If one sees the place name Houston Mercer Dog Run in New York, how does one know how to pronounce it? Assuming one knows that Houston in New York is pronounced /ˈhaʊstən/ and not like the Texas city (/ˈhjuːstən/), then one can probably guess that /ˈhaʊstən/ is also used in the name of the dog park. We present a novel architecture that learns to use the pronunciations of neighboring names in order to guess the pronunciation of a given target feature. Applied to Japanese place names, we demonstrate the utility of the model to finding and proposing corrections for errors in Google Maps. To demonstrate the utility of this approach to structurally similar problems, we also report on an application to a totally different task: Cognate reflex prediction in comparative historical linguistics. A version of the code has been open-sourced.1
We present the Natural Questions corpus, a question answering data set. Questions consist of real anonymized, aggregated queries issued to the Google search engine. An annotator is presented with a question along with a Wikipedia page from the top 5 search results, and annotates a long answer (typically a paragraph) and a short answer (one or more entities) if present on the page, or marks null if no long/short answer is present. The public release consists of 307,373 training examples with single annotations; 7,830 examples with 5-way annotations for development data; and a further 7,842 examples with 5-way annotated sequestered as test data. We present experiments validating quality of the data. We also describe analysis of 25-way annotations on 302 examples, giving insights into human variability on the annotation task. We introduce robust metrics for the purposes of evaluating question answering systems; demonstrate high human upper bounds on these metrics; and establish baseline results using competitive methods drawn from related literature.
The past year has witnessed rapid advances in sequence-to-sequence (seq2seq) modeling for Machine Translation (MT). The classic RNN-based approaches to MT were first out-performed by the convolutional seq2seq model, which was then out-performed by the more recent Transformer model. Each of these new approaches consists of a fundamental architecture accompanied by a set of modeling and training techniques that are in principle applicable to other seq2seq architectures. In this paper, we tease apart the new architectures and their accompanying techniques in two ways. First, we identify several key modeling and training techniques, and apply them to the RNN architecture, yielding a new RNMT+ model that outperforms all of the three fundamental architectures on the benchmark WMT’14 English to French and English to German tasks. Second, we analyze the properties of each fundamental seq2seq architecture and devise new hybrid architectures intended to combine their strengths. Our hybrid models obtain further improvements, outperforming the RNMT+ model on both benchmark datasets.
We introduce a hierarchical architecture for machine reading capable of extracting precise information from long documents. The model divides the document into small, overlapping windows and encodes all windows in parallel with an RNN. It then attends over these window encodings, reducing them to a single encoding, which is decoded into an answer using a sequence decoder. This hierarchical approach allows the model to scale to longer documents without increasing the number of sequential steps. In a supervised setting, our model achieves state of the art accuracy of 76.8 on the WikiReading dataset. We also evaluate the model in a semi-supervised setting by downsampling the WikiReading training set to create increasingly smaller amounts of supervision, while leaving the full unlabeled document corpus to train a sequence autoencoder on document windows. We evaluate models that can reuse autoencoder states and outputs without fine-tuning their weights, allowing for more efficient training and inference.