GlossReader at LSCDiscovery: Train to Select a Proper Gloss in English – Discover Lexical Semantic Change in Spanish

Maxim Rachinskiy, Nikolay Arefyev


Abstract
The contextualized embeddings obtained from neural networks pre-trained as Language Models (LM) or Masked Language Models (MLM) are not well suitable for solving the Lexical Semantic Change Detection (LSCD) task because they are more sensitive to changes in word forms rather than word meaning, a property previously known as the word form bias or orthographic bias. Unlike many other NLP tasks, it is also not obvious how to fine-tune such models for LSCD. In order to conclude if there are any differences between senses of a particular word in two corpora, a human annotator or a system shall analyze many examples containing this word from both corpora. This makes annotation of LSCD datasets very labour-consuming. The existing LSCD datasets contain up to 100 words that are labeled according to their semantic change, which is hardly enough for fine-tuning. To solve these problems we fine-tune the XLM-R MLM as part of a gloss-based WSD system on a large WSD dataset in English. Then we employ zero-shot cross-lingual transferability of XLM-R to build the contextualized embeddings for examples in Spanish. In order to obtain the graded change score for each word, we calculate the average distance between our improved contextualized embeddings of its old and new occurrences. For the binary change detection subtask, we apply thresholding to the same scores. Our solution has shown the best results among all other participants in all subtasks except for the optional sense gain detection subtask.
Anthology ID:
2022.lchange-1.22
Volume:
Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change
Month:
May
Year:
2022
Address:
Dublin, Ireland
Editors:
Nina Tahmasebi, Syrielle Montariol, Andrey Kutuzov, Simon Hengchen, Haim Dubossarsky, Lars Borin
Venue:
LChange
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
198–203
Language:
URL:
https://aclanthology.org/2022.lchange-1.22
DOI:
10.18653/v1/2022.lchange-1.22
Bibkey:
Cite (ACL):
Maxim Rachinskiy and Nikolay Arefyev. 2022. GlossReader at LSCDiscovery: Train to Select a Proper Gloss in English – Discover Lexical Semantic Change in Spanish. In Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pages 198–203, Dublin, Ireland. Association for Computational Linguistics.
Cite (Informal):
GlossReader at LSCDiscovery: Train to Select a Proper Gloss in English – Discover Lexical Semantic Change in Spanish (Rachinskiy & Arefyev, LChange 2022)
Copy Citation:
PDF:
https://preview.aclanthology.org/nschneid-patch-1/2022.lchange-1.22.pdf