Jason Weston


2023

pdf
The CRINGE Loss: Learning what language not to model
Leonard Adolphs | Tianyu Gao | Jing Xu | Kurt Shuster | Sainbayar Sukhbaatar | Jason Weston
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Standard language model training employs gold human documents or human-human interaction data, and treats all training data as positive examples. Growing evidence shows that even with very large amounts of positive training data, issues remain that can be alleviated with relatively small amounts of negative data – examples of what the model should not do. In this work, we propose a novel procedure to train with such data called the “CRINGE” loss (ContRastive Iterative Negative GEneration). We show the effectiveness of this approach across three different experiments on the tasks of safe generation, contradiction avoidance, and open-domain dialogue. Our models outperform multiple strong baselines and are conceptually simple, easy to train and implement.

pdf
Learning New Skills after Deployment: Improving open-domain internet-driven dialogue with human feedback
Jing Xu | Megan Ung | Mojtaba Komeili | Kushal Arora | Y-Lan Boureau | Jason Weston
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Frozen models trained to mimic static datasets can never improve their performance. Models that can employ internet-retrieval for up-to-date information and obtain feedback from humans during deployment provide the promise of both adapting to new information, and improving their performance. In this work we study how to improve internet-driven conversational skills in such a learning framework. We collect deployment data, which we make publicly available, of human interactions, and collect various types of human feedback – including binary quality measurements, free-form text feedback, and fine-grained reasons for failure. We then study various algorithms for improving from such feedback, including standard supervised learning, rejection sampling, model-guiding and reward-based learning, in order to make recommendations on which type of feed- back and algorithms work best. We find the recently introduced DIRECTOR model (Arora et al., 2022) shows significant improvements over other existing approaches.

2022

pdf
Human Evaluation of Conversations is an Open Problem: comparing the sensitivity of various methods for evaluating dialogue agents
Eric Smith | Orion Hsu | Rebecca Qian | Stephen Roller | Y-Lan Boureau | Jason Weston
Proceedings of the 4th Workshop on NLP for Conversational AI

At the heart of improving conversational AI is the open problem of how to evaluate conversations. Issues with automatic metrics are well known (Liu et al., 2016), with human evaluations still considered the gold standard. Unfortunately, how to perform human evaluations is also an open problem: differing data collection methods have varying levels of human agreement and statistical sensitivity, resulting in differing amounts of human annotation hours and labor costs. In this work we compare five different crowdworker-based human evaluation methods and find that different methods are best depending on the types of models compared, with no clear winner across the board. While this highlights the open problems in the area, our analysis leads to advice of when to use which one, and possible future directions.

pdf
Am I Me or You? State-of-the-Art Dialogue Models Cannot Maintain an Identity
Kurt Shuster | Jack Urbanek | Arthur Szlam | Jason Weston
Findings of the Association for Computational Linguistics: NAACL 2022

State-of-the-art dialogue models still often stumble with regards to factual accuracy and self-contradiction. Anecdotally, they have been observed to fail to maintain character identity throughout discourse; and more specifically, may take on the role of their interlocutor. In this work we formalize and quantify this deficiency, and show experimentally through human evaluations that this is indeed a problem. In contrast, we show that discriminative models trained specifically to recognize who is speaking can perform well; and further, these can be used as automated metrics. Finally, we evaluate a wide variety of mitigation methods, including changes to model architecture, training protocol, and decoding strategy. Our best models reduce mistaken identity issues by nearly 65% according to human annotators, while simultaneously improving engagingness. Despite these results, we find that maintaining character identity still remains a challenging problem.

pdf
Language Models that Seek for Knowledge: Modular Search & Generation for Dialogue and Prompt Completion
Kurt Shuster | Mojtaba Komeili | Leonard Adolphs | Stephen Roller | Arthur Szlam | Jason Weston
Findings of the Association for Computational Linguistics: EMNLP 2022

Language models (LMs) have recently been shown to generate more factual responses by employing modularity (Zhou et al., 2022) in combination with retrieval (Adolphs et al., 2021). We extend the recent approach of Adolphs et al. (2021) to include internet search as a module. Our SeeKeR (Search engine->Knowledge->Response) method thus applies a single LM to three modular tasks in succession: search, generating knowledge, and generating a final response. We show that, when using SeeKeR as a dialogue model, it outperforms the state-of-the-art model BlenderBot 2 (Chen et al., 2021) on open-domain knowledge-grounded conversations for the same number of parameters, in terms of consistency, knowledge and per-turn engagingness. SeeKeR applied to topical prompt completions as a standard language model outperforms GPT2 (Radford et al., 2019) and GPT3 (Brown et al., 2020) in terms of factuality and topicality, despite GPT3 being a vastly larger model. Our code and models are made publicly available.

