Qiang Fu


2023

pdf
Making Language Models Better Reasoners with Step-Aware Verifier
Yifei Li | Zeqi Lin | Shizhuo Zhang | Qiang Fu | Bei Chen | Jian-Guang Lou | Weizhu Chen
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Few-shot learning is a challenging task that requires language models to generalize from limited examples. Large language models like GPT-3 and PaLM have made impressive progress in this area, but they still face difficulties in reasoning tasks such as GSM8K, a benchmark for arithmetic problems. To improve their reasoning skills, previous work has proposed to guide the language model with prompts that elicit a series of reasoning steps before giving the final answer, achieving a significant improvement on GSM8K from 17.9% to 58.1% in problem-solving rate. In this paper, we present DiVeRSe (Diverse Verifier on Reasoning Step), a novel approach that further enhances the reasoning capability of language models. DiVeRSe has three main components: first, it generates diverse prompts to explore different reasoning paths for the same question; second, it uses a verifier to filter out incorrect answers based on a weighted voting scheme; and third, it verifies each reasoning step individually instead of the whole chain. We evaluate DiVeRSe on the latest language model code-davinci-002 and show that it achieves new state-of-the-art results on six of eight reasoning benchmarks (e.g., GSM8K 74.4% to 83.2%).

pdf
How Do In-Context Examples Affect Compositional Generalization?
Shengnan An | Zeqi Lin | Qiang Fu | Bei Chen | Nanning Zheng | Jian-Guang Lou | Dongmei Zhang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Compositional generalization–understanding unseen combinations of seen primitives–is an essential reasoning capability in human intelligence.The AI community mainly studies this capability by fine-tuning neural networks on lots of training samples, while it is still unclear whether and how in-context learning–the prevailing few-shot paradigm based on large language models–exhibits compositional generalization.In this paper, we present CoFe, a test suite to investigate in-context compositional generalization.We find that the compositional generalization performance can be easily affected by the selection of in-context examples, thus raising the research question what the key factors are to make good in-context examples for compositional generalization.We study three potential factors: similarity, diversity and complexity. Our systematic experiments indicate that in-context examples should be structurally similar to the test case, diverse from each other, and individually simple.Furthermore, two strong limitations are observed: in-context compositional generalization on fictional words is much weaker than that on commonly used ones; it is still critical that the in-context examples should cover required linguistic structures, even though the backbone model has been pre-trained on large corpus.We hope our analysis would facilitate the understanding and utilization of in-context learning paradigm.

2022

pdf
Reasoning Like Program Executors
Xinyu Pi | Qian Liu | Bei Chen | Morteza Ziyadi | Zeqi Lin | Qiang Fu | Yan Gao | Jian-Guang Lou | Weizhu Chen
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Reasoning over natural language is a long-standing goal for the research community. However, studies have shown that existing language models are inadequate in reasoning. To address the issue, we present POET, a novel reasoning pre-training paradigm. Through pre-training language models with programs and their execution results, POET empowers language models to harvest the reasoning knowledge possessed by program executors via a data-driven approach. POET is conceptually simple and can be instantiated by different kinds of program executors. In this paper, we showcase two simple instances POET-Math and POET-Logic, in addition to a complex instance, POET-SQL. Experimental results on six benchmarks demonstrate that POET can significantly boost model performance in natural language reasoning, such as numerical reasoning, logical reasoning, and multi-hop reasoning. POET opens a new gate on reasoning-enhancement pre-training, and we hope our analysis would shed light on the future research of reasoning like program executors.