example, the clause
rule of Fig. 5 generates (4 x 3) x 3 x 3 = 108
constants (i.e. every person, number, time, and
pronominality type).
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The ranking condition is ensured by the order in
which the types and their appropriateness specifi-
cations are declared.

Goal 2 is obtained by two means. As a script
language, the meta-ACG language aims at being
light. The main contribution, however, revolves on
the way ACG conventions are coded in the prepro-
cessor. Even if ACGtk is able to handle a large
variety of ACG grammars, most actually written
test grammars follow the same pattern and code
norms:

* adeep syntax constant in uppercase is mapped
to its surface representation in lowercase

* the order in which the source types are de-
clared is the same as the surface order of the
respective arguments

This way, taking these conventions as default helps
gain some time at the grammar design phase.

3.2 Limitations and future prospects

The macg program is still under development. We
intend to add morphological rules and macros to
facilitate even more the lexicon organization. In-
equalities, default values and constraint equations
could also be added in the future.

Although Tab. 1 gives an implementation of lists
in our setting, the current meta-ACG language
lacks primitives, like concatenation, to work with
lists more easily. Technically, list concatenation
can be written down by enumerating all element-
wise operations as different rules. But this is not
convenient. This also holds for sets, which are
commonly used on LOCAL features in HPSG (e.g.
SLASH).

Because of FS enumeration, there is an in-
evitable combinatorial explosion. This affects pars-
ing time complexity exponentially in the number
of attributes and the highest rank. In practice, we
observe that our program actually runs slowly if
complex type structures (e.g. lists as presented
here) are involved. For instance, it took 1 hour
to run macg on the very short hpsg.macgqg in-
cluded example grammar, creating an intermediary
grammar of several gigabytes. Therefore, this pre-
processor approach might not be well suited for
large-scale grammars. However, it offers a valu-
able tool for a quick development of experimental
fragment grammars and prototypes.

Finally, we are planning to add the possibility to
define a lexicon to type-theoretic semantics.

4 Conclusion

We introduced and formalized a novel way to in-
clude feature structures in categorial grammars.
Our method consists in automatizing the idea of
taking feature structures as categorial atomic types.
The labor is divided into two separate modules: a
preprocessor and a grammar engine. For every type
with a feature structure, the preprocessor generates
a representative set of categorial types. This cre-
ates an intermediary grammar given to the grammar
engine. The latter works on these representative
categorial types and just have to select right ones
when parsing a sentence.

We proved that this approach of simulating fea-
ture structures by a set of representatives is sound
and complete by showing that unification amounts
to intersection of these representative sets. Hav-
ing such a preprocessor avoids adding a unification
module inside the grammar engine. It is modular
and also easier to implement.

We evaluated this proposal by implementing a
preprocessor for the grammar engine ACGtk work-
ing on abstract categorial grammars (ACG). This
provides the first implementation of feature struc-
tures in an ACG toolkit. Example grammars show
the well functioning of this method.

However, example grammars with a complex
system of type hierarchy outlines the limits of the
“enumeration-and-intersection” approach. Because
of combinatorial explosion, the intermediary gram-
mar can get really voluminous and take time to be
created. This may restrict uses of such a prepro-
cessor to toy ACG grammars only, waiting for a
more efficient implementation of feature structures
in ACGtk.
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A Further examples

We provide here an example to illustrate section
2.4. By lack of space, let us consider a very simpli-
fied toy HPSG grammar able to parse the sentence
“Ash slept”. It is based on the example code given
in Fig.5. This grammar includes the two word FSs
and [2] below, as well as the phrase FS [¢] (Fig. 6)
used to create a basic sentence with NP-VP agree-
ment.

word
PHON Ash
np
3
p
SYNSEM AGR
N sg
PRO -
word
PHON slept
vp
SYNSEM AGR agr
T past

The derivation of “Ash slept” in the deduction
system of Fig. 3 is given in (4). FS [e is like [] but
with [1] and [2] unified with [1’] and [2'] respectively.

k k
Ashl—:() sleptl—:i*i
Ash slept F g : g
“)
Its transformation in the ACG system of Fig. 4
as described by the proof of proposition 3 is written
in (5).

