ACL HLT 2011

The 49th Annual Meeting of the
Association for Computational Linguistics:
Human Language Technologies

Proceedings of the Conference

19-24 June, 2011
Portland, Oregon, USA



Production and Manufacturing by
Omnipress, Inc.

2600 Anderson Street

Madison, WI 53704 USA

(©2011 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street

Stroudsburg, PA 18360

USA

Tel: +1-570-476-8006

Fax: +1-570-476-0860

acl@aclweb.org

ISBN 978-1-932432-87-9

ii



We dedicate the ACL 2011 proceedings to the memory of Fred Jelinek (1932-2010), who received
ACL’s Lifetime Achievement Award in 2009. His award acceptance speech can be found in
Computational Linguistics 35(4), and an obituary by Mark Liberman appeared in Computational
Linguistics 36(4). Several other newspaper and professional society obituaries have described his
extraordinary personal life and career.

Fred’s influence on computational linguistics is almost impossible to overstate. In the 1970s and 1980s,
he and his colleagues at IBM developed the statistical paradigm that dominates our field today, including
a great many specific techniques for modeling, parameter estimation, and search that continue to enjoy
wide use. Even more fundamentally, as Mark Liberman recounts in his obituary, Fred led the field away
from a mode where lone inventors defended their designs by appealing to aesthetics and anecdotes,
to a more communal and transparent process of evaluating methods objectively through controlled
comparisons on training and test sets.

Under Fred’s visionary leadership, the IBM group revolutionized speech recognition by adopting a
statistical, data-driven perspective that was deeply at odds with the rationalist ethos of the time. The
group began with Fred’s information-theoretic reconceptualization of the task as recovering a source
signal (text) after it had passed through a noisy channel. They then worked out the many components
needed for a full speech recognizer, along with the training algorithms for each component and global
decoding algorithms. Steve Young, in an obituary in the IEEE SLTC Newsletter, describes Fred as not
a pioneer but the pioneer of speech recognition.

In the 1980s, the IBM speech group’s work on language modeling drew them toward deeper analysis of
text. Fred and his colleagues introduced NLP methods such as word clustering, HMM part-of-speech
tagging, history-based parsing, and prefix probability computation in PCFGs. They famously turned
their noisy-channel lens on machine translation, founding the field of statistical MT with a series of
ingenious and highly influential models.
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After Fred moved to Johns Hopkins University in 1993, he worked tirelessly to improve language
modeling by incorporating syntactic and other long-range dependencies as well as semantic classes. He
also presided for 16 years over the Johns Hopkins Summer Workshops, whose 51 teams from 1995-
2010 attacked a wide range of topics in human language technology, many making groundbreaking
advances in the field.

There is a popular conception that Fred was somehow hostile to linguistics. Certainly he liked to
entertain others by repeating his 1988 quip that “Any time a linguist leaves the group, the recognition
rate goes up.” Yet he had tried to leave information theory for linguistics as early as 1962, influenced
by Noam Chomsky’s lectures and his wife Milena’s earlier studies with Roman Jakobson. He always
strove for clean formal models just as linguists do. He was deeply welcoming toward any attempt to
improve models through better linguistics, as long as they had a large number of parameters. Indeed, it
was one of the major frustrations of his career that it was so difficult to beat n-gram language models,
when humans were evidently using additional linguistic and world knowledge to obtain much better
predictive performance. As he said in an award acceptance speech in 2004, “My colleagues and I
always hoped that linguistics will eventually allow us to strike gold.”

Fred was skeptical only about the relevance of armchair linguistics to engineering, believing that there
was far more variation in the data than could be described compactly by humans. For this reason,
while he was quite interested in recovering or exploiting latent linguistic structure, he trusted human-
annotated linguistic data to be a better description of that structure than human-conceived linguistic
rules. Statistical models could be aided even by imperfect or incomplete annotations, such as unaligned
orthographic transcriptions, bilingual corpora, or syntactic analyses furnished by ordinary speakers.
Fred pushed successfully for the development of such resources, notably the IBM/Lancaster Treebank
and its successor, the Penn Treebank.

Fred influenced many of us personally. He was warm-hearted, witty, cultured, thoughtful about the
scientific process, a generous mentor, and always frank, honest, and unpretentious. The changes that
he brought to our field are largely responsible for its recent empirical progress and commercial success.
They have also helped make it attractive to many bright, technically sophisticated young researchers.
This proceedings volume, which is dedicated to his memory, testifies to the overwhelming success of
his leadership and vision.

By Jason Eisner, on behalf of ACL 2011 Organizing Committee
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Preface: General Chair

Welcome to the 49th Annual Meeting of the Association for Computational Linguistics in Portland,
Oregon. ACL is perhaps the longest-running conference series in computer science. Amazingly, it is
still growing. We expect this year’s ACL to attract an even larger number of participants than usual,
since 2011 happens to be an off-year for COLING, EACL and NAACL.

The yearly success of ACL results from the dedication and hard work of many people. This year is no
exception. I would like to thank all of them for volunteering their time and energy in service to our
community.

I thank the Program Co-Chairs Rada Mihalcea and Yuji Matsumoto for putting together a wonderful
main conference program, including 164 long papers, 128 short papers and much anticipated keynote
speeches by David Ferrucci and Lera Boroditsky. Tutorial Co-Chairs, Patrick Pantel and Andy Way
solicited proposals and selected six fascinating tutorials in a wide range of topics. The Workshop Co-
Chairs, Hal Daume III and John Carroll, organized a joint selection process with EMNLP 2011. The
program consists of 3 two-day workshops and 13 one-day workshops, a new record number for ACL.
Sadao Kurohashi, Chair of System Demonstrations, assembled a committee and oversaw the review of
46 demo submissions.

The Student Session is organized by Co-Chairs, Sasa Petrovic, Emily Pitler, Ethan Selfridge and Faculty
Advisors: Miles Osborne, Thamar Solorio. They introduced a new, poster-only format to be held in
conjunction with the main ACL poster session. They also obtained NSF funding to provide travel
support for all student session authors.

Special thank goes to Publication Chair, Guodong Zhou and his assistant Hong Yu. They produced the
entire proceedings of the conference.

We are indebted to Brain Roark and the local arrangement committee for undertaking a phenomenal
amount detailed work over the course of two years to host this conference, such as allocating
appropriate space to meet all the needs of the scientific program, compiling and printing of the
conference handbook, arranging a live tango band for the banquet and dance, to name just a few. The
local arrangement committee consists of: Nate Bodenstab (webmeister), Peter Heeman (exhibitions),
Christian Monson (student volunteers), Zak Shafran and Meg Mitchell (social), Richard Sproat (local
sponsorship), Mahsa Yarmohammadi and Masoud Rouhizadeh (student housing coordinators) and
Aaron Dunlop (local publications coordinator).

I want to express my gratitude to Ido Dagan, Chair of the ACL Conference Coordination Committee,
Dragomir Radev, ACL Secretary, and Priscilla Rasmussen, ACL Business Manager, for their advice
and guidance throughout the process.

ACL 2011 has two Platinum Sponsors (Google and Baidu), one Gold Sponsor (Microsoft), two
Silver sponsors (Pacific Northwest National Lab and Yahoo!), and seven Bronze Sponsors and six
Supporters. We are grateful for the financial support from these organizations. I would like to thank
and applaud the tremendous effort by the ACL sponsorship committee: Srinivas Bangalore (AT&T),
Massimiliano Ciaramita (Google), Kevin Duh (NTT), Michael Gamon (Microsoft), Stephen Pulman
(Oxford), Priscilla Rasmussen (ACL), and Haifeng Wang (Baidu).



Finally, I would like to thank all the area chairs, workshop organizers, tutorial presenters, authors,
reviewers and conference attendees for their participation and contribution. I hope everyone will have
a great time sharing ideas and inspiring one another at this conference.

ACL 2011 General Chair
Dekang Lin, Google, Inc.
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Preface: Program Committee Co-Chairs

Welcome to the program of the 2011 Conference of the Association for Computational Linguistics!
ACL continues to grow, and this year the number of paper submissions broke once again the record set
by previous years. We received a total of 1,146 papers, out of which 634 were submitted as long papers
and 512 were submitted as short papers. 25.7

To achieve the goal of a broad technical program, we followed the initiative from last year and solicited
papers under four main different categories: theoretical computational linguistics, empirical/data-
driven approaches, resources/evaluation, and applications/tools. We also continued to accept other
types of papers (e.g., surveys or challenge papers), although unlike the previous year, no separate
category was created for these papers. The papers falling under one of the four categories were reviewed
using specialized reviewed forms; we also had a general review form that was used to review the papers
that did not fall under one of the four main categories.

A new initiative this year was to also accept papers accompanied by supplemental materials (software
and/or datasets). In addition to the regular review of the research quality of the paper, the accompanied
resources were also reviewed for their quality, and the acceptance or rejection decisions were made
based on the quality of both the paper and the supplemental materials. Among all the submissions,
a total of 84 papers were accompanied by a software package and 117 papers were accompanied
by a dataset. Among all the accepted papers, 30 papers are accompanied by software and 35
papers are accompanied by a dataset. These materials will be hosted on the ACL web site under
http://www.aclweb.org/supplementals.

We are delighted to have two distinguished invited speakers: Dr. David Ferrucci (Principal Investigator,
IBM Research), who will talk about his team’s work on building Watson — a deep question answering
system that achieved champion-level performance at Jeopardy!, and Lera Boroditsky (Assistant
Professor, Stanford University), who will give a presentation on her research on how the languages
we speak shape the way we think. In addition, the recipient of the ACL Lifetime Achievement Award
will present a plenary lecture during the final day of the conference.

As in previous years, there will be three awards, one for the best long paper, one for the best long
paper by a student, and one for the best short paper. The candidates for the best paper awards were
nominated by the area chairs, who took into consideration the feedback they received from the reviewers
on whether a paper might merit a best paper prize. From among the nominations we received, we
selected the top five candidates for the long and short papers, and the final awards were then selected by
the area chairs together with the program co-chairs. The recipients of the best paper awards will present
their papers in a plenary session during the second day of the conference.

There are many individuals to thank for their contributions to the conference program. First and
foremost, we would like to thank the authors who submitted their work to ACL. The growing number of
submissions reflects how broad and active our field is. We are deeply indebted to the area chairs and the
reviewers for their hard work. They enabled us to select an exciting program and to provide valuable
feedback to the authors. We thank the general conference chair Dekang Lin and the local arrangements
committee headed by Brian Roark for their help and advice, as well as last year’s program committee
co-chairs, Stephen Clark and Sandra Carberry, for sharing their experiences. Additional thanks go to
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the publications chair, Guodong Zhang, who put this volume together, and Yu Hong, who helped him
with this task.

We are most grateful to Priscilla Rasmussen, who helped us with various logistic and organizational
aspects of the conference. Rich Gerber and the START team responded to our questions quickly, and
helped us manage the large number of submissions smoothly.

Enjoy the conference!

ACL 2011 Program Co-Chairs
Yuji Matsumoto, Nara Institute of Science and Technology
Rada Mihalcea, University of North Texas
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Chris Dyer, Jonathan H. Clark, Alon Lavie and Noah A. Smith

Model-Based Aligner Combination Using Dual Decomposition
John DeNero and Klaus Macherey

An Algorithm for Unsupervised Transliteration Mining with an Application to Word Align-
ment
Hassan Sajjad, Alexander Fraser and Helmut Schmid

Session 3-B: (4:10-5:50) Parsing 1

Beam-Width Prediction for Efficient Context-Free Parsing
Nathan Bodenstab, Aaron Dunlop, Keith Hall and Brian Roark

Optimal Head-Driven Parsing Complexity for Linear Context-Free Rewriting Systems
Pierluigi Crescenzi, Daniel Gildea, Andrea Marino, Gianluca Rossi and Giorgio Satta

Prefix Probability for Probabilistic Synchronous Context-Free Grammars
Mark-Jan Nederhof and Giorgio Satta

A Comparison of Loopy Belief Propagation and Dual Decomposition for Integrated CCG

Supertagging and Parsing
Michael Auli and Adam Lopez
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Monday, June 20, 2011 (continued)
Session 3-C: (4:10-5:50) Summarization

Jointly Learning to Extract and Compress
Taylor Berg-Kirkpatrick, Dan Gillick and Dan Klein

Discovery of Topically Coherent Sentences for Extractive Summarization
Asli Celikyilmaz and Dilek Hakkani-Tur

Coherent Citation-Based Summarization of Scientific Papers
Amjad Abu-Jbara and Dragomir Radev

A Class of Submodular Functions for Document Summarization
Hui Lin and Jeff Bilmes

Session 3-D: (4:10-5:50) Relation Extraction

Semi-supervised Relation Extraction with Large-scale Word Clustering
Ang Sun, Ralph Grishman and Satoshi Sekine

In-domain Relation Discovery with Meta-constraints via Posterior Regularization
Harr Chen, Edward Benson, Tahira Naseem and Regina Barzilay

Knowledge-Based Weak Supervision for Information Extraction of Overlapping Relations
Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke Zettlemoyer and Daniel S. Weld

Exploiting Syntactico-Semantic Structures for Relation Extraction
Yee Seng Chan and Dan Roth
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Monday, June 20, 2011 (continued)
Session 3-E: (4:10-5:50) Semantics

Together We Can: Bilingual Bootstrapping for WSD
Mitesh M. Khapra, Salil Joshi, Arindam Chatterjee and Pushpak Bhattacharyya

Which Noun Phrases Denote Which Concepts?
Jayant Krishnamurthy and Tom Mitchell

Semantic Representation of Negation Using Focus Detection
Eduardo Blanco and Dan Moldovan

Learning Dependency-Based Compositional Semantics
Percy Liang, Michael Jordan and Dan Klein

(6:00-8:30) Poster Session (L.ong papers)

(6:00-8:30) Poster Session (Short papers)
Tuesday, June 21, 2011

Session 4-A: (9:00-10:30) Best Paper Session

Unsupervised Part-of-Speech Tagging with Bilingual Graph-Based Projections
Dipanjan Das and Slav Petrov

Global Learning of Typed Entailment Rules
Jonathan Berant, Ido Dagan and Jacob Goldberger
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Tuesday, June 21, 2011 (continued)
(10:30-11:00) Coffee Break
(3:30-4:00) Coffee Break
Session 7-A: (4:00-5:40) SMT: Phrase-based Models

Incremental Syntactic Language Models for Phrase-based Translation
Lane Schwartz, Chris Callison-Burch, William Schuler and Stephen Wu

An Unsupervised Model for Joint Phrase Alignment and Extraction
Graham Neubig, Taro Watanabe, Eiichiro Sumita, Shinsuke Mori and Tatsuya Kawahara

Learning Hierarchical Translation Structure with Linguistic Annotations
Markos Mylonakis and Khalil Sima’an

Phrase-Based Translation Model for Question Retrieval in Community Question Answer
Archives
Guangyou Zhou, Li Cai, Jun Zhao and Kang Liu

Session 7-B: (4:00-5:40) Parsing 2
Neutralizing Linguistically Problematic Annotations in Unsupervised Dependency Parsing
Evaluation

Roy Schwartz, Omri Abend, Roi Reichart and Ari Rappoport

Dynamic Programming Algorithms for Transition-Based Dependency Parsers
Marco Kuhlmann, Carlos Gémez-Rodriguez and Giorgio Satta

Shift-Reduce CCG Parsing
Yue Zhang and Stephen Clark

Web-Scale Features for Full-Scale Parsing
Mohit Bansal and Dan Klein
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Tuesday, June 21, 2011 (continued)
Session 7-C: (4:00-5:40) Spoken Language Processing

The impact of language models and loss functions on repair disfluency detection
Simon Zwarts and Mark Johnson

Learning Sub-Word Units for Open Vocabulary Speech Recognition
Carolina Parada, Mark Dredze, Abhinav Sethy and Ariya Rastrow

Computing and Evaluating Syntactic Complexity Features for Automated Scoring of Spon-
taneous Non-Native Speech
Miao Chen and Klaus Zechner

N-Best Rescoring Based on Pitch-accent Patterns
Je Hun Jeon, Wen Wang and Yang Liu

Session 7-D: (4:00-5:40) Natural Language Processing Applications

Lexically-Triggered Hidden Markov Models for Clinical Document Coding
Svetlana Kiritchenko and Colin Cherry

Learning to Grade Short Answer Questions using Semantic Similarity Measures and De-
pendency Graph Alignments
Michael Mohler, Razvan Bunescu and Rada Mihalcea

Age Prediction in Blogs: A Study of Style, Content, and Online Behavior in Pre- and
Post-Social Media Generations

Sara Rosenthal and Kathleen McKeown

Extracting Social Power Relationships from Natural Language
Philip Bramsen, Martha Escobar-Molano, Ami Patel and Rafael Alonso
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Tuesday, June 21, 2011 (continued)
Session 7-E: (4:00-5:40) Coreference Resolution

Bootstrapping coreference resolution using word associations
Hamidreza Kobdani, Hinrich Schuetze, Michael Schiehlen and Hans Kamp

Large-Scale Cross-Document Coreference Using Distributed Inference and Hierarchical
Models

Sameer Singh, Amarnag Subramanya, Fernando Pereira and Andrew McCallum

A Cross-Lingual ILP Solution to Zero Anaphora Resolution
Ryu lida and Massimo Poesio

Coreference Resolution with World Knowledge
Altaf Rahman and Vincent Ng

(7:00-11:00) Banquet
Wednesday, June 22, 2011

(9:00-10:00) Invited Talk 2: How do the languages we speak shape the ways we think?
by Lera Boroditsky

(10:00-10:30) Coffee Break
Session 5-A: (10:30-12:10) SMT: Tree-based Models

How to train your multi bottom-up tree transducer
Andreas Maletti

Binarized Forest to String Translation
Hao Zhang, Licheng Fang, Peng Xu and Xiaoyun Wu

Learning to Transform and Select Elementary Trees for Improved Syntax-based Machine
Translations

Bing Zhao, Young-Suk Lee, Xiaogiang Luo and Liu Li

Rule Markov Models for Fast Tree-to-String Translation
Ashish Vaswani, Haitao Mi, Liang Huang and David Chiang
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Wednesday, June 22, 2011 (continued)
Session 5-B: (10:30-12:10) Morphology/POS Induction

A Hierarchical Pitman-Yor Process HMM for Unsupervised Part of Speech Induction
Phil Blunsom and Trevor Cohn

Using Deep Morphology to Improve Automatic Error Detection in Arabic Handwriting
Recognition
Nizar Habash and Ryan Roth

A Discriminative Model for Joint Morphological Disambiguation and Dependency Pars-
ing
John Lee, Jason Naradowsky and David A. Smith

Unsupervised Bilingual Morpheme Segmentation and Alignment with Context-rich Hidden
Semi-Markov Models
Jason Naradowsky and Kristina Toutanova

Session 5-C: (10:30-12:10) Error Correction

A Graph Approach to Spelling Correction in Domain-Centric Search
Zhuowei Bao, Benny Kimelfeld and Yunyao Li

Grammatical Error Correction with Alternating Structure Optimization
Daniel Dahlmeier and Hwee Tou Ng

Algorithm Selection and Model Adaptation for ESL Correction Tasks
Alla Rozovskaya and Dan Roth

Automated Whole Sentence Grammar Correction Using a Noisy Channel Model
Y. Albert Park and Roger Levy
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Wednesday, June 22, 2011 (continued)
Session 5-D: (10:30-12:10) Information Extraction

A Generative Entity-Mention Model for Linking Entities with Knowledge Base
Xianpei Han and Le Sun

Simple supervised document geolocation with geodesic grids
Benjamin Wing and Jason Baldridge

Piggyback: Using Search Engines for Robust Cross-Domain Named Entity Recognition
Stefan Riid, Massimiliano Ciaramita, Jens Miiller and Hinrich Schiitze

Template-Based Information Extraction without the Templates
Nathanael Chambers and Dan Jurafsky

Session 5-E: (10:30-12:10) Discourse

Classifying arguments by scheme
Vanessa Wei Feng and Graeme Hirst

Automatically Evaluating Text Coherence Using Discourse Relations
Ziheng Lin, Hwee Tou Ng and Min-Yen Kan

Underspecifying and Predicting Voice for Surface Realisation Ranking
Sina Zarrief3, Aoife Cahill and Jonas Kuhn

Recognizing Authority in Dialogue with an Integer Linear Programming Constrained

Model
Elijah Mayfield and Carolyn Penstein Rosé
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Wednesday, June 22, 2011 (continued)
(12:10 - 2:00) Lunch
(1:30-3:00) ACL Business Meeting
(3:00-3:30) Coffee Break
Session 6-A: (3:30-4:45) MT: Reordering Models

Reordering Metrics for MT
Alexandra Birch and Miles Osborne

Reordering with Source Language Collocations
Zhanyi Liu, Haifeng Wang, Hua Wu, Ting Liu and Sheng Li

A Joint Sequence Translation Model with Integrated Reordering
Nadir Durrani, Helmut Schmid and Alexander Fraser

Session 6-B: (3:30-4:45) Grammar

Integrating surprisal and uncertain-input models in online sentence comprehension: for-
mal techniques and empirical results
Roger Levy

Metagrammar engineering: Towards systematic exploration of implemented grammars
Antske Fokkens

Simple Unsupervised Grammar Induction from Raw Text with Cascaded Finite State Mod-

els
Elias Ponvert, Jason Baldridge and Katrin Erk
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Wednesday, June 22, 2011 (continued)
Session 6-C: (3:30-4:45) Generation/Paraphrasing
Extracting Paraphrases from Definition Sentences on the Web
Chikara Hashimoto, Kentaro Torisawa, Stijn De Saeger, Jun’ichi Kazama and Sadao Kuro-

hashi

Learning From Collective Human Behavior to Introduce Diversity in Lexical Choice
Vahed Qazvinian and Dragomir R. Radev

Ordering Prenominal Modifiers with a Reranking Approach
Jenny Liu and Aria Haghighi

Session 6-D: (3:30-4:45) Event-Role Extraction

Unsupervised Semantic Role Induction via Split-Merge Clustering
Joel Lang and Mirella Lapata

Using Cross-Entity Inference to Improve Event Extraction
Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao, Guodong Zhou and Qiaoming Zhu

Peeling Back the Layers: Detecting Event Role Fillers in Secondary Contexts
Ruihong Huang and Ellen Riloff

Session 6-E: (3:30-4:20) Knowledge Base Extension

Knowledge Base Population: Successful Approaches and Challenges
Heng Ji and Ralph Grishman

Nonlinear Evidence Fusion and Propagation for Hyponymy Relation Mining
Fan Zhang, Shuming Shi, Jing Liu, Shuqi Sun and Chin-Yew Lin
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Wednesday, June 22, 2011 (continued)

(5:00-6:10) Life time achievement award and closing
Monday, June 20, 2011

(6:00-8:30) Poster Session (Long papers)

A Pronoun Anaphora Resolution System based on Factorial Hidden Markov Models
Dingcheng Li, Tim Miller and William Schuler

Disentangling Chat with Local Coherence Models
Micha Elsner and Eugene Charniak

An Affect-Enriched Dialogue Act Classification Model for Task-Oriented Dialogue
Kristy Boyer, Joseph Grafsgaard, Eun Young Ha, Robert Phillips and James Lester

Fine-Grained Class Label Markup of Search Queries
Joseph Reisinger and Marius Pasca

Creating a manually error-tagged and shallow-parsed learner corpus
Ryo Nagata, Edward Whittaker and Vera Sheinman

Crowdsourcing Translation: Professional Quality from Non-Professionals
Omar F. Zaidan and Chris Callison-Burch

A Statistical Tree Annotator and Its Applications
Xiaoqgiang Luo and Bing Zhao

Consistent Translation using Discriminative Learning - A Translation Memory-inspired
Approach
Yanjun Ma, Yifan He, Andy Way and Josef van Genabith

Machine Translation System Combination by Confusion Forest
Taro Watanabe and Eiichiro Sumita

Hypothesis Mixture Decoding for Statistical Machine Translation
Nan Duan, Mu Li and Ming Zhou
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Monday, June 20, 2011 (continued)

Minimum Bayes-risk System Combination
Jesus Gonzalez-Rubio, Alfons Juan and Francisco Casacuberta

Adjoining Tree-to-String Translation
Yang Liu, Qun Liu and Yajuan Lii

Enhancing Language Models in Statistical Machine Translation with Backward N-grams
and Mutual Information Triggers
Deyi Xiong, Min Zhang and Haizhou Li

Translating from Morphologically Complex Languages: A Paraphrase-Based Approach
Preslav Nakov and Hwee Tou Ng

Gappy Phrasal Alignment By Agreement
Mohit Bansal, Chris Quirk and Robert Moore

Translationese and Its Dialects
Moshe Koppel and Noam Ordan

Rare Word Translation Extraction from Aligned Comparable Documents
Emmanuel Prochasson and Pascale Fung

Using Bilingual Parallel Corpora for Cross-Lingual Textual Entailment
Yashar Mehdad, Matteo Negri and Marcello Federico

Using Large Monolingual and Bilingual Corpora to Improve Coordination Disambigua-
tion

