NaijaSenti: A Nigerian Twitter Sentiment Corpus for Multilingual Sentiment Analysis

Shamsuddeen Hassan Muhammad, David Ifeoluwa Adelani, Sebastian Ruder, Ibrahim Sa’id Ahmad, Idris Abdulmumin, Bello Shehu Bello, Monojit Choudhury, Chris Chinenye Emezue, Saheed Salahudeen Abdullahi, Anuoluwapo Aremu, Alípio Jorge, Pavel Brazdil


Abstract
Sentiment analysis is one of the most widely studied applications in NLP, but most work focuses on languages with large amounts of data. We introduce the first large-scale human-annotated Twitter sentiment dataset for the four most widely spoken languages in Nigeria—Hausa, Igbo, Nigerian-Pidgin, and Yorùbá—consisting of around 30,000 annotated tweets per language, including a significant fraction of code-mixed tweets. We propose text collection, filtering, processing and labeling methods that enable us to create datasets for these low-resource languages. We evaluate a range of pre-trained models and transfer strategies on the dataset. We find that language-specific models and language-adaptive fine-tuning generally perform best. We release the datasets, trained models, sentiment lexicons, and code to incentivize research on sentiment analysis in under-represented languages.
Anthology ID:
2022.lrec-1.63
Volume:
Proceedings of the Thirteenth Language Resources and Evaluation Conference
Month:
June
Year:
2022
Address:
Marseille, France
Editors:
Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Jan Odijk, Stelios Piperidis
Venue:
LREC
SIG:
Publisher:
European Language Resources Association
Note:
Pages:
590–602
Language:
URL:
https://aclanthology.org/2022.lrec-1.63
DOI:
Bibkey:
Cite (ACL):
Shamsuddeen Hassan Muhammad, David Ifeoluwa Adelani, Sebastian Ruder, Ibrahim Sa’id Ahmad, Idris Abdulmumin, Bello Shehu Bello, Monojit Choudhury, Chris Chinenye Emezue, Saheed Salahudeen Abdullahi, Anuoluwapo Aremu, Alípio Jorge, and Pavel Brazdil. 2022. NaijaSenti: A Nigerian Twitter Sentiment Corpus for Multilingual Sentiment Analysis. In Proceedings of the Thirteenth Language Resources and Evaluation Conference, pages 590–602, Marseille, France. European Language Resources Association.
Cite (Informal):
NaijaSenti: A Nigerian Twitter Sentiment Corpus for Multilingual Sentiment Analysis (Muhammad et al., LREC 2022)
Copy Citation:
PDF:
https://preview.aclanthology.org/nschneid-patch-1/2022.lrec-1.63.pdf
Code
 hausanlp/naijasenti +  additional community code
Data
Twitter Sentiment Analysis