Siru Ouyang


2023

pdf
Compositional Data Augmentation for Abstractive Conversation Summarization
Siru Ouyang | Jiaao Chen | Jiawei Han | Diyi Yang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent abstractive conversation summarization systems generally rely on large-scale datasets with annotated summaries. However, collecting and annotating these conversations can be a time-consuming and labor-intensive task. To address this issue, in this work, we present a sub-structure level compositional data augmentation method, Compo, for generating diverse and high-quality pairs of conversations and summaries. Specifically, Compo first extracts conversation structures like topic splits and action triples as basic units. Then we organize these semantically meaningful conversation snippets compositionally to create new training instances.Additionally, we explore noise-tolerant settings in both self-training and joint-training paradigms to make the most of these augmented samples. Our experiments on benchmark datasets, SAMSum and DialogSum, show that Compo substantially outperforms prior baseline methods by achieving a nearly 10% increase of ROUGE scores with limited data. Code is available at https://github.com/ozyyshr/Compo.

pdf
Towards End-to-End Open Conversational Machine Reading
Sizhe Zhou | Siru Ouyang | Zhuosheng Zhang | Hai Zhao
Findings of the Association for Computational Linguistics: EACL 2023

In open-retrieval conversational machine reading (OR-CMR) task, machines are required to do multi-turn question answering given dialogue history and a textual knowledge base. Existing works generally utilize two independent modules to approach this problem’s two successive sub-tasks: first with a hard-label decision making and second with a question generation aided by various entailment reasoning methods. Such usual cascaded modeling is vulnerable to error propagation and prevents the two sub-tasks from being consistently optimized. In this work, we instead model OR-CMR as a unified text-to-text task in a fully end-to-end style. Experiments on the ShARC and OR-ShARC dataset show the effectiveness of our proposed end-to-end framework on both sub-tasks by a large margin, achieving new state-of-the-art results. Further ablation studies support that our framework can generalize to different backbone models.

pdf
ReactIE: Enhancing Chemical Reaction Extraction with Weak Supervision
Ming Zhong | Siru Ouyang | Minhao Jiang | Vivian Hu | Yizhu Jiao | Xuan Wang | Jiawei Han
Findings of the Association for Computational Linguistics: ACL 2023

Structured chemical reaction information plays a vital role for chemists engaged in laboratory work and advanced endeavors such as computer-aided drug design. Despite the importance of extracting structured reactions from scientific literature, data annotation for this purpose is cost-prohibitive due to the significant labor required from domain experts. Consequently, the scarcity of sufficient training data poses an obstacle to the progress of related models in this domain. In this paper, we propose ReactIE, which combines two weakly supervised approaches for pre-training. Our method utilizes frequent patterns within the text as linguistic cues to identify specific characteristics of chemical reactions. Additionally, we adopt synthetic data from patent records as distant supervision to incorporate domain knowledge into the model. Experiments demonstrate that ReactIE achieves substantial improvements and outperforms all existing baselines.

2021

pdf
Dialogue Graph Modeling for Conversational Machine Reading
Siru Ouyang | Zhuosheng Zhang | Hai Zhao
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Smoothing Dialogue States for Open Conversational Machine Reading
Zhuosheng Zhang | Siru Ouyang | Hai Zhao | Masao Utiyama | Eiichiro Sumita
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Conversational machine reading (CMR) requires machines to communicate with humans through multi-turn interactions between two salient dialogue states of decision making and question generation processes. In open CMR settings, as the more realistic scenario, the retrieved background knowledge would be noisy, which results in severe challenges in the information transmission. Existing studies commonly train independent or pipeline systems for the two subtasks. However, those methods are trivial by using hard-label decisions to activate question generation, which eventually hinders the model performance. In this work, we propose an effective gating strategy by smoothing the two dialogue states in only one decoder and bridge decision making and question generation to provide a richer dialogue state reference. Experiments on the OR-ShARC dataset show the effectiveness of our method, which achieves new state-of-the-art results.