Shane Bergsma, David Yarowsky and Kenneth Church

Unsupervised Decomposition of a Document into Authorial Components
Moshe Koppel, Navot Akiva, Idan Dershowitz and Nachum Dershowitz

Discovering Sociolinguistic Associations with Structured Sparsity
Jacob Eisenstein, Noah A. Smith and Eric P. Xing

Local and Global Algorithms for Disambiguation to Wikipedia
Lev Ratinov, Dan Roth, Doug Downey and Mike Anderson

xlv



Monday, June 20, 2011 (continued)
A Stacked Sub-Word Model for Joint Chinese Word Segmentation and Part-of-Speech Tag-
ging

Weiwei Sun

Language-independent compound splitting with morphological operations
Klaus Macherey, Andrew Dai, David Talbot, Ashok Popat and Franz Och

Parsing the Internal Structure of Words: A New Paradigm for Chinese Word Segmentation
Zhongguo Li

A Simple Measure to Assess Non-response
Anselmo Pefias and Alvaro Rodrigo

Improving Question Recommendation by Exploiting Information Need
Shuguang Li and Suresh Manandhar

Semi-Supervised Frame-Semantic Parsing for Unknown Predicates
Dipanjan Das and Noah A. Smith

A Bayesian Model for Unsupervised Semantic Parsing
Ivan Titov and Alexandre Klementiev

Unsupervised Learning of Semantic Relation Composition
Eduardo Blanco and Dan Moldovan

Unsupervised Discovery of Domain-Specific Knowledge from Text
Dirk Hovy, Chunliang Zhang, Eduard Hovy and Anselmo Penas

Latent Semantic Word Sense Induction and Disambiguation
Tim Van de Cruys and Marianna Apidianaki

Confidence Driven Unsupervised Semantic Parsing
Dan Goldwasser, Roi Reichart, James Clarke and Dan Roth

Aspect Ranking: Identifying Important Product Aspects from Online Consumer Reviews
Jianxing Yu, Zheng-Jun Zha, Meng Wang and Tat-Seng Chua
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Monday, June 20, 2011 (continued)

Collective Classification of Congressional Floor-Debate Transcripts
Clinton Burfoot, Steven Bird and Timothy Baldwin

Integrating history-length interpolation and classes in language modeling
Hinrich Schiitze

Structural Topic Model for Latent Topical Structure Analysis
Hongning Wang, Duo Zhang and ChengXiang Zhai

Automatic Labelling of Topic Models
Jey Han Lau, Karl Grieser, David Newman and Timothy Baldwin

Using Bilingual Information for Cross-Language Document Summarization
Xiaojun Wan

Exploiting Web-Derived Selectional Preference to Improve Statistical Dependency Parsing
Guangyou Zhou, Jun Zhao, Kang Liu and Li Cai

Effective Measures of Domain Similarity for Parsing
Barbara Plank and Gertjan van Noord

Efficient CCG Parsing: A* versus Adaptive Supertagging
Michael Auli and Adam Lopez

Improving Arabic Dependency Parsing with Form-based and Functional Morphological
Features

Yuval Marton, Nizar Habash and Owen Rambow

Partial Parsing from Bitext Projections
Prashanth Mannem and Aswarth Dara

Ranking Class Labels Using Query Sessions
Marius Pasca

Insights from Network Structure for Text Mining
Zornitsa Kozareva and Eduard Hovy

x1vii



Monday, June 20, 2011 (continued)

Event Extraction as Dependency Parsing
David McClosky, Mihai Surdeanu and Christopher Manning

Extracting Comparative Entities and Predicates from Texts Using Comparative Type Clas-

sification
Seon Yang and Youngjoong Ko
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Invited Talk 1

Building Watson: An Overview of the DeepQA Project
David Ferrucci, Principal Investigator, IBM Research
Monday, June 20, 2011 9:00-10:00

Computer systems that can directly and accurately answer peoples' questions over a broad domain
of human knowledge have been envisioned by scientists and writers since the advent of
computers themselves. Open domain question answering holds tremendous promise for
facilitating informed decision making over vast volumes of natural language content.
Applications in business intelligence, healthcare, customer support, enterprise knowledge
management, social computing, science and government could all benefit from computer systems
capable of deeper language understanding. The DeepQA project is aimed at exploring how
advancing and integrating Natural Language Processing (NLP), Information Retrieval (IR),
Machine Learning (ML), Knowledge Representation and Reasoning (KR&R) and massively
parallel computation can greatly advance the science and application of automatic Question
Answering. An exciting proof-point in this challenge was developing a computer system that
could successfully compete against top human players at the Jeopardy! quiz show
(Www.jeopardy.com).

Attaining champion-level performance at Jeopardy! requires a computer to rapidly and accurately
answer rich open-domain questions, and to predict its own performance on any given question.
The system must deliver high degrees of precision and confidence over a very broad range of
knowledge and natural language content with a 3-second response time. To do this, the DeepQA
team advanced a broad array of NLP techniques to find, generate, evidence and analyze many
competing hypotheses over large volumes of natural language content to build Watson
(www.ibmwatson.com). An important contributor to Watson's success is its ability to
automatically learn and combine accurate confidences across a wide array of algorithms and over
different dimensions of evidence. Watson produced accurate confidences to know when to "buzz
in" against its competitors and how much to bet. High precision and accurate confidence
computations are critical for real business settings where helping users focus on the right content
sooner and with greater confidence can make all the difference. The need for speed and high
precision demands a massively parallel computing platform capable of generating, evaluating and
combing 1000's of hypotheses and their associated evidence. In this talk, | will introduce the
audience to the Jeopardy! Challenge, explain how Watson was built on DeepQA to ultimately
defeat the two most celebrated human Jeopardy Champions of all time and | will discuss
applications of the Watson technology beyond in areas such as healthcare.

Dr. David Ferrucci is the lead researcher and Principal Investigator (P1) for the Watson/Jeopardy!
project. He has been a Research Staff Member at IBM's T.J. Watson's Research Center since
1995 where he heads up the Semantic Analysis and Integration department. Dr. Ferrucci focuses
on technologies for automatically discovering valuable knowledge in natural language content
and using it to enable better decision making.
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Invited Talk 2

How do the languages we speak shape the ways we think?
Lera Boroditsky, Assistant Professor, Stanford University
Wednesday, June 22, 2011 9:00-10:00

Do people who speak different languages think differently? Does learning new languages change
the way you think? Do polyglots think differently when speaking different languages? Are some
thoughts unthinkable without language? | will describe data from experiments conducted around
the world that reveal the powerful and often surprising ways that the languages we speak shape
the ways we think.

Lera Boroditsky is an assistant professor of psychology at Stanford University and Editor in Chief
of Frontiers in Cultural Psychology. Boroditsky's research centers on how knowledge emerges
out of the interactions of mind, world, and language, and the ways that languages and cultures
shape human thinking. To this end, Boroditsky's laboratory has collected data around the world,
from Indonesia to Chile to Turkey to Aboriginal Australia. Her research has been widely featured
in the media and has won multiple awards, including the CAREER award from the National
Science Foundation, the Searle Scholars award, and the McDonnell Scholars award.
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A Word-Class Approach to Labeling PSCFG Rules for Machine Translation

Andreas Zollmann and Stephan Vogel
Language Technologies Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA
{zollmann, vogel+}@cs.cmu.edu

Abstract

In this work we propose methods to label
probabilistic synchronous context-free gram-
mar (PSCFG) rules using only word tags,
generated by either part-of-speech analysis
or unsupervised word class induction. The
proposals range from simple tag-combination
schemes to a phrase clustering model that can
incorporate an arbitrary number of features.

Our models improve translation quality over
the single generic label approach of Chiang
(2005) and perform on par with the syntacti-
cally motivated approach from Zollmann and
Venugopal (2006) on the NIST large Chinese-
to-English translation task. These results per-
sist when using automatically learned word
tags, suggesting broad applicability of our
technique across diverse language pairs for
which syntactic resources are not available.

1 Introduction

The Probabilistic Synchronous Context Free Gram-
mar (PSCFG) formalism suggests an intuitive ap-
proach to model the long-distance and lexically sen-
sitive reordering phenomena that often occur across
language pairs considered for statistical machine
translation. As in monolingual parsing, nonterminal
symbols in translation rules are used to generalize
beyond purely lexical operations. Labels on these
nonterminal symbols are often used to enforce syn-
tactic constraints in the generation of bilingual sen-
tences and imply conditional independence assump-
tions in the translation model. Several techniques
have been recently proposed to automatically iden-
tify and estimate parameters for PSCFGs (or related
synchronous grammars) from parallel corpora (Gal-
ley et al., 2004; Chiang, 2005; Zollmann and Venu-
gopal, 2006; Liu et al., 2006; Marcu et al., 2006).

While all of these techniques rely on word-
alignments to suggest lexical relationships, they dif-
fer in the way in which they assign labels to non-
terminal symbols of PSCFG rules. Chiang (2005)
describes a procedure to extract PSCFG rules from
word-aligned (Brown et al., 1993) corpora, where
all nonterminals share the same generic label X. In
Galley et al. (2004) and Marcu et al. (2006), tar-
get language parse trees are used to identify rules
and label their nonterminal symbols, while Liu et al.
(2006) use source language parse trees instead. Zoll-
mann and Venugopal (2006) directly extend the rule
extraction procedure from Chiang (2005) to heuristi-
cally label any phrase pair based on target language
parse trees. Label-based approaches have resulted
in improvements in translation quality over the sin-
gle X label approach (Zollmann et al., 2008; Mi and
Huang, 2008); however, all the works cited here rely
on stochastic parsers that have been trained on man-
ually created syntactic treebanks. These treebanks
are difficult and expensive to produce and exist for a
limited set of languages only.

In this work, we propose a labeling approach that
is based merely on part-of-speech analysis of the
source or target language (or even both). To-
wards the ultimate goal of building end-to-end ma-
chine translation systems without any human anno-
tations, we also experiment with automatically in-
ferred word classes using distributional clustering
(Kneser and Ney, 1993). Since the number of classes
is a parameter of the clustering method and the re-
sulting nonterminal size of our grammar is a func-
tion of the number of word classes, the PSCFG
grammar complexity can be adjusted to the specific
translation task at hand.

Finally, we introduce a more flexible labeling ap-
proach based on K-means clustering, which allows

Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pages 1-11,
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the incorporation of an arbitrary number of word-
class based features, including phrasal contexts, can
make use of multiple tagging schemes, and also al-
lows non-class features such as phrase sizes.

2 PSCFG-based translation

In this work we experiment with PSCFGs that have
been automatically learned from word-aligned par-
allel corpora. PSCFGs are defined by a source ter-
minal set (source vocabulary) 7g, a target terminal
set (target vocabulary) 77, a shared nonterminal set
N and rules of the form: A — (v, o, w) where

e A € N is a labeled nonterminal referred to as the
left-hand-side of the rule,

e v € (N U7Tg)* is the source side of the rule,

e a € (N UTp)* is the target side of the rule,

e w € [0,00) is a non-negative real-valued weight
assigned to the rule; in our model, w is the product
of features ¢; raised to the power of weight \;.

Chiang (2005) learns a single-nonterminal PSCFG
from a bilingual corpus by first identifying initial
phrase pairs using the technique from Koehn et al.
(2003), and then performing a generalization opera-
tion to generate phrase pairs with gaps, which can be
viewed as PSCFG rules with generic ‘X’ nontermi-
nal left-hand-sides and substitution sites. Bilingual
features ¢; that judge the quality of each rule are es-
timated based on rule extraction frequency counts.

3 Hard rule labeling from word classes

We now describe a simple method of inducing a
multi-nonterminal PSCFG from a parallel corpus
with word-tagged target side sentences. The same
procedure can straightforwardly be applied to a cor-
pus with tagged source side sentences. We use the
simple term ‘tag’ to stand for any kind of word-level
analysis—a syntactic, statistical, or other means of
grouping word types or tokens into classes, possibly
based on their position and context in the sentence,
POS tagging being the most obvious example.

As in Chiang’s hierarchical system, we rely on
an external phrase-extraction procedure such as the
one of Koehn et al. (2003) to provide us with a set
of phrase pairs for each sentence pair in the train-
ing corpus, annotated with their respective start and
end positions in the source and target sentences.
Let f = fi1--- fin be the current source sentence,
e = e ---e, the current target sentence, and t =

2

t1 - - - t, its corresponding target tag sequence. We
convert each extracted phrase pair, represented by
its source span (7, j) and target span (k, ¢), into an
initial rule

tete — fioo filex e

by assigning it a nonterminal “f;-t,” constructed by
combining the tag of the target phrase’s left-most
word with the tag of its right-most word.

The creation of complex rules based on all initial
rules obtained from the current sentence now pro-
ceeds just as in Chiang’s model.

Consider the target-tagged example sentence pair:

Ich habe ihn gesehen | /PRP saw/VBD him/PRP

Then (depending on the extracted phrase pairs), the
resulting initial rules could be:

1: PRP-PRP — Ich | I

2: PRP-PRP — ihn | him

3: VBD-VBD — gesehen | saw

4: VBD-PRP — habe ihn gesehen | saw him

5: PRP-PRP — Ich habe ihn gesehen | Isaw him

Now, by abstracting-out initial rule 2 from initial
rule 4, we obtain the complex rule:

VBD-PRP — habe PRP-PRP; gesehen | saw PRP-PRP,

Intuitively, the labeling of initial rules with tags
marking the boundary of their target sides results in
complex rules whose nonterminal occurrences im-
pose weak syntactic constraints on the rules eligi-
ble for substitution in a PSCFG derivation: The left
and right boundary word tags of the inserted rule’s
target side have to match the respective boundary
word tags of the phrase pair that was replaced by
a nonterminal when the complex rule was created
from a training sentence pair. Since consecutive
words within a rule stem from consecutive words in
the training corpus and thus are already consistent,
the boundary word tags are more informative than
tags of words between the boundaries for the task
of combining different rules in a derivation, and are
therefore a more appropriate choice for the creation
of grammar labels than tags of inside words.

Accounting for phrase size A drawback of the
current approach is that a single-word rule such as

PRP-PRP — Ich |1



can have the same left-hand-side nonterminal as a
long rule with identical left and right boundary tags,
such as (when using target-side tags):

PRP-PRP — Ich habe ihn gesehen | I saw him

We therefore introduce a means of distinguishing
between one-word, two-word, and multiple-word
phrases as follows: Each one-word phrase with tag
T simply receives the label 7', instead of 7-T'. Two-
word phrases with tag sequence 7175 are labeled
T1-T5 as before. Phrases of length greater two with
tag sequence T - - - 1), are labeled T}..7T}, to denote
that tags were omitted from the phrase’s tag se-
quence. The resulting number of grammar nonter-
minals based on a tag vocabulary of size ¢ is thus
given by 2t% + t.

An alternative way of accounting for phrase size
is presented by Chiang et al. (2008), who intro-
duce structural distortion features into a hierarchi-
cal phrase-based model, aimed at modeling nonter-
minal reordering given source span length.  Our
approach instead uses distinct grammar rules and
labels to discriminate phrase size, with the advan-
tage of enabling all translation models to estimate
distinct weights for distinct size classes and avoid-
ing the need of additional models in the log-linear
framework; however, the increase in the number of
labels and thus grammar rules decreases the relia-
bility of estimated models for rare events due to in-
creased data sparseness.

Extension to a bilingually tagged corpus While
the availability of syntactic annotations for both
source and target language is unlikely in most trans-
lation scenarios, some form of word tags, be it part-
of-speech tags or learned word clusters (cf. Sec-
tion 3) might be available on both sides. In this case,
our grammar extraction procedure can be easily ex-
tended to impose both source and target constraints
on the eligible substitutions simultaneously.

Let Ny be the nonterminal label that would be
assigned to a given initial rule when utilizing the
source-side tag sequence, and N, the assigned la-
bel according to the target-side tag sequence. Then
our bilingual tag-based model assigns ‘N; + N’
to the initial rule. The extraction of complex rules
proceeds as before. The number of nonterminals
in this model, based on a source tag vocabulary of
size s and a target tag vocabulary of size ¢, is thus
given by s?t? for the regular labeling method and
(25% + 5)(2t + t) when accounting for phrase size.
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Consider again our example sentence pair (now
also annotated with source-side part-of-speech tags):

Ich/PRP habe/AUX ihn/PRP gesehen/VBN
I/PRP saw/VBD him/PRP

Given the same phrase extraction method as before,
the resulting initial rules for our bilingual model,
when also accounting for phrase size, are as follows:

1: PRP+PRP — Ich | I

2: PRP+PRP — ihn | him

3: VBN+VBD — gesehen | saw

4:  AUX.VBN+VBD-PRP — habe ihn
gesehen | saw him

5: PRP.VBN+PRP.PRP — Ich habe ihn
gesehen | Isaw him

Abstracting-out rule 2 from rule 4, for instance,
leads to the complex rule:

AUX..VBN+VBD-PRP — habe PRP+PRP,
gesehen | saw PRP+PRP;

Unsupervised word class assignment by cluster-
ing As an alternative to POS tags, we experiment
with unsupervised word clustering methods based
on the exchange algorithm (Kneser and Ney, 1993).
Its objective function is maximizing the likelihood

n

Hp(wi|w1,~~-7wz>1)

i=1
of the training data w = wq,...,w, given a par-
tially class-based bigram model of the form

P(wi|wy, ..., wi-1) = p(c(w;)|wi-1) - p(wile(w;))

where ¢ : V — {1,..., N} maps a word (type, not
token) w to its class ¢(w), V is the vocabulary, and
N the fixed number of classes, which has to be cho-
sen a priori. We use the publicly available imple-
mentation MKCLS (Och, 1999) to train this model.
As training data we use the respective side of the
parallel training data for the translation system.

We also experiment with the extension of this
model by Clark (2003), who incorporated morpho-
logical information by imposing a Bayesian prior
on the class mapping ¢, based on /N individual dis-
tributions over strings, one for each word class.
Each such distribution is a character-based hidden
Markov model, thus encouraging the grouping of
morphologically similar words into the same class.



4 Clustering phrase pairs directly using
the K-means algorithm

Even though we have only made use of the first and
last words’ classes in the labeling methods described
so far, the number of resulting grammar nontermi-
nals quickly explodes. Using a scheme based on
source and target phrases with accounting for phrase
size, with 36 word classes (the size of the Penn En-
glish POS tag set) for both languages, yields a gram-
mar with (36+2%362)? = 6.9m nonterminal labels.

Quite plausibly, phrase labeling should be in-
formed by more than just the classes of the first and
last words of the phrase. Taking phrase context into
account, for example, can aid the learning of syn-
tactic properties: a phrase beginning with a deter-
miner and ending with a noun, with a verb as right
context, is more likely to be a noun phrase than the
same phrase with another noun as right context. In
the current scheme, there is no way of distinguish-
ing between these two cases. Similarly, it is con-
ceivable that using non-boundary words inside the
phrase might aid the labeling process.

When relying on unsupervised learning of the
word classes, we are forced to chose a fixed num-
ber of classes. A smaller number of word clusters
will result in smaller number of grammar nonter-
minals, and thus more reliable feature estimation,
while a larger number has the potential to discover
more subtle syntactic properties. Using multiple
word clusterings simultaneously, each based on a
different number of classes, could turn this global,
hard trade-off into a local, soft one, informed by the
number of phrase pair instances available for a given
granularity.

Lastly, our method of accounting for phrase size
is somewhat displeasing: While there is a hard par-
titioning of one-word and two-word phrases, no dis-
tinction is made between phrases of length greater
than two. Marking phrase sizes greater than two
explicitly by length, however, would create many
sparse, low-frequency rules, and one of the strengths
of PSCFG-based translation is the ability to sub-
stitute flexible-length spans into nonterminals of a
derivation. A partitioning where phrase size is in-
stead merely a feature informing the labeling pro-
cess seems more desirable.

We thus propose to represent each phrase pair in-
stance (including its bilingual one-word contexts) as
feature vectors, i.e., points of a vector space. We
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then use these data points to partition the space into
clusters, and subsequently assign each phrase pair
instance the cluster of its corresponding feature vec-
tor as label.

The feature mapping Consider the phrase pair in-
stance

(fo)f1- - fim(fm+1) | (e0)er---en(ent1)

(where fo, fin+1,€0,€ent+1 are the left and right,
source and target side contexts, respectively). We
begin with the case of only a single, target-side
word class scheme (either a tagger or an unsuper-
vised word clustering/POS induction method). Let
C = {c1,...,cn} be its set of word classes. Fur-
ther, let cg be a short-hand for the result of looking
up the class of a word that is out of bounds (e.g., the
left context of the first word of a sentence, or the sec-
ond word of a one-word phrase). We now map our
phrase pair instance to the real-valued vector (where
L(pj is the indicator function defined as 1 if property
P is true, and 0 otherwise):

<:H'[81:C()]7 SR Il[el:cN]a ]]-[en:co]u SRR Il[en:cN]a

asec]l[egzco]a e 7aSeC:ﬂ'[€2=CN]7

asecl[en_lzco]y ceey asecﬂ[en_lch]a
n n
Qins Zz’:l IL[ei=00] Qins Zi:l ]]-[eich]
n AR ] n b

acntxt]l[e():co]a ey acntxtﬂ[eoch]a

acntxt]]-[en+1:co]a s acntxt]]-[enJrl:cN],

Qphrsize V N +1 10g10(”)>

The o parameters determine the influence of the dif-
ferent types of information. The elements in the first
line represent the phrase boundary word classes, the
next two lines the classes of the second and penul-
timate word, followed by a line representing the ac-
cumulated contents of the whole phrase, followed by
two lines pertaining to the context word classes. The
final element of the vector is proportional to the log-
arithm of the phrase length.! We chose the logarithm
assuming that length deviation of syntactic phrasal
units is not constant, but proportional to the average
length. Thus, all other features being equal, the dis-
tance between a two-word and a four-word phrase is

"The /N + 1 factor serves to make the feature’s influence in-
dependent of the number of word classes by yielding the same
distance (under L) as N + 1 identical copies of the feature.



the same as the distance between a four-word and an
eight-word phrase.

We will mainly use the Euclidean (L2) distance to
compare points for clustering purposes. Our feature
space is thus the Euclidean vector space R7V+8.

To additionally make use of source-side word
classes, we append elements analogous to the ones
above to the vector, all further multiplied by a pa-
rameter g that allows trading off the relevance
of source-side and target-side information. In the
same fashion, we can incorporate multiple tagging
schemes (e.g., word clusterings of different gran-
ularities) into the same feature vector. As finer-
grained schemes have more elements in the fea-
ture vector than coarser-grained ones, and thus ex-
ert more influence, we set the o parameter for each
scheme to 1/N (where N is the number of word
classes of the scheme).

The K-means algorithm To create the clusters,
we chose the K-means algorithm (Steinhaus, 1956;
MacQueen, 1967) for both its computational effi-
ciency and ease of implementation and paralleliza-
tion. Given an initial mapping from the data points
to K clusters, the procedure alternates between (i)
computing the centroid of each cluster and (ii) re-
allocating each data point to the closest cluster cen-
troid, until convergence.

We implemented two commonly used initializa-
tion methods: Forgy and Random Partition. The
Forgy method randomly chooses K observations
from the data set and uses these as the initial means.
The Random Partition method first randomly as-
signs a cluster to each observation and then proceeds
straight to step (ii). Forgy tends to spread the ini-
tial means out, while Random Partition places all
of them close to the center of the data set. As the
resulting clusters looked similar, and Random Parti-
tion sometimes led to a high rate of empty clusters,
we settled for Forgy.

S Experiments

We evaluate our approach by comparing translation
quality, as evaluated by the IBM-BLEU (Papineni
et al., 2002) metric on the NIST Chinese-to-English
translation task using MTO04 as development set to
train the model parameters A, and MT05, MT06 and
MTOS8 as test sets. Even though a key advantage
of our method is its applicability to resource-poor
languages, we used a language pair for which lin-

5

guistic resources are available in order to determine
how close translation performance can get to a fully
syntax-based system. Accordingly, we use Chiang’s
hierarchical phrase based translation model (Chiang,
2007) as a base line, and the syntax-augmented MT
model (Zollmann and Venugopal, 2006) as a ‘target
line’, a model that would not be applicable for lan-
guage pairs without linguistic resources.

We perform PSCFG rule extraction and decoding
using the open-source “SAMT” system (Venugopal
and Zollmann, 2009), using the provided implemen-
tations for the hierarchical and syntax-augmented
grammars. Apart from the language model, the lex-
ical, phrasal, and (for the syntax grammar) label-
conditioned features, and the rule, target word,
and glue operation counters, Venugopal and Zoll-
mann (2009) also provide both the hierarchical and
syntax-augmented grammars with a rareness penalty
1/ ent(r), where cnt(r) is the occurrence count of
rule 7 in the training corpus, allowing the system to
learn penalization of low-frequency rules, as well as
three indicator features firing if the rule has one, two
unswapped, and two swapped nonterminal pairs, re-
spectively.” Further, to mitigate badly estimated
PSCFG derivations based on low-frequency rules of
the much sparser syntax model, the syntax grammar
also contains the hierarchical grammar as a back-
bone (cf. Zollmann and Vogel (2010) for details and
empirical analysis).