ES
I

Ash Sk slept - 7 5
Ash slept - ) CFak =
(5)

B Formal definitions and proofs

We provide here complementary formal definitions
and proofs of the propositions stated in the main
part.

B.1 Definitions

The following definitions are retrieved from Car-
penter (1992).

Definition 6 (Inheritance hierarchy). An inheri-
tance hierarchy (T, C) is a finite bounded complete
partial order, i.e. a finite partial order such that

£
o] B

every subset S C T having an upper bound has a
least upper bound (aka. a join) | |S € T.

In particular, the empty set has a least upper
bound noted L, which is then the minimum of T.

Definition 7 (Well-typed FS). A well-typed feature
structure is a tuple F = (Q,q, 0, §) where

* () is a finite non-empty tree of root q € Q
* 0:Q — T is a total node typing function
e §: Att X Q —» Q is a feature partial function

 for every q,A such that §(A,q)|, then
Approp(A, 0(q))|. and

Approp(a,0(q)) E 0(0(A, q))

T F is the set of well-typed feature structures.

Here we only consider well-typed feature struc-
tures (FS), and up to alphabetic variance.

Subsumption C and unification U can be ex-
tended to well-typed feature structures.

Definition 8 (Subsumption of FS). F =
(Q,q,0,0) subsumes F' = (Q',q,0',0"), written
F C F, if there exists a function h : Q — Q'
called morphism meeting the following conditions

* h(@) =7
e foreveryq € Q, 0(q) C 0'(h(q))

* for every q, A, if 0(A, q)|, then h(0(A,q)) =
8'(A, h(q))

Subsumption is a partial ordering on T F.

Definition 9 (Unification of FS). The unification
of two well-typed FSs F, F' is, if it exists, the least
upper bound of F and F' inside T F.

Here is the formal definition of totally well-typed
FSs.

Definition 10 (Totally well-typed FS). A well-
typed FS is totally well-typed if for all ¢ € Q) and
A € Att, if Approp(A, 8(q))l, then §(A, ¢).

B.2 Proof of proposition 1

Proof. Set two feature structures F' and G.

e Suppose F' L G exists. As U is clearly anti-
tonic, and F,G C F U G, we have U(F U G) C
UF),U(G), so

UFUG) CUF) NUG)
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phrase
PHON Ul U
SYNSEM >
T
[b]
PHON Uy
DTRS np
SYNSEM
AGR

PHON U1
vp
SYNSEM | AGR
T

Figure 6: Feature structure for simple NP-VP phrase.

Moreover, by theorem 6.15 of Carpenter (1992),
as Approp has no loop because of ranking, there
exists at least one totally well-typed FS H such
that F' U G C H. Therefore, U(F U G) # (), and
soU(F)NU(G) # 0.

e Now suppose there exists H € U(F) NU(G).
As H is an upper bound of F' and G, by theorem
6.9 of Carpenter (1992) they have a well-typed
unification F U G.

Moreover, we have F' LI G C H by minimality
of the unification. As H is totally well-typed, H
belongs to U (F U G) too. Therefore

UF)NUG) CU(FUG)

In consequence, we proved that F LI G exists iff
U(F)NU(G) # 0, and that in this case

UF) NUG) = UFLG)

B.3 Proof of proposition 2

Proof. We write T,, = 7~ !(n), which is finite be-
cause T is so.

By induction on n € N, let us prove that the set
T Fn of ESs F of type 7 € T, is finite.

If n = 0, condition 2 of def. 4 implies that 7 is
appropriate for no attribute. As Ty is finite, so is
T Fo.