pdf
Reason first, then respond: Modular Generation for Knowledge-infused Dialogue
Leonard Adolphs | Kurt Shuster | Jack Urbanek | Arthur Szlam | Jason Weston
Findings of the Association for Computational Linguistics: EMNLP 2022

Large language models can produce fluent dialogue but often hallucinate factual inaccuracies. While retrieval-augmented models help alleviate this issue, they still face a difficult challenge of both reasoning to provide correct knowledge and generating conversation simultaneously. In this work, we propose a modular model, Knowledge to Response (K2R), for incorporating knowledge into conversational agents, which breaks down this problem into two easier steps. K2R first generates a knowledge sequence, given a dialogue context, as an intermediate step. After this “reasoning step”, the model then attends to its own generated knowledge sequence, as well as the dialogue context, to produce a final response. In detailed experiments, we find that such a model hallucinates less in knowledge-grounded dialogue tasks, and has advantages in terms of interpretability and modularity. In particular, it can be used to fuse QA and dialogue systems together to enable dialogue agents to give knowledgeable answers, or QA models to give conversational responses in a zero-shot setting.

pdf
Beyond Goldfish Memory: Long-Term Open-Domain Conversation
Jing Xu | Arthur Szlam | Jason Weston
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite recent improvements in open-domain dialogue models, state of the art models are trained and evaluated on short conversations with little context. In contrast, the long-term conversation setting has hardly been studied. In this work we collect and release a human-human dataset consisting of multiple chat sessions whereby the speaking partners learn about each other’s interests and discuss the things they have learnt from past sessions. We show how existing models trained on existing datasets perform poorly in this long-term conversation setting in both automatic and human evaluations, and we study long-context models that can perform much better. In particular, we find retrieval-augmented methods and methods with an ability to summarize and recall previous conversations outperform the standard encoder-decoder architectures currently considered state of the art.

pdf
Internet-Augmented Dialogue Generation
Mojtaba Komeili | Kurt Shuster | Jason Weston
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The largest store of continually updating knowledge on our planet can be accessed via internet search. In this work we study giving access to this information to conversational agents. Large language models, even though they store an impressive amount of knowledge within their weights, are known to hallucinate facts when generating dialogue (Shuster et al., 2021); moreover, those facts are frozen in time at the point of model training. In contrast, we propose an approach that learns to generate an internet search query based on the context, and then conditions on the search results to finally generate a response, a method that can employ up-to-the-minute relevant information. We train and evaluate such models on a newly collected dataset of human-human conversations whereby one of the speakers is given access to internet search during knowledgedriven discussions in order to ground their responses. We find that search-query based access of the internet in conversation provides superior performance compared to existing approaches that either use no augmentation or FAISS-based retrieval (Lewis et al., 2020b).

pdf
Director: Generator-Classifiers For Supervised Language Modeling
Kushal Arora | Kurt Shuster | Sainbayar Sukhbaatar | Jason Weston
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Current language models achieve low perplexity but their resulting generations still suffer from toxic responses, repetitiveness, and contradictions. The standard language modeling setup fails to address these issues. In this paper, we introduce a new architecture, Director, that consists of a unified generator-classifier with both a language modeling and a classification head for each output token. Training is conducted jointly using both standard language modeling data, and data labeled with desirable and undesirable sequences. Experiments in several settings show that the model has competitive training and decoding speed compared to standard language models while yielding superior results, avoiding undesirable behaviors while maintaining generation quality. It also outperforms existing model guiding approaches in terms of both accuracy and efficiency. Our code is made publicly available.

2021

pdf
Recipes for Building an Open-Domain Chatbot
Stephen Roller | Emily Dinan | Naman Goyal | Da Ju | Mary Williamson | Yinhan Liu | Jing Xu | Myle Ott | Eric Michael Smith | Y-Lan Boureau | Jason Weston
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Building open-domain chatbots is a challenging area for machine learning research. While prior work has shown that scaling neural models in the number of parameters and the size of the data they are trained on gives improved results, we highlight other ingredients. Good conversation requires blended skills: providing engaging talking points, and displaying knowledge, empathy and personality appropriately, while maintaining a consistent persona. We show that large scale models can learn these skills when given appropriate training data and choice of generation strategy. We build variants of these recipes with 90M, 2.7B and 9.4B parameter models, and make our models and code publicly available. Human evaluations show our best models outperform existing approaches in multi-turn dialogue on engagingness and humanness measurements. We then discuss the limitations of this work by analyzing failure cases of our models.