We implemented our rule labeling approach
within the SAMT rule extraction pipeline, resulting
in comparable features across all systems. For all
systems, we use the bottom-up chart parsing decoder
implemented in the SAMT toolkit with a reorder-
ing limit of 15 source words, and correspondingly
extract rules from initial phrase pairs of maximum
source length 15. All rules have at most two non-
terminal symbols, which must be non-consecutive
on the source side, and rules must contain at least
one source-side terminal symbol. The beam set-
tings for the hierarchical system are 600 items per
‘X’ (generic rule) cell, and 600 per ‘S’ (glue) cell.?
Due to memory limitations, the multi-nonterminal
grammars have to be pruned more harshly: We al-

ZPenalization or reward of purely-lexical rules can be indirectly
learned by trading off these features with the rule counter fea-
ture.

3For comparison, Chiang (2007) uses 30 and 15, respectively,
and further prunes items that deviate too much in score from
the best item. He extracts initial phrases of maximum length
10.



low 100 ‘S’ items, and a total of 500 non-‘S’ items,
but maximally 40 items per nonterminal. For all sys-
tems, we further discard non-initial rules occurring
only once.* For the multi-nonterminal systems, we
generally further discard all non-generic non-initial
rules occurring less than 6 times, but we additionally
give results for a ‘slow’ version of the Syntax target-
line system and our best word class based systems,
where only single-occurrences were removed.

For parameter tuning, we use the Lg-regularized
minimum-error-rate training tool provided by the
SAMT toolkit. Each system is trained separately to
adapt the parameters to its specific properties (size
of nonterminal set, grammar complexity, features
sparseness, reliance on the language model, etc.).

The parallel training data comprises of 9.6M
sentence pairs (206M Chinese and 228M English
words). The source and target language parses for
the syntax-augmented grammar, as well as the POS
tags for our POS-based grammars were generated by
the Stanford parser (Klein and Manning, 2003).

The results are given in Table 1. Results for the
Syntax system are consistent with previous results
(Zollmann et al., 2008), indicating improvements
over the hierarchical system. Our approach, using
target POS tags (‘POS-tgt (no phr. s.)’), outper-
forms the hierarchical system on all three tests sets,
and gains further improvements when accounting
for phrase size (‘POS-tgt’). The latter approach is
roughly on par with the corresponding Syntax sys-
tem, slightly outperforming it on average, but not
consistently across all test sets. The same is true for
the ‘slow’ version (‘POS-tgt-slow’).

The model based on bilingually tagged training
instances (‘POS-src&tgt’) does not gain further im-
provements over the merely target-based one, but
actually performs worse. We assume this is due to
the huge number of nonterminals of ‘POS-src&tgt’
((2 * 332 + 33)(2 % 36 + 36) = 5.8M in princi-
ple) compared to ‘POS-tgt’ (2 * 362 + 36 = 2628),
increasing the sparseness of the grammar and thus
leading to less reliable statistical estimates.

We also experimented with a source-tag based
model (‘POS-src’). In line with previous findings
for syntax-augmented grammars (Zollmann and Vo-
gel, 2010), the source-side-based grammar does not
reach the translation quality of its target-based coun-
terpart; however, the model still outperforms the hi-

4As shown in Zollmann et al. (2008), the impact of these rules
on translation quality is negligible.
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erarchical system on all test sets. Further, decod-
ing is much faster than for ‘POS-ext-tgt’ and even
slightly faster than ‘Hierarchical’. This is due to
the fact that for the source-tag based approach, a
given chart cell in the CYK decoder, represented by
a start and end position in the source sentence, al-
most uniquely determines the nonterminal any hy-
pothesis in this cell can have: Disregarding part-
of-speech tag ambiguity and phrase size accounting,
that nonterminal will be the composition of the tags
of the start and end source words spanned by that
cell. At the same time, this demonstrates that there
is hence less of a role for the nonterminal labels to
resolve translational ambiguity in the source based
model than in the target based model.

Performance of the word-clustering based mod-
els To empirically validate the unsupervised clus-
tering approaches, we first need to decide how to de-
termine the number of word classes, IV. A straight-
forward approach is to run experiments and report
test set results for many different N. While this
would allow us to reliably conclude the optimal
number N, a comparison of that best-performing
clustering method to the hierarchical, syntax, and
POS systems would be tainted by the fact that N
was effectively tuned on the test sets. We there-
fore choose N merely based on development set per-
formance. Unfortunately, variance in development
set BLEU scores tends to be higher than test set
scores, despite of SAMT MERT’s inbuilt algorithms
to overcome local optima, such as random restarts
and zeroing-out. We have noticed that using an Lg-
penalized BLEU score® as MERT’s objective on the
merged n-best lists over all iterations is more stable
and will therefore use this score to determine V.

Figure 1 (left) shows the performance of the
distributional clustering model (‘Clust’) and its
morphology-sensitive extension (‘Clust-morph’) ac-
cording to this score for varying values of N =
1, ..., 36 (the number Penn treebank POS tags, used
for the ‘POS’ models, is 36).6 For ‘Clust’, we see a
comfortably wide plateau of nearly-identical scores
from N = 7,...,15. Scores for ‘Clust-morph’ are
lower throughout, and peak at N = 7.

Looking back at Table 1, we now compare the
clustering models chosen by the procedure above—

Given by: BLEU -8 x |{i € {1,..., K}|\; # 0}|, where
A1, ..., Ak are the feature weights and the constant 3 (which
we set to 0.00001) is the regularization penalty.

8 All these models account for phrase size.



Dev MT04) MTO05 MT06 MTO8 | TestAvg | Time
Hierarchical 38.63 36.51 3326 2577 | 31.85 14.3
Syntax 39.39  37.09 34.01 26.53 | 32.54 18.1
Syntax-slow 39.69 3756 34.66 2693 | 33.05 34.6
POS-tgt (no phr. s.) 39.31  37.29 3379  26.13 | 32.40 27.7
POS-tgt 39.14 3729 3397 26.77 | 32.68 19.2
POS-src 38.74 3675 33.85 26.76 | 32.45 12.2
POS-src&tgt 38.78 36.71 33.65 2652 | 32.29 18.8
POS-tgt-slow 39.86  37.78 3437 27.14 | 33.10 44.6
Clust-7-tgt 39.24  36.74 34.00 2693 | 32.56 24.3
Clust-7-morph-tgt 39.08 36.57 33.81 2640 | 32.26 23.6
Clust-7-src 38.68 36.17 3323 2655 | 31.98 11.1
Clust-7-src&etgt 38.71 3649 33.65 2633 | 32.16 15.8
Clust-7-tgt-slow 39.48 3770 3431 27.24 | 33.08 45.2
kmeans-POS-src&tgt 39.11 3723 3392 26.80 | 32.65 18.5
kmeans-POS-src&tgt-L; 39.33 3692 33.81 2659 | 32.44 17.6
kmeans-POS-src&tgt-cosine 39.15  37.07 3398 26.68 | 32.58 17.7
kmeans-POS-src&tgt (ajns = .5) 39.07 36.88 33.71 26.26 | 32.28 16.5
kmeans-Clust-7-src&tgt 39.19 3696 3426 2697 | 32.73 19.3
kmeans-Clust-7..36-src&tgt 39.09 3693 3424 2692 | 32.70 17.3
kmeans-POS-src&tgt-slow 39.28 37.16 3438 27.11 | 32.88 36.3
kmeans-Clust-7..36-s&t-slow 39.18  37.12 3413 2735 | 32.87 34.3

Table 1: Translation quality in % case-insensitive IBM-BLEU (i.e., brevity penalty based on closest reference length)
for Chinese-English NIST-large translation tasks, comparing baseline Hierarchical and Syntax systems with POS and
clustering based approaches proposed in this work. ‘TestAvg’ shows the average score over the three test sets. “Time’
is the average decoding time per sentence in seconds on one CPU.

resulting in N = 7 for the morphology-unaware
model (‘Clust-7-tgt’) as well as the morphology-
aware model (‘Clust-7-morph-tgt’)—to the other
systems. ‘Clust-7-tgt’ improves over the hierarchi-
cal base line on all three test sets and is on par
with the corresponding Syntax and POS target lines.
The same holds for the ‘Clust-7-tgt-slow’ version.
We also experimented with a model variant based
on seven source and seven target language clusters
(‘Clust-7-src&tgt’) and a source-only labeled model
(‘Clust-7-src’)—both performing worse.

Surprisingly, the morphology-sensitive cluster-
ing model (‘Clust-7-morph-tgt’), while still improv-
ing over the hierarchical system, performs worse
than the morphology-unaware model. = An in-
spection of the trained word clusters showed that
the model, while far superior to the morphology-
unaware model in e.g. mapping all numbers to
the same class, is overzealous in discovering mor-
phological regularities (such as the ‘-ed’ suffix) to
partition functionally only slightly dissimilar words
(such present-tense and past-tense verbs) into dif-
ferent classes. While these subtle distinctions make
for good partitionings when the number of clusters
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is large, they appear to lead to inferior results for
our task that relies on coarse-grained partitionings
of the vocabulary. Note that there are no ‘src’ or
‘src&etgt’ systems for ‘Clust-morph’, as Chinese, be-
ing a monosyllabic writing system, does not lend it-
self to morphology-sensitive clustering.

K-means clustering based models To establish
suitable values for the o parameters and investigate
the impact of the number of clusters, we looked at
the development performance over various param-
eter combinations for a K-means model based on
source and/or target part-of-speech tags.” As can
be seen from Figure 1 (right), our method reaches
its peak performance at around 50 clusters and then
levels off slightly. Encouragingly, in contrast to
the hard labeling procedure, K-means actually im-
proves when adding source-side information. The
optimal ratio of weighting source and target classes
is 0.5:1, corresponding to ag,c = .5. Incorporat-
ing context information also helps, and does best for
Qentxt = 0.25, i.e. when giving contexts 1/4 the in-
fluence of the phrase boundary words.

"We set Qgec = .25, ains = 0, and aphrsize = .5 throughout.
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Figure 1: Left: Performance of the distributional clustering model ‘Clust’ and its morphology-sensitive extension
‘Clust-morph’ according to Lg-penalized development set BLEU score for varying numbers /N of word classes. For
each data point IV, its corresponding n.o. nonterminals of the induced grammar is stated in parentheses.

Right: Dev. set performance of K-means for various n.o. labels and values of ag,c and qepgxt-

Entry ‘kmeans-POS-src&tgt’ in Table 1 shows
the test set results for the development-set best K-
means configuration (i.e., Ggrc = .5, Qengxt = 0.25,
and using 500 clusters). While beating the hier-
archical baseline, it is only minimally better than
the much simpler target-based hard labeling method
‘POS-tgt’. We also tried K-means variants in which
the Euclidean distance metric is replaced by the
city block distance L; and the cosine dissimilarity,
respectively, with slightly worse outcomes. Con-
figuration ‘kmeans-POS-src&tgt (aips = .5)’ in-
vestigates the incorporation of non-boundary word
tags inside the phrase. Unfortunately, these features
appear to deteriorate performance, presumably be-
cause given a fixed number of clusters, accounting
for contents inside the phrase comes at the cost of
neglect of boundary words, which are more relevant
to producing correctly reordered translations.

The two completely unsupervised systems
‘kmeans-Clust-7-src&tgt” (based on  7-class
MKCLS distributional word clustering) and

‘kmeans-Clust-7..36-src&tgt’ (using six different
word clustering models simultaneously: all the
MKCLS models from Figure 1 (left) except for the
two-, three- and five-class models) have the best
results, outperforming the other K-means models as
well as ‘Syntax’ and ‘POS-tgt’ on average, but not
on all test sets.

Lastly, we give results for ‘slow’ K-means config-
urations (‘kmeans-POS-src&tgt-slow’ and ‘kmeans-
Clust-7..36-s&t-slow’).  Unfortunately (or fortu-
nately, from a pragmatic viewpoint), the models are
outperformed by the much simpler ‘POS-tgt-slow’
and ‘Clust-7-tgt-slow’ models.

6 Related work

Hassan et al. (2007) improve the statistical phrase-
based MT model by injecting supertags, lexical in-
formation such as the POS tag of the word and its
subcategorization information, into the phrase table,
resulting in generalized phrases with placeholders in
them. The supertags are also injected into the lan-
guage model. Our approach also generates phrase
labels and placeholders based on word tags (albeit
in a different manner and without the use of subcat-
egorization information), but produces PSCFG rules
for use in a parsing-based decoding system.
Unsupervised synchronous grammar induction,
apart from the contribution of Chiang (2005) dis-
cussed earlier, has been proposed by Wu (1997) for
inversion transduction grammars, but as Chiang’s
model only uses a single generic nonterminal la-
bel. Blunsom et al. (2009) present a nonparamet-
ric PSCFG translation model that directly induces
a grammar from parallel sentences without the use
of or constraints from a word-alignment model, and



Cohn and Blunsom (2009) achieve the same for
tree-to-string grammars, with encouraging results
on small data. Our more humble approach treats
the training sentences’ word alignments and phrase
pairs, obtained from external modules, as ground
truth and employs a straight-forward generalization
of Chiang’s popular rule extraction approach to la-
beled phrase pairs, resulting in a PSCFG with mul-
tiple nonterminal labels.

Our phrase pair clustering approach is similar in
spirit to the work of Lin and Wu (2009), who use K-
means to cluster (monolingual) phrases and use the
resulting clusters as features in discriminative clas-
sifiers for a named-entity-recognition and a query
classification task. Phrases are represented in terms
of their contexts, which can be more than one word
long; words within the phrase are not considered.
Further, each context contributes one dimension per
vocabulary word (not per word class as in our ap-
proach) to the feature space, allowing for the dis-
covery of subtle semantic similarities in the phrases,
but at much greater computational expense. Another
distinction is that Lin and Wu (2009) work with
phrase types instead of phrase instances, obtaining
a phrase type’s contexts by averaging the contexts
of all its phrase instances.

Nagata et al. (2006) present a reordering model
for machine translation, and make use of clustered
phrase pairs to cope with data sparseness in the
model. They achieve the clustering by reducing
phrases to their head words and then applying the
MKCLS tool to these pseudo-words.

Kuhn et al. (2010) cluster the phrase pairs of
an SMT phrase table based on their co-occurrence
counts and edit distances in order to arrive at seman-
tically similar phrases for the purpose of phrase table
smoothing. The clustering proceeds in a bottom-up
fashion, gradually merging similar phrases while al-
ternating back and forth between the two languages.

7 Conclusion and discussion

In this work we proposed methods of labeling phrase
pairs to create automatically learned PSCFG rules
for machine translation. Crucially, our methods only
rely on “shallow” lexical tags, either generated by
POS taggers or by automatic clustering of words into
classes. Evaluated on a Chinese-to-English transla-
tion task, our approach improves translation qual-
ity over a popular PSCFG baseline—the hierarchi-
cal model of Chiang (2005) —and performs on par
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with the model of Zollmann and Venugopal (20006),
using heuristically generated labels from parse trees.
Using automatically obtained word clusters instead
of POS tags yields essentially the same results, thus
making our methods applicable to all languages
pairs with parallel corpora, whether syntactic re-
sources are available for them or not.

We also propose a more flexible way of obtaining
the phrase labels from word classes using K-means
clustering. While currently the simple hard-labeling
methods perform just as well, we hope that the ease
of incorporating new features into the K-means la-
beling method will spur interesting future research.

When considering the constraints and indepen-
dence relationships implied by each labeling ap-
proach, we can distinguish between approaches that
label rules differently within the context of the sen-
tence that they were extracted from, and those that
do not. The Syntax system from Zollmann and
Venugopal (2006) is at one end of this extreme. A
given target span might be labeled differently de-
pending on the syntactic analysis of the sentence
that it is a part of. On the other extreme, the clus-
tering based approach labels phrases based on the
contained words alone.® The POS grammar repre-
sents an intermediate point on this spectrum, since
POS tags can change based on surrounding words in
the sentence; and the position of the K-means model
depends on the influence of the phrase contexts on
the clustering process. Context insensitive labeling
has the advantage that there are less alternative left-
hand-side labels for initial rules, producing gram-
mars with less rules, whose weights can be more
accurately estimated. This could explain the strong
performance of the word-clustering based labeling
approach.

All source code underlying this work is available
under the GNU Lesser General Public License as
part of the Hadoop-based ‘SAMT’ system at:
www.cs.cmu.edu/ zollmann/samt
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Abstract

In this work, we tackle the task of ma-
chine translation (MT) without parallel train-
ing data. We frame the MT problem as a de-
cipherment task, treating the foreign text as
a cipher for English and present novel meth-
ods for training translation models from non-
parallel text.

1 Introduction

Bilingual corpora are a staple of statistical machine
translation (SMT) research. From these corpora,
we estimate translation model parameters: word-
to-word translation tables, fertilities, distortion pa-
rameters, phrase tables, syntactic transformations,
etc. Starting with the classic IBM work (Brown et
al., 1993), training has been viewed as a maximiza-
tion problem involving hidden word alignments (a)
that are assumed to underlie observed sentence pairs

(e, f):

arg max [ Po(sle) (1)
e f

:argénax HZPg(f,a|e) 2)
e,f a

Brown et al. (1993) give various formulas that boil
Py(f,ale) down to the specific parameters to be es-
timated.

Of course, for many language pairs and domains,
parallel data is not available. In this paper, we
address the problem of learning a full transla-
tion model from non-parallel data, and we use the
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learned model to translate new foreign strings. As
successful work develops along this line, we expect
more domains and language pairs to be conquered
by SMT.

How can we learn a translation model from non-
parallel data? Intuitively, we try to construct trans-
lation model tables which, when applied to ob-
served foreign text, consistently yield sensible En-
glish. This is essentially the same approach taken by
cryptanalysts and epigraphers when they deal with
source texts.

In our case, we observe a large number of foreign
strings f, and we apply maximum likelihood train-
ing:

arg max 17 3)

f
Following Weaver (1955), we imagine that this cor-
pus of foreign strings “is really written in English,
but has been coded in some strange symbols,” thus:

arggnaXHZP(e) - Py(fle) )
f e

The variable e ranges over all possible English
strings, and P(e) is a language model built from
large amounts of English text that is unrelated to the
foreign strings. Re-writing for hidden alignments,
we get:

g max [[ S P@)- Y Palfale)
f e a

Note that this formula has the same free
Py(f,ale) parameters as expression (2). We seek
to manipulate these parameters in order to learn the

Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pages 12-21,
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same full translation model. We note that for each
f, not only is the alignment « still hidden, but now
the English translation e is hidden as well.

A language model P(e) is typically used in SMT
decoding (Koehn, 2009), but here P(e) actually
plays a central role in training translation model pa-
rameters. To distinguish the two, we refer to (5) as
decipherment, rather than decoding.

We can now draw on previous decipherment
work for solving simpler substitution/transposition
ciphers (Bauer, 2006; Knight et al., 2006). We must
keep in mind, however, that foreign language is a
much more demanding code, involving highly non-
deterministic mappings and very large substitution
tables.

The contributions of this paper are therefore:

e We give first results for training a full transla-
tion model from non-parallel text, and we apply
the model to translate previously-unseen text.
This work is thus distinguished from prior work
on extracting or augmenting partial lexicons
using non-parallel corpora (Rapp, 1995; Fung
and McKeown, 1997; Koehn and Knight, 2000;
Haghighi et al., 2008). It also contrasts with
self-training (McClosky et al., 2006), which re-
quires a parallel seed and often does not engage
in iterative maximization.

e We develop novel methods to deal with large-
scale vocabularies inherent in MT problems.

2 Word Substitution Decipherment

Before we tackle machine translation without par-
allel data, we first solve a simpler problem—word
substitution decipherment. Here, we do not have to
worry about hidden alignments since there is only
one alignment. In a word substitution cipher, every
word in the natural language (plaintext) sequence is
substituted by a cipher token, according to a substi-
tution key. The key is deterministic—there exists a
1-to-1 mapping between cipher units and the plain-
text words they encode.

For example, the following English plaintext se-
quences:

I SAW THE BOY

THE BOY RAN
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may be enciphered as:
xyzz fxyy crqg tmnz lxwz
crqg tmnz gdxx 1lxwz

according to the key:
THE — crqg, SAW — fxyy,
BOY — tmnz,

RAN — gdxx,
— lxwz, I — xyzz

The goal of word substitution decipherment is to
guess the original plaintext from given cipher data
without any knowledge of the substitution key.

Word substitution decipherment is a good test-bed
for unsupervised statistical NLP techniques for two
reasons—(1) we face large vocabularies and corpora
sizes typically seen in large-scale MT problems, so
our methods need to scale well, (2) similar deci-
pherment techniques can be applied for solving NLP
problems such as unsupervised part-of-speech tag-
ging.

Probabilistic decipherment: Our decipherment
method follows a noisy-channel approach. We first
model the process by which the ciphertext sequence
¢ = cy...c is generated. The generative story for
decipherment is described here:

1. Generate an English plaintext sequence e =
€1...ep, with probability P(e).

2. Substitute each plaintext word e; with a cipher-
text token ¢;, with probability Py(c;|e;) in order
to generate the ciphertext sequence ¢ = ci...cy,.

We model P(e) using a statistical word n-gram
English language model (LM). During decipher-
ment, our goal is to estimate the channel model pa-
rameters 6. Re-writing Equations 3 and 4 for word
substitution decipherment, we get:

P, 6
arg(gnax]l[ () (6)

n
= argmaXH ZP(@) : HPG(Ci|ei) (7

0 c e i=1
Challenges: Unlike letter substitution ciphers
(having only 26 plaintext letters), here we have to
deal with large-scale vocabularies (10k-1M word
types) and corpora sizes (100k cipher tokens). This
poses some serious scalability challenges for word

substitution decipherment.



We propose novel methods that can deal with
these challenges effectively and solve word substi-
tution ciphers:

1. EM solution: We would like to use the Expecta-
tion Maximization (EM) algorithm (Dempster
et al., 1977) to estimate § from Equation 7, but
EM training is not feasible in our case. First,
EM cannot scale to such large vocabulary sizes
(running the forward-backward algorithm for
each iteration requires O(V2) time). Secondly,
we need to instantiate the entire channel and re-
sulting derivation lattice before we can run EM,
and this is too big to be stored in memory. So,
we introduce a new training method (Iterative
EM) that fixes these problems.

2. Bayesian decipherment: We also propose a
novel decipherment approach using Bayesian
inference. Typically, Bayesian inference is very
slow when applied to such large-scale prob-
lems. Our method overcomes these challenges
and does fast, efficient inference using (a) a
novel strategy for selecting sampling choices,
and (b) a parallelized sampling scheme.

In the next two sections, we describe these meth-
ods 1in detail.

2.1 Iterative EM

We devise a method which overcomes memory and
running time efficiency issues faced by EM. Instead
of instantiating the entire channel model (with all its
parameters), we iteratively train the model in small
steps. The training procedure is described here:

1. Identify the top K frequent word types in both
the plaintext and ciphertext data. Replace all
other word tokens with Unknown. Now, instan-
tiate a small channel with just (K + 1)? pa-
rameters and use the EM algorithm to train this
model to maximize likelihood of cipher data.

2. Extend the plaintext and ciphertext vocabular-
ies from the previous step by adding the next
K most frequent word types (so the new vo-
cabulary size becomes 2K + 1). Regenerate
the plaintext and ciphertext data.
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3. Instantiate anew (2K +1) x (2K + 1) channel
model. From the previous EM-trained channel,
identify all the e — ¢ mappings that were as-
signed a probability P(cle) > 0.5. Fix these
mappings in the new channel, i.e. set P(c|e) =
1.0. From the new channel, eliminate all other
parameters e — c¢; associated with the plain-
text word type e (where ¢; # c). This yields a
much smaller channel with size < (2K + 1)2.
Retrain the new channel using EM algorithm.

4. Goto Step 2 and repeat the procedure, extend-
ing the channel size iteratively in each stage.

Finally, we decode the given ciphertext ¢ by using
the Viterbi algorithm to choose the plaintext decod-
ing e that maximizes P(e) - Py, .. ,(cle)?, stretch-
ing the channel probabilities (Knight et al., 2006).

2.2 Bayesian Decipherment

Bayesian inference methods have become popular
in natural language processing (Goldwater and Grif-
fiths, 2007; Finkel et al., 2005; Blunsom et al., 2009;
Chiang et al., 2010; Snyder et al., 2010). These
methods are attractive for their ability to manage un-
certainty about model parameters and allow one to
incorporate prior knowledge during inference.
Here, we propose a novel decipherment approach
using Bayesian learning. Our method holds sev-
eral other advantages over the EM approach—(1)
inference using smart sampling strategies permits
efficient training, allowing us to scale to large
data/vocabulary sizes, (2) incremental scoring of
derivations during sampling allows efficient infer-
ence even when we use higher-order n-gram LMs,
(3) there are no memory bottlenecks since the full
channel model and derivation lattice are never in-
stantiated during training, and (4) prior specification
allows us to learn skewed distributions that are useful
here—word substitution ciphers exhibit 1-to-1 cor-
respondence between plaintext and cipher types.
We use the same generative story as before for
decipherment, except that we use Chinese Restau-
rant Process (CRP) formulations for the source and
channel probabilities. We use an English word bi-
gram LM as the base distribution (Fy) for the source
model and specify a uniform Py distribution for the



channel.! We perform inference using point-wise
Gibbs sampling (Geman and Geman, 1984). We de-
fine a sampling operator that samples plaintext word
choices for every cipher token, one at a time. Using
the exchangeability property, we efficiently score
the probability of each derivation in an incremental
fashion. In addition, we make further improvements
to the sampling procedure which makes it faster.

