Florian Matthes


2023

pdf
Sebis at SemEval-2023 Task 7: A Joint System for Natural Language Inference and Evidence Retrieval from Clinical Trial Reports
Juraj Vladika | Florian Matthes
Proceedings of the The 17th International Workshop on Semantic Evaluation (SemEval-2023)

With the increasing number of clinical trial reports generated every day, it is becoming hard to keep up with novel discoveries that inform evidence-based healthcare recommendations. To help automate this process and assist medical experts, NLP solutions are being developed. This motivated the SemEval-2023 Task 7, where the goal was to develop an NLP system for two tasks: evidence retrieval and natural language inference from clinical trial data. In this paper, we describe our two developed systems. The first one is a pipeline system that models the two tasks separately, while the second one is a joint system that learns the two tasks simultaneously with a shared representation and a multi-task learning approach. The final system combines their outputs in an ensemble system. We formalize the models, present their characteristics and challenges, and provide an analysis of achieved results. Our system ranked 3rd out of 40 participants with a final submission.

pdf
Scientific Fact-Checking: A Survey of Resources and Approaches
Juraj Vladika | Florian Matthes
Findings of the Association for Computational Linguistics: ACL 2023

The task of fact-checking deals with assessing the veracity of factual claims based on credible evidence and background knowledge. In particular, scientific fact-checking is the variation of the task concerned with verifying claims rooted in scientific knowledge. This task has received significant attention due to the growing importance of scientific and health discussions on online platforms. Automated scientific fact-checking methods based on NLP can help combat the spread of misinformation, assist researchers in knowledge discovery, and help individuals understand new scientific breakthroughs. In this paper, we present a comprehensive survey of existing research in this emerging field and its related tasks. We provide a task description, discuss the construction process of existing datasets, and analyze proposed models and approaches. Based on our findings, we identify intriguing challenges and outline potential future directions to advance the field.

2022

pdf
Structured Extraction of Terms and Conditions from German and English Online Shops
Tobias Schamel | Daniel Braun | Florian Matthes
Proceedings of the Fifth Workshop on e-Commerce and NLP (ECNLP 5)

The automated analysis of Terms and Conditions has gained attention in recent years, mainly due to its relevance to consumer protection. Well-structured data sets are the base for every analysis. While content extraction, in general, is a well-researched field and many open source libraries are available, our evaluation shows, that existing solutions cannot extract Terms and Conditions in sufficient quality, mainly because of their special structure. In this paper, we present an approach to extract the content and hierarchy of Terms and Conditions from German and English online shops. Our evaluation shows, that the approach outperforms the current state of the art. A python implementation of the approach is made available under an open license.

pdf
Clause Topic Classification in German and English Standard Form Contracts
Daniel Braun | Florian Matthes
Proceedings of the Fifth Workshop on e-Commerce and NLP (ECNLP 5)

So-called standard form contracts, i.e. contracts that are drafted unilaterally by one party, like terms and conditions of online shops or terms of services of social networks, are cornerstones of our modern economy. Their processing is, therefore, of significant practical value. Often, the sheer size of these contracts allows the drafting party to hide unfavourable terms from the other party. In this paper, we compare different approaches for automatically classifying the topics of clauses in standard form contracts, based on a data-set of more than 6,000 clauses from more than 170 contracts, which we collected from German and English online shops and annotated based on a taxonomy of clause topics, that we developed together with legal experts. We will show that, in our comparison of seven approaches, from simple keyword matching to transformer language models, BERT performed best with an F1-score of up to 0.91, however much simpler and computationally cheaper models like logistic regression also achieved similarly good results of up to 0.87.

pdf bib
Differential Privacy in Natural Language Processing The Story So Far
Oleksandra Klymenko | Stephen Meisenbacher | Florian Matthes
Proceedings of the Fourth Workshop on Privacy in Natural Language Processing

As the tide of Big Data continues to influence the landscape of Natural Language Processing (NLP), the utilization of modern NLP methods has grounded itself in this data, in order to tackle a variety of text-based tasks. These methods without a doubt can include private or otherwise personally identifiable information. As such, the question of privacy in NLP has gained fervor in recent years, coinciding with the development of new Privacy- Enhancing Technologies (PETs). Among these PETs, Differential Privacy boasts several desirable qualities in the conversation surrounding data privacy. Naturally, the question becomes whether Differential Privacy is applicable in the largely unstructured realm of NLP. This topic has sparked novel research, which is unified in one basic goal how can one adapt Differential Privacy to NLP methods? This paper aims to summarize the vulnerabilities addressed by Differential Privacy, the current thinking, and above all, the crucial next steps that must be considered.

pdf
TUM sebis at GermEval 2022: A Hybrid Model Leveraging Gaussian Processes and Fine-Tuned XLM-RoBERTa for German Text Complexity Analysis
Juraj Vladika | Stephen Meisenbacher | Florian Matthes
Proceedings of the GermEval 2022 Workshop on Text Complexity Assessment of German Text

The task of quantifying the complexity of written language presents an interesting endeavor, particularly in the opportunity that it presents for aiding language learners. In this pursuit, the question of what exactly about natural language contributes to its complexity (or lack thereof) is an interesting point of investigation. We propose a hybrid approach, utilizing shallow models to capture linguistic features, while leveraging a fine-tuned embedding model to encode the semantics of input text. By harmonizing these two methods, we achieve competitive scores in the given metric, and we demonstrate improvements over either singular method. In addition, we uncover the effectiveness of Gaussian processes in the training of shallow models for text complexity analysis.

