Extractive text summarisation aims to select salient sentences from a document to form a short yet informative summary. While learning-based methods have achieved promising results, they have several limitations, such as dependence on expensive training and lack of interpretability. Therefore, in this paper, we propose a novel non-learning-based method by for the first time formulating text summarisation as an Optimal Transport (OT) problem, namely Optimal Transport Extractive Summariser (OTExtSum). Optimal sentence extraction is conceptualised as obtaining an optimal summary that minimises the transportation cost to a given document regarding their semantic distributions. Such a cost is defined by the Wasserstein distance and used to measure the summary’s semantic coverage of the original document. Comprehensive experiments on four challenging and widely used datasets - MultiNews, PubMed, BillSum, and CNN/DM demonstrate that our proposed method outperforms the state-of-the-art non-learning-based methods and several recent learning-based methods in terms of the ROUGE metric.
Fact verification is an essential tool to mitigate the spread of false information online, which has gained a widespread attention recently. However, a fact verification in the question-answering dialogue is still underexplored. In this paper, we propose a neural network based approach called question-answering dialogue based fact verification with mixture of experts (QaDialMoE). It exploits questions and evidence effectively in the verification process and can significantly improve the performance of fact verification. Specifically, we exploit the mixture of experts to focus on various interactions among responses, questions and evidence. A manager with an attention guidance module is implemented to guide the training of experts and assign a reasonable attention score to each expert. A prompt module is developed to generate synthetic questions that make our approach more generalizable. Finally, we evaluate the QaDialMoE and conduct a comparative study on three benchmark datasets. The experimental results demonstrate that our QaDialMoE outperforms previous approaches by a large margin and achieves new state-of-the-art results on all benchmarks. This includes the accuracy improvements on the HEALTHVER as 84.26%, the FAVIQ A dev set as 78.7%, the FAVIQ R dev set as 86.1%, test set as 86.0%, and the COLLOQUIAL as 89.5%. To our best knowledge, this is the first work to investigate a question-answering dialogue based fact verification, and achieves new state-of-the-art results on various benchmark datasets.
Due to the increasing concerns for data privacy, source-free unsupervised domain adaptation attracts more and more research attention, where only a trained source model is assumed to be available, while the labeled source data remain private. To get promising adaptation results, we need to find effective ways to transfer knowledge learned in source domain and leverage useful domain specific information from target domain at the same time. This paper describes our winning contribution to SemEval 2021 Task 10: Source-Free Domain Adaptation for Semantic Processing. Our key idea is to leverage the model trained on source domain data to generate pseudo labels for target domain samples. Besides, we propose Negation-aware Pre-training (NAP) to incorporate negation knowledge into model. Our method win the 1st place with F1-score of 0.822 on the official blind test set of Negation Detection Track.
Faceted summarization provides briefings of a document from different perspectives. Readers can quickly comprehend the main points of a long document with the help of a structured outline. However, little research has been conducted on this subject, partially due to the lack of large-scale faceted summarization datasets. In this study, we present FacetSum, a faceted summarization benchmark built on Emerald journal articles, covering a diverse range of domains. Different from traditional document-summary pairs, FacetSum provides multiple summaries, each targeted at specific sections of a long document, including the purpose, method, findings, and value. Analyses and empirical results on our dataset reveal the importance of bringing structure into summaries. We believe FacetSum will spur further advances in summarization research and foster the development of NLP systems that can leverage the structured information in both long texts and summaries.
A reverse dictionary takes descriptions of words as input and outputs words semantically matching the input descriptions. Reverse dictionaries have great practical value such as solving the tip-of-the-tongue problem and helping new language learners. There have been some online reverse dictionary systems, but they support English reverse dictionary queries only and their performance is far from perfect. In this paper, we present a new open-source online reverse dictionary system named WantWords (https://wantwords.thunlp.org/). It not only significantly outperforms other reverse dictionary systems on English reverse dictionary performance, but also supports Chinese and English-Chinese as well as Chinese-English cross-lingual reverse dictionary queries for the first time. Moreover, it has user-friendly front-end design which can help users find the words they need quickly and easily. All the code and data are available at https://github.com/thunlp/WantWords.
Pretrained Language Models (PLMs) have improved the performance of natural language understanding in recent years. Such models are pretrained on large corpora, which encode the general prior knowledge of natural languages but are agnostic to information characteristic of downstream tasks. This often results in overfitting when fine-tuned with low resource datasets where task-specific information is limited. In this paper, we integrate label information as a task-specific prior into the self-attention component of pretrained BERT models. Experiments on several benchmarks and real-word datasets suggest that the proposed approach can largely improve the performance of pretrained models when fine-tuning with small datasets.