Smart sample-choice selection: In the original
sampling step, for each cipher token we have to sam-
ple from a list of all possible plaintext choices (10k-
1M English words). There are 100k cipher tokens
in our data which means we have to perform ~ 10°
sampling operations to make one entire pass through
the data. We have to then repeat this process for
2000 iterations. Instead, we now reduce our choices
in each sampling step.

Say that our current plaintext hypothesis contains
English words X, Y and Z at positions 7 — 1, 7 and
i+1 respectively. In order to sample at position ¢, we
choose the top K English words Y ranked by P(X'Y
Z), which can be computed offline from a statistical
word bigram LM. If this probability is 0 (i.e., X and
Z never co-occurred), we randomly pick K words
from the plaintext vocabulary. We set K = 100 in
our experiments. This significantly reduces the sam-
pling possibilities (10k-1M reduces to 100) at each
step and allows us to scale to large plaintext vocab-
ulary sizes without enumerating all possible choices
at every cipher position.?

Parallelized Gibbs sampling: Secondly, we paral-
lelize our sampling step using a Map-Reduce frame-
work. In the past, others have proposed parallelized
sampling schemes for topic modeling applications
(Newman et al., 2009). In our method, we split the
entire corpus into separate chunks and we run the
sampling procedure on each chunk in parallel. At

"For word substitution decipherment, we want to keep the
language model probabilities fixed during training, and hence
we set the prior on that model to be high (o = 10*). We use a
sparse Dirichlet prior for the channel (3 = 0.01). We use the
output from Iterative EM decoding (using 101 x 101 channel)
as initial sample and run the sampler for 2000 iterations. Dur-
ing sampling, we use a linear annealing schedule decreasing the
temperature from 1 — 0.08.

2Since we now sample from an approximate distribution, we
have to correct this with the Metropolis-Hastings algorithm. But
in practice we observe that samples from our proposal distribu-
tion are accepted with probability > 0.99, so we skip this step.
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the end of each sampling iteration, we combine the
samples corresponding to each chunk and collect the
counts of all events—this forms our cache for the
next sampling iteration. In practice, we observe that
the parallelized sampling run converges quickly and
runs much faster than the conventional point-wise
sampling—for example, 3.1 hours (using 10 nodes)
versus 11 hours for one of the word substitution ex-
periments. We also notice a higher speedup when
scaling to larger vocabularies.?

Decoding the ciphertext: After the sampling run
has finished, we choose the final sample and ex-
tract a trained version of the channel model Py(c|e)
from this sample following the technique of Chi-
ang et al. (2010). We then use the Viterbi algo-
rithm to choose the English plaintext e that maxi-
mizes P(e) "By inea (0’6)3'

2.3 Experiments and Results

Data: For the word substitution experiments, we use
two corpora:

o Temporal expression corpus containing short
English temporal expressions such as “THE
NEXT MONTH”, “THE LAST THREE
YEARS”, etc. The cipher data contains 5000
expressions (9619 tokens, 153 word types).
We also have access to a separate English
corpus (which is not parallel to the ciphertext)
containing 125k temporal expressions (242k
word tokens, 201 word types) for LM training.

e Transtac corpus containing full English sen-
tences. The data consists of 10k cipher sen-
tences (102k tokens, 3397 word types); and
a plaintext corpus of 402k English sentences
(2.7M word tokens, 25761 word types) for LM
training. We use all the cipher data for deci-
pherment training but evaluate on the first 1000
cipher sentences.

The cipher data was originally generated from En-
glish text by substituting each English word with a
unique cipher word. We use the plaintext corpus to

3Type sampling could be applied on top of our methods to
further optimize performance. But more complex problems like
MT do not follow the same principles (1-to-1 key mappings)
as seen in word substitution ciphers, which makes it difficult to
identify type dependencies.



Method Decipherment Accuracy (%)
Temporal expr. Transtac
9k 100k
0. EM with 2-gram LM 87.8 Intractable
1. Iterative EM
with 2-gram LM 87.8 70.5 71.8
2. Bayesian
with 2-gram LM 88.6 60.1  80.0
with 3-gram LM - 82.5

Figure 1: Comparison of word substitution decipherment
results using (1) Iterative EM, and (2) Bayesian method.
For the Transtac corpus, decipherment performance is
also shown for different training data sizes (9k versus
100k cipher tokens).

build an English word n-gram LM, which is used in
the decipherment process.

Evaluation: We compute the accuracy of a particu-
lar decipherment as the percentage of cipher tokens
that were correctly deciphered from the whole cor-
pus. We run the two methods (Iterative EM* and
Bayesian) and then compare them in terms of word
substitution decipherment accuracies.

Results: Figure 1 compares the word substitution
results from Iterative EM and Bayesian decipher-
ment. Both methods achieve high accuracies, de-
coding 70-90% of the two word substitution ciphers.
Overall, Bayesian decipherment (with sparse priors)
performs better than Iterative EM and achieves the
best results on this task. We also observe that both
methods benefit from better LMs and more (cipher)
training data. Figure 2 shows sample outputs from
Bayesian decipherment.

3 Machine Translation as a Decipherment
Task

We now turn to the problem of MT without par-
allel data. From a decipherment perspective, ma-
chine translation is a much more complex task than
word substitution decipherment and poses several
technical challenges: (1) scalability due to large
corpora sizes and huge translation tables, (2) non-
determinism in translation mappings (a word can
have multiple translations), (3) re-ordering of words

*For Iterative EM, we start with a channel of size 101x101
(K=100) and in every pass we iteratively increase the vocabu-
lary sizes by 50, repeating the training procedure until the chan-
nel size becomes 351x351.
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3894 9411 4357 8446 5433

a diploma that’s good .

a fence that’s good .

8593 7932 3627 9166 3671

three families living here ?

three brothers living here ?

6283 8827 7592 6959 5120 6137 9723 3671

okay and what did they tell you ?

okay and what did they tell you ?

9723 3601 5834 5838 3805 4887 7961 9723 3174 4518
9067 4488 9551 7538 7239 9166 3671

you mean if we come to see you in the afternoon after
five you’ll be here ?

i mean if we come to see you in the afternoon after thirty
you’ll be here ?

QUeREoQTen

e

=

Figure 2: Comparison of the original (O) English plain-
text with output from Bayesian word substitution deci-
pherment (D) for a few samples cipher (C) sentences
from the Transtac corpus.

or phrases, (4) a single word can translate into a
phrase, and (5) insertion/deletion of words.

Problem Formulation: We formulate the MT de-
cipherment problem as—given a foreign text f (i.e.,
foreign word sequences f...f,) and a monolingual
English corpus, our goal is to decipher the foreign
text and produce an English translation.

Probabilistic decipherment: Unlike parallel train-
ing, here we have to estimate the translation model
Py(fle) parameters using only monolingual data.
During decipherment training, our objective is to es-
timate the model parameters ¢ in order to maximize
the probability of the foreign corpus f. From Equa-
tion 4 we have:

argmax [T 3 P(e) - By(fle)
f e

For P(e), we use a word n-gram LM trained on
monolingual English data. We then estimate param-
eters of the translation model Py(f|e) during train-
ing. Next, we present two novel decipherment ap-
proaches for MT training without parallel data.

1. EM Decipherment: We propose a new transla-
tion model for MT decipherment which can be
efficiently trained using the EM algorithm.

2. Bayesian Decipherment: We introduce a novel
method for estimating IBM Model 3 parame-
ters without parallel data, using Bayesian learn-
ing. Unlike EM, this method does not face any



memory issues and we use sampling to perform
efficient inference during training.

3.1 EM Decipherment

For the translation model Py(f|e), we would like
to use a well-known statistical model such as IBM
Model 3 and subsequently train it using the EM
algorithm. But without parallel training data, EM
training for IBM Model 3 becomes intractable due
to (1) scalability and efficiency issues because of
large-sized fertility and distortion parameter tables,
and (2) the resulting derivation lattices become too
big to be stored in memory.

Instead, we propose a simpler generative story for
MT without parallel data. Our model accounts for
(word) substitutions, insertions, deletions and local
re-ordering during the translation process but does
not incorporate fertilities or global re-ordering. We
describe the generative process here:

1. Generate an English string e = ej...e;, with

probability P(e).

2. Insert a NULL word at any position in the En-
glish string, with uniform probability.

3. For each English word token e; (including
NULLs), choose a foreign word translation f;,
with probability Py(file;). The foreign word
may be NULL.

4. Swap any pair of adjacent foreign words
fi—1, fi, with probability Py(swap). We set
this value to 0.1.

5. Output the foreign string f = f;..
over NULLSs.

. fm, skipping

We use the EM algorithm to estimate all the pa-
rameters 6 in order to maximize likelihood of the
foreign corpus. Finally, we use the Viterbi algo-
rithm to decode the foreign sentence f and pro-
duce an English translation e that maximizes P(e) -

Pgtruined (f | 6) *

Linguistic knowledge for decipherment: To help
limit translation model size and deal with data spar-
sity problem, we use prior linguistic knowledge. We
use identity mappings for numeric values (for ex-
ample, “8” maps to “8”), and we split nouns into
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morpheme units prior to decipherment training (for
example, “YEARS” — “YEAR” “+S”).

Whole-segment Language Models: When using
word n-gram models of English for decipherment,
we find that some of the foreign sentences are
decoded into sequences (such as “THANK YOU
TALKING ABOUT 7”) that are not good English.
This stems from the fact that n-gram LMs have no
global information about what constitutes a valid
English segment. To learn this information auto-
matically, we build a P(e) model that only recog-
nizes English whole-segments (entire sentences or
expressions) observed in the monolingual training
data. We then use this model (in place of word n-
gram LMs) for decipherment training and decoding.

3.2 Bayesian Method

Brown et al. (1993) provide an efficient algorithm
for training IBM Model 3 translation model when
parallel sentence pairs are available. But we wish
to perform IBM Model 3 training under non-parallel
conditions, which is intractable using EM training.
Instead, we take a Bayesian approach.

Following Equation 5, we represent the transla-
tion model as Py(f,ale) in terms of hidden align-
ments a. Recall the generative story for IBM Model
3 translation which has the following formula:

Py(f,ale)

Hte (fa;leq) - H ng(¢ilei)

=1

H dg(a;li,l,m) - H

a;#0,j=1 =0

1 (m — gzﬁo)
%o o
2
e pgy @®)
The alignment a is represented as a vector; a; = i

implies that the foreign word f; is produced by the
English word e; during translation.

Bayesian Formulation: Our goal is to learn the
probability tables ¢ (translation parameters) n (fer-
tility parameters), d (distortion parameters), and p
(English NULL word probabilities) without parallel
data. In order to apply Bayesian inference for de-
cipherment, we model each of these tables using a



Chinese Restaurant Process (CRP) formulation. For
example, to model the translation probabilities, we
use the formula:

a - Po(filei) + Chistory(€i, [5),

to(filei) = a + Chistory(€i) )

where, P, represents the base distribution (which
is set to uniform) and C;st0ry Tepresents the count
of events occurring in the history (cache). Similarly,
we use CRP formulations for the other probabilities
(n, d and p). We use sparse Dirichlet priors for all
these models (i.e., low values for o)) and plug these
probabilities into Equation 8 to get Py(f,ale).

Sampling IBM Model 3: We use point-wise Gibbs
sampling to estimate the IBM Model 3 parameters.
The sampler is seeded with an initial English sample
translation and a corresponding alignment for every
foreign sentence. We define several sampling oper-
ators, which are applied in sequence one after the
other to generate English samples for the entire for-
eign corpus. Some of the sampling operators are de-
scribed below:

e TranslateWord(5): Sample a new English word
translation for foreign word f;, from all possi-
bilities (including NULL).

e SwapSegment(i1,i2): Swap the alignment
links for English words e;, and e;,.

e JoinWords(i1, 72): Eliminate the English word
e;, and transfer its links to the word e;, .

During sampling, we apply each of these opera-
tors to generate a new derivation e, a for the foreign
text f and compute its score as P(e) - Py(f,ale).
These small-change operators are similar to the
heuristic techniques used for greedy decoding by
German et al. (2001). But unlike the greedy method,
which can easily get stuck, our Bayesian approach
guarantees that once the sampler converges we will
be sampling from the true posterior distribution.

As with Bayesian decipherment for word sub-
stitution, we compute the probability of each new
derivation incrementally, which makes sampling ef-
ficient. We also apply blocked sampling on top
of point-wise sampling—we treat all occurrences
of a particular foreign sentence as a single block
and sample a single derivation for the entire block.
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We also parallelize the sampling procedure (as de-
scribed in Section 2.2).

Choosing the best translation: Once the sampling
run finishes, we select the final sample and extract
the corresponding English translations for every for-
eign sentence. This yields the final decipherment
output.

3.3 MT Experiments and Results

Data: We work with the Spanish/English language
pair and use the following corpora in our MT exper-
iments:

o Time corpus: We mined English newswire
text on the Web and collected 295k tempo-
ral expressions such as “LAST YEAR”, “THE
FOURTH QUARTER”, “IN JAN 1968, etc.
We first process the data and normalize num-
bers and names of months/weekdays—for ex-
ample, “1968” is replaced with “NNNN”,
“JANUARY” with “IMONTH]”, and so on. We
then translate the English temporal phrases into
Spanish using an automatic translation soft-
ware (Google Translate) followed by manual
annotation to correct mistakes made by the
software. We create the following splits out of
the resulting parallel corpus:

TRAIN (English): 195k temporal expressions
(7588 unique), 382k word tokens, 163 types.

TEST (Spanish): 100k temporal expressions
(2343 unique), 204k word tokens, 269 types.

e OPUS movie subtitle corpus: This is a large
open source collection of parallel corpora avail-
able for multiple language pairs (Tiedemann,
2009). We downloaded the parallel Span-
ish/English subtitle corpus which consists of
aligned Spanish/English sentences from a col-
lection of movie subtitles. For our MT ex-
periments, we select only Spanish/English sen-
tences with frequency > 10 and create the fol-
lowing train/test splits:

SFor Bayesian MT decipherment, we set a high prior value
on the language model (10*) and use sparse priors for the IBM 3
model parameters ¢, n, d, p (0.01,0.01,0.01,0.01). We use the
output from EM decipherment as the initial sample and run the
sampler for 2000 iterations, during which we apply annealing
with a linear schedule (2 — 0.08).



Method Decipherment Accuracy
Time expressions  OPUS subtitles
la. Parallel training (MOSES)
with 2-gram LM 5.6 (85.6) 26.8 (63.6)
with 5-gram LM 4.7 (88.0)
1b. Parallel training (IBM 3 without distortion)
with 2-gram LM 10.1 (78.9) 29.9 (59.6)
with whole-segment LM 9.0 (79.2)
2a. Decipherment (EM)
with 2-gram LM 37.6 (44.6) 67.2 (15.3)
with whole-segment LM 28.7 (48.7) 65.1 (19.3)
2b. Decipherment (Bayesian IBM 3)
with 2-gram LM 34.0 (30.2) 66.6 (15.1)

Figure 3: Comparison of Spanish/English MT performance on the Time and OPUS test corpora achieved by various
MT systems trained under (1) parallel—(a) MOSES, (b) IBM 3 without distortion, and (2) decipherment settings—
(a) EM, (b) Bayesian. The scores reported here are normalized edit distance values with BLEU scores shown in

parentheses.

TRAIN (English): 19770 sentences (1128
unique), 62k word tokens, 411 word types.

TEST (Spanish): 13181 sentences (1127
unique), 39k word tokens, 562 word types.

Both Spanish/English sides of TRAIN are used for
parallel MT training, whereas decipherment uses
only monolingual English data for training LMs.

MT Systems: We build and compare different MT
systems under two training scenarios:

1. Parallel training using: (a) MOSES, a phrase
translation system (Koehn et al., 2007) widely
used in MT literature, and (b) a simpler version
of IBM Model 3 (without distortion param-
eters) which can be trained tractably using the
strategy of Knight and Al-Onaizan (1998).

2. Decipherment without parallel data using:
(a) EM method (from Section 3.1), and (b)
Bayesian method (from Section 3.2).

Evaluation: All the MT systems are run on the
Spanish test data and the quality of the result-
ing English translations are evaluated using two
different measures—(1) Normalized edit distance
score (Navarro, 2001),° and (2) BLEU (Papineni et

SWhen computing edit distance, we account for substitu-
tions, insertions, deletions as well as local-swap edit operations
required to convert a given English string into the (gold) refer-
ence translation.
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al., 2002), a standard MT evaluation measure.

Results: Figure 3 compares the results of vari-
ous MT systems (using parallel versus decipherment
training) on the two test corpora in terms of edit dis-
tance scores (a lower score indicates closer match to
the gold translation). The figure also shows the cor-
responding BLEU scores in parentheses for compar-
ison (higher scores indicate better MT output).

We observe that even without parallel training
data, our decipherment strategies achieve MT accu-
racies comparable to parallel-trained systems. On
the Time corpus, the best decipherment (Method
2a in the figure) achieves an edit distance score of
28.7 (versus 4.7 for MOSES). Better LMs yield bet-
ter MT results for both parallel and decipherment
training—for example, using a segment-based En-
glish LM instead of a 2-gram LM yields a 24% re-
duction in edit distance and a 9% improvement in
BLEU score for EM decipherment.

We also investigate how the performance of dif-
ferent MT systems vary with the size of the training
data. Figure 4 plots the BLEU scores versus training
sizes for different MT systems on the Time corpus.
Clearly, using more training data yields better per-
formance for all systems. However, higher improve-
ments are observed when using parallel data in com-
parison to decipherment training which only uses
monolingual data. We also notice that the scores do
not improve much when going beyond 10,000 train-
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Figure 4: Comparison of training data size versus MT ac-
curacy in terms of BLEU score under different training
conditions: (1) Parallel training—(a) MOSES, (b) IBM
Model 3 without distortion, and (2) Decipherment with-
out parallel data using EM method (from Section 3.1).

ing instances for this domain.

It is interesting to quantify the value of parallel
versus non-parallel data for any given MT task. In
other words, “how much non-parallel data is worth
how much parallel data in order to achieve the same
MT accuracy?” Figure 4 provides a reasonable an-
swer to this question for the Spanish/English MT
task described here. We see that deciphering with
10k monolingual Spanish sentences yields the same
performance as training with around 200-500 paral-
lel English/Spanish sentence pairs. This is the first
attempt at such a quantitative comparison for MT
and our results are encouraging. We envision that
further developments in unsupervised methods will
help reduce this gap further.

4 Conclusion

Our work is the first attempt at doing MT with-
out parallel data. We discussed several novel deci-
pherment approaches for achieving this goal. Along
the way, we developed efficient training methods
that can deal with large-scale vocabularies and data
sizes. For future work, it will be interesting to see if
we can exploit both parallel and non-parallel data to
improve on both.
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Abstract

In the present paper, we propose the ef-
fective usage of function words to generate
generalized translation rules for forest-based
translation. Given aligned forest-string pairs,
we extract composed tree-to-string translation
rules that account for multiple interpretations
of both aligned and unaligned target func-
tion words. In order to constrain the ex-
haustive attachments of function words, we
limit to bind them to the nearby syntactic
chunks yielded by a target dependency parser.
Therefore, the proposed approach can not
only capture source-tree-to-target-chunk cor-
respondences but can also use forest structures
that compactly encode an exponential num-
ber of parse trees to properly generate target
function words during decoding. Extensive
experiments involving large-scale English-to-
Japanese translation revealed a significant im-
provement of 1.8 points in BLEU score, as
compared with a strong forest-to-string base-
line system.

1 Introduction

Rule generalization remains a key challenge for
current syntax-based statistical machine translation
(SMT) systems. On the one hand, there is a ten-
dency to integrate richer syntactic information into
a translation rule in order to better express the trans-
lation phenomena. Thus, flat phrases (Koehn et al.,
2003), hierarchical phrases (Chiang, 2005), and syn-
tactic tree fragments (Galley et al., 2006; Mi and
Huang, 2008; Wu et al., 2010) are gradually used in
SMT. On the other hand, the use of syntactic phrases
continues due to the requirement for phrase cover-
age in most syntax-based systems. For example,
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Mi et al. (2008) achieved a 3.1-point improvement
in BLEU score (Papineni et al., 2002) by including
bilingual syntactic phrases in their forest-based sys-
tem. Compared with flat phrases, syntactic rules are
good at capturing global reordering, which has been
reported to be essential for translating between lan-
guages with substantial structural differences, such
as English and Japanese, which is a subject-object-
verb language (Xu et al., 2009).

Forest-based translation frameworks, which make
use of packed parse forests on the source and/or tar-
get language side(s), are an increasingly promising
approach to syntax-based SMT, being both algorith-
mically appealing (Mi et al., 2008) and empirically
successful (Mi and Huang, 2008; Liu et al., 2009).
However, forest-based translation systems, and, in
general, most linguistically syntax-based SMT sys-
tems (Galley et al., 2004; Galley et al., 2006; Liu
et al., 2006; Zhang et al., 2007; Mi et al., 2008;
Liu et al., 2009; Chiang, 2010), are built upon word
aligned parallel sentences and thus share a critical
dependence on word alignments. For example, even
a single spurious word alignment can invalidate a
large number of otherwise extractable rules, and un-
aligned words can result in an exponentially large
set of extractable rules for the interpretation of these
unaligned words (Galley et al., 2006).

What makes word alignment so fragile? In or-
der to investigate this problem, we manually ana-
lyzed the alignments of the first 100 parallel sen-
tences in our English-Japanese training data (to be
shown in Table 2). The alignments were generated
by running GIZA++ (Och and Ney, 2003) and the
grow-diag-final-and symmetrizing strategy (Koehn
et al., 2007) on the training set. Of the 1,324 word
alignment pairs, there were 309 error pairs, among
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Portland, Oregon, June 19-24, 2011. (©2011 Association for Computational Linguistics



which there were 237 target function words, which
account for 76.7% of the error pairs'. This indicates
that the alignments of the function words are more
easily to be mistaken than content words. More-
over, we found that most Japanese function words
tend to align to a few English words such as ‘of’
and ‘the’, which may appear anywhere in an English
sentence. Following these problematic alignments,
we are forced to make use of relatively large English
tree fragments to construct translation rules that tend
to be ill-formed and less generalized.

This is the motivation of the present approach of
re-aligning the target function words to source tree
fragments, so that the influence of incorrect align-
ments is reduced and the function words can be gen-
erated by tree fragments on the fly. However, the
current dominant research only uses 1-best trees for
syntactic realignment (Galley et al., 2006; May and
Knight, 2007; Wang et al., 2010), which adversely
affects the rule set quality due to parsing errors.
Therefore, we realign target function words to a
packed forest that compactly encodes exponentially
many parses. Given aligned forest-string pairs, we
extract composed tree-to-string translation rules that
account for multiple interpretations of both aligned
and unaligned target function words. In order to con-
strain the exhaustive attachments of function words,
we further limit the function words to bind to their
surrounding chunks yielded by a dependency parser.
Using the composed rules of the present study in
a baseline forest-to-string translation system results
in a 1.8-point improvement in the BLEU score for
large-scale English-to-Japanese translation.

2 Backgrounds

2.1 Japanese function words

In the present paper, we limit our discussion
on Japanese particles and auxiliary verbs (Martin,
1975). Particles are suffixes or tokens in Japanese
grammar that immediately follow modified con-
tent words or sentences. There are eight types of
Japanese function words, which are classified de-
pending on what function they serve: case markers,
parallel markers, sentence ending particles, interjec-

'These numbers are language/corpus-dependent and are not
necessarily to be taken as a general reflection of the overall qual-
ity of the word alignments for arbitrary language pairs.
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tory particles, adverbial particles, binding particles,
conjunctive particles, and phrasal particles.

Japanese grammar also uses auxiliary verbs to
give further semantic or syntactic information about
the preceding main or full verb. Alike English, the
extra meaning provided by a Japanese auxiliary verb
alters the basic meaning of the main verb so that the
main verb has one or more of the following func-
tions: passive voice, progressive aspect, perfect as-
pect, modality, dummy, or emphasis.