pdf
Semantic Similarity-Based Clustering of Findings From Security Testing Tools
Phillip Schneider | Markus Voggenreiter | Abdullah Gulraiz | Florian Matthes
Proceedings of the 5th International Conference on Natural Language and Speech Processing (ICNLSP 2022)

pdf
A Decade of Knowledge Graphs in Natural Language Processing: A Survey
Phillip Schneider | Tim Schopf | Juraj Vladika | Mikhail Galkin | Elena Simperl | Florian Matthes
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

2021

pdf
Summarization of German Court Rulings
Ingo Glaser | Sebastian Moser | Florian Matthes
Proceedings of the Natural Legal Language Processing Workshop 2021

Historically speaking, the German legal language is widely neglected in NLP research, especially in summarization systems, as most of them are based on English newspaper articles. In this paper, we propose the task of automatic summarization of German court rulings. Due to their complexity and length, it is of critical importance that legal practitioners can quickly identify the content of a verdict and thus be able to decide on the relevance for a given legal case. To tackle this problem, we introduce a new dataset consisting of 100k German judgments with short summaries. Our dataset has the highest compression ratio among the most common summarization datasets. German court rulings contain much structural information, so we create a pre-processing pipeline tailored explicitly to the German legal domain. Additionally, we implement multiple extractive as well as abstractive summarization systems and build a wide variety of baseline models. Our best model achieves a ROUGE-1 score of 30.50. Therefore with this work, we are laying the crucial groundwork for further research on German summarization systems.

pdf
NLP for Consumer Protection: Battling Illegal Clauses in German Terms and Conditions in Online Shopping
Daniel Braun | Florian Matthes
Proceedings of the 1st Workshop on NLP for Positive Impact

Online shopping is an ever more important part of the global consumer economy, not just in times of a pandemic. When we place an order online as consumers, we regularly agree to the so-called “Terms and Conditions” (T&C), a contract unilaterally drafted by the seller. Often, consumers do not read these contracts and unwittingly agree to unfavourable and often void terms. Government and non-government organisations (NGOs) for consumer protection battle such terms on behalf of consumers, who often hesitate to take on legal actions themselves. However, the growing number of online shops and a lack of funding makes it increasingly difficult for such organisations to monitor the market effectively. This paper describes how Natural Language Processing (NLP) can be applied to support consumer advocates in their efforts to protect consumers. Together with two NGOs from Germany, we developed an NLP-based application that legally assesses clauses in T&C from German online shops under the European Union’s (EU) jurisdiction. We report that we could achieve an accuracy of 0.9 in the detection of void clauses by fine-tuning a pre-trained German BERT model. The approach is currently used by two NGOs and has already helped to challenge void clauses in T&C.

2020

pdf
MucLex: A German Lexicon for Surface Realisation
Kira Klimt | Daniel Braun | Daniela Schneider | Florian Matthes
Proceedings of the Twelfth Language Resources and Evaluation Conference

Language resources for languages other than English are often scarce. Rule-based surface realisers need elaborate lexica in order to be able to generate correct language, especially in languages like German, which include many irregular word forms. In this paper, we present MucLex, a German lexicon for the Natural Language Generation task of surface realisation, based on the crowd-sourced online lexicon Wiktionary. MucLex contains more than 100,000 lemmata and more than 670,000 different word forms in a well-structured XML file and is available under the Creative Commons BY-SA 3.0 license.

2019

pdf
SimpleNLG-DE: Adapting SimpleNLG 4 to German
Daniel Braun | Kira Klimt | Daniela Schneider | Florian Matthes
Proceedings of the 12th International Conference on Natural Language Generation

SimpleNLG is a popular open source surface realiser for the English language. For German, however, the availability of open source and non-domain specific realisers is sparse, partly due to the complexity of the German language. In this paper, we present SimpleNLG-DE, an adaption of SimpleNLG to German. We discuss which parts of the German language have been implemented and how we evaluated our implementation using the TIGER Corpus and newly created data-sets.

2017

pdf
SaToS: Assessing and Summarising Terms of Services from German Webshops
Daniel Braun | Elena Scepankova | Patrick Holl | Florian Matthes
Proceedings of the 10th International Conference on Natural Language Generation

Every time we buy something online, we are confronted with Terms of Services. However, only a few people actually read these terms, before accepting them, often to their disadvantage. In this paper, we present the SaToS browser plugin which summarises and simplifies Terms of Services from German webshops.

pdf
Evaluating Natural Language Understanding Services for Conversational Question Answering Systems
Daniel Braun | Adrian Hernandez Mendez | Florian Matthes | Manfred Langen
Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue

Conversational interfaces recently gained a lot of attention. One of the reasons for the current hype is the fact that chatbots (one particularly popular form of conversational interfaces) nowadays can be created without any programming knowledge, thanks to different toolkits and so-called Natural Language Understanding (NLU) services. While these NLU services are already widely used in both, industry and science, so far, they have not been analysed systematically. In this paper, we present a method to evaluate the classification performance of NLU services. Moreover, we present two new corpora, one consisting of annotated questions and one consisting of annotated questions with the corresponding answers. Based on these corpora, we conduct an evaluation of some of the most popular NLU services. Thereby we want to enable both, researchers and companies to make more educated decisions about which service they should use.