pdf
Dialogue in the Wild: Learning from a Deployed Role-Playing Game with Humans and Bots
Kurt Shuster | Jack Urbanek | Emily Dinan | Arthur Szlam | Jason Weston
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Retrieval Augmentation Reduces Hallucination in Conversation
Kurt Shuster | Spencer Poff | Moya Chen | Douwe Kiela | Jason Weston
Findings of the Association for Computational Linguistics: EMNLP 2021

Despite showing increasingly human-like conversational abilities, state-of-the-art dialogue models often suffer from factual incorrectness and hallucination of knowledge (Roller et al., 2020). In this work we explore the use of neural-retrieval-in-the-loop architectures - recently shown to be effective in open-domain QA (Lewis et al., 2020b; Izacard and Grave, 2020) - for knowledge-grounded dialogue, a task that is arguably more challenging as it requires querying based on complex multi-turn dialogue context and generating conversationally coherent responses. We study various types of architectures with multiple components - retrievers, rankers, and encoder-decoders - with the goal of maximizing knowledgeability while retaining conversational ability. We demonstrate that our best models obtain state-of-the-art performance on two knowledge-grounded conversational tasks. The models exhibit open-domain conversational capabilities, generalize effectively to scenarios not within the training data, and, as verified by human evaluations, substantially reduce the well-known problem of knowledge hallucination in state-of-the-art chatbots.

pdf
Multi-Modal Open-Domain Dialogue
Kurt Shuster | Eric Michael Smith | Da Ju | Jason Weston
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recent work in open-domain conversational agents has demonstrated that significant improvements in humanness and user preference can be achieved via massive scaling in both pre-training data and model size (Adiwardana et al., 2020; Roller et al., 2020). However, if we want to build agents with human-like abilities, we must expand beyond handling just text. A particularly important topic is the ability to see images and communicate about what is perceived. With the goal of getting humans to engage in multi-modal dialogue, we investigate combining components from state-of-the-art open-domain dialogue agents with those from state-of-the-art vision models. We study incorporating different image fusion schemes and domain-adaptive pre-training and fine-tuning strategies, and show that our best resulting model outperforms strong existing models in multi-modal dialogue while simultaneously performing as well as its predecessor (text-only) BlenderBot (Roller et al., 2020) in text-based conversation. We additionally investigate and incorporate safety components in our final model, and show that such efforts do not diminish model performance with respect to human preference.

pdf
I like fish, especially dolphins: Addressing Contradictions in Dialogue Modeling
Yixin Nie | Mary Williamson | Mohit Bansal | Douwe Kiela | Jason Weston
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

To quantify how well natural language understanding models can capture consistency in a general conversation, we introduce the DialoguE COntradiction DEtection task (DECODE) and a new conversational dataset containing both human-human and human-bot contradictory dialogues. We show that: (i) our newly collected dataset is notably more effective at providing supervision for the dialogue contradiction detection task than existing NLI data including those aimed to cover the dialogue domain; (ii) Transformer models that explicitly hinge on utterance structures for dialogue contradiction detection are more robust and generalize well on both analysis and out-of-distribution dialogues than standard (unstructured) Transformers. We also show that our best contradiction detection model correlates well with human judgments and further provide evidence for its usage in both automatically evaluating and improving the consistency of state-of-the-art generative chatbots.

pdf
How to Motivate Your Dragon: Teaching Goal-Driven Agents to Speak and Act in Fantasy Worlds
Prithviraj Ammanabrolu | Jack Urbanek | Margaret Li | Arthur Szlam | Tim Rocktäschel | Jason Weston
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We seek to create agents that both act and communicate with other agents in pursuit of a goal. Towards this end, we extend LIGHT (Urbanek et al. 2019)—a large-scale crowd-sourced fantasy text-game—with a dataset of quests. These contain natural language motivations paired with in-game goals and human demonstrations; completing a quest might require dialogue or actions (or both). We introduce a reinforcement learning system that (1) incorporates large-scale language modeling-based and commonsense reasoning-based pre-training to imbue the agent with relevant priors; and (2) leverages a factorized action space of action commands and dialogue, balancing between the two. We conduct zero-shot evaluations using held-out human expert demonstrations, showing that our agents are able to act consistently and talk naturally with respect to their motivations.