If n > 1, then for all A such that §(A,q)],
Approp(A, ) C 6(5(A,q)). Therefore

n=r(r) >r((0(a,q))

by condition 2 again.

So we can apply the induction hypothesis on
r(6(0(A,q))). As Att is finite, so is the set of FSs
of type 7. Then, as T,, is finite, so is T F,.
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Since T is finite, there is a finite number of n
such that T,, # (). Therefore TF = |4,y T Fr is
finite.

]

B.4 Proof of proposition 3
Proof. Let us begin with showing that

L(9) € L(ACG(9))

Suppose string u is parsed by G. There ex-
ists a derivation m of Fig. 3. We propagate the
unification steps to the leaves and infer total type
(Carpenter, 1992, thm. 6.15). From that, we con-
struct a proof 7’ of Fig. 4 of same precedent and
type, by induction on 7:

If axiom m = (*)g exposes FS F, F' € U(@).
So we take 7’ = (x)q] p. This axioms has the same
precedent w and type [0] as 7.

Suppose 7 () (71, ..., ™) exposes FS
F. Construct derivations 71, ..., 7}, from 71, ..., 7,
respectively, by induction hypothesis. We have
F e U(@).

Moreover, from proposition 1 we deduce
U(@) C U([]), because [@ = [b] LI [d] for some [d].
Therefore F € U([b]).

As unification has been propagated, we have

F[DTRS <F1 . Fnﬂ

where F; is the FS exposed at m;, and 7r§ has term
M;.

We thus have cg : tp, — ... = tp, — tg, with
cr € R()), therefore term Cp My ... M, : tg,
is well-typed. As a result, the derivation 7/
(**)@F(W'l, ...,m,) is well-formed and has the
same precedent u...u, and type [0] as 7.



As the root sequent of 7 is a finite sentence,
its type is .S, and so is the type of 7’. Therefore
u € L(ACG(G)).

Now let us show that
L(G) 2 L(ACG(G))

Suppose string u is parsed by ACG(G).
There exists a derivation 7 of Fig. 4 with precedent
u. We construct a proof 7’ of Fig. 3 by induction
on 7 by replacing axioms (*) r by axioms (*)gq
and rules (**)@ p by rules (xx)g;. Each sequent
v M : sof mis mapped to v F [8] : s in 7/
with the A-head cp of M belonging to R([t]), so
F € U(]). Therefore, 7’ is well-formed, has a
sentence type, and thus u € £(G).

O

C Alternative presentation of image ACG
grammar

We give here an alternative presentation of the ACG
grammar defined in Fig. 4 using the format used by
de Groote (2001).

Definition 11. Ser 31 the abstract signature where

* types are the SYNSEM [0] of the word FSs and
phrase FSs of G

* constants are the representatives Cr of the
word FSs or phrase FSs F of G

* the type of Cr is the SYNSEM of F'

Set X9 the signature of strings (de Groote, 2001,
sec. 4), where constants are the phonological rep-
resentations w of word F'Ss.

21

1y
b))

We define the ACG grammar ACG(G) =
(31,52, V,8) with Y : 1 — X the lexicon map-
ping

1. cp — wif F € U(@) for some @ as in (x)

2. CF > AT1,y ey Ty X1 oo Ty if F € U(R) for
some [b] as in (xx)

and S is the feature structure of sentences* (Pollard
and Sag, 1994):

*Actually, there may be several FSs S of finite sentence
(e.g. with different tenses). As the traditional definition of
ACGs only allows one distinguished type, we could add a sin-
gle extra abstract type sq and abstract constants T's : S — sq
mapped to Az. x for every S.

