2023
pdf
abs
Social-Group-Agnostic Bias Mitigation via the Stereotype Content Model
Ali Omrani
|
Alireza Salkhordeh Ziabari
|
Charles Yu
|
Preni Golazizian
|
Brendan Kennedy
|
Mohammad Atari
|
Heng Ji
|
Morteza Dehghani
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Existing bias mitigation methods require social-group-specific word pairs (e.g., “man” – “woman”) for each social attribute (e.g., gender), restricting the bias mitigation to only one specified social attribute. Further, this constraint renders such methods impractical and costly for mitigating bias in understudied and/or unmarked social groups. We propose that the Stereotype Content Model (SCM) — a theoretical framework developed in social psychology for understanding the content of stereotyping — can help debiasing efforts to become social-group-agnostic by capturing the underlying connection between bias and stereotypes. SCM proposes that the content of stereotypes map to two psychological dimensions of warmth and competence. Using only pairs of terms for these two dimensions (e.g., warmth: “genuine” – “fake”; competence: “smart” – “stupid”), we perform debiasing with established methods on both pre-trained word embeddings and large language models. We demonstrate that our social-group-agnostic, SCM-based debiasing technique performs comparably to group-specific debiasing on multiple bias benchmarks, but has theoretical and practical advantages over existing approaches.
pdf
abs
Hate Speech Classifiers Learn Normative Social Stereotypes
Aida Mostafazadeh Davani
|
Mohammad Atari
|
Brendan Kennedy
|
Morteza Dehghani
Transactions of the Association for Computational Linguistics, Volume 11
Social stereotypes negatively impact individuals’ judgments about different groups and may have a critical role in understanding language directed toward marginalized groups. Here, we assess the role of social stereotypes in the automated detection of hate speech in the English language by examining the impact of social stereotypes on annotation behaviors, annotated datasets, and hate speech classifiers. Specifically, we first investigate the impact of novice annotators’ stereotypes on their hate-speech-annotation behavior. Then, we examine the effect of normative stereotypes in language on the aggregated annotators’ judgments in a large annotated corpus. Finally, we demonstrate how normative stereotypes embedded in language resources are associated with systematic prediction errors in a hate-speech classifier. The results demonstrate that hate-speech classifiers reflect social stereotypes against marginalized groups, which can perpetuate social inequalities when propagated at scale. This framework, combining social-psychological and computational-linguistic methods, provides insights into sources of bias in hate-speech moderation, informing ongoing debates regarding machine learning fairness.
2021
pdf
abs
Improving Counterfactual Generation for Fair Hate Speech Detection
Aida Mostafazadeh Davani
|
Ali Omrani
|
Brendan Kennedy
|
Mohammad Atari
|
Xiang Ren
|
Morteza Dehghani
Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)
Bias mitigation approaches reduce models’ dependence on sensitive features of data, such as social group tokens (SGTs), resulting in equal predictions across the sensitive features. In hate speech detection, however, equalizing model predictions may ignore important differences among targeted social groups, as hate speech can contain stereotypical language specific to each SGT. Here, to take the specific language about each SGT into account, we rely on counterfactual fairness and equalize predictions among counterfactuals, generated by changing the SGTs. Our method evaluates the similarity in sentence likelihoods (via pre-trained language models) among counterfactuals, to treat SGTs equally only within interchangeable contexts. By applying logit pairing to equalize outcomes on the restricted set of counterfactuals for each instance, we improve fairness metrics while preserving model performance on hate speech detection.
2019
pdf
abs
Reporting the Unreported: Event Extraction for Analyzing the Local Representation of Hate Crimes
Aida Mostafazadeh Davani
|
Leigh Yeh
|
Mohammad Atari
|
Brendan Kennedy
|
Gwenyth Portillo Wightman
|
Elaine Gonzalez
|
Natalie Delong
|
Rhea Bhatia
|
Arineh Mirinjian
|
Xiang Ren
|
Morteza Dehghani
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Official reports of hate crimes in the US are under-reported relative to the actual number of such incidents. Further, despite statistical approximations, there are no official reports from a large number of US cities regarding incidents of hate. Here, we first demonstrate that event extraction and multi-instance learning, applied to a corpus of local news articles, can be used to predict instances of hate crime. We then use the trained model to detect incidents of hate in cities for which the FBI lacks statistics. Lastly, we train models on predicting homicide and kidnapping, compare the predictions to FBI reports, and establish that incidents of hate are indeed under-reported, compared to other types of crimes, in local press.