
A Appendix

A.1 Neural Machine Translation with ATR
We replace LSTM/GRU with our proposed ATR
to build NMT models under the attention-based
encoder-decoder framework (Bahdanau et al.,
2015). The encoder that reads a source sentence is
a bidirectional recurrent network. Formally, given
a source sentence x = {x1,x2, . . . ,xn}, the en-
coder is formulated as follows:
−→
h i = ATR(

−→
h i−1,xi),

←−
h i = ATR(

←−
h i+1,xi)

(11)

where ATR(·) is defined by Equation (6&9). The
forward

−→
h i and backward

←−
h i hidden states are

concatenated together to represent the i-th word:
hi = [

−→
h i;
←−
h i].

The decoder is a conditional language model
that predicts the j-th target word via a multilayer
perception:

p(yj |x,y<j) = softmax(g(yj−1, tanh(sj), cj))
(12)

where y<j is a partial translation. cj is the
translation-sensitive semantic vector computed via
the attention mechanism (Bahdanau et al., 2015)
based on the source states {tanh(hi)}ni=1 and in-
ternal target state s̃j , and sj is the j-th target-side
hidden state calculated through a two-level hierar-
chy:

s̃j = ATR(sj−1,yj−1), sj = ATR(s̃j , cj) (13)

A.2 Additional Experiments

A.2.1 Experiments on Chinese-English
Translation

Our training data consists of 1.25M sentence pairs
including 27.9M Chinese words and 34.5M En-
glish words respectively.1 We used the NIST 2005
dataset as our dev set, and the NIST 2002, 2003,
2004, 2006 and 2008 datasets as our test sets.
Unlike WMT14 translation tasks, we used word-
based vocabulary for Chinese-English, preserving
top-30K most frequent source and target words in
the vocabulary. Case-insensitive BLEU-4 metric
was used to evaluate the translation quality.
Translation Results

1This corpora contain LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06.

We compare our model against several ad-
vanced models on the same dataset, including:

• Coverage (Wang et al., 2017): an attention-
based NMT system enhanced with a coverage
mechanism to handle the over-translation and
under-translation problem.

• MemDec (Wang et al., 2017): an attention-
based NMT system that replaces the vanilla
decoder with a memory-enhanced decoder
to better capture important information for
translation.

• DeepLAU (Wang et al., 2017): a deep
attention-based NMT system integrated with
linear associative units that deals better with
gradient propagation.

• Distortion (Zhang et al., 2017c): an
attention-based NMT system that incorpo-
rates word reordering knowledge to encour-
age more accurate attention.

• CAEncoder (Zhang et al., 2017b): the same
as our model but uses GRU unit.

• FPNMT (Zheng et al., 2017): an attention-
based NMT system that leverages past and
future information to improve the attention
model and the decoder states, also using ad-
dition and subtraction operations.

• ASDBNMT (Zhang et al., 2018b): an
attention-based NMT system that is equipped
with a backward decoder to explore bidirec-
tional decoding.

Table 5 summarizes the results. Although our
model does not involve any sub-networks for mod-
eling the coverage, distortion, memory and future
context, our model clearly outperforms all these
advanced models, achieving an average BLEU
score of 39.82 on all test sets. This strongly
suggests that 1) shallow models are also capable
of generating extremely high-quality translations,
and 2) our ATR model indeed has the ability in
capturing translation correspondence in spite of its
simplicity.

A.2.2 Experiments on Natural Language
Inference

Given two sentences, namely a premise and a hy-
pothesis, this task aims at recognizing whether
the premise can entail the hypothesis. We used



System MT05 MT02 MT03 MT04 MT06 MT08
Existing Systems

Coverage (Wang et al., 2017) 34.91 - 34.49 38.34 34.25 -
MemDec (Wang et al., 2017) 35.91 - 36.16 39.81 35.98 -
DeepLAU (Wang et al., 2017) 38.07 - 39.35 41.15 37.29 -
Distortion (Zhang et al., 2017c) 36.71 - 38.33 40.11 35.29 -
CAEncoder (Zhang et al., 2017b) 36.44 40.12 37.63 39.83 35.44 27.34
FPNMT (Zheng et al., 2017) 36.75 39.65 37.90 40.37 34.55 -
ASDBNMT (Zhang et al., 2018b) 38.84 - 40.02 42.32 38.38 -

Our end-to-end NMT systems
this work 39.71 42.95 41.71 43.71 39.61 31.14

Table 5: Case-insensitive BLEU scores of advanced systems on the Chinese-English translation tasks.
“−” indicates that no result is provided in the original paper.

the Stanford Natural Language Inference Corpus
(SNLI) (Bowman et al., 2015) for this experi-
ment, which involves a collection of 570k human-
written English sentence pairs manually labeled
for balanced classification with the labels entail-
ment, contradiction, and neutral. We formulated
this problem as a three-way classification task.

