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Introduction

We are excited to welcome you to this year’s SIGdial Conference, the 19th Annual Meeting of
the Special Interest Group on Discourse and Dialogue. We are pleased to hold the conference in
Melbourne, Australia, on July 12-14th, in close proximity to both ACL 2018 (the 56th Annual Meeting
of the Association for Computational Linguistics) and YRRSDS 2018 (the 14th Young Researchers’
Roundtable on Spoken Dialogue Systems).

The SIGdial conference remains a premier publication venue for research in discourse and dialogue.
This year, the program includes 3 keynote talks, 5 oral presentation sessions, 3 poster sessions including
1 demo session, and a special session entitled “Physically Situated Dialogue.”

We received 111 submissions this year, almost identical to the 113 received in 2017 (which was the 2nd
largest number of submissions to SIGdial in its history). Of the 111 submissions, there were 67 long
papers, 39 short papers, and 5 demo papers. All submissions received at least 3 reviews. We carefully
considered both the numeric ratings and the tenor of the comments, both as written in the reviews and
as submitted in discussions, in making our selections for the program. Overall, the members of the
Program Committee did an excellent job in reviewing the submitted papers. We thank them for their
important role in selecting the accepted papers and for helping to come up with a high quality program
for the conference. In line with the SIGdial tradition, our aim has been to create a balanced program
that accommodates as many favorably rated papers as possible. We accepted 52 papers: 36 long papers,
12 short papers, and 4 demo papers. These numbers give an overall acceptance rate of 47%. The rates
separately for types of papers are 54% for long papers, 31% for short papers, and 80% for demo papers.
After acceptance, 3 papers (2 long and 1 demo) that had also been submitted to other conferences were
withdrawn. Of the long papers, 19 were presented as oral presentations. The remaining long papers and
all the short papers were presented as posters, split across three poster sessions.

This year SIGdial has a special session on the topic ‘“Physically Situated Dialogue”, organized by Sean
Andrist, Stephanie Lukin, Matthew Marge, Jesse Thomason, and Zhou Yu. The special session brings
diverse paper submissions on a topic of growing interest to our technical program, with 7 of the accepted
long papers part of this special session. The special session also features a panel discussion and late-
breaking presentations, allowing for active engagement of the conference participants.

This year’s SIGdial conference runs 3 full days, following the precedent set in 2017. One keynote and
one poster session is held each day, with the remaining time given to oral presentations, demos, and the
special session.

A conference of this scale requires advice, help and enthusiastic participation of many parties and we
have a big ‘thank you’ to say to all of them.

Regarding the program, we thank our three keynote speakers, Mari Ostendorf (University of Washington,
USA), Ingrid Zukerman (Monash University, Australia), and Milica Gasic (University of Cambridge) for
their inspiring talks on socialbots, interpretation in physical settings, and machine learning techniques,
which cover many modern aspects of research in both discourse and dialogue. We also thank the
organizers of the special session who designed the schedule for their accepted papers, and organized
the session with a panel and late-breaking presentations at the venue. We are grateful for their smooth
and efficient coordination with the main conference. We in addition thank Alex Papangelis, Mentoring
Chair for SIGdial 2018, for his dedicated work on the mentoring process. The goal of mentoring is to
assist authors of papers that contain important ideas but lack clarity. In total, 6 of the accepted papers
received mentoring and we would like to thank our mentoring team for their excellent advice and support
to the respective authors.
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We extend special thanks to our Local Chair, Lawrence Cavedon, and his team. SIGdial 2018 would not
have been possible without their effort in arranging the conference venue and accommodations, handling
registration, making banquet arrangements, and numerous preparations for the conference. The student
volunteers for on-site assistance also deserve our sincere appreciation.

Mikio Nakano, our Sponsorship Chair, has conducted the massive task of recruiting and liaising with
our conference sponsors, many of whom continue to contribute year after year. Sponsorships support
valuable aspects of the program, such as lunches, coffees and the conference banquet. We thank
him for his dedicated work and coordination in conference planning. We gratefully acknowledge the
support of our sponsors: (Platinum level) Honda Research Institute Japan, Interactions, and Microsoft
Research; (Gold level) Adobe Research, Amazon, Apple, and Nextremer; (Silver level) Educational
Testing Service (ETS) and Tricom (Beijing) Technology; (Bronze level) Monash University, PolyAl,
and Toshiba Research Europe. We also thank RMIT University for their generous sponsorship as host.

We thank the SIGdial board, especially current and emeritus officers Kallirroi Georgila, Vikram
Ramanarayanan, Ethan Selfridge, Amanda Stent, and Jason Williams, for their advice and support from
beginning to end. We also thank Priscilla Rasmussen at the ACL for tirelessly handling the financial
aspects of sponsorship for SIGdial 2018, and for securing our ISBN.

We once again thank our program committee members for committing their time to help us select a
superb technical program. Finally, we thank all the authors who submitted to the conference and all the
conference participants for making SIGdial 2018 a grand success and for growing the research areas of
discourse and dialogue with their fine work.

Kazunori Komatani
General Chair

Diane Litman and Kai Yu
Program Co-Chairs
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Abstract

This paper introduces zero-shot dialog
generation (ZSDG), as a step towards neu-
ral dialog systems that can instantly gener-
alize to new situations with minimal data.
ZSDG enables an end-to-end generative
dialog system to generalize to a new do-
main for which only a domain descrip-
tion is provided and no training dialogs are
available. Then a novel learning frame-
work, Action Matching, is proposed. This
algorithm can learn a cross-domain em-
bedding space that models the semantics
of dialog responses which, in turn, lets a
neural dialog generation model generalize
to new domains. We evaluate our meth-
ods on a new synthetic dialog dataset, and
an existing human-human dialog dataset.
Results show that our method has supe-
rior performance in learning dialog mod-
els that rapidly adapt their behavior to new
domains and suggests promising future re-
search.!

1 Introduction

The generative end-to-end dialog model (GEDM)
is one of the most powerful methods of learning
dialog agents from raw conversational data in both
chat-oriented and task-oriented domains (Serban
et al., 2016; Wen et al.,, 2016; Zhao et al.,
2017). Its base model is an encoder-decoder net-
work (Cho et al., 2014) that uses an encoder net-
work to encode the dialog context and generate the
next response via a decoder network. Yet prior
work in GEDMs has overlooked an important is-
sue, i.e. the data scarcity problem. In fact, the data

!Code and data are avaliable at https://github.
com/snakeztc/NeuralDialog-ZSDG
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scarcity problem is extremely common in most di-
alog applications due to the wide range of poten-
tial domains that dialog systems can be applied to.
To the best of our knowledge, current GEDMs are
data-hungry and have only been successfully ap-
plied to domains with abundant training material.
This limitation prohibits the possibility of using
the GEDMs for rapid prototyping in new domains
and is only useful for domains with large datasets.

The key idea of this paper lies in developing do-
main descriptions that can capture domain-specific
information and a new type of GEDM model that
can generalize to a new domain based on the do-
main description. Humans exhibit incredible effi-
ciency in achieving this type of adaptation. Imag-
ine that a customer service agent in the shoe de-
partment is transferred to the clothing department.
After reading some relevant instructions and doc-
umentation, this agent can immediately begin to
deal with clothes-related calls without the need
for any example dialogs. We also argue that it is
more efficient and natural for domain experts to
express their knowledge in terms of domain de-
scriptions rather than example dialogs. This is
because creating example dialogs involves writ-
ing down imagined dialog exchanges that can be
shared across multiple domains and are not rele-
vant to the unique proprieties of a specific domain.
However, current state-of-the-art GEDMs are not
designed to incorporate such knowledge and are
therefore incapable of adapting its behavior to un-
seen domains.

This paper introduces the use of zero-shot dia-
log generation (ZSDG) in order to enable GEDMs
to generalize to unseen situations using minimal
dialog data. Building on zero-shot classifica-
tion (Palatucci et al., 2009), we formalize ZSDG
as a learning problem where the training data con-
tains dialog data from source domains along with
domain descriptions from both the source and tar-
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get domains. Then at testing time, ZSDG mod-
els are evaluated on the target domain, where
no training dialogs were available. We approach
ZSDG by first discovering a dialog policy net-
work that can be shared between the source and
target domains. The output from this policy is dis-
tributed vectors which are referred to as latent ac-
tions. Then, in order to transform the latent actions
from any domain back to natural language utter-
ances, a novel Action Matching (AM) algorithm
is proposed that learns a cross-domain latent ac-
tion space that models the semantics of dialog re-
sponses. This in turns enables the GEDM to gen-
erate responses in the target domains even when it
has never observed full dialogs in them.

Finally the proposed methods and baselines are
evaluated on two dialog datasets. The first one is
a new synthetic dialog dataset generated by Sim-
Dial, which was developed for this study. Sim-
Dial enables us to easily generate task-oriented
dialogs in a large number of domains, and pro-
vides a test bed to evaluate different ZSDG ap-
proaches. We further test our methods on a re-
cently released multi-domain human-human cor-
pus (Eric and Manning, 2017b) to validate whether
performance can generalize to real-world conver-
sations. Experimental results show that our meth-
ods are effective in incorporating knowledge from
domain descriptions and achieve strong ZSDG
performance.

2 Related Work

Perhaps the most closely related topic is zero-
shot learning (ZSL) for classification (Larochelle
et al., 2008), which has focused on classifying
unseen labels. A common approach is to repre-
sent the labels as attributes instead of class in-
dexes (Palatucci et al., 2009). As a result, at
test time, the model can first predict the seman-
tic attributes in the input, then make the final
prediction by comparing the predicted attributes
with the candidate labels’ attributes. More re-
cent work (Socher et al., 2013; Romera-Paredes
and Torr, 2015) improved on this idea by learn-
ing parametric models, e.g. neural networks, to
map the label and input data into a joint embed-
ding space and then make predictions. Besides
classification, prior art has explored the notion
of task generalization in robotics, so that a robot
can execute a new task that was not mentioned
in training (Oh et al., 2017; Duan et al., 2017).

In this case, a task is described by a demonstra-
tion or a sequence of instructions, and the system
needs to learn to break down the instructions into
previously learned skills. Also generating out-
of-vocabulary (OOV) words from recurrent neu-
ral networks (RNNs) can be seen as a form of
ZSL, where the OOV words are unseen labels.
Prior work has used delexicalized tags (Zhao et al.,
2017) and copy-mechanism (Gu et al., 2016; Mer-
ity et al., 2016; Elsahar et al., 2018) to enable RNN
output words that are not in its vocabulary.

Finally, ZSL has been applied to individual
components in the dialog system pipeline. Chen
et al. (Chen et al., 2016) developed an intent clas-
sifier that can predict new intent labels that are not
included in the training data. Bapna et al. (Bapna
et al., 2017) extended that idea to the slot-filling
module to track novel slot types. Both papers
leverage a natural language description for the la-
bel (intent or slot-type) in order to learn a seman-
tic embedding of the label space. Then, given any
new labels, the model can still make predictions.
There has also been extensive work on learning
domain-adaptable dialog policy by first training
a dialog policy on previous domains and testing
the policy on a new domain. Gasic et al. (Gasic
and Young, 2014) used the Gaussian Process with
cross-domain kernel functions. The resulting pol-
icy can leverage experience from other domains to
make educated decisions in a new one.

In summary, past ZSL research in the dialog do-
main has mostly focused on the individual mod-
ules in a pipeline-based dialog system. We believe
our proposal is the first step in exploring the notion
of adapting an entire end-to-end dialog system to
new domains for domain generalization.

3 Problem Formulation

We begin by formalizing zero-shot dialog genera-
tion (ZSDG). Generative dialog models take a di-
alog context c as input and then generate the next
response x. ZSDG uses the term domain to de-
scribe the difference between training and testing
data. Let D = D4|JD,; be a set of domains,
where Dy is a set of source domains, Dy is a set of
target domains and Ds N D; = (). During training,
we are given a set of samples {c(™), x(") d("} ~
Dsource (C, X, d) drawn from the source domains.
During testing, a ZSDG model will be given a di-
alog context ¢ and a domain d drawn from the
target domains and must generate the correct re-



sponse x. Moreover, ZSDG assumes that every
domain d has its own domain description ¢(d) that
is available at training for both source and target
domains. The primary goal is to learn a generative
dialog model F : C' x D — X that can perform
well in a target domain, by relating the unseen tar-
get domain description to the seen descriptions of
the source domains. Our secondary goal is that
F should perform similarly to a model that is de-
signed to operate solely in the source domains. In
short, the problem of ZSDG can be summarized
as:

Train Data: {C, X, d} ~ psource(ca X, d)

{¢(d)},de D
Test Data: {C, X, d} ~ ptarget(ca X, d)
Goal: F:CxD — X

4 Proposed Method

4.1 Seed Responses as Domain Descriptions

The design of the domain description ¢ is a crucial
factor that decides whether robust performance in
the target domains is achievable. This paper pro-
poses seed response (SR) as a general-purpose do-
main description that can readily be applied to dif-
ferent dialog domains. SR needs for the develop-
ers to provide a list of example responses that the
model can generate in this domain. SR’s assump-
tion is that a dialog model can discover analogies
between responses from different domains, so that
its dialog policy trained on source domains can
be reused in the target domain. Without losing
generality, SRy defines ¢(d) as {x(V,a®) d}geeq
for domain d, where x is a seed response and
a is its annotations. Annotations are salient fea-
tures that help the system in infer the relationship
amongst responses from different domains. This
may be difficult to achieve using only words in
X, e.g. two domains with distinct word distribu-
tions. For example, in a task-oriented weather
domain, a seed response can be: The weather in
New York is raining and the annotation is a se-
mantic frame that contains domain general dialog
acts and slot arguments, i.e. [Inform, loc=New
York, type=rain]. The number of seed responses
is often much smaller than the number of poten-
tial responses in the domain so it is best for SR
to cover more responses that are unique to this
domain. SRs assume that there is a discourse-
level pattern that can be shared between the source
and target domains, so that a system only needs

sentence-level knowledge to adapt to the target.
This assumption holds in many slot-filling dialog
domains and it is easy to provide utterances in the
target domain that are analogies to the ones from
the source domains.

4.2 Action Matching Encoder-Decoder

Juest

Nhich ile's weaine
X f J A
Hello I'm a weather bot
\Fd \R\ R
>\ T T X: response
i N A: annotation
g +z‘> C ¢ 3 C: dialog context

Z: latent action space

R: response encoder
F®: context encoder
F9: response decoder

Figure 1: An overview of our Action Matching
framework that looks for a latent action space Z
shared by the response, annotation and predicted
latent action from JF°.

Figure 1 shows an overview of the model we
use to tackle ZSDG. The base model is a stan-
dard encoder-decoder F where an encoder F°
maps c¢ and d into a distributed representation
zc = F°(c,d) and the decoder F¢ generates
the response x given z.. We denote the embed-
ding space that z. resides in as the latent ac-
tion space. We follow the KB-as-an-environment
approach (Zhao and Eskenazi, 2016) where the
generated x include both system verbal utter-
ances and API queries that interface with back-end
databases. This base model has been proven to be
effective in human interactive evaluation for task-
oriented dialogs (Zhao et al., 2017).

We have two high-level goals: (1) learn a cross-
domain F that can be reused in all source domains
and potentially shared with target domains as well.
(2) create a mechanism to incorporate knowledge
from the domain descriptions into F so that it can
generate novel responses when tested on the target
domains. To achieve the first goal, we combine c
and d by appending d as a special word token at
the beginning of every utterance in c. This sim-
ple approach performs well and enables the con-
text encoder to take the domain into account when
processing later word tokens. Also, this context
domain integration can easily scale to dealing with
a large number of domains. Then we encourage F



to discover reusable dialog policy by training the
same encoder decoder on dialog data generated
from multiple source domains at the same time,
which is a form of multi-task learning (Collobert
and Weston, 2008). We achieve the second goal
by projecting the response x from all domains into
the same latent action space Z. Since x alone may
not be sufficient to infer its semantics, we rely on
their annotations a to learn meaningful semantic
representations. Let zyx and z, be the projected
latent actions from x and a. Our method encour-
ages z8! ~ z¥2 when zd! ~ z%2. Moreover, for
a given z from any domain, we ensure that the de-
coder F¢ can generate the corresponding response
x by training on both SR, for d € D and source
dialogs.

Specifically, we propose the Action Matching
(AM) training procedure. We first introduce a
recognition network R that can encode x and a
into zx = R(x,d) and z, = R(a, d) respectively.
During training, the model receives two types of
data. The first type is domain description data in
the form of {x,a,d}scq for each domain. The
second type of data is source domain dialog data
in the form of {c, x, d}. For the first type of data,
we update the parameters in R and F¢ by mini-
mizing the following loss function:

Edd(]—"d,R) = —logp,a(x|R(a,d))

)
+ AD[R(x,d)||R(a,d)]

where )\ is a constant hyperparameter and D is a
distance function, e.g. mean square error (MSE),
that measures the closeness of two input vectors.
The first term in Lgq trains the decoder F to gen-
erate the response x given z, = R(a, d) from all
domains. The second term in L4q enforces the
recognition network R to encode a response and
its annotation to nearby vectors in the latent action
space from all domains, i.e. z< ~ zd for d € D.

Moreover, just optimizing L4g does not ensure
that the z. predicted by the encoder F° will be
related to the zx or z, encoded by the recognition
network R. So when we receive the second type of
data (source dialogs), we add a second term to the
standard maximum likelihood objective to train F
and R.

[/dialog(]:y R) = lngJ—‘d (X|]:e(c7 d))

+ AD(R(x,d)||F¢(c,d)) @

The second term in Lgia0, completes the loop
by encouraging zg ~ zl, which resembles the

X

regularization term used in variational autoen-
coders (Kingma and Welling, 2013). Assuming
that annotation a provides a domain-agnostic se-
mantic representation of x, then JF trained on
source domains can begin to operate in the tar-
get domains as well. During training, our AM
algorithm alternates between these two types of
data and optimizes Lgq or Lgialog accordingly. The
resulting models effectively learn a latent action
space that is shared by the the response annotation
a, response x and predicted latent action based on
c in all domains. AM training is summarized in
Algorithm 1.

Algorithm 1: Action Matching Training
Initialize weights of F¢, F¢, R;
Data = {c, x,d} | J{x, a, d}seed
while batch ~ Data do
if batch in the form {c,x, d} then
| Backpropagate loss Lgialog

else
| Backpropagate loss Lgq

end
end

4.3 Architecture Details

We implement an AMED for later experiments as
follows:

Distance Functions: In this study, we assume
that the latent actions are deterministic distributed
vectors. Thus MSE is used: D(z,z) = % Zf(zl—
21)%, where L is the dimension size of the latent
actions. Also, Lgjaog and Lgq use the same dis-
tance function.

Recognition Networks: we use a bidirectional
GRU-RNN (Cho et al., 2014) as R to obtain
utterance-level embedding. Since both x and a are
sequences of word tokens, we combine them with
the domain tag by appending the domain tag in
the beginning of the original word sequence, i.e.
{x,d} or{a,d} = [d,w:,...ws], where J is the
length of the word sequence. Then the R will en-
code [d, w1, ...w ] into hidden outputs in forward

D — —
and backward directions, [(ho,;zj),...(h],;z_o)].
We use the concatenation of the last hidden states
from each direction, i.e. zx orz, = [hy, hj| as
utterance-level embedding for x or a respectively.

Dialog Encoders: a hierarchical recurrent en-
coder (HRE) is used to encode the dialog con-
text, which handles long contexts better than non-
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Figure 2: Visual illustration of our AM encoder decoder with copy mechanism (Merity et al., 2016).
Note that AM can also be used with RNN decoders without the copy functionality.

hierarchical ones (Li et al., 2015). HRE first
uses an utterance encoder to encode every utter-
ance in the dialog and then uses a discourse-level
LSTM-RNN to encode the dialog context by tak-
ing output from the utterance encoder as input. In-
stead of introducing a new utterance encoder, we
reuse the recognition network R described above
as the utterance encoder, which serves the pur-
pose perfectly. Another advantage is that using
Zx predicted by R as input enables the discourse-
level encoder to use knowledge from latent ac-
tions as well. Our discourse-level encoder is a 1-
layer LSTM-RNN (Hochreiter and Schmidhuber,
1997), which takes in a list of output [z1, z2..zx]
from R and encodes them into [v1,vg,...vk],
where K is the number of utterances in the con-
text. The last hidden state vy is used as the pre-
dicted latent action zc.

Response Decoders: we experiment with two
types of LSTM-RNN decoders. The first is an
RNN decoder with an attention mechanism (Lu-
ong et al., 2015), enabling the decoder to dy-
namically look up information from the context.
Specifically, we flatten the dialog context into a se-
quence of words [w11, ...w1J...wk ]. Using out-
put from the R and the discourse-level LSTM-
RNN, each word here is represented by my; =
hi; + Wyvy. Let the hidden state of the decoder
at step t be s¢, then our attention mechanism com-
putes the Softmax output via:

Qpjt = softmax(m{j tanh(Wyst)) (3)

Si=3_ apjamp; )
kj
Dvocab(w¢|s¢) = softmax(MLP(sy, 5¢)) ®))

The second type is the LSTM-RNN with a copy

mechanism that can directly copy words from the
context as output (Gu et al., 2016). Such a mecha-
nism has already exhibited strong performance in
task-oriented dialogs (Eric and Manning, 2017a)
and is well suited for generating OOV word to-
kens (Elsahar et al., 2018). We implemented the
Pointer Sentinel Mixture Model (PSM) (Merity
et al., 2016) as our copy decoder. PSM defines the
generation of the next word as a mixture of prob-
abilities from either the Softmax output from the
decoder LSTM or the attention Softmax for words
in the context: p(wy|st) = gPvocab(we|st) + (1 —
9)Ppir(w¢|s¢), where g is the mixture weight com-
puted from a sentinel vector v with s;.

> g 6)

kjel(w,x)
g = softmax(u’ tanh(Wys;))  (7)

DPptr (wt ’315) =

5 Datasets for ZSDG

Two dialog datasets were used for evaluation.

5.1 SimDial Data

We developed SimDial?, which is a multi-domain
dialog generator that can generate realistic conver-
sations for slot-filling domains with configurable
complexity. See Appendix A.3 for details. Com-
pared to other synthetic dialog corpora used to test
GEDMs, e.g. bAbI (Dodge et al., 2015), SimDial
data is significantly more challenging. First since
SimDial simulates communication noise, the di-
alogs that are generated can be very long (more
than 50 turns) and the simulated agent can carry
out error recovery strategies to correctly infer the
users’ goals. This challenges end-to-end models

https://github.com/snakeztc/SimDial



to model long dialog contexts. SimDial also simu-
lates spoken language phenomena, e.g. self-repair,
hesitation. Prior work (Eshghi et al., 2017) has
shown that this type of utterance-level noise dete-
riorates end-to-end dialog system performance.

Data Details

SimDial was used to generate dialogs for 6 do-
mains: restaurant, movie, bus, restaurant-slot,
restaurant-style and weather. For each domain,
900/100/500 dialogs were generated for training,
validation and testing. On average, each dia-
log had 26 utterances and each utterance had
12.8 word tokens. The total vocabulary size was
651. We split the data such that the training
data included dialogs from the restaurant, bus and
weather domains and the test data included the
restaurant, movie, restaurant-slot and restaurant
style domains. This setup evaluates a ZSDG sys-
tem from the following perspectives:

Restaurant (in domain): evaluation on the
restaurant test data checks if a dialog model
is able to maintain its performance on the
source domains. Restaurant-slot (unseen slots):
restaurant-slot has the same slot types and natu-
ral language generation (NLG) templates as the
restaurant domain, but has a completely different
slot vocabulary, i.e. different location names and
cuisine types. Thus this is designed to evaluate a
model that can generalize to unseen slot values.
Restaurant-style (unseen NLG): restaurant-style
has the same slot type and vocabulary as restau-
rant, but its NLG templates are completely differ-
ent, e.g. “which cuisine type?” — “please tell
me what kind of food you prefer”. This part tests
whether a model can learn to adapt to generate
novel utterances with similar semantics. Movie
(new domain): movie has completely different
NLG templates and structure and shares few com-
mon traits with the source domains at the surface
level. Movie is the hardest task in the SimDial
data, which challenges a model to correctly gener-
ate next responses that are semantically different
from the ones in source domains.

Finally, we obtain SRs as domain descriptions
by randomly selecting 100 unique utterances from
each domain. The response annotation is a re-
sponse’s internal semantic frame used by the Sim-
Dial generator. For example, “I believe you said
Boston. Where are you going?” — [implicit-
confirm loc=Boston; request location].

5.2 Stanford Multi-Domain Dialog Data

The second dataset is the Stanford multi-domain
dialog (SMD) dataset (Eric and Manning, 2017b)
of 3031 human-human dialogs in three domains:
weather, navigation and scheduling. One speaker
plays the role of a driver. The other plays the
car’s Al assistant and talks to the driver to com-
plete tasks, e.g. setting directions on a GPS. Av-
erage dialog length is 5.25 utterances; vocabulary
size is 1601. We use SMD to validate whether our
proposed methods generalize to human-generated
dialogs. We generate SR by randomly selecting
150 unique utterances for each domain. An expert
annotates the seed utterances with dialog acts and
entities. For example “All right, I’ve set your next
dentist appointment for 10am. Anything else?”
— [ack; inform goal event=dentist appointment
time=10am ; request needs]. Finally, in order to
formulate a ZSDG problem, we use a leave-one-
out approach with two domains as source domains
and the third one as the target domain, which re-
sults in 3 possible configurations.

6 Experiments and Results

The baseline models include 1. hierarchical recur-
rent encoder with attention decoder (+Attn) (Ser-
ban et al., 2016). 2. hierarchical recurrent en-
coder with copy decoder (Merity et al., 2016)
(+Copy), which has achieved very good perfor-
mance on task-oriented dialogs (Eric and Man-
ning, 2017a). We then augment both baseline
models with the proposed cross-domain AM train-
ing procedure and denote them as +Attn+AM and
+Copy+AM.

Evaluating generative dialog systems is chal-
lenging since the model can generate free-form re-
sponses. Fortunately, we have access to the inter-
nal semantic frames of the SimDial data, so we
use the automatic measures used in (Zhao et al.,
2017) that employ four metrics to quantify the per-
formance of a task-oriented dialog model. BLEU
is the corpus-level BLEU-4 between the generated
response and the reference ones (Papineni et al.,
2002). Entity F; checks if a generated response
contains the correct entities (slots) in the reference
response. Act F; measures whether the generated
responses reflect the dialog acts in the reference
responses, which compensates for BLEU’s limita-
tion of looking for exact word choices. A one-
vs-rest support vector machine (Scholkopf and
Smola, 2001) with bi-gram features is trained to



tag the dialogs in a response. KB F; checks all
the key words in a KB query that the system is-
sues to the KB backend. Finally, we introduce
BEAK = v/bleu x ent x act x kb, the geometric
mean of these four scores, to quantify a system’s
overall performance. Meanwhile, since the oracle
dialog acts and KB queries are not provided in the
SMD data (Eric and Manning, 2017b), we only re-
port BLEU and entity F; results on SMD.

6.1 Main Results

In +Attn +Copy +Attn +Copy
domain +AM +AM
BLEU 59.1 70.4 67.7 70.1
Entity 69.2 70.5 74.1 79.9
Act 94.7 92.0 94.1 95.1
KB 94.7 96.1 95.2 97.0
BEAK 77.2 81.3 81.9 84.7
Unseen | +Attn +Copy +Attn +Copy
Slot +AM +AM
BLEU 24.9 45.6 479 68.5
Entity 56.0 68.0 53.1 74.6
Act 90.9 91.8 86.0 94.5
KB 78.1 89.6 81.0 95.3
BEAK 56.1 71.1 64.8 82.3
Unseen | +Attn +Copy +Attn +Copy
NLG +AM +AM
BLEU 15.8 36.9 435 70.1
Entity 61.7 68.9 63.8 72.9
Act 91.5 922 89.3 95.2
KB 66.2 94.6 93.1 97.0
BEAK 493 65.9 69.3 82.9
New +Attn +Copy +Attn +Copy
domain +AM +AM
BLEU 135 24.6 36.7 54.6
Entity 23.1 40.8 233 52.6
Act 823 85.5 84.8 88.5
KB 435 67.1 67.0 88.2
BEAK 325 48.8 46.8 68.8

Table 1: Evaluation results on test dialogs from
SimDial Data. Bold values indicate the best per-
formance.

Table 1 shows results on the SimDial data. Al-
though the standard +Attn model achieves good
performance in the source domains, it doesn’t gen-
eralize to target domains, especially for entity F;
in the unseen-slot domain, BLEU score in the
unseen-NLG domain, and all new domain met-
rics. The +Copy model has better, although still
limited, generalization to target domains. The
main benefit of the +Copy model is its ability
to directly copy and output words from the con-
text, reflected in its strong entity F; in the un-
seen slot domain. However, +Copy can’t gener-
alize to new domains where utterances are novel,
e.g. the unseen NLG or the new domain. How-
ever, our AM algorithm substantially improves

performance of both decoders (Attn and Copy).
Results show that the proposed AM algorithm is
complementary to decoders with a copy mecha-
nism: HRED+Copy+AM model has the best per-
formance on all target domains. In the easier
unseen-slot and unseen-NLG domains, the result-
ing ZSDG system achieves a BEAK of about 82,
close to the in-domain BEAK performance (84.7).
Even in the new domain (movie), our model
achieves a BEAK of 67.2, 106% relative improve-
ment w.r.t +Attn and 38.8% relative improvement
w.r.t +Copy. Moreover, our AM method also im-
proves performance on in-domain dialogs, sug-
gesting that AM exploits the knowledge encoded
in the domain description and improves the mod-
els’ generalization.

Navigate | Oracle +Attn +Copy +Copy
+AM
BLEU 13.4 0.9 5.4 5.9
Entity 19.3 2.6 4.7 14.3
Weather | Oracle +Attn +Copy +Copy
+AM
BLEU 18.9 4.8 44 8.1
Entity 51.9 0.0 16.3 31.0
Schedule | Oracle +Attn +Copy +Copy
+AM
BLEU 20.9 3.0 3.8 7.9
Entity 47.3 0.4 17.1 36.9

Table 2: Evaluation on SMD data. The bold do-
main title is the one that was excluded from train-
ing.

Table 2 summarizes the results on the SMD
data. We also report the oracle performance,
obtained by training +Copy on the full dataset.
The AM algorithm can significantly improve En-
tity F; and BLEU from the two baseline mod-
els. +Copy+AM also achieves competitive perfor-
mance in terms of Entity F; compared to the oracle
scores, despite the fact that no target domain data
was used in training.

6.2 Model Analysis

Various types of performance improvement were
also studied. Figure 3 shows the breakdown of the
BLEU score according to the dialog acts of refer-
ence responses. Models with +Copy decoder can
improve performance for all dialog acts except for
the greet act, which occurs at the beginning of a di-
alog. In this case, the +Copy decoder has no con-
text to copy and thus cannot generate any novel
responses. This is one limitation of +Copy de-
coder since in real interactive testing with humans,



Type

Reference

+Attn

+Copy

+Copy+AM

General Utts
Unseen Slots

Unseen Utts

See you next time.

Do you mean romance
movie?

Movie 55 is a great
movie.

Goodbye.

Do you mean Chinese
food.

Bus 12 can take you
there.

See you next time.

Do you mean ro-
mance food?

Bus 55 can take you
there.

See you next time.

Do you mean ro-
mance movie?
Movie 55 is a great
movie.

Table 3: Three types of responses and generation results (tested on the new movie domain). The text in
bold is the output directly copied from the context by the copy decoder.

each system utterance must be generated from the
model instead of copied from the context. How-
ever, models with AM training learn to generate
novel utterances based on knowledge from the SR,
so +Copy+AM can generate responses at the be-
ginning of a dialog.

® Attn B Copy ™ Copy+AM

BLEU-4

%jjjjjjj

request greet implicit_confirm  inform goodbye explicit_confirm kb query

Figure 3: Breakdown BLEU scores on the new do-
main test set from SimDial.

A qualitative analysis was conducted to summa-
rize typical responses from these models. Table 3
shows three types of typical situations in the Sim-
Dial data. The first type is general utterance ut-
terances, e.g. “See you next time” that appear in
all domains. All three models correctly generate
them in the ZSDG setting. The second type is ut-
terances with unseen slots. For example, explicit
confirm “Do you mean xx?7”. +Attn fails in this
situation since the new slot values are not in its vo-
cabulary. +Copy still performs well since it learns
to copy entity-like words from the context, but the
overall sentence is often incorrect, e.g. “Do you
mean romance food”. The last one is unseen ut-
terance where both +Attn and +Copy fail. The
two baseline models can still generate responses
with correct dialog acts, but the output words are
in the source domains. Only the models trained
with AM are able to infer that “Movie xx is a great
movie” serves a function similar to “Bus xx can
take you there”, and generates responses using the
correct words from the target domain.

Finally we investigate how the the size of SR
affects AM performance. Figure 4 shows results
in the SMD schedule domain. The number of seed

W BLEU ® Entity

0 0

SR

Figure 4: Performance on the schedule domain
from SMD while varying the size of SR.

responses varies from O to 200. Performance in
the target domains is positively correlated with the
number of seed responses. We also observe that
the model achieves sufficient SR performance at
100, compared to the ones trained on all of the 200
seed responses. This suggests that the amount of
seeding needed by SR is relatively small, which
shows the practicality of using SR as a domain de-
scription.

7 Conclusion and Future Work

This paper introduces ZSDG, dealing with neu-
ral dialog systems’ domain generalization ability.
We formalize the ZSDG problem and propose an
Action Matching framework that discovers cross-
domain latent actions. We present a new simulated
multi-domain dialog dataset, SimDial, to bench-
mark the ZSDG models. Our assessment validates
the AM framework’s effectiveness and the AM en-
coder decoders perform well in the ZSDG setting.

ZSDG provides promising future research ques-
tions. How can we reduce the annotation cost
of learning the latent alignment between actions
in different domains? How can we create ZSDG
for new domains where the discourse-level pat-
terns are significantly different? What are other
potential domain description formats? In sum-
mary, solving ZSDG is an important step for fu-
ture general-purpose conversational agents.



References

Ankur Bapna, Gokhan Tur, Dilek Hakkani-Tur, and
Larry Heck. 2017. Towards zero-shot frame se-
mantic parsing for domain scaling. arXiv preprint
arXiv:1707.02363 .

Yun-Nung Chen, Dilek Hakkani-Tiir, and Xiaodong
He. 2016. Zero-shot learning of intent embed-
dings for expansion by convolutional deep struc-
tured semantic models. In Acoustics, Speech and
Signal Processing (ICASSP), 2016 IEEE Interna-
tional Conference on. IEEE, pages 6045-6049.

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078 .

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th international conference on
Machine learning. ACM, pages 160-167.

Jesse Dodge, Andreea Gane, Xiang Zhang, Antoine
Bordes, Sumit Chopra, Alexander Miller, Arthur
Szlam, and Jason Weston. 2015. Evaluating prereq-
uisite qualities for learning end-to-end dialog sys-
tems. arXiv preprint arXiv:1511.06931 .

Yan Duan, Marcin Andrychowicz, Bradly Stadie,
Jonathan Ho, Jonas Schneider, Ilya Sutskever, Pieter
Abbeel, and Wojciech Zaremba. 2017. One-shot im-
itation learning. arXiv preprint arXiv:1703.07326 .

Hady Elsahar, Christophe Gravier, and Frederique
Laforest. 2018. Zero-shot question generation from
knowledge graphs for unseen predicates and entity
types. arXiv preprint arXiv:1802.06842 .

Mihail Eric and Christopher D Manning. 2017a. A
copy-augmented sequence-to-sequence architecture
gives good performance on task-oriented dialogue.
arXiv preprint arXiv:1701.04024 .

Mihail Eric and Christopher D Manning. 2017b. Key-
value retrieval networks for task-oriented dialogue.
arXiv preprint arXiv:1705.05414 .

Arash Eshghi, Igor Shalyminov, and Oliver Lemon.
2017. Bootstrapping incremental dialogue systems
from minimal data: the generalisation power of di-
alogue grammars. arXiv preprint arXiv:1709.07858

Milica Gasic and Steve Young. 2014. Gaussian pro-
cesses for pomdp-based dialogue manager optimiza-
tion. IEEE/ACM Transactions on Audio, Speech,
and Language Processing 22(1):28-40.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning.  arXiv preprint
arXiv:1603.06393 .

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory.  Neural computation
9(8):1735-1780.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114 .

Hugo Larochelle, Dumitru Erhan, and Yoshua Bengio.
2008. Zero-data learning of new tasks. In AAAI. 2,
page 3.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015.
A hierarchical neural autoencoder for paragraphs
and documents. arXiv preprint arXiv:1506.01057 .

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025 .

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843 .

Junhyuk Oh, Satinder Singh, Honglak Lee, and Push-
meet Kohli. 2017. Zero-shot task generalization
with multi-task deep reinforcement learning. arXiv
preprint arXiv:1706.05064 .

Mark Palatucci, Dean Pomerleau, Geoffrey E Hinton,
and Tom M Mitchell. 2009. Zero-shot learning with
semantic output codes. In Advances in neural infor-
mation processing systems. pages 1410-1418.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics. Association for Computational
Linguistics, pages 311-318.

Bernardino Romera-Paredes and Philip Torr. 2015. An
embarrassingly simple approach to zero-shot learn-
ing. In International Conference on Machine Learn-
ing. pages 2152-2161.

Bernhard Scholkopf and Alexander J Smola. 2001.
Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT
press.

Tulian Vlad Serban, Alessandro Sordoni, Ryan Lowe,
Laurent Charlin, Joelle Pineau, Aaron Courville,
and Yoshua Bengio. 2016. A hierarchical latent
variable encoder-decoder model for generating di-
alogues. arXiv preprint arXiv:1605.06069 .

Richard Socher, Milind Ganjoo, Christopher D Man-
ning, and Andrew Ng. 2013. Zero-shot learning
through cross-modal transfer. In Advances in neu-
ral information processing systems. pages 935-943.



Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic,
Lina M Rojas-Barahona, Pei-Hao Su, Stefan Ultes,
David Vandyke, and Steve Young. 2016. A network-
based end-to-end trainable task-oriented dialogue
system. arXiv preprint arXiv:1604.04562 .

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329 .

Tiancheng Zhao and Maxine Eskenazi. 2016. To-
wards end-to-end learning for dialog state tracking
and management using deep reinforcement learning.
arXiv preprint arXiv:1606.02560 .

Tiancheng Zhao, Allen Lu, Kyusong Lee, and
Maxine Eskenazi. 2017. Generative encoder-
decoder models for task-oriented spoken dialog
systems with chatting capability. arXiv preprint
arXiv:1706.08476 .

A Supplemental Material

A.1 Seed Response Creation Process

We follow the following process to create SR in
a new slot-filling domain. First, we collect seed
responses (including user/system utterances, KB
queries and KB responses) from each source do-
main and annotate them with dialog acts, entity
types and entity values. Then human experts with
knowledge about the target domain can write up
seed responses for the target domain by draw-
ing ideas from the sources. For example, if the
source domain is restaurants and the target do-
main is movies. The source may contain a sys-
tem utterance with its annotation: “I believed you
said Pittsburgh, what kind of food are you inter-
ested in? — [implicit-confirm, loc=Pittsburgh, re-
quest food type]”. Then the expert can come up
with a similar utterance from the target domain,
e.g. “Alright, Pittsburgh. what type of movie do
you like? — [implicit-confirm, loc=Pittsburgh,
request movie type]”’. In this way, our proposed
AM training can leverage the annotations to match
these two actions as analogies in the latent ac-
tion space. Another advantage of this process is
that human experts do not have to directly label
whether two utterances from two domains are di-
rect analogies; this could be ambiguous and chal-
lenging. Instead, human experts only create do-
main shareable annotations and leave the difficult
matching problem to our models.

A.2 Model Details

For all experiments, we use a word embedding
with size 200. The recognition network uses bidi-
rectional GRU-RNN with hidden size 256 for each
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direction. The discourse-level LSTM-RNN and
the decoder have hidden size 512. The models
are trained with Adam (Kingma and Ba, 2014)
with learning rate 0.001. All weights are ini-
tialized from uniform distribution between +/-
0.08. 30% dropouts are applied at the input
and output of recurrent neural networks (Zaremba
et al.,, 2014). For decoders with copy mech-
anisms, we also use the pointer loss proposed
in (Merity et al., 2016) which minimizes — log(g+
> kjel(x,c) Okj)» Where I results in all positions of
output x in the attention context.

A.3 SimDial Details

To generate data, SimDial expects: a domain spec-
ification (DS) and a complexity specification (CS).
DS defines the content of the domain, e.g. restau-
rant or weather and CS defines complexity of di-
alogs for three aspects:

Environmental: the complexity level of the
communication channel, e.g. automatic speech
recognition (ASR) error rate.

Propositional: the complexity level in the
propositional content of user utterances, e.g. the
chance that a user will give multiple slot values in
one utterance.

Interaction: the complexity level in terms of
real-time interaction, e.g. the percentage of self-
repair.

The following is an example dialog generated
for the restaurant domain with all of the above
complexity turned on. The number at the end of
the speaker turn indicates ASR confidence.

Domain: Restaurant

Sys: Welcome to the restaurant recommendation system.
What do you need?

User (0.83): Hello robot. I am looking for a restaurant.
Sys: Which city are you interested in?

User (0.75): I am in San Jose. And Korean. Uhm sorry, |
am interested in Chinese food.

Sys: I believe you said San Jose. I believe you said Chi-
nese.

Sys: QUERY goal: restaurant food-pref: Chinese loca-
tion: San Jose

KB: RET restaurant: 17

Sys: Restaurant 17 is a good choice. What else can I do
for you?

User (0.6): Not done yet. Is that restaurant open now?
Sys: QUERY goal: open restaurant: 17 food-pref: Chi-
nese location: San Jose

KB: RET open: yes

Sys: Yes, it is open right now. What else?

User (0.69): No more questions. Thanks.

Sys: Bye.

Table 4: An example dialog generated from Sim-
Dial.
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Abstract

In cooperative dialogues, identifying the
intent of ones conversation partner and
acting accordingly is of great importance.
While this endeavour is facilitated by
phrasing intentions as directly as possi-
ble, we can observe in human-human com-
munication that a number of factors such
as cultural norms and politeness may re-
sult in expressing one’s intent indirectly.
Therefore, in human-computer communi-
cation we have to anticipate the possibil-
ity of users being indirect and be prepared
to interpret their actual meaning. Further-
more, a dialogue system should be able to
conform to human expectations by adjust-
ing the degree of directness it uses to im-
prove the user experience. To reach those
goals, we propose an approach to differen-
tiate between direct and indirect utterances
and find utterances of the opposite char-
acteristic that express the same intent. In
this endeavour, we employ dialogue vector
models and recurrent neural networks.

1 Introduction

An important part of any conversation is under-
standing the meaning your conversation partner
is trying to convey. If we do not obscure our
intent and phrase it as directly as possible, our
conversation partner will have an easier time to
recognise our goal and cooperate in achieving it.
Thereby, we can enable a successful conversa-
tion. Nevertheless, there are countless instances
in which humans choose to express their mean-
ing indirectly, as evidenced by the work of Searle
(1975) and Feghali (1997), among others. An-
swering the question ‘How is the weather?” with
‘Let’s rather stay inside.’ gives no concrete in-
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formation about the weather conditions, but is
commonly understood. There are several reasons
why humans could choose to express their in-
tent indirectly, such as cultural preferences, po-
liteness, embarrassment, or simply using common
figures of speech such as ‘Can you tell me the
time?’. Considering the frequency of indirectness
in human-human communication, we need to an-
ticipate the use of indirectness in human-computer
communication and enable dialogue systems to
handle it.

In this work, we introduce an approach to ex-
changing utterances with others that express the
same intent in the dialogue but exhibit a differ-
ing level of directness. More concretely, our ap-
proach would replace the second utterance of the
exchange ‘What pizza do you want?” - ‘I want a
vegetarian pizza.” with an utterance like ‘I don’t
like meat’. To this end, we employ models that
can estimate the level of directness of an utterance
on the one hand and the degree to which utterances
express the same intent on the other.

Our approach can be applied to solve two chal-
lenges of indirectness for dialogue systems: On
the side of the language analysis, the true intent
of the user needs to be recognised so that the di-
alogue system can react in an appropriate, coop-
erative manner. If the language analysis is able
to not only recognise the user’s intended meaning,
but also when the user is being indirect, this in-
formation can further be utilised by the dialogue
manager, e.g. by scheduling a confirmation if the
user is believed to have used indirectness. Our ap-
proach estimates the level of directness of an ut-
terance as a first step. If the utterance is classi-
fied as indirect, this information can be provided
to the dialogue manager. Furthermore, our ap-
proach exchanges the indirect utterance for a di-
rect counterpart that more accurately reflects the
users intent, thereby facilitating the task of the lan-
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guage analysis. The second area of dialogue sys-
tem that can benefit from taking into account indi-
rectness is the language generation. Studies could
show that under specific circumstances indirect-
ness is preferred not only from human conversa-
tion partners, but also in human-computer interac-
tion (e.g. (Miehle et al., 2016; Pragst et al., 2017)).
Therefore, dialogue systems that can adjust the
level of directness in their output to the user and
their circumstances should be able to provide an
improved user experience. If a certain level of di-
rectness is determined to be desirable with regards
to the current circumstances, our algorithm can de-
termine whether the utterance chosen as system
output possesses the targeted level of directness
and exchange it for a more suitable alternative if
it does not.

In the following, we will discuss related work,
before presenting our general approach and its
concrete implementation. This approach is evalu-
ated in Section 4. Here, we introduce the dialogue
corpus we created to obtain a reliable ground truth
and discuss the results of our evaluation. Finally,
we draw a conclusion in Section 5.

2 Related Work

Allen and Perrault (1980) propose a plan-based
approach to understanding the intention of the
speaker, explicitly mentioning indirect speech acts
as application. Similarly, Briggs and Scheutz
(2013) address both the understanding and the
generation of indirect speech acts. Their approach
combines idiomatic and plan-based approaches.
In plan-based approaches, a planning model that
contains potential goals as well as actions with
pre-and post conditions needs to be defined man-
ually in order to anticipate the user’s plan and
thereby identify the intent of an utterance. Our ap-
proach aims to eliminate the explicit preparation
of the planning model, and instead relies on pat-
terns learned from a large amount of examples.

In our work, we utilise a Dialogue Vector Model
(DVM) (Pragst et al., 2018) to assess whether
two utterances express the same intent in a dia-
logue. A number of different approaches to the
representation of sentences in vector space have
been proposed, e.g. utilising recurrent neural net-
works (Sutskever et al., 2014; Palangi et al., 2016;
Tsunoo et al., 2017), convolutional neural net-
works (Shen et al., 2014; Kalchbrenner et al.,
2014; Hu et al., 2014) and autoencoders (Socher
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Figure 1: Flow chart of the steps taken to exchange
an utterance with another one that is functionally
similar and of the opposite directness.

et al., 2011). However, those approaches rely on
the words in the sentence only to generate a vector
representation. As a consequence, sentences that
have the same meaning, but do not share the same
words (which is often the case for utterances with
different levels of directness) are not mapped in
the vicinity of each other. In contrast, DVMs map
functionally similar sentences close to each other
and are therefore better suited for our needs.

Skip thought vectors (Kiros et al., 2015) are sen-
tence embeddings that are generated in a similar
manner as word vector representations, and there-
fore similar to dialogue vector models. Rather
than using the words in the sentence itself as ba-
sis to create a vector representation, those vectors
are generated taking into account surrounding sen-
tences. However, this representation is trained on
novels rather than dialogue, as opposed to DVMs,
which focus specifically on dialogue and its pecu-
liarities.

3 Changing the Level of Directness

Our work is concerned with the exchange of utter-
ances for functionally similar ones with differing
levels of directness. We define functional similar-
ity as the degree to which two utterances can be
used interchangeably in a dialogue as they express
the same meaning. Substituting a direct/indirect
utterance with its respective counterpart can be
achieved by performing the following steps:



Algorithm 1: Pseudocode for exchanging one
utterance for another that is functionally simi-
lar and of the opposite directness.

Data: origU, the utterance to be exchanged

proU, the utterance occurring previous to origU

allU, the set of all available utterances

DVM, a function that maps an utterance to its
corresponding dialogue vector

evalInd, afunction that returns the estimated level of
directness, ranging from one to three

Result: excU, the substitute for origU

origDirectness «+— evalInd(prvU,origU);
if origDirectness < 1 then

| oppU «— {u € allU : evalInd(proU,u) > 1};
else

| oppU <— {u € allU : evalInd(proU,u) < 1};

exclU +—

argmin v euclDist(DVM(origU), DVM(u));

ucopp

1. Determine the level of directness of the utter-
ance.

2. Gather the remaining known utterances that
are of the opposite directness level.

3. From those, choose the utterance that is func-
tionally most similar to the original utterance.

Figure 1 shows this procedure on an abstract level,
while a more detailed pseudo-code is depicted in
Algorithm 1. Two challenges need to be addressed
in order to perform this approach: The first one is
to correctly determine the level of directness of an
utterance, the second one is to identify utterances
that perform a similar semantic functionality in a
dialogue. To solve those challenges, we utilise es-
tablished approaches, namely recurrent neural net-
works (RNN) and dialogue vector models (DVM).
In the following, we take a closer look at how
we apply those approaches to solve the presented
challenges.

To determine which utterances can be ex-
changed without altering the intended meaning,
a suitable similarity measure is needed. In our
work, we utilise DVMs (Pragst et al., 2018) to
that end. DVMs are representations of sentences
as vectors that captures their semantic meaning in
the dialogue context. They are inspired by word
vector models (Mikolov et al., 2013a) and gen-
erated in a similar manner: The mapping of ut-
terances to their vector representations is trained
akin to autoencoding. However, rather than train-
ing against the input utterance itself, utterances are
trained against their adjacent utterances in the in-
put corpus, either using the utterance to predict its

13

context or using the context to predict the utter-
ance. The resulting vector representation groups
sentences that are used in a similar context and
therefore likely to fulfil the same conversational
function in close vicinity to each other, as could be
shown by Pragst et al. (2018). Therefore, DVMs
are well suited to determine whether utterances
perform a similar function in a dialogue. Our al-
gorithm calculates the euclidean distance between
the dialogue vector representations of two utter-
ances and chooses the utterance with the minimal
distance as the most functionally similar.

For the estimation of the level of directness an
utterance possesses, we choose a supervised learn-
ing approach with a RNN. RNNs are a popular su-
pervised machine learning approach to find com-
plex relationships in large amounts of sequential
data. As indirectness relies on the context of the
conversation, the use of RNNs seems promising
for the estimation the level of directness an ut-
terances possess. The architecture of our RNN
is depicted in Figure 2. It is a time delay net-
work that uses the previous input in addition to
the current one. To obtain a numerical representa-
tion of an utterance that can be used as input to the
network, we utilise word vector models (Mikolov
et al., 2013a) and DVMs (Pragst et al., 2018). The
input for an utterances then consists of its dialogue
vector representation and the sum of the word vec-
tor representations of its words. Furthermore, the
word and dialogue vectors of the previous utter-
ance are provided as recurrent data to reflect the
dialogue context. The target value is given by cor-
pus annotations of the level of directness of the
utterance. As we are trying to solve a classifica-
tion problem, the network is designed to provide
the probability that the utterance belongs to each
of the classes as its result. After training, the net-
work constitutes the core part of the function that
estimates the level directness of an utterance.

4 Evaluation

This section presents the evaluation of the pro-
posed approach. We first introduce a dialogue cor-
pus that is suitable to train the required models and
provides a reliable ground truth to compare the re-
sults of our approach to. Afterwards, the setup of
the evaluation is described and its results presented
and discussed.
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Figure 2: The architecture of the RNN used for the estimation of directness. It is a time-delay network
with a one step delay from the input layer to the hidden layer, which contains ten nodes. The output layer
gives the probability that the input belongs to a class for each of the three classes.

4.1 Dialogue Corpus

Our approach requires a dialogue corpus for sev-
eral task: as a source for alternative utterances, as
training data for the directness classifier, as train-
ing data for the DVM and as ground truth for the
evaluation. To fulfil those tasks, the employed cor-
pus has to meet two requirements: it needs to con-
tain a sufficient amount of examples for function-
ally similar direct and indirect utterances, and the
utterances need to be annotated with their dialogue
act and level of directness.

We considered several existing dialogue cor-
pora, none of which suited our needs. Further-
more, we dismissed the option to collect and anno-
tate a dialogue corpus ourselves, considering the
difficulty to make sure that speakers would use
different levels of directness for the same purpose
without inhibiting the naturalness of the dialogues.
Instead, we decided to generate a suitable dialogue
corpus automatically.

The advantages an automatically generated cor-
pus offers for our work are the certainty that it con-
tains a number of examples for functionally sim-
ilar direct and indirect variants, as well as a de-
pendable ground truth for the evaluation. How-
ever, automatically generated corpora come with
certain limitations. After introducing our dialogue
corpus in the following, we will discuss the po-
tential advantages and limitations of automatically
generated corpora.

4.1.1 Description of the Dialogue Corpus

Our corpus contains dialogues with two different
tasks: ordering pizza and arranging joint cook-
ing. Example dialogues can be found in Fig-
ure 3. The dialogues incorporate typical elements
of human conversation: different courses of the
dialogue, over-answering, misunderstandings as
well as requests for confirmation and corrections,
among others. The example dialogues also show
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instances of different wordings for the same pur-
pose, such as several indirect variants of ‘Yes.’,
such as ‘Great.’, ‘I'm looking forward to it and
‘That sounds delicious.” that can be found across
the dialogues, and the direct ‘I would like to order
pizza.’ in Dialogue 3 that is exchanged for the in-
direct ‘Can I order pizza from you?’ in Dialogue 4.
Additionally, the same utterance can have a differ-
ent level of directness depending on the context: in
Dialogue 1, the utterance ‘I haven’t planned any-
thing.” as response to ‘Do you have time today?’
is indirect, whereas it is direct as response to ‘Do
you have plans today?’ in Dialogue 2. Overall, the
corpus contains more than 400000 different dia-
logue flows and about four wordings per dialogue
action.

As first step of the corpus generation, we de-
fined a dialogue domain in a similar manner to the
ones often employed by dialogue managers (e.g.
OwlSpeak (Ultes and Minker, 2014)). It contains
all system and user actions foreseen for the di-
alogues, and defines rules about feasible succes-
sions of those. Furthermore, each system and user
action is assigned a number of different utterances
that can be used to express their intent. Each ut-
terance incorporates a level of directness ranging
from one to three, with one being direct (e.g. ‘I
want vegetarian pizza.”) and three indirect (e.g. ‘I
don’t like meat.”). A rating of two is assigned if the
utterance is indirect, but still very close to the di-
rect one, or a common figure of speech (e.g ‘Can I
get vegetarian pizza?’). The directness level de-
pends not only on the utterance itself, but also
on the dialogue context. Therefore, the utterance
‘I have time today.’ receives a rating of three if
the previous utterance was ‘Do you have plans to-
day?’, and a rating of one if the previous utterance
was ‘Do you have time today?’.

In the next step, all dialogue flows are gener-
ated by recursively picking a dialogue action, gen-



Dialogue 1 Dialogue 2

SPEAKER 1: Hello. SPEAKER 1: Hello.
SPEAKER 2: Hello. SPEAKER 2: Hello.
SPEAKER 1: Do you have time today? SPEAKER 1: Do you have plans today?
SPEAKER 2: [ haven’t planned anything. SPEAKER 2: [ haven’t planned anything.
SPEAKER 1: How hungry are you? SPEAKER 1: What did you eat today?
SPEAKER 2: Just a little. SPEAKER 2: Just a little.
SPEAKER 1: Would you share some food with SPEAKER 1: Would you share some food with
me? me?
SPEAKER 2: Yes. SPEAKER 2: I don’t need much.
SPEAKER 1: Do you have any food preferences? SPEAKER 1: Which food do you like?
SPEAKER 2: I like pineapple. SPEAKER 2: I don’t like meat.
SPEAKER 1: You probably would like pineapple = SPEAKER 1: You probably would like pineapple
salad. salad.
SPEAKER 2: Great. SPEAKER 2: That sounds delicious.
SPEAKER 1: We could cook that together. SPEAKER 1: We could cook that together.
SPEAKER 2: I’m looking forward to it. SPEAKER 2: Great.
SPEAKER 1: Byebye. SPEAKER 1: Byebye.
SPEAKER 2: Byebye. SPEAKER 2: Byebye.

Dialogue 3 Dialogue 4
SPEAKER 1: Hello. SPEAKER 1: Hello.
SPEAKER 2: I am listening. SPEAKER 2: Hello. Is there anything I can help
SPEAKER 1: I would like to order pizza. you with?
SPEAKER 2: We offer different sizes. SPEAKER 1: Can I order pizza from you?
SPEAKER 1: A small one sounds good. SPEAKER 2: We offer Hawaiian, peperoni and
SPEAKER 2: I have noted a small pizza. vegetarian.
SPEAKER 1: Great. SPEAKER 1: I choose peperoni pizza. I love
SPEAKER 2: What would you like on top? salad. I’'m thinking about a large one.
SPEAKER 1: I like pineapple. SPEAKER 2: I have noted a large pepperoni
SPEAKER 2: You're getting a Hawaiian pizza. pizza with a salad.
SPEAKER 1: I don’t like meat. SPEAKER 1: This is going to be good.
SPEAKER 2: Do you want a salad? SPEAKER 2: Byebye.
SPEAKER 1: You can’t live just on pizza. SPEAKER 1: Byebye.

SPEAKER 2: So you want a small vegetarian
pizza with a salad?

SPEAKER 1: That sounds delicious. Byebye.
SPEAKER 2: Byebye.

SPEAKER 1: Byebye.

Figure 3: Example dialogues from the automatically generated corpus. The dialogues encompass differ-
ent tasks, over-answering, misunderstandings, confirmations and corrections. Furthermore, they contain
several examples of exchangeable utterances with differing directness levels, as well as examples of the
same utterances changing its level of directness due to the dialogue context.
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erating a list of its possible successors as stated
by the rules in the dialogue domain and repeating
the procedure for each of the successors. If a dia-
logue action does not have successor, the sequence
of dialogue actions that have been chosen to get to
that point are saved as a complete dialogue. The
wording is chosen randomly from the utterances
associated with the respective dialogue action.

4.1.2 Discussion of Automatically Generated
Corpora

The use of automatically generated corpora is
not widely adopted in the research community of
human-computer interaction. Due to their artifi-
cial nature, they have obvious limitations: they
possess less flexibility than natural conversations,
regarding both the dialogue flow and the differ-
ent wordings. As a result, both dialogue flow and
wording are much more predictable for automati-
cally generated corpora and it is highly likely that
machine learning approaches and similar proce-
dures will perform better on generated dialogues
than they would on natural ones. Nevertheless, we
believe that generated dialogues have their bene-
fits: they should not be used to gauge the actual
performance of approaches in an applied spoken
dialogue system, but rather to appraise their po-
tential.

The comparison of natural and automatically
generated dialogue corpora bears parallels to the
discussion regarding laboratory experiments and
field experiments, and their respective advantages
and limitations (as discussed by Berkowitz and
Donnerstein (1982), Harrison and List (2004) and
Falk and Heckman (2009), among others). While
natural dialogues more accurately represent con-
versations in the real world, automatically gener-
ated dialogues offer more control. In particular,
that means specific questions can be tested in a
structured and systematic manner, the generation
ensuring that relevant data is incorporated in the
corpus and irrelevant data that might interfere with
the experiments is excluded, as well as the pres-
ence of a dependable ground truth. Therefore, we
can reliably assess whether an approach is viable
to solve a given task.

Additionally, by being able to provide the com-
plete data set for a smaller scale use case as de-
fined by the dialogue domain, we can get an idea
about the potential performance of an approach
given a large amount of data that approaches the
state of total coverage. While this amount of data
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is usually unobtainable for most researchers, large
companies have the resources to collect a suitably
big corpus and are likely already working towards
it. Therefore, it is beneficial to examine the full
potential of a given approach. However, in our
considerations regarding the availability of large
amounts of data we need to take into account that
even large companies typically do not have access
to a large amount of annotated data.

In summary, we believe that automatically gen-
erated dialogues, while not providing us with an
accurate performance measure of an approach in
the real world, can help us to assess its general vi-
ability to solve a specific task and to estimate its
performance given enough data.

4.2 Setup of the Evaluation

For the evaluation of our approach we determine
its accuracy in finding an utterance that shares the
dialogue action with the original utterance and is
of the opposite level of directness. The ground
truth for both criteria is given by the previously
presented dialogue corpus. In addition, we also
evaluate the performance of the trained classifier
and investigate how it influences the overall per-
formance. As the ability of DVM to group utter-
ances that share a dialogue action has already been
shown in (Pragst et al., 2018), it will not be part of
this evaluation.

To investigate the effects of the amount of avail-
able data, we use several DVMs that are trained
on only a fraction of the complete corpus. Corpus
sizes of 0.1, 0.2, 0.4, 0.6, 0.8 and of course the full
corpus are considered. The dialogues that are part
of the reduced corpora are chosen at random.

Another aspect we study is the impact of the
amount of available annotated training data for the
classifier on its performance. As usual, we use
ten-fold cross-validation in our evaluation. How-
ever, instead of only using 90% of the utterances
for training and 10% for testing, we also evalu-
ate our approach using 10% of the utterances for
training and 90% for testing. With this, we want to
investigate how our approach performs given only
a limited amount of annotated data.

Finally, we compare the performance of the
classifier when using only dialogue vectors as in-
put and when using both dialogue vectors and the
sum of word vectors. As DVMs map functionally
similar utterances in close vicinity to each other,
direct and indirect utterances should be hard to
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Figure 4: The mean accuracy and SD achieved by
different classifiers.

distinguish with just the information from those
models. On the other hand, the sum of word vec-
tors might be missing important context informa-
tion for the identification of the directness level.
We believe that the combination of both the sum
of word vectors and dialogue vectors will improve
the performance of the classifier.

The DVMs we utilise in our evaluation as simi-
larity measure and as input to the RNN are trained
on the presented dialogue corpus. The network ad-
ditionally receives the sum of the word vectors of
an utterance, based on the Google News Corpus
model (Mikolov et al., 2013b), as input.

4.3 Results

Overall, our results show that the proposed ap-
proach has a high potential. The best mean ac-
curacy reaches a value of 0.68 , and the classifier
predicts the right class with 0.87 accuracy on av-
erage. In the following, we discuss the results and
their implications in more detail, starting with the
results of the classifier, before assessing the over-
all performance.

4.3.1 Classification of Directness

The baseline performance our classifier should
surpass the prediction of the majority class. With
the given data, such a classifier can achieve an ac-
curacy of 0.5291. Our trained classifier achieves a
significantly better accuracy of 0.8710 (£(203) =
35.366, p < .001) averaged over all test cases.
Even the worst classifier, with an accuracy of
0.6354, performs more than 10% better than
choosing the majority class.
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Figure 5: The mean accuracy and SD achieved by
with different DVMs and Classifiers.

As expected, significant differences exist for the
size of the training set (£(159.425) = —4.008, p <
.001), with a larger training set leading to better re-
sults. Furthermore, adding the linear combination
of the word vectors as input improves the perfor-
mance of the classifier significantly (¢(101.347) =
32.434, p < .001). The mean performances can be
seen in Figure 4. The corpus size the DVMs were
trained on does not have a significant impact.

Those results suggest that the amount of la-
belled training data greatly affects the perfor-
mance of a classifier using RNN. If the goal is a
large scale application, the necessary amount of
labelled data might be difficult to achieve. Fu-
ture work should therefore consider the possibility
of unsupervised training approaches or approaches
with better scalability. In addition to a larger
amount of training data, using the sum of word
vectors as additional input greatly improves the
performance. As a number of extensive word vec-
tor models exist for several languages (e.g. (Bo-
janowski et al., 2016)), this data is easily available
irrespective of the scale of the targeted dialogue
domain.

4.3.2 Exchange of Utterances

Our approach for choosing a valid replacement
for an utterance was able to achieves a high ac-
curacy of 0.70 at its best performance. How-
ever, this performance is significantly influenced
by both the accuracy of the classifier for the level
of directness (F'(2,29.090) = 141.564, p < .001)
and the amount of data the DVM was trained on
(F'(5,52.864) = 4.304, p < .003). Depending



on the quality of the employed components, the
accuracy ranges from 0.41 to 0.70. A graphical
representation can be found in Figure 5.

The results show the high potential of our ap-
proach, but also emphasize the importance of both
a good classifier to estimate the level of direct-
ness and a good measure of the functional sim-
ilarity of utterances. If either component under
performs, the accuracy declines to undesirable lev-
els. DVMs depend on a large amount of data be-
ing available. However, this data does not need to
be annotated. Hence, suitable DVMs for our ap-
proach can be trained with the amount of data usu-
ally available to big companies. Training a good
classifier presents a more severe challenge, as an-
notated data is needed. An unsupervised approach
to the training of a classifier for the level of direct-
ness would therefore be highly beneficial for the
viability of our approach.

4.4 Limitations of the Evaluation

The evaluation of our approach yields promising
results and shows its high potential. However,
we need to take into account that those results
were achieved using an artificially generated cor-
pus. Furthermore, we tested the performance of
our approach in a theoretical setting, not its impact
in an actual application. This section discusses the
limitations of our evaluation.

Natural dialogue possess a greater variability
than automatically generated dialogue, and there-
fore finding reliable patterns in them is a more
difficult task. It is likely that the quality of both
the classifier and the DVMs decreases if they are
trained on a comparable amount of natural dia-
logue data compared to artificially generated data.
We could show in the evaluation that the quality of
the classifier and DVM has a major impact on the
performance of our approach. This implies that
more data is needed for natural dialogues than for
automatically generated dialogues to achieve com-
parable results.

One of the main reasons to use an automatically
generated dialogue corpus was to ensure the pres-
ence of pairs of direct and indirect utterances. This
is important not only for the training of the classi-
fier and DVM, but also to ensure that a suitable
substitute is known. As our approach searches for
a replacement in a set of established utterances,
it can only be successful if the set does contain
a suitable utterance. While the likelihood for the
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presence of a suitable substitute increases with the
size of the dialogue corpus, it cannot be guaran-
teed that a replacement is present in natural dia-
logues. When transferring our approach to actual
applications, this might present a challenge. To
address this challenge, the generation of suitable
utterances rather than their identification should be
investigated.

While our evaluation shows what accuracy
our approach can achieve given different circum-
stances, we did not yet investigate what accuracy
it needs to achieve in actual applications to pos-
itively impact the user experience. Without this
information, it is difficult to estimate which level
of accuracy should be targeted and, as a conse-
quence, the amount of training data needed.

5 Conclusion

In this work, we introduced an approach to ex-
change utterances that express the same meaning
in the dialogue, but possess a differing level of di-
rectness. In this endeavour, we utilised supervised
training with RNNs for the estimation of direct-
ness levels, and DVMs as basis for the similarity
measure of the meaning of two utterances in a dia-
logue. A dialogue corpus that provides a sufficient
amount of direct/indirect utterance pairs as well as
annotations of the dialogue act and level of direct-
ness was generated automatically and utilised to
show the high potential of our approach in an eval-
uation.

Although the results seem promising overall,
we identified several challenges that need to be
addressed in future work. The chosen classi-
fier for the level of directness relies on a large
amount of annotated data. Unsupervised learn-
ing approaches will be investigated to eliminate
this need. Our evaluation did not incorporate the
variability of natural dialogues. We will test our
approach on natural dialogues to verify its appli-
cability on more noisy data than an automatically
generated corpus provides. Furthermore, the pres-
ence of direct/indirect pairs in natural dialogue
corpora cannot be guaranteed. It might become
necessary to explore the generation of suitable ut-
terances if we find that natural dialogue data does
not contain a sufficient amount of direct/indirect
utterance pairs. Finally, the integration of our ap-
proach in an actual dialogue systems can confirm
its beneficial effects on the user satisfaction.
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Abstract

Previous work has shown that conversants
adapt to many aspects of their partners’ lan-
guage. Other work has shown that while
every person is unique, they often share
general patterns of behavior. Theories of
personality aim to explain these shared pat-
terns, and studies have shown that many lin-
guistic cues are correlated with personality
traits. We propose an adaptation measure
for adaptive natural language generation
for dialogs that integrates the predictions
of both personality theories and adaptation
theories, that can be applied as a dialog un-
folds, on a turn by turn basis. We show
that our measure meets criteria for valid-
ity, and that adaptation varies according to
corpora and task, speaker, and the set of
features used to model it. We also produce
fine-grained models according to the dialog
segmentation or the speaker, and demon-
strate the decaying trend of adaptation.

1 Introduction

Every person is unique, yet they often share general
patterns of behavior. Theories of personality aim
to explain these patterns in terms of personality
traits, e.g. the Big Five traits of extraversion or
agreeableness. Previous work has shown: (1) the
language that people generate includes linguistic
features that express these personality traits; (2) it is
possible to train models to automatically recognize
a person’s personality from his language; and (3) it
is possible to automatically train models for natural
language generation that express personality traits
(Pennebaker and King, 1999; Mairesse et al., 2007;
Mairesse and Walker, 2011; Gill et al., 2012).

A distinct line of work has shown that people
adapt to one another’s conversational behaviors
and that conversants reliably re-use or mimic many
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Speaker (Utterance #): Utterance ]

F97: okay I'm on pacific avenue and plaza

D98: okay so you just take a right once your out of pacific
lane you go wait no to late to your left.

F98: okay

D99: and I think. it’s right ther- alright so I'm walking
down pacific okay so it’s right before the object it’s right
before the mission and pacific avenue intersection okay
it’s like umm almost brown and kinda like tan colored
F99: is it tan

D100: yeah it’s like two different colors its like dark
brown and orangey kinda like gold color its kinda like
um

F100: okay is it kinda like a vase type of a thing

D101: yeah it has yeah like a vase

Figure 1: Dialog excerpt from the ArtWalk Corpus.

different aspects of their partner’s verbal and non-
verbal behaviors, including lexical and syntactical
traits, accent, speech rate, pause length, etc. (Coup-
land et al., 1988; Willemyns et al., 1997; Brennan
and Clark, 1996; Branigan et al., 2010; Coupland
et al., 1988; Parent and Eskenazi, 2010; Reitter
et al., 2006a; Chartrand and Bargh, 1999; Hu et al.,
2014). Previous work primarily focuses on devel-
oping methods on measuring adaptation in dialog,
and studies have shown that adaptation measures
are correlated with task success (Reitter and Moore,
2007), and that social variables such as power affect
adaptation (Danescu-Niculescu-Mizil et al., 2012).

We posit that it is crucial to enable adaptation
in computer agents in order to make them more
human-like. However, we need models to control
the amount of adaptation in natural language gen-
eration. A primary challenge is that dialogs exhibit
many different types of linguistic features, any or
all of which, in principle, could be adapted. Previ-
ous work has often focused on individual features
when measuring adaptation, and referring expres-
sions have often been the focus, but the conversants
in the dialog in Figure 1 from the ArtWalk Corpus
appear to be adapting to the discourse marker okay
in D98 and F98, the hedge kinda like in F100, and
to the adjectival phrase like a vase in D101.

Proceedings of the SIGDIAL 2018 Conference, pages 20-31,
Melbourne, Australia, 12-14 July 2018. (©2018 Association for Computational Linguistics



Therefore we propose a novel adaptation mea-
sure, Dialog Adaptation Score (DAS), which can
model adaptation on any subset of linguistic fea-
tures and can be applied on a turn by turn basis
to any segment of dialog. Consider the example
shown in Table 1, where the context (prime) is
taken from an actual dialog. A response (target)
with no adaptation makes the utterance stiff (DAS
= 0), and too much adaptation (to all four discourse
markers in prime, DAS = 1) makes the utterance un-
natural. Our hypothesis is that we can learn models
to approximate the appropriate amount of adapta-
tion from the actual human response to the context
(to discourse marker “okay”’, DAS = 0.25).

Conversants in dialogs express their own per-
sonality and adapt to their dialog partners simul-
taneously. Our measure of adaptation produces
models for adaptive natural language generation
(NLG) for dialogs that integrates the predictions of
both personality theories and adaptation theories.
NLGs need to operate as a dialog unfolds on a turn-
by-turn basis, thus the requirements for a model
of adaptation for NLG are different than simply
measuring adaptation.

Context: okay alright so yeah Im looking at 123 Locust right
now

Linguistic Features:

Discourse markers: okay, alright, so, yeah

Referring expressions: 123 Locust

Syntactic structures: VP->VBP+VP, VP->VBG+PP+ADVB ...

Adaptation| Response Adapted Fea- | DAS
Amount tures
None it should be some- | None 0

where

Toomuch | okay alright so | okay, alright, | 1
yeah it should be | so, yeah
somewhere

Moderate okay 1 mean it | okay 0.25

should be some-
where

Table 1: Linguistic adaptation example: no adapta-
tion, too much adaptation, and moderate adaptation
(human response from ArtWalk Corpus).

We apply our method to multiple corpora to in-
vestigate how the dialog situation and speaker roles
affect the level and type of adaptation to the other
speaker. We show that:

e Different feature sets and conversational situ-
ations can have different adaptation models;

e Speakers usually adapt more when they have
the initiative;

e The degree of adaptation may vary over the
course of a dialog, and decreases as the adap-
tation window size increases.
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2 Method and Overview

Our goal is an algorithm for adaptive natural lan-
guage generation (NLG) that controls the system
output at each step of the dialog. Our first aim
therefore is a measure of dialog adaptation that
can be applied on a turn by turn basis as a dialog
unfolds. For this purpose, previous measures of
dialog adaptation (Stenchikova and Stent, 2007;
Danescu-Niculescu-Mizil et al., 2011) have two
limitations: (1) their calculation require the com-
plete dialog, and (2) they focus on single features
and do not provide a model to control the inter-
action of multiple parameters in a single output,
while our method measures adaptation with respect
to any set of features. We further compare our
method to existing measures in Section 6.

Measures of adaptation focus on prime-target
pairs: (p, t), in which the prime contains linguistic
features that the target may adapt to. While lin-
guistic adaptation occur beyond the next turn, we
simplify the calculation by using a window size of
1 for most experiments: for every utterance in the
dialog (prime), we consider the next utterance by
a different speaker as the target, if any. We show
the decay of adaptation with increasing window
size in a separate experiment. When generating
(p, t) pairs, it is possible to consider only speaker
A adapting to speaker B (target=A), only speaker
B adapting to speaker A (target=B), or both at the
same time (target=Both). In the following defi-
nition, FC;(p) is the count of features in prime
p of the i-th (p,t) pair, n is the total number of
prime-target pairs in which FC;(p) # 0, similarly,
FC;(p A t) is the count of features in both prime
p and target {. We define Dialog Adaptation Score
(DAS) as:

1 <~ FC;i(pAt)
DAS=—-) —— -

Within a feature set, DAS reflects the average
probability that features in prime are adapted in tar-
get across all prime-target pairs in a dialog. Thus
our Dialog Adaptation Score (DAS) models adapta-
tion with respect to feature sets, providing a whole-
dialog adaptation model or a turn-by-turn adapta-
tion model. The strength of DAS is the ability to
model different classes of features related to indi-
vidual differences such as personalities or social
variables of interest such as status.

DAS scores measured using various feature sets
can be used as a vector model to control adaptation
in Natural Language Generation (NLG). Although



we leave the application of DAS to NLG to future
work, here we describe how we expect to use it.
We consider the use of DAS with three NLG ar-
chitectures: Overgeneration and Rank, Statistical
Parameterized NLG, and Neural NLG.

Overgenerate and Rank. In this approach, differ-
ent modules propose a possibly large set of next ut-
terances in parallel, which are then fed to a (trained)
ranker that outputs the top-ranked utterance. Pre-
vious work on adaptation/alignment in NLG has
made use of this architecture (Brockmann, 2009;
Buschmeier et al., 2010). We can rank the gener-
ated responses based on the distances between their
DAS vectors and learned DAS adaptation model.
The response with the smallest distance is the re-
sponse with the best amount of adaptation. We
can also emphasize specific feature sets by giv-
ing weights to different dimensions of the vector
and calculating weighted distance. For instance, in
order to adapt more to personality and avoid too
much lexical mimicry, one could prioritize related
LIWC features, and adapt by using words from the
same LIWC categories.

Statistical Parameterized NLG. Some NLG en-
gines provide a list of parameters that can be con-
trolled at generation time (Paiva and Evans, 2004;
Lin and Walker, 2017). DAS scores can be used as
generation decision probabilities. A DAS score
of 0.48 for the LIWC feature set indicates that
the probability of adapting to LIWC features in
discourse context (prime) is 0.48. By mapping
DAS scores to generation parameters, the generator
could be directly controlled to exhibit the correct
amount of adaptation for any feature set.

Neural NLG. Recent work in Neural NLG
(NNLG) explores controlling stylistic variation in
outputs using a vector to encode style parameters,
possibly in combination with the use of a context
vector to represent the dialog context (Ficler and
Goldberg, 2017; Oraby et al., 2018). The vector
based probabilities that are represented in the DAS
adaptation model could be encoded into the con-
text vector in NNLG. No other known adaptation
measures could be used in this way.

We hypothesize that different conversational con-
texts may lead to more or less adaptive behavior, so
we apply DAS on four human-human dialog cor-
pora: two task-oriented dialog corpora that were
designed to elicit adaptation (ArtWalk and Walk-
ing Around), one topic-centric spontaneous dialog
corpus (Switchboard), and the MapTask Corpus
used in much previous work. We obtain linguistic
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features using fully automatic annotation tools, de-
scribed in Section 4. We learn models of adaptation
from these dialogs on various feature sets. We first
validate the DAS measure by showing that DAS
distinguishes original dialogs from dialogs where
the orders of the turns have been randomized. We
then show how DAS varies as a function of the fea-
ture sets used and the dialog corpora. We also show
how DAS can be used for fine-grained adaptation
by applying DAS to individual dialog segments,
and individual speakers, and illustrating the differ-
ences in adaptation as a function of these variables.
Finally, we show how DAS scores decrease as the
adaptation window size increases.

3 Corpora

We develop models of adaptation using DAS on
the following four corpora.

ArtWalk Corpus (AWC).! Figure 1 provides a
sample of the Artwalk Corpus (Liu et al., 2016),
a collection of mobile-to-Skype conversations be-
tween friend and stranger dyads performing a real
world-situated task that was designed to elicit adap-
tation behaviors. Every dialog involves a station-
ary director on campus, and a follower downtown.
The director provided directions to help the fol-
lower find 10 public art pieces such as sculptures,
mosaics, or murals in downtown Santa Cruz. The
director had access to Google Earth views of the fol-
lower’s route and a map with locations and pictures
of art pieces. The corpus consists of transcripts of
24 friend and 24 stranger dyads (48 dialogs). In
total, it contains approximately 185,000 words and
23,000 turns, from conversations that ranged from
24 to 55 minutes, or 197 to 691 turns. It includes
referent negotiation, direction-giving, and small
talk (non-task talk).?

Walking Around Corpus (WAC).> The Walking
Around Corpus (Brennan et al., 2013) consists of
spontaneous spoken dialogs produced by 36 pairs
of people, collected in order to elicit adaptation be-
haviors, as illustrated by Figure 2. In each dialog, a
director navigates a follower using a mobile phone
to 18 destinations on a medium-sized campus. Di-
rectors have access to a digital map marked with

"https://nlds.soe.ucsc.edu/artwalk

2For AWC and WAC, we remove annotations such as
speech overlap, noises (laugh, cough) and indicators for short
pauses, leaving only clean text. If more than one consecutive
dialog turn has the same speaker, we merge them into one
dialog turn.

‘https://catalog.ldc.upenn.edu/
1dc2015s08



Speaker (Utterance #): Utterance ]

Speaker (Utterance #): Utterance ]

D137: and. you know on the uh other side of the math
building like theres the uh, theres this weird, little con-
crete, structure that is sticking up out of the bricks, dont
make any sense.

F138: uh.

D139: yeah youll see it when you get over there.

F140: okay.

D141: so just keep going and then uh. when you get
around the building make a left. and you should be.
F142: when I get around the Physics building make a
left?

D143: yeah yeah when you get around to the end here.

Figure 2: Dialog excerpt from the Walking Around
Corpus.

target destinations, labels (e.g. “Ship sculpture”),
photos and followers’ real time location. Followers
carry a cell phone with GPS, and a camera in order
to take pictures of the destinations they visit. Each
dialog ranges from 175 to 885 turns. The major dif-
ferences between AWC and WAC are (1) in order
to elicit novel referring expressions and possible
linguistic adaptation, destinations in AWC do not
have provided labels; (2) AWC happens in a more
open world setting (downtown) compared to WAC
(university campus).

Map Task Corpus (MPT).* The Map Task Cor-
pus (Anderson et al., 1991) is a set of 128 coop-
erative task-oriented dialogs involving two partic-
ipants. Each dialog ranges from 32 to 438 turns.
A director and a follower sit opposite one another.
Each has a paper map which the other cannot see
(the maps are not identical). The director has a
route marked on their map; the follower has no
route. The participants’ goal is to reproduce the
director’s route on the follower’s map. All maps
consist of line drawing landmarks labelled with
their names, such as “parked van”, “east lake”, or
“white mountain”. Figure 3 shows an excerpt from
the Map Task Corpus.

Switchboard Corpus (SWBD).>  Switch-
board (Godfrey et al., 1992) is a collection of
two-speaker telephone conversations from all
areas of the United States. An automatic operator
handled the calls (giving recorded prompts,
selecting and dialing another speaker, introducing
discussion topics and recording the dialog). 70
topics were provided, for example: pets, child
care, music, and buying a car. Each topic has
a corresponding prompt message played to the
first speaker, e.g. “find out what kind of pets the

“nttp://groups.inf.ed.ac.uk/maptask/
‘https://catalog.ldc.upenn.edu/
1dc97s62
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D7: and below the graveyard below the graveyard but
above the carved wooden pole.

F8: oh hang on i don’t have a graveyard.

D9: okay. so you don’t have a graveyard. do you have a
fast flowing river.

F10: fast running creek.

D11: ehm mm don’t know yeah it could be could be.
F12: is that to the right that’ll be to my right to my right.
D13: to your. right uh-huh.

F14: right. so i continue and go below the fast running
creek.

D15: no. go just until you go go below the diamond mine
until just before the fast fast flowing river.

Figure 3: Dialog excerpt from the Map Task Cor-
pus.
Speaker (Utterance #): [Tag] Utterance ]

B14: [b] Yeah. [sv] Well that’s pretty good if you can do
that. [sd] I know. [sd] I have a daughter who’s ten [sd]
and we haven’t really put much away for her college up to
this point [sd] but, uh, we’re to the point now where our
financial income is enough that we can consider putting
some away

A15: [b] Uh-huh.

B16: [sd] for college [sd] so we are going to be starting a
regular payroll deduction

Al17: [%] Um.

B18: [sd] in the fall [sd] and then the money that I will be
making this summer we’ll be putting away for the college
fund.

A19: [ba] Um. Sounds good. [%] Yeah [sd] I guess we're,
we’re just at the point, uh [sd] my wife worked until we
had a family [sd] and then, you know, now we’re just
going on the one income [sv] so it’s

B20: [b] Uh-huh.

A21: [sv] a lot more interesting trying to, uh [sv] find
some extra payroll deductions is probably the only way
we will be able to, uh, do it. [sd] You know, kind of
enforce the savings.

B22: [b] Uh-huh.

Figure 4: Dialog excerpt from the Switchboard
Dialog Act Corpus.

other caller has.” A subset of 200K utterances of
Switchboard have also been tagged with dialog act
tags (Jurafsky et al., 1997). Each dialog contains
14 to 373 turns. Figure 1 provides an example
of dialog act tags, such as b - Acknowledge
(Backchannel), sv - Statement-opinion, sd -
Statement-non-opinion, and % - Uninterpretable.
We focus on this subset of the corpus.

Dialogs in SWBD have a different style from the
three task-oriented, direction-giving corpora. Fig-
ure 4 illustrates how the SWBD dialogs are often
lopsided: from utterance 14 to 18, speaker B states
his opinion with verbose dialog turns, whereas
speaker A only acknowledges and backchannels;
from utterance 19 to 22, speaker A acts as the
main speaker, whereas speaker B backchannels.
Some theories of discourse define dialog turns as
extending over backchannels, and we posit that this



would allow us to measure adaptation more faith-
fully, so we utilize the SWBD dialog act tags to
filter turns that only contain backchannels, keep-
ing only dialog turns with tags sd (Statement-non-
opinion), sv (Statement-opinion), and bf (Sum-
marize/reformulate).® We then merge consecutive
dialog turns from the same speaker.

4 Experimental Setup

We consider the following feature sets: unigram,
bigram, referring expressions, hedges/discourse
markers, and Linguistic Inquiry and Word Count
(LIWC) features. Previous computational work on
measuring linguistic adaptation in textual corpora
have largely focused on lexical and syntactical fea-
tures, which are included as baselines. Referring
expressions and discourse markers are key features
that are commonly studied for adaptation behaviors
in task-oriented dialogs, which are often hand anno-
tated. Here we automatically extract these features
by rules. To model adaptation on the personality
level, we draw features that correlate significantly
with personality ratings from LIWC features. We
hypothesize that our feature sets will demonstrate
different adaptation models.

We lemmatize, POS tag and derive constituency
structures using Stanford CoreNLP (Manning et al.,
2014). We then extract the following linguistic fea-
tures from annotations and raw text. The following
example features are based on D137 in Figure 2.
Unigram Lemma/POS. We use lemma com-
bined with POS tags to distinguish word
senses. E.g.,, lemmapos_building/NN and
lemmapos brick/NNS in D137.

Bigram Lemma. E.g, bigram_the-brick
and bigram_side-of in D137.

Syntactic Structure. Following Reitter et al.
(2006b), we take all the subtrees from a
constituency parse tree (excluding the leaf
nodes that contain words) as features. E.g.,
syntax_VP->VBP+PP and syntax_ ADJP->
DT+JJ in D137. The difference is that we use
Stanford Parser rather than hand annotations.
Referring Expression. Referring expressions
are usually noun phrases. We start by tak-
ing all constituency subtrees with root NP,
then map the subtrees to their actual phrases
in the text and remove all articles from the
phrase, e.g., referexp_little-concrete

SThe filtering process removes 48.1% original dialog turns,
but only 12.6% of the words. Filtered dialogs have 3 to 85
dialog turns each.
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and referexp_math-building in D137.
Hedge/Discourse Marker. Hedges are mitigating
words used to lessen the impact of an utterance,
such as “actually” and “somewhat”. Discourse
markers are words or phrases that manage the flow
and structure of discourse, such as “you know” and
“I mean”. We construct a dictionary of hedges
and discourse markers, and use string matching
to extract features, e.g., hedge_you-know and
hedge_like in D137.

LIWC. Linguistic Inquiry and Word Count (Pen-
nebaker et al., 2001) is a text analysis program
that counts words in over 80 linguistic (e.g., pro-
nouns, conjunctions), psychological (e.g., anger,
positive emotion), and topical (e.g., leisure, money)
categories. E.g., liwc_second-person and
liwc_informal in D137. Because DAS fea-
tures are binary, features such as Word Count and
Number of New Lines are excluded.

Personality LIWC. Previous work reports for
each LIWC feature whether it is significantly cor-
related with each Big Five trait (Mairesse et al.,
2007) on conversational data (Mehl et al., 2006).
For each trait, we create feature sets consisting of
such features. See Table 2.

Personality | # | Example Features

Extraversion 15 | Positive Emotion, Swear
Words

Emotional Stability 14 | Anger, Articles

Agreeable 16 | Assent, Insight

Conscientious 17 | Fillers, Nonfluencies

Open to Experience | 12 | Discrepancy, Tentative

Table 2: Number of LIWC features for each per-
sonality trait and example features.

5 Experiments on Modeling Adaptation

In this section, we apply our DAS measure on the
corpora introduced in Section 3.

5.1 Validity Test: Original vs. Randomized
Dialogs

We first establish that our novel DAS measure is
valid by testing whether it can distinguish dialogs
in their original order vs. dialogs with randomly
scrambled turns (the order of dialog turns are ran-
domized within speakers), inspired by similar ap-
proaches in previous work (Gandhe and Traum,
2008; Ward and Litman, 2007; Barzilay and Lap-
ata, 2005). We calculate DAS scores for original
dialogs and randomized dialogs using target=Both



| # | Feature Sets | Original Random Row | Feature Sets | AWC WAC MPT SWBD
) Unigram + Bigram 0.10 0.07 1 Lemma/POS | 0.14 0.15 029 0.28
= 48 | All but LIWC 0.13 0.10 2 Bigram 0.04 0.04  0.01 0.07
< LIWC 0.48 0.46 3 Syntax 0.17 0.14 0.11 0.28
) Unigram + Bigram 0.22 0.19 4 EeferExp O.(1)3 0'(1)3 O'(l)l O'gl
Z| 36 | AllbutLIWC 0.18 0.6 > | Hedge 017 019 018 025
= L IWC 0.55 0.54 6 | LIWC 048 055 053 071
- ] 7 Extra 0.40 0.46  0.30 0.58
> Unigram + Bigram | 0.27 0.24 8 [ Emot 048 050 038 0.72
& 128 | All but LIWC 0.20 0.18
s LIWC 054 054 9 Agree 0.47 0.51 0.44 0.71
: : 10 Consc 0.38 0.44 0.20 0.55
) Unigram + Bigram 0.18 0.17 11 Open 044 044 031 0.73
§ 1126 | All but LIWC 0.20 0.19
Z LIWC 0.67 0.66 Table 4: Average DAS scores for each feature set.

Table 3: Number of dialogs in four corpora, and av-
erage DAS scores of different feature sets for origi-
nal and randomized dialogs. Bold numbers indicate
statistically significant differences (p < 0.0001)
between DAS scores for original and randomized
dialogs in paired ¢-tests .

(Sec. 2) to obtain overall adaptation scores for both
speakers.

We first test on lexical features (unigram and
bigram) as in previous work. Then we add addi-
tional linguistic features (syntactic structure, refer-
ring expression, and discourse marker). These five
features (see Section 4) are referred to as “all but
LIWC”. Finally, we test DAS validity using the
higher level LIWC features.

We perform paired t-tests on DAS scores for
original dialogs and DAS scores for randomized di-
alogs, pairing every original dialog with its random-
ized dialog. Table 3 shows the number of dialogs in
each corpus, the average DAS scores of all dialogs
within the corpus and p-values of corresponding
t-tests. Although the differences between the av-
erage scores are relatively small, the differences
in almost all paired t-tests are extremely statisti-
cally significant (cells in bold, p < 0.0001). The
paired ¢-test on MPT using LIWC features shows a
significant difference between the two test groups
(p < 0.05). The original dialog corpora achieve
higher average DAS scores than the randomized
corpora for all 12 original-random pairs. The re-
sults show that DAS measure is sensitive to dialog
turn order, as it should be if it is measuring dialog
coherence and adaptation.

5.2 Adaptation across corpora and across
features

This experiment aims to broadly examine the dif-
ferences in adaptation across different corpora and
feature sets. We first compute DAS on the whole
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dialog level for each feature set from Section 4,
and then calculate the average across the corpus.
We use target=Both (Sec 2) to obtain an overall
measure of adaptation and leave calculating fine-
grained DAS measures to Section 5.3. Table 4
provides results. We will refer to features in row
1 to 6 as “linguistic features” and row 7 to 11 as
“personality features”.

Comparing columns, we first examine the DAS
scores across different corpora. All p-values re-
ported below are from paired ¢-tests. The two most
similar corpora, the AWC and WAC, show no sig-
nificant difference on linguistic features (p = 0.43).
At the same time, the AWC and WAC do differ
from the other two corpora. This demonstrates
that the DAS reflects real similarities and differ-
ences across corpora. MPT shows lower DAS
scores on all linguistic features except for lemma
(word repetition), where it achieves the highest
DAS score. With respect to personality features,
WAC has significantly higher DAS scores than
AWC (p < 0.05), possibly because of the different
experiment settings: college student participants
are more comfortable around their own campus
than in downtown. MPT shows significantly lower
DAS scores on personality features than AWC and
WAC (p < 0.05). This may be because the MPT
setting is the most constrained of the four corpora:
being fixed in topic and location means dialogs
are less likely to be influenced by environmental
factors or to contain social chit chat. SWBD has
the highest DAS scores in all feature sets except
for referring expression. The higher DAS in non-
referring features could be because the social chit
chat allows more adaptation to occur. In addition,
the dialogs we measure in SWBD are backchannel-
filtered. The lower referring expression (respective
to other SWBD scores) could be because SWBD
does not require the referring expressions necessary



for the other three task-related corpora. We posit
that the DAS adaptation models we present can be
used in existing NLG architectures, described in
Sec. 2. The AWC column in Table 4 shows adap-
tation model in the form of a DAS vector obtained
from the ArtWalk Corpus.

Comparing rows, we then examine DAS scores
among different features sets. LIWC has the high-
est DAS score among linguistic features, ranging
from 0.48 to 0.71. While other linguistic fea-
tures are largely content-specific, LIWC consists of
higher level features that cover broader categories,
thus its high DAS scores are expected. The DAS
scores for the lemma feature range from 0.14 to
0.29, followed by Syntactic Structure (0.11 to 0.28),
Hedge (0.17 to 0.25) and Bigram (0.01 to 0.07).
Referring Expression has the lowest DAS score
(0.01 to 0.03), possibly because our automatic ex-
traction of referring expressions creates numerous
subsets of one referring expression. Among per-
sonality features, Emotion Stability, Agreeableness,
and Openness to Experience traits are adapted more
than Extraversion and Conscientiousness. We leave
to future work the question of why these traits have
higher DAS scores.

5.3 Adaptation by Dialog Segment and
Speaker

Our primary goal is to model adaptation at a fine-
grained level in order to provide fine-grained con-
trol of an NLG engine. To that end, we report re-
sults for adaptation models on a per dialog-segment
and per-speaker basis.

Reliable discourse segmentation is notoriously
difficult (Passonneau and Litman, 1996), thus we
heuristically divide each task-oriented dialog into
segments based on number of destinations on the
map: this effectively divides the dialog into sub-
tasks. Since each dialog in SWBD only has one
topic, we divide SWBD into 5 segments.” We com-
pute DAS for each segment, and take an average
across all dialogs in the corpus for each segment.

We compare all LIWC features vs. extraversion
LIWC features because they provide high DAS
scores across corpora. We also aim to explore the
dynamics between two conversants on the extraver-
sion scale. Figure 5 in Appendix illustrates how
DAS varies as a function of speaker and dialog
segment. In AWC, scores for all LIWC features

"To ensure two way adaptation exists in every segment
(both speaker A adapting to B, and B adapting to A), the
minimum length (number of turns) of each segment is 3. Thus
we only work with dialogs longer than 15 turns in SWBD.

26

slightly decrease as dialogs progress (Fig. 5(a)),
while extraversion features show a distinct increas-
ing trend with correlation coefficients ranging from
0.7 to 0.86 (Fig. 5(b)), despite being a subset of all
LIWC features.® Average DAS displays the same
decreasing trend in all and extraversion LIWC fea-
tures for SWBD (Fig. 5(g) and 5(h)). We speculate
that this might be due to the setup of SWBD: as the
dialogs progress, conversants have less to discuss
about the topic and are less interested. We also
calculate per segment adaptation in WAC and MPT,
but their DAS scores do not show overall trends
across the length of the dialog (Fig. 5(c) to 5(f)).

We also explore whether speaker role and ini-
tiative affects adaptation. We use target=Both, tar-
get=D, and target=F to calculate DAS for each
target.” We hypothesize that directors and follow-
ers adapt differently in task-oriented dialogs. In
all task-oriented corpora (AWC, WAC, and MPT),
we observe generally higher DAS scores with tar-
get=D, indicating that in order to drive the dialogs,
directors adapt more to followers. In SWBD, the
speaker initiating the call (who brings up the discus-
sion topic and may therefore drive the conversation)
generally exhibits more adaptation.

5.4 Adaptation on Different Window Sizes

This experiment aims to examine the trend of DAS
scores as the window size increases. We begin
with a window size of 1 and gradually increase it
to 5. For a window size of n, the target utterance
t is paired with the n-th utterance from a differ-
ent speaker preceding ¢, if any. For example, in
Figure 1, when window size is 3, target D100 is
paired with prime F97; target D99 does not have
any prime, thus no pair is formed.

Similar to Sec. 5.1, we compare DAS scores be-
tween dialogs in their original order vs. dialogs
with randomly scrambled turns. We hypothesize
that similar to the results of repetition decay mea-
sures (Reitter et al., 2006a; Ward and Litman, 2007;
Pietsch et al., 2012), the DAS scores of original di-
alogs would decrease as the window size increases.
We use target=both to obtain overall adaptation
scores involving both speakers, and calculate DAS
with all but the Personality LIWC feature sets in-
troduced in Sec. 4. We first compute DAS on the
whole dialog level for each window size, and then
calculate the average DAS for each window size

8Using Simple Linear Regression in Weka 3.8.1.
°In task-oriented dialogs, D stands for Director, F for Fol-
lower. In SWBD, D stands for the speaker initiating the call.



across the corpus.

Results show that DAS scores for the original
dialogs in all corpora decrease as window size in-
creases, while DAS scores for the randomized di-
alogs stay relatively stable. Figure 6 in Appendix
shows plots of average DAS scores on different
window sizes for original and randomized dialogs.
Plots of the AWC and WAC show similar trends.
Experiments with larger window sizes show that
the original and random scores meet at window
size 6 - 7 (with different versions of randomized di-
alogs). In MapTask, the original and random scores
meet at window size 3 - 4. In SWBD, original and
random scores meet at window size 2.

6 Related Work

Recent measures of linguistic adaptation fall into
three categories: probabilistic measures, repeti-
tion decay measures, and document similarity mea-
sures (Xu and Reitter, 2015). Probabilistic mea-
sures compute the probability of a single linguistic
feature appearing in the target after its appearance
in the prime. Some measures in this category focus
more on comparing adaptation amongst features
and do not handle turn by turn adaptation (Church,
2000; Stenchikova and Stent, 2007). Moreover,
these measures produce scores for individual fea-
tures, which need aggregation to reflect overall
adaptivity (Danescu-Niculescu-Mizil et al., 2011,
2012). Document similarity measures calculate the
similarity between prime and target by measuring
the number of features that appear in both prime
and target, normalized by the size of the two text
sets (Wang et al., 2014). Both probabilistic mea-
sures and document similarity measures require the
whole dialog to be complete before calculation.
Repetition decay measures observe the decay
rate of repetition probability of linguistic features.
Previous work has fit the probability of linguistic
feature repetition decrease with the distance be-
tween prime and target in logarithmic decay mod-
els (Reitter et al., 2006a,b; Reitter, 2008), linear
decay models (Ward and Litman, 2007), and expo-
nential decay models (Pietsch et al., 2012).
Previous work on linguistic adaptation in natu-
ral language generation has also attempted to use
adaptation models learned from human conversa-
tions. The alignment-capable microplanner SPUD
prime (Buschmeier et al., 2009, 2010) uses the rep-
etition decay model from Reitter (2008) as part
of the activation functions for linguistic structures.
However, the parameters are not learned from real
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data. Repetition decay models do well in statistical
parameterized NLG, but is hard to apply to over-
generate and rank NLG. Isard et al. (2006) apply
a pre-trained n-grams adaptation model to gener-
ate conversations. Hu et al. (2014) explore the
effects of adaptation to various features by human
evaluations, but their generator is not capable of
deciding which features to adapt based on input
context. DusSek and Jurcicek (2016) use a seq2seq
model to generate responses adapting to previous
context. They utilize an n-gram match ranker that
promotes outputs with phrase overlap with context.
Our learned adaptation models could serve as a
ranker. In addition to n-grams, DAS could pro-
duce models with any combinations of feature sets,
providing more versatile adaptation behavior.

7 Discussion and Future Work

To obtain models of linguistic adaptation, most
measures could only measure an individual fea-
ture at a time, and need the whole dialog to calcu-
late the measure (Church, 2000; Stenchikova and
Stent, 2007; Danescu-Niculescu-Mizil et al., 2012;
Pietsch et al., 2012; Reitter et al., 2006b; Ward and
Litman, 2007). This paper proposes the Dialog
Adaptation Score (DAS) measure, which can be
applied to NLG because it can be calculated on any
segment of a dialog, and for any feature set.

We first validate our measure by showing that
the average DAS of original dialogs is significantly
higher than randomized dialogs, indicating that it
is sensitive to dialog priming as intended. We then
use DAS to show that feature sets such as LIWC,
Syntactic Structure, and Hedge/Discourse Marker
are adapted more than Bigram and Referring Ex-
pressions. We also demonstrate how we can use
DAS to develop fine-grained models of adaptation:
e.g. DAS applied to model adaptation in extraver-
sion displays a distinct trend compared to all LIWC
features in the task-oriented dialog corpus AWC.
Finally, we show that the degree of adaptation de-
creases as the window size increases. We leave to
future work the implementation and evaluation of
DAS adaptation models in natural language gener-
ation systems.
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Abstract

Dialogue personalization is an important
issue in the field of open-domain chat-
oriented dialogue systems. If these sys-
tems could consider their users’ interests,
user engagement and satisfaction would
be greatly improved. This paper proposes
a neural network-based method for esti-
mating users’ interests from their utter-
ances in chat dialogues to personalize di-
alogue systems’ responses. We introduce
a method for effectively extracting topics
and user interests from utterances and also
propose a pre-training approach that in-
creases learning efficiency. Our experi-
mental results indicate that the proposed
model can estimate user’s interest more
accurately than baseline approaches.

1 Introduction

Chat is a very important part of human com-
munication. In fact, it has been reported that
it makes up about 62% of all conversations
(Koiso et al., 2016). Since chat is also impor-
tant for human-to-machine communication, stud-
ies of dialogue systems that aim to enable open-
domain chat have received much attention in re-
cent years (Ritter et al., 2011; Higashinaka et al.,
2014; Sordoni et al., 2015; Vinyals and Le, 2015;
Zhao et al., 2017). In these studies, dialogue per-
sonalization is an important issue: if such systems
could consider users’ experiences and interests
when engaging them in a conversation, it would
greatly improve user satisfaction. To this end, Hi-
rano et al. extracted predicate-argument structures
(Hirano et al., 2015), Zhang and Chai focused on
conversational entailment (Zhang and Chai, 2009,
2010) and Bang et al. extracted entity relation-
ships (Bang et al., 2015). These studies aimed to
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employ users’ utterance histories to generate per-
sonalized responses.

In contrast, this study aims to estimate the user’s
interest in particular topics (e.g., music, fashion,
or health) to personalize the dialogue system’s re-
sponses based on these interests. This would allow
it to focus on topics the user is interested in and
avoid topics they dislike, enhancing user engage-
ment and satisfaction.

This paper therefore proposes a neural network-
based method for estimating users’ interests using
their utterances in chat dialogues. Our method es-
timates their levels of interest not only in topics
that appear in the dialogues, but also in other top-
ics that have not appeared. Even if a user enjoys
talking about the current topic, they will get bored
if the system talks about it endlessly. By gauging
the user’s potential interest in topics that have not
directly appeared in the dialogue, the system can
expand the discussion to other topics before the
user gets bored.

In this study, we use data from human-to-
human dialogues because the current performance
of chat-oriented dialogue systems is not sufficient
for them to talk with humans naturally. We also
use textual dialogue data to avoid speech recog-
nition issues. In addition, to estimate the target
user’s interests independently of the dialogue sys-
tem’s utterances, we only consider their own utter-
ances and ignore those of their dialogue partner.

This paper brings three main contributions, as
follows. 1. We propose a topic-specific sen-
tence attention approach that enables topics and
user interests to be efficiently extracted from ut-
terances. 2. We develop a method for pre-training
our model’s utterance encoder, so it learns what
topics are related to each target user’s utterance.
3. We show experimentally that the proposed sen-
tence attention and pre-training methods can pro-
vide high performance when used together.

Proceedings of the SIGDIAL 2018 Conference, pages 32-40,
Melbourne, Australia, 12-14 July 2018. (©2018 Association for Computational Linguistics



2 Related Work

Many studies related to estimating user interest
from text data have targeted social network
services (SNS), especially Twitter users. For
example, Chen et al. proposed a method of
modeling interest using the frequencies of
words in tweets by the target user and followers
(Chen et al., 2010). Some methods have also been
proposed that consider superordinate concepts
acquired from knowledge bases. For example,
Abel et al. modeled Twitter users using the
appearance frequencies of certain named entities
(e.g., people, events, or music groups), acquired
using OpenCalais ! (Abel et al., 2011). In addi-
tion, some methods have used categories from
Wikipedia (Michelson and Macskassy, 2010;
Kapanipathi et al., 2014; Zarrinkalam et al., 2015)
or DBPedia (Kapanipathi et al., 2011). Several
methods have also been proposed that use topic
models, such as latent dirichlet allocation (LDA)
(Weng et al., 2010; Bhattacharyaetal.,, 2014;
Han and Lee, 2016). However, it is difficult to
apply such methods directly to dialogue because
they assume that users are posting about subjects
they are interested in. This is a reasonable
assumption for SNS data, but in conversations,
people do not always limit themselves to topics
they are interested in. For instance, people will
play along and discuss subjects the other persons
are interested in, even if they are not interested in
them, as well.

Other studies have attempted to estimate users’
levels of interest (LOI) from dialogues. Schuller
et al. tackled the task of estimating listeners’ in-
terest in a product from dialogues between them
and someone introducing a particular product,
proposing a support vector machine (SVM)-based
method incorporating acoustic and linguistic fea-
tures (Schuller et al., 2006)0In 2010, LOI estima-
tion was selected as a sub-challenge of the INTER-
SPEECH Paralinguistic Challenge (Schuller et al.,
2006), but there the focus was on single-topic
(product) interest estimation from spoken dia-
logue, not open-domain estimation. In addition,
that task considered business dialogues, not chats.

3 Model Architecture

The task considered in this paper is as follows.
Given an utterance set Us = (u1, ug, ..., up) ut-

"http://www.opencalais.com/
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Figure 1: Overview of the proposed interest esti-
mation model.

tered by a speaker s during dialogues with other
speakers, we estimate their degrees of interest
Ys = (y1,v2,-..,Ym) in topics in a given topic
set T' = (t1,ta,...,tm). Here, the t; correspond
to concrete topics, such as movies or travel while
y; indicates the speaker’s level of interest in ¢;, on
the three-point scale used for the LOI estimation
task described in the previous section. Using this
scale, the y; can take the values O (disinterest, in-
difference and neutrality), 1 (light interest), or 2
(strong interest).

To accurately gauge the speaker’s interest from
their utterances, we believe it is important to ex-
tract the following two types of information effi-
ciently.

o The topic of each utterance
e How interested the speaker is in the topic

Our proposed interest estimation model extracts
this information efficiently and uses a pre-training
method to improve learning. Figure 1 presents
an overview of our neural network model, which
first encodes the word sequence, applies word at-
tention and topic-specific sentence attention, and
finally estimates the degrees of interest Dy =
(di,,diy, ...ydy,,).  The proposed pre-training
method is used for the word sequence encoder.
The model is described in detail below.



3.1 Word Sequence Encoder

The word sequence encoder converts utterances
into fixed-length vectors using a recurrent neural
network (RNN). First, the words in each utterance
are converted into word vectors using Word2vec
(Mikolov et al., 2013), giving word vector se-
quences = (x1,x2,...,x7). The RNN encoder
uses a hidden bidirectional-GRU (BiGRU) layer,
which consists of a forward GRU that reads from
1 to x; in order and a backward GRU that reads
from x; to x1 in reverse order. The f_0>rward GRU
computes the forward hidden states h; as follows.

The backward GRU calculates the backward
hidden states E in a similar way. By combining
the outputs of both GRUs, we obtain the objective
hidden state h;:

(1)

hi = [« hi]

where [:] represents vector concatenation.

)

3.2 Topic Classification Pre-Training

Estimating the user’s level of interest in each topic
requires first assessing the topic of each utterance.
Since this is not given explicitly, the model must
infer this information from the utterance set and
degrees of interest in each topic, so the learning
difficulty is high. In this study, based on the idea
of pre-training (Erhan et al., 2010), we introduce
a new pre-training method for the sentence topic
classification task to the word sequence encoder.
The important point to note about this task is that
the topic classes involved are identical to those in
the topic set Y;. This helps to reduce the difficulty
of learning to estimate the relationships between
utterances and topics and allows the model to fo-
cus on interest estimation during the main training
phase.

During pre-training, the classification probabil-
ity p for each topic is calculated as follows, based
on the output h; of the BiGRU after inputting the
last word vector x;. (Word attention, as described
in the next section, is not used in pre-training.)

p = softmax(W.h; + b.) 3)
where W, and b, are parameters for topic classifi-
cation. The cross-entropy is used as the loss func-
tion during pre-training.
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3.3 Word Attention

Based on an idea from Yang et al., we also in-
cluded word attention in our model (Yang et al.,
2016). Word attention is based on the idea that all
words do not contribute equally to the desired re-
sult and involves using an attention mechanism to
weight each word differently. The resulting utter-
ance vector z is obtained as follows.

vpi = tanh(Wyh; + b)) €]
exp(v;fivw)
Qp = ——— 2 —— )
> exp(v}avw)
(6)

2= oph
7

where W, and b,, are parameters. Unlike the orig-
inal attention mechanism used in neural transla-
tion (Bahdanau et al., 2015) and neural dialogue
(Shang et al., 2015) models, the word attention
mechanism uses a common parameter, called con-
text vector v,, to calculate weight «; for each hid-
den state. v, is a high-level representation for
calculating word importance and, like the model’s
other parameters, is randomly initialized and then
optimized.

3.4 Topic Specific Sentence Attention

Our model uses a word sequence encoder with
word attention to convert the utterance set U; =
(u1,usg, ..., uy) into the utterance vector set Z; =
(21, 22, ..., 2n ). It then extracts information for es-
timating the level of interest in each topic from Zj,
but, as with word attention, not all utterances con-
tribute equally. Yang et al. proposed a sentence
attention mechanism that takes the same approach
as for word attention, but, since it uses only one
parameter to calculate sentence importance (simi-
lar to the context vector v,, for word attention), it
is not capable of topic-specific estimation. This is
because the important utterances in a given utter-
ance set differ from topic to topic. For example, “I
jog every morning” is probably useful for estimat-
ing interest in topics, such as sports or health, but
not in, say, computers or vehicles.

In this study, we therefore propose a new topic-
specific sentence attention approach. The topic
vector v;, represents the importance of each sen-
tence for topic ¢;, and the associated content vector
¢, 1s calculated as follows.

vj = tanh(W,z; + by) (7



o eXp(v;‘rfUti)
Z] eXp(fU‘;-F’Uti)

Ct; = Z Qjt; 25
J

Here, W, and b, are shared, topic-independent pa-
rameters. The topic vector vy, is randomly initial-
ized and then optimized during training.

)

Qjt;
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3.5 Interest Estimation

We then use the content vector ¢j;; to compute the
degree of interest dy, in topic t; as follows.

dy, = tanh(Wy,cq, + by,) + 1 (10)

Here, the parameters W;, and b;, estimate the over-
all degree of interest in the topics ¢;, and it is dif-
ferent for each topic after optimization. Finally,
one is added, so that d;; uses the same O to 2 range
as the correct values ;.

During training, we use the mean squared error
(MSE) between the correct answer y; and d;, as
the loss function:

(1)

4 Experiments

We conducted a series of experiments to evaluate
the proposed method’s performance. For these,
we created a dataset based on logs of one-to-one
text chats between human subjects and the results
of questionnaires answered by each subject. We
also tested several baseline methods for compari-
son purposes.

4.1 Datasets

We asked each subject to first fill out a question-
naire about their interests and then engage in text
chats in Japanese with partners they had not previ-
ously been acquainted with. We recruited 163 sub-
jects via the CrowdWorks? crowd-sourcing site.
The subjects were asked to rate their levels of in-
terest in the 24 topic categories shown in Table
1 using a three-point scale discussed in Section
3. These topics were selected based on the cate-
gories used by Yahoo! Chiebukuro®, a Japanese
question-and-answer site, focusing on topics that
are likely to appear in one-to-one dialogues be-
tween strangers.

*https://crowdworks.jp/
*https://chiebukuro.yahoo.co.jp/
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Table 1: Topic Categories

Travel Movies Celebrities
Music Reading Anime / Manga
Games Computers Home Appliances
Beauty Fashion Sports / Exercise
Health School Outdoor Activities
Housing | Housekeeping | Marriage / Love
Animals Family Cooking / Meal
Vehicles History Politics / Economy

Table 2: Example dialogue (translated by authors)
A|l000000O0DODOOOO0OOO0o
oo
Let’s start a conversation. Nice to meet
you.
OOo0ooO0oOoboOoooood
Hi, nice to meet you.
oooboooobooooo
What are your hobbies?
O0000o0OOOo0oOooooooogo
oooooobbooooooo
Currently, I am living a pet-centered
lifestyle. So, raising pets is my hobby.
ooooooboobboooon
Which pets do you have?
O0000O0OO0Oooooooooogo
ooooo
I have three cats and they are lively.
300000000b0Oo0ooDoogooo
Three cats. That sounds great! Are they
mixed breed?
Oo0d0ODOOoOO0oOooooooboogo
Oooooogoooooooooooo
Yes, they are all mixed breed cats. They
are low-maintenance and easy to keep. Do
you have any animals?

Each dialogue lasted for one hour and was con-
ducted via Skype instant messaging. We only in-
structed the subjects to “Please try to find things
you and your partner are both interested in and
then try to broaden your conversation about these
subjects.” We gave the subjects no specific instruc-
tions as to the intended content or topics of their
conversations. Table 2 shows an example dialogue
between subject A and B.

All the utterances in the chat data were then
classified by subject. Each data point consisted of
all the data about one subject, namely their chat ut-



Table 3: Data Statistics

Number of users (data points) 163
Number of dialogues 408
Number of utterances 49029
Avg. number of strong interest topics | 11.48
Avg. number of light interest topics 7.30
Avg. number of neutral topics 5.21

terances and questionnaire responses (correspond
to Ug and Y5 defined in Section 3). The data was
evaluated using 10-fold cross-validation and their
statistics are shown in Table 3.

4.2 Settings

Word2Vec (Mikolov et al., 2013) was trained us-
ing 100 GB of Twitter data with 200 embedding
cells, a minimum word frequency of 10, and a
skip-gram window size of 5.

The word sequence encoder was a single-layer
BiGRU RNN with 200 input cells and 400 out-
put cells. The word and sentence attention layers
had 400 input and output cells while the estimation
layer had 400 input cells and 1 output cell. The
model was trained using Adam (Kingma and Ba,
2015).

During pre-training, we used questions and an-
swers from the Yahoo! Chiebukuro Data (2nd edi-
tion))*) for each topic. All topics were equally
covered, and a total of 770k sentences were used
for training while 2400 sentences (100 for each
topic) were used for testing. After pre-training,
the topic classification accuracy for the test data
was 0.755.

4.3 Evaluation

When using the proposed method as part of a dia-
logue system, it is effective to select the best topic
from those available for the system to generate an
appropriate response. Therefore, in this experi-
ment, each topic was ranked based on the esti-
mated degree of interest dy,, and the methods were
evaluated based on whether the topics the user was
interested in should have been ranked higher or the
other topics ranked lower. The rankings were eval-
uated using the normalized discounted cumulative
gain (N DC'G), a widely used metric in the field of
information retrieval. This gives values between 0
and 1, with higher values indicating more accurate

*http://www.nii.ac.jp/dsc/idr/yahoo/chiebkr2/Y _chiebuku
ro.html
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ranking predictions and is calculated as follows.

DCGy,
NDCGQk = —— " 12
ca IDCG, (12)
K rel;
D = rel; L 1
CGy, = rel +i§ logai (13)

Here, k is the number of top-ranked objects used
for the N DCG calculation, and rel; is the graded
relevance of the result at position ¢, which was
given by the degree of interest Y in this experi-
ment. The ideal DCG (IDCG) is the DCG if
the ranking list had been correctly ordered by rel-
evance.

In addition, to evaluate the accuracy of the es-
timated degrees of interest in each topic, we also
calculated the MSEs between the results of each
method and the correct answers.

4.4 Baseline Methods

To evaluate the proposed model, we also con-
ducted experiments using the following three
modified models.

Without Pre-Training [
To evaluate the effectiveness of topic clas-
sification pre-training, we tested our model
without this step. Instead, the word sequence
encoder was randomly initialized and then
trained. This model was otherwise identical
to the proposed method.

Without Sentence Attention [
To evaluate the effectiveness of topic-specific
sentence attention, we tried instead using
max-pooling to obtain the content vector.
Again, this model was identical to the pro-
posed method.

Without Pre-Training or Sentence Attention
This model combined the two modifications
mentioned above: it did not use topic classi-
fication pre-training and used max-pooling to
obtain the content vectors, but was otherwise
identical to the proposed method.

We also compared our model’s performance to
those of the following two baseline methods.

Topic Frequency [
The first baseline was based on a method,
proposed by Abel et al., that identifies the
named entities (such as people, events, or
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Figure 2: NDCG @k results for all methods, for k
between 1 and 24.

Table 4: Mean Squared Error

Proposed 0.533
Without Pre-Training 0.580
Without Sentence Attention | 0.561
Without Pre-Training or 0.568
Sentence Attention

SVR (unigram) 0.597
SVR (unigram + bigram) 0.611

music groups) associated with words in the
user’s tweets using OpenCalais and models
the user’s interests using a named entity fre-
quency vector (Abel et al., 2011). However,
as we used Japanese dialogues, we could not
use OpenCalais, so we instead used the topic
classifier described in Section 3.2. Since this
classifier is trained for classification for sen-
tences and not for words, we employed sen-
tence level topic frequency. The topic fre-
quency was used to gauge the user’s interest,
and the topics were ranked in frequency or-
der.

SVR O

The second baseline method used support
vector regression (SVR) to estimate the de-
gree of interest. We conducted experiments
using only unigrams, and using both uni-
grams and bigrams. We used the RBF ker-
nel function. The SVR models were trained
for each topic individually and then used to
estimate the degrees of interest.
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4.5 Results

Figure 2 shows the NDCG results for the top-
ics ranked in the top k. These indicate that the
proposed method performed better than the other
methods for all values of k. Comparing the per-
formances of the methods that used pre-training
(“Proposed” and “Without Sentence Attention”)
with those of the ones that did not (“Without
Pre-Training” and “Without Pre-Training or Sen-
tence Attention”) indicates that the proposed pre-
training step was effective. On the other hand,
a method that used sentence attention (‘“Without
Pre-Training”) showed nearly the same results as
one that did not (“Without Pre-Training or Sen-
tence Attention”), although the latter did achieve
higher NDCGs for £ > 5. This indicates that
using sentence attention alone does not improve
performance. However, the proposed method per-
formed better than the method without sentence at-
tention, confirming that sentence attention is use-
ful, but only if it is used in conjunction with pre-
training.

Turning now to the SVR-based methods, we
observe that using only unigram features worked
better than using both unigrams and bigrams, al-
though both methods were still inferior to the
neural network-based methods, including the pro-
posed method.

When k£ = 1, the topic frequency baseline
achieved higher NDCGs than the SVR-based
methods, because it correctly noted that users were
strongly interested in the topics they spoke about
most frequently. However, these results were still
inferior to those of the neural network-based meth-
ods. Furthermore, it presented the worst N DC'G
results among all the methods for & > 4, due
to speakers sometimes talking about subjects they
were not interested in, as discussed in Section 2.

Table 4 shows the MSEs between the degree of
interest results for each method and the correct
answers (excluding Topic Frequency, which can-
not output the degree of interest). The proposed
method gave significantly smaller MSE value, in-
dicating that its estimates were the most accurate.
In addition, the “Without Pre-Training” method
showed the lowest performance of all the neural
network-based methods, also indicating that the
proposed sentence attention approach is not effec-
tive without also using pre-training.



(1) My hobby is traveling.
(2) I like Disney and Ghibuli movies.

(3) My cat does not basically come from his cage!

( I'm not familiar with baseball and manga, it is just enough to
understand the rules.

(5) Yes, thank you too.

(6) Do you play Pokemon GO now?

(7) 1 have been feeling somewhat sick since | went to Tokyo last week.

| had a part-time agriculture-based job in the morning a while
(8) ago, and | liked the task of harvesting vegetables in a quiet
environment.

Figure 3: Visualization of Attention (Proposed)

(1) My hobby is traveling.
(2) 1 like Disney and Ghibuli movies.

(3) My cat does not basically come from his cage!

( I'm not familiar with baseball and manga, it is just enough to
understand the rules.

(5) Yes, thank you too.

(6) Do you play Pokemon GO now?

(7) 1 have been feeling somewhat sick since | went to Tokyo last week.

| had a part-time agriculture-based job in the morning a while
(8) ago, and | liked the task of harvesting vegetables in a quiet
environment.

Figure 4: Visualization of Attention (Without Pre-Training)

4.6 Discussion

The experimental results discussed in the previous
section indicate that it is important to use the pro-
posed pre-training and sentence attention steps to-
gether. To analyze the sentence attention mecha-
nism further, we visualized the sentence weights
ajt; given by equation (8) for selected topics and
utterances. Figures 3 and 4 show the sentence

weights with and without pre-training, respec-
tively. Here, darker cells indicate higher o, val-
ues.

Figure 3 shows that the sentence weights for the
topics corresponding to the actual meaning of the
sentence are high. (1), (2) and (3) are easy-to-
understand examples. The topics related to each
utterance take the highest weights. In addition,
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utterance (4) includes sports-related words, such
as “baseball” and “rule”, but the weight of the
“Sports / Exercise” topic is not high because the
utterance did not indicate such an interest on the
part of the speaker. Thus, the sentence weights
do not simply reflect the topics of the words, but
also the user’s level of interest in the topic. In-
terestingly, although the utterance (6) refers to the
smartphone game ‘“Pokemon GO”, the weight of
the “Game” topic is not very high, but those of
the “Sports/Exercise” and “Health” topics are both
high. Pokemon GO is interesting to people who
do not usually play games, and this appears to be
reflected in the results. On the other hand, utter-
ance (7) shows high weights for several topics that
intuitively appear to be unrelated to the utterance
itself.

The sentence weights shown in Figure 4 often
do not correspond to the topics or meanings of
the utterances. For example, utterance (5) is not
important for interest estimation and its weights
in Figure 3 are small. However, in Figure 4, all
weights are relatively high. Similarly, utterances
(7) and (8) show high weights for unrelated top-
ics.

The above results confirm that the pre-training
step is important for learning the topic-specific
sentence attention correctly. Without pre-training,
the model must learn the relationships between
utterances and topics by starting from a clean
slate, and the difficulty of this task makes harder
to determine the appropriate results. The ex-
perimental results in the previous section show
that pre-training makes this task easier and im-
proves performance. With proper training, topic-
specific sentence attention then enabled the pro-
posed method to achieve the best performance.

5 Conclusion

In this paper, we have presented a neural network-
based method for estimating users’ levels of in-
terest in a pre-determined list of topics based on
their utterances in chat dialogues. The proposed
method first encodes utterances by using BiGRU
and considering word attention, a set of utterance
vectors was obtained. It then uses these to gener-
ate content vectors corresponding to each topic via
topic-specific sentence attention. Finally, it uses
the content vectors to estimate the user’s degree
of interest in each topic. The utterance encoder
is pre-trained to classify sentences by topic before
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the whole model is trained. Our experimental re-
sults showed that the proposed method can esti-
mate degrees of interest in topics more accurately
than baseline methods. In addition, we found that
it was most effecting to use topic-specific sentence
attention and topic classification pre-training in
combination.

In future work, we plan to apply the proposed
method to a dialogue system and conduct dialogue
experiments with human users. Even if we can es-
timate which topics a user is interested in, gener-
ating and selecting concrete utterances remains a
challenging problem. For example, users who are
interested in sports are not equally interested in all
of them: someone may be interested in football
but not in golf, for instance. We therefore plan to
develop an appropriate way of incorporating the
proposed method into such a system.
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Abstract

The role of alignment between interlocu-
tors in second language learning is dif-
ferent to that in fluent conversational di-
alogue. Learners gain linguistic skill
through increased alignment, yet the ex-
tent to which they can align will be con-
strained by their ability. Tutors may use
alignment to teach and encourage the stu-
dent, yet still must push the student and
correct their errors, decreasing alignment.
To understand how learner ability interacts
with alignment, we measure the influence
of ability on lexical priming, an indicator
of alignment. We find that lexical prim-
ing in learner-tutor dialogues differs from
that in conversational and task-based di-
alogues, and we find evidence that align-
ment increases with ability and with word
complexity.

1 Introduction

The Interactive Alignment Model (Pickering and
Garrod, 2004) suggests that successful dialogue
arises from an alignment of representations (in-
cluding phonological, lexical, syntactic and se-
mantic), and therefore of speakers’ situation mod-
els. This model assumes that these aspects of the
speakers’ language will align automatically as the
dialogue progresses and will greatly simplify both
production and comprehension in dialogue.

In a Second Language (L2) learning setting, a
learner will have a more limited scope for align-
ment due to their situational understanding, and
their proficiency will dictate to what extent they
are capable of aligning lexically, syntactically
and semantically (Pickering and Garrod, 2006).
Even once a situational alignment is reached (i.e.
the learner understands the context of their in-
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terlocutor’s interaction with them) there remains
the question of the learners receptive vs. pro-
ductive vocabulary knowledge (words they under-
stand when others use them vs. words they can use
themselves), both of which are active in L2 dia-
logues (Takac, 2008) and constrain their scope for
alignment. Student alignment therefore will also
be influenced by the tutor’s strategy; or by how
much of the student’s receptive language the tutor
produces which facilitates the student productive
ability in this context.

We expect that alignment within L2 learner di-
alogue will differ from alignment in fluent dia-
logues due to the different constraints mentioned
above (Costa et al., 2008). We also expect learn-
ers to align to their interlocutor to a compara-
tively greater degree than found in native dialogue.
This is both because of the difficulty of the task
leading to a greater need for alignment (Picker-
ing and Garrod, 2006), and because we know that
an L2 learner’s lexical complexity increases in a
dialogue setting due to the shared context words
within that dialogue, compared to the level at
which they are capable of expressing themselves
in monologue (Robinson, 2011).

In order to find out whether ability affects align-
ment in L2 dialogue, we investigate lexical prim-
ing effects between L2 learner and tutor. Priming
is a mechanism which brings about alignment and
entrainment, and when interlocutors use the same
words, we say they are lexically entrained (Bren-
nan and Clark, 1996). We compare the effects
against two different corpora: task-based (Ander-
son et al., 1991) and conversational (Godfrey et al.,
1992), and between different levels of L2 student
competency. We expect that alignment of tutor to
student and vice versa will be different, and that
the degree of alignment at a higher level of L2
learner competence will be more similar to that of
conversational dialogue than that at a lower level
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(Sinclair et al., 2017). We are interested in the dif-
ference between tutor-to-student (T'S) and student-
to-tutor (ST) alignment, as there are various fac-
tors which could contribute to both increased and
decreased alignment to that existing between two
fluent interlocutors (Costa et al., 2008).

1.1 Motivation

By examining alignment differences, we aim to
better understand the relationship between tutor
adaptation and L2 learner production. This under-
standing can inform analysis of “good” tutoring
moves, leading to the creation of either an L2 tu-
toring language model or more informed L2 dia-
logue agent design, which can exploit this knowl-
edge of effective tutor alignment strategy to con-
tribute to improved automated L2 tutoring. The
potential benefits of automated tutoring for L2 di-
alogue' have already been seen through the suc-
cess of apps such as Duolingo® bots which allow
the user to engage in instant-messaging style chats
with an agent to learn another language. Adap-
tion of agent to learner however is an ongoing
research task, although outside L2 tutoring, is a
well-explored area (Graesser et al., 2005). Align-
ment, or “more lexical similarity between student
and tutor” has been shown to be more predic-
tive of increased student motivation (Ward et al.,
2011), and agent alignment to students’ goals can
improve student learning (Ai et al., 2010). We
build on previous research by investigating lexi-
cal priming effects for each interlocutor in dia-
logue both within- and between-speaker, and at
different ability levels in L2 dialogue. This adds
the dimension of lexical priming and individual
speaker interactions to the work of Reitter and
Moore (2006) and the inspection of student to tu-
tor, and within-speaker priming to that of Ward
and Litman (2007b). By also making comparisons
across L2 ability levels, we can now analyse prim-
ing effects in terms of L2 acquisition. Similar
work in this area outside the scope of this paper
includes work analysing alignment of expressions
in a task-based dialogue setting (Duplessis et al.,
2017) and the analysis of alignment-capable dia-
logue generation (Buschmeier et al., 2009).

In addition to informing dialogue tutoring agent
design, this work has potential to augment exist-
ing measures of linguistic sophistication predic-

'Also know as Dialogue-based Computer Assisted Lan-

guage Learning (CALL)
%bots.duolingo.com
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tion (Vajjala and Meurers, 2016) to better deal
with individual speakers within a dialogue, us-
ing alignment as a predictor of learner ability as
has been suggested by Ward and Litman (2007a).
Dialogue is inherently sparse, particularly when
considering the lexical contribution of a single
speaker. Accordingly, alignment could be a use-
ful predictor of student receptive and productive
knowledge when in combination with lexical com-
plexity of the shared vocabulary.

1.2 Research Questions

We present evidence which strengthens our hy-
pothesis that tutors take advantage of the natural
alignment found in language, in order to better in-
troduce, or gmund3 vocabulary to the student; in
other words, scaffolding* vocabulary from recep-
tive to productive practice in these dialogues.

Our work investigates the following research
questions:

RQI1 How does L2 dialogue differ from task-
based and conversational in terms of align-
ment?

We find ST alignment has the strongest ef-
fect within L2 dialogue.

RQ2 Does alignment correlate with ability in L2
dialogue?
We find priming effects are greater at
higher levels of student ability.

RQ3 Does linguistic sophistication of the lan-
guage used influence alignment of speakers
at different ability levels in L2 dialogue?

We find the more complex the word, the
greater the likelihood of alignment within
L2 dialogue.

2 Corpora

We compare the alignment present within three di-
alogue corpora: L2-tutoring, conversational and
task-based. A summary of the corpora is pre-
sented in Table 1. The Barcelona English Lan-
guage Corpus (BELC) (Muioz, 2006) was gath-
ered at four different periods over the course of

3Grounding in dialogue consists of the participants estab-
lishing a common basis, or ground, on which their communi-
cation takes place. This can be viewed as a strategy for man-
aging uncertainty and therefore error handling in dialogue
(Skantze, 2007).

*Scaffolding (Wood et al., 1976) provides a metaphor to
the kind of temporary support at successive levels of develop-
ment needed to construct knowledge, or to support learning.



Corpus Type English Dialogues

BELC L2 tutoring non-native | 118
(levels 1-4)

Switchboard | conversational | fluent 1155

Map Task task-based fluent 128

Table 1: Corpora types and details. Map Task is
referred to in later diagrams as MT, Switchboard
as SB. The levels in BELC indicate increasing
learner ability, with 1 indicating the lowest ability
level and 4 the highest.

three years, with the students involved receiving
approximately one school year of weekly English
tuition between sessions. Table 2 shows a short
20-utterance long extract from a dialogue. The
Switchboard Corpus is conversational dialogue
over telephone between two fluent English speak-
ers (A and B), and MapTask is a task-based dia-
logue where the instruction-Giver (G) directs the
instruction-Follower (F) from a shared start point
to an end point marked on G’s map but which is
unknown to F, who also has access to a similar
map, although some features may only be present
on one of the interlocutors’ copies.

3 Methods

To address RQI and RQ?2, section 3.1 discusses
how we measure lexical priming so that we can
compare priming effects in different situations.
Section 3.2 discusses the measure we use for word
complexity in order to address RQ3, so that we can
use this as an additional parameter in our model.

3.1 Lexical Convergence

Lexical priming predicts that a given word (farget)
occurs more often closely after a potential prime
of the same word than further away. In order to
measure lexical convergence, we count each word
used by the speaker being considered as a potential
prime. Following Ward and Litman (2007b), who
measure the lexical convergence of student to tutor
in physics tutorial dialogues, we only count words
as primes if in WordNet (Miller, 1995), the word
has a non-empty synset® e.g. if there was a choice
of potential words and the speaker used the same
word as their interlocutor, this can be counted as a
prime, since it was not simply used because it was
the only choice.

Since the learning content of L2 dialogues is the

3This also has the effect of removing function words from
consideration.
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Tutor Student
do you have a bedroom for just you ?

yes .
ok .
how many beds are there in your room ?

wo .
two beds .

two beds .

ok one for you...

... and his friend algiins amigos .
and a friend that’s good .
hmm what is the room like ?

hmm...
tell me about your room .

my room ?
uhhuh .
describe it .
nmy room is...
there’s two beds...
...very big...
uhhuh .

Table 2: Example of lexical alignment in BELC
dialogue. room, beds and friend are examples of
lexical alignment from student to tutor and from
tutor to student respectively. Underlined text in-
dicates within-speaker (77 or SS) alignment, and
bold text indicates between-speaker (7S or ST)
alignment (algiins amigos means some friends).

language itself, we group the words into word fam-
ilies, which is a common method used to measure
L2 student vocabulary (Graves et al., 2012). We
do this by lemmatizing® the words in a text, and
counting lemmas used by the speaker as prime.
Thus, we count the forms want, wants, wanted &
wanting as a single word.

We also distinguish between the speakers when
looking at between-speaker, or comprehension-
production (CP) priming where the speaker first
comprehends the prime (uttered by their inter-
locutor) and then produces the target, and within-
speaker or production-production (PP) priming,
where both the prime and the target are produced
by the same speaker. Since we are also interested
in tutor 7 behaviour vs. student S in these inter-
actions we map PP priming to 77 and SS respec-
tively and CP to 7S and ST.

6Using NLTK (Loper and Bird, 2002)



Lexical Repetition

In our data, each repetition of an occurrence of a
word W at distance 7 is counted as priming’ where
W has a non-empty synset, and is of the same
word-family as its prime (section 3.1). Each case
where W occurs but is not primed 7 units before-
hand in the dialogue, is counted as non-priming.
Our goal is to model p(primeltarget,n), that is
the sampling probability that a prime is present
in the n-th word before farget occurs. Without
lexical priming’s effect on the dialogue, we would
assume that

p(primeltarget,n) = p(primeltarget).

The distance n between stimulus and target is
counted in words, as this has the advantage over
utterances for capturing within-utterance priming
and is less sensitive to differences in average ut-
terance length between corpora when comparing
priming effects. Words were chosen as the closest
approximate available to time in seconds as mea-
sured in Reitter and Moore (2006). We look for
repetitions within windows of 85 words®.

Generalized Linear Mixed Effects Regression

For the purposes of this study, following Reit-
ter and Moore (2006), we use a Generalized Lin-
ear Mixed Effects Regression Model (GLMM). In
all cases, a word instance ¢ is counted as a rep-
etition at distance d if at d there is a token in
the same word-family as t. To measure speaker-
speaker priming effects, we record both the prime
and target producers at d. GLMMs with a binary
response variable such as ours can be considered a
form of logistic regression.We model the number
of occurrences prime = target|d < n (where n
is window size) of priming being detected’. We
model this as binomial, where the success proba-

"The use of priming is not intended to imply that priming
is the only explanation for lexical repetition

8We chose this window size based on Reitter and Moore
(2006) using an utterance window of 25 and a time window
of 15 seconds. We calculated the average number of words to
occur in the utterance window chosen, and the average num-
ber of words which are spoken in the 15 second window and
chose the average of the two as our window.

“For example, if we were only interested in priming
within a window size of 3 words, In table 2, for the student’s
first use of the word beds we would record 3 data points:
(window:1, target:bed, role:SS, prime=target:0), (window:2,
target:bed, role:ST, prime=target:1), (window:3, target:bed,
role:ST, prime=target:0) indicating there is a prime for our
target beds at distance 2. The number of trials = target words
X window size.
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bility depends on the following explanatory vari-
ables: Categorical: corpus choice, priming type
from speaker role, ability level; and Ordinal: word
frequency, as explained in Section 3.2. The model
will produce coefficients 3;, one for each explana-
tory variable ¢. (3; expresses the contribution of
¢ to the probability of the outcome event, in our
case, successful priming, referred to as priming ef-
fect size in the following sections. For example,
the 3; estimates allow us to predict the decline of
repetition probability with increasing distance be-
tween prime and target, and the other explanatory
variables we are interested in; we refer to this as
the probability estimates in in subsequent sections.
The model outputs a statistical significance score
for each coefficient, these are reported under each
figure where relevant.

3.2 Complexity Convergence

To capture linguistic complexity within the prim-
ing words, we use Word Occurrence Frequency
(WOF) as a predictor of the relative difficulty of
the words used. We use log(WOF') to normalise
the deta before using it as a factor in our model.
WOF has been found to predict L2 vocabulary
acquisition rates - the higher frequency of a word,
the more exposure a student has had to it, the
more likely they are to learn it faster (Vermeer,
2001). Word Frequency has also been shown to
act as a reasonable indication of word ‘difficulty’
(Chen and Meurers, 2017). We therefore expect a
negative correlation between learner level and fre-
quency of vocabulary used, given a certain prime
window. We gathered frequency counts from the
Google News Corpus introduced by Mikolov et al.
(2013), for its size and diverse language.

4 Results

4.1 Lexical Convergence Cross Corpora

To find how L2 dialogue differs from task-based
and conversational in terms of alignment (RQ1),
we investigate the priming effects present across
corpora of different speaker roles. Figure 1 shows
that the BELC corpus has a similar asymmetry in
speaker alignment to MT, and that the alignment
of speakers in SB is more symmetrical, mirroring
the speakers’ equal role in the dialogue. This can
be seen in the different priming effects between
speakers in BELC and MT, and the same effects
between speakers in SB. Figure 2 shows the dif-
ferent decay of repetition probability with window
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size for the different roles for all three corpora.  and ability level on the probability of seeing a
This shows the same symmetry and asymmetry  prime word at different window sizes. Figure 4
of between- and within-speaker repetition decay  shows a sharper decay in the probability of tutor to
probability as Figure 1. student (TS) priming than in student to tutor (ST)
priming. Figure 5 shows that tutor self-priming
is more probable at lower ability levels, and that
We investigate priming effects within BELC be- ST alignment at lower levels is less likely than at
tween levels to find whether alignment correlates  higher levels of ability.

with ability in L2 dialogue (RQ?2). Figure 3 shows
the strong student-tutor priming occurring at each
ability level, and the general increase in priming  Exploring the question of whether linguistic so-
effect size as ability level increases for all prim-  phistication of the language used influences align-
ing types. When comparing both Figure 1 and 3,  ment of speakers at different ability levels in L2
we see that as ability level increases, BELC prim-  dialogue (RQ3); we find log(W OF) to have a sig-
ing effect sizes tend towards those seen in Switch-  nificant negative correlation (p < 0.0001) with
Board, particularly those of ST and TS, the ef-  priming effects. Thus the more complex the word
fect size of which also becomes more symmetrical ~ (as measured by a lower WOF'), the greater the
with ability level, although the imbalance between  likelihood of alignment. Figure 6 shows the prim-
SS and TT priming remains similar to that of Map-  ing effects of WOUF'. It shows that priming effects

4.2 Lexical Convergence by Level

4.3 Linguistic Complexity Convergence

Task. of WOF are stronger for ST and 77, than for the
We also examine the model predictions for dif-  other roles, but this difference is less pronounced
ferent window sizes for different conditions. Fig-  at higher levels than it is for lower levels of abil-

ures 4 and 5 describe the relationship betweenrole  ity. The ST shows the most marked difference in
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Figure 3: Priming effect sizes under different
speaker role situations, across levels in BELC. Ef-
fects estimated from separately fitted nested re-
gression models for each subset of BELC split by
level(1-4). The results are all significant (p <
0.0001).

effect between low and high levels, lowest at the
highest ability. Per role, priming effect is gener-
ally smaller at higher ability levels than lower.

Figures 7 and 8 show the effects of WOZF on
level and role respectively. In Figure 7, lower
log(WOF) values are indicative of more complex
words. In such cases (see Figure 7, column 1),
the repetition probability is higher for high ability
students, compared to low ability students. This
stands in contrast to higher log(W OF) values, in-
dicative of less complex words, where the repeti-
tion probability is now lower for high ability stu-
dents compared to low ability students (see Fig-
ure 7, column 6). Figure 8 shows differences in
self-priming and within speaker priming, in that
for both TS and ST, the probability of repetition is
greater for higher frequency words, while for 7T
and SS, the probability of repetition is higher for
lower frequency words.

5 Discussion

The three spoken dialogue corpora we investigated
demonstrate a significant effect of distance be-
tween prime and target in lexical repetition, pro-
viding evidence of a lexical priming effect on word
family use. We also found evidence of priming
for each interlocutor in both between-speaker and
within-speaker roles.

ST alignment has the strongest effect within
L2 dialogue. To find how L2 dialogue differs

ST
TS
T

[
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from our other two corpora in terms of role (RQ1),
we measured the priming effects for Tutors (TT,
TS) and Students (SS, ST) and find it asymmet-
ric in the same manner as for the task-based di-
alogue MT. This is in contrast to the symmetric
effects in the conversational dialogue of SB (Fig-
ure 1). ST alignment also has the greatest prim-
ing effect compared to the other roles in BELC,
which supports our hypothesis that student-to-
tutor alignment is an artefact of both tutor scaf-
folding, and students’ productive range benefiting
from the shared dialogue context.

When considering within-speaker priming, it is
also interesting to note that TT priming has a more
marked effect than SS priming, similar to the rela-
tionship between GG and FF in Map Task. We in-
terpret this similarly to Reitter and Moore’s (2006)
comparison of Map Task and Switchboard, in that
since the task-based or tutoring nature of the di-
alogue is harder, the leading speakers use more
consistent language in order to reduce the cogni-
tive load of the task (tutoring/instruction-giving).

Priming effects are greater at higher levels
of student ability. In order to investigate our
main hypothesis, that ability does affect alignment
(RQ2), we measured priming effects in different
ability levels of L2 tutorial dialogue (Figure 3),
and found that priming effects are greater at higher
levels of student ability, which provides evidence
that as ability increases, dialogues have more in
common with conversational dialogue. We also
measured how role influences these priming ef-
fects (Figures 4 and 5) and hypothesise that the
faster decay of TS repetition probability (Figure 5)
is an indication that the tutor is using the immedi-
ate encouraging backchanneling seen in the repe-
tition in Table 2. We note (Figure 4) that tutor-to-
tutor repetition is more probable at lower levels,
which supports the above hypothesis. Addition-
ally, student-to-tutor repetition probability is more
likely at higher levels which is a good indication
that student ability is higher, since we argue that
they are now able to align to their interlocutor.

The more complex the word, the greater the
likelihood of alignment within L2 dialogue.
Lastly, to find whether linguistic sophistication of
language aligned to is affected by ability (RQ3),
we investigated the influence of word frequency
on alignment within BELC. Figure 7 shows that
at lower log(WOF) values (which we use to in-
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priming effect sizes for Word Occurrence Fre-
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cant, all other results are significant with at least
p < 0.001 and most with p < 0.0001.

dicate more complex words), repetition probabil-
ity is higher in the higher ability levels compared
to the lower levels, and at higher log(W OF'), the
repetition probability of the higher ability levels

ST
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T

S5

47

is now lower than at the lower levels. This has
interesting implications for using these results as
features for student alignment ability prediction.
This fits with the Interactive Alignment Model
(Pickering and Garrod, 2004), which suggest that
alignment will happen more with greater cogni-
tive load, and (Reitter and Moore, 2006), who
find stronger priming for less frequent syntactic
rules which supports the cognitive-load explana-
tion. The stronger priming effect identified for less
frequent vocabulary also supports this hypothesis.
Figure 6 shows the priming effects are slightly
smaller at higher ability levels. Log(WOF’) has a
negative correlation, meaning there is more likely
to be alignment the lower the W OF'. The results
at each level have a similar priming effect distri-
bution over role, with the most marked difference
in priming effect being for ST (Student to Tutor
alignment), which shows a decrease in priming ef-
fect for harder words at higher ability levels. This
provides an interesting first indication that there is
a measurable effect of student leveraging contex-
tual vocabulary to augment their productive reach
in L2 dialogue.
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6 Conclusions and Future Work

We see these results as an indication that measur-
ing lexical alignment combined with lexical so-
phistication of vocabulary has potential as a pre-
dictor of student competency. We also hypothe-
sise that measurements of ‘good tutoring’ actions
could consist of how and to what extent tutors
adapt interactively to individual students’ needs in
terms of their conversational ability. Tutor self-
priming seems to be an interesting possible feature
for measuring this adaption. We want to further in-
vestigate different measures of alignment and both
lexical and syntactic complexity to inform sys-
tems that aim to automate L2 tutoring. We plan
to consider which speaker introduces the word be-
ing aligned to, in order to better understand the
relationship between productive and receptive vo-
cabulary of the student in dialogue settings. It is
also important to separate the effects of priming
per se from other factors that can influence lexi-
cal convergence, such as differences in vocabulary
and topic specificity. As a first step toward that
goal, we plan to compare lexical convergence in
the original corpus with convergence in matched

baselines of randomly ordered utterances (Dup-
lessis et al., 2017), which will account for vocabu-
lary effects and corpus-specific factors. To explore
more measures of word complexity in addition to
simple WOF, we will further investigate measures
specific to L2 dialogue, such as the English Vo-
cabulary Profile (EVP) (Capel, 2012), with word
lists per CEFR'? level, or measures such as counts
of word sense per word, or whether a word is con-
crete or abstract'!, exploiting existing readability
features (Vajjala and Meurers, 2014).
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Abstract

Casual conversation has become a focus
for dialogue applications. Such talk is
ubiquitous and its structure differs from
that found in the task-based interactions
that have been the focus of dialogue sys-
tem design for many years. It is unlikely
that such conversations can be modelled as
an extension of task-based talk. We review
theories of casual conversation, report on
our studies of the structure of casual dia-
logue, and outline challenges we see for
the development of spoken dialog systems
capable of carrying on casual friendly con-
versation in addition to performing well-
defined tasks.

1 Introduction

People talk. Human society depends on spoken (or
written) interaction. Instrumental or task-based
conversation is the medium for practical activi-
ties such as service encounters (shops, doctor’s
appointments), information transfer (lectures), or
planning and execution of business (meetings).
Much daily talk does not seem to contribute to a
clear short-term task, but builds and maintains so-
cial bonds, and is described as ‘interactional’, so-
cial, or casual conversation. Casual conversation
happens in a wide variety of settings, including
‘bus-stop’ conversations between strangers, gos-
sipy tea break chats between workmates, family
and friends ‘hanging out’ at home or in cafes and
bars engaged in Schelgoff’s ‘continuing state of
incipient talk’ (Schegloff and Sacks, 1973), or in-
deed in stretches of smalltalk and chat preceding
or punctuating business interactions. Much re-
search is focused on dyadic task based dialogue
interactions. Early dialogue system researchers
recognised the complexity of dealing with social
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talk (Allen et al., 2000), and initial prototypes con-
centrated on practical tasks such as travel book-
ings or logistics (Walker et al., 2001; Allen et al.,
1995). Implementation of artificial task-based di-
alogues is facilitated by a number of factors. In
these tasks, the lexical content of utterances drives
successful completion of the task, conversation
length is governed by task-completion, and par-
ticipants are aware of the goals of the interac-
tion. Such dialogues have been modelled as fi-
nite state and later slot-based systems, first using
hand-written rules and later depending on data-
driven stochastic methods to decide the next ac-
tion. Task-based systems have proven invaluable
in many practical domains. However, dialog tech-
nology is quickly moving beyond short task-based
interactions, and interest is focussing on realistic
artificial dialog for roles such as social compan-
ions, educators, and helpmates. To model and gen-
erate a wider variety of social talk and indeed to
improve the quality and user engagement of task-
oriented interactions, there is a need for under-
standing of social conversation. Stochastic mod-
els require appropriate data. This paper provides
an overview of our recent work in this area, based
on corpus studies of casual conversation. Below
we describe the concept of social talk and previ-
ous work in the area. We then describe our dataset,
annotation and the results of our preliminary anal-
yses, discussing how these may aid the design of
conversational agents.

2 Casual Conversation

Social talk or casual conversation, ‘talk for the
sake of talking’, or ‘phatic communion’ has been
described as an emergent behaviour whenever hu-
mans gather (Malinowski, 1936), and there are
theories which posit that such talk is an ‘unmarked
case’ or base form for human spoken interaction

Proceedings of the SIGDIAL 2018 Conference, pages 51-59,
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(Dunbar, 1998). Examples of such talk include
short conversations when people meet, intermit-
tent talk between workers on topics unrelated to
the job in hand throughout the workday, or longer
dinner table or pub conversations. Subgenres of
casual conversation include smalltalk, gossip, and
conversational narrative. The duration of such in-
teractions can vary from short ‘bus stop’ conver-
sations to ongoing interactions which lapse and
start again over the course of several hours. Re-
searchers have theorized that such talk functions to
build social bonds and avoid unfriendly or threat-
ening silence, as in the phatic component in Jakob-
son’s model of communication (Jakobson, 1960),
distinctions between interactional and instrumen-
tal language (Brown and Yule, 1983), and theories
that language evolved to maintain social cohesion
(Dunbar, 1998). Social talk differs in many ways
from task-based conversations. A chat between a
concierge of an apartment building and a tenant
about football differs in many respects from a cus-
tomer ordering pizza from an employee. In the
chat there is no important information exchanged
which is vital to the success of a short-term task,
the topic could be the weather or football. In the
pizza ordering scenario, information on the type of
pizza and the price are vital to a successful transac-
tion, and the goal — sale of a pizza — is short-term,
achievable within the conversation, and known to
both parties. In the chat, the goal could be de-
scribed as the maintenance of a social relationship
— fulfillment of this goal is a process which ex-
tends past the temporal boundaries of the current
conversation. Casual conversation seems to be
based on avoidance of silence and engagement in
unthreatening but entertaining verbal display and
interaction, as observed by Schneider (Schneider,
1988), who noted ‘idling’ — sequences of repeti-
tions of agreeing tails such as ‘Yes, of course’ or
‘MmHmm’, which seem to keep the conversation
going rather than add any new information. He
proposed a set of maxims peculiar to this genre,
concentrated on the importance of avoiding si-
lence and maintaining politeness. While instru-
mental talk is often dyadic, casual conversation is
very often multiparty. In terms of function, Slade
and Eggins view casual conversation as the space
in which people form and refine their social real-
ity (Eggins and Slade, 2004) citing gossip between
workmates, where participants reaffirm their soli-
darity, and dinner table talk between friends. In
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task-based encounters, participants have clear pre-
defined roles (‘customer-salesperson’, ‘teacher-
student’) which can strongly influence the tim-
ing and content of their contributions to the ex-
change. However, in casual talk, all participants
have equal speaker rights and can contribute at any
time (Wilson, 1989) (Cheepen, 1988). The form of
such talk is also different to that of task-based ex-
changes - there is less reliance on question-answer
sequences and more on commentary, storytelling,
and discussion (Thornbury and Slade, 2006; Wil-
son, 1989). Instead of asking each other for infor-
mation, participants seem to collaborate to fill the
floor and avoid uncomfortable silence. Topics are
managed locally — a meeting has an agenda and
chairperson to impose the next topic, while casual
topics are often introduced by means of a state-
ment or comment by a participant which may or
may not be taken up by other participants. Instru-
mental and interactional exchanges differ in dura-
tion; task-based conversations are bounded by task
completion and tend to be short, while casual con-
versation can go on indefinitely. There are a num-
ber of syntactical, lexical, and discourse differ-
ences between (casual) conversation and more for-
mal spoken and written genres (Biber et al., 1999).
Our work explores the architecture of casual talk.

3 The Architecture of Casual Talk

Casual conversation is not a simple sequence of
adjacency pairs, but proceeds in distinct phases.
Laver concentrated on the ‘psychologically crucial
margins of interaction’, conversational openings
and closings in particular, suggesting that small
talk performs a transitional function from initial
silence through stages of greeting, to the business
or ‘meat’ of the interaction, and back to closing
sequences and to leave taking (Laver, 1975). Ven-
tola concentrated on longer conversations, identi-
fying distinct phases. Such conversations often be-
gin with ritualised opening greetings, followed by
approach segments of light uncontroversial small
talk, and in longer conversations leading to more
informative centre phases (consisting of sequential
but overlapping topics), and then back to ritualised
leave-takings (Ventola, 1979). Ventola described
several structural elements or phases (listed be-
low), which could be combined to form conver-
sations ranging from minimal exchanges of greet-
ings to long group interactions such as dinner
party conversations.



Figure 1: A simplified view of the phases of casual
talk described by Ventola - Greeting, Approach,
Centre, and Leavetaking.

G Greeting.
Ad Address. (“Hello, Mary”)
Id Identification (of self)

Ap Approach. Smalltalk. Direct (ApD) —
asking about interactants themselves, or
indirect (Apl) — talking about immediate
situation (weather, surroundings).

C Centring. Participants fully involved in
conversation, talking at length.

Lt Leave-taking. Signalling desire or need
to end conversation.

Gb Goodbye. Can be short or extended.

In this model, lighter talk in the form of Ap-
proach phases occurs not only at the extremes
of conversations, but can recur between Centring
phases throughout a longer conversation. Figure 1
shows a simplified schematic of the main phases
described by Ventola.

Another model is provided by Slade and Eg-
gins, who contend that casual talk can be seen
as sequences of ‘chat’ and ‘chunk’ elements (Eg-
gins and Slade, 2004, p. 230). Chunks are seg-
ments where (i) ‘one speaker takes the floor and
is allowed to dominate the conversation for an ex-
tended period’, and (ii) the chunk appears to move
through predictable stages — that is, it is generic.
‘Chat’ segments, on the other hand, are highly in-
teractive and appear to be managed locally, un-
folding move by move or turn by turn. In a study

of three hours of conversational data collected dur-
ing work coffee breaks, Slade found that around
fifty percent of all talk was chat, while the rest
comprised longer form chunks from the following
genres: storytelling, observation/comment, opin-
ion, gossip, joke-telling and ridicule. In chat
phases, several participants contribute utterances
with many questions and short comments. Chat
is highly interactive with frequent turn changes,
and often occurs at the start of an interaction.
The conversational floor is shared among the par-
ticipants and no single participant dominates for
extended periods. Chat is often used to ‘break
the ice’ among strangers involved in casual talk
(Laver, 1975). As the conversation progresses,
chat phases are interspersed with chunk phases.
The ‘ownership’ of chunks seems to pass around
the participants in the talk, with chat linking one
chunk to the next (Eggins and Slade, 2004). Figure
2 shows examples drawn from our data of typical
chat and chunk phases in a 5-party conversation.

Both Ventola’s and Slade and Eggins’ models
treat conversation as composed of phases, with
parallels between Ventola’s approach phases and
Slade and Eggins’ chat phases. It is likely that
the various conversational phases are subject to
different norms of turntaking and that phenomena
such as laughter or disfluency may appear in dif-
ferent distributions in different phases. Although
Ventola’s and Slade and Eggins’ respective work
is based on real dialogue in the form of ortho-
graphic transcripts, analyses of longer casual talk
have been largely theoretical or based on qualita-
tive descriptions. Our work aims to expand our
knowledge of the form of these phases so that they
can be modelled for artificial dialogue. In our in-
vestigations, we first segmented our data into chat
and chunk phases to analyse the characteristics of
these two types of talk, and in later work plan to
refine our analysis by further segmenting our data
into Ventola’s phases. Below we outline the lim-
itations of available corpora for work on longer
form multiparty casual talk, describe our dataset,
annotation, and experiments.

4 Corpora used for Casual Conversation
Research

Relevant corpora of human interaction are essen-
tial to understanding different genres of spoken di-
alogue. Dialog corpora have been created of the
same spoken task by different subjects, or of inter-



= hJI (B . | : I L1 I [ 1§l

0 | i i LiR/mE I Ill‘IIIIJIhIFI.IIIIII’F Ii-lllll-ll II IJJ*II I! [N H I I.‘I. III ‘I l II1

720 I- -IIII”-II‘ :--\ B ll I-I-Ihrlll . Ill.l.:h. .IF\I II[IIHI I--\.-H —
L 1 |

Figure 2: Examples of chat (top) and chunk (bottom) phases in two stretches from a 5-party conversation.
Each row denotes the activity of one speaker across 120 seconds. Speech is dark grey, and laughter is
white on a light grey background (silence).The chat frame, taken at the beginning of the conversation,
can be seen to involve shorter contributions from all participants with frequent laughter. The chunk frame

shows longer single speaker stretches.

actions specific to particular domains where lex-
ical content was fundamental to achievement of
a practical goal. Such corpora include informa-
tion gap dialogs such as the HCRC MapTask cor-
pus of dyadic information gap task-based conver-
sations (Anderson et al., 1991) or the LUCID Di-
aPix corpus of ‘spot the difference’ games (Baker
and Hazan, 2011), as well as real or staged meet-
ings (e.g., ICSI and AMI multiparty meeting cor-
pora (Janin et al., 2003; McCowan et al., 2005)) or
genres such as televised political interviews (Beat-
tie, 1983). Because of their task-focused nature,
these data, while spontaneous and conversational,
cannot be considered true casual talk, and results
obtained from their analysis may not generalize to
casual conversations.

There are some corpora of casual talk, including
telephonic corpora (SWITCHBOARD (Godfrey
et al., 1992) and the ESP-C collection of Japanese
telephone conversations (Campbell, 2007)), and
face-to-face talk datasets (e.g., Santa Barbara Cor-
pus (DuBois et al., 2000), and sections of the ICE
corpora (Greenbaum, 1991) and British National
Corpus (BNC-Consortium, 2000)). These corpora
are audio only and thus cannot be used to inform
research on facial expression, gestural or postural
research.

Several multimodal corpora of mostly dyadic
‘first encounters’ have appeared recently, where
strangers are recorded engaged in casual conver-
sation for periods of 5 to 20 minutes or so (Ed-
lund et al., 2010; Aubrey et al., 2013; Paggio et al.,
2010) in several languages including Swedish,
Danish, Finnish, and English. These corpora are
very valuable for the study of dyadic interaction,
particularly at the opening and early stages of in-
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teraction. However, the substance of longer casual
conversation beyond these first encounters or ap-
proach stages has not been focused on in the field.

5 Dataset and Annotation

We compiled a dataset of six informal multiparty
conversations, each around an hour long. The
requirements for the data were that participants
could speak freely, that there was no task or topic
imposed by the experimenter, and that recordings
were multimodal so that analyses of visual cues
could be carried out on the same data and used
to build a more comprehensive understanding of
multimodal face-to-face interaction. Suitable con-
versations were drawn from three multimodal cor-
pora, d64, DANS, and TableTalk (Oertel et al.,
2010; Hennig et al., 2014; Campbell, 2008). In
each of these, participants were recorded in casual
conversation in a living room setting or around
a table, with no instructions on topic of type of
conversation to be carried out - participants were
also clearly informed that they could speak or stay
silent as the mood took them. Table 1 shows de-
tails of participant numbers, gender, and conversa-
tion duration for each of the six conversations.

5.1 Data Preparation

The audio recordings included near-field chest or
adjacent microphone recordings for each speaker.
These were found to be unsuitable for automatic
segmentation as there were frequent overlaps and
bleedover from other speakers. The audio files
were segmented manually into speech and si-
lence intervals using Praat (Boersma and Weenink,
2010). The segmentation was carried out at the
intonational phrase level (IP), rather than a more



Table 1: Source corpora and details for the conver-
sations used in dataset

Corpus Participants Gender Duration (s)
D64 5 2F/3M 4164
DANS 3 1F/2M 4672
DANS 4 1F/3M 4378
DANS 3 2F/1M 3004
TableTalk 4 2F/2M 2072
TableTalk 5 3F2M 4740

coarse and theory dependent utterance or inter-
pausal unit (IPU) level. Labels covered speech
(SP), silence (SL), coughs (CG), breaths (BR), and
laughter (LG). The speech label was applied to
verbal and non-verbal vocal sounds (except laugh-
ter) to include contributions such as filled pauses,
short utterances such as ‘oh’ or ‘mmhmm’, and
sighs. Laughter was annotated inline with speech.
Annotators worked on 10 second and four-second
Praat windows of the audio. Doubtful cases were
resolved using Elan (Wittenburg et al., 2006) with
the video recordings. Manual segmentation into
speech and silence can be problematic, as humans
listening to speech can miss or indeed imagine the
existence of objectively measured silences of short
duration (Martin, 1970), and are known to have
difficulty recalling disfluencies from audio they
have heard (Deese, 1980). However these results
were based on speakers timing pauses with a stop-
watch in a single hearing. In the current work, us-
ing Praat and Elan, speech could be slowed down
and replayed and, by using the four-second win-
dow, annotators could see silences or more ac-
curately differences in amplitude on the speech
waveform and spectrogram. Although breath is
extremely interesting as a feature of conversation
(Wlodarczak et al., 2015), it was not possible to
annotate breath accurately for all participants and
thus the breath intervals annotated were converted
to silence for the purposes of this study. Simi-
larly, coughs were relabelled as silence for the cur-
rent work. After segmentation, the data were tran-
scribed, and marked into chat and chunk phases as
described below.

5.2 Annotation of Chat and Chunk Phases

Chat and chunk phases were marked using an an-
notation scheme devised from the definitions of
chat and chunk phases given in Slade and Eg-
gins work (Eggins and Slade, 2004; Slade, 2007).

55

For an initial classification, conversations were di-
vided by first identifying the chunks and consider-
ing everything else chat. In the first instance, this
was done using the first, structural part of Slade
and Eggins’ definition of a chunk as ‘a segment
where one speaker takes the floor and is allowed
to dominate the conversation for an extended pe-
riod’(Eggins and Slade, 2004). The following
guidelines were created to aid in the placing of
chat/chunk boundaries.

Start A chunk starts when a speaker has es-

tablished himself as leading the chunk.

Stop To avoid orphaned sections, a chunk is
ended at the moment the next element

(chunk or chat) starts.

Aborted In cases where a chunk is attempted, but
aborted before it is established, this is
left as chat. In cases where there is a di-
version to another element mid-chunk
and a return later, all three elements are
annotated as though they were single

chunks/stretches of chat.

Overlap When a new chunk begins where a pre-
vious chunk is still tailing off, the new
chunk onset is the marker of interest
and the old chunk is finished at the on-

set of the new one.

Once the chunk was identified, it could be clas-
sified by genre. For annotation, a set of codes for
the various types of chunk and chat was created.
Each code is a hyphen-separated string contain-
ing at least a Type signifier for chat or chunk, an
Ownership label, and optional sub-elements fur-
ther classifying the chunks with reference to Slade
and Eggins taxonomy. A total of 213 chat and 358
chunk phases were identified across the six con-
versations.

6 Results

Our analysis of social talk focuses on a number of
dimensions; chat and chunk duration, laughter and
overlap in chat and chunk phases, distribution of
chat and chunk phases across conversations, and
turntaking/utterance characteristics.

6.1 Chat and Chunk Duration

Preliminary inspection of chat and chunk duration
data showed that the distributions were unimodal
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Figure 3: Boxplots of phase duration in Chat
(grey) vs Chunk (black) in raw and log trans-
formed data

but heavily right skewed. It was decided to use
geometric means to describe central tendencies in
the data. The antilogs of geometric means for du-
ration of chat and chunk phases in the dataset were
28.1 seconds for chat and 34 seconds for chunks.

The chat and chunk phase durations (raw and
log) are contrasted in the boxplots in Fig 3, where
it can be seen that there is considerably more vari-
ance in chat durations.

6.2 Speaker, Gender, and Conversation
Effects

The raw chunk data were checked for speaker de-
pendency using the Kruskal-Wallis rank sum test,
a non-parametric alternative to a one-way analysis
of variance (ANOVA), and no significant differ-
ence in means due to speaker was found (Kruskal-
Wallis chi-squared = 36.467, df = 24, p-value =
0.04941). Wilcoxon Rank Sum tests on chunk du-
ration data showed no significant difference be-
tween duration distributions for chunks owned
by male or female participants (W = 17495, p-
value = 0.1073). Kruskal-Wallis rank sum tests
on chunk duration showed no significant differ-
ence between duration distributions for chunks
from different conversations (Kruskal-Wallis chi-
squared = 9.2077, df = 5, p-value =0.1011). How-
ever, the Kruskal-Wallis rank sum tests applied to
chat duration showed significant differences be-
tween duration distributions for chats from differ-
ent conversations (Kruskal-Wallis chi-squared =
15.801, df = 5, p-value = 0.007436).

6.3 Laughter Distribution in Chat and
Chunk phases

Comparing the production by all participants in all
conversations, where a participant may produce ei-
ther laughter or speech, laughter accounts for ap-
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proximately 9.5% of total duration of speech and
laughter production in chat phases and 4.9% of to-
tal duration of speech and laughter production in
chunk phases.

6.4 Chunk owner vs Others in Chunk

In the chunks overall, the dominant speakers or
chunk owners produced 81.81% (10753.12s) of
total speech and laughter, while non-owners pro-
duced 18.19% (2390.7s).

6.5 Overlap

There is considerable overlapping of speech in the
corpora. For the purposes of this analysis laughter
was treated as silence and overlap considered as
overlapping speech only. Table 2 and Fig 4 show
the occupancy of the conversational floor for all
conversations in chat and chunk phases. The num-
ber of speakers ranges from 0 (global silence), 1
(single speaker), 2 (2 speakers in overlap) to 3+ (3
or more speakers in overlap).

No. Speaking Chat  Chunk
0 2575 22.14
1 61.58 72.27
2 11.88 5.25
3+ 0.73 042

Table 2: Floor occupancy (%) in chat and chunk
for all conversations

It can be seen that overlap is twice as com-

mon in chat as in chunk phases, and that silence
is slightly more common in chat phases.

8 8+
£ g
£ £
R g 9
B D B
0 1 2 3+

Number of Speakers.

0
80

)

£

HE_

0 1 2 3

Number of Speakers

Figure 4: Distribution of the floor in terms of %
duration in chat (left) and in chunk (right) phases.
X-axis shows number of speakers (0,1,2,3+)
speaking concurrently.

6.6 Chat and Chunk Position

Chat predominates for the first 8-10 minutes of
conversations. However, as the conversation de-
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Figure 5: Probability of chunk-chunk transition
(solid) and chunk-chat transition (dotted) as con-
versation elapses (x-axis = time) for the first 30
minutes of conversation

velops, chunks start to occur much more fre-
quently, and the structure is an alternation of
single-speaker chunks interleaved with shorter
chat segments. Figure 5 shows the probability of
a chunk phase being followed by chat or by chunk
as conversation continues. It can be seen that there
is a greater tendency for the conversation to go di-
rectly from chunk to chunk the longer the conver-
sation continues.

6.7 Utterances and Turntaking

We are studying the patterning of speaker contri-
butions in both phases. Overall we have found
that utterances cluster into two groups: short ut-
terances with a mean of around 300ms and longer
utterances with mean around 1.4s. In chunk owner
speech, utterance mean is higher than utterance
means in chat.

We performed a prosodic analysis of phrase fi-
nal intonation in a subset of the data using the
IViE annotation system, finding that falling nu-
clei (H*+L%,'H*+L%) dominated across the data,
and particularly in chunks, with relatively few fall-
rise tones (H*+LH%) and small numbers of other
tunes.

7 Discussion

We have found differences in the distributions of
durations of chat and chunk phases, with chat du-
rations varying more while chunk durations have a
more consistent clustering around the mean. Chat
phase durations tend to be shorter than chunk du-
rations. These findings are not speaker or gender
specific in our preliminary experiments and may
indicate a natural limit for the time one speaker
should dominate a conversation. The dimensions
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of chat and chunk durations observed would in-
dicate that social talk should ‘dose’ or package
information to fit chat and chunk segments of
roughly these lengths. In particular, the tendency
towards chunks of around half a minute could help
in the design of narrative or education-delivering
speech applications, by allowing designers to par-
tition content optimally. Both laughter and over-
lap are far more prevalent in chat than in chunk
phases, reflecting their light and interactive na-
ture. Interestingly, the rarity of more than two
speakers talking concurrently was noted in recent
work on turn distribution in multiparty storytelling
(Riihlemann and Gries, 2015) — our results would
seem to show the same phenomenon in casual con-
versation, where it much more likely for a speaker
to be overlapped by one other speaker than by
two or more others. Laughter has previously been
shown to appear more often in social talk than in
meeting data, and to happen more around topic
endings/topic changes [self]. This is consistent
our with observations on chat and chunk phases —
laughter is more common in chat phases — which
provide a ‘buffer’ between single speaker (and
topic) chunks.

Chat is more common at the start of multi-
party conversations. Although our sample size is
small, this observation conforms to descriptions
of casual talk in the literature, and reflects the
structure of ‘first encounter’ recordings. Chunk
phases become more prominent later. The larger
number of chunk phases in the data compared to
Slade’s findings on work break conversations may
be due to the length of the conversations exam-
ined here - we found several instances of sequen-
tial chunks where the long turn passed directly
to another speaker without intervening chat, per-
haps reflecting ‘story swapping’ directly without
need for chat as the conversation evolves. While
the initial extended chat segments can be used to
model ‘getting to know you’ sessions, and will
therefore be useful for familiarisation with a dig-
ital companion, it is clear that we need to model
the chunk heavy central segments of conversation
if we want to create systems which form a longer-
term dialogic relationship with users. As chunks
are generic (narrative, gossip..), it may be fruit-
ful to consider modelling extended casual talk as
a series of ‘mini-dialogs’ of different types mod-
elled on different corpora — how to convincingly
join these sections is an interesting research ques-



tion.

We have noted that many between speaker
silences (pauses) during chunk owner speech
in chunks are shorter than between speaker si-
lences in chat, probably due to backchannelling in
chunks, this would pose a problem for endpointing
in dialog systems which relied simply on speak-
ing at a certain delay after detection of silence, as
the system would butt in during chat or wait too
long during chunks depending on the time delay
set. The majority of phrase final intonation curves
are the same for chat and chunk reflecting the na-
ture of casual conversation where utterances are
predominantly comments or statements rather than
question/answer pairs, exacerbating the endpoint-
ing/turntaking problem. Knowledge of the type of
phase the dialog is in would allow systems to use
more nuanced endpointing and turntaking mecha-
nisms. A major limitation of the current work is
the scarcity of data. Data for casual conversations
which are longer than 15 minutes are hard to find.
We hope that the current study will encourage the
production of corpora of longer form casual con-
versation. We are currently extending our explo-
rations to dyadic conversations, and also working
on a dialog act annotation scheme for non-task
based talk.

8 Conclusions

There is increasing interest in spoken dialogue
systems that act naturally and perform functions
beyond information search and narrow task-based
exchanges. The design of these new systems needs
to be informed by relevant data and analysis of hu-
man spoken interaction in the domains of interest.
Many of the available multiparty data are based
on meetings or first encounters. While first en-
counters are very relevant to the design of human
machine first encounters, there is a lack of data on
longer human conversations. We hope that the en-
couraging results of our analysis of casual social
talk will help make the case for the creation and
analysis of corpora of longer social dialogues. We
also hope that our further explorations into the ar-
chitecture of longer form conversation will add to
this body of knowledge.
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Abstract

User Simulators are one of the major tools
that enable offline training of task-oriented
dialogue systems.  For this task the
Agenda-Based User Simulator (ABUS) is
often used. The ABUS is based on hand-
crafted rules and its output is in seman-
tic form. Issues arise from both properties
such as limited diversity and the inability
to interface a text-level belief tracker. This
paper introduces the Neural User Simu-
lator (NUS) whose behaviour is learned
from a corpus and which generates natu-
ral language, hence needing a less labelled
dataset than simulators generating a se-
mantic output. In comparison to much of
the past work on this topic, which evalu-
ates user simulators on corpus-based met-
rics, we use the NUS to train the policy of
areinforcement learning based Spoken Di-
alogue System. The NUS is compared to
the ABUS by evaluating the policies that
were trained using the simulators. Cross-
model evaluation is performed i.e. training
on one simulator and testing on the other.
Furthermore, the trained policies are tested
on real users. In both evaluation tasks the
NUS outperformed the ABUS.

1 Introduction

Spoken Dialogue Systems (SDS) allow human-
computer interaction using natural speech. Task-
oriented dialogue systems, the focus of this work,
help users achieve goals such as finding restau-
rants or booking flights (Young et al., 2013).
Teaching a system how to respond appropriately
in a task-oriented setting is non-trivial. In state-of-
the-art systems this dialogue management task is
often formulated as a reinforcement learning (RL)
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problem (Young et al., 2013; Roy et al., 2000;
Williams and Young, 2007; Gasi¢ and Young,
2014). In this framework, the system learns by a
trial and error process governed by a reward func-
tion. User Simulators can be used to train the pol-
icy of a dialogue manager (DM) without real user
interactions. Furthermore, they allow an unlimited
number of dialogues to be created with each dia-
logue being faster than a dialogue with a human.

In this paper the Neural User Simulator (NUS)
is introduced which outputs natural language and
whose behaviour is learned from a corpus. The
main component, inspired by (El Asri et al.,
2016), consists of a feature extractor and a neu-
ral network based sequence-to-sequence model
(Sutskever et al., 2014). The sequence-to-
sequence model consists of a recurrent neural net-
work (RNN) encoder that encodes the dialogue
history and a decoder RNN which outputs natural
language. Furthermore, the NUS generates its own
goal and possibly changes it during a dialogue.
This allows the model to be deployed for training
more sophisticated DM policies. To achieve this, a
method is proposed that transforms the goal-labels
of the used dataset (DSTC2) into labels whose be-
haviour can be replicated during deployment.

The NUS is trained on dialogues between real
users and an SDS in a restaurant recommendation
domain. Compared to much of the related work on
user simulation, we use the trained NUS to train
the policy of a reinforcement learning based SDS.
In order to evaluate the NUS, an Agenda-Based
User-Simulator (ABUS) (Schatzmann et al., 2007)
is used to train another policy. The two policies
are compared against each other by using cross-
model evaluation (Schatztmann et al., 2005). This
means to train on one model and to test on the
other. Furthermore, both trained policies are tested
on real users. On both evaluation tasks the NUS
outperforms the ABUS, which is currently one of
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the most popular off-line training tools for rein-
forcement learning based Spoken Dialogue Sys-
tems (Koo et al., 2015; Fatemi et al., 2016; Chen
et al., 2017; Chang et al., 2017; Casanueva et al.,
2018; Weisz et al., 2018; Shah et al., 2018).

The remainder of this paper is organised as fol-
lows. Section 2 briefly describes task-oriented di-
alogue. Section 3 describes the motivation for the
NUS and discusses related work. Section 4 ex-
plains the structure of the NUS, how it is trained
and how it is deployed for training a DM’s policy.
Sections 5 and 6 present the experimental setup
and results. Finally, Section 7 gives conclusions.

2 Task-Oriented Dialogue

A Task-Oriented SDS is typically designed ac-
cording to a structured ontology, which defines
what the system can talk about. In a system rec-
ommending restaurants the ontology defines those
attributes of a restaurant that the user can choose,
called informable slots (e.g. different food types,
areas and price ranges), the attributes that the user
can request, called requestable slots (e.g. phone
number or address) and the restaurants that it has
data about. An attribute is referred to as a slot and
has a corresponding value. Together these are re-
ferred to as a slot-value pair (e.g. area=north).

Using RL the DM is trained to act such that is
maximises the cumulative future reward. The pro-
cess by which the DM chooses its next action is
called its policy. A typical approach to defining
the reward function for a task-oriented SDS is to
apply a small per-turn penalty to encourage short
dialogues and to give a large positive reward at the
end of each successful interaction.

3 Motivation and Related Work

Ideally the DM’s policy would be trained by inter-
acting with real users. Although there are models
that support on-line learning (Gasi¢ et al., 2011),
for the majority of RL algorithms, which require
a lot of interactions, this is impractical. Further-
more, a set of users needs to be recruited every
time a policy is trained. This makes common prac-
tices such as hyper-parameter optimization pro-
hibitively expensive. Thus, it is natural to try to
learn from a dataset which needs to be recorded
only once, but can be used over and over again.

A problem with learning directly from recorded
dialogue corpora is that the state space that was
visited during the collection of the data is limited;
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the size of the recorded corpus usually falls short
of the requirements for training a statistical DM.
However, even if the size of the corpus is large
enough the optimal dialogue strategy is likely not
to be contained within it.

A solution is to transform the static corpus into
a dynamic tool: a user simulator. The user simu-
lator (US) is trained on a dialogue corpus to learn
what responses a real user would provide in a
given dialogue context. The US is trained using
supervised learning since the aim is for it to learn
typical user behaviour. For the DM, however, we
want optimal behaviour which is why supervised
learning cannot be used. By interacting with the
SDS, the trained US can be used to train the DM’s
policy. The DM’s policy is optimised using the
feedback given by either the user simulator or a
separate evaluator. Any number of dialogues can
be generated using the US and dialogue strategies
that are not in the recorded corpus can be explored.

Most user-simulators work on the level of user
semantics. These usually consist of a user di-
alogue act (e.g. inform, or request) and a cor-
responding slot-value pair. The first statistical
user simulator (Eckert et al., 1997) used a sim-
ple bi-gram model P(a,,|a,,) to predict the next
user act a, given the last system act a,,. It has
the advantage of being purely probabilistic and
domain-independent. However, it does not take
the full dialogue history into account and is not
conditioned on a goal, leading to incoherent user
behaviour throughout a dialogue. Scheffler and
Young (2000, 2001) attempted to overcome goal
inconsistency by proposing a graph-based model.
However, developing the graph structure requires
extensive domain-specific knowledge. Pietquin
and Dutoit (2006) combined features from Shef-
fler and Young’s work with Eckert’s Model, by
conditioning a set of probabilities on an explicit
representation of the user goal and memory. A
Markov Model is also used by Georgila et al.
(2005). It uses a large feature vector to describe
the user’s current state, which helps to compensate
for the Markov assumption. However, the model
is not conditioned on any goal. Therefore, it is
not used to train a dialogue policy since it is im-
possible to determine whether the user goal was
fulfilled. A hidden Markov model was proposed
by Cuayéhuitl et al. (2005), which was also not
used to train a policy. Chandramohan et al. (2011)
cast user simulation as an inverse reinforcement



learning problem where the user is modelled as
a decision-making agent. The model did not in-
corporate a user goal and was hence not used to
train a policy. The most prominent user model
for policy optimisation is the Agenda-Based User
Simulator (Schatzmann et al., 2007), which repre-
sents the user state elegantly as a stack of neces-
sary user actions, called the agenda. The mecha-
nism that generates the user response and updates
the agenda does not require any data, though it can
be improved using data. The model is conditioned
on a goal for which it has update rules in case the
dialogue system expresses that it cannot fulfil the
goal. El Asri et al. (2016) modelled user simula-
tion as a sequence-to-sequence task. The model
can keep track of the dialogue history and user be-
haviour is learned entirely from data. However,
goal changes were not modelled, even though a
large proportion of dialogues within their dataset
(DSTC2) contains goal changes. Their model out-
performed the ABUS on statistical metrics, which
is not surprising given that it was trained by opti-
mising a statistical metric and the ABUS was not.

The aforementioned work focuses on user sim-
ulation at the semantic level. Multiple issues
arise from this approach. Firstly, annotating the
user-response with the correct semantics is costly.
More data could be collected, if the US were to
output natural language. Secondly, research sug-
gests that the two modules of an SDS perform-
ing Spoken Language Understanding (SLU) and
belief tracking should be jointly trained as a sin-
gle entity (Mrksi¢ et al., 2017; Sun et al., 2016,
2014; Zilka and Jurcicek, 2015; Ramadan et al.,
2018). In fact in the second Dialogue State Track-
ing Challenge (DSTC2) (Henderson et al., 2014),
the data of which this work uses, systems which
used no external SLU module outperformed all
systems that only used an external SLU Module!.
Training the policy of a DM in a simulated envi-
ronment, when also using a joint system for SLU
and belief tracking is not possible without a US
that produces natural language. Thirdly, a US is
sometimes augmented with an error model which
generates a set of competing hypotheses with as-
sociated confidence scores trying to replicate the
errors of the speech recogniser. When the error
model matches the characteristics of the speech
recogniser more accurately, the SDS performs bet-
ter (Williams, 2008). However, speech recogni-

'The best-performing models used both.
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tion errors are badly modelled based on user se-
mantics since they arise (mostly) due to the pho-
netics of the spoken words and not their seman-
tics (Goldwater et al., 2010). Thus, an SDS that is
trained with a natural language based error model
is likely to outperform one trained with a semantic
error model when tested on real users. Sequence-
to-sequence learning for word-level user simula-
tion is performed in (Crook and Marin, 2017),
though the model is not conditioned on any goal
and hence not used for policy optimisation. A
word-level user simulator was also used in (Li
et al., 2017) where it was built by augmenting the
ABUS with a natural language generator.

4 Neural User Simulator
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Figure 1: General Architecture of the Neural User
Simulator. The System Output is passed to the
Feature Extractor. It generates a new feature vec-
tor that is appended to the Feature History, which
is passed to the sequence-to-sequence model to
produce the user utterance. At the start of the dia-
logue the Goal Generator generates a goal, which
might change during the course of the dialogue.
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An overview of the NUS is given in Figure 1.
At the start of a dialogue a random goal G is gen-
erated by the Goal Generator. The possibilities
for G are defined by the ontology. In dialogue
turn 7', the output of the SDS (dar) is passed to
the NUS’s Feature Extractor, which generates a
feature vector v based on dap, the current user
goal, G, and parts of the dialogue history. This



vector is appended to the Feature History vi.7 =
vi...vy. This sequence is passed to the sequence-
to-sequence model (Fig. 2), which will generate
the user’s length np utterance ur = wo...Wnp.
As in Figure 2, words in ur corresponding to a
slot are replaced by a slot token; a process called
delexicalisation. If the SDS expresses to the NUS
that there is no venue matching the NUS’s con-
straints, the goal will be altered by the Goal Gen-
erator.

4.1 Goal Generator

The Goal Generator generates a random goal
Go (Co, R) at the start of the dialogue.
It consists of a set of constraints, Cy, which
specify the required venue e.g. (food=Spanish,
area=north) and a number of requests, R, that
specify the information that the NUS wants about
the final venue e.g. the address or the phone
number. The possibilities for C; and R are de-
fined by the ontology. In DSTC2 C} can consist
of a maximum of three constraints; food, area
and pricerange. Whether each of the three
is present is independently sampled with a prob-
ability of 0.66, 0.62 and 0.58 respectively. These
probabilities were estimated from the DSTC2 data
set. If no constraint is sampled then the goal is re-
sampled. For each slot in Cy a value (e.g. north
for area) is sampled uniformly from the ontol-
ogy. Similarly, the presence of a request is in-
dependently sampled, followed by re-sampling if
zero requests were chosen.

When training the sequence-to-sequence model,
the Goal Generator is not used, but instead the
goal labels from the DSTC?2 dataset are used. In
DSTC2 one goal-label is given to the entire di-
alogue. This goal is always the final goal. If
the user’s goal at the start of the dialogue is
(food=eritrean, area=south), which is changed
to (food=spanish, area=south), due to the non-
existence of an Eritrean restaurant in the south, us-
ing only the final goal is insufficient to model the
dialogue. The final goal can only be used for the
requests as they are not altered during a dialogue.
DSTC2 also provides turn-specific labels. These
contain the constraints and requests expressed by
the user up until and including the current turn.
When training a policy with the NUS, such labels
would not be available as they “predict the future”,
i.e. when the turn-specific constraints change from
(area=south) to (food=eritrean, area=south) it
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means that the user will inform the system about
her desire to eat Eritrean food in the current turn.

In related work on user-simulation for which the
DSTC?2 dataset was used, the final goal was used
for the entire dialogue (El Asri et al., 2016; Serras
etal., 2017; Liu and Lane, 2017). As stated above,
we do not believe this to be sufficient. The follow-
ing describes how to update the turn-specific con-
straint labels such that their behaviour can be repli-
cated when training a DM’s policy, whilst allow-
ing goal changes to be modelled. The update strat-
egy is illustrated in Table 1 with an example. The
final turn keeps its constraints, from which we it-
erate backwards through the list of DSTC2’s turn-
specific constraints. The constraints of a turn will
be set to the updated constraints of the succeed-
ing turn, besides if the same slot is present with a
different value. In that case the value will be kept.
The behaviour of the updated turn-specific goal-
labels can be replicated when the NUS is used to
train a DM’s policy. In the example, the food type
changed due to the SDS expressing that there is
no restaurant serving Eritrean food in the south.
When deploying the NUS to train a policy, the goal
is updated when the SDS outputs the canthelp
dialogue act.

4.2 Feature Extractor

The Feature Extractor generates the feature vector
that is appended to the sequence of feature vec-
tors, here called Feature History, that is passed to
the sequence-to-sequence model. The input to the
Feature Extractor is the output of the DM and the
current goal G¢. Furthermore, as indicated in Fig-
ure 1, the Feature Extractor keeps track of the cur-
rently accepted venue as well as the current and
initial request-vector, which is explained below.

The feature vector v; [a; ry iy ¢4] is made
up of four sub-vectors. The motivation behind the
way in which these four vectors were designed is
to provide an embedding for the system response
that preserves all necessary value-independent in-
formation.

The first vector, machine-act vector a;, encodes
the dialogue acts of the system response and con-
sists of two parts; a; = [a% af]. a} is a binary
representation of the system dialogue acts present
in the input. Its length is thus the number of possi-
ble system dialogue acts. It is binary and not one-
hot since in DSTC?2 multiple dialogue acts can be

in the system’s response. a? is a binary represen-



Updated

C; | Original

Co | (food=eritrean)

C | (area=south, food=eritrean)

Cs | (area=south, food=spanish)

Cs | (area=south, food=spanish, pricerange=cheap)

(area=south, food=eritrean, pricerange=cheap)
(area=south, food=eritrean, pricerange=cheap)
(area=south, food=spanish, pricerange=cheap)
(area=south, food=spanish, pricerange=cheap)

Table 1: An example of how DSTC2’s turn-specific constraint labels can be transformed such that their
behaviour can be replicated when training a dialogue manager.

tation of the slot if the dialogue act is request
or select and if itis inform or expl-conf
together with a correct slot-value pair for an in-
formable slot. The length is four times the num-
ber of informable slots. a? is necessary due to
the dependence of the sentence structure on the ex-
act slot mentioned by the system. The utterances
of a user in response to request (food) and

request (area) are often very different.

The second vector, request-vector ry, is a bi-
nary representation of the requests that have not
yet been fulfilled. It’s length is thus the number of
requestable slots. In comparison to the other three
vectors the feature extractor needs to remember it
for the next turn. At the start of the dialogue the
indices corresponding to requests that are in R are
set to 1 and the rest to 0. Whenever the system in-
forms a certain request the corresponding index in
ry is set to 0. When a new venue is proposed r; is
reset to the original request vector, which is why
the Feature Extractor keeps track of it.

The third vector, inconsistency-vector i, repre-
sents the inconsistency between the system’s re-
sponse and C. Every time a slot is mentioned by
the system, when describing a venue (inform)
or confirming a slot-value pair (expl—-conf or
impl-conf), the indices corresponding to the
slots that have been misunderstood are set to 1.
The length of i; is the number of informable slots.
This vector is necessary in order for the NUS to
correct the system.

The fourth vector, c¢;, is a binary representa-
tion of the slots that are in the constraints C;. It’s
length is thus the number of informable slots. This
vector is necessary in order for the NUS to be able
to inform about its preferred venue.

4.3 Sequence-To-Sequence Model

The sequence-to-sequence model (Figure 2) con-
sists of an RNN encoder, followed by a fully-
connect layer and an RNN decoder. An RNN can
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be defined as:

(h¢,s¢) = RNN (x4,8:-1) (D

At time-step ¢, an RNN uses an input x; and an
internal state s;_; to produce its output h; and
its new internal state s;. A specific RNN-design
is usually defined using matrix multiplications,
element-wise additions and multiplications as well
as element-wise non-linear functions. There are a
plethora of different RNN architectures that could
be used and explored. Given that such exploration
is not the focus of this work a single layer LSTM
(Hochreiter and Schmidhuber, 1997) is used for
both the RNN encoder and decoder. The exact
LSTM version used in this work uses a forget gate
without bias and does not use peep-holes.

The first RNN (shown as white blocks in Fig. 2)
takes one feature vector v; at a time as its input
(x,{LJ = v;). If the current dialogue turn is turn T’
then the final output of the RNN encoder is given
by hr? , which is passed through a fully-connected
layer (shown as the light-grey block) with linear
activation function:

pr = W,h¥ +b, )

For a certain encoding pr the sequence-to-
sequence model should define a probability dis-
tribution over different sequences. By sampling
from this distribution the NUS can generate a di-
verse set of sentences corresponding to the same
dialogue context. The conditional probability dis-
tribution of a length L sequence is defined as:

L
P(u|p)=P(wo|p) ] [P(wi|we—1...wo,p) (3)

t=1
The decoder RNN (shown as dark blocks) will be
used to model P(w;|w¢—1...wg, p). It’s input at
each time-step is the concatenation of an embed-
ding w;_1 (we used 1-hot) of the previous word
w1 (xP = [wy_1 p]). For P(wy|p) a start-
of-sentence (<SOS>) token is used as w_y. The
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Figure 2: Sequence-To-Sequence model of the Neural User Simulator. Here, the NUS is generating
the user response to the third system output. The white, light-grey and dark blocks represent the RNN
encoder, a fully-connected layer and the RNN decoder respectively. The previous output of the decoder
is passed to its input for the next time-step. vs.; are the first three feature vectors (see Sec. 4.2).

end of the utterance is modelled using an end-of-
sentence (<EOS>) token. When the decoder RNN
generates the end-of-sentence token, the decoding
process is terminated. The output of the decoder
RNN, h?, is passed through an affine transform
followed by the softmax function, SM, to form
P(w¢|wi—q...wp, p). A word w; can be obtained
by either taking the word with the highest proba-
bility or sampling from the distribution:

P(w; | wi_1...wp,p) = SM(Wy,hP +by) (4)
S)

During training the words are not sampled from
the output distribution, but instead the true words
from the dataset are used. This a common tech-
nique that is often referred to as feacher-forcing,
though it also directly follows from equation 3.
To generate a sequence using an RNN, beam-
search is often used. Using beam-search with n
beams, the words corresponding to the top n prob-
abilities of P(wq|p) are the first n beams. For
each succeeding w;, the n words corresponding to
the top n probabilities of P(w; |w;—1...wp, p) are
taken for each of the n beams. This is followed
by reducing the number of beams from now n?
down to n, by taking the n beams with the high-
est probability P(wwy—1...wo|p). This is a de-
terministic process. However, for the NUS to al-
ways give the same response in the same context is
not realistic. Thus, the NUS cannot cover the full
breadth of user behaviour if beam-search is used.
To solve this issue while keeping the benefit of re-
jecting sequences with low probability, a type of
beam-search with sampling is used. The process
is identical to the above, but n words per beam
are sampled from the probability distribution. The

wg ~ P(wt | wt,l...wo,p)
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NUS is now non-deterministic resulting in a di-
verse US. Using 2 beams gave a good trade-off
between reasonable responses and diversity.

4.4 Training

The neural sequence-to-sequence model is trained
to maximize the log probability that it assigns to
the user utterances of the training data set:

N Ly,
L= ZlogP(wo | p)z log P(w¢ | wi—1.0,P) (6)

n=1 t=1

The network was implemented in Tensorflow
(Abadi et al., 2015) and optimized using Ten-
sorflow’s default setup of the Adam optimizer
(Kingma and Ba, 2015). The LSTM layers and
the fully-connected layer had widths of 100 each
to give a reasonable number of overall parame-
ters. The width was not tuned. The learning rate
was optimised on a held out validation set and no
regularization methods used. The training set was
shuffled at the dialogue turn level.

The manual transcriptions of the DSTC2 train-
ing set (not the ASR output) were used to train the
sequence-to-sequence model. Since the transcrip-
tions were done manually they contained spelling
errors. These were manually corrected to ensure
proper delexicalization. Some dialogues were dis-
carded due to transcriptions errors being too large.
After cleaning the dataset the training set con-
sisted of 1609 dialogues with a total of 11638 dia-
logue turns. The validation set had 505 dialogues
with 3896 dialogue turns. The maximum sequence
length of the delexicalized turns was 22, including
the end of sentence character. The maximum dia-
logue length was 30 turns.



S Experimental Setup

The evaluation of user simulators is an ongoing
area of research and a variety of techniques can
be found in the literature. Most papers published
on user simulation evaluate their US using direct
methods. These methods evaluate the US through
a statistical measure of similarity between the out-
puts of the US and a real user on a test set. Mul-
tiple models can outperform the ABUS on these
metrics. However, this is unsurprising since these
user simulators were trained on the same or sim-
ilar metrics. The ABUS was explicitly proposed
as a tool to train the policy of a dialogue manager
and it is still the dominant form of US used for this
task. Therefore, the only fair comparison between
a new US model and the ABUS is to use the in-
direct method of evaluating the policies that were
obtained by training with each US.

5.1 Training

All dialogue policies were trained with the PyDial
toolkit (Ultes et al., 2017), by interacting with ei-
ther the NUS or ABUS. The RL algorithm used is
GP-SARSA (Gasi¢ and Young, 2014) with hyper-
parameters taken from (Casanueva et al., 2017).
The reward function used gives a reward of 20 to a
successfully completed dialogue and of -1 for each
dialogue turn. The maximum dialogue length was
25 turns. The presented metrics are success rate
(SR) and average reward over test dialogues. SR is
the percentage of dialogues for which the system
satisfied both the user’s constraints and requests.
The final goal, after possible goal changes, was
used for this evaluation. When policies are trained
using the NUS, its output is parsed using PyDial’s
regular expression based semantic decoder. The
policies were trained for 4000 dialogues.

5.2 Testing with a simulated user

In Schatzmann et. al (2005) cross-model evalua-
tion is proposed to compare user simulators. First,
the user simulators to be evaluated are used to train
N policy each. Then these policies are tested us-
ing the different user simulators and the results av-
eraged. Schatztmann et al. (2005) showed that a
strategy learned with a good user model still per-
forms well when tested on poor user models. If a
policy performs well on all user simulators and not
just on the one that it was trained on, it indicates
that the US with which it was trained is diverse
and realistic, and thus the policy is likely to per-
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form better on real users. For each US five poli-
cies (N = b), each using a different random seed
for initialisation, are trained. Results are reported
for both the best and the average performance on
1000 test dialogues. The ABUS is programmed to
always mention the new goal after a goal change.
In order to not let this affect our results we im-
plement the same for the NUS by re-sampling a
sentence if the new goal is not mentioned.

5.3 Testing with real users

Though the above test is already more indicative
of policy performance on real users than measur-
ing statistical metrics of user behaviour, a better
test is to test with human users. For the test on hu-
man users, two policies for each US that was used
for training are chosen from the five policies. The
first policy is the one that performed best when
tested on the NUS. The second is the one that per-
formed best when tested on the ABUS. This choice
of policies is motivated by a type of overfitting to
be seen in Sec. 6.1. The evaluation of the trained
dialogue policies in interaction with real users fol-
lows a similar set-up to (Jurcicek et al., 2011).
Users are recruited through the Amazon Mechan-
ical Turk (AMT) service. 1000 dialogues (250 per
policy) were gathered. The learnt policies were
incorporated into an SDS pipeline with a commer-
cial ASR system. The AMT users were asked to
find a restaurant that matches certain constraints
and find certain requests. Subjects were randomly
allocated to one of the four analysed systems. Af-
ter each dialogue the users were asked whether
they judged the dialogue to be successful or not
which was then translated to the reward measure.

6 Experimental Results

6.1 Cross-Model Evaluation

Table 2 shows the results of the cross-model eval-
uation after 4000 training dialogues. The policies
trained with the NUS achieved an average success
rate (SR) of 94.0% and of 96.6% when tested on
the ABUS and the NUS, respectively. By compar-
ison, the policies trained with the ABUS achieved
average SRs of 99.5% and 45.5% respectively.
Thus, training with the NUS leads to policies that
can perform well on both USs, which is not the
case for training with the ABUS. Furthermore, the
best SRs when tested on the ABUS are similar at
99.9% (ABUS) and 99.8% (NUS). When tested on
the NUS the best SRs were 71.5% (ABUS) and



Train. Sim. Eval. Sim. Training Simulator | Human Evaluation

NUS ABUS Rew. Suc.

Rew. Suc. Rew. Suc. NUS - M; 13.4 91.8

NUS-best | 13.0 98.0" | 133  99.8 NUS - N> 13.8 93.4

ABUS-best | 1.53  71.5%4 | 13.8 99.942 ABUS - A, 13.3 90.0

NUS-avg 124 96.6 112 94.0 ABUS - A, 13.1 88.5
ABUS-avg | -7.6  45.5 13.5 995

Table 2: Results for policies trained for 4000 di-
alogues on NUS and ABUS when tested on both
USs for 1000 dialogues. Five policies with differ-
ent initialisations were trained for each US. Both
average and best results are shown.

Train. Sim. Eval. Sim.
NUS ABUS
Rew. Suc. | Rew. Suc.
NUS-best | 122 959 | 13.9 99.9V2
ABUS-best | -4.0 548 | 132 99.0
NUS-avg | 12.0 954 | 122 973
ABUS-avg | -9.48 423 | 128 98.4

Table 3: As Table 2 but trained for 1000 dialogues.

98.0% (NUS). This shows that the behaviour of
the Neural User Simulator is realistic and diverse
enough to train policies that can also perform very
well on the Agenda-Based User Simulator.

Of the five policies, for each US, the policy per-
forming best on the NUS was not the best perform-
ing policy on the ABUS. This could indicate that
the policy “overfits” to a particular user simulator.
Overfitting usually manifests itself in worse results
as the model is trained for longer. Five policies
trained on each US for only 1000 dialogues were
also evaluated, the results of which can be seen in
Table 3. After training for 1000 dialogues, the av-
erage SR of the policies trained on the NUS when
tested on the ABUS was 97.3% in comparison to
94.0% after 4000 dialogues. This behaviour was
observed for all five seeds, which indicates that the
policy indeed overfits to the NUS. For the policies
trained with the ABUS this was not observed. This
could indicate that the policy can learn to exploit
some of the shortcomings of the trained NUS.

6.2

The results of the human evaluation are shown in
Table 4 for 250 dialogues per policy. In Table 4
policies are marked using an ID ({/,) that trans-
lates to results in Tables 2 and 3. Both policies
trained with the NUS outperformed those trained

Human Evaluation
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Table 4: Real User Evaluation. Results over 250
dialogues with human users. A7 and A; per-
formed best on the NUS. A, and Ay performed
best on the ABUS. Rewards are not comparable to
Table 2 and 3 since all user goals were achievable.

on the ABUS in terms of both reward and suc-
cess rate. The best performing policy trained on
the NUS achieves a 93.4% success rate and 13.8
average rewards whilst the best performing policy
trained with the ABUS achieves only a 90.0% suc-
cess rate and 13.3 average reward. This shows that
the good performance of the NUS on the cross-
model evaluation transfers to real users. Further-
more, the overfitting to a particular US is also ob-
served in the real user evaluation. For not only the
policies trained on the NUS, but also those trained
on the ABUS, the best performing policy was the
policy that performed best on the other US.

7 Conclusion

We introduced the Neural User Simulator (NUS),
which uses the system’s response in its seman-
tic form as input and gives a natural language re-
sponse. It thus needs less labelling of the train-
ing data than User Simulators that generate a re-
sponse in semantic form. It was shown that the
NUS learns realistic user behaviour from a corpus
of recorded dialogues such that it can be used to
optimise the policy of the dialogue manager of a
spoken dialogue system. The NUS was compared
to the Agenda-Based User Simulator by evaluating
policies trained with these user simulators. The
trained policies were compared both by testing
them with simulated users and also with real users.
The NUS excelled on both evaluation tasks.
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Abstract

To provide a better discussion experience
in current argumentative dialogue sys-
tems, it is necessary for the user to feel
motivated to participate, even if the sys-
tem already responds appropriately. In
this paper, we propose a method that
can smoothly introduce argumentative di-
alogue by inserting an initial discourse,
consisting of question-answer pairs con-
cerning personality. The system can in-
duce interest of the users prior to agree-
ment or disagreement during the main dis-
course. By disclosing their interests, the
users will feel familiarity and motivation
to further engage in the argumentative di-
alogue and understand the system’s intent.
To verify the effectiveness of a question-
answer dialogue inserted before the argu-
ment, a subjective experiment was con-
ducted using a text chat interface. The
results suggest that inserting the question-
answer dialogue enhances familiarity and
naturalness. Notably, the results suggest
that women more than men regard the di-
alogue as more natural and the argument
as deepened, following an exchange con-
cerning personality.

1 Introduction

Argumentation is a process of reaching consensus
through premises and rebuttals, and it is an im-
portant skill required in daily life (Scheuer et al.,
2010). Through argumentation, we can not only
reach decisions, but also learn what others think.
Such decision-making and the interchange of
views are one of the most important and advanced
parts of human activities. If an artificial dialogue
system can argue on certain topics with us, this
can both help us to work efficiently and establish
a close relationship with the system.
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Recently, there have been some studies con-
cerning argumentative dialogue systems. Hi-
gashinaka et al. developed an argumentative
dialogue system that can discuss certain top-
ics by using large-scale argumentation struc-
tures (Higashinaka et al., 2017). However, this
system could not provide all users with a satisfac-
tory discussion experience, even though it could
appropriately respond to their opinions. One pos-
sible reason for this is that some users are not nec-
essarily motivated to argue on the topics suggested
by the system.

We aim to improve an argumentative dia-
logue system by adding a function to motivate
a user to participate in an argumentative dia-
logue. To increase the user’s motivation to par-
ticipate in the argumentative dialogue, we focus
on small talk. Small talk can help participants
build certain relationships before they enter the
main dialogue (Zhao etal., 2014). In negotia-
tion and counseling, a close relationship between
two humans can improve the performance of cer-
tain tasks (Drolet and Morris, 2000; Kang et al.,
2012). Relationships between a user and system
are important for reaching a consensus though dia-
logue (Katagiri et al., 2013) Thus, it is considered
to be possible for a user to be naturally guided into
an argumentative dialogue by performing small
talk.

In practice, we adopted a question-answering
dialogue, where users are casually asked about
their personal experiences or ideas. This was
implemented by using what we call a personal
database (hereafter PDB), which involves pairs
consisting of a personal question and a corre-
sponding example answer, which are likely to ap-
pear in human-human conversation. When asked
about personal issues, users are expected to feel
interested in the system, and then be induced to
feel open and close to the system. Meanwhile, the
system provides its own answers to the questions
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by using the PDB. From the answers of the user
and the system, users are expected to gain an idea
of what is common and different between them, a
requirement which has been suggested to be im-
portant for humans to be motivated to understand
one another (Uchida et al., 2016).

In this research, we extend the argumentative
dialogue system described in (Higashinaka et al.,
2017) to add a function that can smoothly in-
troduce argumentative dialogue by inserting a
question-answering dialogue using the PDB (here-
inafter referred to as PDB-QA dialogue). It is con-
sidered that users of the proposed system can be
expected to be motivated to partake in the argu-
mentative dialogue, and that they can then partake
in a deep discussion with the system. To verify
the effectiveness of this system, we conducted a
subjective experiment using a text chat interface.

The remainder of this paper is organized as fol-
lows. In Section 2, we describe related work. In
Section 3, we describe our proposed method, in-
cluding how to develop the question-answering di-
alogue and how to integrate this into an existing
argumentative dialogue system. In Section 4, we
describe an experiment we conducted, in which
human subjects expressed their impressions of the
dialogue through a text chat interface. We summa-
rize the paper and discuss future work in Section 5.

2 Related work

Although there is little work on an auto-
mated system that can perform discussion with
users, recently, there has been a great deal of
work aimed at automatically extracting premises
and conclusions from text; argumentation min-
ing has been applied to various data, includ-
ing legal text (Moens etal.,, 2007), newswire
text (Bal and Saint-Dizier, 2010), opinions in dis-
cussion forums (Rosenthal and McKeown, 2012),
and varied online text (Yanai et al., 2016).

There has been some research concerning the
introduction of a dialogue. Rogers et al. showed
that it became easier for two people to talk
during the first meeting by using an applica-
tion that can share their opinions on a dis-
play (Rogers and Brignull, 2002). Patricia et
al. reported that small talk in an initial dis-
course improved the interaction in a business sit-
uation (Pullin, 2010). Inaguma et al. analyzed
the prosodic features of shared laughter as an ice-
breaker in initial dialogues (Inaguma et al., 2016).
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However, it is unclear how to develop an initial di-
alogue for smoothly introducing a discussion.

It is known that people interact with artifi-
cial constructions such as dialogue systems, vir-
tual agents, and robots in the same manner as
they interact with other humans (Reeves and Nass,
1996). Schegloff et al. showed that human conver-
sation usually interleaves the contents of a task-
oriented dialogue with social contents (Schegloff,
1968). Jiang et al. showed that 30% of all ut-
terances of Microsoft Cortana, a well-known task-
oriented dialogue system, consist of social con-
tents (Jiang et al., 2015). It is considered that per-
forming small talk can be natural in argumentative
dialogue systems.

There have been many studies on dialogue
systems that include small talk. Bechberger et
al. developed a dialogue system that conveys
news text and performs small talk related to the
news (Bechberger et al., 2016). Kobori et al.
showed that inserting small talk improved the im-
pressions of an interview system (Kobori et al.,
2016). Bickmore et al. showed that the task suc-
cess rate was improved by constructing a trust re-
lationship using small talk (Bickmore and Cassell,
2005). Tina et al. developed a dialogue sys-
tem that included the function of interacting using
small talk (Kliiwer, 2015). We consider that ar-
gumentative dialogues may be performed deeply
since small talk can improve the trust relationship.

Related to the studies dealing with multiple dia-
logue strategies including argumentative and so-
cial dialogues, there are several works concern-
ing hybrid dialogue systems that integrate task-
oriented and chat-oriented dialogue systems. Pa-
paioannou et al. proposed a method to acquire dia-
logue strategies for hybrid systems in a robot using
reinforcement learning (Papaioannou and Lemon,
2017).  Yu et al. showed that multiple di-
alogue systems can interact using appropriate
dialogue strategies learned through reinforce-
ment learning (Yuetal., 2017). Akasaka et al.
demonstrated a classification method for input
utterances to select what dialogue systems are
used (Akasaki and Kaji, 2017). However, in ini-
tial dialogue, it is unclear which dialogue strate-
gies can be employed to smoothly introduce an ar-
gumentative dialogue.
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Figure 1: Flow of PDB-QA dialogue. Each part
contains two system utterances and two user utter-
ances. We used questions in an order based on the
similarity between the dialogue topic and question
text.

3 Proposed method

We propose a method for introducing an argu-
mentative dialogue using the PDB-QA dialogue,
which is a question-answering dialogue concern-
ing personality. We then describe some existing
argumentative dialogue systems. Next, we explain
how to develop an extended argumentative dia-
logue system using the PDB-QA dialogue.

3.1 PDB-QA dialogue by using
question-answering pair about
personality

The PDB consists of personal questions and exam-
ple answers and is used to ask the interlocutor for
detailed information (Tidwell and Walther, 2002).
Such questions may be asked even when the in-
terlocutor is a dialogue system (Nisimura et al.,
2011). In this study, we used the PDB described
in (Sugiyama et al., 2014). This PDB is a large-
scale database of pairs of questions and answers
related to personal information. Questions in-
cluded in the PDB involved various personal ques-
tions, question categories, answer examples, and
topics attached to each question. Based on the
degree of overlap of questions, question-answer
pairs frequently encountered during conversation
are extracted. The PDB includes personal ques-
tions such as “what dishes do you like?” and
“which places have you visited?”

We explain the procedure for generating a PDB-
QA dialogue using this PDB. As shown in Fig-
ure 1, the PDB-QA dialogue consists of several
parts. Each part consists of four utterances: the
system’s question using the PDB, the user’s re-
sponse, the system’s answer, and the user’s re-
sponse to this. To determine the order in which

Natural
Language
Understanding

wall
Dialogue PDB
Manager
Module

Update| Refer

<Z> Text Interface

User l
Natural
Language
Generation

Argumentation
Structures

Figure 2: Architecture of developed dialogue sys-
tem.

to ask multiple questions, we used the similar-
ity between the topic of argument and the ques-
tion text, calculated by Word2vec (Mikolov et al.,
2013). From parts 1 to N, we used questions in
an order starting from the highest similarity, i.e.,
part 1 uses a question with the N-th highest simi-
larity and part N uses another question that has the
highest similarity. This is because it is considered
that approaching the topic gradually is natural as a
dialogue structure. Through this process, we can
perform N parts of the PDB-QA dialogue.

3.2 Argumentative dialogue system

We used the argumentative dialogue system de-
scribed in (Higashinaka et al., 2017). This sys-
tem can generate appropriate argumentative dia-
logue text based on large-scale knowledge struc-
tures, called argumentation structures, which are
constructed manually. An argumentation structure
is represented by a graph structure, composed of
nodes that represent premises and edges represent-
ing support or nonsupport relationships, based on
an extended version of Walton’s model (Walton,
2013).

A user utterance is input into two modules: di-
alogue act estimation and proposition identifica-
tion. The dialogue act estimation module esti-
mates four dialogue-act types: assertion, question,
concession, and retraction. The proposition iden-
tification module determines the argumentation
node that contains the content closest to the input
user utterance. The discussion manager updates
the argumentation structure on the basis of the un-
derstanding result, which checks whether the cor-
responding node is already mentioned. Then the
dialogue manager retrieves premises that can be
used for support or rebuttal based on traversing
along with argumentation structures. The system
outputs a supportive or nonsupportive response to
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the user’s utterance.

3.3 Integration of argumentation dialogue
system and PDB-QA dialogue

Figure 2 illustrates the architecture of our argu-
mentative dialogue system. The user interacts
with the system through the text chat interface on
the browser. The natural language understand-
ing module has two modules related by the argu-
mentative dialogue system. Note that this mod-
ule is only used in the argument phase described
as follows. The dialogue manager manages two
dialogue states. One is the question-answering
phase, and the other is the argument phase. Fig-
ure 3 illustrates the flow of dialogue managed by
the dialogue manager. First, the dialogue manager
initiates the opening dialogue, such as by asking
the user her name. Then, it begins the question-
answering phase. In this phase, the PDB-QA di-
alogue is performed, as described in Section 3.1.
The PDB-QA dialogue is a predefined question-
answering dialogue, regardless of user utterances.
The answer of the system for a PDB question is
prepared by the experimenter in advance. The
natural language generation module changes the
system response such as adding conjunctions and
changing the end of the sentences using a dialogue
act. Later, the dialogue manager begins the argu-
ment phase. In the argument phase, the utterances
of the system are premises that can be used for
support or rebuttal, and they consist of the results
of the argumentative dialogue system.
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Line Speaker Utterance
1 S Do you like trips?
2 U Yes, I do.
3 S I see. I like them too.
I want to go on a trip during the weekend.
4 U I also want to go during the weekend.
5 S Where do you want to go for a trip?
6 U I want to go abroad.
7 S Me too.
I want to go to France if I have the time.
8 U French dishes seem great.
9 S Which is the better place to travel
in Japan, Hokkaido or Okinawa?
10 U I want to go to Okinawa.
11 S You can enjoy unique dishes in Okinawa.
12 U I think goya-champuru (a traditional
Okinawa dish) is delicious.
13 S But Hokkaido also has delicious dishes,
such as Genghis Khan.
14 U I see. Hokkaido has more delicious food.

Figure 4: An example of the dialogue. The topic is
that of which place the better to travel to in Japan:
Hokkaido or Okinawa. Lines 1 ~ 8 are part of the
PDB question dialogue, and lines 9 ~ 14 are part
of the argumentative dialogue. Speaker S and U
represent the system and user, respectively.

Figure 4 shows an example of the dialogue we
performed. The topic is as follows: which is the
better place to travel to in Japan: Hokkaido or Ok-
inawa? Lines 1 ~ 8 are a part of the PDB question
dialogue, and lines 9 ~ 14 are a part of the argu-
mentative dialogue. Speakers S and U represent
the system and the user, respectively.

4 Experiment

In this section, we describe a subjective experi-
ment to verify the effect of inserting the PDB-QA
dialogue. We compared the subjects’ evaluations
and behavior for two types of dialogue: one with
PDB-QA and the other without it. The hypoth-
esis is that by inserting the PDB-QA dialogue in
advance, users are motivated to partake in the ar-
gumentative dialogue and can then discuss deeply
with the system. To verify this hypothesis, sub-
jects communicated with the argumentative dia-
logue system through a text chat interface on a
browser, and then recorded their impressions in a
questionnaire. We quantitatively evaluated the av-
erage number of words per utterance of the user in
the argument phase. It is expected that the num-
ber of words per user’s utterance in our argumen-
tative dialogue system should be relatively lower
than that in the previous system, because when a
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Figure 5: Screenshot of the text chat interface.

user builds a relationship with the system, the user
expresses own ideas with fewer words.

4.1 Method

4.1.1 Subjects

Thirty-two Japanese adults (16 males and 16 fe-
males, with an average age of 20.3 years) partici-
pated as subjects. Half of the subjects participated
with the PDB condition, and the other half without
it. The ratio of males to females in each condition
was the same. One male with the PDB condition
and two males without were excluded because of
system failures, and the utterances of the remain-
ing 29 people were analyzed.

4.1.2 Apparatus

The experiment was conducted in a space sepa-
rated by curtains. A laptop PC was placed on the
table, and the PC displayed a web browser to show
the text chat interface, as shown in Figure 5. Note
that the dialogue in the experiment was performed
in Japanese. The dialogue text of the interaction
between the system and the subject was displayed
in the middle part of the browser, and a text box for
the subject to input his/her own utterances was dis-
played at the lower part of the browser. Note that
we call the sentence displayed in the interface an
“utterance.” In other words, sentences produced
by the system and input by the user with a key-
board are called the system’s and user’s utterances,
respectively.

4.1.3 Stimuli

In this experiment, we compared two conditions:
with and without the PDB. The condition with
PDB included two phases of dialogue: a question-
answering phase and an argument phase. The con-
dition without PDB included one phase of dia-
logue: the argument phase. In this experiment, the
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subject and the system alternately provided utter-
ances. Each pair of such utterances is referred to
as one turn. Both conditions included two turns
of opening dialogue, such as asking the subject’s
name and a greeting. The question-answering
phase consisted of three parts, each of which in-
cluded two turns of dialogue. In total, six turns
of dialogue were performed. The argument phase
contained six turns of dialogue. We prepared five
discussion topics and assigned any of these to the
subject at random: (1) the pros and cons of driving
automobiles, (2) benefits of living in the country-
side vs. living in the city, (3) which is the better
place to travel to in Japan between Hokkaido and
Okinawa, (4) which is the better breakfast between
bread and rice, and (5) which is the better theme
park betweenTokyo Disney Resort and Universal
Studios Japan.

4.1.4 Procedure

This experiment was conducted according to the
following procedure. First, the experimenter gave
a subject the instructions for the experiment. The
contents of the instructions were that the subject
interacts with the system through the text chat in-
terface on the browser, interacts only once, and an-
swers the questionnaire after the dialogue. Next,
the experimenter asked the subject to read the
questionnaire in advance. After that, interaction
was started. After completing the dialogue, the
experimenter asked the subject to answer the ques-
tionnaire.

4.1.5 Measurement

The items of the questionnaire regarding impres-
sions were the same for both conditions, and there
were eleven items in total. These included ques-
tions related to the overall impression of the dia-
logue system, the argumentative dialogue, and the
user’s motivation for conversing with the dialogue
system. The items concerning the impression of
the dialogue consisted of the following five:

Q1 The utterances of the system are correct in
Japanese,

Q2 The dialogue with the system is easy to under-
stand,

Q3 The dialogue with the system is familiar,

Q4 The dialogue with the system has a lot of con-
tent, and

Q5 The dialogue with the system is natural.



Q1 The utterances of the system are correct as Japanese -

Q2 The dialogue with the system is easy to understand

Q3 The dialogue with the system is familiar

Q4 The dialogue with the system has much contents -

Q5 The dialogue with the system is natural

Q6 You can deeply discuss the topic

Q7 You can smoothly enter the argumentative dialogue

Q8 You want to convey your opinions

Q9 You want to understand system’s opinions

Q10 You feel that the system want to convey the system’s opinions
Q11 You feel that the system want to understand your opinions

0 With PDB
@ Without PDB

1+ (p=0.09)

1* (p=0.038)

Figure 6: Box plots of the results of the questionnaire.

Average words - w ** (p=0.003)

o

HIH
-+ -

Average content words - } ** (p=0.003)

O With PDB
@ Without PDB

T T T T T

o 2 4
Figure 7: Box plots of results for the average num-
bers of words and content words (nouns, verbs, ad-
jectives, conjunctions, and interjections) per utter-
ance in the argument phase. We used MeCab to
tokenize Japanese words.

The items concerning the impression of the argu-
ment dialogue were the following two:

Q6 You can deeply discuss the topic of X, and
Q7 You can smoothly enter the argumentative di-
alogue about X,

where X is the actual topic (e.g., which is the better
place to travel to in Japan between Hokkaido and
Okinawa). The items related to motivation for the
dialogue were the following four:

Q8 You want to convey your opinions,

Q9 You want to understand the system’s opinions,

Q10 You feel that the system wants to convey its
opinions, and

Q11 You feel that the system wants to understand
your opinions.

A Likert scale was used to elicit the sub-
jects’ impressions. We used a seven-point scale
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that ranged from a value of 1, corresponding
to “strongly disagree,” to 7, corresponding to
“strongly agree.” The midpoint value of 4 corre-
sponded to “undecided.”

We also counted the average number of words
per user utterance and the average number of con-
tent words (nouns, verbs, adjectives, conjunctions,
and interjections) in the argument phase. We
used MeCab to tokenize the words and label the
Japanese parts of speech.

4.2 Result

Figure 6 presents the box plots of the answers to
the questionnaire. A Mann-Whitney U test was
used to compare the scores on the Likert scale. For
Q3, namely “the dialogue with the system is famil-
iar,” the median score for the condition with PDB
was found to be marginally significantly higher
than that for the condition without PDB (W = 143,
p < 0.1). For QS5, namely “the dialogue with
the system is natural,” the median score for the
condition with PDB was found to be significantly
higher than that for the condition without PDB
(W = 149.5, p < 0.05). For other questions, no
significant differences between the two conditions
were detected.

As shown in Figure 6, we did not directly con-
firm an improvement concerning the smooth intro-
duction to the argumentative dialogue by inserting
the PDB-QA dialogue. However, this figure sug-
gests that it is possible for the user to feel that
the dialogue is familiar and more natural when
the PDB-QA dialogue is inserted. This result may
be because the system performs in the manner in
which a human usually does, and a certain rela-
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Q1 Correctness e ——
Q2 Understandability | [ ———
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Q4 Much contents | = ~-- -
Q5Naturalness | - - ———-~
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Figure 8: Box plots of results of the questionnaire
for male users.
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Figure 10: Box plots of results for male users for
the average number of words and content words per
utterance in the argumentation phase.

tionship is built between the user and the system.
Thus, it is considered that inserting the PDB-QA
dialogue improves the naturalness of the dialogue
and relationships.

Figure 7 presents the box plots of the average
numbers of words and content words per user ut-
terance. For the average number of words, the me-
dian score for the condition with PDB was found
to be significantly less than that for the condition
without PDB (W = 40, p < 0.01). Concerning
the average number of content words, the median
score for the condition with PDB was also found
to be significantly less than that for the condition
without PDB (W = 40, p < 0.01).

As shown in Figure 7, it was found that the av-
erage numbers of words and content words in the
condition with PDB were significantly less than
those in the condition without PDB. These re-
sults suggest that when the relationship between
the user and the system is not close, the users
may express their opinions using a larger number
of words, to correctly convey their own message;
on the other hand, when the relationship is close,
the users may express their opinions using fewer
words.

In general, it is known that there are some dif-
ferences in purposes of conversation owing to gen-
der differences (Tannen, 2001). In this study, we
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Figure 9: Box plots of female results of the ques-
tionnaire for female users.
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Figure 11: Box plots of results for female users for
the average number of words and content words per
utterance in the argumentation phase.

suppose that the different purposes of conversation
resulting from gender differences may affect our
results. Therefore, we analyzed the effects of gen-
der. We divided the data by gender, and then plot-
ted each result. In the result for male users, shown
in Figure 8, no significant differences between the
two conditions were detected. On the other hand,
in the result for female users, shown in Figure 9,
we observe some significant differences between
the two conditions. According to this figure, for
Q5, namely “the dialogue with the system is natu-
ral,” the median score for the condition with PDB
was found to be marginally significantly higher
than that for the condition without PDB (W = 49,
p < 0.1). For Q6, namely “you can deeply dis-
cuss the topic,” the median score for the condition
with PDB was also found to be marginally signif-
icantly higher than that for the condition without
PDB (W =49, p < 0.1). In addition, we compared
males’ and females’ data under the conditions with
and without PDB. As aresult, for Q7, namely “you
can smoothly enter the argumentative dialogue,”
the median score with PDB for females was found
to be marginally significantly higher than that with
PDB for males (W = 13.5, p < 0.1). These re-
sults suggest that it is possible that females may
feel that the PDB-QA dialogue inserted before the
argumentative dialogue is more natural, and this



may lead to the result that females feel the argu-
mentative dialogue is deepened more. Thus, it is
suggested that inserting the PDB-QA dialogue in
our proposed method may be more effective for
females.

In addition, Figures 10 and 11 show the results
for male and female users for words and content
words, respectively. As shown in Figure 10, for
male users, the average number of content words
for the condition with PDB was found to be sig-
nificantly less than that without PDB (W 7,
p < 0.05). This result may be because of their
degree of motivation, but the actual reason is un-
known. On the other hand, as shown in Figure 11,
for female users, the average numbers of words
and content words with PDB were found to be
marginally significantly less than those without
PDB (W =14, p < 0.1, W = 15, p < 0.1, respec-
tively). These results suggest that females may use
fewer words when they feel familiarity with the in-
terlocutor.

S Summary and future work

We proposed a PDB-QA dialogue method to
smoothly introduce an argumentative dialogue.
We conducted an evaluation experiment to ver-
ify the effectiveness of inserting the PDB-QA di-
alogue. The results suggest that the impressions
of the dialogue, such as familiarity and natural-
ness, may be improved by inserting the PDB-QA
dialogue. Specifically, we found that females may
perceive a PDB-QA dialogue inserted before an
argumentative dialogue as more natural, and this
may lead to the result that the argumentative dia-
logue can be deepened. We also found that when
the relationship between the user and the system
is not close, the users may express their opinions
using a larger number of words, whereas when the
relationship is close, the users may express their
opinions with fewer words.

We can improve the performance of the dia-
logue system by adjusting several parameters of
PDB dialogue, which were fixed in the experiment
for the sake of control. For example, we can adjust
how questions are chosen (the degree of similarity
of questions to be selected), the order of questions,
the number of questions, and the amount of infor-
mation to be presented in an answer to a question.
It may be possible to improve the performance if
we select better parameters depending on a user’s
preferences or the context of a conversation.
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For further improvement, we can consider ani-
macy, which is another element that may be im-
portant. Animacy describes the characteristic of
being like a living being, in other words, the char-
acteristic of whether a human can relate to mind
and will in an object. We suppose that in a dia-
logue, it is important for the user to feel animacy
toward the interlocutor, because it is important for
the user to recognize the dialogue system as a spe-
cial target with which they can form a certain re-
lationship. As a preliminary experiment, we mea-
sured the psychological indicators for mind per-
ception (Gray et al., 2011). This scale can mea-
sure how much agency (capacity for self-control,
planning, and memory) and experience (capacity
for pleasure, fear, and hunger) the subject feels the
target has. Analyzing how impressions of agency
and experience might affect the answers to the
questionnaire or the behavior of users will be an
important aspect of future work.

In this paper, we compared the conditions with
and without PDB. Comparing the two conditions,
we surmise that at least three factors exist that af-
fect the results: whether utterances are in the form
of a question, whether they contain personal con-
tent, and whether they are related to the topic of
the argumentative dialogue. For the first factor,
we suppose that a question form can explicitly re-
veal common and differing sentiments in the an-
swer to the question. It is considered that this
makes it easy for the user to become interested.
For the second aspect, we suppose that asking a
question concerning personality can make it possi-
ble to construct a certain relationship more easily.
As regards the final point, we feel this prevents
a sudden change of topic. We suppose that this
makes it possible for the user to enter the argu-
mentative dialogue more smoothly. Investigating
the kinds of factors that affect a natural introduc-
tion into the argumentative dialogue will be a topic
of future work.
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Abstract

We examine the efficacy of various
feature—learner combinations for lan-
guage identification in different types of
text-based code-switched interactions —
human-human dialog, human-machine
dialog, as well as monolog — at both the
token and turn levels. In order to examine
the generalization of such methods across
language pairs and datasets, we analyze
ten different datasets of code-switched
text. We extract a variety of character- and
word-based text features and pass them
into multiple learners, including condi-
tional random fields, logistic regressors,
and recurrent neural networks. We further
examine the efficacy of character-level
embedding and GloVe features in im-
proving performance and observe that our
best-performing text system significantly
outperforms the majority vote baseline
across language pairs and datasets.

1 Introduction

Code-switching refers to multilingual speakers’
alternating use of two or more languages or lan-
guage varieties within the context of a single con-
versation or discourse in a manner consistent with
the syntax and phonology of each variety (Mil-
roy and Muysken, 1995; Wei, 2000; MacSwan,
2004; Myers-Scotton, 2006). Increasing global-
ization and the continued rise of multilingual so-
cieties around the world makes research and de-
velopment of automated tools for the processing
of code-switched speech a very relevant and in-
teresting problem for the scientific community.
In our case, an important additional motivating
factor for studying and developing tools to elicit
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and process code-switched or crutched' language
comes from the education domain, specifically
language learning. Recent findings in the litera-
ture suggest that strategic use of code-switching
of bilinguals’ L1 and L2 in instruction serves mul-
tiple pedagogic functions across lexical, cultural,
and cross-linguistic dimensions, and could en-
hance students’ bilingual development and maxi-
mize their learning efficacy (Wheeler, 2008; Jiang
etal., 2014). This seems to be a particularly effec-
tive strategy especially when instructing low profi-
cient language learners (Ahmad and Jusoff, 2009).
Therefore, the understanding of code-switched di-
alog and development of computational tools for
automatically processing code-switched conversa-
tions would provide an important pedagogic aid
for teachers and learners in classrooms, and po-
tentially even enhance learning at scale and per-
sonalized learning.

Automated processing of code-switched text di-
alog poses an interesting, albeit challenging prob-
lem for the scientific community. This is be-
cause the hurdles observed during traditional di-
alog processing tasks such as spoken language
understanding (SLU), natural language generation
(NLG) and dialog management (DM) are exacer-
bated in the case of code-switched text where the
language the speaker is using at any given instant
is not known apriori. Integrating an explicit lan-
guage identification (or LID) step into the process-
ing pipeline can potentially alleviate these issues.
Take for example a use case of designing conver-
sational applications for non-native English lan-
guage learners (ELLs) from multiple native lan-
guage (or L1) backgrounds. Many such learners
tend to “crutch” on their L1 while speaking in the
target language (or L2) that they are learning, es-

'Crutching refers to language learners relying on one
language to fill in gaps in vocabulary or knowledge in the
other (OConnor and Crawford, 2015).

Proceedings of the SIGDIAL 2018 Conference, pages 8088,
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pecially if they are low proficiency learners (Little-
wood and Yu, 2011), resulting in mixed-language
speech. In such a case, LID becomes particu-
larly important for SLU and DM, where the dialog
designer/language expert may want the conversa-
tional agent to perform different dialog actions de-
pending on whether the speaker used his/her L1
alone, the L2 alone, or a mixture of both during
the previous turn.

Researchers have made significant progress in
the automated processing of code-switched text
in recent years (Solorio et al., 2014; Bali et al.,
2014; Molina et al., 2016). While Joshi (Joshi,
1982) had already proposed a formal computa-
tional linguistics framework to analyze and parse
code-switched text in the early eighties, it was not
until recently that significant strides were made
in the large-scale analysis of code-switched text.
These have been facilitated by burgeoning mul-
tilingual text corpora (thanks largely to the rise
of social media) and corpus analysis studies (see
for example Solorio et al., 2014; Bali et al., 2014;
Molina et al., 2016), which have in turn facili-
tated advances in automated processing. Particu-
larly relevant to our work is prior art on predicting
code-switch points (Solorio and Liu, 2008) and
language identification (Barman et al., 2014; King
and Abney, 2013). Researchers have made much
progress on LID in code-switched text (tweets, in
particular) thanks to recent workshops dedicated
to the topic (Solorio et al., 2014; Molina et al.,
2016). One of the top-performing systems used
character n-gram, prefix and suffix features, letter
case and special character features and explored
logistic regression and conditional random field
(CRF) learners to achieve the best performance
for Spanish-English codeswitched text (Shirvani
et al., 2016). Yet another successful system lever-
aged bi-directional long short term memory net-
works (BLSTMs) and CRFs (along with word and
character embedding features) on both Spanish-
English and Standard Arabic-Egyptian language
pairs (Samih et al., 2016).

While there is comparatively less work in
the literature on automated analysis of code-
switched speech and dialog, the number of cor-
pora and studies is steadily growing in sev-
eral language pairs — for instance, Mandarin—
English (Li et al., 2012; Lyu et al., 2015),
Cantonese—English (Chan et al., 2005) and Hindi—
English (Dey and Fung, 2014). As far as
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dialog is concerned, the Bangor Corpus con-
sists of human-human dialog conversations in
Spanish-English, Welsh-English and Spanish—
Welsh (Donnelly and Deuchar, 2011). More
recently, Ramanarayanan and Suendermann-Oeft
(2017) also proposed a multimodal dialog corpus
of human-machine Hindi—English and Spanish—
English code-switched data. In order to under-
stand how turn-level LID systems for dialog per-
form across different languages and corpora, this
paper explores the efficacy of different fext-based
features on multiple human—-human and human-—
machine dialog corpora of code-switched data in
multiple language pairs. To that end, this pa-
per builds on other recent work that examined
this phenomenon for the Bangor Miami Corpus
of English—Spanish human—human dialog (Rama-
narayanan et al., 2018) and expands it significantly
(note however, that this study does not examine
speech data). To our knowledge, this is the first
such comprehensive exploration of turn-level LID
performance in human-human code-switched text
dialog. With that in mind, the specific contribu-
tions of this paper are to examine:

1. The performance of: (i) a range of text fea-
tures (including word- and character-level
embedding features) for (ii) both word-level
and turn-level LID;

How generalizable these features are across
different datasets comprising different lan-
guage pairs and styles of codeswitched text
— human-human dialog, human-machine dia-
log and monolog (tweets);

. Turn-level LID performance by (i) using
word-level LID followed by aggregation over
the entire turn v.s. (ii) directly training clas-
sifiers at the turn-level.

The rest of this paper is organized as follows:
Section 2 describes the various corpora used for
our turn-level LID experiments. We then elucidate
the various featuresets and learners we explored
in Sections 3 and 4 respectively, followed by de-
tails of the experimental setup in Section 5. Next,
Section 6 presents the results of our LID experi-
ments as well as analyses of performance numbers
across featureset-learner combinations, language
pairs and dataset style. Finally, we conclude with a
discussion of current observations and an outlook
for future work in Section 7.



2 Data

We used a total of ten code-switched corpora for
our experiments across language pairs and inter-
action type, summarized briefly below. Note that
although some of these corpora contain speech as
well, we only consider the text transcripts for the
purposes of this paper.

e Bangor University in Wales has assem-
bled three corpora of human-human code-
switched dialog?: (i) The Miami corpus of
code-switched English and Spanish, (ii) the
Siarad corpus of English and Welsh, and (iii)
the Patagonia corpus of Spanish and Welsh.

e The SEAME corpus® comprises approxi-
mately 192 hours of Mandarin-English code-
switching human-human dialog from 156
speakers with associated transcripts (Lyu
et al.,, 2015). The speakers were gender-
balanced (49.7% female, 50.3% male) and
between 19 and 33 years of age. Over 60% of
the speakers were Singaporean; the rest were
Malaysian.

e The HALEF corpora of code-switched
human-machine dialog comprise English—
Hindi and English—-Spanish language pairs.
In each language pair, bilingual human
participants were encouraged to use code-
switched speech as they interacted with a
cloud-based multimodal dialog system to or-
der food and drink from a virtual coffee shop
barista. For more details, see Ramanarayanan
and Suendermann-Oeft (2017).

e Finally, in addition to these dialog corpora,
we also used monolog corpora for compar-
ison — four Twitter datasets used in the 1%¢
shared task on language identification held at
EMNLP 2016 (Solorio et al., 2014). These
consisted of code-switched tweets in the
following language pairs: English—Spanish,
English-Mandarin, English—Nepalese, and
Modern Standard Arabic—Egyptian Arabic.

The transcripts were processed by performing
whitespace tokenization on each turn, and remov-
ing event descriptions (such as “&=laugh”) and

http://bangortalk.org.uk/

Shttps://catalog.ldc.upenn.edu/1dc2015s04
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Table 1: Statistics of the different code-switching corpora considered in this paper. Note that H2H stands for human-to-human while H2M stands for human-to-

machine.

> N
en NS
B8zsnlog
<'§ﬁ8$<ﬂ€gﬂ'
EH g Em()
[a W S

E|l% —
L
o = £5z0
Z | LR e
o] o0 Nln&
TIHIS 8=~ ea®
HFIREQ . T
ZIEF8 T2 &g
U-lm gz
< RS
Q_‘M o~ S
dE R
DEIFS3ngY
= = & ©
4 Q&D
m | = S o
z 9T &8 T ez
S EEREE
2 GRRS
&0 NSRS
5l 282
S22
] o Hm
5“ e A50

o | o
Z |m 7a} % SN IS
HSlm @S a8 Y
SIEES 9= g
w2 H%UU
NS
5. @58
2R3 =&
= o:gom
EH§~2§"’
GRZI
< DR e
[ S
Fldls 2 27
o |8 & © & -
AT -
83| m v o
R
S v S
Sz 2388
SIEER S 4w
m © M7z a0
m v«

el

g5

8= .

= 8 &£

S 2275

5 £ 2
Slell £ 5§ 2
SEIl e E2%
o 2 E © 63 &%
@ Gy =2 8 s
:% O_gg;_‘::
on| o (5] = O O
28] & 52z
ol & z35 g &




unintelligible tokens. For the Twitter datasets, in
order to enable cross-dataset comparison, we nor-
malized the tag sets by creating an “other” class
that included all tokens not belonging to either of
the two relevant languages (NEs, ambiguous to-
kens, etc).

3 Feature Extraction

3.1 Low-Level Text Features

Following earlier work (Shirvani et al., 2016;
Samih et al., 2016), we experimented with the fol-
lowing low-level binary text features that capture
the presence or absence of the following:

e Word n-grams: We used a bag-of-words
representation, trying uni- and bi-grams.

e Character n-grams: The set of unique char-
acter n-grams (1 < n < 4), without crossing
word-boundaries. For example, the word se-
quence “la sal” would produce the following
character n-grams {‘I’, ‘a’, ‘s’, ‘al’, ‘la’, ‘sa’,
‘sal’}.

e Character Prefixes/Suffixes: All affixes
with length < 3. For example, the word
“intricate” would have prefixes {”i”, ”in”,

”int”}, and suffixes {"ate”, "te”, and e”}.

e Dictionary Lookup: We examine whether
each word exists in a dictionary for either
one of the code-switched languages. Dic-
tionaries for English, Spanish, and Welsh,
were sourced from GNU Aspell*. Dictionar-
ies from other languages were not used either
because they were not available or the dictio-
nary’s orthography differed from that used in
our data.

We also extracted turn length (in number of words)
and used that as an additional feature.

3.2 Embedding Features

We also examined the utility of different combina-
tions of the following embedding features:

e word2vec based pre-trained word embed-
dings (Mikolov et al., 2013). These models
are shallow, two-layer neural networks that
represent (embed) words in a continuous vec-
tor space where semantically similar words
are embedded close to each other. In order

*http://aspell.net/
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to pre-train word2vec models while analyz-
ing the code-switched corpus of a particular
language pair, we utilized other corpora (if
they existed) for that same language pair (in
other words, we were not able to analyze the
effect of these features for language pairs that
had just one exemplar corpus, like English—
Welsh).

char2vec based pre-trained character em-
beddings. These features are similar to
word2vec, but are applied at the character
level. In order to generate these embeddings,
we run standard Word2Vec with skip-grams,
except characters take the place of words and
words take the place of sentences, enabling
us to learn character contexts within words.
Jaech et al. (2016) used a similar feature they
termed ‘“‘char2vec”, which is however dif-
ferent from our implementation; it involves
learning a character-based word vector using
a convolutional neural network.

GloVe based pre-trained word embeddings
(Pennington et al., 2014). GloVe is an un-
supervised learning algorithm for obtaining
vector representations for words, which cap-
ture linear substructures of interest in the
word vector space. It is a global log bilin-
ear regression model that combines the ad-
vantages of the two major methods: matrix
factorization of global corpus co-occurence
statistics and local context window methods.
As in the word2vec case, to obtain pre-trained
vectors for a corpus in a given language pair,
we used the other corpora for that pair to train
aggregated global word-word co-occurrence
statistics.

GloVe based pre-trained character embed-
dings. This is the GloVe algorithm applied
at the character level. To our knowledge, our
paper is the first such application of these fea-
tures for language identification.

No pre-training: In this case, we learned
word and/or character embeddings from
scratch, i.e., we randomly initialized the vec-
tors and trained these embeddings using the
training partition of the data for each cross-
validation fold.



4 Machine Learning Methods

Following previous work in this area, we exam-
ined the utility of the following learners:

o Logistic Regression: The simplest method
we investigated was just logistic regression
with L2-regularization to generate language
label probabilities using the various combi-
nations of the features described in Section
3.1

CREFs: In this case, instead of modeling lan-
guage tagging decisions for each word in-
dependently, we model them jointly using a
conditional random field or CRF (Lafferty
et al., 2001).

Bidirectional LSTMs: Long short term
memory networks or LSTMS are a special
kind of recurrent neural network that is ca-
pable of learning long-term dependencies
(Hochreiter and Schmidhuber, 1997). They
do so using several gates that control the
proportion of the input to give to the mem-
ory cell, and the proportion from the previ-
ous state to forget’. We implemented the
Stack LSTM architecture first proposed by
Dyer et al. (2015), in which the LSTM is
augmented with a “stack pointer.” While se-
quential LSTMs model sequences from left
to right, Stack LSTMs permit embedding of
a stack of objects that are both added to (us-
ing a push operation) and removed from (us-
ing a pop operation). This allows the Stack
LSTM to work like a stack that maintains
a “summary embedding” of its contents. In
our case, we use this architecture to model a
summary embedding of characters within an
model of word embedding sequences. In ad-
dition to this Stack BiLSTM, following Lam-
ple et al. (2016), we used a combination of
a Stack BiLSTM with a CRF, where instead
of directly using the softmax output from the
Stack BiLSTM, we use a CRF to predict the
final language tag for each word by taking
into account neighboring tags.

An novel feature of our experiments is the ex-
amination of the utility of pre-trained GloVe
and char2vec in improving performance of
the system proposed for named entity recog-
nition in Lample et al. (2016).

3Also see http://colah.github.io/posts/2015-08-
Understanding-LSTMs
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5 Experiments

We conducted 10-fold cross-validation experi-
ments for all datasets. For each dataset, we first
extracted the word and character level features de-
scribed in Section 3. We then tried the follow-
ing approaches to predicting one of 3 classes —
English, Spanish or Code-switched — at the turn-
level: (i) Used a CRF to make word-level pre-
dictions, and aggregated them to form a turn-
level prediction; (ii) aggregated the features at the
turn level and try a variety of learners, including
logistic regression and deep neural networks to
make language predictions at the turn level; (iii)
fed word- and character-embedding combinations
(both with and without pre-training) to a Stacked-
BiLSTM-CREF system and made an LID predic-
tion for each turn. We experimented with differ-
ent learner configurations and parameter settings
and summarize the best performing featureset and
learner combination in the Results section. We
used a grid search method to find optimal char-
acter embedding size for each dataset (among val-
ues of 25, 50 and 100). For the Stack-BiLSTM
system, given the large number of architectural
parameters to optimize (number of LSTM layers
and recurrent units, type of optimizer, dropout,
gradient clipping/normalization, minibatch size, to
name a few), we chose to use the choices recom-
mended by Reimers and Gurevych (2017), who
evaluated over 50,000 different setups and found
that some parameters, like pre-trained embeddings
or the last layer of the network, have a large im-
pact on the performance, while other parameters,
like the number of LSTM layers or the number of
recurrent units, are of relatively minor importance.
We set the word-embedding size to 100 and used
25 and 100 recurrent units in the character-level
and word-level BiLSTMs, respectively, following
Lample et al. (2016).

6 Observations and Analysis

Table 2 lists the best performing tfurn-level LID
systems, including the feature sets and model de-
tails. In each cell of the table, the top value indi-
cates the overall weighted average F1 score, while
the bottom value (in parentheses) indicates the F1
score of the code-switched class. We decided to
list the latter value since this class is easily con-
fusable with the other two, and better F1 scores
for this class might give an insight into which al-
gorithms are better at capturing the characteristics



System ‘Weighted Average F1 Scores for Each Dataset

Featureset Machine ENG-SPA ENG-CHI ENG-WEL | WEL-SPA | ENG-HIN | ENG-NEP | MSA-EGY
ures Learner Bangor | HALEF | Twitter | SEAME | Twitter Bangor Bangor HALEF Twitter Twitter

Word n-grams, Char n-grams, | Logistic 0.9525 0.9324 | 0.8143 0.9931 0.5786 0.9647 0.9706 0.8765 0.8442 0.7556
Affixes, Length & Dictionary | Regression
lookup

(0.6820) | (0.7576) | (0.6839) | (0.9937) | (0.6272) | (0.8531) (0.6762) (0.8235) (0.9023) (0.4511)
Word n-grams, Char n-grams, | CRF  ag- 0.9696 | 09584 | 0.8912 | 0.9977 | 0.7393 0.9676 0.9800 0.9022 0.9367 0.7280
Affixes, Length & Dictionary | gregated to
lookup turn

(0.8381) | (0.8874) | (0.8247) | (0.9979) | (0.7457) | (0.8639) (0.7982) (0.8553) (0.9568) (0.3216)
Word and Char Embeddings | Stacked 0.966 0.9759 0.884 0.999 0.742 0.9606 0.977 0.894 0.932 0.747
(both from scratch) Bi-LSTM

+ CRF
(0.8345) | (0.9560) | (0.8256) | (0.9991) | (0.7268) | (0.8469) (0.7828) | (0.8536) (0.9525) (0.4227)

Pre-trained Word Embeddings | Stacked 0.9671 0.9708 0.8950 0.999 0.7270 — — — — —
("word2vec’ in blue, otherwise | Bi-LSTM
’GloVe’) and Char Embeddings | + CRF

(from scratch)
(0.8438) | (0.9308) | (0.8421) | (0.9987) | (0.7104) — — — — —

2 Pre-trained Word and Char | Stacked 0.9692 0.976 0.8953 0.999 0.7332 — — — — —
Embeddings ('word2vec’ in | Bi-LSTM
blue, otherwise *GloVe”) + CRF
(0.8506) | (0.9560) | (0.8424) | (0.9992) | (0.7173) — — — — —
Best-performing turn predic- | Stacked 0.9621 0.9394 | 0.8587 — 0.6089 0.9485 0.9501 0.8514 0.7906 0.7564
tions Bi-LSTM
(0.7962) | (0.8235) | (0.7770) — (0.6821) | (0.7869) (0.7277) (0.7889) (0.8710) (0.5280)
Majority Baseline 0.49 0.34 0.38 0.38 0.37 0.79 0.67 0.18 0.61 0.63
Random Baseline 0.38 0.34 0.35 0.35 0.37 0.43 0.41 0.34 0.39 0.40
Best performance on 1 codeswitching challenge — — 0.822 — 0.894 — — — 0.977 0.417
Best performance on 2"¢ codeswitching challenge — — 0.913 — — — — — — 0.83

Table 2: Weighted average F1 scores obtained by different featureset—learner combinations on each
codeswitching dataset. Notice that datasets are organized first by language pair, and then according to
type of interaction (human-human vs. human-machine vs. Twitter). Each cell of the table contains two
numbers: the overall weighted F1 score on top and the F1 score of the code-switched class in paren-
theses at the bottom. Note that we obtained performance numbers for pre-trained word and character
embeddings only for language pairs with more than one dataset, i.e., ENG-SPA and ENG-CHI. Also
shown for benchmarking purposes are the best tweet-level performance numbers from the 15¢ and 2"¢
codeswitching challenges for some of the Twitter datasets. However, note that this is nor a completely
fair comparison, because the train-test partitions in our case are different: we used only the train data
from the 1% code-switching challenge in order to perform 10-fold cross-validation experiments. Also
see the text for more details.

System Weighted Average Token-Level F1 Scores for Each Dataset

Featureset Machine ENG-SPA i ENG-CHI ENG-WEL | WEL-SPA | ENG-HIN ENGTNEP MSATEGY

Learner Bangor | HALEF | Twitter | SEAME | Twitter Bangor Bangor HALEF Twitter Twitter
Word n-grams, Char n-grams, | CRF 0.9774 | 0.9772 | 0.9111 | 0.9989 | 0.9513 0.9824 0.9774 0.9343 0.9601 0.5804
Affixes, Length & Dictionary
lookup
Word and Char Embeddings | Stacked 0.9883 | 0.9721 | 0.9394 | 0.9993 | 0.9476 0.9820 0.9922 0.9290 0.9579 0.5791
(both from scratch) Bi-LSTM +

CRF
Pre-trained Word Embeddings | Stacked 0.9814 | 0.9784 | 0.9437 | 0.9992 | 0.9429 — — — — —

(’word2vec’ in blue, otherwise | Bi-LSTM +
’GloVe’) and Char Embeddings | CRF
(from scratch)

Pre-trained Word and Char Em- | Stacked 0.9819 | 0.9788 | 0.9370 | 0.9993 | 0.9478 — — — — —
beddings ("word2vec’ in blue, | Bi-LSTM +

otherwise *GloVe’) CRF

Best performance on 1% codeswitching challenge — — 0.94 — 0.892 — — — 0.959 0.936
Best performance on 2"? codeswitching challenge — — 0.973 — — — — — — 0.876

Table 3: Weighted average F1 scores for token-level predictions after 10-fold crossvalidation. Also
shown for benchmarking purposes are the best token-level performance numbers from the 1°¢ and 27¢
codeswitching challenges. However, note that this is not a fair comparison, because the train-test parti-
tions in our case are different: we used only the train data from the 1! code-switching challenge in order
to perform 10-fold cross-validation experiments. Also see the text for more details.

85



of this class. At the outset, we observe that all text
systems significantly outperform the majority vote
baseline (where we assign the language labels of
all turns in the test set to the majority class) and
the random baseline (where the language labels of
all test set turns are assigned at random) by a huge
margin.

One of the primary research questions we
wanted to study (see the penultimate paragraph
of Section 1) was how different featureset-learner
combinations performed across different language
pairs. We see that no particular featureset-learner
combination dominated overall performance-wise,
with results varying depending on the dataset and
language pair in question. Interestingly, in the
case of English—Spanish, where there were 3 dif-
ferent datasets of code-switched text, using pre-
trained word and character embeddings performed
at or above par all other systems. In other words,
in the presence of sufficient amounts of data for
pre-training, using pre-trained embedding-based
systems yields the best results. Even though the
overall F1 score of all embedding-based Stack
Bi-LSTM systems is similar, notice that the F1
score of the code-switched class improves when
we use both pre-trained word and character em-
beddings. This suggests that pretrained charac-
ter embeddings are particularly useful in captur-
ing the characteristics of code-switched language.
While GloVe-based character embeddings were
more useful for the human-human (Bangor) and
monolog (Twitter) datasets, word2vec was better
for the HALEF dataset of human-machine dialog.
For English—-Mandarin corpora, on the other hand,
while the embedding—Stack BiLSTM-CRF com-
bination still performed best, using pre-trained
embeddings did not seem to make any significant
additional impact.

Another research question of interest dealt with
whether we obtained a better turn-level LID per-
formance by (i) using word-level LID followed by
aggregation over the entire turn, or (ii) directly
training classifiers at the turn-level. Our results
seem to suggest that the former is better than the
latter across all code-switched text datasets with
one notable exception. In the case of the Modern
Standard Arabic—Egyptian Arabic Twitter dataset,
using a Stacked BiLSTM with embedding features
and a direct softmax layer for turn-level predic-
tions (i.e., without an additional CRF aggregation
step) performed best.
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For all other remaining language pairs (each
of which had just one dataset), the simpler CRF
classifier (where predictions were aggregated to a
turn) with a more standard featureset (word and
character n-grams, affixes, turn length and dictio-
nary lookup) yielded the best results. That this
simpler CRF system performed competently even
in the other cases relative to the Stack-BiLSTM
systems suggests that the former is perhaps a bet-
ter choice when one does not have large amounts
of training data, particularly for pre-training. On
a related note, it is also worth pointing out that
unsurprisingly, performance numbers across the
board are influenced by the amount of data in each
dataset, i.e., more data leads to higher F1 scores.

Yet another research question dealt with the per-
formance across datasets for human—-human di-
alog vs. human-machine dialog vs. monolog
tweets. We observe, in general, a decrease in
overall weighted F1 score as one moves from
human-human dialog to human—machine dialog
to monolog tweet data. One possible reason for
this is that Twitter data in particular consists of
many “other” non-language tokens (such as named
entities, ambiguous tokens, etc.), which, on re-
moval or non-consideration, might lead to differ-
ent phrase structures in the resulting data®.

The final question we asked was to examine
token-level prediction performance, in order to
benchmark ourselves against prior art in this area.
Table 3 lists these results. We find that perfor-
mance trends in this case roughly mirror those ob-
served at the turn-level.

Performances from the 1st and 2nd Code-
switching Workshop Challenge results are pro-
vided in each table to provide some comparison
with our systems. However, it should be noted
that these comparisons are not exact. Our results
are from 10-fold cross-validation on the training
data used in the Workshop challenge, not on the
held-out test sets. Additionally, because we pulled
the data from Twitter years after the 1st Work-
shop, some of the tweets initially intended for the
dataset were no longer available. For the tweet-
level performance, we report results on three-class

A big part of the errors made by crowd-sourcing an-
notators who assigned tag labels for the Twitter datasets in-
volve named entities, probably because the annotators do not
take the context into account in an effort to be fast and col-
lect money quickly. The problem is exacerbated in the MSA-
EGY set due to the fact that there is inherently considerable
amount of data overlap due to homographs between the two
varieties of the language (Molina et al., 2016).



classification (language 1 vs. language 2 vs. code-
switched), whereas the Code-switching Workshop
performances are based on binary classification
(monolingual vs. code-switched). Furthermore,
as mentioned earlier, in order to enable cross-
dataset comparison, we normalized the tag sets
by creating an “other” class that included all to-
kens not belonging to either of the two relevant
languages (NEs, ambiguous tokens, etc). Taking
these points into consideration, our systems per-
form competitively with the submissions to the
Code-switching Workshop Challenges. The only
exception is in the case of the MSA-EGY dataset,
where while our tweet-level performance is com-
petitive, our token-level performance far underper-
forms the state-of-the-art. We suspect that dataset
imbalance could play a role, as well as the fact that
we didn’t use any external resources for this lan-
guage pair.

7 Discussion and Outlook

We have presented an experimental evaluation of
different text-based featuresets in performing lan-
guage identification (LID) at both the turn and
token levels in code-switched text interactions.
We studied the generalizability of various sys-
tems both across language pair and dataset type—
human-human, human—-machine and monolog—
by examining 10 different datasets of code-
switched text. While our best text-based sys-
tems performed either at or above par with the
state of the art in the field, we found that the
use of both pre-trained word and character-based
embedding features, and the latter in particular
(either through char2vec or GloVe), were partic-
ularly useful at capturing the characteristics of
code-switched speech (with the caveat that the fea-
ture extraction process requires sufficient data for
pre-training). We further observed that a perfor-
mance drop depending on the style of interaction,
as we move from human-human dialog to human—
machine dialog to monolog tweets.

Going forward, we will explore a number of po-
tential avenues for improving the performance of
the text-based LID systems. Chief among these is
to investigate strategies for dealing with little or
no code-switched data (or indeed, overall train-
ing data) for a given language pair, and how to
improve the performance of deep learning algo-
rithms for such datasets. In addition, we would
like to perform a deeper error analysis of the al-
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gorithms on different featuresets to obtain a bet-
ter understanding of how best to select a feature-
learner combination for the LID task.

Finally, as mentioned earlier, one of the key ex-
citing R&D directions that this work informs is in
building code-switching dialog systems. For in-
stance, integrating an explicit language identifi-
cation step into the spoken language understand-
ing (SLU) could help enhance the system perfor-
mance. Over and above such applications, such
an LID module might also help inform pragmatic
considerations during dialog management and the
language generation module for the generation of
appropriate mixed-language output.
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Abstract

We present a modular, end-to-end dia-
logue system for a situated agent to ad-
dress a multimodal, natural language di-
alogue task in which the agent learns
complex representations of block struc-
ture classes through assertions, demon-
strations, and questioning. The concept
to learn is provided to the user through a
set of positive and negative visual exam-
ples, from which the user determines the
underlying constraints to be provided to
the system in natural language. The sys-
tem in turn asks questions about demon-
strated examples and simulates new exam-
ples to check its knowledge and verify the
user’s description is complete. We find
that this task is non-trivial for users and
generates natural language that is varied
yet understandable by our deep language
understanding architecture.

1 Introduction

Current artificial intelligence systems, even dia-
logue agents, tend to play the role of a tool in real-
world or even simulated tasks. Often the human
user must be given an artificial handicap to create
a situation where the system can play a role as a
collaborator rather than a tool with interface com-
mands simply replaced by natural language equiv-
alents (Brooks et al., 2012). We work towards a
natural language dialogue agent that we hope will
eventually become a collaborator rather than a tool
by focusing on knowledge transfer through natural
language and determining areas where a dialogue
agent’s proactive nature is a benefit to learning. To
this end, we apply deep language understanding
techniques in the situated Blocks World environ-
ment, where a user can teach the system physical,
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possibly compositional concepts to aid in devel-
opment of natural language understanding without
significant existing domain knowledge needed.

2 The Structure Learning Task

Many natural language dialogue tasks in a Blocks
World environment focus on querying the envi-
ronment (Winograd, 1971), block placement (Bisk
et al., 2016; She et al., 2014), or training visual
classifiers and grounding perception (Matuszek
et al., 2012; Mast et al., 2016; Perera and Allen,
2015). Reference resolution has also been ex-
tensively studied in this environment and statisti-
cal methods show strong performance in quickly
learning referring expressions (Kennington et al.,
2015). However, our focus is exploring collabora-
tive concept transfer with the goal of having situ-
ated agents learn from natural language dialogue
and physical interaction to become better collabo-
rators. With the goal of the system as a collabora-
tor, we find it is important that the task carried out
be non-trivial for the user. However, more diffi-
cult tasks can have drawbacks — they involve larger
amounts of background knowledge and reasoning,
progress can be difficult to evaluate, and often the
language and concepts learned do not extend eas-
ily to other real world applications.

With these constraints in mind, we use a physi-
cal Bongard problem (Bongard et al., 1970; Weit-
nauer and Ritter, 2012) task for evaluating our sys-
tem in a situated Blocks World environment. The
user is provided with a set of visual examples,
some positive and some negative, and must deter-
mine the constraints on the class of structure that
allows the positive examples (and perhaps others)
while avoiding any negative examples (Figure 1).
By providing only visual clues, we leave the gen-
eration of the constraints entirely up to the user.
The user then begins interacting with the system
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Figure 1: An example of the set of images pro-
vided to a participant for teaching the system a
“U” shape. The user is tasked with explaining
the underlying concept to the system such that the
system correctly identifies the positive examples
while rejecting the negative examples.

to describe the structure. During this time, the sys-
tem is able to ask questions, check its model with
demonstrations, and ask for the user to present ex-
amples. While this problem has been explored in
the context of cognitive architectures (Foundalis,
2006) and reinforcement learning (Ramon et al.,
2007), we are unaware of any prior work in the
context of dialogue systems.

We believe this task addresses a number of is-
sues with previous tasks in evaluating a system
that can learn new concepts and structures. Partic-
ipants typically spent two to three minutes going
over the examples, showing that there was some
thought required to correctly understand the struc-
ture on their part. Furthermore, often the con-
straints users provided were underspecified — they
described what structures would be allowed, but
sometimes failed to provide sufficient restrictions
to avoid the negative examples. The system is then
able to find gaps in the user’s description by pre-
senting examples following the current description
so far — bringing the system’s state in the dialogue
from being solely a student to contributing to the
task in a meaningful way.

In addition, this task can be scaled in diffi-
culty or extended to other domains. Difficulty
scaling can be achieved by using compositional
constraints that build on existing knowledge (e.g.,
“Build a U shape, but make one column taller than
the other”) or by creating more difficult structures
to learn. The task could be adapted to other do-
mains by augmenting the ontology and designing
a new reasoning agent that could integrate asser-
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tions into its model, while retaining similar inter-
actions and the domain-generic modules.

2.1 Challenges

One of the primary challenges in this task is the
wide variety of ways in which a user might de-
scribe or teach a class of structures. For ex-
ample, they might describe necessary features or
prohibited features. They may view possibilities
as movement, saying “The columns have a row
between them wherever they move.” They may
present negative examples for the system to avoid.
Some users describe a particular arrangement of
blocks that should or should not appear (e.g.,
“There is never two blocks on top of each other”),
while others describe a more holistic conception
(e.g. “The maximum height is one block™). While
we do not succeed in interpreting all such de-
scription modalities, we believe our current meth-
ods handle a large range of possible explanations
and are amenable to advancements to understand a
greater number of explanation types in the future.

3 Environment and Apparatus

Our system operates in a Blocks World environ-
ment consisting of 6-inch cubes placed on a ta-
ble. Although the cubes have distinct images for
identification and colored sides, we do not use this
information in our current version — blocks can
only be referred to using descriptions of their lo-
cation in the environment. We use two Kinect
2.0’s to detect the blocks, with the separate per-
spective aiding in avoiding issues with occlusion.
On the opposite side of the user is a monitor with a
3D avatar that speaks the system’s generated text
and also has non-verbal communication capabil-
ities such as nodding, pointing, and other more
complex gestures. The environment is calibrated
such that these gestures can point to the location
of a block for communicating about it. The appa-
ratus with the avatar is shown in Figure 2.

The apparatus has no physical means for the
system to move blocks. However, during interac-
tion the system we find it important for the system
to build structures to test its knowledge. To do this,
we generate a 3D image in a virtual representation
of the current environment showing the blocks that
the system wants to place as an example for the
user. This can be sent to a separate tablet such that
an assistant can place the blocks, or displayed on
the screen for the user to evaluate themselves.



Figure 2: The apparatus and the environment con-
taining the blocks used, with the screen display-
ing the avatar and 3D visualization of the environ-
ment.

User input is currently carried out by keyboard
entry by the user or dictation by an assistant. We
are currently implementing speech recognition to
enable more natural communication. Towards this
end we focus on finite state machine language
models given the nature of assertions our system
understands, but we may have to consider more
flexible corpus-based models in the future, aided
by transcripts of previous trials.

4 System Architecture

The heart of the dialogue management is the
TRIPS architecture (Allen et al., 2001), which
connects a number of components through KQML
message passing (Finin et al., 1994), with
each component augmented with domain-specific
knowledge to varying extents. This dialogue man-
agement component, including parser, a generic
ontology, and an API for interacting with a
domain-specific module is open-source and avail-
able for download !. As opposed to other dia-
logue management systems like OpenDial (Lison
and Kennington, 2016) or POMDP dialogue sys-
tems (Williams and Young, 2007), this dialogue
management system is primarily suited for col-
laborative tasks where there is little to no knowl-
edge of what dialogue state typically follows from
the previous one — the user can move from state-
ments about goals to assertions to questions in
any order, determined primarily by the speech
act detected in their utterance. For semantic lan-
guage understanding and speech act interpreta-
tion of the user’s utterances, the domain-generic

"https://github.com/wdebeaum/cogent
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Figure 3: The TRIPS collaborative problem solv-
ing architecture adapted to this task. Only the Be-
havioral Agent and apparatus are specifically de-
signed for this task — the other components are
adapted only through additions to the ontology.

TRIPS parser (Allen et al., 2008) generates logi-
cal forms and speech act possibilities backed by a
domain-augmented ontology. The relevant speech
act is then determined by the Interpretation Man-
ager (IM), which also fills in remaining context-
dependent references before sending this informa-
tion to the Collaborative Problem Solving Agent
(CPSA). The CPSA facilitates communication be-
tween the parser/IM, Collaborative State Manager
(CSM) and the Behavioral Agent (BA) as Collab-
orative Problem Solving (CPS) Acts. These acts
include adopting, selecting, proposing, and reject-
ing goals, queries to the user or the system, and re-
porting the current status of a given module. The
overall architecture is shown in Figure 3.

4.1 Collaborative State Manager

The Collaborative State Manager stores and re-
sponds to queries regarding the systems goal state
and facilitates decisions based on goal context.
As opposed to the CPSA, the CSM does not
have a notion of dialogue context, but does re-
spond to speech acts that require the system to
generate a response based on the systems state
and knowledge. It also is responsible for gen-
erating the necessary clarification messages to
continue with dialogue, and for managing initia-
tive in mixed-initiative tasks based on a changing
domain-specific environment.

To make these decisions, the CSM is designed
with a combination of domain-independent behav-
ior and domain-specific knowledge supplied at a
broad level. Such knowledge takes the form of
a specification of which types of goals might be
considered goals in their own right (e.g..,teaching
the system a concept, building a structure), and
which are considered subgoals (e.g., showing an
example, adding a constraint to the system’s struc-



ture model). The goal hierarchy consists of one
or more top-level goals, with sub-goals, queries,
and assertions added as child nodes to create a
tree structure. With this structure, the user and the
system can resolve sub-goals and blocking actions
such as goal failures and rejected goals without
losing the overall goal context. The system works
with the user to ensure that there is a top-level goal
when beginning the dialogue to ensure the proper
context is available for the system, offering possi-
ble top-level goals based on the action or assertion
the user provides.

The CSM uses a light, domain-specific knowl-
edgebase of top-level goals, subgoals, and related
speech acts to infer the users intentions and goals
based on the incoming speech acts. For example,
the statement “The top block must be on the left-
most column” would yield a proposed subgoal in
a structure building task, but should be resolved as
an assertion to be added to the BA’s model during
the structure learning task. If there is no top-level
goal, the system would ask the user about the top-
level goal (e.g.“Are you trying to teach me some-
thing?” in response to an assertion) to establish
one. When the CSM is unable to resolve ambigu-
ity given the information it has, it will generate a
response that indicates the system needs more in-
formation from the user, and will provide possible
solutions such that other modules can generate re-
sponses to try to provide efficient communication.

4.2 Behavioral Agent

The BA is the domain-specific aspect of the sys-
tem dealing with interaction with and reasoning
over the environment. In this system, we also
relegate language generation to this component.
To design a BA in this architecture, one creates
a module that accepts a set of incoming messages,
dealing with goal proposals, requests for execution
status (i.e, finished a task, waiting for the user, or
currently acting), queries about the environment or
model, in addition to a “what-next” message that
serves to provide dialogue initiative to the system.
As the BA receives goals, it determines whether
they are achievable and accepts them, and then
proposes the next goal — for example, a teaching
goal will be responded with a subgoal to describe
an aspect of the structure. As assertions are pro-
cessed, they will be added to the model, rejected if
not understood in context, or clarified with a query
in the case of ambiguous statements.
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4.3 Goal Management

The base TRIPS architecture provides some
means for the user to respond to errors through
dialogue, and provides flexibility in goal manage-
ment. For example, if the user wants to continue
the dialogue in a different way, they can reject it by
responding “No” to the BA’s goal proposal, or they
can continue to provide assertions or ask ques-
tions even when the system has proposed the goal.
This flexibility is essential to reduce user frustra-
tion when coming up against obstacles and ensure
that the user feels a sense of control even when the
BA is proactive in dialogue.

5 Constraint Processing

Constraints are processed as assertions that are in-
terpreted as holding generally during the structure
learning process, rather than relying on the iden-
tity of any one particular block or group of blocks.
Therefore, the utterance, “The top block has to be
on the left” may or may not currently be true about
a particular example, but nevertheless should hold
in all positive instances of a structure class.

Constraints can be general properties about the
structures, such as the maximum/minimum height
or width, or they can refer to particular blocks or
groups of blocks. All non-general constraints must
contain a referring expression, which consists of a
referred object or arrangement (i.e., blocks, rows,
columns, or spaces) and optionally a location de-
scription to pick out a particular object. The as-
sertion can assert that such a referent exists in the
structure, constrain a particular feature of the ref-
erent, (e.g., width, height, the number of blocks it
contains), or dictate its location relative to the rest
of the blocks or a particular set of blocks denoted
by another referring expression. We also have lim-
ited support for compositional referents in refer-
ring expressions, picking out certain aspects of a
structure (e.g., “the ends of the row”).

A constraint can be designated as exclusive,
which means that only one instance of a particular
object can have that property (e.g. “Only the left-
most column has more than 2 blocks”). Currently
we take an object-type scoping for this restriction.
In addition, we handle negations at certain scopes,
such as disallowing a particular arrangement (e.g.
“There are no columns of height greater than 2”)
or location (e.g. “There is no block next to a col-
umn”). An example of some utterances under-
stood by the system is shown in Figure 4.



“The leftmost column’s height is 3 blocks.”
“The height is 3.”

“The height of the leftmost column is less
than the height of the rightmost column.”
“There is a column with at least 3 blocks.”
“There is a space between the top 2 blocks.”
“The bottom row is connected.”

“The top block is always on the left.”

“The top block can be anywhere.”

Figure 4: Examples of understood constraints.

5.1 Constraint Extraction

To extract constraints, we primarily depend upon
the logical form structure of the TRIPS parser,
which allows direct extraction of the types of con-
straints we are interested in due to its argument
structure of concepts. We first determine all re-
ferring expressions by finding mentions of blocks
or arrangements. Then we add any modifiers to
their location. Once the referring expressions are
found, we construct a constraint, which consists
of the subject (the :figure argument in the TRIPS
logical form), the reference object or property (the
:ground argument), and the feature of compari-
son (e.g., height, width, count) or a predicate con-
straining the location of the subject relative to
some reference set. Figure 5 shows an example
of structures extracted from a logical form.

5.2 Constraint Evaluation

When the system is asked to evaluate an exam-
ple or create its own, it evaluates all current con-
straints by finding referents for each referring ex-
pression according to the object type and predi-
cate. Predicates are calculated using predefined
rules, either specifying constraints that apply to
individual blocks or using axis-aligned bounding
boxes. These rules have built-in tolerances of a
half-block width to account for noise or impre-
cise placement. We then calculate the features and
predicates in the constraint for the resolved refer-
ence and return a value for each constraint.

Initial versions of the system primarily built up
constraints from a sequence of user utterances.
When performing Wizard of Oz studies, we found
that an issue with this method is that it can some-
times be difficult for users to formulate and de-
scribe a concise, consistent model without any di-
rection. This can lead to run-on sentences which
are difficult to parse, or, if parsed, difficult to inter-
pret as constraints. We believe one reason for this
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is that, while the system provides affirmation at the
end of an utterance entered by keyboard, it does
not give non-verbal or verbal cues of understand-
ing during speech recognition. Therefore, the user
sometimes continues explaining in various ways
looking for a signal that the system understands.

To address this issue, we designed our system to
take a more proactive role in conversation. While
the system still takes a free-form description or
constraint at the beginning of the conversation, it
then begins to ask questions about the structure
class, ask for examples, present examples, and re-
spond to the user’s questions about examples. The
system can choose a feature of the structure that
has not been described (to ensure the user feels
that the system has understood the structure so far)
and generate a query to send to the user. An un-
filled version of the constraint is sent to the CPSA
to aid in resolving the query, and the TRIPS parser
is able to handle user responses fragments to fill
in the constraint. The strategies to generate these
utterances are described in Section 5.3.

The system generates its own examples of struc-
tures given its current knowledge as well. The BA
will generate random arrangements of blocks in
a grid structure until the current constraints have
been satisfied, and then return a new structure as
an example. This allows the user to see the re-
sult of the constraints and refine their constraints,
while also providing more evidence that the sys-
tem is understanding what is being said.

At any time, the user can ask whether a particu-
lar example is correct given the constraints pro-
vided so far. The system enumerates the con-
straints and can then state whether each constraint
is satisfied and why or why not. If there are many
constraints, the system will summarize the posi-
tive constraints (e.g., “The width is right” rather
than “The width is greater than 2””) while focusing
on the negative constraints to avoid long-winded
explanations and provide a more natural response.

5.3 Learning Strategies

We designed the system to follow, with some devi-
ations, a general strategy for learning based on our
initial Wizard of Oz tests (Dahlbick et al., 1993),
such that the system can build up knowledge in
a way that supports the interactions between dif-
ferent types of knowledge learned throughout an
interaction. The system first asks the user for an
aspect of the structure, discouraging long-winded
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Figure 5: An example of constraint extraction from the TRIPS logical form for the utterance “The left-

most column is taller than the rightmost column”

descriptions that can overwhelm the parser and
tend to be less structured. With a constraint
learned, the system then asks for an example.
While the system cannot currently learn from the
block positions themselves, it uses the example to
generate a pertinent referring expression (e.g., “the
top block™) that can then be used to ask about a
constraint. This query guides the user to thinking
about the structure in a concrete and specific way
to aid in generating descriptions.

Because the system likely has two or more con-
straints at this point, it will then generate an exam-
ple of its own based on its learned constraints and
check for correctness. This allows the user to fo-
cus on aspects that are explicitly disallowed, since
the system’s random generation process often re-
veals when constraints are underspecified. These
learning strategies then continue until the user is
satisfied that the system understands the structure.
A sample dialogue showing the system’s abilities
is given in Figure 6.

6 Wizard of Oz Experiments

Before developing our system, we carried out sev-
eral Wizard of Oz experiments to aid in develop-
ment of the TRIPS parser, ensure that our system
had capabilities suited to the dialogue of a naive
user, and determine which interaction strategies of
the system would be most effective for learning
and most natural for the user. So far we have con-
ducted 3 tasks each with 3 participants who were
unaware of the details of the project, yielding 90
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user utterances. Two of the participants were fa-
miliar with natural language processing research,
while one was not.

User: I want to teach you a mountain shape.
System: Okay. Can you describe an aspect
of the structure?

U: Yes. The rightmost column has 3 blocks.

S: Ok. What is the greatest the height can be?
U: 3.

S: Ok, got it. Can you show me an example?
U: Yes. This is an example. (shows example)
S: Okay.

U: Is this right? (shows example)

S: I think so, because the height is less than
or equal to 3 and the right column’s number
is equal to 3.

U: The left column has 2 blocks.

S: Ok.

U: Is this right? (shows example)

S: I don’t think so, because the height is less
than or equal to 3 but the left column’s num-
ber is not equal to 2 even though the right
column’s number is equal to 3.

Figure 6: An example dialogue showing interac-
tion with the system.

To ensure the closest approximation to the ac-
tual system, we used a tablet for the researcher
standing in for the system. Because of the design
of the apparatus where the system generates 3D
images (and presumably diagnostic data), the par-
ticipants believed it was actually the system per-



forming the dialogue and interpreting the user’s
utterances, and the researcher was simply an assis-
tant. In fact, the tablet served as a method for the
researcher to respond with predetermined phrases,
including acceptances, requests for examples, and
questions about the structure. These phrases were
then sent through the speech generation compo-
nent of the system.

We found several advantages of users believ-
ing that the system was actually engaging in di-
alogue. First, the users used simpler language
than they might have with a person, while still
providing sufficient variation for exploring pos-
sible utterances. Second, users sometimes pro-
vided their own thoughts aside to the researcher,
allowing a specific glimpse into users’ responses
to certain utterances or tasks. For example, once
when the system asked, “How tall can the struc-
ture be?”, the participant said as an aside, “It can
be any height,” and then responded to the system
“At least two blocks.” Finally, we could evaluate
how the dialogue might progress without being in-
terrupted by failures of the system at the parsing or
interpretation level. We processed the Wizard of
Oz dialogues with the TRIPS parser and correctly
parsed 89% of the utterances. 90% of these correct
parses also yielded the correct constraint when in-
terpreted by the current state of the system.

6.1 Description Modalities

We recognized several different description
modalities participants used when describing
the structure without responding to a particular
feature query. When the system asked questions,
typically the user responded directly to the ques-
tion, reducing the utterance complexity. However,
these variations on the expected descriptions
reveal interesting insight into how users generate
representations of the concepts they are provided.

Basic Constraints — “The height of the leftmost
column is greater than 2” — These descriptions are
the simplest to interpret and make up the majority
of user utterances, especially when the system is
proactive in dialogue.

Arrangement Constraint — “The column can
be either second in the row or third in the row.”
Here the definite article conveys that there should
be a single instance of a column, and the ordinal
reference to the row constrains its position — even
though in certain cases a row might be considered
to be a line of blocks only a single block high.
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We handle such cases by inferring a sequence of
columns left to right, and then processing ordinal
references to enforce constraints.

Movement Modality — “This top block can
move wherever.” — These descriptions, using
movement as a surrogate for possibility, are
slightly more difficult to interpret, but can often
be handled by our loose interpretation of logical
forms that focuses on referring expressions (‘“the
top block™) and predicates (“wherever”) without
focusing on the event term of “moving”.

Transformation Modality — “The left block is
a column.” — The difficulty in parsing a constraint
described in this way is that a particular type of ob-
ject (“the left block™) is picked from the structure
with the goal of changing it to another arrange-
ment (“a column”, presumably with more than one
block). This can also be viewed as an explicit
bridge between the current and desired state to ful-
fill the constraints. Currently we encourage users
to describe the structure in a general way — how-
ever, this type of utterance demonstrates an exam-
ple where a specific error or instance applies gen-
erally enough to serve as a constraint.

Procedural/Construction Modality — “No,
you’re missing a row. Subtract by one every time
you go up.” — Here the user is describing the struc-
ture by providing the process for creating it. While
our current system does not understand these types
of utterances, we are working on a similar task in
parallel with this environment that can be lever-
aged to understand this modality (Perera et al.,
2018). The key aspect of understanding this type
of utterance is the compositionality of primitive
concepts, namely a row, its length, and the se-
quence of rows that will presumably be placed by
the agent building the structure.

A common property of these more complex
modalities is the awareness of and reliance on the
composition of primitive concepts, such as ele-
ments, order, and placement, when referring to
more complex concepts such as rows and columns,
which can have multiple attributes and purposes
when describing a structure. We believe that a sys-
tem to interpret these types of expressions and ex-
tend to other domains must therefore have a com-
positional model that allows complex concepts to
be built from primitive concepts that are simpler
to detect or identify. This compositional aspect
of concepts used in communication has both in-
formed the design of the system and inspired this



task which makes use of such modalities.

6.2 Preliminary Evaluations

Alongside adapting the system to handle our ex-
isting Wizard of Oz dialogues, we have begun pre-
liminary user evaluations, primarily for testing for
robustness and unforeseen methods of communi-
cating constraints to the system. An example dia-
logue with a user is shown in Figure 7.

User: I want to teach you a shape.

System: Okay. Can you tell me something
about the structure?

U: The bottom row must be at least 2.

S: Hmm, I didn’t quite get that.

U: The bottom row has at least 2 blocks.

S: Ok. What is the greatest the width can be?
U: 5.

S: Ok, got it. Can you show me an example?
U: Yes. This is an example. (shows example)
S: Okay. Where can the top block be?

U: The top block is always on the left.

S: Okay.

U: (user builds example) Is this right?

S: I think so, because the bottom row’s num-
ber is greater than or equal to 2 and the width
is less than or equal to 5 and the top block is
on the left.

Figure 7: A taken from initial runs of the eval-
uation with the autonomous system and a user
unfamiliar with the system.

Failures of the system are handled by the di-
alogue manager, with unparsable user utterances
causing the system to continue with a question
where the response is easy for the system to han-
dle, such as asking for the maximum height or
width, or by asking the user to rephrase. In initial
trials, users were often able to rephrase constraints
in a way the system could understand. Further-
more, users reported that the difficulty of the task
made dialogue setbacks seem like a complemen-
tary challenge of clearly expressing an idea rather
than an obstacle to an otherwise simple task.

To track development of the system, we will
evaluate according to several metrics along with
user surveys. The first measure will be the num-
ber of positive examples successfully recognized
by the trained system and the number of nega-
tive examples successfully rejected. Next, we plan
to track robustness by determining the number of
cancellations, undos, or restarts by user, as well
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as the efficacy of extracting constraints from user
assertions. In addition, a final task which ensures
that communication is two-way will be to reverse
roles and have the system explain the concept to
the user based on what it has learned from prior
interactions with a different user.

7 Conclusion

We believe our system shows promise in the task
of teaching a system new concepts in Blocks
World in an manner extendable to multiple types
of descriptions and with applications to multiple
domains. While our first priority is to handle the
most common description modalities of users to
ensure broader coverage, we also begin the pro-
cess of using this system as a stepping stone for
language understanding and dialogue in other do-
mains by mapping our concepts and predicates
into a database to be used by our collaborators
in this and related projects. With multiple defi-
nitions of features and predicates, we plan to use
these concrete physical representations as proxies
for more abstract and metaphorical reasoning ca-
pabilities to be developed in other systems.
Because the rules and interpretation are hand-
crafted, brittleness can be an issue but is partially
mitigated through dialogue repair. Given the pri-
marily symbolic nature of the system and the dif-
ficulty of specifying composition with statistical
models or neural networks, we focus our efforts
on building rules to understand conceptual com-
position rather than processing utterances using
statistical techniques. However, development of a
broader range of understood constraint modalities
can extend this dialogue system to other domains
that involve a direct or indirect spatial or temporal
component — such as scheduling, building graphi-
cal models, or directing scenes of a movie. Finally,
we believe the compositionality inherent in the
type of communication captured requires back-
ground knowledge about the conceptual structures
we inherently use in discussing complex ideas.
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Concept Lemmas

ABOVE above

HIGHER higher

BELOW below, beneath, under,
underneath

LOWER lower

ADJACENT adjacent (to), next to, beside,
by, contiguous (with), flush

CONNECTED | abut, adjoin, connect, touch

TOGETHER together

ON on, on top of

LEVEL level with

TOP-LOC... top

MIDDLE-LOC | middle

BOTTOM-LOC | bottom

BETWEEN (in) between

CENTER center

LEFT-LOC left, lefthand, leftmost

RIGHT-LOC right, righthand, rightmost

ANYWHERE anywhere

Table 1: The list of predicates understood by the
system, with their concept in the ontology, and
matching lemmas that can resolve to that concept.

Ontological Concept

Data Type

ONT:
ONT:
ONT:
ONT:
ONT:
ONT:
ONT:
ONT:
ONT:
ONT:
ONT:
ONT:
ONT:
ONT:
ONT:
ONT:

:WIDTH-SCALE
:HEIGHT-SCALE
:LENGTH-SCALE
:CENTER
:LOCATION
:STARTPOINT
:ENDPOINT
:TOP-LOC...
:BOTTOM-LOC...
:NUMBER
:COL-FORMATION
:ROW-FORMATION
:DIRECTION
:HORIZONTAL
:VERTICAL

:LINE

real+, count
real+, count
real+, count
point

point

point

point

point

point

count
column

row

vector
(real+)
(real+)
(real+)

Table 2: Some of the features generated by the
system for blocks, sets of blocks, and sequences,
listed by their concept in the TRIPS ontology and
the resulting data type. A data type in parentheses
indicates the value is not presented to the user but
is used in comparisons against other sets of blocks.
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Abstract

Speech overlap is a common phenomenon
in natural conversation and in task-
oriented interactions. As human-robot in-
teraction (HRI) becomes more sophisti-
cated, the need to effectively manage turn-
taking and resolve overlap becomes more
important. In this paper, we introduce a
computational model for speech overlap
resolution in embodied artificial agents.
The model identifies when overlap has oc-
curred and uses timing information, di-
alogue history, and the agent’s goals to
generate context-appropriate behavior. We
implement this model in a Nao robot us-
ing the DIARC cognitive robotic architec-
ture. The model is evaluated on a corpus
of task-oriented human dialogue, and we
find that the robot can replicate many of
the most common overlap resolution be-
haviors found in the human data.

1 Introduction

Efficient turn-taking is at the heart of human so-
cial interaction. The need to fluidly and quickly
manage turns-at-talk is essential not only for task-
oriented dialogues but also in everyday conversa-
tion. Speech overlap is also a ubiquitous feature
of natural language dialogue, and serves various
supportive functions that people utilize to man-
age turn-taking (Jefferson, 2004). As spoken di-
alogue systems continue to advance, it is impor-
tant that they support increasingly natural inter-
actions with human interlocuters involving both
turn-taking and overlap resolution.

Research in the field of HRI has generally over-
looked the supportive role of overlap and the ways
in which it affects coordination. However, robots
are envisioned to serve as teammates in complex
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domains that involve a great deal of communica-
tion with humans (Fong et al., 2003). This requires
nuanced methods to handle fluid turn-taking and
overlap, especially because the frequency of over-
lap is higher in task-oriented settings involving re-
mote communication (Heldner and Edlund, 2010).

In this work, we present a formal framework
and computational model for overlap identifica-
tion and resolution behavior in embodied, artifi-
cial agents. The present focus is on mechanisms
to allow an agent to handle being overlapped on
its turn. The model is based on empirical work in
a search and rescue domain, and utilizes a variety
of features including overlap timing and dialogue
context to resolve overlap in real-time in a human-
like manner. We implement the model in the DI-
ARC cognitive robotic architecture (Scheutz et al.,
2007) and demonstrate its performance on various
overlap classes from the behavioral data.

2 Related Work

Below we present some of the relevant theoretical
and computational background literature that has
informed our work.

2.1 Turn-Taking and Speech Overlap

There has been a great deal of empirical
work on both turn-taking and overlap phenom-
ena (De Ruiter et al.,, 2006; Jefferson, 1982,
2004; Levinson and Torreira, 2015; Magyari and
de Ruiter, 2012). Many of these approaches
lend support to the model of turn-taking organi-
zation proposed by Sacks et al. (1974). On this
view, turns-at-talk are separated by a transition-
relevance place (TRP), which is located after a
complete! segment of speech, and represents a
point at which a speaker change can “legally” oc-
cur. The claim is that people can readily predict

'“Complete” in this sense refers to syntactic, pragmatic,
and prosodic features of the turn in progress.

Proceedings of the SIGDIAL 2018 Conference, pages 99-109,
Melbourne, Australia, 12-14 July 2018. (©2018 Association for Computational Linguistics



the location of a TRP and thus aim to start their
turn around that point. However, since natural lan-
guage is fast-paced and complex, sometimes peo-
ple miss the TRP, resulting in overlap..

Using this model, Jefferson (1986) identified
several types of overlap based on their location
relative to the TRP (before, during, slightly after,
and much after; see Fig. 1). These overlap types
have been systematically examined over the years
and have been shown to capture a large range of
human overlap phenomena (Jefferson, 2004). Im-
portantly, such an account suggests that overlap is
not to be confused with interruption (Drew, 2009).
While interruption implies a kind of intrusion into
the turn, overlap is oftentimes affiliative in nature.
For example, people may start their turn slightly
before their interlocuter has reached a TRP in or-
der to minimize the gap between turns. This is
known as Last-Item overlap, and can be accom-
plished by projecting the end of the first starter’s
turn. The second starter can also come in slightly
after the TRP in order to respond to the content
of the first starter’s prior turn; such late entry is
known as Post-Transition overlap. Additionally,
the second starter can come in mid-turn (far from
the TRP) as a kind of “recognitional” overlap in
order to repair, clarify, or otherwise respond to the
content of the first starter’s turn in progress - this
is known as an Interjacent overlap. Overlap can
also be unintentional, as in Transition-Space over-
lap. This type usually involves simultaneous turn
start-up wherein two people both take the turn at
the TRP. In sum, because overlap is classified into
these functional categories (largely based on tim-
ing), it is possible to identify the function of an
overlap in a particular context as well as the behav-
iors that people use to manage and resolve overlap
(see Gervits and Scheutz (2018)). These proper-
ties make overlap identification and resolution ap-
pealing targets for the design of more natural spo-
ken dialogue systems.

2.2 Speech Overlap in Dialogue Systems

While overlap resolution is important in human
conversation, it has not historically received the
same treatment in dialogue systems. One reason
for this may be that it is seen as interruption, and
thus not worthy of additional study. Many sys-
tems actually ignore overlap altogether, and sim-
ply continue speaking throughout the overlapping
segment (e.g., Allen et al. (1996)). While such
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systems may be effective for certain applications
(e.g., train booking), they are not sufficient for di-
alogue with social agents in collaborative task en-
vironments. On top of being less fluid and natural,
these systems also present problems for ground-
ing. If the system produces an utterance in over-
lap, it may not be clear that a person understood or
even heard what was said.

An alternative approach, and a popular one used
by some commercial dialogue systems that handle
overlap, is one wherein the agent responds to over-
lap by simply dropping out (see e.g., Raux et al.
(2006)). Apart from the fact that such a system
may drop its turn when detecting ambient micro-
phone noise, another problem is that it ignores the
supportive benefit that overlap can provide. An ex-
ample of this is a second starter coming in at the
Last-Item position in order to minimize inter-turn
gaps (see Dialog / below?). Since these overlaps
are among the most common, it is very inefficient
for a system to abandon an utterance at the Last-
Item point. Since neither of the above-mentioned
approaches can address the challenges at hand, a
more nuanced approach is clearly necessary.

Recently, there have been more advanced at-
tempts at modeling overlap behavior (DeVault
et al., 2009; Selfridge and Heeman, 2010; Zhao
et al., 2015). Many of these approaches involve
incremental parsing to build up a partial under-
standing of the utterance in progress and identify
appropriate points to take the turn (e.g., Skantze
and Hjalmarsson (2010)). Such incremental mod-
els have been used for the generation of col-
laborative completions (Baumann and Schlangen,
2011; DeVault et al., 2009) and feedback (DeVault
et al., 2011; Skantze and Schlangen, 2009) dur-
ing a human’s turn. While these computational
approaches tend to focus on overlapping the hu-
man, it is also important to handle overlap when
the system/agent has been overlapped. Relatively
little work has been done to this end, and there
remain many open questions about how to inter-
pret the function of overlap as well as how to re-
spond. Moreover, overlap management for HRI
is an under-explored area, and one which presents
additional challenges for dealing with situated,
embodied interaction. The present work attempts
to tackle some of these challenges.

2All dialogs in the paper are from human interactions in
the CReST corpus. S represents the Searcher role and D rep-
resents the Director. Overlap is shown in brackets.



3 Framework Description

As a framework for classifying overlap, we use the
scheme from Gervits and Scheutz (2018) which
includes categories from Eberhard et al. (2010),
Jefferson (1986), and Schegloff (2000) as well as
our own analyses. Included in this framework is
a set of categories for identifying overlap (onset
point, local dialogue history) and overlap manage-
ment behavior. We provide formal definitions of
the various categories of the scheme below, and in
Section 5 we show how a model using this frame-
work was integrated in a robotic architecture.

An utterance in our scheme is represented as
follows: Uggent = SpeechAct(w, B, 0,x,9, ),
where agent can be the human or robot, a rep-
resents the speaker, [ represents the recipient, o
represents the surface form of the utterance, y
represents the dialogue context, ) represents a
set of four time intervals corresponding to possi-
ble overlap onset points (see below), and 7 rep-
resents a boolean priority value (see Section 5.2).
The surface form of an utterance, o is an or-
dered set of lexical items in the utterance: o =
{iteminitial, ---, item ¢inq }. Dialogue context, x,
can be realized in various ways, but here we as-
sume it to be a record with at least one field to
represent the previous utterance and one field to
represent the current dialogue sequence. Every ut-
terance also has a speech act type associated with
it to denote the underlying communicative inten-
tion. These include various types of questions, in-
structions, statements, acknowledgments, and oth-
ers from Carletta et al. (1997).

We also include the following components (see
Section 3.2 for more detail): 1) a set of compet-
itive overlap resolution behaviors, C, which in-
clude {Continue, Disfluency, Self-repair}, and 2)
a set of non-competitive overlap resolution behav-
iors, NC, which include {Drop Turn, Single Item,
Wrap Up, Finish Turn}. Operational definitions
for these behaviors can be found in Gervits and
Scheutz (2018).

3.1 Overlap Onset Point

Onset point is the key feature for classifying the
function of an overlap, and refers to the window of
time in which the overlap occurred (see Jefferson
(2004)). There are four types in the scheme (see
Fig. 1), and these are represented as elements of
Q, where Q = {Qrg, Qpr, 17, Q1) and each
element is a bounded time interval specifying a
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Figure 1: Key overlap onset points.

lower and an upper bound. The first overlap in-
terval, Last-Item (see Dialog 1) refers to overlap
occurring on the last word or lexical item? before a
TRP. Last-Item overlap is defined in our scheme as
an interval containing the range of time from the
onset to the offset of the final lexical item in the
utterance: Q77 (Uggent) = [Jonset(item fina) +
1, |of f set(item ¢inar)|]. These values can be ob-
tained from the speech synthesizer or estimated
from syllable count.

1) D: ...one yellow block . per blue b[ox]

S: [0 k]ay
Two other overlap types in our scheme are
the Transition-Space (see Dialog 2) and Post-
Transition (see Dialog 3). Transition-Space
overlaps are characterized by simultaneous turn
startup, and occur when overlap is initiated within
a conversational beat (roughly the length of a
spoken syllable) after the first starter began their
turn. While the length of a conversational beat
varies depending on the rate of speech, it has
been estimated to be around 180 ms so this is
the value we have implemented (see Wilson and
Wilson (2005)). Transition space is thus de-
fined as the following interval: Q7g(Usgent) =
[lonset(iteminitiar)|, |len(beat)|], or [1, 180].

2) S:Yes
(0.5)
D: [Sois]-
S: A[n d 1] just leave that there correct?
The Post-Transition case is similar to

Transition-Space except that here the timing
window is offset by an additional conversational
beat (see Dialog 3. Note that the TRP here
is between the words “sure” and “where”).
The interval is defined in our scheme as:
Qpr(Uagent) = [|len(beat) + 1|, |2(len(beat))]],
or [181, 360] using 180 ms as the length of a beat.
3) 8. Is there a time limit?

3Note that lexical items need not be single words, but may
also be collocations such as “traffic light”.



D: I’'m- I’'m not sure whe[re are you?]
S: [o k a y]

The final overlap type is the Interjacent (see Di-
alog 4). This type of overlap occurs when the
second starter comes in during the middle of the
first starter’s turn, i.e., not directly near a TRP.
In our scheme, Interjacent overlap is defined as
an interval specifying a range from the offset of
the Post-Transition window (361 ms) to the on-
set of the Last-Item window: Qj(Uggent) =
[12(len(beat)) + 1|, |onset(item fina)|]-

4)  D: Okay maybe that was a-
(0.5)
D: like they said thf erewas |- [oka]y
S: [it was a pin]k b[o x]

3.2 Overlap Management Behaviors

The overlap management category describes var-
ious ways in which overlap can be resolved*.
We distinguish between non-competitive behav-
iors, which do not involve an intent to take the
turn, and competitive behaviors, which involve a
“fight” for the turn. Non-competitive behaviors
include simply dropping out, or uttering a single
word or lexical item (e.g., “okay”). Wrap Up is a
specific non-competitive behavior which involves
briefly continuing one’s turn (“wrapping up”) af-
ter being overlapped and then stopping at the next
TRP. Wrap Up is performed by a speaker when the
overlap occurs near the end of their planned turn
(within 4 beats, or 720 ms of the TRP). Finish
Turn similarly involves reaching the TRP, but this
behavior only involves a completion of the word or
lexical item on which the overlap occurred (as in
Last-Item). Both are considered non-competitive
because the intent is to relinquish the turn.

In contrast, the competitive behaviors involve
maintaining one’s turn during overlap. One such
behavior is Continue, in which the overlapped
speaker simply continues their turn. This differs
from Wrap Up in that the speaker continues be-
yond the next TRP, and so is not relinquishing the
turn. Other competitive behaviors include disflu-
encies and self-repairs from Lickley (1998), which
are only marked as competitive if they occurred
within two conversational beats of the point of
overlap (following Schegloff (2000)) and no other
behavior was performed. These categories include

“We are not claiming that any of these behaviors are in-
tentionally produced by speakers to manage overlap (though
some may be), but rather that they result from the stochastic
nature of fluid turn-taking.
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silent/filled pauses, prolongations, various types of
self-repairs, and combinations of all of these.

4 Collaborative Remote Search Task

Our task domain is a search and rescue scenario
in which human dyads perform a collaborative,
remote search task (CReST) in a physical envi-
ronment (Eberhard et al., 2010). In the task, one
person is designated the director, and sits in front
of a computer monitor that displays a map of the
search environment (see Fig. 2). The other per-
son is the searcher and is physically situated in
the search environment. The two teammates com-
municate with a remote headset and must locate a
variety of colored blocks scattered throughout the
environment within an 8-minute time limit. We
are interested in how people communicate in this
domain so as to inform dialogue and coordination
mechanisms for more natural and effective HRI.

Figure 2: Map of environment from the Collabo-
rative Remote Search Task (CReST).

Language data from 10 dyads performing this
task (2712 utterances and 15194 words) was pre-
viously transcribed and annotated for a number of
features, including: syntax, part-of-speech, utter-
ances, words, disfluencies, conversational moves,
and turns (Gervits et al., 2016a,b). Instances of
overlap in the CReST corpus were also catego-
rized according to their onset point and other fea-
tures. (Gervits and Scheutz, 2018). There were a
total of 541 overlaps in the 10 teams that we ana-
lyzed, with Transition-Space and Last-Item over-
laps being the most frequent (see Table 1).

5 Model Implementation

To demonstrate our proposed model, we imple-
mented it in the natural language pipeline of the



Table 1: Distribution of overlap onset points in the
CReST corpus.

Overlap onset Frequency
Transition-Space 35%
Post-Transition 15%
Interjacent 15%
Last-Item 35%

DIARC cognitive robotic architecture (Scheutz
et al., 2007). The architecture was integrated in
a SoftBank Robotics Nao robot and evaluated on
the CReST corpus data. Although the CReST
task was intended for a robot to fill the role of
the searcher, we provide examples in which the
robot can fill either role. Currently, we have imple-
mented all of the non-competitive behaviors from
the scheme, and two of the competitive behaviors
(Continue and Repetition). A full implementation
of all the behaviors is ongoing work.

5.1 Dialogue Management in the DIARC
Architecture

The DM in DIARC is a plan-based system that
allows the agent to reason over the effects of ut-
terances and actions based on its goals. Such
a system is capable of not just responding to
human-initiated dialogue, but also initiating its
own speech actions to accomplish goals. The
DM receives utterances from the Natural Lan-
guage Understanding (NLU) component that are
represented using the formalism described above:
Uagent = SpeechAct(c, B,0,x,Q, 7). Utter-
ances of this form are also generated by the
DM, and sent to the Natural Language Genera-
tion (NLG) component as output. The flow of di-
alogue is handled in our system through explicit
exchange sequences which are stored in the di-
alogue context, y. An example of such a se-
quence is: AskY N(A, B) = ReplyY (B, A) =
Ack(A, B). This represents a sequence involving
a yes-no question, followed by a reply-yes, fol-
lowed by an acknowledgment. A list of known
sequences is provided to the system, and the cur-
rent sequence is represented in a stack called Ex-
changes. The system always prioritizes the lat-
est exchange added, which becomes important for
managing several cases of overlapping speech (see
Section 5.3 for more details).
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5.2 Model Configuration

Several additional components are needed to im-
plement the model described above. First, we re-
quire a mechanism to determine whether to com-
pete for the turn or not. This decision is partly
determined by dialogue history (e.g., previous
speaker in the Post-Transition case) but also by
utterance priority. As a result, a boolean priority
value, , is assigned to every utterance that a sys-
tem running the model produces in a given con-
text, x: T(Uagent). This represents the urgency of
that utterance at that point in the dialogue, and is
used as a tiebreaker in several of the cases to de-
termine whether to hold the turn or not.

We also need specific behaviors for managing
turn-taking and dialogue context in the face of
overlap. Since the DM in our architecture is a
plan-based system, utterances can be thought of
as (speech) actions performed to achieve a goal
of the agent. As a result, dropping out of a turn
(even when appropriate) should not result in the
utterance being indefinitely abandoned. Thus, we
need a mechanism whereby the system can store a
dropped utterance and produce it later. A ques-
tion then arises about exactly when is appropri-
ate to produce the stored utterance. Our method
for addressing these problems involves storing a
dropped utterance in a priority queue called NL-
Grequests, and removing it from the current Ex-
changes stack. With this method, the system re-
sponds to the exchange that the human’s over-
lapped utterance produces until it is resolved. At
this point, the system will initiate utterances stored
in NLGrequests, in order of priority.

One remaining topic to discuss is how to han-
dle different kinds of feedback in overlap. Given
that acknowledgments come in many varieties de-
pending on context (Allwood et al., 1992), we dis-
tinguish between several different functions of ac-
knowledgments in our system. Specifically, con-
tinuers, sometimes known as backchannel feed-
back, are distinguished from affirmations related
to perception or understanding. This is accom-
plished using the onset point at which these ac-
knowledgments occur. Acknowledgments during
the Interjacent position are treated as continuers so
that the agent does not attempt to drop out, com-
pete for the turn, or add this feedback to the ex-
change. On the other hand, acknowledgments oc-
curring at the Last-Item position are treated dif-
ferently, and are included in the current exchange.



For identifying acknowledgments, we use a sim-
ple filter that includes several of the most com-
mon feedback words, including “okay”, “yeah”,
“right”, and “mhm”.

5.3 An Algorithm for Overlap Resolution

We now turn to the task of selecting the appro-
priate behavior for detecting and resolving speech
overlap (see Algorithm 1). A key design goal for
the algorithm was speed. It is important that over-
lap is detected, identified, and resolved within a
few hundred milliseconds in order to accommo-
date human expectations.

The algorithm described here operates during
the robot’s turn, checking for an overlapping utter-
ance by the human. Since we are modeling remote
communication, the robot transmits its speech di-
rectly to a headset worn by the human (i.e., it does
not hear its own voice). In this way, we avoid
the problem of disambiguating multiple simulta-
neous speech streams, and allow the robot to parse
the human’s utterance during overlap. For the al-
gorithm, both overlapped utterances, Upymqan and
U,opot> as well as the overlap onset point, are taken
as input. The main flow of the algorithm involves
using this onset point in a switch statement to de-
cide which case to enter, and consequently, which
resolution behavior to perform. The algorithm
output is a behavior that corresponds to the func-
tion of the overlap.

The first step in the procedure, before consid-
ering the various cases, is to check if U,por 1S @
Single Item or Wrap Up (see Alg. 1, line 3). We
have found that people do not typically compete
for such utterances, so the robot’s behavior here
is to just finish its turn. Both utterances are then
added to the Exchanges stack in the local dialogue
context, x.

If U, opot 1s not a Single Item or Wrap Up, then
the algorithm checks the onset point and goes into
the respective case for each type. Each case is han-
dled in a unique way in order to select the proper
competitive or non-competitive behavior based on
the “function” of that overlap type. For exam-
ple, because Transition-Space overlap is charac-
terized by simultaneous startup, it uses the pri-
ority of the robot’s utterance, 7(U,opot), to deter-
mine whether to hold the turn or not (see Alg. 1,
line 7). If priority is low, then it drops the turn;
otherwise it competes for the turn. Post-transition
overlap uses a similar mechanism, but first checks

the previous speaker (see Alg. 1, line 16). This
is done to give the human a chance to respond if
the robot had the prior turn. Likewise, if the hu-
man had the prior turn, the robot is given a chance
to respond, but only if 7(Uppper) is high. Inter-
jacent overlap also uses the priority mechanism,
but first checks if Upyman 18 @ backchannel (see
Alg. 1, line 31); if so, it will continue the turn. Fi-
nally, Last-Item overlap involves finishing the cur-
rent turn and adding both overlapping utterances
to the Exchanges stack. This means that if an ac-
knowledgment occurs in this position, it is treated
as part of the exchange rather than as backchannel
feedback.

In all cases in which a turn is dropped (see e.g.,
Alg. 1, line 8), this involves not just abandoning
U, opot immediately, but also storing it for later in
the NLGrequests priority queue. The system si-
multaneously parses the ongoing Up,ymarn and adds
this to the top of the Exchanges stack.

Competing for the turn (e.g., Alg. 1, line 12) in-
volves producing one of the competitive behaviors
from C, including Continue, Disfluency, and Self-
Repair. Selecting which behavior to employ is a
challenging problem due to its stochastic nature,
and one which remains elusive even in the empir-
ical literature (but see Schegloff (2000) for some
ideas). Our approach is based largely on our anal-
ysis of the CreST corpus, specifically on the fre-
quency of the various overlap management behav-
iors for each overlap type. We use a proportion-
based selection method® which assigns a probabil-
ity for a behavior to be selected, py, based on its
frequency (in the corpus) over the sum of the fre-
quency of all behaviors, f;, where |C| is the num-
ber of competitive behaviors:

Po = 7’}%
£|1 f i
As an example, we found that for Transition-Space
overlaps, Continues were used 24% of the time in
resolution, and Repetition were used 3% of the
time. Since we only have these two competitive
behaviors currently implemented (|C| = 2), the al-
gorithm will produce a Continue about 89% of the
time and a Repetition about 11% of the time for
Transition-Space overlaps in which it is compet-
ing for the turn. These probabilities vary depend-
ing on the overlap type.

5This is analogous to the fitness proportionate selection
operator for genetic algorithms - see Back (1996)
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6 Evaluation

Below we present the results of a qualitative eval-
uation on the CReST corpus data.

6.1 Results

To evaluate our algorithm, we demonstrate that it
can handle the main classes of overlap observed
in the corpus data®. These include the four main
overlap types (see Fig. 1), the resolution behav-
iors, and the additional features from Section 5.2,
including handling feedback and restarting aban-
doned utterances.

Transition-Space overlap (simultaneous startup)
is handled by using the priority of the robot’s utter-
ance to modulate behavior. If we set m(Upopot) =
low, then it will drop the turn, as the director does
in Dialog 2. On the other hand, if priority is high,
then it will maintain the turn as the searcher does
in the same example with a Continue. We have
also implemented the Repetition behavior, which
the director performs to maintain the turn in Dia-
log 5. The Repetition is maintained until the other
speaker stops talking. Note that, as in the corpus,
these competitive behaviors are not invoked dur-
ing the production of a single word or lexical item.
See Dialog 3 for an example where the searcher
produces “okay” in overlap.

5) D: Can you hold on a second?

D: They’[re- they’re] giving me instructions

S: [y e a h]

Post-transition overlap is characterized by a late
entry by the second starter. The algorithm han-
dles this case by checking the previous speaker
and dropping out if the robot had the prior turn.
Otherwise, it uses priority as a tiebreaker as in
the Transition-Space case. Dialog 6 below shows
an example of prior speaker being used to resolve
overlap. The behavior of the director in this ex-
ample is demonstrative of the algorithm’s perfor-
mance. On the third line, the director says “I'm
not sure” which ends in a TRP. They then contin-
ued their turn with “I - I don’t...” at which point
the searcher overlaps to respond to the previous
utterance and the director drops out mid-turn.
6) S: Do I just take-

D: There’s other things in the box too um .

D: I’'m not sure I- [I don’t know what they]-

S: [okay . I'mjusttak Jing

SThere is an accompanying video showing some of the
algorithm behaviors. It can be found at: https://vimeo.
com/260654351
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everything in the box

Interjacent overlap is handled solely through
the use of the priority mechanism to determine
turn-holding or turn-yielding behavior. As demon-
strated above, both of these cases are readily
handled by the algorithm, and only require that
7 (Uprobot) be reasonably set.

Last-Item overlap is handled by finishing the
turn, and adding Up,yman to the current exchange,
as in Dialog /. Here, the algorithm replicates the
director’s behavior of finishing the turn and treat-
ing the searcher’s feedback as an acknowledgment
in the current exchange.

Handling different kinds of feedback is another
important component of our approach. In Sec-
tion 5.2 we showed that continuers at the Inter-
jacent point are handled differently than those at
the Last-Item point. In Dialog 7 below, the direc-
tor produces a continuer (“yeah”) at the Interja-
cent point, followed by a “got that” at the last item
position. The continuer is identified by the algo-
rithm as such (and effectively ignored), whereas
the Last-Item acknowledgment is added to the cur-
rent exchange: Stmt(A, B) = Ack(B, A).

7) S: like. um . there’s a green box number
tfwoolnthestfa i r]s

D: [yeah] [got that]

Wrap Up is another class of overlap behavior
that was observed in the corpus. We handle these
cases by checking the remaining length of U,y
after the overlap onset. If the utterance is within 4
conversational beats (720 ms) of completion then
the robot will simply finish it, as seen in Dialog 8.
Otherwise, resolution is handled based on the time
window in which the overlap occurred.
8) D: ... but was there? O[r was there not?]

S: [ I

Finally, resolving the effect of overlap on the
current dialogue sequence represents a common
pattern seen in the corpus. The algorithm handles
this differently depending on whether the robot
held the turn or dropped out. If the robot held the
turn, then U,..p.¢ 1S used as the next element in the
exchange. Otherwise, the robot drops the turn, and
stores U,.pot in NLGrequests to be uttered after the
current exchange is complete. An example of this
behavior can be seen in Dialog 9 from the corpus.
Our algorithm behaves as the director in this case.
It drops the “go down” utterance to quickly han-
dle the new Stmt(A, B) = Ack(B, A) exchange
introduced by the searcher in the second line. The
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abandoned utterance is now at the top of the NL-
Grequests stack, so it is restarted once the prior
exchange is complete.
9) D: Glodown |- [yeah yeah okJay
S: [there’s lik]e boxes all ov[er the place]
D: Go down
S: Okay
D: And turn- turn right

6.2 Discussion

We have show that the categories of our formal
framework are robust and can account for much
of human overlap behavior in task-oriented remote
dialogue. This model represents a step towards the
goal of more natural and effective turn-taking for
HRI. A main advantage of our approach is that it
enables robots running the model to manage over-
lap in human-like ways, at human-like timescales,
and at minimal computational cost. By handling
the different kinds of overlap, robots can produce
a wide range of supportive behaviors, including:
maintaining dialogue flow during overlap, allow-
ing people to start their turn early for more ef-
ficient turn transitions, supporting recognitional
overlap during the robot’s turn, dropping out to
allow a human to clarify or respond, prioritizing
urgent messages by holding the turn, and handling
simultaneous startup.

One potential issue is that, with only two of the
competitive turn-holding behaviors implemented,
the current system will tend to produce continues
most of the time when competing for the turn. As
mentioned previously, this can be problematic be-
cause continues present ambiguity in grounding.
We will need to conduct empirical studies using
our model to explore the grounding cost of differ-
ent competitive turn-holding behaviors and estab-
lish which are the most effective. It is likely that
trade offs between model accuracy and usability
will be necessary moving forward. For example,
in order to maintain grounding, the system may
need to prolong its turn-holding behavior until the
human stops talking. This is not necessarily what
we find in the human data, but nevertheless it may
be crucial for a dialogue system.

7 Future Work and Conclusion

7.1 Future Work

While we have demonstrated that our model can
handle various classes of behaviors found in the
corpus, other components of the system still need
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to be considered for future evaluation. The com-
ponents described in Section 5.2 such as prior-
ity modulation, feedback handling, delaying aban-
doned utterances, sequence organization (using
the Exchange stack), and behavior selection will
need to be separately evaluated in future work.
Moreover, a comparison of this system with “non-
humanlike” dialogue systems (e.g., Funakoshi
et al. (2010) and Shiwa et al. (2009)) will inform
whether naturalness and responsiveness are desir-
able components in a dialogue system.

The other main direction of future work is ex-
tending the model to produce overlap on a hu-
man’s turn. This will require a fully incremental
system to predict potential turn completion points.
By building up a partial prediction of the utterance
in progress, the system will be able to generate
backchannel feedback, recognitional overlap, col-
laborative completions, and other instances of in-
tentional overlap. It will also be able to engage in
fluid turn-taking to avoid accidental overlap alto-
gether, and to recover quickly when it happens.

7.2 Conclusion

We have introduced a formal framework and com-
putational model for embodied artificial agents
to recover from being overlapped while speak-
ing. The model is informed by extensive empir-
ical work both from the literature as well as from
our own analyses. We have integrated the model
in the DIARC cognitive robotic architecture and
demonstrated how an agent running this model re-
covers from common overlap patterns found in a
human search and rescue domain. The utility of
the model is that it can quickly identify and resolve
overlap in natural and effective ways, and at min-
imal computational cost. This project is a step in
a larger effort to model various aspects of human
dialogue towards the goal of developing genuine
robot teammates that can communicate and coor-
dinate effectively in a variety of complex domains.
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Algorithm 1 Speech Overlap Management

1: procedure MANAGEOVERLAP(Upyman,Urobot, ONSet point) > Input: Human and robot utterances
in context x, where Uggent = SpeechAct(c, B, 0, x, 2, 7); onset point is the timing of the overlap.

Output: Resolution behavior

> Single Item or Wrap Up. Stop at the next TRP

> Transition-space case. 180 ms of start of U,.,pot
> Low priority utterance. Non-competitive resolution.

> Store utterance for later

> Add human’s utterance to current exchange
> High priority utterance. Maintain turn.
> Perform one of the competitive resolution behaviors

> Post-transition case. 180-360 ms of start of U, pot

> Drop turn to allow for response

> Use priority to determine behavior

> Interjacent case. Mid-turn overlap.

> Allow backchannel feedback

> Last-Item case. End of turn.

2: while robot speaking do
3: if 0(Upobor) = Single Item or length(o (Upppor)) - Onset point < 720 then
4: Finish Turn(U,ppot)
5: Exchanges.push(U,obots Unuman)
6: else if onset point € Q7g then
7: if 7(U,opot) = low then
8: Drop Turn(U,-ppot)
9: NLGrequests.push(U,opot)
10: Exchanges.push(Upyman)
11: else
12: Compete(U,opot)
13: Exchanges.push(U,opot)
14: end if
15: else if onset point € (2pr then
16: if X (U, opot)-previous_speaker = robot then
17: Drop Turn(U,-ppot)
18: NLGrequests.push(U,opot)
19: Exchanges.push(Upyman)
20: else if x(U,opot).previous_speaker = human then
21: if 7(Uyopor) = low then
22: Drop Turn(U,gpot)
23: NLGrequests.push(U,opot)
24: Exchanges.push(Upyman)
25: else
26: Compete(U,obot)
27: Exchanges.push(U,opot)
28: end if
29: end if
30: else if onset point € €277 then
31: if 0(Unuman) € {Backchannels} then
32: Continue(U,.opot)
33: Exchanges.push(U,opot)
34: else if 7(U,,por) = low then
35: Drop Turn(U,gpot)
36: NLGrequests.push(U,.opot)
37: Exchanges.push(Upyman)
38: else
39: Compete(U,opot)
40: Exchanges.push(U,.qpot)
41: end if
42: else if onset_point € {21 ; then
43: Finish_Turn(U,ppot)
44: Exchanges.push(U,obots Unuman)
45: end if

46: end while
47: end procedure
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Abstract

This paper identifies stylistic differences
in instruction-giving observed in a corpus
of human-robot dialogue. Differences in
verbosity and structure (i.e., single-intent
vs. multi-intent instructions) arose natu-
rally without restrictions or prior guid-
ance on how users should speak with the
robot. Different styles were found to
produce different rates of miscommunica-
tion, and correlations were found between
style differences and individual user varia-
tion, trust, and interaction experience with
the robot. Understanding potential con-
sequences and factors that influence style
can inform design of dialogue systems that
are robust to natural variation from human
users.

1 Introduction

When human users engage in spontaneous lan-
guage use with a dialogue system, a variety of
naturally occurring language is observed. A per-
sistent challenge in the development of dialogue
systems is determining how to handle this diver-
sity. One strategy is to limit diversity and maxi-
mize the system’s natural language understanding
by training users a priori on what language and
syntax is valid. However, these constraints could
potentially yield inefficient interactions, e.g., the
user may incur greater task and cognitive load try-
ing to remember the proper phrasing needed by the
system, worrying whether or not their speech will
be understood if they do not get it exactly right.
A broader approach to dealing with diversity is to
develop more robust systems that can respond ap-
propriately to different styles of language. A set
of dialogue system policies that takes into account
natural stylistic variations in users’ speech would
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Dialogue 1: Lower Verbosity

U: take pictures in all four directions
Robot: executing...
Robot: done

Dialogue 2: Higher Verbosity
U: robot face north, take a picture, face south, take
a picture, face east, take a picture
Robot: executing...
Robot: done

Dialogue 3: Minimal Structure Style
U: go through the other door
Robot: executing...
Robot: done
U: take a picture
Robot: image sent

Dialogue 4: Extended Structure Style

U: face your starting position and send a picture
Robot: executing...
Robot: image sent

Figure 1: Dialogues between Users (U) and a
Robot, exemplifying stylistic differences

provide for a more nuanced, adaptable, and user-
focused approach to interaction.

Rather than constrain users or develop a gener-
alized dialogue system that attempts to cover all
variations in the same way, we focus on analytic
understanding of differences in observed language
behavior, as well as possible causes of these differ-
ences and implications of misunderstanding. This
work is a first step towards a more nuanced and
flexible dialogue policy that can be sensitive to in-
dividual and situational differences, and adapt ap-
propriately. This paper introduces a taxonomy of
stylistic differences in instructions that humans is-
sue to robots in a dialogue. The taxonomy consists
of two classes: verbosity and structure. Verbosity
is measured by number of words in an instruction.
Dialogues 1 and 2 in Figure 1 show contrasting
verbosity levels. Structure concerns the number of
intents issued in an instruction: Minimal if it con-
tains a single intent (Dialogue 3 in Figure 1 has
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two Minimal) or Extended if it contains more than
one intent (Dialogue 4). Understanding stylistic
differences can support the development of dia-
logue systems with strategies that tailor system re-
sponses to the user’s style, rather than constrain
the user’s style to the expected input. The taxon-
omy is described in more detail in Section 3.

We observe and analyze these stylistic differ-
ences in a corpus of human-robot direction-giving
dialogue from Marge et al. (2017). These styles
are not unique to this corpus; they emerge in other
human-robot and human-human dialogue, such
as TeamTalk (Marge and Rudnicky, 2011) and
SCARE (Stoia et al., 2008). The corpus contains
60 dialogues from 20 participants (Section 4). The
robot dialogue management in the corpus is con-
trolled by a Wizard-of-Oz experimenter, allowing
for the study of users’ style with a fluent and nat-
uralistic partner (i.e., with an approximation of an
idealized automated system).

In Section 5, we investigate possible conse-
quences and implications of these categorized
styles in this corpus. We examine the relationship
of style and miscommunication frequency, ap-
plying an existing taxonomy for miscommunica-
tion in human-agent conversational dialogue (Hi-
gashinaka et al., 2015a) to this human-robot cor-
pus. We explore the relationship between stylis-
tic differences and other dialogue phenomena de-
scribed in Section 6, specifically whether:

The rate of miscommunication is related to
verbosity (H1) and structure (Hy);

Latent user differences are related to ver-
bosity (H3) and structure (Hy);

Trust in the robot is related to verbosity (Hs)
and structure (Hg);

Time/experience with the robot is related to
verbosity (H7) and structure (Hg).

Finally, we speculate about how knowledge of
style, miscommunication, individual differences,
trust, and experience might be leveraged to imple-
ment targeted and personalized dialogue manage-
ment strategies and offer concluding remarks on
future work (Sections 7 and 8).

2 Related Work

A number of human-human direction-giving cor-
pora exist, among them, ArtWalk (Liu et al.,
2016), CReST (Eberhard et al., 2010), SCARE
(Stoia et al., 2008), and SaGA (Liicking et al.,
2010). The majority of existing analyses on these
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corpora focus on the vocabulary of referring ex-
pressions and entrainment. While variations in
instruction-giving verbosity and structure are ev-
ident in these human-human interactions, the goal
of this work is to improve human-robot communi-
cation. Humans have different assumptions about
how robots communicate and behave, and may
speak differently to robots than they do to other
humans. We therefore chose a human-robot cor-
pus for our style analysis that uses a Wizard-of-Oz
for dialogue management. This allowed us specif-
ically to isolate the style usage and miscommu-
nication errors of the human partner (because the
Wizard makes very few errors on the robot’s end).

Studies of human-robot automated systems tend
to focus on the miscommunication errors of the
dialogue system (i.e., the robot itself), rather than
the miscommunication or style of the human part-
ner. In conversational agents, the research fo-
cus is also primarily to categorize errors made
by the agent, not the human, including errors in
ASR, surface realization, or appropriateness of
the response (e.g., Higashinaka et al. (2015b);
Paek and Horvitz (2000)). The more generic
task-oriented and agent-based response-level er-
rors from Higashinaka et al. (2015a) map well to
the user miscommunication in the corpus we ex-
amine, including excess/lack of information, non-
understanding, unclear intention, and misunder-
standing. Works that focus specifically on mis-
communication from the user when interacting
with a robot include those categorizing referential
ambiguity and impossible-to-execute commands
(Marge and Rudnicky, 2015). These categories are
common in the data we examine as well.

In this analysis, we predict that trust will have
an effect on stylistic variations. Factors of trust
in co-present and remote human-robot collabora-
tion has been studied with respect to engagement
with the robot, and memory of information from
the robot (Powers et al., 2007).

3 Stylistic Differences

We describe two classes of stylistic differences for
instruction-giving: differences in the verbosity of
an instruction, and in the structure of the instruc-
tion. These styles emerge when decomposing a
high-level plan or intent (e.g., exploring a physical
space) into (potentially, but not necessarily) low-
level instructions (e.g., how to explore the space,
where to move, how to turn).



3.1 Verbosity

Verbosity is a continuous measure of the number
of words per instruction. Compare the instruction
in Dialogue 1 in Figure 1 “take pictures in all four
directions” (6 words) with the instruction in Di-
alogue 2 “robot face north, take a picture, face
south, take a picture, face east, take a picture” (16
words). Both issue the same plan (with the excep-
tion of a picture towards the west in Dialogue 2),
yet Dialogue 1 condenses the instruction and as-
sumes that the robot can unpack the higher-level
plan. Dialogue 2 is more verbose and low-level,
making reference to individual cardinal directions.
Verbosity alone does not capture all style differ-
ences; additional categorization is needed.

3.2 Structure of Instructions

We define a Minimal instruction as one contain-
ing a single intent (e.g., “turn”, “move”, or “re-
quest image”). A sequence of Minimal instruc-
tions often reveals the higher-level plan of the user.
In Dialogue 3, the user issues a single instruc-
tion “go through the other door” and waits until
the instruction has been completed. Upon receiv-
ing completion feedback from the robot (“execut-
ing” and “done” responses), the next instruction,
“take a picture”, is issued. Compare this with Di-
alogue 4, where the intents “face your starting po-
sition” and “send a picture” are compounded to-
gether and issued at the same time. This is clas-
sified as an Extended intent structure: instructions
that have more than one expressed intent. These
structural definitions were first described in Traum
et al. (2018) to classify the composition of an in-
struction. In this work, we use these definitions to
classify the style of the user.

4 Human-Robot Dialogue Corpus

We examine these styles in a corpus of human-
robot dialogue collected from a collaborative
human-robot task (Marge et al., 2017). The user
and the robot were not co-present. The user in-
structed the robot in three remote, search-and-
navigation tasks: a Training trial and two Main tri-
als (M1 and M2). During Training, users got used
to speaking to the robot. Main trials lasted for 20
minutes each, and users were given concrete goals
for each exploration, including counting particular
objects (e.g., shoes) and making deductions (e.g.,
if the space could be a headquarters environment).

Users spoke instructions into a microphone
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while looking at a live 2D-map built from the
robot’s LIDAR scanner. A low bandwidth envi-
ronment was simulated by disabling video stream-
ing; instead, photos could be captured on-demand
from the robot’s front-facing camera. To allow full
natural language use, users were not provided ex-
ample commands to the robot, though they were
provided with a list of the robot’s capabilities
which they could reference throughout the trials.
Well-formed instructions (unambiguous, with a
clear action, end-point, and state) could be exe-
cuted without any additional clarification (e.g., all
dialogues in Figure 1). The robot responded with
status updates to the user to make it known when
an instruction was heard and completed. When
necessary, the robot requested instruction clarifi-
cation. A human Wizard experimenter stood in for
the robot’s speech recognition, natural language
understanding, and language production capabil-
ities, which were guided by a response protocol.

4.1 Corpus Statistics

The corpus contains 3,573 utterances from 20
users, totaling 18,336 words. 1,981 instructions
were issued. The least verbose instruction ob-
served is 1 word (“stop”), and the most verbose is
59 words (mean 7.3, SD 5.8). Of the total instruc-
tions, 1,383 are of the Minimal style, and 598, Ex-
tended. A moderate, positive correlation exists be-
tween higher verbosity and the Extended style in
this corpus (r5(1969) = .613, p < .001)), support-
ing an intuition that more words would be found in
Extended instructions. That this correlation is not
stronger, however, may suggest that the verbosity
metric is insufficient to capture critical elements of
stylistic variation of structure. Number of words
does not completely map onto the complexity or
the “packed” nature of instructions. For example,
the Minimal but highly verbose instruction from
in corpus “continue down the hallway to the first
entrance on the left first doorway on the left” is 16
words, but the Extended instruction “stop. take a
picture” is only 4.

5 Stylistic Differences and
Miscommunication

A user’s utterance is classified as a miscommuni-
cation if the following robot utterance is a request
for clarification or indicates inability to comply;
this occurred at least once in 216 (16%) of the in-
structions in the corpus. We hypothesize that dif-



ferent instruction styles will differ in their over-
all rates of miscommunication, i.e., that miscom-
munication rates are related to verbosity (H;) and
structure (Hp).

If a scarcity of words leads to ambiguity or
missing information, we would predict that ver-
bosity and miscommunication rate would be neg-
atively correlated. However, if more words simply
yield more opportunities for erroneous or contra-
dictory information, then we would predict a pos-
itive correlation between verbosity and miscom-
munication. We assessed this using binary logistic
regression of verbosity on overall miscommunica-
tion presence (H). Results revealed that miscom-
munication significantly increases with verbosity
(verbosity as a continuous independent variable,
with model x2? = 55.94, p < .001, with Wald =
56.67, p < .001, Nagelkerke R = .06)

If having more intents in a single instruction
leaves more opportunities for mistakes, then we
would predict that greater use of Extended struc-
ture would be positively related to miscommunica-
tion rates. To examine this relationship, we com-
pared overall miscommunication rates and use of
different instruction structures (H;). The over-
all miscommunication rate for Minimal instruc-
tions is 8%, while Extended is 18%; we confirmed
that Extended instructions were significantly more
likely to have miscommunication (structure as a
categorical independent variable, with Chi-square
test, x2(1, N=1969) = 40.91, p < .001).

5.1 Miscommunication Types

While overall miscommunication rate differed sig-
nificantly among styles, it would be useful to
understand whether different styles are associ-
ated with different types of miscommunication,
as this may inform what error-handing algo-
rithms the system should favor. Following Hi-
gashinaka et al. (2015a), we categorize miscom-
munication in the corpus according to Response-
level and Environmental-level ontologies. Though
this ontology was designed to categorize errors
made by a virtual agent dialogue system, a num-
ber of categories are applicable to communica-
tive errors committed by human users in situ-
ated dialogues. Figure 2 shows examples of user-
miscommunication errors from the human-robot
corpus and the robot response. Further explana-
tion and expected relationships are below.
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Dialogue 5: Response, Missing Information
U: leave the room and go to your left
Robot: How far left should I go?

Dialogue 6: Response, Unclear Instruction

U: go into the center of the first room on your left
and then take a picture at the west north east and south
position
Robot: Can you repeat the positions you’d like photos
from?

Dialogue 7: Environment, Ambiguous Reference

U: can you move forward to take a picture of the
object
Robot: I’'m not sure which object you are referring to.
Can you describe it another way?

Dialogue 8: Environment, Impossible Instruction

U: move around the cone into the next room turn
right ninety degrees
Robot: There is not enough space for me to move around
the cone and enter the room ahead. Would you like me
to get as close as possible to the room?

Dialogue 9: Environment, Misunderstand Capabili-
ties

U: okay turn to your right forty five degrees and turn
on video camera
Robot: Our bandwidth will currently not support the
video feed. Would you like me to send a photo?

Figure 2: Dialogues between Users (U) and Robot
with different miscommunications types

Response-level, Missing Information instruc-
tions lack information required for execution (Di-
alogue 5). We expected that lower verbosity in-
structions would be more likely to lead to this type
of miscommunication due to a lack of specificity,
as measured by fewer words, e.g., “turn right” is
missing how many degrees to turn. On the other
hand, we might expect that Extended instructions
would be more likely to lead to this type because
with multiple intent comes a compounding poten-
tial for lack of specificity.

Response-level, Unclear Instructions are un-
clear due to phrasing or order of information pre-
sented (Dialogue 6). More verbose instructions
were expected to be more prone to this type of mis-
communication because more information, mea-
sured as words, has a higher potential to be mis-
construed (e.g., it is unclear if “north east” is
“north” and “east” or “north-east””). However, in-
creased information may provide additional con-
text required for specification, the opposite rela-
tionship. Due to compounding potential, we ex-
pected Extended style would lead to more Unclear
type errors.

Environment-level, Ambiguous Reference in-
structions include an ambiguous referent in the en-



vironment, potentially due to a lack of common
ground (Dialogue 7). We expected that lower ver-
bosity instructions, with less information (words)
would have more Ambiguous miscommunication
(e.g., “go to the doorway” versus “go to the door-
way furthest from you”). For Extended style, we
hypothesize more Ambiguous type errors due to
compounding potential.

Environment-level, Impossible instructions are
impossible to execute in the physical space in
terms of distance and dimension (Dialogue 8). We
expected that overspecified instructions (higher
verbosity or Extended) might be more likely to be
Impossible (e.g., in the more verbose, Extended
instruction “move up two feet, turn right ninety
degrees, move forward seven feet”, it is not pos-
sible for the robot to move 7 feet after completing
the first two actions).

Environment-level, Misunderstood Capabilities
instructions are those in which the user misunder-
stands the robot’s capabilities (Dialogue 9). We
expect verbosity and structure to affect Misunder-
stood rates much as they affect Impossible mis-
communication rates.

Logistic regression revealed that verbosity does
not significantly correlate with any type of mis-
communication that occurred (y> = 4.89, p =
.298). To examine this result in more detail, we
conducted binomial logistic regression on each
miscommunication type separately, asking, e.g.,
does verbosity predict whether the miscommuni-
cation is of the Ambiguous type or not? None of
these results were significant.

With regard to structure, a Chi-square test
showed a non-significant trend, suggesting there
may be a possible influence of structure on mis-
communication type (y%(4, N = 216) = 8.71, p =
.065). We explored this result in more detail, look-
ing at each miscommunication type separately,
asking, e.g., does structure predict whether the
miscommunication is of the Ambiguous type or
not? Results were significant for Ambiguous mis-
communication type (y(1, N = 216) =4.01, p =
.045) and a trend toward significance for Unclear
miscommunication type (y(1, N = 216) = 3.34,
p = .067) With Minimal styles, miscommunica-
tions that arise are more likely to be Ambiguous
type. With Extended styles, miscommunication
that arise may tend to be Unclear type. Counts of
miscommunication types for each structure style
are shown in Figure 3.
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Figure 3: Miscommunication types observed in
structures style (* p < 0.05)

6 Factors related to Style Differences

Knowing that stylistic differences are observed
in unconstrained dialogue and the relationship of
these differences to miscommunication rates, it is
important to assess factors of these differences in
the first place. We examine latent individual dif-
ferences, as well as trust and interaction time with
the robot, which may influence style.

6.1 Individual Differences

A broad-use dialogue system can expect to receive
instructions from different individuals. The dia-
logue system must therefore be robust to a range
of individuals who will bring different speaking
styles to the interaction. We hypothesized that in-
dividual users differ in their verbosity (H3) and
structure (Hy).

We first examined whether individual user iden-
tity predicted verbosity (H3). The ANOVA as-
sumption of homogeneity of variances was vio-
lated, so a Kruskal-Wallis H test was used, sup-
porting H3 with significant difference in verbosity
across individual participants (y2(19, N = 1969) =
422.53, p < .001). The most verbose user used an
average of 15 words per instruction, and the least
verbose used an average of 4 words.

Chi-square tests revealed that individual users
also vary in structure (Hy; x2(19, N = 1969) =
511.70, p < .001). Figure 4 graphs the percent-
age of structural style employed by users (sorted
from smallest to largest percent of Extended us-
age). Some users seem to simply prefer the Min-
imal style (Users 1, 2, 3) while other users em-
ployed a majority of Extended (Users 19, 20).
Others are almost evenly split (Users 13, 14, 15).
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Figure 4: Percent distribution of instruction structure between users (sorted smallest to largest Extended)

6.2 Trust in the Robot

User trust in the robot may be a factor in how the
user realizes their instructions, e.g., because the
user may have different levels of confidence in the
robot’s abilities. Users completed the Trust Per-
ception Scale-HRI (Schaefer, 2016) after M1, and
again after M2. The Trust Perception Scale-HRI
is a 40-item scale designed to measure an individ-
ual’s subjective perception of trust in a robot.

We hypothesized that trust in the robot would
be related to verbosity (Hs) and structure (Hg). If
reported trust is indicative of a user’s comfort with
speaking more with the robot, and/or if trust is in-
dicative of having higher confidence in the robot’s
ability to process many words, then we would pre-
dict a positive relationship between trust and ver-
bosity. On the other hand, if trust scores reflect
confidence that the robot will understand instruc-
tions without need for additional words or expla-
nations, then we would predict a negative relation-
ship between trust and verbosity.

To assess whether and how trust levels are re-
lated to verbosity (Hs), we compared trust lev-
els for a trial to the verbosity in that trial (there
were not enough data points to control for individ-
ual user ID in a regression). Spearman correlation
was significant, with higher trust correlating with
greater verbosity (r;(38) = .33, p = .035).

If higher trust scores indicate user confidence
that the robot can understand, parse, and execute
complex instructions, then we predict that more
Extended instructions would be observed. To as-
sess this relationship (Hg), trust levels measured
for each trial were compared to the proportion of
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Extended instructions used in that trial. Spear-
man correlation revealed a nonsignificant trend for
higher trust to correlate with more use of the Ex-
tended structure (r5(38) = .29, p = .07).

6.3 Time and Experience

As time passes and experience grows, people are
known to interact differently with technology and
with communication partners. We thus hypothe-
size that time/experience with the robot would be
related to verbosity (H7) and structure (Hg), i.e., as
the user progresses from Training to M1 and M2,
instruction-giving style may change.

If it is the case that users become more com-
fortable or confident as they gain more experience,
we predict that verbosity should increase over
time/experience (H7). Indeed, verbosity increased
across trials from an average of 6.1 words in Train-
ing, to 7.3 average words in M1, to 8.1 average
words in MP2. A one-way repeated measures
ANOVA was conducted to determine whether ver-
bosity differed by trial (repeated measures analy-
sis effectively controls for user ID). Trial was sig-
nificantly related to verbosity, (F(2,38) = 13.45,
p < .001), and post-hoc LSD t-tests indicated that
each trial had significantly more verbose instruc-
tions than previous trials (Training vs. M1 p =
.003; Training vs. M2 p = .001; M1 vs. M2 p =
.020).

Figure 5 shows the percentage of structural style
in each trial. There is a general upward trend
in use of the Extended style as users engage in
successive trials. A one-way repeated measures
ANOVA was used to determine whether structure
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Figure 5: Percent distribution of instruction struc-
ture between trials (* p < 0.05; ** p < 0.01)

usage differed by trial (Hg). Results showed sig-
nificant differences among trials (F(2,38) = 8.26,
p = .001), with post-hoc LSD t-tests revealing
greater Extended structure use in M1 and M2 as
compared to Training (Training vs. M1 p = .014;
Training vs. M2 p = .002). Structural usage be-
tween M1 and M2 was not significantly different
M1 vs. M2 p = .190).

7 Discussion

7.1

Styles differ in the overall frequency of miscom-
munication they engender, but these differences
are not consistent across all miscommunication
types. Among miscommunication-producing in-
structions, we found no correlation between ver-
bosity and what type of miscommunication was
produced (H;). Future analyses that look at ad-
ditional linguistic features may help reveal what is
happening at a level of specificity beyond a sim-
ple word count. We can speculate that this may
be because user misunderstandings of the robot or
environment exist regardless of how many words
it takes the user to express these misunderstand-
ings (Impossible, Misunderstood Capabilities), or
because Ambiguous, Unclear, or Missing Infor-
mation miscommunication can result either from
too few words, or from cases where the participant
adds more words and commits more miscommuni-
cation with those words. This raises the question
of what it is that is being added with more ver-
bose instructions, if not clarification information.
Future research can aim to address this.

Our analyses revealed an effect of structure on
miscommunication types (Hy). Minimal structure

Miscommunication
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had a greater tendency to yield Ambiguous mis-
communications. This may be because additional
intents in an instruction offer opportunities to cor-
rect ambiguity in the first intent. For example,
if the robot is told to go through the door and
take a photo of the chair, the robot can use the
presence or absence of a chair to settle any am-
biguity about which door to go through. With-
out the additional intent packed into the instruc-
tion, this would remain ambiguous. Extended
style additionally showed a nonsignificant trend
toward yielding more response-level Unclear mis-
communication types, which may result because
Extended instructions are packed, sequentially-
ordered instructions and thus have the ability to
introduce miscommunication in the order of infor-
mation presented. Missing Information, Impossi-
ble Instructions, and Misunderstood Capabilities
were not significantly related to structure. These
miscommunication types might not arise from the
structural style, but instead stem from a funda-
mental misunderstanding on the user-end. Further
analysis of the content of the instructions, rather
than only the structure, may uncover if content is
a factor.

7.2 Individual Differences

Our analysis revealed that latent differences
among individuals appear to yield differences in
verbosity and structure style (H3 and Hy4). Fu-
ture analysis may aim to identify these latent dif-
ferences. Possibilities include variations in po-
tential for introspection, personality, perspective-
taking ability, and other differences. Regardless
of the underlying factors that cause individual dif-
ferences, dialogue systems must be robust to a
range of individuals who bring with them differ-
ent stylistic tendencies.

7.3 Varying Degrees of Trust

We found that higher trust was related to higher
verbosity. We speculate that this may be because
when a user trusts in the robot’s competence and
capabilities, they are more likely to feel comfort-
able enough to speak more and be confident that
the robot can parse longer instructions. Users’
propensity for trust was not measured during the
experimental collection, which may be an unob-
served factor in this analysis. Future analysis
will incorporate this additional information about
users’ latent traits.



If trust is measured in questionnaires, or gauged
by other means, this information could be incorpo-
rated as feedback for the dialogue system to appro-
priately adjust dialogue management strategies; as
the users’ trust in the robot is gauged during an
interaction, the system will know to expect ad-
justments to verbosity and structure, so it can of-
fer more appropriate and tailored responses to the
user’s style. Furthermore, providing feedback that
encourages trust (or discourages it) may be a gen-
tle, minimally obtrusive way of guiding a user to
employ a different style to avoid particular mis-
communication types, if working with a less ro-
bust dialogue system.

7.4 Effect of Interaction Time

Users increased their verbosity (H7) and use of the
Extended style (Hs) when progressing from Train-
ing to M1 (and verbosity again when progress-
ing from M1 to M2). We speculate that starting
with lower verbosity and Minimal style during the
Training trial might suggest users initially are hes-
itant or do not have a strong sense for the robot’s
language processing capabilities. Users may be
learning from the training and growing in comfort
level over interaction time and experience with the
robot, and are willing to use more verbose or Ex-
tended instructions in successive trials. Another
possible explanation might be that users face a
more difficult task in the main trials as compared
to training; when pressed for time in a more chal-
lenging task, users may use more words and be
more prone to combine intents together. Future
studies can aim to disentangle these effects.

We observed an increase in Extended style use
between M1 and M2, but it did not reach statistical
significance. This might suggest that any learning
or strategy convergence in terms of structure that
occurred from training to M1 may have mostly set-
tled by M1. It is possible that future work with a
greater sample size will reveal that Extended style
use continues to grow across trials. An under-
standing of interaction time or experience effects
can be incorporated in the dialogue system to bet-
ter support the change of user styles that emerge
with repeated interactions.

8 Conclusion and Future Work

This paper defines two classes of stylistic differ-
ences: verbosity and structure, and examines these
styles in a corpus of human-robot dialogue with

117

no constraints on how robot-directed instructions
were formulated. We show that stylistic differ-
ences are linked to different rates and types of mis-
communication (H,), that latent individual differ-
ences exist (Hz and Hy), and that there is a rela-
tionship between style and trust (Hs and Hg), and
style and interaction time (H; and Hg).

By understanding the effects of stylistic differ-
ences used in instruction-giving, we are posed to
implement adjusting dialogue systems to the ex-
pectations of styles to increase user interaction
and system performance. Tapus et al. (2008) has
shown that users prefer a robot that tailors en-
couragement strategies according to users’ person-
ality (introverted or extroverted). Torrey et al.
(2006) found that users prefer robots that tailor
their speech to the human’s level of expertise.
We posit that dialogue systems could similarly be
crafted to support and interact with different ver-
bosity and structural styles. Future dialogue sys-
tems might adjust to the verbosity style by, for ex-
ample, providing system feedback in more or less
verbose styles, which may make the interaction
feel more like a natural conversation. A system
can adjust to the structural style by providing in-
cremental feedback to users issuing Extended in-
structions to capture miscommunications early, as
well as provide feedback that the system under-
stood the compound instruction. The monitoring
of trust and interaction time can be incorporated
as feedback for the dialogue system to offer more
appropriate responses or attentive repair strategies
in advance of miscommunication being made.

This investigation of style warrants further turn-
by-turn analysis to better understand where style
shift occurs during an interaction, and why particu-
lar styles are subject to increased rates of miscom-
munication. A future robot may be able to propose
alternate courses of action for certain miscommu-
nication types (e.g., the suggestion to offer the
user a picture of the room in Dialogue 9). These
propositions may be difficult for other miscommu-
nication styles, which require contextual, environ-
ment information and specification directly from
the user. Future work will investigate these alter-
native suggestions to study if a users’ style would
shift around the alternate action (e.g., reducing
Minimal structure usage for Ambiguous instruc-
tions), or if the user would adapt the alternate ac-
tion into their own style (e.g., continuing to use
Minimal, but not repeating the same mistake).
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Abstract

In this paper, we apply the contribution
model of grounding to a corpus of human-
human peer-mentoring dialogues. From
this analysis, we propose effective turn-
taking strategies for human-robot interac-
tion with a teachable robot. Specifically,
we focus on (1) how robots can encourage
humans to present and (2) how robots can
signal that they are going to begin a new
presentation. We evaluate the strategies
against a corpus of human-robot dialogues
and offer three guidelines for teachable
robots to follow to achieve more human-
like collaborative dialogue.

1 Introduction

Grounding is the process by which two parties co-
ordinate to come to a joint understanding or com-
mon ground in a joint project. This involves as-
suming mutual knowledge, beliefs, and assump-
tions (Clark, 1996). Since humans use grounding
to collaborate in dialogue interactions, robots can
look to human grounding patterns to mimic collab-
oration in a human-like way. In human-robot dia-
logue with a teachable robot, the robot often wants
the human to take initiative in presenting material;
at the same time, the robot wants to ensure that
it can steer the conversation in a natural way. By
analyzing a human-human peer-mentoring corpus,
we identify turn-level grounding patterns that help
achieve these two goals.

First, we observe peer-learning dialogues in a
human-human corpus to model how human teach-
ers and learners signal presentation and under-
standing. In this corpus, both teachers and learn-
ers alternately take the floor to offer presentations.
While one speaker presents, the other speaker ac-
cepts the presentation by displaying evidence of
understanding. Our first goal is to understand how
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a speaker signals to the other speaker to take the
floor, such as a teacher encouraging a learner to
present an idea, or a learner asking a question that
leads the teacher to present an explanation.

Second, speakers may need to shift the floor to-
wards themselves during a conversation. For ex-
ample, a teacher may have a plan to offer feedback
on the learner’s work, or a learner may need to ex-
plain a problem that confused them. Therefore,
our second goal is to understand how a speaker
can effectively signal that they are taking the floor.

These two goals are also relevant to human-
robot dialogue with a teachable robot: a robot who
acts as a peer to a student and prompts the stu-
dent to teach them the material (Jacq et al., 2016;
Lubold et al., 2018b). Because humans engage
more deeply with material when they teach it to
someone else (Roscoe and Chi, 2007), we want
a teachable robot to encourage humans to present
material. At the same time, especially when inter-
acting with children, the robot may not always un-
derstand or be able to process the human’s speech
and actions. To handle unexpected, degraded, or
out-of-vocabulary input, the robot will sometimes
need to take the floor and steer the conversation.

In Section 2 of this paper, we discuss re-
lated work. We introduce a human-human peer-
mentoring corpus and detail our annotation pro-
cess in Section 3. In Section 4, we analyze human-
human grounding patterns with respect to the two
goals: encouraging humans to present, and taking
the floor. In Section 5, we introduce and analyze
grounding in a corpus of dialogues with a teach-
able robot. We discuss similarities and differences
in the two corpora in Section 6, and offer sugges-
tions for improving human-robot dialogue.

2 Related Work

The contribution model of Clark and Schaefer
is a widely-used theory of conversational ground-
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ing (Clark and Schaefer, 1989; Clark, 1996). The
model proposes that collaborative conversations
be analyzed in terms of contribution units, where
each contribution consists of a presentation phase
followed by an acceptance phase. In the presen-
tation phase, Speaker A, the presenter, presents a
signal to Speaker B, the acceptor. In the accep-
tance phase, B, the acceptor, acknowledges that
they have understood the signal. This requires
positive evidence of understanding from B. The
speakers signal back and forth until they have re-
ceived closure—a sense of mutual understanding.

Traum (1994, 1999) reformulated the contri-
bution model for real-time use by collaborative
dialogue agents. In this model, the units of
analysis—grounding acts—occur at the utterance
level. In human-robot dialogues, Liu et al. (2013)
found that incorporating an ‘agent-present human-
accept’ dialogue pattern based on the contribu-
tion model into its grounding algorithm led to
improved reference resolution. Graesser et al.
(2014) used a ‘pump-hint-prompt-assertion’ dia-
logue pattern in an intelligent tutoring system,
finding learning outcomes comparable to those of
human tutors.

Turn-taking in human-robot interaction in-
volves understanding the cues that signal when it
is appropriate for a robot to take a turn (Meena
et al., 2014). Integrating factors such as robot
gaze, head movement, parts of speech, and seman-
tics into turn-taking models is an active area of
research (Chao et al., 2011; Andrist et al., 2014,
Johannson and Skantze, 2015), informed by stud-
ies of turn-taking in human-human dialogue (Gra-
vano and Hirschberg, 2011). In human-human in-
teraction, turn-taking behaviors vary considerably
depending on the task. A better understanding of
turn-taking in peer-learning dialogue will help in-
form the design of effective peer-learning robots.

Robot learning companions have the poten-
tial to teach broad populations of learners but an
important challenge is maintaining engagement
and effectiveness over multiple sessions (Kanda
et al., 2004). Social robotic learning companions
can motivate students, encourage them to persist
with a task, and even promote a growth mindset
(Park et al., 2017). Recently, feachable robots
have flipped the traditional teacher-learner roles,
with the goal of improving learning and motiva-
tion (Hood et al., 2015). Most of the these robots
use spoken utterances as output but do not engage
in conversational interaction around the human
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partner’s utterances, if any exist. One exception
is a robot that encourages students to think aloud,
finding greater long-term learning gains when stu-
dents articulate their thought process (Ramachan-
dran et al., 2018).

Robots that are physically present have ad-
vantages over virtually-present robots and virtual
agents. For example, in a game-playing setting
with children, a co-present robot companion was
found to be more enjoyable and have greater so-
cial presence than a virtual version of the same
robot (Leite et al., 2008). In a puzzle-solving
setting, students learned more with a co-present
robot tutor than with a virtual version of the same
robot (Leyzberg et al., 2012). A survey by Li
(2015) found that in 73% of human-robot interac-
tion studies surveyed, co-present robots were more
persuasive, received more attention, and were
perceived more positively than virtually-present
robots and virtual agents. There may be trade-
offs to physical presence; in an interview set-
ting, co-present robots were liked better than vir-
tual agents, but participants disclosed less and re-
membered less with the co-present robot (Pow-
ers et al., 2007). Overall, the literature suggests
that physically co-present robots are preferable
for relationship-oriented tasks, for interaction with
children, and for learning.

3 Peer-Mentoring Dialogue Corpus and
Annotation

To develop dialogue strategies for a robot peer-
learner to effectively shift the conversational floor,
we examine the grounding patterns of human peer-
teachers and peer-learners.

Corpus. The human-human peer-mentoring di-
alogue dataset consists of fifty 10-minute conver-
sations, totaling approximately nine hours. Ta-
ble 1 summarizes the conversation durations and

Peer-mentoring corpus statistics Median
Dialogue duration (sec) 596.0
Total turns per dialogue 153.5
Teacher turns per dialogue 76.5
Learner turns per dialogue 76.0
Words per teacher turn 8.0
Words per learner turn 3.0

Table 1: Median duration, number of turns, and
turn length data for the corpus of human-human
peer-mentoring dialogues (N=50).



Grounding label Definition

Speaker role

Presentation A signal or piece of information offered by the presenter presenter
Probe Questions such as “When are we meeting?”, or a signal made either
without certainty of positive evidence from the other speaker,
such as “You know that assignment...”
Backchannel A short turn to signal understanding, such as “Mm-hmm”, acceptor
“Yeah”, and in some cases, laughter
Uptake The acceptor’s next relevant turn acceptor
Answer A signal to display understanding of the presenter’s probe acceptor
Repetition A signal to confirm understanding acceptor
Paraphrase A signal to confirm understanding acceptor
Closure Evidence of the conclusion of a joint project either

Table 2: Definitions of grounding labels and their associated roles.

turn lengths in this dataset. Audio recordings were
collected of conversations between undergraduate
computer science students as part of a near-peer
mentorship program. The mentees were enrolled
in an introductory computer science course. The
mentors were mid- and upper-level computer sci-
ence students. Mentors had multiple mentees and
met with each mentee individually each week over
the course of a semester to give feedback on com-
pleted programming assignments. Because men-
tors received training on giving effective feedback
and encouraging mentees to reflect on their work,
we assume that all conversations are examples of
effective mentoring. The dataset used in this paper
is part of a ongoing data collection project with
over 250 dialogues.

The audio recordings of the dialogues were
manually transcribed by a commercial transcrip-
tion service. An excerpt below illustrates an inter-
action between a mentor and mentee, who we will
refer to in this paper as ‘teachers’ and ‘learners’
(punctuation is added for clarity).

TEACHER: So then you might have like
a Point2D trunk start which would then
update within that method down below
LEARNER: What do you mean by ...
TEACHER: So like up here instead of
putting say like public int tx1 you might
write something like—

LEARNER: Oh you mean in uh as a
parameter—

TEACHER: Yeah like just put ‘public
Point2D trunk start’ and then you just
end it

LEARNER: Yeah yeah I got that
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Annotation. Our approach to annotation is
motivated by the grounding actions proposed in
Clark’s model of collaborative dialogue (Clark,
1996), and also by the turn-level unit of analy-
sis in Traum’s model (see Section 2). The set of
grounding labels, shown in Table 2, is designed to
be applicable to both human-human and human-
robot corpora. The annotation guidelines and the
annotated data are publicly available .

In our annotation model, at any time, one
speaker has the presenter role, and the other is
the acceptor. The roles are associated with a set
of grounding actions, which characterize individ-
ual dialogue turns. Only the presenter’s turns can
be labeled as presentation®. Labels such as up-
take, answer, and backchannel® typically indicate
shorter signals to confirm understanding, and oc-
cur in turns by the acceptor. Two labels can occur
with both presenters and acceptors: probe and clo-
sure. Each turn is labeled with one or sometimes
two grounding labels.

We manually annotated each dialogue turn
in the peer-mentoring corpus with one or two
grounding labels as well as the identity of the cur-
rent presenter. This annotation was performed by
a single annotator. The counts of each grounding
label for teachers and for learners are shown in Ta-
ble 3. We note that presentation is the most fre-
quent label for teachers, while backchannel is the
most frequent label for learners.

"http://www.ponbarry.com/
PeerLearningDialogueGrounding/

This differs from Clark’s model, where contributions in
the acceptance phase can also be presentations.

3We consider spoken backchannels to be dialogue turns
to minimize complexity in the human-robot setting, where
we consider all robot utterances to be dialogue turns.



Grounding label Teacher Learner
presentation 2475 999
probe 517 507
backchannel 957 1793
uptake 356 701
answer 125 357
repetition 12 26
paraphrase 7 16
closure 205 214
TOTAL 4654 4613
Table 3: Grounding label counts for teacher

turns and learner turns in the human-human peer-
mentoring corpus.

4 Peer-Mentoring Dialogue Analysis

To support our goal of designing effective turn-
taking strategies for a teachable robot, we use
the corpus of human-human peer-mentoring dia-
logues to answer two questions: (1) how do hu-
mans encourage their partners to present? and (2)
how do humans signal that they are going to shift
the floor towards themselves? To frame the de-
cision of whether to focus on teacher strategies,
learner strategies, or both, we begin by examining
initiative patterns in the corpus.

4.1 Initiative and presentation

Expecting that perceived initiative is closely re-
lated to the number of presentation turns, we label
each dialogue in the peer-mentoring corpus with
a perceived initiative score from 1 to 5 (1=high
learner-initiative; 5=high teacher-initiative). We
compare the initiative ratings with the count of
each speaker’s presentation turns as a proportion
of their total turns in the dialogue. This is shown
in Figure 1. For learners, the proportion of pre-
sentation turns is highest when they are perceived
to have high initiative. However, teachers present
for roughly the same proportion of turns regard-
less of initiative label. This analysis suggests that
learners might assume greater initiative if they are
encouraged to present.

4.2 Encouraging partner to present

To analyze how one speaker encourages their part-
ner to present, we consider two cases: (a) when
the partner does not currently have the floor, and
(b) when the partner does currently have the floor.

To understand how human mentors and mentees
encourage their partners to present when that part-
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Figure 1: (left) Distribution of initiative labels.
(right) Proportion of presentation turns in the con-

versation compared with conversation initiative.

ner does not hold the floor (i.c., to take the floor),
we identify all turns with a presentation label that
are at the start of a floor shift. A floor shift occurs
when a presentation turn shifts the presenter role
from one speaker to the other. We examine what
the partner’s grounding label was in the preced-
ing turn. In other words, if Speaker B has taken
the floor by beginning a presentation, what was
Speaker A’s last grounding action? An annotated
example exchange is shown below.

A: But don’t put it off because it’s a big
project (presentation)

B: I can tell cause it’s broken down into
two parts (uptake/presentation)

A: Mh-mmm (backchannel)

We find that when a speaker takes the floor,
their partner is most frequently presenting in the
preceding turn: 0.554 and 0.618 for teachers and
learners, respectively. The next most frequent
grounding label is probe (see all values in Table 4,
section (a)).

To understand how human mentors and mentees
encourage their partners to present when that part-
ner already has the floor (i.e., to continue pre-
senting), we identify all turns with a presentation
label that are not at the at start of a floor shift. We
examine what the partner’s grounding label was in
the preceding turn. In other words, if Speaker B
already has the floor and then has a presentation
turn, what is Speaker A doing before B’s presenta-
tion that encourages B to continue to present? An
annotated example exchange is shown below.

B: It’ll be the same problems (presenta-
tion)

A: Mh-mmm (backchannel)

B: So you should prepare in the same
way you did last semester (presentation)



N present. probe backch. uptake ans.  clos.
(a) Encourage presentation - at shift in floor
Grounding by T before partner presentation 139 0.554 0.266 0.122  0.000 0.035 0.024
Grounding by L before partner presentation 136 0.618 0.162 0.140 0.015 0.050 0.015
(b) Encourage presentation - no shift in floor
Grounding by T before partner presentation 995 0.089 0.125 0.542 0.181 0.035 0.024
Grounding by L before partner presentation 2453 0.046 0.104 0.604 0.166 0.056 0.015
(c) Signal a shift in floor
Grounding by T at floor shift 136 1.00  0.132 0.007  0.596 0.257 0.007
Grounding by L at floor shift 139 1.00 0.115 0.007 0.547 0.317 0.014

Table 4:

Normalized frequencies of grounding turn labels for teachers (T) and learners (L); for (a)

grounding preceding a presentation by partner at a shift in floor, (b) grounding preceding a presentation
by partner, with no shift in floor, and (c) grounding accompanying a presentation at a shift in floor.
Presentations are most frequent for (a), backchannels are most frequent for (b), and uptakes are most
frequent for (c), as indicated by bolded values. Paraphrases and repetitions have values < 0.01 and are

omitted from the table.

When there is no floor shift, we find, unsurpris-
ingly, that the most frequent grounding label pre-
ceding presentation turns is a backchannel: 0.542
of the turns for teachers, 0.604 of the turns for
learners. The next most frequent labels are uptakes
and probes (see all values in Table 4, section (b)).

This data suggests that a robot should consider
presenting or probing to encourage a partner who
does not have the floor to present, and should con-
sider backchannels to encourage a partner who al-
ready has the floor to continue presenting. We
note, however, that the overall label frequencies
are a factor. After considering next-turn probabili-
ties conditioned on the preceding labels, we expect
that probes might be more effective than presenta-
tions at encouraging a partner to take the floor.

4.3 Signaling taking the floor

To understand how human mentors and mentees
naturally take the floor and become the presenter,
we look at the grounding labels of dialogue turns
at shifts in the conversational floor. All floor shifts
begin with a presentation turn; most also have a
second grounding label. If there is no accompany-
ing grounding label, we report the grounding label
of the speaker’s previous turn.

We find that when a speaker takes the floor,
the grounding label most frequently accompany-
ing the presentation label is uptake: 0.596 and
0.547 for teachers and learners, respectively. The
next most frequent grounding labels are answer
and probe (see all values in Table 4, section (c)).
This suggests that a robot that wants to take the
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floor might consider an uptake, answer, or probe
in conjunction with their presentation.

5 Comparison with Human-Robot
Dialogue Interaction

To understand if the grounding strategies we ob-
served in the human-human corpus are effective
in human-robot interaction, we perform a prelimi-
nary empirical analysis using dialogue data from a
teachable robot interaction experiment conducted
in a Wizard-of-Oz (WOZ) style. Section 5.1 de-
scribes the dialogue data; Section 5.2 presents our
empirical analysis.

5.1 Human-robot dialogue data

The human-robot dialogue data consists of tran-
scripts from a teachable robot interaction experi-
ment where the robot was operated by a human
Wizard. In this WOZ experiment, human stu-
dents interacted in a learning-by-teaching context
(Ploetzner et al., 1999) with Nico, a social, teach-
able, NAO robot. The human participants were
peer teachers while Nico behaved as a peer learner,
working to solve mathematics word problems.

The human-robot corpus includes dialogue tran-
scripts from twenty college-age participants who
each engaged in four problem-solving dialogues
with Nico in the WOZ experiment (Chaffey et al.,
2018). Table 5 summarizes the dialogue durations
and turn lengths in this human-robot dialogue cor-
pus.

The WOZ experiment aided in the development
of an autonomous version of the teachable robot



Human-robot corpus statistics =~ Median
Total turns per dialogue 202.5
Human teacher turns per dialogue 101.5
Robot learner turns per dialogue 100.0
Words per human turn 10.0
Words per robot turn 5.0

Table 5: Median number of turns and turn lengths
for the corpus of teachable robot (WOZ experi-
ment) dialogues (N=20).

aimed at middle-school students (Lubold et al.,
2018a,b).

WOZ experiment overview. Participants were
told that their goal was to help Nico solve a set
of mathematics problems. Prior to the interac-
tion, they received worked-out problem solutions.
During the interaction, a tablet user interface dis-
played the problem, highlighting one step at time.
Nico, controlled by the Wizard, took initiative in
leading the dialogue, asking for help about how to
approach the problem sub-parts (e.g., “How do I
figure out how much paint to mix?”). Participants
responded by explaining their reasoning (e.g., “We
want to have six cans of green paint so we mix
three cans of yellow paint and three cans of blue
paint because...”). Nico’s actions included text-
to-speech output, gestures such as scratching its
head, and updates to values in the tablet interface.
Figure 2 shows a student teaching Nico.

Figure 2: Nico, a teachable robot, being taught by
a student.

Wizard behavior. A human Wizard oper-
ated Nico behind the scenes, selecting dialogue
responses and corresponding gesture movements
from a pre-defined set. If necessary, they had
the ability to input additional phrases. If the par-
ticipant did not explain their reasoning, the Wiz-
ard prompted them to try again (e.g., “Could you
explain that better?”). The Wizard was not in-
structed to model specific grounding behaviors.
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5.2 Empirical analysis

We analyze the human-robot dialogue transcripts
asking the same questions as in Section 4, but from
the robot perspective: (1) how does the robot en-
courage the human to present, and (2) how does
the robot signal that it is taking the floor?

5.2.1 Encouraging partner to present

Based on our analysis of the human-human dia-
logues, we hypothesize that effective strategies for
a robot to use when encouraging their partner to
present, e.g., to elaborate or to explain, are: pre-
sentation and probe if their partner does not have
floor, and backchannel if their partner already has
the floor.

To evaluate the extent to which the human-robot
dialogues reflect these strategies, we identify the
following robot dialogue phrases (fixed phrases or
templates, available to the Wizard):

e presentation: “Okay, we [perform math oper-
ation]*”, “So now we [perform math opera-
tion]?”

e probe: “How did we get that number?”,
“What do we do next?”, “Could you give me
a hint?”

e backchannel: “Okay”

For each grounding category (presentation,
probe, and backchannel) we manually annotate
50 dialogue exchanges surrounding the queried
phrases. Each exchange is five turns in length.
We label each turn in the exchange with one or
more grounding labels, as we did for the human-
human corpus. For presentations and probes, the
dialogue exchanges are in contexts where the hu-
man partner does not have the floor in the preced-
ing turn. Two examples are shown in Appendix A.
We test if presentations and probes result in the
human partner taking the floor. For backchannels,
the dialogue exchanges are in contexts where the
human partner has the floor in the preceding turn.
We test if backchannels result in the human part-
ner keeping the floor.

Following presentations, 36% of the exchanges
had a presentation in the human’s first turn after
the robot presentation. Following probes, 74%
of the exchanges had a presentation in the hu-
man’s first turn after the robot probe. Following
backchannels, 68% of the exchanges had a pre-
sentation in the human’s first turn after the robot

*{add/subtract/multiply/divide} 2 {and/from/with/by} y.



Partner turn
is presentation

Median turn length
(num words)

Following robot presentation

on the 1st turn 36.0% 13.0
on the 2nd turn 20.0% 19.5
Following robot probe

on the 1st turn 74.0% 25.0
on the 2nd turn 18.0% 30.0
Following robot backchannel

on the 1st turn 68.0% 20.0
on the 2nd turn 20.0% 30.0

Table 6: Success in encouraging human to present in the first turn, or second turn following robot pre-
sentations, probes, and backchannels; median human turn lengths for presentations.

backchannel. Table 6 summarizes this data, re-
ports turn lengths, and reports on occurence of pre-
sentations in the subsequent turn (if the first turn
was not a presentation). Not only are probes more
effective than presentations at getting the human to
present, the subsequent human presentation turns
are also longer.

5.2.2 Taking the floor

Based on our analysis of the human-human dia-
logues, we hypothesize that effective strategies for
arobot to use when taking the floor from their part-
ner are: uptake, answer, and probe.

To evaluate the extent to which the human-robot
dialogues utilize these grounding acts, we iden-
tify four dialogue phrases that the robot uses to
take the floor and steer the conversation. The first
two selected phrases are navigation instructions,
labelled as uptakes. In these, the robot takes the
floor to explicitly steer the conversation towards
the next problem step. We did not find any suit-
able robot phrases at floor shifts that we consid-
ered to be answers. The second two phrases are
questions about the partner’s attitudes towards the
material. These are labelled as probes, and serve
to indirectly steer the conversation away from the
previous topic. The dialogue phrases are as fol-
lows:

e uptake: “Please tap the ‘next’ button for me
so we can move on to the next step”, “Please
press the ‘back’ button”

e probe: “Do you like math?”, “Have you done
problems like this before?”

We manually annotate 45 dialogue exchanges
surrounding each of the queried categories. As
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above, we label each turn in the exchange with
one or more grounding labels. Two examples are
shown in Appendix A.

We find that navigation instruction uptakes suc-
ceed in taking the floor immediately in 97.8% of
the exchanges. For the probes about attitudes to-
wards math, we evaluate their success in shifting
the floor by reporting how long the partner contin-
ues answering the question that the robot posed,
and how verbose those answers are (see Table 7).
We find that in 35% of the exchanges, partners
continue to answer the question for only one turn;
in 60% of the exchanges they stay on-topic for two
turns. The average length of these turns is 5.5 and
8.0, respectively.

6 Discussion

In the human-human peer-mentoring dialogue cor-
pus, we find that human speakers encourage part-
ners to take the floor most frequently via presenta-
tions or probes. In the human-robot dialogue cor-
pus, we find that probes are more successful than
presentations in getting partners to take the floor
and also result in longer turn lengths. We note that
our analysis is limited by the set of robot phrases
queried. To more accurately assess the success of
probes versus presentations in human-robot dia-
logue, we would need to annotate all instances of
these two grounding actions in the corpus.
Speakers in the peer-mentoring dialogue cor-
pus encourage partners to keep the floor most fre-
quently by backchanneling. Therefore, it seems
that providing a simple acknowledgement of the
partner’s signal is an effective way to ensure that
they continue to present. In the human-robot



Partner accepts Median turn length
floor shift (num words)

Following robot instruction about Ul navigation

on the 1st turn 97.8% 19.5

on the 2nd turn 0.02% 20.0
Following robot probe about math attitudes

on the 1st turn 35% 5.5

on the 2nd turn 60% 8.0

Table 7: Success in getting human to accept floor shift following robot instructions about user interface
(UI) navigation and probes about math attitudes; median human turn lengths if floor shift is accepted.

dialogue corpus, we find that backchannels are
successful in encouraging a partner to hold the
floor. Partners present within the next two turns
88% of the time. However, we find that the
robot backchannels occur on average in 8.9% of
its total turns in a conversation, whereas learn-
ers in human-human conversations backchannel
for 40.8% of their turns. By incorporating more
backchannels in the robot’s dialogues (see Kawa-
hara et al. (2016)), we could encourage presen-
tations more often, and also make the robot’s di-
alogue more similar to that of human learners.
Backchannels could also take non-verbal form,
such as nodding. However, we should be cau-
tious of using backchannels too liberally if they
are not a result of true understanding, since they
could break down trust between robot and human.

In the human-human corpus, we find that speak-
ers use uptakes, answers, and probes as signals
that they are taking the floor. Uptakes are the
most frequently used grounding label in this re-
gard. This reinforces the idea that speakers take
more initiative when taking the floor because they
must produce a relevant turn without being explic-
itly prompted for it.

In the human-robot dialogue corpus, we find
that uptakes in the form of instructions to the hu-
man partner are successful in shifting the floor.
Due to the nature of the human-robot dialogue, we
could not find instances of the robot using answers
at floor shifts. Instead, the robot used probes to
take the conversation floor. These are less suc-
cessful than instructions in immediately shifting
the floor, but this may be due to the unexpect-
edness of these questions; participants may have
been caught off guard.

To achieve more human-like collaborative dia-
logue, we suggest that teachable robots consider
using the following turn-taking strategies:
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e When human partners are not taking initia-
tive, probe partners to encourage them to talk
more and take the floor.

Backchannel more frequently while human
partners are presenting to encourage partners
to talk more and to better articulate their
thoughts and explanations.

Use uptakes, answers, and probes to take the
floor. These can be useful when the conversa-
tion has gotten off-course and the robot wants
to steer it to a different topic.

7 Conclusion

To inform turn-taking strategies for teachable
robots, we annotate and analyze grounding pat-
terns in a corpus of human-human peer-mentoring
dialogues and a corpus of human-robot dialogues
(Wizard-controlled). In the human-human dia-
logues, we identify grounding actions that may
encourage dialogue partners to take initiative in
teaching, while steering the conversation naturally.
We find that some of these grounding actions are
present in the corpus of human-robot dialogues,
but that others are absent, or present to a lesser de-
gree. This suggests future research to investigate
whether student outcomes might improve if robot
interactions could be designed to encourage more
human-like collaborative dialogue.
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A Supplemental human-robot dialogue examples (annotated)

Example 1: Robot presentation (see 2nd turn)
HuUMAN: Correct so what would you be multiplying by? probe
RoBOT:  We multiply two-point-five and fifty presentation
HUMAN: Very good so what does that produce? probe
ROBOT:  The answer is one-fifty presentation
HUMAN: Very good good job uptake
Example 2: Robot probe (see 2nd turn)
HUMAN: Yes answer
RoBOT: How did we get that number? probe
HUMAN: Sixty times two-point-five is one-fifty answer/presentation
RoBOT: Hmm why did we do that? probe
HUMAN: Because we knew how many miles he goes in one one hour presentation

and we wanted to know how many miles he goes in two hours
Example 3: Robot uptake - navigation instruction (see 2nd turn)
HUMAN: Mh-mmm backchannel
RoBOT: Please tap the next button for me so we can move on to the next step uptake/presentation
HUMAN: Okay now we’re gonna work on your torso uptake/presentation
RoBOT: Hmmm that part seems complicated to me can you explain that again? probe
HUMAN: So we know that with a surface area of six the volume is two presentation
Example 4: Robot probe - attitude question (see 2nd turn)
HUMAN: That is correct presentation
RoOBOT: Do you like math? probe
HUMAN: Eh sometimes answer
ROBOT:  Was it hard when you first started? probe
HUMAN: Oh yeah it took me a long time to get multiplications right I was a late  answer

bloomer
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Abstract

When interacting with robots in a situated
spoken dialogue setting, human dialogue
partners tend to assign anthropomorphic
and social characteristics to those robots.
In this paper, we explore the age and ed-
ucational level that human dialogue part-
ners assign to three different robotic sys-
tems, including an un-embodied spoken
dialogue system. We found that how a
robot speaks is as important to human per-
ceptions as the way the robot looks. Us-
ing the data from our experiment, we de-
rived prosodic, emotional, and linguistic
features from the participants to train and
evaluate a classifier that predicts perceived
intelligence, age, and education level.

1 Introduction

Co-located, face-to-face spoken dialogue is the
primary and basic setting where humans learn
their first language (Fillmore, 1981) partly because
dialogue participants (i.e., caregiver and child) can
denote objects in their shared environment which
is an important developmental step in child lan-
guage acquisition (McCune, 2008). This setting
motivates human-robot interaction tasks where
robots acquire semantic meanings of words, and
where part of the semantic representation of those
words is grounded (Harnad, 1990) somehow in the
physical world (e.g., the semantics of the word red
is grounded in perception of color vision). Lan-
guage grounding for robots has received increased
attention (Bansal et al., 2017) and language learn-
ing is an essential aspect to robots that learn about
their environment and how to interact naturally
with humans.

However, humans who interact with robots
often assign anthropomorphic characteristics to
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robots depending on how they perceive those
robots; for example stereotypical gender (Eyssel
and Hegel, 2012), social categorizations (Eyssel
and Kuchenbrandt, 2012) stereotypical roles (Tay
et al., 2014), as well as intelligence, interpretabil-
ity, and sympathy (Novikova et al., 2017). This
has implications for the kinds of tasks that we ask
our robots to do and the settings in which robots
perform those tasks, including tasks where lan-
guage grounding and acquisition is either a di-
rect or indirect goal. It is important not to as-
sume that humans will perceive the robot in the
“correct” way; rather, the age and academic level
appropriateness needs to be monitored, particu-
larly in a grounding and first-language acquisition
task. The obvious follow-up question here is: Do
robots need to acquire language as human chil-
dren do? Certainly, enough functional systems
exist that show how language can be acquired in
many ways. The motivation here, however, is that
those systems could be missing something in the
language acquisition process that children receive
because of the way they are perceived by human
dialogue partners. We cannot tell until we have a
robot that is shown as being perceived as a child
(current work) and use that robot for language
learning tasks (future work).

We hypothesize in this paper that how a robot
looks and acts will not only affect how humans
perceive that robot’s intelligence, but it will also
affect how humans perceive that robot’s age and
academic level. In particular, we explore how hu-
mans perceive three different systems: two em-
bodied robots, and one a spoken dialogue system
(explained in Section 3). We show through an ex-
periment that human perception of robots, particu-
larly in how they perceive the robots’ intelligence,
age, and academic level, is due to how the robot
appears, but also due to how the robot uses speech
to interact.

Proceedings of the SIGDIAL 2018 Conference, pages 130-139,
Melbourne, Australia, 12-14 July 2018. (©2018 Association for Computational Linguistics



2 Related Work

Several areas of research play into this work in-
cluding seminal (Roy and Reiter, 2005) and re-
cent work in grounded semantic learning in var-
ious tasks and settings, notably learning descrip-
tions of the immediate environment (Walter et al.,
2014); navigation (Kollar et al., 2010); nouns, ad-
jectives, and relational spatial descriptions (Ken-
nington and Schlangen, 2015); spatial operations
(Bisk et al., 2018), and verbs (She and Chai,
2016). Previous work has also focused on multi-
modal aspects of human-robot interaction, includ-
ing grounded semantics (Thomason et al., 2016),
engagement (Bohus and Horvitz, 2009), and es-
tablishing common ground (Chai et al., 2014).
Others have explored how robots are perceived
differently by different human age groups such as
the elderly (Kiela et al., 2015), whereas we are fo-
cused on the perceived age of the robot by human
dialogue partners. Moreover, though we do not de-
sign our robots for deliberate affective grounding
(i.e., the coordination effect of building common
understanding of what behaviors can be exhibited,
and how beahvior is interpreted emotionally) as in
Jung (2017), we hypothesize that how our robots
behave effects how they are perceived.

Kiela et al. (2015) compared tutoring sequences
in parent-child and human-robot interactions with
varying verbal and demonstrative behaviors, and
Lyon et al. (2016) brought together several ar-
eas of research relating to language acquisition
in robotics. We differ from this previous work
in that we do not explcitely tell our participants
to interact with the robots as they would a child,
effectively removing the assumption that partici-
pants will treat robots in an age-appropriate way.
Another important difference to their work is that
we opted not to use an anthropomorphically real-
istic child robot because such robots often make
people feel uncomfortable (Eberle, 2009). Our
work is similar in some ways to, but different
from work in paralinguistics where recognition of
age given linguistic features is a common task
(Schuller et al., 2013) in that we are make use of
exra-linguistic features. Our work primarily builds
off of Novikova et al. (2017) who used multimodal
features derived from the human participants to
predict perceived likability and intelligence of a
robot. We use similar multimodal features to pre-
dict the perceived age and academic level. An im-
portant difference to their work is that we designed

131

o o

S ukl

Figure 1: The two physical robots in our study:
KOBUKI with a mounted MS Kinect and COZMO.

the experiment with three robots to vary the ap-
pearance and two language settings to vary the be-
havior and linguistic factors of the robots.

3 Experiment

The primary goal of our experiment is to deter-
mine what factors play into how humans perceive
a robot’s age and academic level. We used the
three following robotic systems in our experiment:

e Kobuki Base Robot with a Microsoft Kinect on top (de-
noted as KOBUKI)

o Anki Cozmo robot (denoted as COZMO)

e Non-physical “robot” (i.e., a non-embodied spoken di-
alogue system) which was just a camera and speaker
(denoted as SDS)

Robot Appearance The COZMO has a head and
animated eyes and is noticeably smaller than the
KOBUKI. The robots did not move during the
experiments, though they were clearly activated
(e.g., the KOBUKI had a small light and COZMO’s
eyes were visible and moved at random intervals,
which is the default setting). Figure 1 shows the
KOBUKI and COZMO robots as seen by the partici-
pants. We chose these three robots because they
were available to us and we assume that, based
solely on appearance, participants would perceive
the robots differently. We chose a spoken dialogue
system (SDS) as one of the “robots” because we
wanted to explore how participants perceive a sys-
tem that is unembodied in direct comparison to
embodied systems.

Robot Behavior The C0OZMO robot has a built-
in speaker with a young-sounding synthetic voice.
We used two adult voices for the KOBUKI and SDS
robots from the Amazon Polly system (the Joey
and Joanna voices) which we played on a small
speaker.! We vary the language setting of the
robots by assigning each robot one of two pos-
sible settings: high and low. In the high setting,

"https://aws.amazon.com/polly/
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Figure 2: Example puzzle made up of three col-
ored pentomino tiles with a specified name.

the following responses were possible: sure; okay;
yeah; oh; I see; uh huh; ___ (where the robot re-
peats a word spoken by the participant) and any
combination of those responses in a single uttered
response; and for the low setting, the following re-
sponses were possible: yes; okay; uh; ___ (where
the robot repeats a word spoken by the partici-
pant). In the high setting, the robot would pro-
duce responses more often than in the low setting.
These responses are characteristic of different lev-
els of feedback; the high setting contains feed-
back strategies that signaled understanding to the
participant, whereas the low setting only signaled
phonetic receipt. This corresponds to previous
work (Stubbe, 1998) which investigated various
feedback strategies employed in human-human di-
alogue termed neutral minimal responses (corre-
sponding to our low setting) and supportive mini-
mal responses (corresponding to our high setting).

With this setup, there are 6 possible settings:
high and low for each of the three robots. Our hy-
pothesis is that participants will perceive KOBUKI
as older and more intelligent than COZMO overall
(in both high and low settings) despite being less
anthropomorphic, perceive COZMO as very young
in the low setting, and that SDS will be perceived
as older than COZMO in the high setting, but simi-
lar to COZMO in the low setting.

3.1 Task and Participants

The experimenter gave each participant consent
and instruction forms to complete before the ex-
periment. The participant was then given three
colored pentomino puzzle tiles and a sheet of pa-
per with three goal shapes (example in Figure 2),
each composed from the corresponding tiles. The
experimenter instructed the participant to sit at a
table where they would see a robot. Their task
was to explain to the robot how to use the tiles to
construct the three goal shapes and tell the robot
the name of each shape. The experimenter did
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Figure 3: Example setting using the KOBUKI
robot. The participants were to show the robot
how to construct the three goal objects on the pa-
per using the corresponding physical tiles. The
additional cameras were used to record audio and
video of the participant.

not specify how to accomplish this task or give ex-
amples of the kinds of things that the robot might
understand. The experimenter then left the room,
leaving the participant with the robot to complete
the task. The robots only responded verbally in the
low/high setting as explained above and their re-
sponses were controlled by the experimenter (i.e.,
in a Wizard-of-Oz paradigm). The robots pro-
duced no physical movement. When the partici-
pant completed each task, they uttered a keyword
(i.e., done), then the experimenter returned and ad-
ministered a questionnaire. This process was fol-
lowed for each of the three robots.

The following aspects of the experiment were
randomly assigned to each participant: the order
of robot presentation, the puzzle tiles and corre-
sponding goal shapes for each robot, the language
setting (i.e., high or low) which remained the same
for all three robot interactions for each partici-
pant, and for KOBUKI and SDS the adult voice
(either Joey or Joanna). We recruited 21 English-
speaking participants (10 Female, 11 Male), most
of whom were students of Boise State University.
The interaction generally took about 30 minutes;
participants received $5 for their participation.

3.2 Data Collection

We recorded the interactions with a camera that
captured the face and a microphone that captured
the speech of each participant. We automatically
transcribed the speech using the Google Speech
API (we manually checked an accented female



anger 0.02 anger 0.036  anger 0.031
contempt 0.009  contempt 0.019  contempt 0.182
disgust  0.009  disgust  0.018  disgust  0.04

fear 0.002  fear 0.005  fear 0.000
happiness 0.005  happiness 0.831  happiness 0.066
neutral 0.909  neutral 0.006  neutral 0.649
sadness  0.03 sadness  0.093  sadness  0.027
surprise ~ 0.011  surprise  0.006  surprise ~ 0.002

Figure 4: Examples of results as processed by the
MS Emotions API.

voice which achieved an estimated WER of 30.0)
and segmented transcriptions into sentences after
1 second of detected silence, which is a longer
pause duration than the average pause duration
for adult-adult conversation (though adults tend to
take longer pauses when interacting with children
(DePaulo and Coleman, 1986)). This resulted in
video, audio, and transcriptions for each partici-
pant, for each robot interaction. We also collected
58 questionnaires (we had to remove several be-
cause they were missing data; i.e., some partic-
ipants did not answer some of the questionnaire
questions), one for each robot interaction, from
each participant.

4 Data Analysis

Using the data collected from the experiment, we
derived subjective measures from the question-
naires and we derived a number of objective mea-
sures from the video, audio, and transcriptions. In
this section, we explain what methods we used to
derive and analyze those measures.

Emotion Features Using the video feed of the
participants, we extracted an image of the partic-
ipants’ faces every 5 seconds. We used the Mi-
crosoft Emotion API for processing these images
to calculate an average distribution over 8 possi-
ble emotion categories for each image: happiness,
sadness, surprise, anger, fear, contempt, disgust,
and neutral. Figure 4 shows an example of face
snapshots taken from the video in the task setting
and the corresponding distributions over the emo-
tions as produced by the APL.

Prosodic Features From the audio, we calcu-
lated the average fundamental frequency of speech
(FO) of the participant over the entire interaction
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between the participant and the robot for each
robot setting.

Linguistic Features Using the automatically
transcribed text, we follow directly from Novikova
et al. (2017) to derive several linguistic measures,
with the exception that we did not derive dialogue-
related features because, though our robots were
engaging in a kind of dialogue with the partici-
pants, they weren’t taking the floor in a dialogue
turn; i.e., our robots were only providing feed-
back to signal either phonetic receipt or seman-
tic understanding (low and high settings, respec-
tively). We used the Lexical Complexity Analyser
(Lu, 2009, 2012), which yields several measures,
two of which we leverage here: lexical diversity
(LD) and the mean segmented type-token ratio
(MSTTR), both of which measure diversity of to-
kens; the latter averaging the diversity over seg-
ments of a given length (for all measures, higher
values denote more respective diversity and so-
phistication in the measured text). The Complex-
ity Analyser also produces a lexical sophistica-
tion (LS) measure, also known as lexical rareness
which is the proportion of lexical word types that
are not common (i.e., not the 2,000 most frequent
words in the British National Corpus).

For syntactic variation, we applied the D-Level
Analyser (Lu, 2009) using the D-Level scale (Lu,
2014). This tool builds off of the Stanford Part-
of-Speech Tagger (Toutanova and Manning, 2000)
and the Collins Parser (Collins, 2003) and pro-
duces a scaled analysis. The D-Level scale counts
utterances belonging to one of 8 levels (Levels 0-
7), where lower levels such as 0-1 include simple
or incomplete sentences; the higher the level, the
more complex the syntactic structure. We report
each of these levels along with a mean level.

Godspeed Questionnaire We used the God-
speed Questionnaire (Bartneck et al., 2009) which
consists of 21 pairs of contrasting characteristics
in areas of anthropomorphism (e.g., artificial vs.
lifelike), likability (e.g., unfriendly vs. friendly),
intelligence (e.g., incompetent vs. competent), and
interpretabilitiy (e.g., confusing vs. clear) each
with a 5-point scaling between them. In addition
to those questions, we included the following:

e Have you ever interacted with a robot before
participating in this study?

e If you could give the robot you interacted



with a human age, how old would you say
it was?

e What level of education would be appropriate
for the robot you interacted with?

For the question asking about human age, an-
swers could be selected from a set of binned
ranges (under 2 years, 2-5, 6-12, 13-17, 18-24, 25-
34, 35 and older), and for the education question,
answers could be selected from preschool, kinder-
garten, 1-12 (each grade could be selected), under-
graduate, graduate, post-graduate.

4.1 Analysis

In this section, we analyze the results of the data
for the emotional, prosodic, and linguistic mea-
sures. We also provide correlations between those
measures and the Godspeed Questionnaire. At the
end of this section, we provide a discussion of the
overall analysis.

Emotion Analysis The most common emo-
tional response as produced by the MS Emotions
API was neutral for all settings, ranging from 73-
87% (avg 81%). The next most common emotions
were happiness (avg 11.1%), sadness (avg 3.7%),
surprise (2%), and contempt (avg 1%). We show
in Figure 5 the average distribution over those four
emotions for all of our settings. All other emotions
were negligible.

Prosodic Analysis Table 1 shows the the aver-
age FO scores for each setting. In general, in
the low linguistic setting participants averaged a
higher FO across all robots. This was the case also
for individual robots. By a wide margin, COZMO

I happiness EEE surprise
BN sadness 1 contempt
0.25
0.20
0.15
0.10
0.05
0.00 = o ) =
kv =
2 5§ 8§ 8 £ 3 8 & & 2 %
- = g ﬂé o - ;\ = _CI i =
=] c 2 g £ QI =] =5 ;I
o = no: £ a2 =
g 8 % § = §
c g )

Figure 5: Average emotion (happiness, sadness,
surprise, contempt) values for all settings.
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cozmo | kobuki | noRob all
low | 173.39 | 164.32 | 158.49 | 164.32
high | 166.86 | 153.18 | 153.15 | 157.73
both | 170.28 | 157.32 155

Table 1: Prosodic analysis: average FO values for
each setting.

setting | LD | LS | MSTTR
low | 0.45 | 0.32 0.62
high | 0.48 | 0.34 0.64
cozmo | 0.46 | 0.29 0.62
noRob | 0.45 | 0.3 0.63
kobuki | 0.46 | 0.28 0.63
cozmo low | 0.46 | 0.23 0.61
noRob low | 0.45 | 0.26 0.62
kobuki low | 0.45 | 0.26 0.63
cozmo high | 0.47 | 0.27 0.66
noRob high | 0.47 | 0.27 0.63
kobuki high | 0.49 | 0.23 0.64

Table 2: Linguistic analysis: LD, LS, and MSTTR
values for all settings.

averaged a higher FO than the other two robots un-
der both low and high settings.

Linguistic Analysis Table 2 shows the results of
the linguistic analysis. The LD (lexical diversity)
scores show that, on average, participants used
more LD in the high settings. Figure 6 shows
the results of the D-Level analysis. LevelO (i.e.,
short utterances) was by far the most common
level which accounted for 66% of all utterances
for all participants. The second most common was
Level7, the level representing the most complex
types of utterances. This is no surprise, as Level7
accounts for longer utterances above some thresh-
old; i.e., all utterances of a certain length and com-
plexity or higher fit under Level7. The low set-
ting had a Level7 value of 17%, and the high set-
ting had a Level7 value of 11%. This may seem
surprising, but it follows previous research which
has shown that, when a speaker receives fewer re-
sponses, they draw out their turns, which result
longer utterances (Stubbe, 1998).

Questionnaire Analysis We calculated (Spear-
man) correlations between the prosodic, emo-
tional, and linguistic features, and the question-
naire responses with the low/high settings and the
robot settings. Table 3 shows the results where the
correlation had a strength of 0.5 or higher. Fig-
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Figure 6: Percentage results for Figure 7:  Questionnaire re- Figure 8: Questionnaire re-

LevelO-Level7 for all settings.

ures 7 and 8 respectively show the age groups and
academic years that the participants perceived for
each robot in each setting. Overall, participants
assigned low age and academic level to all robots
when they produced feedback that did not sig-
nal semantic understanding (i.e., the low setting).
They also assigned a lower age and academic level
to cozMO for all settings (with the exception of
one 10th grade assignment).

Our results confirm the Novikova et al. (2017)
result which showed a strong correlation between
FO and knowledgeable. Interestingly, FO only cor-
related knowledge with the physical robots and the
SDS robot in the low setting. There is more to the
FO correlations: FO in the low setting correlates
with conscious, in the high setting correlates with
natural and human-like, and in the COZMO robot
setting with lifelike. There were some correlations
with age and academic level: LS in the high setting
correlated with the robot being perceived as age
18-24 and when interacting with COZMO, a higher
FO correlated with a perception of COZMO being
6-12 years old and in the 4th grade. Lexical diver-
sity correlates with sadness and contempt, which
indicates that participants use more diverse lan-
guage (i.e., they continue speaking) when they are
frustrated with the interaction (Stubbe, 1998); par-
ticularly in the high setting when they expect more
from the robots. However, they increase their LS
also in the high setting because they perceive the
robot as more intelligent.

Discussion Taken together, the emotional,
prosodic, and linguistic analyses show that par-
ticipants treated the low setting with a higher
average FO, less linguistic complexity, and a
greater display of happiness in their facial emo-
tions. This is useful knowledge: the way a robot

sponses (raw scores) for ages.
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sponses for academic grades.

speaks has an impact on the perception of that
robot by the human users, regardless of whether
or not that robot is embodied. Moreover, despite
the fact that the robots only produced feedback as
the only system behavior, the participants tended
to assign a younger age and academic level to
the cozMo robot. There were subtle differences
in how the participants perceived the KOBUKI
and SDS robots. In general, the participants
seemed to perceive the SDS as being older and as
having a higher academic level in the emotion,
prosodic, and linguistic modalities, though those
differences were small. This leads us to postulate
that anthropomorphic physical features do not
automatically denote intelligence in the same
way as perceived ability to comprehend language.
In general, participants assigned younger ages
and lower academic levels for the low setting,
and higher ones for the high setting. Moreover,
participants generally assigned COzZMO lower
ages, including the most for Under 2 years. Of
note is that no participant assigned COZMO an
age of above 6-12 years for either of the low/high
settings. The highest assigned academic level was
undergrad, which was never assigned to COZMO.
The KOBUKI and SDS robots were both variously
assigned comparable older ages and average
academic levels under all settings.

5 Prediction Tasks

Using the measures we derived from the collected
data, we attempted to determine if we could pre-
dict the perceived age and academic level of the
robots. We used the emotional features (happi-
ness, sadness, surprise, anger, fear, contempt, dis-
gust, and neutral), the prosody (FO average), and
the linguistic features (LS, LD, MSTTR) to predict



low/high | feature correlated feature | corr
low (P)FOavg | (Q) knowledgeable | 0.65
(Q) conscious 0.53

(Q) friendly 0.55

(Q) intelligent 0.57

(Q) kind 0.55

(L)LS (Q) friendly 0.51

high (P) FO avg | (Q) natural 0.53
(Q) human-like 0.5

(Q) enjoyable 0.51

(Q) nice 0.57

(Q) sensible 0.66

(L)LD (E) sadness 0.68

(E) contempt 0.53

@L)LS (Q) age 18-24 0.56

(Q) meets expect. 0.63

(Q) sensible 0.62

(Q) knowledgeable | 0.63

(Q) responsive 0.64

robot feature correlated feature | corr
cozmMo | (P)FOavg | (Q)age6-12 0.51
(Q) 4th grade 0.53

(Q) lifelike 0.62

(Q) knowledgeable | 0.81

(Q) competent 0.64

(Q) intelligent 0.68

(L) MSTTR | (E) sadness -0.55

KOBUKI | (P)FOavg | (Q) knowledgeable | 0.52

(L) MSTTR | (Q) age 2-5 -0.53

SDS (P)FOavg | (Q) liked 0.51

Table 3: Spearman correlations between linguistic
(L), prosodic (P), emotional (E), and questionnaire
(Q) measures.

both the age and the academic level as separate
classification tasks. We also predict intelligence,
likability, and interpretability in order to compare
to previous work.

5.1 Predicting the Perceived Age &
Academic Level of Robots

Data & Task For predicting both age and aca-
demic level, we used the 58 data points from the
participants for each interaction with each robot
and applied those points to a 5-fold cross valida-
tion. We used a logistic regression classifier to per-
form the classification using the Python scikitlearn
library. We report accuracy for our metric.

Age We ran the cross validation for two differ-
ent settings when predicting age. In particular, we
varied the labels that could be classified. We con-
ducted a first task which treated all of the 7 pos-
sible outcomes for age as individual labels (i.e.,
under 2 years, 2-5, 6-12, 13-17, 18-24, 25-34, 35
and older) and a second task splitting at age 18
(i.e., younger than 18 is one label; 18 & older is
the other label). The respective random baselines
are 14% and 50%.
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age acc
7 labels 22%
2 labels (<, >=18) 87%
academic level acc
14 labels 27%
2 labels (<, >= preschool) | 78%

Table 4: Accuracies for predicting age and aca-
demic level.

Academic Levels Similar to age, we ran the
cross validation for two different settings when
predicting for perceived academic level. The first
task treated all of the 14 possible outcomes for
academic level as individual labels (preschool,
kindergarten, 1-11, undergraduate; we leave out
graduate and post-graduate because they were
never selected in the questionnaires, nor was 12th
grade), the second task treated treated preschool
and beyond preschool as a binary classification
task. The respective random baselines are 7% and
50%.

Results The results of this prediction task are in
Table 4. As might be expected, when attempting
to predict using many labels, the classification task
is challenging with so little data. However, the
classifiers beat their respective random baselines.
When classifying for age, the best performing task
was a binary task splitting on 18 years at 87%, ef-
fectively making it a classifier that can determine
if a human user perceives the robot as an adult or
as a minor. The best performing task for the aca-
demic level classification was treating preschool
and above preschool as a binary classifier. Though
the data is sparse, these classifiers give us useful
information: a robot can use these classifiers to de-
termine if they are perceived as an adult by human
dialogue partners, and, more importantly for our
purposes, as a preschool aged child, which is the
age range in which we are interested for language
acquisition tasks.

5.2 Predicting Intelligence, Likability, and
Interpretability

Data & Task To directly compare with
Novikova et al. (2017), we also predicted per-
ceived intelligence, likability, and interpretability
using a ridge regression classifier (which is
optimized to reduced standard error) while con-
sidering only certain subsets of out our feature
set. We evaluated when only considering emo-



group | emot. | pros. | non-ling. | ling. | all
like 1.08 | 0.94 0.94 1.02 | 0.94
intel 195 | 1.44 1.44 0.84 | 1.44
interp | 0.67 | 0.7 0.7 0.61 | 0.7

Table 5: Performance of prediction calculated
with RMSE for likability, intelligence, and inter-
pretability. Bold denotes the smallest RMSE for
a particular feature subset (emotion, prosody, non-
linguistic, linguistic, and all).

tional features, prosody, non-linguistic (in our
case, emotions and prosody), linguistic, and all
combined features. Our metric was root mean
square error (RMSE). We average the RMSE over
a 5-fold cross-validation.

Results Table 5 shows the results of this pre-
diction task. We found that likability is pre-
dicted best by prosody, perceived intelligence is
predicted best by linguistic features, and inter-
pretability is predicted best by also using linguis-
tic features. One big difference between our ex-
periment data and that of previous work is that we
did not consider dialogue features (e.g., number of
turns, speech duration, number of self-repetitions,
etc.), which they termed as non-linguistic fea-
tures. Those features were important in predict-
ing perceived intelligence and interpretability in
their work; here, linguistic and prosodic features
were the most effective in predicting all three hu-
man perceptions of the robots. This confirms the
work of Novikova et al. (2017) that linguistic fea-
tures are a good predictor of interpretability.

6 Discussion & Conclusion

In this paper, we have investigated how human
dialogue partners perceive the age and academic
level of three robotic systems, two of which were
embodied (albeit not particularly anthropomorphi-
cally), and one unembodied spoken dialogue sys-
tem. We collected data from participants as they
interacted with the three robotic systems then de-
rived prosodic, emotional, and linguistic features
from that participant data, and found that those
features correlate with certain age and academic
perceptions of those robots, as well as a num-
ber of other subjective measures from the God-
speed Questionnaire. This work confirms what
previous work has shown: that humans tend to
perceive robots differently depending on different
factors; in our case, varying the look and spo-
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ken reposes determined how the human partici-
pants perceived the age and academic levels, as
well as intelligence, likability, and interpretabil-
ity of those robots. We were then able to use
these features to automatically predict perceived
age (i.e., adult or minor), perceived academic level
(i.e., preschool or above) and perceived intelli-
gence, likability, and interpretabilitiy. One im-
portant result of our experiment was that human
dialogue partners perceive the unembodied robot
(i.e., SDS) in similar ways to embodied robots; that
is, the way a robot or system speaks (i.e., in our
case, produces feedback by signaling either pho-
netic receipt or semantic understanding) is as im-
portant to human perceptions of intelligence and
likability as visual characteristics.

We cannot not simply assume that human dia-
logue partners would treat a robot as they would a
child, which is an important aspect of tasks with
realistic first-language acquisition settings. The
work presented here shows that those interacting
with a robot like COZMO will more likely treat
COZMO as a learning child instead of as an adult.
This is an important result because for future work
we plan on using the COZMO robot as a platform
for first language acquisition research, where the
setting will be more similar to first language acqui-
sition in humans than common language ground-
ing tasks. The COZMO robot is an afforable way
for reseachers to couple spoken dialogue systems
with a robotic system; it has a Python SDK which
allows researchers to access its sensors (includ-
ing a color camera) and control its wheel and arm
movements, as well as its speech and animated
face. Our results show that human users generally
like cozMo, find cozmo lifelike, competent, and
intelligent; i.e., COZMO may be treated as a child,
but it has potential to learn.

In future work, we will apply a model of
grounded semantics in a co-located dialogue set-
ting where COZMO can learn the semantics of
words as it interacts with human dialogue partners.
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Abstract

Creating an intelligent conversational sys-
tem that understands vision and language
is one of the ultimate goals in Artificial
Intelligence (AI) (Winograd, 1972). Ex-
tensive research has focused on vision-to-
language generation, however, limited re-
search has touched on combining these
two modalities in a goal-driven dialog con-
text. We propose a multimodal hierar-
chical reinforcement learning framework
that dynamically integrates vision and lan-
guage for task-oriented visual dialog. The
framework jointly learns the multimodal
dialog state representation and the hierar-
chical dialog policy to improve both dia-
log task success and efficiency. We also
propose a new technique, state adaptation,
to integrate context awareness in the dia-
log state representation. We evaluate the
proposed framework and the state adapta-
tion technique in an image guessing game
and achieve promising results.

1 Introduction

The interplay between vision and language has
created a range of interesting applications, in-
cluding image captioning (Karpathy and Fei-
Fei, 2015), visual question generation (VQG)
(Mostafazadeh et al., 2016), visual question an-
swering (VQA) (Antol et