Jinfeng Rao


2022

pdf
Improving Compositional Generalization with Self-Training for Data-to-Text Generation
Sanket Vaibhav Mehta | Jinfeng Rao | Yi Tay | Mihir Kale | Ankur Parikh | Emma Strubell
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Data-to-text generation focuses on generating fluent natural language responses from structured meaning representations (MRs). Such representations are compositional and it is costly to collect responses for all possible combinations of atomic meaning schemata, thereby necessitating few-shot generalization to novel MRs. In this work, we systematically study the compositional generalization of the state-of-the-art T5 models in few-shot data-to-text tasks. We show that T5 models fail to generalize to unseen MRs, and we propose a template-based input representation that considerably improves the model’s generalization capability. To further improve the model’s performance, we propose an approach based on self-training using fine-tuned BLEURT for pseudo-response selection. On the commonly-used SGD and Weather benchmarks, the proposed self-training approach improves tree accuracy by 46%+ and reduces the slot error rates by 73%+ over the strong T5 baselines in few-shot settings.

2019

pdf
Incorporating Contextual and Syntactic Structures Improves Semantic Similarity Modeling
Linqing Liu | Wei Yang | Jinfeng Rao | Raphael Tang | Jimmy Lin
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Semantic similarity modeling is central to many NLP problems such as natural language inference and question answering. Syntactic structures interact closely with semantics in learning compositional representations and alleviating long-range dependency issues. How-ever, such structure priors have not been well exploited in previous work for semantic mod-eling. To examine their effectiveness, we start with the Pairwise Word Interaction Model, one of the best models according to a recent reproducibility study, then introduce components for modeling context and structure using multi-layer BiLSTMs and TreeLSTMs. In addition, we introduce residual connections to the deep convolutional neural network component of the model. Extensive evaluations on eight benchmark datasets show that incorporating structural information contributes to consistent improvements over strong baselines.

pdf
Bridging the Gap between Relevance Matching and Semantic Matching for Short Text Similarity Modeling
Jinfeng Rao | Linqing Liu | Yi Tay | Wei Yang | Peng Shi | Jimmy Lin
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

A core problem of information retrieval (IR) is relevance matching, which is to rank documents by relevance to a user’s query. On the other hand, many NLP problems, such as question answering and paraphrase identification, can be considered variants of semantic matching, which is to measure the semantic distance between two pieces of short texts. While at a high level both relevance and semantic matching require modeling textual similarity, many existing techniques for one cannot be easily adapted to the other. To bridge this gap, we propose a novel model, HCAN (Hybrid Co-Attention Network), that comprises (1) a hybrid encoder module that includes ConvNet-based and LSTM-based encoders, (2) a relevance matching module that measures soft term matches with importance weighting at multiple granularities, and (3) a semantic matching module with co-attention mechanisms that capture context-aware semantic relatedness. Evaluations on multiple IR and NLP benchmarks demonstrate state-of-the-art effectiveness compared to approaches that do not exploit pretraining on external data. Extensive ablation studies suggest that relevance and semantic matching signals are complementary across many problem settings, regardless of the choice of underlying encoders.

pdf
The OSU/Facebook Realizer for SRST 2019: Seq2Seq Inflection and Serialized Tree2Tree Linearization
Kartikeya Upasani | David King | Jinfeng Rao | Anusha Balakrishnan | Michael White
Proceedings of the 2nd Workshop on Multilingual Surface Realisation (MSR 2019)

We describe our exploratory system for the shallow surface realization task, which combines morphological inflection using character sequence-to-sequence models with a baseline linearizer that implements a tree-to-tree model using sequence-to-sequence models on serialized trees. Results for morphological inflection were competitive across languages. Due to time constraints, we could only submit complete results (including linearization) for English. Preliminary linearization results were decent, with a small benefit from reranking to prefer valid output trees, but inadequate control over the words in the output led to poor quality on longer sentences.

pdf
Simple Attention-Based Representation Learning for Ranking Short Social Media Posts
Peng Shi | Jinfeng Rao | Jimmy Lin
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

This paper explores the problem of ranking short social media posts with respect to user queries using neural networks. Instead of starting with a complex architecture, we proceed from the bottom up and examine the effectiveness of a simple, word-level Siamese architecture augmented with attention-based mechanisms for capturing semantic “soft” matches between query and post tokens. Extensive experiments on datasets from the TREC Microblog Tracks show that our simple models not only achieve better effectiveness than existing approaches that are far more complex or exploit a more diverse set of relevance signals, but are also much faster.

