Boan Liu


2023

pdf
PAD-Net: An Efficient Framework for Dynamic Networks
Shwai He | Liang Ding | Daize Dong | Boan Liu | Fuqiang Yu | Dacheng Tao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Dynamic networks, e.g., Dynamic Convolution (DY-Conv) and the Mixture of Experts (MoE), have been extensively explored as they can considerably improve the model’s representation power with acceptable computational cost. The common practice in implementing dynamic networks is to convert the given static layers into fully dynamic ones where all parameters are dynamic (at least within a single layer) and vary with the input. However, such a fully dynamic setting may cause redundant parameters and high deployment costs, limiting the applicability of dynamic networks to a broader range of tasks and models. The main contributions of our work are challenging the basic commonsense in dynamic networks and proposing a partially dynamic network, namely PAD-Net, to transform the redundant dynamic parameters into static ones. Also, we further design Iterative Mode Partition to partition dynamic and static parameters efficiently. Our method is comprehensively supported by large-scale experiments with two typical advanced dynamic architectures, i.e., DY-Conv and MoE, on both image classification and GLUE benchmarks. Encouragingly, we surpass the fully dynamic networks by +0.7% top-1 acc with only 30% dynamic parameters for ResNet-50 and +1.9% average score in language understanding with only 50% dynamic parameters for BERT. Code will be released at: https://github.com/Shwai-He/PAD-Net.

2022

pdf
Vega-MT: The JD Explore Academy Machine Translation System for WMT22
Changtong Zan | Keqin Peng | Liang Ding | Baopu Qiu | Boan Liu | Shwai He | Qingyu Lu | Zheng Zhang | Chuang Liu | Weifeng Liu | Yibing Zhan | Dacheng Tao
Proceedings of the Seventh Conference on Machine Translation (WMT)

We describe the JD Explore Academy’s submission of the WMT 2022 shared general translation task. We participated in all high-resource tracks and one medium-resource track, including Chinese-English, German-English, Czech-English, Russian-English, and Japanese-English. We push the limit of our previous work – bidirectional training for translation by scaling up two main factors, i.e. language pairs and model sizes, namely the Vega-MT system. As for language pairs, we scale the “bidirectional” up to the “multidirectional” settings, covering all participating languages, to exploit the common knowledge across languages, and transfer them to the downstream bilingual tasks. As for model sizes, we scale the Transformer-Big up to the extremely large model that owns nearly 4.7 Billion parameters, to fully enhance the model capacity for our Vega-MT. Also, we adopt the data augmentation strategies, e.g. cycle translation for monolingual data, and bidirectional self-training for bilingual and monolingual data, to comprehensively exploit the bilingual and monolingual data. To adapt our Vega-MT to the general domain test set, generalization tuning is designed. Based on the official automatic scores of constrained systems, in terms of the sacreBLEU shown in Figure-1, we got the 1st place on Zh-En (33.5), En-Zh (49.7), De-En (33.7), En-De (37.8), Cs-En (54.9), En-Cs (41.4) and En-Ru (32.7), 2nd place on Ru-En (45.1) and Ja-En (25.6), and 3rd place on En-Ja(41.5), respectively; W.R.T the COMET, we got the 1st place on Zh-En (45.1), En-Zh (61.7), De-En (58.0), En-De (63.2), Cs-En (74.7), Ru-En (64.9), En-Ru (69.6) and En-Ja (65.1), 2nd place on En-Cs (95.3) and Ja-En (40.6), respectively. Models will be released to facilitate the MT community through GitHub and OmniForce Platform.