Nonsuicidal self-injury (NSSI), or the deliberate injuring of one?s body without intending to die, has been shown to exhibit many similarities to substance use disorders (SUDs), including population-level characteristics, impulsivity traits, and comorbidity with other mental disorders. Research has further shown that people who self-injure adopt language common in SUD recovery communities (e.g., “clean”, “relapse”, “addiction,” and celebratory language about sobriety milestones). In this study, we investigate the shared language of NSSI and SUD by comparing discussions on public Reddit forums related to self-injury and drug addiction. To this end, we build a set of LDA topics across both NSSI and SUD Reddit users and show that shared language across the two domains includes SUD recovery language in addition to other themes common to support forums (e.g., requests for help and gratitude). Next, we examine Reddit-wide posting activity and note that users posting in r/selfharm also post in many mental health-related subreddits, while users of drug addiction related subreddits do not, despite high comorbidity between NSSI and SUDs. These results show that while people who self-injure may contextualize their disorder as an addiction, their posting habits demonstrate comorbidities with other mental disorders more so than their counterparts in recovery from SUDs. These observations have clinical implications for people who self-injure and seek support by sharing their experiences online.
Evaluating the state-of-the-art event detection systems on determining spatio-temporal distribution of the events on the ground is performed unfrequently. But, the ability to both (1) extract events “in the wild” from text and (2) properly evaluate event detection systems has potential to support a wide variety of tasks such as monitoring the activity of socio-political movements, examining media coverage and public support of these movements, and informing policy decisions. Therefore, we study performance of the best event detection systems on detecting Black Lives Matter (BLM) events from tweets and news articles. The murder of George Floyd, an unarmed Black man, at the hands of police officers received global attention throughout the second half of 2020. Protests against police violence emerged worldwide and the BLM movement, which was once mostly regulated to the United States, was now seeing activity globally. This shared task asks participants to identify BLM related events from large unstructured data sources, using systems pretrained to extract socio-political events from text. We evaluate several metrics, accessing each system’s ability to identify protest events both temporally and spatially. Results show that identifying daily protest counts is an easier task than classifying spatial and temporal protest trends simultaneously, with maximum performance of 0.745 and 0.210 (Pearson r), respectively. Additionally, all baselines and participant systems suffered from low recall, with a maximum recall of 5.08.
The novelty and global scale of the COVID-19 pandemic has lead to rapid societal changes in a short span of time. As government policy and health measures shift, public perceptions and concerns also change, an evolution documented within discourse on social media.We propose a dynamic content-specific LDA topic modeling technique that can help to identify different domains of COVID-specific discourse that can be used to track societal shifts in concerns or views. Our experiments show that these model-derived topics are more coherent than standard LDA topics, and also provide new features that are more helpful in prediction of COVID-19 related outcomes including social mobility and unemployment rate.
NLP naturally puts a primary focus on leveraging document language, occasionally considering user attributes as supplemental. However, as we tackle more social scientific tasks, it is possible user attributes might be of primary importance and the document supplemental. Here, we systematically investigate the predictive power of user-level features alone versus document-level features for document-level tasks. We first show user attributes can sometimes carry more task-related information than the document itself. For example, a tweet-level stance detection model using only 13 user-level attributes (i.e. features that did not depend on the specific tweet) was able to obtain a higher F1 than the top-performing SemEval participant. We then consider multiple tasks and a wider range of user attributes, showing the performance of strong document-only models can often be improved (as in stance, sentiment, and sarcasm) with user attributes, particularly benefiting tasks with stable “trait-like” outcomes (e.g. stance) most relative to frequently changing “state-like” outcomes (e.g. sentiment). These results not only support the growing work on integrating user factors into predictive systems, but that some of our NLP tasks might be better cast primarily as user-level (or human) tasks.
