The retrieval model is an indispensable component for real-world knowledge-intensive tasks, e.g., open-domain question answering (ODQA). As separate retrieval skills are annotated for different datasets, recent work focuses on customized methods, limiting the model transfer- ability and scalability. In this work, we propose a modular retriever where individual modules correspond to key skills that can be reused across datasets. Our approach supports flexible skill configurations based on the target domain to boost performance. To mitigate task interference, we design a novel modularization parameterization inspired by sparse Transformer. We demonstrate that our model can benefit from self-supervised pretraining on Wikipedia and fine-tuning using multiple ODQA datasets, both in a multi-task fashion. Our approach outperforms recent self-supervised retrievers in zero-shot evaluations and achieves state-of-the-art fine-tuned retrieval performance on NQ, HotpotQA and OTT-QA.
Procedural text understanding is a challenging language reasoning task that requires models to track entity states across the development of a narrative. We identify three core aspects required for modeling this task, namely the local and global view of the inputs, as well as the global view of outputs. Prior methods have considered a subset of these aspects, which leads to either low precision or low recall. In this paper, we propose a new model Coalescing Global and Local Information (CGLI), which builds entity- and timestep-aware input representations (local input) considering the whole context (global input), and we jointly model the entity states with a structured prediction objective (global output). Thus, CGLI simultaneously optimizes for both precision and recall. Moreover, we extend CGLI with additional output layers and integrate it into a story reasoning framework. Extensive experiments on a popular procedural text understanding dataset show that our model achieves state-of-the-art results, while experiments on a story reasoning benchmark show the positive impact of our model on downstream reasoning.
We propose a novel open-domain question answering (ODQA) framework for answering single/multi-hop questions across heterogeneous knowledge sources.The key novelty of our method is the introduction of the intermediary modules into the current retriever-reader pipeline.Unlike previous methods that solely rely on the retriever for gathering all evidence in isolation,our intermediary performs a chain of reasoning over the retrieved set.Specifically, our method links the retrieved evidence with its related global context into graphs and organizes them into a candidate list of evidence chains.Built upon pretrained language models, our system achieves competitive performance on two ODQA datasets, OTT-QA and NQ, against tables and passages from Wikipedia.In particular, our model substantially outperforms the previous state-of-the-art on OTT-QA with an exact match score of 47.3 (45% relative gain).
The retriever-reader framework is popular for open-domain question answering (ODQA) due to its ability to use explicit knowledge.Although prior work has sought to increase the knowledge coverage by incorporating structured knowledge beyond text, accessing heterogeneous knowledge sources through a unified interface remains an open question. While data-to-text generation has the potential to serve as a universal interface for data and text, its feasibility for downstream tasks remains largely unknown. In this work, we bridge this gap and use the data-to-text method as a means for encoding structured knowledge for open-domain question answering. Specifically, we propose a verbalizer-retriever-reader framework for ODQA over data and text where verbalized tables from Wikipedia and graphs from Wikidata are used as augmented knowledge sources. We show that our Unified Data and Text QA, UDT-QA, can effectively benefit from the expanded knowledge index, leading to large gains over text-only baselines. Notably, our approach sets the single-model state-of-the-art on Natural Questions. Furthermore, our analyses indicate that verbalized knowledge is preferred for answer reasoning for both adapted and hot-swap settings.
Commonsense reasoning benchmarks have been largely solved by fine-tuning language models. The downside is that fine-tuning may cause models to overfit to task-specific data and thereby forget their knowledge gained during pre-training. Recent works only propose lightweight model updates as models may already possess useful knowledge from past experience, but a challenge remains in understanding what parts and to what extent models should be refined for a given task. In this paper, we investigate what models learn from commonsense reasoning datasets. We measure the impact of three different adaptation methods on the generalization and accuracy of models. Our experiments with two models show that fine-tuning performs best, by learning both the content and the structure of the task, but suffers from overfitting and limited generalization to novel answers. We observe that alternative adaptation methods like prefix-tuning have comparable accuracy, but generalize better to unseen answers and are more robust to adversarial splits.
In this paper, we describe our systems for solving the two Doc2Dial shared task: knowledge identification and response generation. We proposed several pre-processing and post-processing methods, and we experimented with data augmentation by pre-training the models on other relevant datasets. Our best model for knowledge identification outperformed the baseline by 10.5+ f1-score on the test-dev split, and our best model for response generation outperformed the baseline by 11+ Sacrebleu score on the test-dev split.
The field of question answering (QA) has seen rapid growth in new tasks and modeling approaches in recent years. Large scale datasets and focus on challenging linguistic phenomena have driven development in neural models, some of which have achieved parity with human performance in limited cases. However, an examination of state-of-the-art model output reveals that a gap remains in reasoning ability compared to a human, and performance tends to degrade when models are exposed to less-constrained tasks. We are interested in more clearly defining the strengths and limitations of leading models across diverse QA challenges, intending to help future researchers with identifying pathways to generalizable performance. We conduct extensive qualitative and quantitative analyses on the results of four models across four datasets and relate common errors to model capabilities. We also illustrate limitations in the datasets we examine and discuss a way forward for achieving generalizable models and datasets that broadly test QA capabilities.
Non-extractive commonsense QA remains a challenging AI task, as it requires systems to reason about, synthesize, and gather disparate pieces of information, in order to generate responses to queries. Recent approaches on such tasks show increased performance, only when models are either pre-trained with additional information or when domain-specific heuristics are used, without any special consideration regarding the knowledge resource type. In this paper, we perform a survey of recent commonsense QA methods and we provide a systematic analysis of popular knowledge resources and knowledge-integration methods, across benchmarks from multiple commonsense datasets. Our results and analysis show that attention-based injection seems to be a preferable choice for knowledge integration and that the degree of domain overlap, between knowledge bases and datasets, plays a crucial role in determining model success.
This paper presents a new corpus and a robust deep learning architecture for a task in reading comprehension, passage completion, on multiparty dialog. Given a dialog in text and a passage containing factual descriptions about the dialog where mentions of the characters are replaced by blanks, the task is to fill the blanks with the most appropriate character names that reflect the contexts in the dialog. Since there is no dataset that challenges the task of passage completion in this genre, we create a corpus by selecting transcripts from a TV show that comprise 1,681 dialogs, generating passages for each dialog through crowdsourcing, and annotating mentions of characters in both the dialog and the passages. Given this dataset, we build a deep neural model that integrates rich feature extraction from convolutional neural networks into sequence modeling in recurrent neural networks, optimized by utterance and dialog level attentions. Our model outperforms the previous state-of-the-art model on this task in a different genre using bidirectional LSTM, showing a 13.0+% improvement for longer dialogs. Our analysis shows the effectiveness of the attention mechanisms and suggests a direction to machine comprehension on multiparty dialog.