2.2 HPSG forests

Following our precious work (Wu et al., 2010), we
use head-drive phrase structure grammar (HPSG)
forests generated by Enju® (Miyao and Tsujii, 2008),
which is a state-of-the-art HPSG parser for English.
HPSG (Pollard and Sag, 1994; Sag et al., 2003) is a
lexicalist grammar framework. In HPSG, linguistic
entities such as words and phrases are represented
by a data structure called a sign. A sign gives a
factored representation of the syntactic features of
a word/phrase, as well as a representation of their
semantic content. Phrases and words represented by
signs are collected into larger phrases by the appli-
cations of schemata. The semantic representation of
the new phrase is calculated at the same time. As
such, an HPSG parse forest can be considered to
be a forest of signs. Making use of these signs in-
stead of part-of-speech (POS)/phrasal tags in PCFG
results in a fine-grained rule set integrated with deep
syntactic information.

For example, an aligned HPSG forest>-string pair
is shown in Figure 1. For simplicity, we only draw
the identifiers for the signs of the nodes in the HPSG
forest. Note that the identifiers that start with ‘c’ de-
note non-terminal nodes (e.g., c0, c1), and the iden-
tifiers that start with ‘t” denote terminal nodes (e.g.,
t3, tl1). In a complete HPSG forest given in (Wu et
al., 2010), the terminal signs include features such
as the POS tag, the tense, the auxiliary, the voice of
a verb, etc.. The non-terminal signs include features
such as the phrasal category, the name of the schema

2http://www-tsujii.is.s.u-tokyo.ac.jp/enju/index.html

3The forest includes three parse trees rooted at c0, cl, and
c2. In the 1-best tree, ‘by’ modifies the passive verb ‘verified’.
Yet in the 2- and 3-best tree, ‘by’ modifies ‘this result was ver-
ified’. Furthermore, ‘verified’ is an adjective in the 2-best tree
and a passive verb in the 3-best tree.
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Figure 1: Illustration of an aligned HPSG forest-string pair for English-to-Japanese translation. The chunk-level
dependency tree for the Japanese sentence is shown as well.

applied in the node, etc.. ing Fs. Then, we identify minimal and composed
rules from the derivation forest and estimate the
probabilities of rules and scores of derivations us-
ing the expectation-maximization (EM) (Dempster

et al., 1977) algorithm.

3 Composed Rule Extraction

In this section, we first describe an algorithm that
attaches function words to a packed forest guided
by target chunk information. That is, given a triple
(Fg,T,A), namely an aligned (A) source forest
(Fs) to target sentence (1') pair, we 1) tailor the
alignment A by removing the alignments for tar-

3.1 Definitions

In the proposed algorithm, we make use of the fol-
lowing definitions, which are similar to those de-

get function words, 2) seek attachable nodes in the
source forest Fg for each function word, and 3) con-
struct a derivation forest by topologically travers-
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scribed in (Galley et al., 2004; Mi and Huang, 2008):

e s(-): the span of a (source) node v or a (target)
chunk C, which is an index set of the words that



v or C covers;

e t(v): the corresponding span of v, which is an
index set of aligned words on another side;

e c(v): the complement span of v, which is the
union of corresponding spans of nodes v’ that
share an identical parse tree with v but are nei-
ther antecedents nor descendants of v;

e P, the frontier set of Fg, which contains
nodes that are consistent with an alignment A
(gray nodes in Figure 1), i.e., t(v) # & and
closure(t(v)) Ne(v) = @.

The function closure covers the gap(s) that may
appear in the interval parameter. For example,
closure(t(c3)) = closure({0-1, 4-7}) = {0-7}.
Examples of the applications of these functions can
be found in Table 1. Following (Galley et al.,
2006), we distinguish between minimal and com-
posed rules. The composed rules are generated by
combining a sequence of minimal rules.

3.2 Free attachment of target function words
3.21

We explain the motivation for the present research
using an example that was extracted from our train-
ing data, as shown in Figure 1. In the alignment of
this example, three lines (in dot lines) are used to
align was and the with ga (subject particle), and was
with ta (past tense auxiliary verb). Under this align-
ment, we are forced to extract rules with relatively
large tree fragments. For example, by applying the
GHKM algorithm (Galley et al., 2004), a rule rooted
at cO will take c7, t4, c4, cl19, t2, and cl15 as the
leaves. The final tree fragment, with a height of 7,
contains 13 nodes. In order to ensure that this rule
is used during decoding, we must generate subtrees
with a height of 7 for c0. Suppose that the input for-
est is binarized and that |E| is the average number
of hyperedges of each node, then we must generate
O(|E|*~1) subtrees* for c0 in the worst case. Thus,

Motivation

“For one (binarized) hyperedge e of a node, suppose there
are x subtrees in the left tail node and y subtrees in the right tail
node. Then the number of subtrees guided by e is (z + 1) X
(y+1). Thus, the recursive formula is N, = | E|(Np—1 +1)?,
where h is the height of the hypergraph and N}, is the number
of subtrees. When h = 1, we let N, = 0.
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the existence of these rules prevents the generaliza-
tion ability of the final rule set that is extracted.

In order to address this problem, we tailor the
alignment by ignoring these three alignment pairs in
dot lines. For example, by ignoring the ambiguous
alignments on the Japanese function words, we en-
large the frontier set to include from 12 to 19 of the
24 non-terminal nodes. Consequently, the number
of extractable minimal rules increases from 12 (with
three reordering rules rooted at c0, cl, and c2) to
19 (with five reordering rules rooted at c0, cl, c2,
¢5, and c17). With more nodes included in the fron-
tier set, we can extract more minimal and composed
monotonic/reordering rules and avoid extracting the
less generalized rules with extremely large tree frag-
ments.

3.2.2 Why chunking?

In the proposed algorithm, we use a target chunk
set to constrain the attachment explosion problem
because we use a packed parse forest instead of a 1-
best tree, as in the case of (Galley et al., 2006). Mul-
tiple interpretations of unaligned function words for
an aligned tree-string pair result in a derivation for-
est. Now, we have a packed parse forest in which
each tree corresponds to a derivation forest. Thus,
pruning free attachments of function words is prac-
tically important in order to extract composed rules
from this “(derivation) forest of (parse) forest”.

In the English-to-Japanese translation test case of
the present study, the target chunk set is yielded
by a state-of-the-art Japanese dependency parser,
Cabocha v0.53° (Kudo and Matsumoto, 2002). The
output of Cabocha is a list of chunks. A chunk con-
tains roughly one content word (usually the head)
and affixed function words, such as case markers
(e.g., ga) and verbal morphemes (e.g., sa re ta,
which indicate past tense and passive voice). For
example, the Japanese sentence in Figure 1 is sepa-
rated into four chunks, and the dependencies among
these chunks are identified by arrows. These arrows
point out the head chunk that the current chunk mod-
ifies. Moreover, we also hope to gain a fine-grained
alignment among these syntactic chunks and source
tree fragments. Thereby, during decoding, we are
binding the generation of function words with the
generation of target chunks.

>http://chasen.org/~taku/software/cabocha/



Algorithm 1 Aligning function words to the forest

Input: HPSG forest Fis, target sentence 7', word alignment
A = {(¢,7)}, target function word set {f.,, } appeared in
T, and target chunk set {C}

Output: a derivation forest DF'

I A" AN{(G,8(fw)} > fu € {fu}

2: for each node v € P4/ in topological order do

3: 7T, «— @ b store the corresponding spans of v
4

5

for each function word f., € {f.} do
if f,, € Cand t(v)N(C) # @ and f,, are not attached
to descendants of v then
6 append ¢(v) U {s(fw)} to T,
7 end if
8:  end for
9 for each corresponding span t(v) € 7, do
0 R <« IDENTIFYMINRULES(v, t(v),T) > range
over the hyperedges of v, and discount the factional
count of each rule r € R by 1/|7,|

11: create anode n in DF foreachruler € R
12: create a shared parent node @ when |R| > 1
13: end for

14: end for

3.2.3 The algorithm

Algorithm 1 outlines the proposed approach to
constructing a derivation forest to include multiple
interpretations of target function words. The deriva-
tion forest is a hypergraph as previously used in
(Galley et al., 2006), to maintain the constraint that
one unaligned target word be attached to some node
v exactly once in one derivation tree. Starting from
a triple (Fs,T, A), we first tailor the alignment A
to A’ by removing the alignments for target function
words. Then, we traverse the nodes v € P4 in topo-
logical order. During the traversal, a function word
fuw will be attached to v if 1) t(v) overlaps with the
span of the chunk to which f,, belongs, and 2) f,,
has not been attached to the descendants of v.

We identify translation rules that take v as the root
of their tree fragments. Each tree fragment is a fron-
tier tree that takes a node in the frontier set P 4
of Fs as the root node and non-lexicalized frontier
nodes or lexicalized non-frontier nodes as the leaves.
Also, a minimal frontier tree used in a minimal rule
is limited to be a frontier tree such that all nodes
other than the root and leaves are non-frontier nodes.
We use Algorithm 1 described in (Mi and Huang,
2008) to collect minimal frontier trees rooted at v in
Fs. That is, we range over each hyperedges headed
at v and continue to expand downward until the cur-
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A— (A

node | s(-) t() c(+) consistent
c0 0-6 0-8(0-3,5-7) o] 1
cl 0-6 0-8(0-3,5-7) %] 1
c2 0-6 0-8(0-3,5-7) o] 1
c3 3-6  0-1,4-7(0-1,5-7) 2,8 0
c4 3 5-7 0,8(0-3) 1
5% | 46 0,4(0-1) 2-8(2-3,5-7) (1)
c6* 0-3 2-8(2-3,5-7) 0,4(0-1) (1)
c7 0-1 2-3 0-1,4-8(0-1,5-7) 1
c8* 2-3 4-8(5-7) 0-4(0-3) 0(1)
c9 0 2 0-1,3-8(0-1,3,5-7) 1
cl0 1 3 0-2,4-8(0-2,5-7) 1
cll 2-6 0-1,4-8(0-1,5-7) 2-3 0
cl2 3 5-7 0,8(0-3) 1
cl3* | 5-6 0,4(0) 1-8(1-3,5-7) 0(1)
cl4 5 42) 0-8(0-3,5-7) 0
cls 6 0 1-8(1-3,5-7) 1
cl6 2 4,8(2) 0-7(0-3,5-7) 0
cl7* | 4-6 0,4(0-1) 2-8(2-3,5-7) 0(1)
cl8 4 1 0,2-8(0,2-3,5-7) 1
cl9 4 1 0,2-8(0,2-3,5-7) 1
c20* | 0-3 2-8(2-3,5-7) 0,4(0-1) 0(1)
c21 3 5-7 0,8(0-3) 1
c22 2 4,8(2) 0-7(0-3,5-7) 0
c23* | 2-3 4-8(5-7) 0-4(0-3) 0(1)

Table 1: Change of node attributes after alignment modi-
fication from A to A’ of the example in Figure 1. Nodes
with * superscripts are consistent with A’ but not consis-
tent with A.

rent set of hyperedges forms a minimal frontier tree.

In the derivation forest, we use @ nodes to man-
age minimal/composed rules that share the same
node and the same corresponding span. Figure 2
shows some minimal rule and & nodes derived from
the example in Figure 1.

Even though we bind function words to their
nearby chunks, these function words may still be at-
tached to relative large tree fragments, so that richer
syntactic information can be used to predict the
function words. For example, in Figure 2, the tree
fragments rooted at node 08_8 can predict ga and/or
ta. The syntactic foundation behind is that, whether
to use ga as a subject particle or to use wo as an ob-
ject particle depends on both the left-hand-side noun
phrase (kekka) and the right-hand-side verb (kensyou
sa re ta). This type of node v’ (such as 08*8) should
satisfy the following two heuristic conditions:

e ¢/ is included in the frontier set P 4 of Fg, and

e t(v') covers the function word, or v’ is the root
node of Fy if the function word is the beginning
or ending word in the target sentence 7.

Starting from this derivation forest with minimal
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Figure 2: Illustration of a (partial) derivation forest. Gray nodes include some unaligned target function word(s).
Nodes annotated by “*” include ga, and nodes annotated by “+” include ta.

rules as nodes, we can further combine two or more
minimal rules to form composed rules nodes and can
append these nodes to the derivation forest.

3.3 Estimating rule probabilities

We use the EM algorithm to jointly estimate 1)
the translation probabilities and fractional counts of
rules and 2) the scores of derivations in the deriva-
tion forests. As reported in (May and Knight, 2007),
EM, as has been used in (Galley et al., 2006) to es-
timate rule probabilities in derivation forests, is an
iterative procedure and prefers shorter derivations
containing large rules over longer derivations con-
taining small rules. In order to overcome this bias
problem, we discount the fractional count of a rule
by the product of the probabilities of parse hyper-
edges that are included in the tree fragment of the
rule.

4 Experiments

4.1 Setup

We implemented the forest-to-string decoder de-
scribed in (Mi et al., 2008) that makes use of forest-
based translation rules (Mi and Huang, 2008) as
the baseline system for translating English HPSG
forests into Japanese sentences. We analyzed the
performance of the proposed translation rule sets by
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Train Dev. Test
# sentence pairs 994K 2K 2K
# En 1-best trees 987,401 1,982 1,984
# En forests 984,731 1,979 1,983
# En words 247M  50.3K 499K
# Jp words 282M 574K 57.1K
# Jp function words 8.0M 16.1K 16.1K

Table 2: Statistics of the JST corpus. Here, En = English
and Jp = Japanese.

using the same decoder.

The JST Japanese-English paper abstract corpus®
(Utiyama and Isahara, 2007), which consists of one
million parallel sentences, was used for training,
tuning, and testing. Table 2 shows the statistics of
this corpus. Note that Japanese function words oc-
cupy more than a quarter of the Japanese words.
Making use of Enju 2.3.1, we generated 987,401
1-best trees and 984,731 parse forests for the En-
glish sentences in the training set, with successful
parse rates of 99.3% and 99.1%, respectively. Us-
ing the pruning criteria expressed in (Mi and Huang,
2008), we continue to prune a parse forest by set-
ting p. to be 8, 5, and 2, until there are no more than
e'0 = 22,026 trees in a forest. After pruning, there
are an average of 82.3 trees in a parse forest.

Shttp://www.jst.go.jp



C3-T M&H-F Min-F C3-F
free fw Y N Y Y
alignment A’ A A’ A’
English side tree forest forest forest
# rule 86.30 96.52 14491 228.59
#reorder rule  58.50 91.36 9298 162.71
# tree types 21.62 93.55 72.98 120.08
# nodes/tree 14.2 42.1 26.3 18.6
extract time 30.2 522 58.6 130.7
EM time 9.4 - 11.2 29.0
# rules in dev. 0.77 1.22 1.37 2.18
# rules in test 0.77 1.23 1.37 2.15
DT(sec./sent.) 2.8 15.7 22.4 354
BLEU (%) 26.15 27.07 27.93 28.89

Table 3: Statistics and translation results for four types of
tree-to-string rules. With the exception of ‘# nodes/tree’,
the numbers in the table are in millions and the time is in
hours. Here, fw denotes function word, and DT denotes
the decoding time, and the BLEU scores were computed
on the test set.

We performed GIZA++ (Och and Ney, 2003)
and the grow-diag-final-and symmetrizing strategy
(Koehn et al., 2007) on the training set to obtain
alignments. The SRI Language Modeling Toolkit
(Stolcke, 2002) was employed to train a five-gram
Japanese LM on the training set. We evaluated the
translation quality using the BLEU-4 metric (Pap-
ineni et al., 2002).

Joshua v1.3 (Li et al., 2009), which is a
freely available decoder for hierarchical phrase-
based SMT (Chiang, 2005), is used as an external
baseline system for comparison. We extracted 4.5M
translation rules from the training set for the 4K En-
glish sentences in the development and test sets. We
used the default configuration of Joshua, with the ex-
ception of the maximum number of items/rules, and
the value of £ (of the k-best outputs) is set to be 200.

4.2 Results

Table 3 lists the statistics of the following translation
rule sets:

e C3-T: a composed rule set extracted from the
derivation forests of 1-best HPSG trees that
were constructed using the approach described
in (Galley et al., 2006). The maximum number
of internal nodes is set to be three when gen-
erating a composed rule. We free attach target
function words to derivation forests;
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——M&H-F

20

# of rules (M)

2 12 22 32 42 52 62 72 82 92

# of tree nodes in rule

Figure 3: Distributions of the number of tree nodes in the
translation rule sets. Note that the curves of Min-F and
C3-F are duplicated when the number of tree nodes being
larger than 9.

e M&H-F: a minimal rule set extracted from
HPSG forests using the extracting algorithm of
(Mi and Huang, 2008). Here, we make use of
the original alignments. We use the two heuris-
tic conditions described in Section 3.2.3 to at-
tach unaligned words to some node(s) in the
forest;

e Min-F: a minimal rule set extracted from the
derivation forests of HPSG forests that were
constructed using Algorithm 1 (Section 3).

e C3-F: a composed rule set extracted from the
derivation forests of HPSG forests. Similar to
C3-T, the maximum number of internal nodes
during combination is three.

We investigate the generalization ability of these
rule sets through the following aspects:

1. the number of rules, the number of reordering
rules, and the distributions of the number of
tree nodes (Figure 3), i.e., more rules with rel-
atively small tree fragments are preferred;

2. the number of rules that are applicable to the
development and test sets (Table 3); and

3. the final translation accuracies.

Table 3 and Figure 3 reflect that the generalization
abilities of these four rule sets increase in the or-
der of C3-T < M&H-F < Min-F < C3-F. The ad-
vantage of using a packed forest for re-alignment is
verified by comparing the statistics of the rules and
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Figure 4: Comparison of decoding time and the number
of rules used for translating the test set.

the final BLEU scores of C3-T with Min-F and C3-
F. Using the composed rule set C3-F in our forest-
based decoder, we achieved an optimal BLEU score
of 28.89 (%). Taking M&H-F as the baseline trans-
lation rule set, we achieved a significant improve-
ment (p < 0.01) of 1.81 points.

In terms of decoding time, even though we used
Algorithm 3 described in (Huang and Chiang, 2005),
which lazily generated the N-best translation can-
didates, the decoding time tended to be increased
because more rules were available during cube-
pruning. Figure 4 shows a comparison of decoding
time (seconds per sentence) and the number of rules
used for translating the test set. Easy to observe that,
decoding time increases in a nearly linear way fol-
lowing the increase of the number of rules used dur-
ing decoding.

Finally, compared with Joshua, which achieved
a BLEU score of 24.79 (%) on the test set with
a decoding speed of 8.8 seconds per sentence, our
forest-based decoder achieved a significantly better
(p < 0.01) BLEU score by using either of the four
types of translation rules.

5 Related Research

Galley et al. (2006) first used derivation forests of
aligned tree-string pairs to express multiple inter-
pretations of unaligned target words. The EM al-
gorithm was used to jointly estimate 1) the trans-
lation probabilities and fractional counts of rules
and 2) the scores of derivations in the derivation
forests. By dealing with the ambiguous word align-
ment instead of unaligned target words, syntax-
based re-alignment models were proposed by (May
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and Knight, 2007; Wang et al., 2010) for tree-based
translations.

Free attachment of the unaligned target word
problem was ignored in (Mi and Huang, 2008),
which was the first study on extracting tree-to-string
rules from aligned forest-string pairs. This inspired
the idea to re-align a packed forest and a target sen-
tence. Specially, we observed that most incorrect or
ambiguous word alignments are caused by function
words rather than content words. Thus, we focus on
the realignment of target function words to source
tree fragments and use a dependency parser to limit
the attachments of unaligned target words.

6 Conclusion

We have proposed an effective use of target function
words for extracting generalized transducer rules for
forest-based translation. We extend the unaligned
word approach described in (Galley et al., 2006)
from the 1-best tree to the packed parse forest. A
simple yet effective modification is that, during rule
extraction, we account for multiple interpretations
of both aligned and unaligned target function words.
That is, we chose to loose the ambiguous alignments
for all of the target function words. The consider-
ation behind is in order to generate target function
words in a robust manner. In order to avoid gener-
ating too large a derivation forest for a packed for-
est, we further used chunk-level information yielded
by a target dependency parser. Extensive experi-
ments on large-scale English-to-Japanese translation
resulted in a significant improvement in BLEU score
of 1.8 points (p < 0.01), as compared with our
implementation of a strong forest-to-string baseline
system (Mi et al., 2008; Mi and Huang, 2008).

The present work only re-aligns target function
words to source tree fragments. It will be valuable
to investigate the feasibility to re-align all the tar-
get words to source tree fragments. Also, it is in-
teresting to automatically learn a word set for re-
aligning’. Given source parse forests and a target
word set for re-aligning beforehand, we argue our
approach is generic and applicable to any language
pairs. Finally, we intend to extend the proposed
approach to tree-to-tree translation frameworks by

"This idea comes from one reviewer, we express our thank-
fulness here.



re-aligning subtree pairs (Liu et al., 2009; Chiang,
2010) and consistency-to-dependency frameworks
by re-aligning consistency-tree-to-dependency-tree
pairs (Mi and Liu, 2010) in order to tackle the rule-
sparseness problem.
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Abstract

This paper extends the training and tun-
ing regime for phrase-based statistical ma-
chine translation to obtain fluent trans-
lations into morphologically complex lan-
guages (we build an English to Finnish
translation system). Our methods use
unsupervised morphology induction. Un-
like previous work we focus on morpho-
logically productive phrase pairs — our
decoder can combine morphemes across
phrase boundaries. Morphemes in the tar-
get language may not have a corresponding
morpheme or word in the source language.
Therefore, we propose a novel combina-
tion of post-processing morphology pre-
diction with morpheme-based translation.
We show, using both automatic evaluation
scores and linguistically motivated analy-
ses of the output, that our methods out-
perform previously proposed ones and pro-
vide the best known results on the English-
Finnish Europarl translation task. Our
methods are mostly language independent,
so they should improve translation into
other target languages with complex mor-
phology.

1 Translation and Morphology

Languages with rich morphological systems
present significant hurdles for statistical ma-
chine translation (SMT), most notably data
sparsity, source-target asymmetry, and prob-
lems with automatic evaluation.

In this work, we propose to address the prob-
lem of morphological complexity in an English-
to-Finnish MT task within a phrase-based trans-
lation framework. We focus on unsupervised
segmentation methods to derive the morpholog-
ical information supplied to the MT model in
order to provide coverage on very large data-
sets and for languages with few hand-annotated
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resources. In fact, in our experiments, unsuper-
vised morphology always outperforms the use
of a hand-built morphological analyzer. Rather
than focusing on a few linguistically motivated
aspects of Finnish morphological behaviour, we
develop techniques for handling morphological
complexity in general. We chose Finnish as our
target language for this work, because it ex-
emplifies many of the problems morphologically
complex languages present for SMT. Among all
the languages in the Europarl data-set, Finnish
is the most difficult language to translate from
and into, as was demonstrated in the MT Sum-
mit shared task (Koehn, 2005). Another reason
is the current lack of knowledge about how to ap-
ply SMT successfully to agglutinative languages
like Turkish or Finnish.

Our main contributions are: 1) the intro-
duction of the notion of segmented translation
where we explicitly allow phrase pairs that can
end with a dangling morpheme, which can con-
nect with other morphemes as part of the trans-
lation process, and 2) the use of a fully seg-
mented translation model in combination with
a post-processing morpheme prediction system,
using unsupervised morphology induction. Both
of these approaches beat the state of the art
on the English-Finnish translation task. Mor-
phology can express both content and function
categories, and our experiments show that it is
important to use morphology both within the
translation model (for morphology with content)
and outside it (for morphology contributing to
fluency).

Automatic evaluation measures for MT,
BLEU (Papineni et al., 2002), WER (Word
Error Rate) and PER (Position Independent
Word Error Rate) use the word as the basic
unit rather than morphemes. In a word com-
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prised of multiple morphemes, getting even a
single morpheme wrong means the entire word is
wrong. In addition to standard MT evaluation
measures, we perform a detailed linguistic anal-
ysis of the output. Owur proposed approaches
are significantly better than the state of the art,
achieving the highest reported BLEU scores on
the English-Finnish Europarl version 3 data-set.
Our linguistic analysis shows that our models
have fewer morpho-syntactic errors compared to
the word-based baseline.

2 Models
2.1 Baseline Models

We set up three baseline models for compari-
son in this work. The first is a basic word-
based model (called Baseline in the results);
we trained this on the original unsegmented
version of the text. Our second baseline is a
factored translation model (Koehn and Hoang,
2007) (called Factored), which used as factors
the word, “stem”! and suffix. These are de-
rived from the same unsupervised segmenta-
tion model used in other experiments. The re-
sults (Table 3) show that a factored model was
unable to match the scores of a simple word-
based baseline. We hypothesize that this may
be an inherently difficult representational form
for a language with the degree of morphologi-
cal complexity found in Finnish. Because the
morphology generation must be precomputed,
for languages with a high degree of morpho-
logical complexity, the combinatorial explosion
makes it unmanageable to capture the full range
of morphological productivity. In addition, be-
cause the morphological variants are generated
on a per-word basis within a given phrase, it
excludes productive morphological combination
across phrase boundaries and makes it impossi-
ble for the model to take into account any long-
distance dependencies between morphemes. We
conclude from this result that it may be more
useful for an agglutinative language to use mor-
phology beyond the confines of the phrasal unit,
and condition its generation on more than just
the local target stem. In order to compare the

lsee Section 2.2.
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performance of unsupervised segmentation for
translation, our third baseline is a segmented
translation model based on a supervised segmen-
tation model (called Sup), using the hand-built
Omorfi morphological analyzer (Pirinen and Lis-
tenmaa, 2007), which provided slightly higher
BLEU scores than the word-based baseline.

