Kristian Kersting


2023

pdf
Speaking Multiple Languages Affects the Moral Bias of Language Models
Katharina Haemmerl | Bjoern Deiseroth | Patrick Schramowski | Jindřich Libovický | Constantin Rothkopf | Alexander Fraser | Kristian Kersting
Findings of the Association for Computational Linguistics: ACL 2023

Pre-trained multilingual language models (PMLMs) are commonly used when dealing with data from multiple languages and cross-lingual transfer. However, PMLMs are trained on varying amounts of data for each language. In practice this means their performance is often much better on English than many other languages. We explore to what extent this also applies to moral norms. Do the models capture moral norms from English and impose them on other languages? Do the models exhibit random and thus potentially harmful beliefs in certain languages? Both these issues could negatively impact cross-lingual transfer and potentially lead to harmful outcomes. In this paper, we (1) apply the MORALDIRECTION framework to multilingual models, comparing results in German, Czech, Arabic, Chinese, and English, (2) analyse model behaviour on filtered parallel subtitles corpora, and (3) apply the models to a Moral Foundations Questionnaire, comparing with human responses from different countries. Our experiments demonstrate that, indeed, PMLMs encode differing moral biases, but these do not necessarily correspond to cultural differences or commonalities in human opinions. We release our code and models.

2022

pdf
Adaptable Adapters
Nafise Moosavi | Quentin Delfosse | Kristian Kersting | Iryna Gurevych
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

State-of-the-art pretrained NLP models contain a hundred million to trillion parameters. Adapters provide a parameter-efficient alternative for the full finetuning in which we can only finetune lightweight neural network layers on top of pretrained weights. Adapter layers are initialized randomly. However, existing work uses the same adapter architecture—i.e., the same adapter layer on top of each layer of the pretrained model—for every dataset, regardless of the properties of the dataset or the amount of available training data. In this work, we introduce adaptable adapters that contain (1) learning different activation functions for different layers and different input data, and (2) a learnable switch to select and only use the beneficial adapter layers. We show that adaptable adapters achieve on-par performances with the standard adapter architecture while using a considerably smaller number of adapter layers. In addition, we show that the selected adapter architecture by adaptable adapters transfers well across different data settings and similar tasks. We propose to use adaptable adapters for designing efficient and effective adapter architectures. The resulting adapters (a) contain about 50% of the learning parameters of the standard adapter and are therefore more efficient at training and inference, and require less storage space, and (b) achieve considerably higher performances in low-data settings.