HEAD verb [VFORM ﬁn}
LOC | CAT

SUBCAT e-list

As the appropriateness specification of G is
ranked, ACG(G) is a well-defined ACG.
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Abstract

Character identification is a key element for
many narrative-related tasks. To implement
it, the baseform of the name of the character
(or lemma) needs to be identified, so differ-
ent appearances of the same character in the
narrative could be aligned. In this paper we
tackle this problem in translated texts (English—
Finnish translation direction), where the chal-
lenge regarding lemmatizing foreign names in
an agglutinative language appears. To solve
this problem, we present and compare several
methods. The results show that the method
based on a search for the shortest version of the
name proves to be the easiest, best performing
(83.4% F1), and most resource-independent.

1 Introduction

Character identification is both a complex and a
difficult task that can be solved using different
methods, from manual (Declerck et al., 2012) to
automatic (Goh et al., 2012). One of the necessary
steps for character identification is to detect which
exact character appears in the text (Labatut and
Bost, 2019). For such detection, lemmatization is
required.

Lemmatization is a process of assigning to a
wordform its lemma (Kanerva et al., 2019). It is
one of the important tasks in Natural Language Pro-
cessing (henceforth NLP), since many other NLP
methods require it during the preprocessing stage.
For agglutinative languages, such as Finnish, cor-
rect lemmatization can turn out to be a difficult task
because one word can have many wordforms (e.g.
a Finnish word may have more than 50 wordforms.
Consider an example for English name Lizzy in
Finnish translation: Lizzy, Lizzystd (from / about
Lizzy), Lizzylle (to Lizzy), Lizzyn (Lizzy’s)). Cur-
rent state-of-the-art models that use Neural Net-
works can help with solving this task. For example,
such a lemmatization model is implemented as part
of the Turku neural parser pipeline, which currently

yields the best results for Finnish lemmatization
(Kanerva et al., 2019). However, their accuracy,
though close to 100%, is not perfect, so lemmati-
zation may require further refinement which would
help to enhance the end result for character identi-
fication.

In this paper we discuss enhancing foreign
characters’ identification for English characters in
Finnish texts, via improving lemmatization of char-
acters’ names. The structure of the paper is as
follows: first we provide an overview of the re-
lated work (Section 2), subsequently we describe
our data (Section 3), after which we discuss the
creation of the gold standard for our methods and a
definition of character in the context of our research
(Section 4). We continue the paper with describing
the methods (Section 5) that we introduced and
used. Finally, we present our results and analyze
them (Section 6). We conclude our paper in Sec-
tion 7. Code for the paper is available at https:
//github.com/AleksanKo/naacl2022.

2 Related work

Lemmatization for agglutinative languages, such
as the one targeted in our study (Finnish), has been
tackled from different perspectives. The first at-
tempts to solve the problem for Finnish were the
FINTWOL tool (Koskenniemi, 1983) and Morfo
(Jappinen and Ylilammi, 1986). Around three
decades later one of the most known non-neural
methods, Omorfi (Pirinen, 2015) was developed.
Omorfi uses finite state transducers and can be
used further for enhancing lemmatization (Silfver-
berg et al., 2016). The current state-of-the-art is
represented by Turku neural parser pipeline (Kan-
erva et al., 2018), (Kanerva et al., 2019) that treats
lemmatization as a sequence-to-sequence problem
using the OpenNMT neural machine translation

'Tt ranges from 95.1% to 97.7%, depending on Finnish
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toolkit (Klein et al., 2017) and yields 95%-97%
accuracy.

In our research, we are focusing on retrieving
canonical forms of foreign names. This may be
challenging since foreign names are not typically
expected by the lemmatizer, so it may be prone to
errors. However, this step is necessary in case of
agglutinative languages: otherwise one character
may split into two or more characters (for exam-
ple, instead of Catherine, we would have three
entities: Catherine, Catherinea and Catherinen),
which affects further the results for building char-
acter networks or narrative.

