François Remy


2023

pdf
Detecting Idiomatic Multiword Expressions in Clinical Terminology using Definition-Based Representation Learning
François Remy | Alfiya Khabibullina | Thomas Demeester
Proceedings of the 19th Workshop on Multiword Expressions (MWE 2023)

This paper shines a light on the potential of definition-based semantic models for detecting idiomatic and semi-idiomatic multiword expressions (MWEs) in clinical terminology. Our study focuses on biomedical entities defined in the UMLS ontology and aims to help prioritize the translation efforts of these entities. In particular, we develop an effective tool for scoring the idiomaticity of biomedical MWEs based on the degree of similarity between the semantic representations of those MWEs and a weighted average of the representation of their constituents. We achieve this using a biomedical language model trained to produce similar representations for entity names and their definitions, called BioLORD. The importance of this definition-based approach is highlighted by comparing the BioLORD model to two other state-of-the-art biomedical language models based on Transformer: SapBERT and CODER. Our results show that the BioLORD model has a strong ability to identify idiomatic MWEs, not replicated in other models. Our corpus-free idiomaticity estimation helps ontology translators to focus on more challenging MWEs.

2022

pdf
BioLORD: Learning Ontological Representations from Definitions for Biomedical Concepts and their Textual Descriptions
François Remy | Kris Demuynck | Thomas Demeester
Findings of the Association for Computational Linguistics: EMNLP 2022

This work introduces BioLORD, a new pre-training strategy for producing meaningful representations for clinical sentences and biomedical concepts. State-of-the-art methodologies operate by maximizing the similarity in representation of names referring to the same concept, and preventing collapse through contrastive learning. However, because biomedical names are not always self-explanatory, it sometimes results in non-semantic representations. BioLORD overcomes this issue by grounding its concept representations using definitions, as well as short descriptions derived from a multi-relational knowledge graph consisting of biomedical ontologies. Thanks to this grounding, our model produces more semantic concept representations that match more closely the hierarchical structure of ontologies. BioLORD establishes a new state of the art for text similarity on both clinical sentences (MedSTS) and biomedical concepts (MayoSRS).