A Lists of electronic dictionaries

Electronic monolingual dictionaries are rather
widespread compared to machine-readable lexical
databases. Wiktionary’ is a collaborative online
dictionary, where 79 languages have more than
10,000 entries and 42 languages have more than
100,000 entries. BabelNet (Navigli and Ponzetto,
2012) aligns Wikipedia and WordNet to automati-
cally obtain definitions (“glosses” in BabelNet ter-
minology).

Alternatively, Wikipedia provides a list of
monolingual dictionaries.> One can also translate
“dictionary” into the desired language and look up
this term. For example, there are dictionaries for
Friulian and Frisian, which are minority languages
spoken by less than a million speakers.”

B Data

The dump of Wikipedia that we have mentioned
in Section 6 is the dump from the 14th June
2014. Although this dump is not available any-
more online, results should be replicable with
newer dumps.

B.1 Split dictionary setting

We briefly describe the algorithm used to split the
dictionary. If we had used a regular dictionary in-
stead of WordNet, we could have randomly dis-
tributed words into a train, validation and test split.
However, by doing so, we would have put syn-
onyms in two different splits, which could be a
weak form of a test-set leak. On the other hand,
WordNet has sets of synonyms, called synsets,
where two words in a synset necessarily share at
least one definition.

We create batches of words which definitions
do not overlap across batches with the following
algorithm: First, we create maps from words to
their definitions and their converse. We will create
batches indexed by ¢, and we now describe how
to build the batch i. We create a set of definitions
that is initialized as a singleton containing a ran-
dom definition, C; = {d}. We instantiate another
set S; = (that will contain all the words which
definitions overlap with at least one other word of

"https://www.wiktionary.org/

$https://en.wikipedia.org/wiki/List_
of_dictionaries_by_number_of_words

‘https://taalweb.frl/wurdboekportaal
http://www.arlef.it/
grant—-dizionari-talian—-furlan/htdocs/
gdbt £.pl

the set. We iterate over the set C; and pop a def-
inition. Then, we go through all the words that
possess that definition and add them to S;, while
we also add all the other definitions of these words
to C;. We keep iterating over C; until it is empty.
Then we start again the process on a new batch
with a new C; 1 = {d’'} where d’' has never been
added to a C; before.

Then, we order the batches .S; by the number of
words they contain. We choose the largest batch to
be the training set. It can be seen as a large subset
of the vocabulary that is “central”, in a way. By
construction, it contains highly polysemous words
and frequent words, as shown in Table 5.

Although our construction method is very dif-
ferent, it is slightly similar in spirit to the ground-
ing kernel presented by (Picard et al., 2009). They
report that words in the grounding kernel are more
frequent, as we do for the training set. It is also
related to the concept of semantic primes, a subset
of the lexicon from which all other words can be
defined (Wierzbicka, 1996).

C Hyperparameter search

All embeddings are of size 300 for the small
Wikipedia dump experiments and 400 for the large
Wikipedia dump experiments.

C.1 GloVe

GloVe is run only on the definition corpus because
we found word2vec to be superior. We have fixed
the number of epochs to be 50. The window size
varies between {5,7,9,11,15,20} and 2,4, in
{0,5,20,100}, where the selected hyperparame-
ters are bolded.

C.2 Word2vec

We have used gensim implementation. !

On definitions, we do a hyperparame-
ter search on the window size in {5,15}
and on the downsampling threshold in
{0,0.1,0.01,0.001,0.0001}, and we also
choose from the skip-gram or CBOW variant,
where the skip-gram variant is selected.

On the small training corpus, we only use
the skip-gram model and choose the number
of iterations in {5,30}, the window size in
{3,5,7,10}, and the downsampling threshold in
{0,0.1,0.01,0.001,0.0001}, where the selected
hyperparameters are boldened.