3 Data

The data used in our experiments is a corpus of
Finnish translations made by Kersti Juva (a subcor-
pus of the Classics of English and American Litera-
ture in Finnish corpus, or CEAL?). The corpus con-
sists of the short novel Washingtonin Aukio, 2003
(“Washington Square”, 1880) by Henry James and
the novels Yipeys ja ennakkoluulo, 2013 (“Pride
and Prejudice”, 1813) by Jane Austen and Kolea
talo, 2006 (“Bleak House”, 1853) by Charles Dick-
ens. The corpus is stored as text files, 3 files and
384,053 words in total.

4 Creation of gold standard

Before applying our methods (see Section 5), we
had to choose a gold standard character names’
list, so that we can evaluate our methods. To per-
form this task, we got the information from differ-
ent internet sources that contain information about
characters from the novels in our dataset (see Ap-
pendix A).

While creating a gold standard character names’
list, we also faced many questions about characters,
such as: what is a literary character? Who do we
consider a character from the point of the narrative?
Who do we consider a character from the point of
character extraction where we are forced to filter
the results of automatic Named Entity Recogni-
tion’? Do we take into consideration off-screen
characters (characters that are only mentioned in
the text and do not participate in the plot)? To an-
swer these questions, we need to define what / who
the character is.

*https://www.kielipankki.fi/corpora/ceal-2/
3This is part of the preprocessing used in our experiments,
see Section 5.

The literary character can be seen as a construct
whose definition and features depend on the study
area (Margolin, 1990). Jannidis (2013) considered
a character “a text- or media-based figure in a sto-
ryworld, usually human or human-like” or “an en-
tity in a storyworld”. Overall, characters are inter-
twined with narrative and storyworld, contributing
to their development from many aspects.

We considered a literary character every figure
that was relevant for the narrative development
(thus, e.g. names of famous persons that are men-
tioned but do not appear in the novel were not
included). So we decided to include both onscreen
(entities that are actively participating in the sto-
ryworld) and off-screen (entities that are passively
contributing to the construction of the storyworld)
characters (e.g. in case of Washington Square, it
was the mother of the main character that gets men-
tioned only twice). We also included all possible
names that can be used for naming a certain charac-
ter by splitting the full name (e.g. Elizabeth Bennet
would also get versions Elizabeth and Bennet) and
by analyzing possible versions (Lizzy for Elizabeth
Bennet) that were mentioned in the internet sources
(see Appendix A). So Elizabeth Bennet would get
the following names: Bennet, Eliza, Eliza Bennet,
Elizabeth, Elizabeth Bennet, Lizzy. The creating
of the gold standard was carried out only by one
annotator.

5 Methods

To apply our methods, we have to carry out the
preprocessing first. This includes the following
workflow:

1. Applying Named Entity Recognition on
Finnish translations of English texts;

2. Filtering the named entities identified by label,
removing all entities that are not persons;

3. Getting the lemmas for the remaining named
entities.

For Named Entity Recognition on Finnish texts
and further lemmatization, a Python library named
Stanza (Qi et al., 2020) was used, because it
provided a state-of-the-art level of Named Entity
Recognition for this language. Finnish language
models are represented in Stanza by Turku neural
parser pipeline (Kanerva et al., 2019), so we will be
using the Turku neural parser pipeline’s lemmatizer
(Kanerva et al., 2018) as a baseline.
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We have used and compared three methods of
finding correct names’ lemmas. These methods
were applied on the output of the preprocessing, i.e.
lists of names that were results of applying Named
Entity Recognition on Finnish translations, then
filtering only person-type entities, and finally lem-
matizing them. The methods were implemented
using Python and are as follows:

1. Method I: Check for the shortest version of
the name. This method was based on two
assumptions: 1) that the language is agglutina-
tive, so the stem is modified a lot with the help
of affixes, and 2) that a character name will
appear many times, so not all its wordforms
contain morphemes from the target language
and there will be at least one occurrence of
the correct lemma. Consider the following ex-
ample: if we have the right lemma of the char-
acter name (Catherine) and wrong versions
that were however recognized as lemmas by
the lemmatizer (Catherinen, Catherinea), the
right version is the shortest, so searching in
the sorted list of names [Catherine, Cather-
inea, Catherinen] should yield the right result.

