Recent advances in NLP have led to a rise in inter-disciplinary and application-oriented research. While this demonstrates the growing real-world impact of the field, research papers frequently feature experiments that do not account for the complexities of realistic data and environments. To explore the extent of this gap, we investigate the relationship between the real-world motivations described in NLP papers and the models and evaluation which comprise the proposed solution. We first survey papers from the NLP Applications track from ACL 2020 and EMNLP 2020, asking which papers have differences between their stated motivation and their experimental setting, and if so, mention them. We find that many papers fall short of considering real-world input and output conditions due to adopting simplified modeling or evaluation settings. As a case study, we then empirically show that the performance of an educational dialog understanding system deteriorates when used in a realistic classroom environment.
Neural machine translation (MT) systems have been shown to perform poorly on low-resource language pairs, for which large-scale parallel data is unavailable. Making the data annotation process faster and cheaper is therefore important to ensure equitable access to MT systems. To make optimal use of a limited annotation budget, we present CHIA (choosing instances to annotate), a method for selecting instances to annotate for machine translation. Using an existing multi-way parallel dataset of high-resource languages, we first identify instances, based on model training dynamics, that are most informative for training MT models for high-resource languages. We find that there are cross-lingual commonalities in instances that are useful for MT model training, which we use to identify instances that will be useful to train models on a new target language. Evaluating on 20 languages from two corpora, we show that training on instances selected using our method provides an average performance improvement of 1.59 BLEU over training on randomly selected instances of the same size.
Legal documents such as contracts contain complex and domain-specific jargons, long and nested sentences, and often present with several details that may be difficult to understand for laypeople without domain expertise.In this paper, we explore the problem of text simplification (TS) in legal domain.The main challenge to this is the lack of availability of complex-simple parallel datasets for the legal domain.We investigate some of the existing datasets, methods, and metrics in the TS literature for simplifying legal texts, and perform human evaluation to analyze the gaps.We present some of the challenges involved, and outline a few open questions that need to be addressed for future research in this direction.
Recent advances in natural language processing (NLP) have greatly helped educational applications, for both teachers and students. In higher education, there is great potential to use NLP tools for advancing pedagogical research. In this paper, we focus on how NLP can help understand student experiences in engineering, thus facilitating engineering educators to carry out large scale analysis that is helpful for re-designing the curriculum. Here, we introduce a new task we call response construct tagging (RCT), in which student responses to tailored survey questions are automatically tagged for six constructs measuring transformative experiences and engineering identity of students.We experiment with state-of-the-art classification models for this task and investigate the effects of different sources of additional information. Our best model achieves an F1 score of 48. We further investigate multi-task training on the related task of sentiment classification, which improves our model’s performance to 55 F1. Finally, we provide a detailed qualitative analysis of model performance.
Unlike traditional unsupervised text segmentation methods, recent supervised segmentation models rely on Wikipedia as the source of large-scale segmentation supervision. These models have, however, predominantly been evaluated on the in-domain (Wikipedia-based) test sets, preventing conclusions about their general segmentation efficacy. In this work, we focus on the domain transfer performance of supervised neural text segmentation in the educational domain. To this end, we first introduce K12Seg, a new dataset for evaluation of supervised segmentation, created from educational reading material for grade-1 to college-level students. We then benchmark a hierarchical text segmentation model (HITS), based on RoBERTa, in both in-domain and domain-transfer segmentation experiments. While HITS produces state-of-the-art in-domain performance (on three Wikipedia-based test sets), we show that, subject to the standard full-blown fine-tuning, it is susceptible to domain overfitting. We identify adapter-based fine-tuning as a remedy that substantially improves transfer performance.
High-performing machine translation (MT) systems can help overcome language barriers while making it possible for everyone to communicate and use language technologies in the language of their choice. However, such systems require large amounts of parallel sentences for training, and translators can be difficult to find and expensive. Here, we present a data collection strategy for MT which, in contrast, is cheap and simple, as it does not require bilingual speakers. Based on the insight that humans pay specific attention to movements, we use graphics interchange formats (GIFs) as a pivot to collect parallel sentences from monolingual annotators. We use our strategy to collect data in Hindi, Tamil and English. As a baseline, we also collect data using images as a pivot. We perform an intrinsic evaluation by manually evaluating a subset of the sentence pairs and an extrinsic evaluation by finetuning mBART (Liu et al., 2020) on the collected data. We find that sentences collected via GIFs are indeed of higher quality.
Recent progress in hardware and methodology for training neural networks has ushered in a new generation of large networks trained on abundant data. These models have obtained notable gains in accuracy across many NLP tasks. However, these accuracy improvements depend on the availability of exceptionally large computational resources that necessitate similarly substantial energy consumption. As a result these models are costly to train and develop, both financially, due to the cost of hardware and electricity or cloud compute time, and environmentally, due to the carbon footprint required to fuel modern tensor processing hardware. In this paper we bring this issue to the attention of NLP researchers by quantifying the approximate financial and environmental costs of training a variety of recently successful neural network models for NLP. Based on these findings, we propose actionable recommendations to reduce costs and improve equity in NLP research and practice.
Word sense induction (WSI), which addresses polysemy by unsupervised discovery of multiple word senses, resolves ambiguities for downstream NLP tasks and also makes word representations more interpretable. This paper proposes an accurate and efficient graph-based method for WSI that builds a global non-negative vector embedding basis (which are interpretable like topics) and clusters the basis indexes in the ego network of each polysemous word. By adopting distributional inclusion vector embeddings as our basis formation model, we avoid the expensive step of nearest neighbor search that plagues other graph-based methods without sacrificing the quality of sense clusters. Experiments on three datasets show that our proposed method produces similar or better sense clusters and embeddings compared with previous state-of-the-art methods while being significantly more efficient.