Thai Binh Nguyen
Also published as: Thai-Binh Nguyen
2023
KIT’s Multilingual Speech Translation System for IWSLT 2023
Danni Liu
|
Thai Binh Nguyen
|
Sai Koneru
|
Enes Yavuz Ugan
|
Ngoc-Quan Pham
|
Tuan Nam Nguyen
|
Tu Anh Dinh
|
Carlos Mullov
|
Alexander Waibel
|
Jan Niehues
Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)
Many existing speech translation benchmarks focus on native-English speech in high-quality recording conditions, which often do not match the conditions in real-life use-cases. In this paper, we describe our speech translation system for the multilingual track of IWSLT 2023, which focuses on the translation of scientific conference talks. The test condition features accented input speech and terminology-dense contents. The tasks requires translation into 10 languages of varying amounts of resources. In absence of training data from the target domain, we use a retrieval-based approach (kNN-MT) for effective adaptation (+0.8 BLEU for speech translation). We also use adapters to easily integrate incremental training data from data augmentation, and show that it matches the performance of re-training. We observe that cascaded systems are more easily adaptable towards specific target domains, due to their separate modules. Our cascaded speech system outperforms its end-to-end counterpart on scientific talk translation, although their performance remains similar on TED talks.
2022
Effective combination of pretrained models - KIT@IWSLT2022
Ngoc-Quan Pham
|
Tuan Nam Nguyen
|
Thai-Binh Nguyen
|
Danni Liu
|
Carlos Mullov
|
Jan Niehues
|
Alexander Waibel
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)
Pretrained models in acoustic and textual modalities can potentially improve speech translation for both Cascade and End-to-end approaches. In this evaluation, we aim at empirically looking for the answer by using the wav2vec, mBART50 and DeltaLM models to improve text and speech translation models. The experiments showed that the presence of these models together with an advanced audio segmentation method results in an improvement over the previous end-to-end system by up to 7 BLEU points. More importantly, the experiments showed that given enough data and modeling capacity to overcome the training difficulty, we can outperform even very competitive Cascade systems. In our experiments, this gap can be as large as 2.0 BLEU points, the same gap that the Cascade often led over the years.
Search
Co-authors
- Danni Liu 2
- Ngoc-Quan Pham 2
- Tuan-Nam Nguyen 2
- Carlos Mullov 2
- Alex Waibel 2
- show all...