2. Method 2.1 and Method 2.2: Check whether
the name exists using Wikipedia* or Wik-
tionary,’ respectively (in our case, the English
version of these resources). This method re-
quires that for most of the names there were
articles in Wikipedia and in Wiktionary, and
since we were using English versions of these
resources, wrong forms that contained Finnish
suffixes would be discarded. This assump-
tion relied heavily on the genre of texts of
the corpus, namely classic British and Amer-
ican literature, so the character’s name was
an actual name in the real world. If we con-
sider the example from Method 1, Catherine
would return an article from both Wikipedia
and Wiktionary, while Catherinen and Cather-
inea would return an error which means that
there was no such page, and, presumably, no
such name in the English language.

3. Method 3: Check if the word occurrence con-
tains suffixes (in our case, Finnish suffixes). In
this implementation only suffixes correspond-
ing to Finnish genitive and partitive cases

“https://en.wikipedia.org/
Shttps://en.wiktionary.org/

were checked, since the lemmatizer usually
made mistakes in such forms. For example, if
we check for the words that end on -a/d and
-n, the wrongly lemmatized Catherinen and
Catherinea would not be included in the end
results.

6 Results

We evaluated the results of our methods and the
baseline according to the following criteria:

* Precision (fraction of true positive instances
among all extracted instances), recall (fraction
of true positive instances that were retrieved)
and F-score (harmonic mean of precision and
recall).

* Language independence (whether the method
depends on certain language features and / or
language resources, such as corpora, or not).

* Need for external non-linguistic resources
(whether the method requires external re-
sources to perform checking or not).

The overall count of results can be found in Ta-
ble 1. The Gold standard column contains the
number of character names (number of true posi-
tive instances, or all possible versions that can be
used for naming all the characters that appear in
the novel), Method 1 covers results for checking
for the shortest version of the name, Method 2.1
and Method 2.2 - for checking in Wikipedia / Wik-
tionary, and Method 3 - for checking for suffixes.

In Table 2 and Table 3 we present the results for
the precision and recall for each method and the
baseline, respectively. The results for F-score were
counted only on average level and can be seen in
Table 4.

It is quite noticeable from Table 1 that Method
2.2. (search for a correct wordform using Wik-
tionary) usually retrieves less names than any of the
other methods (it has the lowest count of names for
Bleak House, and the second lowest for Washington
Square). However, in terms of recall, which can
be seen in Table 3, the results varied significantly
for this method: from 46% to 92% (compared with
other methods where recall did not go lower than
55%).

Method 1 performed well on both a short text
(Washington Square) and a significantly longer
novel (Bleak House). It reached 100% recall for

125



Work Gold standard Baseline Method 1 Method 2.1 Method 2.2 Method 3
Washington Square 20 22 18 21 17 12
Pride and Prejudice 48 80 76 65 60 65

Bleak House 126 184 128 88 68 109
Table 1: Names count for the three methods and the baseline
Work Baseline Method 1 Method 2.1 Method 2.2. Method 3
Washington Square 73% 89% 76% 88% 92 %
Pride and Prejudice 59% 63% 69% 73% 65%
Bleak House 58% 84% 85% 85% 83%
Average precision 63.3% 78.7% 76.7% 82.0% 80.0%

Table 2: Precision of the three methods comparing to the baseline. Average precision is added for reference. Best

result in each row shown in bold.

Work Baseline Method 1 Method 2.1 Method 2.2. Method 3
Washington Square 80% 80% 80% 75% 55%
Pride and Prejudice 98% 100 % 94% 92% 88%

Bleak House 85% 86% 60% 46% 72%
Average recall 87.7% 88.7% 78.0% 71.0% 71.7%

Table 3: Recall of the three methods comparing to the baseline. Average recall is added for reference. Best result in

each row shown in bold.