pdf
Bot-Adversarial Dialogue for Safe Conversational Agents
Jing Xu | Da Ju | Margaret Li | Y-Lan Boureau | Jason Weston | Emily Dinan
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Conversational agents trained on large unlabeled corpora of human interactions will learn patterns and mimic behaviors therein, which include offensive or otherwise toxic behavior. We introduce a new human-and-model-in-the-loop framework for evaluating the toxicity of such models, and compare a variety of existing methods in both the cases of non-adversarial and adversarial users that expose their weaknesses. We then go on to propose two novel methods for safe conversational agents, by either training on data from our new human-and-model-in-the-loop framework in a two-stage system, or ”baking-in” safety to the generative model itself. We find our new techniques are (i) safer than existing models; while (ii) maintaining usability metrics such as engagingness relative to state-of-the-art chatbots. In contrast, we expose serious safety issues in existing standard systems like GPT2, DialoGPT, and BlenderBot.

2020

pdf
Can You Put it All Together: Evaluating Conversational Agents’ Ability to Blend Skills
Eric Michael Smith | Mary Williamson | Kurt Shuster | Jason Weston | Y-Lan Boureau
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Being engaging, knowledgeable, and empathetic are all desirable general qualities in a conversational agent. Previous work has introduced tasks and datasets that aim to help agents to learn those qualities in isolation and gauge how well they can express them. But rather than being specialized in one single quality, a good open-domain conversational agent should be able to seamlessly blend them all into one cohesive conversational flow. In this work, we investigate several ways to combine models trained towards isolated capabilities, ranging from simple model aggregation schemes that require minimal additional training, to various forms of multi-task training that encompass several skills at all training stages. We further propose a new dataset, BlendedSkillTalk, to analyze how these capabilities would mesh together in a natural conversation, and compare the performance of different architectures and training schemes. Our experiments show that multi-tasking over several tasks that focus on particular capabilities results in better blended conversation performance compared to models trained on a single skill, and that both unified or two-stage approaches perform well if they are constructed to avoid unwanted bias in skill selection or are fine-tuned on our new task.

pdf
Image-Chat: Engaging Grounded Conversations
Kurt Shuster | Samuel Humeau | Antoine Bordes | Jason Weston
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

To achieve the long-term goal of machines being able to engage humans in conversation, our models should captivate the interest of their speaking partners. Communication grounded in images, whereby a dialogue is conducted based on a given photo, is a setup naturally appealing to humans (Hu et al., 2014). In this work we study large-scale architectures and datasets for this goal. We test a set of neural architectures using state-of-the-art image and text representations, considering various ways to fuse the components. To test such models, we collect a dataset of grounded human-human conversations, where speakers are asked to play roles given a provided emotional mood or style, as the use of such traits is also a key factor in engagingness (Guo et al., 2019). Our dataset, Image-Chat, consists of 202k dialogues over 202k images using 215 possible style traits. Automatic metrics and human evaluations of engagingness show the efficacy of our approach; in particular, we obtain state-of-the-art performance on the existing IGC task, and our best performing model is almost on par with humans on the Image-Chat test set (preferred 47.7% of the time).

pdf
The Dialogue Dodecathlon: Open-Domain Knowledge and Image Grounded Conversational Agents
Kurt Shuster | Da Ju | Stephen Roller | Emily Dinan | Y-Lan Boureau | Jason Weston
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We introduce dodecaDialogue: a set of 12 tasks that measures if a conversational agent can communicate engagingly with personality and empathy, ask questions, answer questions by utilizing knowledge resources, discuss topics and situations, and perceive and converse about images. By multi-tasking on such a broad large-scale set of data, we hope to both move towards and measure progress in producing a single unified agent that can perceive, reason and converse with humans in an open-domain setting. We show that such multi-tasking improves over a BERT pre-trained baseline, largely due to multi-tasking with very large dialogue datasets in a similar domain, and that the multi-tasking in general provides gains to both text and image-based tasks using several metrics in both the fine-tune and task transfer settings. We obtain state-of-the-art results on many of the tasks, providing a strong baseline for this challenge.

pdf
Don’t Say That! Making Inconsistent Dialogue Unlikely with Unlikelihood Training
Margaret Li | Stephen Roller | Ilia Kulikov | Sean Welleck | Y-Lan Boureau | Kyunghyun Cho | Jason Weston
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Generative dialogue models currently suffer from a number of problems which standard maximum likelihood training does not address. They tend to produce generations that (i) rely too much on copying from the context, (ii) contain repetitions within utterances, (iii) overuse frequent words, and (iv) at a deeper level, contain logical flaws.In this work we show how all of these problems can be addressed by extending the recently introduced unlikelihood loss (Welleck et al., 2019) to these cases. We show that appropriate loss functions which regularize generated outputs to match human distributions are effective for the first three issues. For the last important general issue, we show applying unlikelihood to collected data of what a model should not do is effective for improving logical consistency, potentially paving the way to generative models with greater reasoning ability. We demonstrate the efficacy of our approach across several dialogue tasks.