pdf
Constrained Decoding for Neural NLG from Compositional Representations in Task-Oriented Dialogue
Anusha Balakrishnan | Jinfeng Rao | Kartikeya Upasani | Michael White | Rajen Subba
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Generating fluent natural language responses from structured semantic representations is a critical step in task-oriented conversational systems. Avenues like the E2E NLG Challenge have encouraged the development of neural approaches, particularly sequence-to-sequence (Seq2Seq) models for this problem. The semantic representations used, however, are often underspecified, which places a higher burden on the generation model for sentence planning, and also limits the extent to which generated responses can be controlled in a live system. In this paper, we (1) propose using tree-structured semantic representations, like those used in traditional rule-based NLG systems, for better discourse-level structuring and sentence-level planning; (2) introduce a challenging dataset using this representation for the weather domain; (3) introduce a constrained decoding approach for Seq2Seq models that leverages this representation to improve semantic correctness; and (4) demonstrate promising results on our dataset and the E2E dataset.

pdf
Lightweight and Efficient Neural Natural Language Processing with Quaternion Networks
Yi Tay | Aston Zhang | Anh Tuan Luu | Jinfeng Rao | Shuai Zhang | Shuohang Wang | Jie Fu | Siu Cheung Hui
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Many state-of-the-art neural models for NLP are heavily parameterized and thus memory inefficient. This paper proposes a series of lightweight and memory efficient neural architectures for a potpourri of natural language processing (NLP) tasks. To this end, our models exploit computation using Quaternion algebra and hypercomplex spaces, enabling not only expressive inter-component interactions but also significantly (75%) reduced parameter size due to lesser degrees of freedom in the Hamilton product. We propose Quaternion variants of models, giving rise to new architectures such as the Quaternion attention Model and Quaternion Transformer. Extensive experiments on a battery of NLP tasks demonstrates the utility of proposed Quaternion-inspired models, enabling up to 75% reduction in parameter size without significant loss in performance.

pdf
Simple and Effective Curriculum Pointer-Generator Networks for Reading Comprehension over Long Narratives
Yi Tay | Shuohang Wang | Anh Tuan Luu | Jie Fu | Minh C. Phan | Xingdi Yuan | Jinfeng Rao | Siu Cheung Hui | Aston Zhang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

This paper tackles the problem of reading comprehension over long narratives where documents easily span over thousands of tokens. We propose a curriculum learning (CL) based Pointer-Generator framework for reading/sampling over large documents, enabling diverse training of the neural model based on the notion of alternating contextual difficulty. This can be interpreted as a form of domain randomization and/or generative pretraining during training. To this end, the usage of the Pointer-Generator softens the requirement of having the answer within the context, enabling us to construct diverse training samples for learning. Additionally, we propose a new Introspective Alignment Layer (IAL), which reasons over decomposed alignments using block-based self-attention. We evaluate our proposed method on the NarrativeQA reading comprehension benchmark, achieving state-of-the-art performance, improving existing baselines by 51% relative improvement on BLEU-4 and 17% relative improvement on Rouge-L. Extensive ablations confirm the effectiveness of our proposed IAL and CL components.

pdf
A Tree-to-Sequence Model for Neural NLG in Task-Oriented Dialog
Jinfeng Rao | Kartikeya Upasani | Anusha Balakrishnan | Michael White | Anuj Kumar | Rajen Subba
Proceedings of the 12th International Conference on Natural Language Generation

Generating fluent natural language responses from structured semantic representations is a critical step in task-oriented conversational systems. Sequence-to-sequence models on flat meaning representations (MR) have been dominant in this task, for example in the E2E NLG Challenge. Previous work has shown that a tree-structured MR can improve the model for better discourse-level structuring and sentence-level planning. In this work, we propose a tree-to-sequence model that uses a tree-LSTM encoder to leverage the tree structures in the input MR, and further enhance the decoding by a structure-enhanced attention mechanism. In addition, we explore combining these enhancements with constrained decoding to improve semantic correctness. Our experiments not only show significant improvements over standard seq2seq baselines, but also is more data-efficient and generalizes better to hard scenarios.

2016

pdf
UMD-TTIC-UW at SemEval-2016 Task 1: Attention-Based Multi-Perspective Convolutional Neural Networks for Textual Similarity Measurement
Hua He | John Wieting | Kevin Gimpel | Jinfeng Rao | Jimmy Lin
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)