We employed the attentional architec-
ture (Rocktäschel et al., 2016) as our basic
model, and replaced its recurrent unit with our
ATR model. We fixed word embedding initialized
with the pre-trained 300-D Glove vector (Pen-
nington et al., 2014). The hidden size of ATR was
also set to 300. We optimized model parameters
using the Adam method (Kingma and Ba, 2015)
with hyperparameters β1 = 0.9 and β2 = 0.999.
The learning rate was fixed at 0.0005. The mini-
batch size was set to 128. Dropout was applied on
both word embedding layer and pre-classification
layer to avoid overfitting, with a rate of 0.15. The
maximum training epoch was set to 20.
Classification Results

Table 6 shows the results. The GRU equipped
model in our implementation achieves a test ac-
curacy of 84.6% with about 3.2m trainable model
parameters, outperforming the LSTM-enhanced
counterpart (Rocktäschel et al., 2016) by a margin
of 1.1%. By contrast, the same architecture with
ATR model yields a test accuracy of 85.6%, with
merely 1.5m model parameters. In other words,
using fewer parameters, our ATR model gains a
significant improvement of 1.0%, reaching a com-
parable performance against some deep architec-
tures (Cheng et al., 2016).

A.2.3 Experiments on Chinese Word
Segmentation

Chinese word segmentation (CWS) is a fundamen-
tal preprocessing step for Chinese-related NLP

tasks. Unlike other languages, Chinese sentences
are recorded without explicit delimiters. There-
fore, before performing in-depth modeling, re-
searchers need to segment the whole sentence into
a sequence of tokens, which is exactly the goal of
CWS.

Following previous work (Chen et al., 2015),
we formulate CWS as a sequence labeling task.
Each character in a sentence is assigned with a
unique label from the set {B, M, E, S}, where
{B, M, E} indicate Begin, Middle, End of a multi-
character word respectively, and S denotes a Sin-
gle character word. Given a sequence of char-
acters, we first embed them individually through
a character embedding layer, followed by a bidi-
rectional RNN layer to generate context-sensitive
representation for each character. The output rep-
resentations are then passed through a CRF infer-
ence layer to capture dependencies among charac-
ter labels. The whole model is optimized using a
max-margin objective towards minimizing the dif-
ferences between predicted sequences and gold la-
bel sequences.

We used the MSRA and CTB6 datasets to
evaluate our model. The former is provided
by the second International Chinese Word Seg-
mentation Bakeoff (Sproat and Emerson, 2003),
and the latter is from Chinese TreeBank6.0
(LDC2007T36) (Xue et al., 2005). For MSRA
dataset, we split the first 90% sentences of the
training data as the training set and the rest as the
development set. For CTB6 dataset, we divided
the training, development and test sets in the same
way as in (Chen et al., 2015). Precision, recall,
F1-score and out-of-vocabulary (OOV) word re-
call calculated by the standard back-off scoring
program were used for evaluation.

We set the dimensionality of both character



Model d #Params Train Test
LSTM encoders (Bowman et al., 2016) 300 3.0m 83.9 80.6
GRU encoders w/ pretraining (Vendrov et al., 2015) 1024 15m 98.8 81.4
BiLSTM encoders with intra-attention (Liu et al., 2016) 600 2.8m 84.5 84.2
LSTMs w/ word-by-word attention (Rocktäschel et al., 2016) 100 250k 85.3 83.5
mLSTM word-by-word attention model (Wang and Jiang, 2016) 300 1.9m 92.0 86.1
LSTMN with deep attention fusion (Cheng et al., 2016) 450 3.4m 88.5 86.3
BiMPM (Wang et al., 2017b) 100 1.6m 90.9 87.5
this work with GRU 300 3.2m 91.0 84.6
this work with ATR 300 1.5m 90.9 85.6

Table 6: Classification results on the SNLI task. For comparison, we provide the model dimension (d),
the parameter amount (# Params), the training accuracy (Train) and the test accuracy (Test). m: million.
We also provide results of several existing RNN models from the SNLI official website.

Model MSRA CTB6
P R F P R F

(Zheng et al., 2013) 92.9 93.6 93.3 94.0 93.1 93.6
(Pei et al., 2014) 94.6 94.2 94.4 94.4 93.4 93.9
(Chen et al., 2015) 96.7 96.2 96.4 95.0 94.8 94.9
this work + LSTM 95.5 94.9 95.2 93.3 93.1 93.2
this work + GRU 95.2 95.1 95.1 93.3 93.0 93.2
this work + ATR 95.3 95.1 95.2 94.0 93.9 94.0

Table 7: Model performance on MSRA and CTB6 datasets. We report precision (P), recall (R) and
F1-score (F).

embedding and RNN hidden state to be 300.
Model parameters were tuned by Adam algo-
rithm (Kingma and Ba, 2015) with default hyper-
parameters (β1 = 0.9, β2 = 0.999) and mini-
batch size 128. Gradient was clipped when its
norm exceeds 1.0 to avoid gradient explosion.
We applied dropout on both character embedding
layer and pre-CRF layer with a rate of 0.2. The
discount parameter in max-margin objective was
set to 0.2. The maximum training epoch was set to
50. Learning rate was initially set to 0.0005, and
halved after each epoch.
Model Performance

Table 7 shows the overall performance. We
observe that our ATR model performs as ef-
ficient as both GRU and LSTM on this task.
ATR yields a F1-score of 95.2% and 94.0% on
MSRA and CTB6 dataset respectively, almost the
same as that of GRU (95.1%/93.2%) and LSTM
(95.2%/93.2%). Particularly, ATR achieves better
results on CTB6, with a gain of 0.8% F1 points
over GRU and LSTM. This further demonstrates
the effectiveness of the proposed ATR model.