pdf
Adversarial NLI: A New Benchmark for Natural Language Understanding
Yixin Nie | Adina Williams | Emily Dinan | Mohit Bansal | Jason Weston | Douwe Kiela
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We introduce a new large-scale NLI benchmark dataset, collected via an iterative, adversarial human-and-model-in-the-loop procedure. We show that training models on this new dataset leads to state-of-the-art performance on a variety of popular NLI benchmarks, while posing a more difficult challenge with its new test set. Our analysis sheds light on the shortcomings of current state-of-the-art models, and shows that non-expert annotators are successful at finding their weaknesses. The data collection method can be applied in a never-ending learning scenario, becoming a moving target for NLU, rather than a static benchmark that will quickly saturate.

pdf
Multi-Dimensional Gender Bias Classification
Emily Dinan | Angela Fan | Ledell Wu | Jason Weston | Douwe Kiela | Adina Williams
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Machine learning models are trained to find patterns in data. NLP models can inadvertently learn socially undesirable patterns when training on gender biased text. In this work, we propose a novel, general framework that decomposes gender bias in text along several pragmatic and semantic dimensions: bias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker. Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information. In addition, we collect a new, crowdsourced evaluation benchmark. Distinguishing between gender bias along multiple dimensions enables us to train better and more fine-grained gender bias classifiers. We show our classifiers are valuable for a variety of applications, like controlling for gender bias in generative models, detecting gender bias in arbitrary text, and classifying text as offensive based on its genderedness.

pdf
Queens are Powerful too: Mitigating Gender Bias in Dialogue Generation
Emily Dinan | Angela Fan | Adina Williams | Jack Urbanek | Douwe Kiela | Jason Weston
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Social biases present in data are often directly reflected in the predictions of models trained on that data. We analyze gender bias in dialogue data, and examine how this bias is not only replicated, but is also amplified in subsequent generative chit-chat dialogue models. We measure gender bias in six existing dialogue datasets before selecting the most biased one, the multi-player text-based fantasy adventure dataset LIGHT, as a testbed for bias mitigation techniques. We consider three techniques to mitigate gender bias: counterfactual data augmentation, targeted data collection, and bias controlled training. We show that our proposed techniques mitigate gender bias by balancing the genderedness of generated dialogue utterances, and find that they are particularly effective in combination. We evaluate model performance with a variety of quantitative methods—including the quantity of gendered words, a dialogue safety classifier, and human assessments—all of which show that our models generate less gendered, but equally engaging chit-chat responses.

2019

pdf
Learning to Speak and Act in a Fantasy Text Adventure Game
Jack Urbanek | Angela Fan | Siddharth Karamcheti | Saachi Jain | Samuel Humeau | Emily Dinan | Tim Rocktäschel | Douwe Kiela | Arthur Szlam | Jason Weston
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We introduce a large-scale crowdsourced text adventure game as a research platform for studying grounded dialogue. In it, agents can perceive, emote, and act whilst conducting dialogue with other agents. Models and humans can both act as characters within the game. We describe the results of training state-of-the-art generative and retrieval models in this setting. We show that in addition to using past dialogue, these models are able to effectively use the state of the underlying world to condition their predictions. In particular, we show that grounding on the details of the local environment, including location descriptions, and the objects (and their affordances) and characters (and their previous actions) present within it allows better predictions of agent behavior and dialogue. We analyze the ingredients necessary for successful grounding in this setting, and how each of these factors relate to agents that can talk and act successfully.

pdf
Recommendation as a Communication Game: Self-Supervised Bot-Play for Goal-oriented Dialogue
Dongyeop Kang | Anusha Balakrishnan | Pararth Shah | Paul Crook | Y-Lan Boureau | Jason Weston
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Traditional recommendation systems produce static rather than interactive recommendations invariant to a user’s specific requests, clarifications, or current mood, and can suffer from the cold-start problem if their tastes are unknown. These issues can be alleviated by treating recommendation as an interactive dialogue task instead, where an expert recommender can sequentially ask about someone’s preferences, react to their requests, and recommend more appropriate items. In this work, we collect a goal-driven recommendation dialogue dataset (GoRecDial), which consists of 9,125 dialogue games and 81,260 conversation turns between pairs of human workers recommending movies to each other. The task is specifically designed as a cooperative game between two players working towards a quantifiable common goal. We leverage the dataset to develop an end-to-end dialogue system that can simultaneously converse and recommend. Models are first trained to imitate the behavior of human players without considering the task goal itself (supervised training). We then finetune our models on simulated bot-bot conversations between two paired pre-trained models (bot-play), in order to achieve the dialogue goal. Our experiments show that models finetuned with bot-play learn improved dialogue strategies, reach the dialogue goal more often when paired with a human, and are rated as more consistent by humans compared to models trained without bot-play. The dataset and code are publicly available through the ParlAI framework.