Pride and Prejudice, but precision for this text was
lower than for other two: 63%.

Both external sources that were used for Method
2 (Wikipedia and Wiktionary) showed the worst
recall results on Bleak House (46% and 60%) but
scored over 90% on Pride and Prejudice. In terms
of precision, checking in Wiktionary (Method 2.2)
performed better than using Wikipedia for both
Washington Square and Pride and Prejudice, while
the usage of both resources led to the same result
for Bleak House. We assume that this result can
be attributed to the difference between the names,
surnames and nicknames used in these novels.

Method 3 achieved the second best precision
overall (and the best precision for Washington
Square), but did not show good results in terms
of recall (worst for two texts out of three). While
applying this method, we also noticed that, without
applying additional checks, it seems to filter out
a certain amount of true positive cases, since the
suffixes in question (partitive and genitive) contain
one or two letters and can easily be just parts of
correct lemmas.

In Table 4 we present values for the aforemen-

tioned criteria of evaluation, i.e. language indepen-
dence and need for other resources, as well as the
average precision, recall and F-score.

Only one method can be considered language-
independent: search for the shortest version of
lemma (Method 1). It can also be considered the
only method that does not require a lot of external
sources of knowledge, since even searching for the
suffixes requires knowledge of Finnish grammar.
The only knowledge that is required for the first
method is knowledge about the type of language
(agglutinative / fusional), but since the problem
with wrongly lemmatized names is mostly the prob-
lem of agglutinative languages, this knowledge can
be considered basic.

It is worth noting that lemmatization and scrupu-
lous study of extracted names has also shown
changes in translation regarding the original text.
Thus, there is no Guster (the servant of Mr.
Snagsby and Mrs. Snagsby) in the Finnish ver-
sion of Bleak House but Molly, due to the word-
play. Such changes made the creation of the gold
standard more difficult since it was based on the
original namings of characters. We suggest that
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Criteria Baseline Method 1 Method 2.1 / Method 2.2 Method 3
Average precision 63.3% 78.7% 76.7% / 82.0% 80.0%
Average recall 87.7% 88.7% 78.0% /71.0% 71.7%
Average F-score 73% 83.4% 77.3% 1 76.1% 75.6%
Language independence - partly yes no no
External resources - no Yes, database Yes, linguistic knowledge

Table 4: Comparison of the methods (also regarding the baseline). Best result in each row shown in bold.

word alignment with original texts could help find
such cases automatically. However, word align-
ment would not solve the lemmatization in these
cases, since the name in the original (English) and
in the translation (Finnish) differ.

There were also some issues related to misprints
in the Finnish translations (e.g. in the translation
of Washington Square sometimes names Lavinia
and Catherine were misprinted as Lavina and Cath-
erna) which lead to additional wrong results. Such
errors were fixed, so the final version of results
contained only right versions of names.

7 Conclusion

Perhaps surprisingly, a rather simple method that
searches for the shortest version of the character’s
name (Method 1) yielded one of the best results
with average precision of 78.7%, the best overall re-
call (88.7%) as well as the best overall F} (83.4%).

Searching for a name in Wikipedia (Method 2.1)
led to slightly lower precision (77.6%). Searching
for a name in Wiktionary (Method 2.2) was over-
all slightly worse than Method 2.1 (F} 76.1% vs
77.3%), but almost on the same level as checking
if the name contains suffixes (Method 3): average
precision for both was about 71%.

In addition, Method 1 did not require any ad-
ditional resources and it was relatively language-
independent which would allow it to be used with-
out any modifications for other agglutinative lan-
guages. We suggest that a combination of these
methods (for example, simple combination of
Method 1 and Method 3 should help e.g. in case
when the characters do not have common names in
genres like fantasy or sci-fi) will further improve
the search for the right lemmas for foreign names
in texts written in agglutinative languages and thus
enhance the character identification.
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