Mental health predictive systems typically model language as if from a single context (e.g. Twitter posts, status updates, or forum posts) and often limited to a single level of analysis (e.g. either the message-level or user-level). Here, we bring these pieces together to explore the use of open-vocabulary (BERT embeddings, topics) and theoretical features (emotional expression lexica, personality) for the task of suicide risk assessment on support forums (the CLPsych-2019 Shared Task). We used dual context based approaches (modeling content from suicide forums separate from other content), built over both traditional ML models as well as a novel dual RNN architecture with user-factor adaptation. We find that while affect from the suicide context distinguishes with no-risk from those with “any-risk”, personality factors from the non-suicide contexts provide distinction of the levels of risk: low, medium, and high risk. Within the shared task, our dual-context approach (listed as SBU-HLAB in the official results) achieved state-of-the-art performance predicting suicide risk using a combination of suicide-context and non-suicide posts (Task B), achieving an F1 score of 0.50 over hidden test set labels.
This article is a system description and report on the submission of a team from the University of Pennsylvania in the ’CLPsych 2018’ shared task. The goal of the shared task was to use childhood language as a marker for both current and future psychological health over individual lifetimes. Our system employs multiple textual features derived from the essays written and individuals’ socio-demographic variables at the age of 11. We considered several word clustering approaches, and explore the use of linear regression based on different feature sets. Our approach showed best results for predicting distress at the age of 42 and for predicting current anxiety on Disattenuated Pearson Correlation, and ranked fourth in the future health prediction task. In addition to the subtasks presented, we attempted to provide insight into mental health aspects at different ages. Our findings indicate that misspellings, words with illegible letters and increased use of personal pronouns are correlated with poor mental health at age 11, while descriptions about future physical activity, family and friends are correlated with good mental health.
Nowcasting based on social media text promises to provide unobtrusive and near real-time predictions of community-level outcomes. These outcomes are typically regarding people, but the data is often aggregated without regard to users in the Twitter populations of each community. This paper describes a simple yet effective method for building community-level models using Twitter language aggregated by user. Results on four different U.S. county-level tasks, spanning demographic, health, and psychological outcomes show large and consistent improvements in prediction accuracies (e.g. from Pearson r=.73 to .82 for median income prediction or r=.37 to .47 for life satisfaction prediction) over the standard approach of aggregating all tweets. We make our aggregated and anonymized community-level data, derived from 37 billion tweets – over 1 billion of which were mapped to counties, available for research.
Predictive models over social media language have shown promise in capturing community outcomes, but approaches thus far largely neglect the socio-demographic context (e.g. age, education rates, race) of the community from which the language originates. For example, it may be inaccurate to assume people in Mobile, Alabama, where the population is relatively older, will use words the same way as those from San Francisco, where the median age is younger with a higher rate of college education. In this paper, we present residualized factor adaptation, a novel approach to community prediction tasks which both (a) effectively integrates community attributes, as well as (b) adapts linguistic features to community attributes (factors). We use eleven demographic and socioeconomic attributes, and evaluate our approach over five different community-level predictive tasks, spanning health (heart disease mortality, percent fair/poor health), psychology (life satisfaction), and economics (percent housing price increase, foreclosure rate). Our evaluation shows that residualized factor adaptation significantly improves 4 out of 5 community-level outcome predictions over prior state-of-the-art for incorporating socio-demographic contexts.
Natural language processing has increasingly moved from modeling documents and words toward studying the people behind the language. This move to working with data at the user or community level has presented the field with different characteristics of linguistic data. In this paper, we empirically characterize various lexical distributions at different levels of analysis, showing that, while most features are decidedly sparse and non-normal at the message-level (as with traditional NLP), they follow the central limit theorem to become much more Log-normal or even Normal at the user- and county-levels. Finally, we demonstrate that modeling lexical features for the correct level of analysis leads to marked improvements in common social scientific prediction tasks.
We present Differential Language Analysis Toolkit (DLATK), an open-source python package and command-line tool developed for conducting social-scientific language analyses. While DLATK provides standard NLP pipeline steps such as tokenization or SVM-classification, its novel strengths lie in analyses useful for psychological, health, and social science: (1) incorporation of extra-linguistic structured information, (2) specified levels and units of analysis (e.g. document, user, community), (3) statistical metrics for continuous outcomes, and (4) robust, proven, and accurate pipelines for social-scientific prediction problems. DLATK integrates multiple popular packages (SKLearn, Mallet), enables interactive usage (Jupyter Notebooks), and generally follows object oriented principles to make it easy to tie in additional libraries or storage technologies.