pdf
Finding Generalizable Evidence by Learning to Convince Q&A Models
Ethan Perez | Siddharth Karamcheti | Rob Fergus | Jason Weston | Douwe Kiela | Kyunghyun Cho
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We propose a system that finds the strongest supporting evidence for a given answer to a question, using passage-based question-answering (QA) as a testbed. We train evidence agents to select the passage sentences that most convince a pretrained QA model of a given answer, if the QA model received those sentences instead of the full passage. Rather than finding evidence that convinces one model alone, we find that agents select evidence that generalizes; agent-chosen evidence increases the plausibility of the supported answer, as judged by other QA models and humans. Given its general nature, this approach improves QA in a robust manner: using agent-selected evidence (i) humans can correctly answer questions with only ~20% of the full passage and (ii) QA models can generalize to longer passages and harder questions.

pdf
Build it Break it Fix it for Dialogue Safety: Robustness from Adversarial Human Attack
Emily Dinan | Samuel Humeau | Bharath Chintagunta | Jason Weston
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

The detection of offensive language in the context of a dialogue has become an increasingly important application of natural language processing. The detection of trolls in public forums (Galán-García et al., 2016), and the deployment of chatbots in the public domain (Wolf et al., 2017) are two examples that show the necessity of guarding against adversarially offensive behavior on the part of humans. In this work, we develop a training scheme for a model to become robust to such human attacks by an iterative build it, break it, fix it scheme with humans and models in the loop. In detailed experiments we show this approach is considerably more robust than previous systems. Further, we show that offensive language used within a conversation critically depends on the dialogue context, and cannot be viewed as a single sentence offensive detection task as in most previous work. Our newly collected tasks and methods are all made open source and publicly available.

pdf
What makes a good conversation? How controllable attributes affect human judgments
Abigail See | Stephen Roller | Douwe Kiela | Jason Weston
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

A good conversation requires balance – between simplicity and detail; staying on topic and changing it; asking questions and answering them. Although dialogue agents are commonly evaluated via human judgments of overall quality, the relationship between quality and these individual factors is less well-studied. In this work, we examine two controllable neural text generation methods, conditional training and weighted decoding, in order to control four important attributes for chit-chat dialogue: repetition, specificity, response-relatedness and question-asking. We conduct a large-scale human evaluation to measure the effect of these control parameters on multi-turn interactive conversations on the PersonaChat task. We provide a detailed analysis of their relationship to high-level aspects of conversation, and show that by controlling combinations of these variables our models obtain clear improvements in human quality judgments.

pdf
ELI5: Long Form Question Answering
Angela Fan | Yacine Jernite | Ethan Perez | David Grangier | Jason Weston | Michael Auli
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We introduce the first large-scale corpus for long form question answering, a task requiring elaborate and in-depth answers to open-ended questions. The dataset comprises 270K threads from the Reddit forum “Explain Like I’m Five” (ELI5) where an online community provides answers to questions which are comprehensible by five year olds. Compared to existing datasets, ELI5 comprises diverse questions requiring multi-sentence answers. We provide a large set of web documents to help answer the question. Automatic and human evaluations show that an abstractive model trained with a multi-task objective outperforms conventional Seq2Seq, language modeling, as well as a strong extractive baseline.However, our best model is still far from human performance since raters prefer gold responses in over 86% of cases, leaving ample opportunity for future improvement.

pdf
Learning from Dialogue after Deployment: Feed Yourself, Chatbot!
Braden Hancock | Antoine Bordes | Pierre-Emmanuel Mazare | Jason Weston
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

The majority of conversations a dialogue agent sees over its lifetime occur after it has already been trained and deployed, leaving a vast store of potential training signal untapped. In this work, we propose the self-feeding chatbot, a dialogue agent with the ability to extract new training examples from the conversations it participates in. As our agent engages in conversation, it also estimates user satisfaction in its responses. When the conversation appears to be going well, the user’s responses become new training examples to imitate. When the agent believes it has made a mistake, it asks for feedback; learning to predict the feedback that will be given improves the chatbot’s dialogue abilities further. On the PersonaChat chit-chat dataset with over 131k training examples, we find that learning from dialogue with a self-feeding chatbot significantly improves performance, regardless of the amount of traditional supervision.