2.2 Segmented Translation

For segmented translation models, it cannot be
taken for granted that greater linguistic accu-
racy in segmentation yields improved transla-
tion (Chang et al., 2008). Rather, the goal in
segmentation for translation is instead to maxi-
mize the amount of lexical content-carrying mor-
phology, while generalizing over the information
not helpful for improving the translation model.
We therefore trained several different segmenta-
tion models, considering factors of granularity,
coverage, and source-target symmetry.

We performed unsupervised segmentation of
the target data, using Morfessor (Creutz and
Lagus, 2005) and Paramor (Monson, 2008), two
top systems from the Morpho Challenge 2008
(their combined output was the Morpho Chal-
lenge winner). However, translation models
based upon either Paramor alone or the com-
bined systems output could not match the word-
based baseline, so we concentrated on Morfes-
sor. Morfessor uses minimum description length
criteria to train a HMM-based segmentation
model. When tested against a human-annotated
gold standard of linguistic morpheme segmen-
tations for Finnish, this algorithm outperforms
competing unsupervised methods, achieving an
F-score of 67.0% on a 3 million sentence cor-
pus (Creutz and Lagus, 2006). Varying the per-
plexity threshold in Morfessor does not segment
more word types, but rather over-segments the
same word types. In order to get robust, com-
mon segmentations, we trained the segmenter
on the 5000 most frequent words?; we then used
this to segment the entire data set. In order
to improve coverage, we then further segmented

2For the factored model baseline we also used the
same setting perplexity = 30, 5,000 most frequent words,
but with all but the last suffix collapsed and called the
“stem”.



Training Set | Test Set
Total 64,106,047 21,938
Morph 30,837,615 5,191
Hanging Morph 10,906,406 296

Table 1: Morpheme occurences in the phrase table
and in translation.

any word type that contained a match from the
most frequent suffix set, looking for the longest
matching suffix character string. We call this
method Unsup L-match.

After the segmentation, word-internal mor-
pheme boundary markers were inserted into
the segmented text to be used to reconstruct
the surface forms in the MT output. We
then trained the Moses phrase-based system
(Koehn et al., 2007) on the segmented and
marked text. After decoding, it was a sim-
ple matter to join together all adjacent mor-
phemes with word-internal boundary markers
to reconstruct the surface forms. Figure 1(a)
gives the full model overview for all the vari-
ants of the segmented translation model (super-
vised /unsupervised; with and without the Un-
sup L-match procedure).

Table 1 shows how morphemes are being used
in the MT system. Of the phrases that included
segmentations (‘Morph’ in Table 1), roughly a
third were ‘productive’, i.e. had a hanging mor-
pheme (with a form such as stem+) that could
be joined to a suffix (‘Hanging Morph’ in Ta-
ble 1). However, in phrases used while decoding
the development and test data, roughly a quar-
ter of the phrases that generated the translated
output included segmentations, but of these,
only a small fraction (6%) had a hanging mor-
pheme; and while there are many possible rea-
sons to account for this we were unable to find
a single convincing cause.

2.3 Morphology Generation

Morphology generation as a post-processing step
allows major vocabulary reduction in the trans-
lation model, and allows the use of morpholog-
ically targeted features for modeling inflection.
A possible disadvantage of this approach is that
in this model there is no opportunity to con-
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sider the morphology in translation since it is
removed prior to training the translation model.
Morphology generation models can use a vari-
ety of bilingual and contextual information to
capture dependencies between morphemes, of-
ten more long-distance than what is possible us-
ing n-gram language models over morphemes in
the segmented model.

Similar to previous work (Minkov et al., 2007;
Toutanova et al., 2008), we model morphology
generation as a sequence learning problem. Un-
like previous work, we use unsupervised mor-
phology induction and use automatically gener-
ated suffix classes as tags. The first phase of our
morphology prediction model is to train a MT
system that produces morphologically simplified
word forms in the target language. The output
word forms are complex stems (a stem and some
suffixes) but still missing some important suffix
morphemes. In the second phase, the output of
the MT decoder is then tagged with a sequence
of abstract suffix tags. In particular, the out-
put of the MT decoder is a sequence of complex
stems denoted by « and the output is a sequence
of suffix class tags denoted by y. We use a list
of parts from (,y) and map to a d-dimensional
feature vector ®(x,y), with each dimension be-
ing a real number. We infer the best sequence
of tags using:

F(z) = argmaxp(y | z, w)
y
where F(x) returns the highest scoring output
y*. A conditional random field (CRF) (Lafferty
et al., 2001) defines the conditional probability
as a linear score for each candidate y and a global
normalization term:

where Z =} e cpn(a) exp(®(x,y’) - w). We
use stochastic gradient descent (using crfsgd®)
to train the weight vector w. So far, this is
all off-the-shelf sequence learning. However, the
output y* from the CRF decoder is still only a
sequence of abstract suffix tags. The third and
final phase in our morphology prediction model

3http://leon.bottou.org/projects/sgd
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Figure 1: Training and testing pipelines for the SMT models.

is to take the abstract suffix tag sequence y* and
then map it into fully inflected word forms, and
rank those outputs using a morphemic language
model. The abstract suffix tags are extracted
from the unsupervised morpheme learning pro-
cess, and are carefully designed to enable CRF
training and decoding. We call this model CRF-
LM for short. Figure 1(b) shows the full pipeline
and Figure 2 shows a worked example of all the
steps involved.

We use the morphologically segmented train-
ing data (obtained using the segmented corpus
described in Section 2.2%) and remove selected
suffixes to create a morphologically simplified
version of the training data. The MT model is
trained on the morphologically simplified train-
ing data. The output from the MT system is
then used as input to the CRF model. The
CRF model was trained on a ~210,000 Finnish
sentences, consisting of ~1.5 million tokens; the
2,000 sentence Europarl test set consisted of
41,434 stem tokens. The labels in the output
sequence y were obtained by selecting the most
productive 150 stems, and then collapsing cer-
tain vowels into equivalence classes correspond-
ing to Finnish vowel harmony patterns. Thus

4Note that unlike Section 2.2 we do not use Unsup
L-match because when evaluating the CRF model on the
suffix prediction task it obtained 95.61% without using
Unsup L-match and 82.99% when using Unsup L-match.
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variants -ko and -ko become vowel-generic en-
clitic particle -kO, and variants -ssa and -ssa
become the vowel-generic inessive case marker
-ssA, etc. This is the only language-specific com-
ponent of our translation model. However, we
expect this approach to work for other agglu-
tinative languages as well. For fusional lan-
guages like Spanish, another mapping from suf-
fix to abstract tags might be needed. These suf-
fix transformations to their equivalence classes
prevent morphophonemic variants of the same
morpheme from competing against each other in
the prediction model. This resulted in 44 possi-
ble label outputs per stem which was a reason-
able sized tag-set for CRF training. The CRF
was trained on monolingual features of the seg-
mented text for suffix prediction, where ¢ is the
current token:

Word Stem St—my ey Sty ey Stn(n = 4)
Morph Prediction y;—2,yi—1, Yt

With this simple feature set, we were able to
use features over longer distances, resulting in
a total of 1,110,075 model features. After CRF
based recovery of the suffix tag sequence, we use
a bigram language model trained on a full seg-
mented version on the training data to recover
the original vowels. We used bigrams only, be-
cause the suffix vowel harmony alternation de-
pends only upon the preceding phonemes in the
word from which it was segmented.



original training data:

koskevaa mietint6a kasitellaan

segmentation:

koske+ +va+ +a mietinto+ +4a kasi+ +te+ +lla+ +a4+ +n
(train bigram language model with mapping A = { a, d })
map final suffix to abstract tag-set:

koske+ +va+ +A mietinto+ +A kasi+ +te+ +1la+ +a+ +n

(train CRF model to predict the final suffix)

peeling of final suffix:

koske+ +va+ mietinto+ kasi+ +te+ +lla+ +a+

(train SMT model on this transformation of training data)

(a) Training

decoder output:

koske+ +va+ mietinto+ kasi+ +te+ +1a+ +a+
decoder output stitched up:

koskeva+ mietinto+ kasitellaa+

CRF model prediction:

x = ‘koskeva+ mietinto+ kasitellad+’, y = ‘+A +A +n’
koskeva+ +A mietinto+ +A kasitellad+ +n

unstitch morphemes:

koske+ +va+ +A mietinto+ +A kasi+ +te+ +lla+ +a+ +n

language model disambiguation:

koske+ +va+ +a mietinto+ +4a kasi+ +te+ +1la+ +a+ +n

final stitching:
koskevaa mietint6a késitelladn
(the output is then compared to the reference translation)

(b) Decoding

Figure 2: Worked example of all steps in the post-processing morphology prediction model.

3 Experimental Results

For all of the models built in this paper, we used
the Europarl version 3 corpus (Koehn, 2005)
English-Finnish training data set, as well as the
standard development and test data sets. Our
parallel training data consists of ~1 million sen-
tences of 40 words or less, while the develop-
ment and test sets were each 2,000 sentences
long. In all the experiments conducted in this
paper, we used the Moses® phrase-based trans-
lation system (Koehn et al., 2007), 2008 version.
We trained all of the Moses systems herein using
the standard features: language model, reorder-
ing model, translation model, and word penalty;
in addition to these, the factored experiments
called for additional translation and generation
features for the added factors as noted above.
We used in all experiments the following set-
tings: a hypothesis stack size 100, distortion
limit 6, phrase translations limit 20, and maxi-
mum phrase length 20. For the language models,
we used SRILM 5-gram language models (Stol-
cke, 2002) for all factors. For our word-based
Baseline system, we trained a word-based model
using the same Moses system with identical set-
tings. For evaluation against segmented trans-
lation systems in segmented forms before word
reconstruction, we also segmented the baseline
system’s word-based output. All the BLEU
scores reported are for lowercase evaluation.
We did an initial evaluation of the segmented
output translation for each system using the no-

Shttp://www.statmt.org/moses/
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Segmentation m-BLEU No Uni
Baseline 14.8440.69 | 9.89
Sup 18.414+0.69 | 13.49
Unsup L-match | 20.74+0.68 | 15.89

Table 2: Segmented Model Scores. Sup refers to the
supervised segmentation baseline model. m-BLEU
indicates that the segmented output was evaluated
against a segmented version of the reference (this
measure does not have the same correlation with hu-
man judgement as BLEU). No Uni indicates the seg-
mented BLEU score without unigrams.

tion of m-BLEU score (Luong et al., 2010) where
the BLEU score is computed by comparing the
segmented output with a segmented reference
translation. Table 2 shows the m-BLEU scores
for various systems. We also show the m-BLEU
score without unigrams, since over-segmentation
could lead to artificially high m-BLEU scores.
In fact, if we compare the relative improvement
of our m-BLEU scores for the Unsup L-match
system we see a relative improvement of 39.75%
over the baseline. Luong et. al. (2010) report
an m-BLEU score of 55.64% but obtain a rel-
ative improvement of 0.6% over their baseline
m-BLEU score. We find that when using a
good segmentation model, segmentation of the
morphologically complex target language im-
proves model performance over an unsegmented
baseline (the confidence scores come from boot-
strap resampling). Table 3 shows the evalua-
tion scores for all the baselines and the methods
introduced in this paper using standard word-
based lowercase BLEU, WER and PER. We do



Model BLEU | WER | TER

Baseline 14.68 74.96 | 72.42

Factored 14.22 76.68 | 74.15

(Luong et.al, 2010) | 14.82 | - -

Sup 14.90 74.56 | 71.84

Unsup L-match 15.09* | 74.46 | 71.78

CRF-LM 14.87 73.71 | 71.15

Table 3: Test Scores: lowercase BLEU, WER and
TER. The * indicates a statistically significant im-
provement of BLEU score over the Baseline model.
The boldface scores are the best performing scores
per evaluation measure.

better than (Luong et al., 2010), the previous
best score for this task. We also show a bet-
ter relative improvement over our baseline when
compared to (Luong et al., 2010): a relative im-
provement of 4.86% for Unsup L-match com-
pared to our baseline word-based model, com-
pared to their 1.65% improvement over their
baseline word-based model. Our best perform-
ing method used unsupervised morphology with
L-match (see Section 2.2) and the improvement
is significant: bootstrap resampling provides a
confidence margin of £0.77 and a t-test (Collins
et al., 2005) showed significance with p = 0.001.

3.1 Morphological Fluency Analysis

To see how well the models were doing at get-
ting morphology right, we examined several pat-
terns of morphological behavior. While we wish
to explore minimally supervised morphological
MT models, and use as little language spe-
cific information as possible, we do want to
use linguistic analysis on the output of our sys-
tem to see how well the models capture essen-
tial morphological information in the target lan-
guage. So, we ran the word-based baseline sys-
tem, the segmented model (Unsup L-match),
and the prediction model (CRF-LM) outputs,
along with the reference translation through the
supervised morphological analyzer Omorfi (Piri-
nen and Listenmaa, 2007). Using this analy-
sis, we looked at a variety of linguistic construc-
tions that might reveal patterns in morphologi-
cal behavior. These were: (a) explicitly marked
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noun forms, (b) noun-adjective case agreement,
(c) subject-verb person/number agreement, (d)
transitive object case marking, (e) postposi-
tions, and (f) possession. In each of these cat-
egories, we looked for construction matches on
a per-sentence level between the models’ output
and the reference translation.

Table 4 shows the models’ performance on the
constructions we examined. In all of the cat-
egories, the CRF-LM model achieves the best
precision score, as we explain below, while the
Unsup L-match model most frequently gets the
highest recall score.

A general pattern in the most prevalent of
these constructions is that the baseline tends
to prefer the least marked form for noun cases
(corresponding to the nominative) more than
the reference or the CRF-LM model. The base-
line leaves nouns in the (unmarked) nominative
far more than the reference, while the CRF-LM
model comes much closer, so it seems to fare
better at explicitly marking forms, rather than
defaulting to the more frequent unmarked form.

Finnish adjectives must be marked with the
same case as their head noun, while verbs must
agree in person and number with their subject.
We saw that in both these categories, the CRF-
LM model outperforms for precision, while the
segmented model gets the best recall.

In addition, Finnish generally marks di-
rect objects of verbs with the accusative
or the partitive case; we observed more
accusative /partitive-marked nouns following
verbs in the CRF-LM output than in the base-
line, as illustrated by example (1) in Fig. 3.
While neither translation picks the same verb as
in the reference for the input ‘clarify,” the CRF-
LM-output paraphrases it by using a grammat-
ical construction of the transitive verb followed
by a noun phrase inflected with the accusative
case, correctly capturing the transitive construc-
tion. The baseline translation instead follows
‘give’ with a direct object in the nominative
case.

To help clarify the constructions in question,
we have used Google Translate® to provide back-

Shttp://translate.google.com,/



Construction | Freq. Baseline Unsup L-match CRF-LM
P R F P R F P R F

Noun Marking [5.5145| 51.74 78.48 62.37 | 53.11 83.63 64.96 | 54.99 80.21 65.25
Trans Obj 1.0022| 32.35 27.50 29.73 | 33.47 29.64 31.44 | 35.83 30.71 33.07
Noun-Adj Agr |0.6508| 72.75 67.16 69.84 | 69.62 71.00 70.30 | 73.29 62.58 67.51
Subj-Verb Agr |0.4250| 56.61 40.67 47.33 | 55.90 48.17 51.48 | 57.79 40.17 47.40
Postpositions [0.1138| 43.31 29.89 35.37 | 39.31 36.96 38.10 | 47.16 31.52 37.79
Possession 0.0287] 66.67 70.00 68.29 | 75.68 70.00 72.73 | 78.79 60.00 68.12

Table 4: Model Accuracy: Morphological Constructions. Freq. refers to the construction’s average number
of occurrences per sentence, also averaged over the various translations. P, R and F stand for precision,
recall and F-score. The constructions are listed in descending order of their frequency in the texts. The
highlighted value in each column is the most accurate with respect to the reference value.

translations of our MT output into English; to
contextualize these back-translations, we have
provided Google’s back-translation of the refer-
ence.

The use of postpositions shows another dif-
ference between the models. Finnish postposi-
tions require the preceding noun to be in the
genitive or sometimes partitive case, which oc-
curs correctly more frequently in the CRF-LM
than the baseline. In example (2) in Fig. 3,
all three translations correspond to the English
text, ‘with the basque nationalists.” However,
the CRF-LM output is more grammatical than
the baseline, because not only do the adjective
and noun agree for case, but the noun ‘bask-
ien’ to which the postposition ‘kanssa’ belongs is
marked with the correct genitive case. However,
this well-formedness is not rewarded by BLEU,
because ‘baskien’ does not match the reference.

In addition, while Finnish may express pos-
session using case marking alone, it has another
construction for possession; this can disam-
biguate an otherwise ambiguous clause. This al-
ternate construction uses a pronoun in the geni-
tive case followed by a possessive-marked noun;
we see that the CRF-LM model correctly marks
this construction more frequently than the base-
line. As example (3) in Fig. 3 shows, while nei-
ther model correctly translates ‘matkan’ (‘trip’),
the baseline’s output attributes the inessive
‘yhteydess’ (‘connection’) as belonging to ‘tu-
lokset’ (‘results’), and misses marking the pos-
session linking it to ‘Commissioner Fischler’.

Our manual evaluation shows that the CRF-
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LM model is producing output translations that
are more morphologically fluent than the word-
based baseline and the segmented translation
Unsup L-match system, even though the word
choices lead to a lower BLEU score overall when
compared to Unsup L-match.

4 Related Work

The work on morphology in MT can be grouped
into three categories, factored models, seg-
mented translation, and morphology generation.

Factored models (Koehn and Hoang, 2007)
factor the phrase translation probabilities over
additional information annotated to each word,
allowing for text to be represented on multi-
ple levels of analysis. We discussed the draw-
backs of factored models for our task in Sec-
tion 2.1. While (Koehn and Hoang, 2007; Yang
and Kirchhoff, 2006; Avramidis and Koehn,
2008) obtain improvements using factored mod-
els for translation into English, German, Span-
ish, and Czech, these models may be less useful
for capturing long-distance dependencies in lan-
guages with much more complex morphological
systems such as Finnish. In our experiments
factored models did worse than the baseline.

Segmented translation performs morphologi-
cal analysis on the morphologically complex text
for use in the translation model (Brown et al.,
1993; Goldwater and McClosky, 2005; de Gis-
pert and Marino, 2008). This method unpacks
complex forms into simpler, more frequently oc-
curring components, and may also increase the
symmetry of the lexically realized content be-



tween source and target.

Input: ‘the charter we are to approve today both strengthens and gives visible shape to the common fundamental rights
and values our community is to be based upon.’

a.

Reference:  perusoikeuskirja , jonka ténéén aiomme hyviksyd , sekd vahvistaa ettd selventdd (sel-
ventad/VERB/ACT/INF/SG/LAT-clarify) niitd (ne/PRONOUN/PL/PAR-them) yhteisid perusoikeuksia ja -
arvoja , joiden on oltava yhteisémme perusta.

Back-translation: ‘Charter of Fundamental Rights, which today we are going to accept that clarify and strengthen
the common fundamental rights and values, which must be community based.’

Baseline: perusoikeuskirja me hyviaksymme tdndén molemmat vahvistaa ja antaa (antaa/VERB/INF/SG/LAT-
give) nikyvé (nakyd/VERB/ACT/PCP/SG/NOM-visible) muokata yhteista perusoikeuksia ja arvoja on perustut-
tava.

Back-translation: ‘Charter today, we accept both confirm and modify to make a visible and common values, funda-
mental rights must be based.’

CRF-LM: perusoikeuskirja on hyvaksytty tandén , seké vahvistaa ja antaa (antaa/VERB/ACT/INF /SG/LAT-give)
konkreettisen (konkreettinen/ADJECTIVE/SG/GEN,ACC-concrete) muodon (muoto/NOUN/SG/GEN,ACC-
shape) yhteisid perusoikeuksia ja perusarvoja , yhteison on perustuttava.

Back-translation: ‘Charter has been approved today, and to strengthen and give concrete shape to the common
basic rights and fundamental values, the Community must be based.’

Input: ‘with the basque nationalists’

a.

b.

Reference: baskimaan kansallismielisten kanssa

basque-SG/NOM-+land-SG/GEN,ACC nationalists-PL/GEN with-POST

Baseline: baskimaan kansallismieliset kanssa

basque-SG/NOM-+land-SG/GEN,ACC kansallismielinen-PL/NOM,ACC-nationalists POST-with
CRF-LM: kansallismielisten baskien kanssa

nationalists-PL/GEN basques-PL/GEN with-POST

Input: ‘and in this respect we should value the latest measures from commissioner fischler , the results of his trip to
morocco on the 26th of last month and the high level meetings that took place, including the one with the king

himself’

a. Reference: ja tédssd mielessd osaamme myds arvostaa komission jésen fischlerin viimeisimpid toimia , jotka ovat
hiénen (hinen/GEN-his) marokkoon 26 lokakuuta tekemns (tekeménsi/POSS-his) matkan (matkan/GEN-
tour) ja korkean tason kokousten jopa itsensid kuninkaan kanssa tulosta
Back-translation: ‘and in this sense we can also appreciate the Commissioner Fischler’s latest actions, which are his
to Morocco 26 October trip to high-level meetings and even the king himself with the result

b.

Baseline: ja téassa yhteydessa olisi arvoa viimeisin toimia komission jdsen fischler , tulokset monitulkintaisia marokon
yhteydessa (yhteydess/INE-connection) , ja viime kuussa pidettiin korkean tason kokouksissa , mukaan luettuna
kuninkaan kanssa

Back-translation: ‘and in this context would be the value of the last act, Commissioner Fischler, the results of the
Moroccan context, ambiguous, and last month held high level meetings, including with the king’

CRF-LM: ja tassé yhteydessa meidan olisi lisdarvoa viimeistd toimenpiteita kuin komission jasen fischler , ettd hénen
(h&nen/GEN-his) kokemuksensa (kokemuksensa/POSS-experience) marokolle (marokolle-Moroccan) viime kuun
26 ja korkean tason tapaamiset jarjestettiin, kuninkaan kanssa

Back-translation: ‘and in this context, we should value the last measures as the Commissioner Fischler, that his
experience in Morocco has on the 26th and high-level meetings took place, including with the king.’

Figure 3: Morphological fluency analysis (see Section 3.1).

In a somewhat or- to match word boundaries, eliminating morpho-

thogonal approach to ours, (Ma et al., 2007) use
alignment of a parallel text to pack together ad-
jacent segments in the alignment output, which
are then fed back to the word aligner to boot-
strap an improved alignment, which is then used
in the translation model. We compared our re-
sults against (Luong et al., 2010) in Table 3
since their results are directly comparable to
ours. They use a segmented phrase table and
language model along with the word-based ver-
sions in the decoder and in tuning a Finnish tar-
get. Their approach requires segmented phrases
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logically productive phrases. In their work a seg-
mented language model can score a translation,
but cannot insert morphology that does not
show source-side reflexes. In order to perform
a similar experiment that still allowed for mor-
phologically productive phrases, we tried train-
ing a segmented translation model, the output
of which we stitched up in tuning so as to tune
to a word-based reference. The goal of this ex-
periment was to control the segmented model’s
tendency to overfit by rewarding it for using
correct whole-word forms. However, we found



that this approach was less successful than us-
ing the segmented reference in tuning, and could
not meet the baseline (13.97% BLEU best tun-
ing score, versus 14.93% BLEU for the base-
line best tuning score). Previous work in seg-
mented translation has often used linguistically
motivated morphological analysis selectively ap-
plied based on a language-specific heuristic. A
typical approach is to select a highly inflecting
class of words and segment them for particular
morphology (de Gispert and Marifio, 2008; Ra-
manathan et al., 2009). Popovi¢ and Ney (2004)
perform segmentation to reduce morphological
complexity of the source to translate into an iso-
lating target, reducing the translation error rate
for the English target. For Czech-to-English,
Goldwater and McClosky (2005) lemmatized the
source text and inserted a set of ‘pseudowords’
expected to have lexical reflexes in English.

Minkov et. al. (2007) and Toutanova et. al.
(2008) use a Maximum Entropy Markov Model
for morphology generation. The main draw-
back to this approach is that it removes morpho-
logical information from the translation model
(which only uses stems); this can be a prob-
lem for languages in which morphology ex-
presses lexical content. de Gispert (2008) uses
a language-specific targeted morphological clas-
sifier for Spanish verbs to avoid this issue. Tal-
bot and Osborne (2006) use clustering to group
morphological variants of words for word align-
ments and for smoothing phrase translation ta-
bles. Habash (2007) provides various methods
to incorporate morphological variants of words
in the phrase table in order to help recognize out
of vocabulary words in the source language.