0

Yhttps://radimrehurek.com/gensim/

https://www.wiktionary.org/
https://en.wikipedia.org/wiki/List_of_dictionaries_by_number_of_words
https://en.wikipedia.org/wiki/List_of_dictionaries_by_number_of_words
https://taalweb.frl/wurdboekportaal
http://www.arlef.it/grant-dizionari-talian-furlan/htdocs/gdbtf.pl
http://www.arlef.it/grant-dizionari-talian-furlan/htdocs/gdbtf.pl
http://www.arlef.it/grant-dizionari-talian-furlan/htdocs/gdbtf.pl
https://radimrehurek.com/gensim/

Development Similarity Relatedness

SV-d MENd | SL999 SL333 SV-t | RG SCWS MENt MT 353
word2vec 282 735 36.5 14.2 23.0 | 764 642 746 640 68.5
retrofitting 328 744 40.2 20.7 28.2 | 84.0 653 717 656 629
dict2vec 36.5 679 41.0 242 320 | 741 61.7 68.1 579 648
Hill 294 624 31.9 17.2 20.0 | 67.1 53.6 629 52.6 50.7
AE 33.0 45.6 34.7 24.1 303 | 71.5 493 45.5 384 425
CPAE-P (A =16) | 39.3 63.1 45.2 31.5 374 | 69.6 593 60.7 50.2 585

Table 4: Improving pretrained embeddings computed on a large corpus.

Spearman’s correlation coefficient

p x 100 on benchmarks. Same as Table 2 but word2vec is trained on the entire Wikipedia dump. Dict2vec fails to
improve. Retrofitting especially improves relatedness, while CPAE improves similarity.

defs # defs / # words Avg. counts
Train | 36,722 2.87 11.40
Valid | 2,109 1.81 4.07
Test | 128,223 1.13 1.92

Table 5: Statistics of the split dictionary. By con-
struction, the train set contains much more frequent
and polysemous words than the train set. The average
counts are geometric averages of the smoothed counts
of words, computed on the first SOM tokens of the
Wikipedia dump.

On the full training corpus, we have used the
same hyperparameters except that the number of
iteration is reduced to 5, and we have filtered out
words that appear less than 50 times.

C.3 AE, CPAE, Hill’s model

We train the AE and CPAE models with Adam
(Kingma and Ba, 2014) with g; = 0.9, 52 =
0.999, a learning rate of 3 - 10~%, a batch size
of 32. In the settings where we use part of the
dictionary, we use early stopping: every 2,000
batches, we compute the mean cost on the valida-
tion set and stop after 20000 batches without im-
provement. On the full dictionary, where we do
not have a validation set, we train for 50 epochs.

CPAE and AE models always use a recon-
struction cost so « = 1. The A\ parameter that
weights the cost of the consistency penalty varies
in {1,2,4,8,16,32,64}, and the value chosen by
the model selection is indicated in the tables.

C.4 Retrofitting

We have used the original implementation.!! We
have tuned the hyperparameter « that controls the
proximity of the retrofitted vector to the original

"https://github.com/mfaruqui/
retrofitting

vector by grid-search: « € {0.25,0.5,1,2,4}.
The selected value is &« = 0.5 for both the small
and the large corpora.

C.5 Dict2vec

We have wused the original implementa-
tion."’Dict2vec has many hyperparameters.
We fixed K = 5, where the K closest neigh-

bours to each word in the original embeddings
are promoted to form a strong pair, as well
as ng = 4 and n,, = 5, the number of pairs
to sample. We run a grid-search over the hy-
perparameters, the coefficients that weight the
strong and weak pairs importance in the auxil-
iary cost: 85 € {0.4,0.6,0.8,1.0,1.2,1.4} and
Bw € {0.0,0.2,0.4,0.6}. In the smaller data
regime (small dump), s = 1.2 and 3,, = 0, and
in the larger data regime (the entire Wikipedia
dump), the model selection procedure picks
Bs = 0.8 and B, = 0.2. When focusing on the
similarity relation, it seems better not to use weak
pairs, or at least to weight them very low.

D Improving pretrained embeddings on
the full Wikipedia dump

The scores of word2vec are not really improved
by using the much larger full Wikipedia dump, so
we increase the size of the embeddings from 300
to 400. The results are given in Table 4.

The trends are similar to what we have observed
on the first 50 million tokens of Wikipedia. How-
ever, dict2vec seems a bit better and improves over
retrofitting in similarity.

Phttps://github.com/tcal9d/dict2vec

https://github.com/mfaruqui/retrofitting
https://github.com/mfaruqui/retrofitting
https://github.com/tca19/dict2vec