pdf
Dialogue Natural Language Inference
Sean Welleck | Jason Weston | Arthur Szlam | Kyunghyun Cho
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Consistency is a long standing issue faced by dialogue models. In this paper, we frame the consistency of dialogue agents as natural language inference (NLI) and create a new natural language inference dataset called Dialogue NLI. We propose a method which demonstrates that a model trained on Dialogue NLI can be used to improve the consistency of a dialogue model, and evaluate the method with human evaluation and with automatic metrics on a suite of evaluation sets designed to measure a dialogue model’s consistency.

pdf
Importance of Search and Evaluation Strategies in Neural Dialogue Modeling
Ilia Kulikov | Alexander Miller | Kyunghyun Cho | Jason Weston
Proceedings of the 12th International Conference on Natural Language Generation

We investigate the impact of search strategies in neural dialogue modeling. We first compare two standard search algorithms, greedy and beam search, as well as our newly proposed iterative beam search which produces a more diverse set of candidate responses. We evaluate these strategies in realistic full conversations with humans and propose a model-based Bayesian calibration to address annotator bias. These conversations are analyzed using two automatic metrics: log-probabilities assigned by the model and utterance diversity. Our experiments reveal that better search algorithms lead to higher rated conversations. However, finding the optimal selection mechanism to choose from a more diverse set of candidates is still an open question.

2018

pdf
Jump to better conclusions: SCAN both left and right
Jasmijn Bastings | Marco Baroni | Jason Weston | Kyunghyun Cho | Douwe Kiela
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP

Lake and Baroni (2018) recently introduced the SCAN data set, which consists of simple commands paired with action sequences and is intended to test the strong generalization abilities of recurrent sequence-to-sequence models. Their initial experiments suggested that such models may fail because they lack the ability to extract systematic rules. Here, we take a closer look at SCAN and show that it does not always capture the kind of generalization that it was designed for. To mitigate this we propose a complementary dataset, which requires mapping actions back to the original commands, called NACS. We show that models that do well on SCAN do not necessarily do well on NACS, and that NACS exhibits properties more closely aligned with realistic use-cases for sequence-to-sequence models.

pdf
Retrieve and Refine: Improved Sequence Generation Models For Dialogue
Jason Weston | Emily Dinan | Alexander Miller
Proceedings of the 2018 EMNLP Workshop SCAI: The 2nd International Workshop on Search-Oriented Conversational AI

Sequence generation models for dialogue are known to have several problems: they tend to produce short, generic sentences that are uninformative and unengaging. Retrieval models on the other hand can surface interesting responses, but are restricted to the given retrieval set leading to erroneous replies that cannot be tuned to the specific context. In this work we develop a model that combines the two approaches to avoid both their deficiencies: first retrieve a response and then refine it – the final sequence generator treating the retrieval as additional context. We show on the recent ConvAI2 challenge task our approach produces responses superior to both standard retrieval and generation models in human evaluations.

pdf
Personalizing Dialogue Agents: I have a dog, do you have pets too?
Saizheng Zhang | Emily Dinan | Jack Urbanek | Arthur Szlam | Douwe Kiela | Jason Weston
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Chit-chat models are known to have several problems: they lack specificity, do not display a consistent personality and are often not very captivating. In this work we present the task of making chit-chat more engaging by conditioning on profile information. We collect data and train models to (i)condition on their given profile information; and (ii) information about the person they are talking to, resulting in improved dialogues, as measured by next utterance prediction. Since (ii) is initially unknown our model is trained to engage its partner with personal topics, and we show the resulting dialogue can be used to predict profile information about the interlocutors.

