Xinpeng Wang


2023

pdf
How to Distill your BERT: An Empirical Study on the Impact of Weight Initialisation and Distillation Objectives
Xinpeng Wang | Leonie Weissweiler | Hinrich Schütze | Barbara Plank
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Recently, various intermediate layer distillation (ILD) objectives have been shown to improve compression of BERT models via Knowledge Distillation (KD). However, a comprehensive evaluation of the objectives in both task-specific and task-agnostic settings is lacking. To the best of our knowledge, this is the first work comprehensively evaluating distillation objectives in both settings. We show that attention transfer gives the best performance overall. We also study the impact of layer choice when initializing the student from the teacher layers, finding a significant impact on the performance in task-specific distillation. For vanilla KD and hidden states transfer, initialisation with lower layers of the teacher gives a considerable improvement over higher layers, especially on the task of QNLI (up to an absolute percentage change of 17.8 in accuracy). Attention transfer behaves consistently under different initialisation settings. We release our code as an efficient transformer-based model distillation framework for further studies.

2022

pdf
CHAE: Fine-Grained Controllable Story Generation with Characters, Actions and Emotions
Xinpeng Wang | Han Jiang | Zhihua Wei | Shanlin Zhou
Proceedings of the 29th International Conference on Computational Linguistics

Story generation has emerged as an interesting yet challenging NLP task in recent years. Some existing studies aim at generating fluent and coherent stories from keywords and outlines; while others attempt to control the global features of the story, such as emotion, style and topic. However, these works focus on coarse-grained control on the story, neglecting control on the details of the story, which is also crucial for the task. To fill the gap, this paper proposes a model for fine-grained control on the story, which allows the generation of customized stories with characters, corresponding actions and emotions arbitrarily assigned. Extensive experimental results on both automatic and human manual evaluations show the superiority of our method. It has strong controllability to generate stories according to the fine-grained personalized guidance, unveiling the effectiveness of our methodology. Our code is available at https://github.com/victorup/CHAE.