Continuous efforts have been devoted to language understanding (LU) for conversational queries with the fast and wide-spread popularity of voice assistants. In this paper, we first study the LU problem in the spatial domain, which is a critical problem for providing location-based services by voice assistants but is without in-depth investigation in existing studies. Spatial domain queries have several unique properties making them be more challenging for language understanding than common conversational queries, including lexical-similar but diverse intents and highly ambiguous words. Thus, a special tailored LU framework for spatial domain queries is necessary. To the end, a dataset was extracted and annotated based on the real-life queries from a voice assistant service. We then proposed a new multi-task framework that jointly learns the intent detection and entity linking tasks on the with invented hierarchical intent detection method and triple-scoring mechanism for entity linking. A specially designed spatial GCN is also utilized to model spatial context information among entities. We have conducted extensive experimental evaluations with state-of-the-art entity linking and intent detection methods, which demonstrated that can outperform all baselines with a significant margin.
Popular metrics used for evaluating image captioning systems, such as BLEU and CIDEr, provide a single score to gauge the system’s overall effectiveness. This score is often not informative enough to indicate what specific errors are made by a given system. In this study, we present a fine-grained evaluation method REO for automatically measuring the performance of image captioning systems. REO assesses the quality of captions from three perspectives: 1) Relevance to the ground truth, 2) Extraness of the content that is irrelevant to the ground truth, and 3) Omission of the elements in the images and human references. Experiments on three benchmark datasets demonstrate that our method achieves a higher consistency with human judgments and provides more intuitive evaluation results than alternative metrics.
This paper presents a new metric called TIGEr for the automatic evaluation of image captioning systems. Popular metrics, such as BLEU and CIDEr, are based solely on text matching between reference captions and machine-generated captions, potentially leading to biased evaluations because references may not fully cover the image content and natural language is inherently ambiguous. Building upon a machine-learned text-image grounding model, TIGEr allows to evaluate caption quality not only based on how well a caption represents image content, but also on how well machine-generated captions match human-generated captions. Our empirical tests show that TIGEr has a higher consistency with human judgments than alternative existing metrics. We also comprehensively assess the metric’s effectiveness in caption evaluation by measuring the correlation between human judgments and metric scores.
In this paper, we introduce our cross-lingual linked data lexica, called xLiD-Lexica, which are constructed by exploiting the multilingual Wikipedia and linked data resources from Linked Open Data (LOD). We provide the cross-lingual groundings of linked data resources from LOD as RDF data, which can be easily integrated into the LOD data sources. In addition, we build a SPARQL endpoint over our xLiD-Lexica to allow users to easily access them using SPARQL query language. Multilingual and cross-lingual information access can be facilitated by the availability of such lexica, e.g., allowing for an easy mapping of natural language expressions in different languages to linked data resources from LOD. Many tasks in natural language processing, such as natural language generation, cross-lingual entity linking, text annotation and question answering, can benefit from our xLiD-Lexica.
In recent years large repositories of structured knowledge (DBpedia, Freebase, YAGO) have become a valuable resource for language technologies, especially for the automatic aggregation of knowledge from textual data. One essential component of language technologies, which leverage such knowledge bases, is the linking of words or phrases in specific text documents with elements from the knowledge base (KB). We call this semantic annotation. In the same time, initiatives like Wikidata try to make those knowledge bases less language dependent in order to allow cross-lingual or language independent knowledge access. This poses a new challenge to semantic annotation tools which typically are language dependent and link documents in one language to a structured knowledge base grounded in the same language. Ultimately, the goal is to construct cross-lingual semantic annotation tools that can link words or phrases in one language to a structured knowledge database in any other language or to a language independent representation. To support this line of research we developed what we believe could serve as a gold standard Resource for Evaluating Cross-lingual Semantic Annotation (RECSA). We compiled a hand-annotated parallel corpus of 300 news articles in three languages with cross-lingual semantic groundings to the English Wikipedia and DBPedia. We hope that this new language resource, which is freely available, will help to establish a standard test set and methodology to comparatively evaluate cross-lingual semantic annotation technologies.
Notre travail concerne l’analyse automatique des énoncés d’opinion en chinois. En nous inspirant de la théorie linguistique de l’Appraisal, nous proposons une méthode fondée sur l’usage de lexiques et de règles locales pour déterminer les caractéristiques telles que la Force (intensité), le Focus (prototypicalité) et la polarité de tels énoncés. Nous présentons le modèle et sa mise en oeuvre sur un corpus journalistique. Si pour la détection d’énoncés d’opinion, la précision est bonne (94 %), le taux de rappel (67 %) pose cependant des questions sur l’enrichissement des ressources actuelles.