This paper examines the use of manually part-of-speech tagged sign language gloss data in the Text2Gloss and Gloss2Text translation tasks, as well as running an LSTM-based sequence labelling model on the same glosses for automatic part-of-speech tagging. We find that a combination of tag-enhanced glosses and pretraining the neural model positively impacts performance in the translation tasks. The results of the tagging task are limited, but provide a methodological framework for further research into tagging sign language gloss data.
This paper presents a series of experiments on translating between spoken Spanish and Spanish Sign Language glosses (LSE), including enriching Neural Machine Translation (NMT) systems with linguistic features, and creating synthetic data to pretrain and later on finetune a neural translation model. We found evidence that pretraining over a large corpus of LSE synthetic data aligned to Spanish sentences could markedly improve the performance of the translation models.
Sign Languages (SLs) are the primary means of communication for at least half a million people in Europe alone. However, the development of SL recognition and translation tools is slowed down by a series of obstacles concerning resource scarcity and standardization issues in the available data. The former challenge relates to the volume of data available for machine learning as well as the time required to collect and process new data. The latter obstacle is linked to the variety of the data, i.e., annotation formats are not unified and vary amongst different resources. The available data formats are often not suitable for machine learning, obstructing the provision of automatic tools based on neural models. In the present paper, we give an overview of these challenges by comparing various SL corpora and SL machine learning datasets. Furthermore, we propose a framework to address the lack of standardization at format level, unify the available resources and facilitate SL research for different languages. Our framework takes ELAN files as inputs and returns textual and visual data ready to train SL recognition and translation models. We present a proof of concept, training neural translation models on the data produced by the proposed framework.
It is well-established that the preferred mode of communication of the deaf and hard of hearing (DHH) community are Sign Languages (SLs), but they are considered low resource languages where natural language processing technologies are of concern. In this paper we study the problem of text to SL gloss Machine Translation (MT) using Transformer-based architectures. Despite the significant advances of MT for spoken languages in the recent couple of decades, MT is in its infancy when it comes to SLs. We enrich a Transformer-based architecture aggregating syntactic information extracted from a dependency parser to word-embeddings. We test our model on a well-known dataset showing that the syntax-aware model obtains performance gains in terms of MT evaluation metrics.