2017

pdf
Reading Wikipedia to Answer Open-Domain Questions
Danqi Chen | Adam Fisch | Jason Weston | Antoine Bordes
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper proposes to tackle open-domain question answering using Wikipedia as the unique knowledge source: the answer to any factoid question is a text span in a Wikipedia article. This task of machine reading at scale combines the challenges of document retrieval (finding the relevant articles) with that of machine comprehension of text (identifying the answer spans from those articles). Our approach combines a search component based on bigram hashing and TF-IDF matching with a multi-layer recurrent neural network model trained to detect answers in Wikipedia paragraphs. Our experiments on multiple existing QA datasets indicate that (1) both modules are highly competitive with respect to existing counterparts and (2) multitask learning using distant supervision on their combination is an effective complete system on this challenging task.

pdf bib
Proceedings of the 2nd Workshop on Representation Learning for NLP
Phil Blunsom | Antoine Bordes | Kyunghyun Cho | Shay Cohen | Chris Dyer | Edward Grefenstette | Karl Moritz Hermann | Laura Rimell | Jason Weston | Scott Yih
Proceedings of the 2nd Workshop on Representation Learning for NLP

pdf
ParlAI: A Dialog Research Software Platform
Alexander Miller | Will Feng | Dhruv Batra | Antoine Bordes | Adam Fisch | Jiasen Lu | Devi Parikh | Jason Weston
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

We introduce ParlAI (pronounced “par-lay”), an open-source software platform for dialog research implemented in Python, available at http://parl.ai. Its goal is to provide a unified framework for sharing, training and testing dialog models; integration of Amazon Mechanical Turk for data collection, human evaluation, and online/reinforcement learning; and a repository of machine learning models for comparing with others’ models, and improving upon existing architectures. Over 20 tasks are supported in the first release, including popular datasets such as SQuAD, bAbI tasks, MCTest, WikiQA, QACNN, QADailyMail, CBT, bAbI Dialog, Ubuntu, OpenSubtitles and VQA. Several models are integrated, including neural models such as memory networks, seq2seq and attentive LSTMs.

2016

pdf
Key-Value Memory Networks for Directly Reading Documents
Alexander Miller | Adam Fisch | Jesse Dodge | Amir-Hossein Karimi | Antoine Bordes | Jason Weston
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Proceedings of the 1st Workshop on Representation Learning for NLP
Phil Blunsom | Kyunghyun Cho | Shay Cohen | Edward Grefenstette | Karl Moritz Hermann | Laura Rimell | Jason Weston | Scott Wen-tau Yih
Proceedings of the 1st Workshop on Representation Learning for NLP

2015

pdf
Learning Anaphoricity and Antecedent Ranking Features for Coreference Resolution
Sam Wiseman | Alexander M. Rush | Stuart Shieber | Jason Weston
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

pdf
A Neural Attention Model for Abstractive Sentence Summarization
Alexander M. Rush | Sumit Chopra | Jason Weston
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

2014

pdf
Question Answering with Subgraph Embeddings
Antoine Bordes | Sumit Chopra | Jason Weston
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

pdf
#TagSpace: Semantic Embeddings from Hashtags
Jason Weston | Sumit Chopra | Keith Adams
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)


Embedding Methods for Natural Language Processing
Antoine Bordes | Jason Weston
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts

Embedding-based models are popular tools in Natural Language Processing these days. In this tutorial, our goal is to provide an overview of the main advances in this domain. These methods learn latent representations of words, as well as database entries that can then be used to do semantic search, automatic knowledge base construction, natural language understanding, etc. Our current plan is to split the tutorial into 2 sessions of 90 minutes, with a 30 minutes coffee break in the middle, so that we can cover in a first session the basics of learning embeddings and advanced models in the second session. This is detailed in the following.Part 1: Unsupervised and Supervised EmbeddingsWe introduce models that embed tokens (words, database entries) by representing them as low dimensional embedding vectors. Unsupervised and supervised methods will be discussed, including SVD, Word2Vec, Paragraph Vectors, SSI, Wsabie and others. A comparison between methods will be made in terms of applicability, type of loss function (ranking loss, reconstruction loss, classification loss), regularization, etc. The use of these models in several NLP tasks will be discussed, including question answering, frame identification, knowledge extraction and document retrieval.Part 2: Embeddings for Multi-relational DataThis second part will focus mostly on the construction of embeddings for multi-relational data, that is when tokens can be interconnected in different ways in the data such as in knowledge bases for instance. Several methods based on tensor factorization, collective matrix factorization, stochastic block models or energy-based learning will be presented. The task of link prediction in a knowledge base will be used as an application example. Multiple empirical results on the use of embedding models to align textual information to knowledge bases will also be presented, together with some demos if time permits.

pdf
Semantic Frame Identification with Distributed Word Representations
Karl Moritz Hermann | Dipanjan Das | Jason Weston | Kuzman Ganchev
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2013

pdf
Connecting Language and Knowledge Bases with Embedding Models for Relation Extraction
Jason Weston | Antoine Bordes | Oksana Yakhnenko | Nicolas Usunier
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

2007

pdf
Fast Semantic Extraction Using a Novel Neural Network Architecture
Ronan Collobert | Jason Weston
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics