The WebNLG Challenge: Generating Text from RDF Data
Claire Gardent, Anastasia Shimorina, Shashi Narayan, Laura Perez-Beltrachini
Abstract
The WebNLG challenge consists in mapping sets of RDF triples to text. It provides a common benchmark on which to train, evaluate and compare “microplanners”, i.e. generation systems that verbalise a given content by making a range of complex interacting choices including referring expression generation, aggregation, lexicalisation, surface realisation and sentence segmentation. In this paper, we introduce the microplanning task, describe data preparation, introduce our evaluation methodology, analyse participant results and provide a brief description of the participating systems.- Anthology ID:
- W17-3518
- Volume:
- Proceedings of the 10th International Conference on Natural Language Generation
- Month:
- September
- Year:
- 2017
- Address:
- Santiago de Compostela, Spain
- Venue:
- INLG
- SIG:
- SIGGEN
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 124–133
- Language:
- URL:
- https://aclanthology.org/W17-3518
- DOI:
- 10.18653/v1/W17-3518
- Cite (ACL):
- Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. 2017. The WebNLG Challenge: Generating Text from RDF Data. In Proceedings of the 10th International Conference on Natural Language Generation, pages 124–133, Santiago de Compostela, Spain. Association for Computational Linguistics.
- Cite (Informal):
- The WebNLG Challenge: Generating Text from RDF Data (Gardent et al., INLG 2017)
- PDF:
- https://preview.aclanthology.org/nodalida-main-page/W17-3518.pdf
- Data
- WebNLG