5 Conclusion and Future Work

We found that using a segmented translation
model based on unsupervised morphology in-
duction and a model that combined morpheme
segments in the translation model with a post-
processing morphology prediction model gave us
better BLEU scores than a word-based baseline.
Using our proposed approach we obtain better
scores than the state of the art on the English-
Finnish translation task (Luong et al., 2010):
from 14.82% BLEU to 15.09%, while using a
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simpler model. We show that using morpho-
logical segmentation in the translation model
can improve output translation scores. We
also demonstrate that for Finnish (and possi-
bly other agglutinative languages), phrase-based
MT benefits from allowing the translation model
access to morphological segmentation yielding
productive morphological phrases. Taking ad-
vantage of linguistic analysis of the output we
show that using a post-processing morphology
generation model can improve translation flu-
ency on a sub-word level, in a manner that is
not captured by the BLEU word-based evalua-
tion measure.

In order to help with replication of the results
in this paper, we have run the various morpho-
logical analysis steps and created the necessary
training, tuning and test data files needed in or-
der to train, tune and test any phrase-based ma-
chine translation system with our data. The files
can be downloaded from natlang.cs.sfu.ca.

In future work we hope to explore the utility of
phrases with productive morpheme boundaries
and explore why they are not used more per-
vasively in the decoder. Evaluation measures
for morphologically complex languages and tun-
ing to those measures are also important future
work directions. Also, we would like to explore
a non-pipelined approach to morphological pre-
and post-processing so that a globally trained
model could be used to remove the target side
morphemes that would improve the translation
model and then predict those morphemes in the
target language.
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Evaluating the Impact of Coder Errors on Active Learning
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Abstract

Active Learning (AL) has been proposed as a
technique to reduce the amount of annotated
data needed in the context of supervised clas-
sification. While various simulation studies
for a number of NLP tasks have shown that
AL works well on goldstandard data, there is
some doubt whether the approach can be suc-
cessful when applied to noisy, real-world data
sets. This paper presents a thorough evalua-
tion of the impact of annotation noise on AL
and shows that systematic noise resulting from
biased coder decisions can seriously harm the
AL process. We present a method to filter out
inconsistent annotations during AL and show
that this makes AL far more robust when ap-
plied to noisy data.

Introduction

Josef Ruppenhofer
Computational Linguistics

Saarland University
josefr@oli.uni-sb.de

Active learning has been applied to several NLP
tasks like part-of-speech tagging (Ringger et al.,
2007), chunking (Ngai and Yarowsky, 2000), syn-
tactic parsing (Oshorne and Baldridge, 2004; Hwa,
2004), Named Entity Recognition (Shen et al.,
2004; Laws and Schitze, 2008; Tomanek and Hahn,
2009), Word Sense Disambiguation (Chen et al.,
2006; Zhu and Hovy, 2007; Chan and Ng, 2007),
text classification (Tong and Koller, 1998) or statis-
tical machine translation (Haffari and Sarkar, 2009),
and has been shown to reduce the amount of anno-
tated data needed to achieve a certain classifier per-
formance, sometimes by as much as half. Most of
these studies, however, have only simulated the ac-
tive learning process using goldstandard data. This
setting is crucially different from a real world sce-
nario where we have to deal with erroneous data
and inconsistent annotation decisions made by the

Supervised machine learning techniques are still giman annotators. While S|mulat|ons are an indis-
mainstay for many NLP tasks. There is how Pensable instrument to test different parameters and

ever, a well-known bottleneck for these approache?:et:]ihghsl” it has been sh0\l/<vn lt.t;at Whenv?/pp(ljyigg AL
the amount of high-quality data needed for trainaf0 ighly ambiguous tasks like e.g. ord Sense

ing, mostly obtained by human annotation. Active?isambiguation (WSD) with fine-grained sense dis-

Learning (AL) has been proposed as a promising a inctions, AL can actually harm the learning process
Dang, 2004; Rehbein et al., 2010). Dang suggests

proach to reduce the amount of time and cost for hu- he lack of itive off t AL miaht be d
man annotation. The idea behind active learning it‘,patt e lack of a positive efiect o might be due

quite intuitive: instead of annotating a large numbe?o inconsistencies in the human annotations and that

of randomly picked instances we carefully select L cannot efficiently be applied to tasks which need

small number of instances that are maximally inforS ouble blind annotation with adjudication to insure

mative for the machine learning classifier. Thus gsufﬁment data quality. Even if we take a more opti-

smaller set of data points is able to boost cIassifiéP'StIC view and assume that AL might still be useful

performance and to yield an accuracy comparable foyen fqr tasks featurmg a high degree of ambiguity,
remains crucial to address the problem of annota-

the one obtained when training the same system : ) ditsi t on AL
a larger set of randomly chosen data. 43 1on Noise and Its impact on AL.

Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pages 43-51,
Portland, Oregon, June 19-24, 2011. (©2011 Association for Computational Linguistics



In this paper we present a thorough evaluation ahg, while systematic errors (as caused by biased an-
the impact of annotation noise on AL. We simulatenotators) can seriously impair the performance of a
different types of coder errors and assess the effestipervised classifier even if the observed accuracy
on the learning process. We propose a method to def the classifier on a test set coming from the same
tect inconsistencies and remove them from the traippopulation as the training data is as high as 0.8.
ing data, and show that our method does alleviate the Related work (Beigman Klebanov et al., 2008;
problem of annotation noise in our experiments. Beigman Klebanov and Beigman, 2009) has been

The paper is structured as follows. Section 2 restudying annotation noise in a multi-annotator set-
ports on recent research on the impact of annotéing, distinguishing betweehard cases (unreliably
tion noise in the context of supervised classificatiorannotated due to genuine ambiguity) aady cases
Section 3 describes the experimental setup of odreliably annotated data). The authors argue that
simulation study and presents results. In Section@ven for those data points where the annotators
we present our filtering approach and show its imagreed on one particular class, a proportion of the
pact on AL performance. Section 5 concludes andgreement might be merely due to chance. Fol-

outlines future work. lowing this assumption, the authors propose a mea-
sure to estimate the amount of annotation noise in
2 Related Work the data after removing all hard cases. Klebanov

. _ _ et al. (2008; 2009) show that, according to their
We are interested in the question Wheth_er or not Alnodel, high inter-annotator agreemen} achieved
can be successfully applied to a supervised classifly an annotation scenario with two annotators is no
cation task where we have to deal with a considegyyarantee for a high-quality data set. Their model,
able amount of inconsistencies and noise in the datgq\vever. assumes that a) all instances where anno-
which is the case for many NLP tasks (€.9. S€Mputors disagreed are in fact hard cases, and b) that for
timent analysis, the detection of metaphors, WSkhe hard cases the annotators decisions are obtained
with fine-grained word senses, to name but a fewhy coin-flips. In our experience, some amount of
Therefore we do not consider part-of-speech tagjisagreement can also be observed for easy cases,
ging or syntactic parsing, where coders are expectelsed by attention slips or by a deviant interpre-
to agree on most annotation decisions. Insteaghtion of some class(es) by one of the annotators,
we focus on work on AL for WSD, where inter- gang the annotation decision of an individual annota-
coder agreement (gt least for fine-grained annotatiqg, cannot so much be described as random choice
schemes) usually is much lower than for the formefcoin-flip) but as systematically biased selection,

tasks. causing the types of errors which have been shown
21 A ion Noi to be problematic for supervised classification (Rei-
' nnotation Noise dsma and Carletta, 2008).

Studies on active learning for WSD have been lim- Further problems arise in the AL scenario where
ited to running simulations of AL using gold stan-the instances to be annotated are selected as a func-
dard data and a coarse-grained annotation schetien of the sampling method and the annotation
(Chen et al., 2006; Chan and Ng, 2007; Zhu angidgements made before. Therefore, Beigman and
Hovy, 2007). Two exceptions are Dang (2004) anilebanov Beigman (2009)’'s approach of identify-
Rehbein et al. (2010) who both were not able téng unreliably annotated instances by disagreement
replicate the positive findings obtained for AL foris not applicable to AL, as most instances are anno-
WSD on coarse-grained sense distinctions. A posated only once.

sible reason for this failure is the amount of annota- _ _ _ )

tion noise in the training data which might mislead®-2 Annotation Noise and Active Learning

the classifier during the AL process. Recent work ofror AL to be succesful, we need to remove system-
the impact of annotation noise on a machine learningtic noise in the training data. The challenge we face
task (Reidsma and Carletta, 2008) has shown thatthat we only have a small set of seed data and no
random noise can be tolerated in supervised Igﬂrmformation about the reliability of the annotations



assigned by the human coders. a high accuracy. This point is crucial to our setup.
Zhu et al. (2008) present a method for detectingo control the amount of noise in the data, we need
outliers in the pool of unannotated data to prevertb be sure that the initial data set is noise-free.
these instances from becoming part of the training For classification we use a maximum entropy
data. This approach is different from ours, wherelassifier> Our sampling method is uncertainty sam-
we focus on detecting annotation noise in the mamling (Lewis and Gale, 1994), a standard sampling
ually labelled training data produced by the humaheuristic for AL where new instances are selected
coders. based on the confidence of the classifier for predict-
Schein and Ungar (2007) provide a systematic inng the appropriate label. As a measure of uncer-
vestigation of 8 different sampling methods for ALtainty we use Shannon entropy (1) (Zhang and Chen,
and their ability to handle different types of noise2002) and thenargin metric (2) (Schein and Ungar,
in the data. The types of noise investigated are &007). The first measure considers the model’s pre-
prediction residual error (the portion of squared erdictionsq for each class and selects those instances
ror that is independent of training set size), and dyom the pool where the Shannon entropy is highest.
different levels of confusion among the categories.
Type a) models the presence of unknown features - Z qc log qc (1)
that influence the true probabilities of an outcome: a c
form of noise that will increase residual error. Type The second measure looks at the difference be-
b) models categories in the data set which are intririween the largest two values in the prediciton vector
sically hard to disambiguate, while others are noty, namely the two predicted classes’ which are,
Therefore, type b) errors are of greater interest to uaccording to our model, the most likely ones for in-
as it is safe to assume that intrinsically ambiguoustancer,,, and selects those instances where the dif-
categories will lead to biased coder decisions anfgrence (nargin) between the two predicted proba-
result in the systematic annotation noise we are imbilities is the smallest. We discuss some details of

terested in. this metric in Section 4.
Schein and Ungar observe that none of the 8 )
sampling methods investigated in their experiment My, = |P(clzn) — P(c'|2y)] (2)

achlev_ed aS|gn!f|cant improvement over the random The features we use for WSD are a combination
sampling baseline on type b) errors. In fact, en-

tronv samoling and marain samoling even showed%f context features (word token with window size 11
by Piing 9 piing and POS context with window size 7), syntactic fea-
decrease in performance compared to random sam-

pling. For AL to work well on noisy data, we needtures based'on the output of a dependency parser
) . . . ._and semantic features based on GermaNet hyper-
to identify and remove this type of annotation noise

during the AL process. To the best of our knOWI_onyms. These settings were tuned to the target verb

edge, there is no work on detecting and removin
annotation noise by human coders during AL.

by (Rehbein et al., 2009). All results reported below
gre averages over a 5-fold cross validation.

3.1 Simulating Coder Errors in AL

3 Experimental Setu . : :
P P Before starting the AL trials we automatically sepa-

To make sure that the data we use in our simuldate the 2,500 sentences into test set (498 sentences)
tion is as close to real-world data as possible, we d@d pool (2,002 sentencesyetaining the overall

not create an artificial data set as done in (Scheffistribution of word senses in the data set. We in-
and Ungar, 2007; Reidsma and Carletta, 2008) bgert a varying amount of noise into the pool data,
use real data from a WSD task for the German verb 2In a pilot study where two human coders assigned labels to
drohen (threaten): Drohen has three different word a set of 100 sentences, the coders agreed on 99% of the data.

senses which can be disambiguated by humans with °ht t p: // maxent . sour cef or ge. net
4The MaltParserht t p: / / mal t par ser . or g

The data has been provided by the SALSA project: The split has been made automatically, the unusual num-
http://www. coli.uni-saarl and. de/ proj ect s/ sal sa 45 bers are caused by rounding errors.



test pool _ biased errorsALbias), we see a different picture.
. . . ALran:I A'-b'ass With a low degree of noise, the curves fakrand
0 errors 0% | 0% 30% | 30% and ALbias are very similar. When inserting more
drohenl-salsa 126 | 506 524 514 . f fohLbias d d with
Comittment | 129 | 520 599 397 noise, performance foALbias decreases, and wit
RuNrisk 243 | 976 956 1161 around 20% of biased errors in the pool AL performs
Total 498 | 2002 2002 2002 worse than our random Sampling baseline. In the

random noise settingALrand), even after inserting
Table 1: Distribution of word senses in p00| and test setgo% of errors AL Clearly Outperforms random sam-
pling. Increasing the size of the seed data reduces
_ o _ the effect slightly, but does not prevent it (not shown
starting from 0% up to 30% of noise, increasing bere due to space limitations). This confirms the
2% in each trial. _ _ findings that under certain circumstances AL per-
tive learning in three different settings. In the firstgchein and Ungar, 2007; Rehbein et al., 2010). We
setting, we randomly select new instances from thgq|d also confirm Schein and Ungar (2007)'s obser-
pool (random samplingand). In the second setting, yation that margin sampling is less sensitive to cer-
we random'y replace percent of all labels (from O tain types of noise than entropy sampling (Table 2).
to 30) in the pool by another label before startingzecause of space limitations we only show curves
the active learning trial, but retain the distribution ofy, margin sampling. For entropy sampling, the gen-

the different labels in the pool data (active learningyg) trend is the same, with results being slightly

the third setting we simulate biased decisions by a
human annotator. For a certain fraction (0 to 30%) Detecting Annotation Noise
of instances of a particular non-majority class, we

substitute the majority class label for the gold labelyncertainty sampling using the margin metric se-
thereby producing a more skewed distribution thafects instances for which the difference between
in the original pool (active learning with biased er-classifier predictions for the two most probable
rors); (Table 1ALbias, 30%). classes:, ¢ is very small (Section 3, Equation 2).
For all three settingsrénd, ALrand, ALbias) and When selecting unlabelled instances from the pool,
each degree of noise (0-30%), we run active learningis metric picks examples which represent regions
simulations on the already annotated data, simulagf uncertainty between classes which have yet to be
ing the annotation process by selecting one new, prigarned by the classifier and thus will advance the
labelled instance per trial from the pool and, insteafkarning process. Our human coder, however, is not
of handing them over to a human coder, assigninghe perfect oracle assumed in most AL simulations,
the known (possibly erroneous) label to the instancgnd might also assign incorrect labels. The filter ap-
and adding it to the training set. We use the samgroach has two objectives: a) to detect incorrect la-
split (test, pool) for all three settings and all degreebels assigned by human coders, and b) to prevent

of noise, with identical test sets for all trials. the hard cases (following the terminology of Kle-
banov et al. (2008)) from becoming part of the train-

Figure 1 shows active learning curves for the differ- We proceed as follows. Our approach makes use
ent settings and varying degrees of noise. The homf the limited set of seed daté and uses heuris-
zontal black line slightly below 0.5 accuracy showgics to detect unreliably annotated instances. We
the majority baseline (the performance obtainedssume that the instancesdnhave been validated
when always assigning the majority class). For alhoroughly. We train an ensemble of classifiéts
degrees of randomly inserted noise, active learningn subsets of, and useF to decide whether or not
(ALrand) outperforms random samplingghd) atan a newly annotated instance should be added to the
early stage in the learning process. Looking at4g19eed.
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Figure 1: Active learning curves for varying degrees of apitarting from 0% up to 30% for a training size up to
1200 instances (solid circle (black): random samplingediltriangle point-up (red): AL with random errors; cross
(green): AL with biased errors)
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filter | % error 0 4 8 12 16 20 24 28 30
- rand | 0.763| 0.752| 0.736| 0.741| 0.726| 0.708 | 0.707 | 0.677| 0.678

entropy - | ALrand | 0.806| 0.786| 0.779| 0.743| 0.752| 0.762 | 0.731| 0.724| 0.729
entropy y | ALrand | 0.792| 0.786| 0.777| 0.760| 0.771| 0.748| 0.730| 0.729 | 0.727
margin - | ALrand | 0.795| 0.795| 0.782| 0.771| 0.758 | 0.755| 0.737| 0.719| 0.708
margin y | ALrand | 0.800| 0.785| 0.773| 0.777| 0.765| 0.766 | 0.734| 0.735| 0.718
entropy - | Albias | 0.806| 0.793| 0.759| 0.748| 0.702 | 0.651| 0.625| 0.630| 0.622
entropy y | Albias | 0.802| 0.781| 0.777| 0.735| 0.702 | 0.678 | 0.687 | 0.624 | 0.616
margin - | Albias | 0.795| 0.789| 0.770| 0.753| 0.706 | 0.684 | 0.656 | 0.634 | 0.624
margin y | Albias | 0.787| 0.781| 0.787 | 0.768| 0.739| 0.700 | 0.671| 0.653 | 0.651

Table 2: Accuracy for the different sampling methods withend with filtering after adding 500 instances to the seed
data

There are a number of problems with this apThe threshold,,,4» Was set to 0.01, based on a
proach. First, there is the risk of overfittiriy Sec- qualitative data analysis.
ond, we know that classifier accuracy in the earl
phase of AL is low. Therefore, using classifier pret a with Filtering:
dictions at this stage to accept or reject new in-
stances could result in poor choices that might harm!NPUt: annotated seed dats
the learning proceess. To avoid this and to genef-Unannotated poaP
alise overs to prevent overfitting, we do not directly | AL 100P:
train our ensemble on instances fréiinstead, we | © train classifielC on.S
create new feature vectors,., on the basis of the | e letC predict labels for data i#
feature vectord..q in S. For each class iy, we e select new instances froml® according to
extract all attribute-value pairs from the feature vec sampling method, hand over to oracle for
tors for this particular class. For each class, we ran- annotation
domly select features (with replacement) frém.q
and combine them into a new feature vecitQg,,,
retaining the distribution of the different classes in
the data. As a result, we obtain a more general set pf
feature vectord ., with characteristic features be-
ing distributed more evenly over the different feature

Repeat: after everyc new instances

annotated by the oracle

e for each class irb, extract sets of
featurest,..q

e create new, more general feature vectprs
Fer, from this set (with replacement)

vectors.

In the next step we traim = 5 maximum en- e train an ensembl&’ of n classifiers on
tropy classifiers on subsets #f.,, excluding the different subsets of .,
instances last annotated by the oracle. Each subset Filtering Heuristics:
is half the size of the currest. We use the ensemble e if all n classifier inE agree on label
to predict the labels for the new instances and, based but disagree with oracle:
on the predictions, accept or reject these, following = remove instance from seed

the two heuristics below (also see Figure 2). e if margin s less than thresholg . in:
argin:

= remove instance from seed

1. If all n ensemble classifiers agree on one label . .
Until done

but disagree with the oracle- reject.

2. If the sum of the margins predicted by the enFigure 2: Heuristics for filtering unreliable data points
semble classifiers is below a particular theshol(parameters used: initial seed size: 9 sentences,10,
tmargin = reject. 48 n =5, tmargin = 0.01)



In each iteration of the AL process, one new infect label. On first glance H2 seems to be more le-
stance is selected using margin sampling. The imient than H1, considering the number of rejected
stance is presented to the oracle who assigns a labstntences. This, however, could also be an effect of
Then the instance is added to the seed data, thus the order in which we apply the filters.
fluencing the selection of the next data point to be The different word senses are evenly distributed
annotated. After 10 new instances have been addewer the rejected instances (H1: Commitment 30,
we apply the filter technique which finally decidesdrohenl-salsa 38, Ruiisk 36; H2: Commitment 3,
whether the newly added instances will remain inlrohenl-salsa 4, Rursk 4). This shows that there
the seed data or will be removed. is less uncertainty about the majority word sense,

Figure 3 shows learning curves for the filter apRunrisk.
proach. With increasing amount of errors in the Itis hard to decide whether the correctly labelled
pool, a clear pattern emerges. For both samplingstances rejected by the filtering method would
methods (ALrand, ALbias), the filtering step clearlyhave helped or hurt the learning process. Simply
improves results. Even for the noisier data sets withdding them to the seed data after the conclusion
up to 26% of errors, ALbias with filtering performs of AL would not answer this question, as it would

at least as well as random sampling. merely tell us whether they improve classification
accuracy further, but we still would not know what
4.1 Error Analysis impact these instances would have had on the selec-

Next we want to find out what kind of errors thelion of instances during the AL process.

system could detect. We want to know whether th
approach is able to detect the errors previously in-
serted into the data, and whether it manages to idemhis paper shows that certain types of annotation
tify hard cases representing true ambiguities. noise cause serious problems for active learning ap-
To answer these questions we look at one fold qfroaches. We showed how biased coder decisions
the ALbias data with 10% of noise. In 1,200 AL it- can result in an accuracy for AL approaches which
erations the system rejected 116 instances (Table 8.below the one for random sampling. In this case,
The major part of the rejections was due to the mat is necessary to apply an additional filtering step
jority vote of the ensemble classifiers (first heuristo remove the noisy data from the training set. We
tic, H1) which rejects all instances where the enpresented an approach based on a resampling of the
semble classifiers agree with each other but disagréeatures in the seed data and guided by an ensemble
with the human judgement. Out of the 105 instancesf classifiers trained on the resampled feature vec-
rejected by H1, 41 were labelled incorrectly. Thisors. We showed that our approach is able to detect
means that we were able to detect around half of thcertain amount of noise in the data.
incorrect labels inserted in the pool. Future work should focus on finding optimal pa-
11 instances were filtered out by the margimameter settings to make the filtering method more
threshold (H2). None of these contained an incorobust even for noisier data sets. We also plan to im-
prove the filtering heuristics and to explore further
ways of detecting human coder errors. Finally, we
plan to test our method in a real-world annotation
scenario.

Conclusions

errors inserted in pool 173
err. instances selected by AL 93
instances rejected by H1+H2 116

instances rejected by H1 105 6 Acknowledgments

true errors rejected by H1 41

instances rejected by H2 11 This work was funded by the German Research
true errors rejected by H2 0 Foundation DFG (grant Pl 154/9-3). We would like

_ _ _ to thank the anonymous reviewers for their helpful
Table 3: Error analysis of the instances rejected by th@omments and suggestions

filtering approach
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Abstract

This paper proposes a new method for ap-
proximate string search, specifically candidate
generation in spelling error correction, which
is a task as follows. Given a misspelled word,
the system finds words in a dictionary, which
are most “similar” to the misspelled word.
The paper proposes a probabilistic approach to
the task, which is both accurate and efficient.
The approach includes the use of a log linear
model, a method for training the model, and
an algorithm for finding the top k& candidates.
The log linear model is defined as a condi-
tional probability distribution of a corrected
word and a rule set for the correction con-
ditioned on the misspelled word. The learn-
ing method employs the criterion in candidate
generation as loss function. The retrieval al-
gorithm is efficient and is guaranteed to find
the optimal k& candidates. Experimental re-
sults on large scale data show that the pro-
posed approach improves upon existing meth-
ods in terms of accuracy in different settings.

1 Introduction

This paper addresses the following problem, re-
ferred to as approximate string search. Given a
query string, a dictionary of strings (vocabulary),
and a set of operators, the system returns the top
k strings in the dictionary that can be transformed
from the query string by applying several operators
in the operator set. Here each operator is a rule
that can replace a substring in the query string with
another substring. The top k results are defined in

* Contribution during internship at Microsoft Research Asia.
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terms of an evaluation measure employed in a spe-
cific application. The requirement is that the task
must be conducted very efficiently.

Approximate string search is useful in many ap-
plications including spelling error correction, sim-
ilar terminology retrieval, duplicate detection, etc.
Although certain progress has been made for ad-
dressing the problem, further investigation on the
task is still necessary, particularly from the view-
point of enhancing both accuracy and efficiency.

Without loss of generality, in this paper we ad-
dress candidate generation in spelling error correc-
tion. Candidate generation is to find the most pos-
sible corrections of a misspelled word. In such a
problem, strings are words, and the operators rep-
resent insertion, deletion, and substitution of char-
acters with or without surrounding characters, for
example, “a”—*“e” and “lly”—“ly”. Note that can-
didate generation is concerned with a single word;
after candidate generation, the words surrounding it
in the text can be further leveraged to make the final
candidate selection, e.g., Li et al. (2006), Golding
and Roth (1999).

In spelling error correction, Brill and Moore
(2000) proposed employing a generative model for
candidate generation and a hierarchy of trie struc-
tures for fast candidate retrieval. Our approach is
a discriminative approach and is aimed at improv-
ing Brill and Moore’s method. Okazaki et al. (2008)
proposed using a logistic regression model for ap-
proximate dictionary matching. Their method is also
a discriminative approach, but it is largely differ-
ent from our approach in the following points. It
formalizes the problem as binary classification and

Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pages 52-61,
Portland, Oregon, June 19-24, 2011. (©2011 Association for Computational Linguistics



assumes that there is only one rule applicable each
time in candidate generation. Efficiency is also not a
major concern for them, because it is for offline text
mining.

