In this paper, we present a novel approach for data-to-text generation that addresses the limitations of current methods that primarily focus on specific types of structured data. Our proposed method aims to improve performance in multi-task training, zero-shot and few-shot scenarios by providing a unified representation that can handle various forms of structured data such as tables, knowledge graph triples, and meaning representations. We demonstrate that our proposed approach can effectively adapt to new structured forms, and can improve performance in comparison to current methods. For example, our method resulted in a 66% improvement in zero-shot BLEU scores when transferring models trained on table inputs to a knowledge graph dataset. Our proposed method is an important step towards a more general data-to-text generation framework.
This paper investigates models of event implications. Specifically, how well models predict entity state-changes, by targeting their understanding of physical attributes. Nominally, Large Language models (LLM) have been exposed to procedural knowledge about how objects interact, yet our benchmarking shows they fail to reason about the world. Conversely, we also demonstrate that existing approaches often misrepresent the surprising abilities of LLMs via improper task encodings and that proper model prompting can dramatically improve performance of reported baseline results across multiple tasks. In particular, our results indicate that our prompting technique is especially useful for unseen attributes (out-of-domain) or when only limited data is available.
Social media is an essential tool to share information about crisis events, such as natural disasters. Event Detection aims at extracting information in the form of an event, but considers each event in isolation, without combining information across sentences or events. Many posts in Crisis NLP contain repetitive or complementary information which needs to be aggregated (e.g., the number of trapped people and their location) for disaster response. Although previous approaches in Crisis NLP aggregate information across posts, they only use shallow representations of the content (e.g., keywords), which cannot adequately represent the semantics of a crisis event and its sub-events. In this work, we propose a novel framework to extract critical sub-events from a large-scale crisis event by combining important information across relevant tweets. Our framework first converts all the tweets from a crisis event into a temporally-ordered set of graphs. Then it extracts sub-graphs that represent semantic relationships connecting verbs and nouns in 3 to 6 node sub-graphs. It does this by learning edge weights via Dynamic Graph Convolutional Networks (DGCNs) and extracting smaller, relevant sub-graphs. Our experiments show that our extracted structures (1) are semantically meaningful sub-events and (2) contain information important for the large crisis-event. Furthermore, we show that our approach significantly outperforms event detection baselines, highlighting the importance of aggregating information across tweets for our task.
Advances in word representations have shown tremendous improvements in downstream NLP tasks, but lack semantic interpretability. In this paper, we introduce Definition Frames (DF), a matrix distributed representation extracted from definitions, where each dimension is semantically interpretable. DF dimensions correspond to the Qualia structure relations: a set of relations that uniquely define a term. Our results show that DFs have competitive performance with other distributional semantic approaches on word similarity tasks.
Social media has become an important tool to share information about crisis events such as natural disasters and mass attacks. Detecting actionable posts that contain useful information requires rapid analysis of huge volumes of data in real-time. This poses a complex problem due to the large amount of posts that do not contain any actionable information. Furthermore, the classification of information in real-time systems requires training on out-of-domain data, as we do not have any data from a new emerging crisis. Prior work focuses on models pre-trained on similar event types. However, those models capture unnecessary event-specific biases, like the location of the event, which affect the generalizability and performance of the classifiers on new unseen data from an emerging new event. In our work, we train an adversarial neural model to remove latent event-specific biases and improve the performance on tweet importance classification.
Recent methods for Event Detection focus on Deep Learning for automatic feature generation and feature ranking. However, most of those approaches fail to exploit rich semantic information, which results in relatively poor recall. This paper is a small & focused contribution, where we introduce an Event Detection and classification system, based on deep semantic information retrieved from a frame-semantic parser. Our experiments show that our system achieves higher recall than state-of-the-art systems. Further, we claim that enhancing our system with deep learning techniques like feature ranking can achieve even better results, as it can benefit from both approaches.
There has been a long standing interest in understanding ‘Social Influence’ both in Social Sciences and in Computational Linguistics. In this paper, we present a novel approach to study and measure interpersonal influence in daily interactions. Motivated by the basic principles of influence, we attempt to identify indicative linguistic features of the posts in an online knitting community. We present the scheme used to operationalize and label the posts as influential or non-influential. Experiments with the identified features show an improvement in the classification accuracy of influence by 3.15%. Our results illustrate the important correlation between the structure of the language and its potential to influence others.