There are two fundamental problems in research
on approximate string search: (1) how to build a
model that can archive both high accuracy and ef-
ficiency, and (2) how to develop a data structure and
algorithm that can facilitate efficient retrieval of the
top k candidates.

In this paper, we propose a probabilistic approach
to the task. Our approach is novel and unique in
the following aspects. It employs (a) a log-linear
(discriminative) model for candidate generation, (b)
an effective algorithm for model learning, and (c) an
efficient algorithm for candidate retrieval.

The log linear model is defined as a conditional
probability distribution of a corrected word and a
rule set for the correction given the misspelled word.
The learning method employs, in the training pro-
cess, a criterion that represents the goal of mak-
ing both accurate and efficient prediction (candidate
generation). As a result, the model is optimally
trained toward its objective. The retrieval algorithm
uses special data structures and efficiently performs
the top k candidates finding. It is guaranteed to find
the best k candidates without enumerating all the
possible ones.

We empirically evaluated the proposed method in
spelling error correction of web search queries. The
experimental results have verified that the accuracy
of the top candidates given by our method is signifi-
cantly higher than those given by the baseline meth-
ods. Our method is more accurate than the baseline
methods in different settings such as large rule sets
and large vocabulary sizes. The efficiency of our
method is also very high in different experimental
settings.

2 Related Work

Approximate string search has been studied by many
researchers. Previous work mainly focused on effi-
ciency rather than model. Usually, it is assumed that
the model (similarity distance) is fixed and the goal
is to efficiently find all the strings in the collection
whose similarity distances are within a threshold.
Most existing methods employ n-gram based algo-
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rithms (Behm et al., 2009; Li et al., 2007; Yang et
al., 2008) or filtering algorithms (Mihov and Schulz,
2004; Li et al., 2008). Instead of finding all the can-
didates in a fixed range, methods for finding the top
k candidates have also been developed. For exam-
ple, the method by Vernica and Li (2009) utilized
n-gram based inverted lists as index structure and
a similarity function based on n-gram overlaps and
word frequencies. Yang et al. (2010) presented a
general framework for top £ retrieval based on n-
grams. In contrast, our work in this paper aims to
learn a ranking function which can achieve both high
accuracy and efficiency.

Spelling error correction normally consists of
candidate generation and candidate final selection.
The former task is an example of approximate string
search. Note that candidate generation is only con-
cerned with a single word. For single-word candi-
date generation, rule-based approach is commonly
used. The use of edit distance is a typical exam-
ple, which exploits operations of character deletion,
insertion and substitution. Some methods generate
candidates within a fixed range of edit distance or
different ranges for strings with different lengths (Li
et al., 2006; Whitelaw et al., 2009). Other meth-
ods make use of weighted edit distance to enhance
the representation power of edit distance (Ristad and
Yianilos, 1998; Oncina and Sebban, 2005; McCal-
Ium et al., 2005; Ahmad and Kondrak, 2005).

Conventional edit distance does not take in con-
sideration context information. For example, peo-
ple tend to misspell “c” to “s” or “k” depending
on contexts, and a straightforward application of
edit distance cannot deal with the problem. To ad-
dress the challenge, some researchers proposed us-
ing a large number of substitution rules containing
context information (at character level). For exam-
ple, Brill and Moore (2000) developed a genera-
tive model including contextual substitution rules;
and Toutanova and Moore (2002) further improved
the model by adding pronunciation factors into
the model. Schaback and Li (2007) proposed a
multi-level feature-based framework for spelling er-
ror correction including a modification of Brill and
Moore’s model (2000). Okazaki et al. (2008) uti-
lized substring substitution rules and incorporated
the rules into a Lj-regularized logistic regression
model. Okazaki et al.’s model is largely different



from the model proposed in this paper, although
both of them are discriminative models. Their model
is a binary classification model and it is assumed that
only a single rule is applied in candidate generation.

Since users’ behavior of misspelling and correc-
tion can be frequently observed in web search log
data, it has been proposed to mine spelling-error
and correction pairs by using search log data. The
mined pairs can be directly used in spelling error
correction. Methods of selecting spelling and cor-
rection pairs with maximum entropy model (Chen et
al., 2007) or similarity functions (Islam and Inkpen,
2009; Jones et al., 2006) have been developed. The
mined pairs can only be used in candidate genera-
tion of high frequency typos, however. In this paper,
we work on candidate generation at the character
level, which can be applied to spelling error correc-
tion for both high and low frequency words.

3 Model for Candidate Generation

As an example of approximate string search, we
consider candidate generation in spelling correction.
Suppose that there is a vocabulary V and a mis-
spelled word, the objective of candidate generation
is to select the best corrections from the vocabulary
V. We care about both accuracy and efficiency of the
process. The problem is very challenging when the
size of vocabulary is large, because there are a large
number of potential candidates to be verified.

In this paper, we propose a probabilistic approach
to candidate generation, which can achieve both
high accuracy and efficiency, and is particularly
powerful when the scale is large.

In our approach, it is assumed that a large num-
ber of misspelled words and their best corrections
are given as training data. A probabilistic model is
then trained by using the training data, which can
assign ranking scores to candidates. The best can-
didates for correction of a misspelled word are thus
defined as those candidates having the highest prob-
abilistic scores with respect to the training data and
the operators.

Hereafter, we will describe the probabilistic
model for candidate generation, as well as training
and exploitation of the model.
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Figure 1: Example of rule extraction from word pair

3.1 Model

The operators (rules) represent insertion, deletion,
and substitution of characters in a word with or
without surrounding context (characters), which are
similar to those defined in (Brill and Moore, 2000;
Okazaki et al., 2008). An operator is formally rep-
resented a rule & — (3 that replaces a substring « in
a misspelled word with (3, where o, € {s|s =
t,s = “t,ors = t$} and t € ¥* is the set of
all possible strings over the alphabet. Obviously,
YV C ¥*. We actually derive all the possible rules
from the training data using a similar approach to
(Brill and Moore, 2000) as shown in Fig. 1. First
we conduct the letter alignment based on the min-
imum edit-distance, and then derive the rules from
the alignment. Furthermore we expand the derived
rules with surrounding words. Without loss of gen-
erality, we only consider using +2,+1,0,—1, —2
characters as contexts in this paper.

If we can apply a set of rules to transform the mis-
spelled word w,,, to a correct word w,. in the vocab-
ulary, then we call the rule set a “transformation”
for the word pair w,,, and w.. Note that for a given
word pair, it is likely that there are multiple possible
transformations for it. For example, both “n”
and “ni”"—“mi” can transform “nicrosoft” to “mi-
crosoft”.

Without loss of generality, we set the maximum
number of rules applicable to a word pair to be a
fixed number. As a result, the number of possible
transformations for a word pair is finite, and usually
limited. This is equivalent to the assumption that the
number of spelling errors in a word is small.

Given word pair (w,, w.), let R(wy,, w.) denote
one transformation (a set of rules) that can rewrite

_)“m”



W, to w.. We consider that there is a probabilistic
mapping between the misspelled word w,,, and cor-
rect word w, plus transformation R(w,,w.). We
define the conditional probability distribution of w,
and R(wy,, w.) given w,, as the following log linear
model:

P(we, R(Wm, we) |wi,)
_ exXp (ZT’GR('LUm,'LUC) A’")

Z(wé,R(wm,wé))EZ(wm) exp (ZOER(wm,wé) >\0>

(1

where r or o denotes a rule in rule set R, A\, or A, de-
notes a weight, and the normalization is carried over
Z(wyy,), all pairs of word w. in V and transforma-
tion R(wyy,,w’,), such that w,, can be transformed
to w,, by R(wy,,w.). The log linear model actually
uses binary features indicating whether or not a rule
is applied.

In general, the weights in Equ. (1) can be any real
numbers. To improve efficiency in retrieval, we fur-
ther assume that all the weights are non-positive, i.e.,
VA, < 0. It introduces monotonicity in rule applica-
tion and implies that applying additional rules can-
not lead to generation of better candidates. For ex-
ample, both “office” and “officer” are correct candi-
dates of “ofice”. We view “office” a better candidate
(with higher probability) than “officer”, as it needs
one less rule. The assumption is reasonable because
the chance of making more errors should be lower
than that of making less errors. Our experimental
results have shown that the change in accuracy by
making the assumption is negligible, but the gain in
efficiency is very large.

3.2 Training of Model

Training data is given as a set of pairs 7 =
{(wh,, w?) }Z.]il, where w!, is a misspelled word and
w!. € Vis acorrection of w!,,. The objective of train-
ing would be to maximize the conditional probabil-
ity P(w?, R(w!,, w’)|wt,) over the training data.
This is not a trivial problem, however, because
the “true” transformation R*(w?,, w’) for each word
pair w?, and w’, is not given in the training data. It is
often the case that there are multiple transformations
applicable, and it is not realistic to assume that such
information can be provided by humans or automat-
ically derived. (It is relatively easy to automatically
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find the pairs w!, and w’ as explained in Section
5.1).

In this paper, we assume that the transformation
that actually generates the correction among all the
possible transformations is the one that can give the
maximum conditional probability; the exactly same
criterion is also used for fast prediction. Therefore
we have the following objective function

A* =argmax L(\) )
A

=arg mgXZi:R max log Pwg, R(w,, wp)u),)
where A denotes the weight parameters and the max
is taken over the set of transformations that can
transform w’, to w?.

We employ gradient ascent in the optimization in
Equ. (2). At each step, we first find the best trans-
formation for each word pair based on the current
parameters \(*)

R*(w!,,w’) 3)
= arg max log Py (wg, R(w},, wl)|w,)
R(wf, ,wi)
Next, we calculate the gradients,
OL _ ¥.;108 Py (wl B (why wlwf) 0

A Oy

In this paper, we employ the bounded L-BFGS
(Behm et al., 2009) algorithm for the optimization
task, which works well even when the number of
weights A is large.

3.3 Candidate Generation

In candidate generation, given a misspelled word
Wy, we find the k£ candidates from the vocabu-
lary, that can be transformed from w,,, and have the
largest probabilities assigned by the learned model.
We only need to utilize the following ranking
function to rank a candidate w. given a misspelled
word w,,, by taking into account Equs. (1) and (2)

>

r€R(wm,we)

max
R(wm,we)

(&)

rank(we|wy,) =

For each possible transformation, we simply take
summation of the weights of the rules used in the
transformation. We then choose the sum as a rank-
ing score, which is equivalent to ranking candidates
based on their largest conditional probabilities.
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Figure 2: Rule Index based on Aho Corasick Tree.

4 Efficient Retrieval Algorithm

In this section, we introduce how to efficiently per-
form top k candidate generation. Our retrieval algo-
rithm is guaranteed to find the optimal &k candidates
with some “pruning” techniques. We first introduce
the data structures and then the retrieval algorithm.

4.1 Data Structures

We exploit two data structures for candidate genera-
tion. One is a trie for storing and matching words in
the vocabulary, referred to as vocabulary trie, and the
other based on what we call an Aho-Corasick tree
(AC tree) (Aho and Corasick, 1975), which is used
for storing and applying correction rules, referred to
as rule index. The vocabulary trie is the same as that
used in existing work and it will be traversed when
searching the top k candidates.

Our rule index is unique because it indexes all the
rules based on an AC tree. The AC tree is a trie with
“failure links”, on which the Aho-Corasick string
matching algorithm can be executed. Aho-Corasick
algorithm is a well known dictionary-matching al-
gorithm which can quickly locate all the words in a
dictionary within an input string. Time complexity
of the algorithm is of linear order in length of input
string plus number of matched entries.

We index all the a’s in the rules on the AC tree.
Each « corresponds to a leaf node, and the 5’s of the
« are stored in an associated list in decreasing order
of rule weights A, as illustrated in Fig. 2. !

'One may further improve the index structure by using a trie
rather than a ranking list to store (s associated with the same
a. However the improvement would not be significant because
the number of (s associated with each « is usually very small.
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4.2 Algorithm

One could employ a naive algorithm that applies all
the possible combinations of rules («’s) to the cur-
rent word w,,, verifies whether the resulting words
(candidates) are in the vocabulary, uses the function
in Equ. (5) to calculate the ranking scores of the can-
didates, and find the top k£ candidates. This algo-
rithm is clearly inefficient.

Our algorithm first employs the Aho-Corasick al-
gorithm to locate all the applicable o’s within the in-
put word w,,, from the rule index. The correspond-
ing (3’s are retrieved as well. Then all the applicable
rules are identified and indexed by the applied posi-
tions of word w,,,.

Our algorithm next traverses the vocabulary trie
and searches the top k£ candidates with some pruning
techniques. The algorithm starts from the root node
of the vocabulary trie. At each step, it has multiple
search branches. It tries to match at the next position
of w,,, or apply a rule at the current position of w,,.
The following two pruning criteria are employed to
significantly accelerate the search process.

1) If the current sum of weights of applied rules
is smaller than the smallest weight in the top k
list, the search branch is pruned. This criterion
is derived from the non-negative constraint on
rule weights A. It is easy to verify that the sum
of weights will not become larger if one contin-
ues to search the branch because all the weights
are non-positive.

2) If two search branches merge at the same node
in the vocabulary trie as well as the same po-
sition on w,,,, the search branches with smaller
sum of weights will be pruned. It is based on
the dynamic programming technique because
we take max in the ranking function in Equ. 5.

It is not difficult to prove that our algorithm is guar-
anteed to find the best & candidates in terms of the
ranking scores, because we only prune those candi-
dates that cannot give better scores than the ones in
the current top & list. Due to the limitation of space,
we omit the proof of the theorem that if the weights
of rules A are non-positive and the ranking function
is defined as in Equ. 5, then the top k£ candidates ob-
tained with the pruning criteria are the same as the
top k candidates obtained without pruning.



5 Experimental Results

We have experimentally evaluated our approach in
spelling error correction of queries in web search.
The problem is more challenging than usual due to
the following reasons. (1) The vocabulary of queries
in web search is extremely large due to the scale, di-
versity, and dynamics of the Internet. (2) Efficiency
is critically important, because the response time of
top k candidate retrieval for web search must be kept
very low. Our approach for candidate generation is
in fact motivated by the application.

5.1 Word Pair Mining

In web search, a search session is comprised of a se-
quence of queries from the same user within a time
period. It is easy to observe from search session data
that there are many spelling errors and their correc-
tions occurring in the same sessions. We employed
heuristics to automatically mine training pairs from
search session data at a commercial search engine.

First, we segmented the query sequence from
each user into sessions. If two queries were issued
more than 5 minutes apart, then we put a session
boundary between them. We used short sessions
here because we found that search users usually cor-
rect their misspelled queries very quickly after they
find the misspellings. Then the following heuristics
were employed to identify pairs of misspelled words
and their corrections from two consecutive queries
within a session:

1) Two queries have the same number of words.

2) There is only one word difference between two
queries.

3) For the two distinct words, the word in the first
query is considered as misspelled and the sec-
ond one as its correction.

Finally, we aggregated the identified training pairs
across sessions and users and discarded the pairs
with low frequencies. Table 1 shows some examples
of the mined word pairs.

5.2 [Experiments on Accuracy

Two representative methods were used as baselines:
the generative model proposed by (Brill and Moore,
2000) referred to as generative and the logistic re-
gression model proposed by (Okazaki et al., 2008)
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| Misspelled | Correct [ Misspelled | Correct
aacoustic acoustic || chevorle chevrolet
liyerature literature || tournemen | tournament
shinngle shingle newpape newspaper
finlad finland ccomponet | component
reteive retrieve olimpick olympic

Table 1: Examples of Word Pairs

referred to as logistic. Note that Okazaki et al.
(2008)’s model is not particularly for spelling error
correction, but it can be employed in the task. When
using their method for ranking, we used outputs of
the logistic regression model as rank scores.

We compared our method with the two baselines
in terms of top k accuracy, which is ratio of the true
corrections among the top k candidates generated by
a method. All the methods shared the same settings:
973,902 words in the vocabulary, 10,597 rules for
correction, and up to two rules used in one transfor-
mation. We made use of 100,000 word pairs mined
from query sessions for training, and 10,000 word
pairs for testing.

The experimental results are shown in Fig. 3. We
can see that our method always performs the best
when compared with the baselines and the improve-
ments are statistically significant (p < 0.01). The
logistic method works better than generative, when
k is small, but its performance becomes saturated,
when k is large. Usually a discriminative model
works better than a generative model, and that seems
to be what happens with small £’s. However, logis-
tic cannot work so well for large £’s, because it only
allows the use of one rule each time. We observe
that there are many word pairs in the data that need
to be transformed with multiple rules.

Next, we conducted experiments to investigate
how the top k accuracy changes with different sizes
of vocabularies, maximum numbers of applicable
rules and sizes of rule set for the three methods. The
experimental results are shown in Fig. 4, Fig. 5 and
Fig. 6.

For the experiment in Fig. 4, we enlarged
the vocabulary size from 973,902 (smallVocab) to
2,206,948 (largeVocab) and kept the other settings
the same as in the previous experiment. Because
more candidates can be generated with a larger vo-
cabulary, the performances of all the methods de-
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Figure 3: Accuracy Comparison between Our Method
and Baselines

cline. However, the drop of accuracy by our method
is much smaller than that by generative, which
means our method is more powerful when the vo-
cabulary is large, e.g., for web search. For the exper-
iment in Fig. 5, we changed the maximum number of
rules that can be applied to a transformation from 2
to 3. Because logistic can only use one rule at a time,
it is not included in this experiment. When there
are more applicable rules, more candidates can be
generated and thus ranking of them becomes more
challenging. The accuracies of both methods drop,
but our method is constantly better than generative.
Moreover, the decrease in accuracy by our method
is clearly less than that by generative. For the ex-
periment in Fig. 6, we enlarged the number of rules
from 10,497 (smallRuleNum) to 24,054 (largeRu-
leNum). The performance of our method and those
of the two baselines did not change so much, and our
method still visibly outperform the baselines when
more rules are exploited.

5.3 Experiments on Efficiency

We have also experimentally evaluated the effi-
ciency of our approach. Because most existing work
uses a predefined ranking function, it is not fair to
make a comparison with them. Moreover, Okazaki
et al.” method does not consider efficiency, and Brill
and Moore’s method is based a complicated retrieve
algorithm which is very hard to implement. Instead
of making comparison with the existing methods in
terms of efficiency, we evaluated the efficiency of
our method by looking at how efficient it becomes
with its data structure and pruning technique.
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Figure 4: Accuracy Comparisons between Baselines and
Our Method with Different Vocabulary Sizes
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Our Method with Different Maximum Numbers of Ap-
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Figure 6: Accuracy Comparison between Baselines and
Our Method with Different Numbers of Rules

First, we tested the efficiency of using Aho-
Corasick algorithm (the rule index). Because the
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time complexity of Aho-Corasick algorithm is de-
termined by the lengths of query strings and the
number of matches, we examined how the number
of matches on query strings with different lengths
changes when the number of rules increases. The
experimental results are shown in Fig. 7. We can see
that the number of matches is not largely affected by
the number of rules in the rule index. It implies that
the time for searching applicable rules is close to a
constant and does not change much with different
numbers of rules.

Next, since the running time of our method is
proportional to the number of visited nodes on the
vocabulary trie, we evaluated the efficiency of our
method in terms of number of visited nodes. The
result reported here is that when £ is 10.

Specifically, we tested how the number of visited
nodes changes according to three factors: maximum
number of applicable rules in a transformation, vo-
cabulary size and rule set size. The experimental re-
sults are shown in Fig. 8, Fig. 9 and Fig. 10 respec-
tively. From Fig. 8, with increasing maximum num-
ber of applicable rules in a transformation, number
of visited nodes increases first and then stabilizes,
especially when the words are long. Note that prun-
ing becomes even more effective because number of
visited nodes without pruning grows much faster. It
demonstrates that our method is very efficient when
compared to the non-pruning method. Admittedly,
the efficiency of our method also deteriorates some-
what. This would not cause a noticeable issue in
real applications, however. In the previous section,
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we have seen that using up to two rules in a transfor-
mation can bring a very high accuracy. From Fig. 8
and Fig. 9, we can conclude that the numbers of vis-
ited nodes are stable and thus the efficiency of our
method keeps high with larger vocabulary size and
number of rules. It indicates that our pruning strat-
egy is very effective. From all the figures, we can see
that our method is always efficient especially when
the words are relatively short.

5.4 Experiments on Model Constraints

In Section 3.1, we introduce the non-positive con-
straints on the parameters, i.e., VA, < 0, to en-
able the pruning technique for efficient top k re-
trieval. We experimentally verified the impact of
the constraints to both the accuracy and efficiency.
For ease of reference, we name the model with the
non-positive constraints as bounded, and the origi-



Word Length
—=—4
7000 | P
a6
6000 —v—7
3 —<-8
o —»>—9
<] 1
S s 10
o
2 4000 P . — — — —
2
2 3000
s 1
@
2 2000 v M —v
1S
=)
Z 1000 e 5 0,
P . o

T T
15000 20000

Number of Rules

T
10000

Figure 10: Efficiency Evaluation with Different Number
of Rules

—=&— Bounded
—e— Unbounded

100%
90% |
80% |

70% -

Accuracy

60%

50%

40% T T T T T T T
15 20 25 30
top k

Figure 11: Accuracy Comparison between Bounded and
Unbounded Models

nal model as unbounded. The experimental results
are shown in Fig. 11 and Fig. 12. All the experi-
ments were conducted based on the typical setting
of our experiments: 973,902 words in the vocabu-
lary, 10,597 rules, and up to two rules in one trans-
formation. In Fig. 11, we can see that the differ-
ence between bounded and unbounded in terms of
accuracy is negligible, and we can draw a conclu-
sion that adding the constraints does not hurt the ac-
curacy. From Fig. 12, it is easy to note that bounded
is much faster than unbounded because our pruning
strategy can be applied to bounded.

6 Conclusion

In this paper, we have proposed a new method for
approximate string search, including spelling error
correction, which is both accurate and efficient. Our
method is novel and unique in its model, learning
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algorithm, and retrieval algorithm. Experimental re-
sults on a large data set show that our method im-
proves upon existing methods in terms of accuracy,
and particularly our method can perform better when
the dictionary is large and when there are many
rules. Experimental results have also verified the
high efficiency of our method. As future work, we
plan to add contextual features into the model and
apply our method to other data sets in other tasks.
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Abstract

We consider a semi-supervised setting for do-
main adaptation where only unlabeled data is
available for the target domain. One way to
tackle this problem is to train a generative
model with latent variables on the mixture of
data from the source and target domains. Such
a model would cluster features in both do-
mains and ensure that at least some of the la-
tent variables are predictive of the label on the
source domain. The danger is that these pre-
dictive clusters will consist of features specific
to the source domain only and, consequently,
a classifier relying on such clusters would per-
form badly on the target domain. We in-
troduce a constraint enforcing that marginal
distributions of each cluster (i.e., each latent
variable) do not vary significantly across do-
mains. We show that this constraint is effec-
tive on the sentiment classification task (Pang
et al.,, 2002), resulting in scores similar to
the ones obtained by the structural correspon-
dence methods (Blitzer et al., 2007) without
the need to engineer auxiliary tasks.

1 Introduction

Supervised learning methods have become a stan-
dard tool in natural language processing, and large
training sets have been annotated for a wide vari-
ety of tasks. However, most learning algorithms op-
erate under assumption that the learning data orig-
inates from the same distribution as the test data,
though in practice this assumption is often violated.
This difference in the data distributions normally re-
sults in a significant drop in accuracy. To address
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this problem a number of domain-adaptation meth-
ods has recently been proposed (see e.g., (Daumé
and Marcu, 2006; Blitzer et al., 2006; Bickel et al.,
2007)). In addition to the labeled data from the
source domain, they also exploit small amounts of
labeled data and/or unlabeled data from the target
domain to estimate a more predictive model for the
target domain.

In this paper we focus on a more challenging
and arguably more realistic version of the domain-
adaptation problem where only unlabeled data is
available for the target domain. One of the most
promising research directions on domain adaptation
for this setting is based on the idea of inducing a
shared feature representation (Blitzer et al., 2006),
that is mapping from the initial feature representa-
tion to a new representation such that (1) examples
from both domains ‘look similar’ and (2) an accu-
rate classifier can be trained in this new representa-
tion. Blitzer et al. (2006) use auxiliary tasks based
on unlabeled data for both domains (called pivot fea-
tures) and a dimensionality reduction technique to
induce such shared representation. The success of
their domain-adaptation method (Structural Corre-
spondence Learning, SCL) crucially depends on the
choice of the auxiliary tasks, and defining them can
be a non-trivial engineering problem for many NLP
tasks (Plank, 2009). In this paper, we investigate
methods which do not use auxiliary tasks to induce
a shared feature representation.

We use generative latent variable models (LVMs)
learned on all the available data: unlabeled data for
both domains and on the labeled data for the source
domain. Our LVMs use vectors of latent features
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to represent examples. The latent variables encode
regularities observed on unlabeled data from both
domains, and they are learned to be predictive of
the labels on the source domain. Such LVMs can
be regarded as composed of two parts: a mapping
from initial (normally, word-based) representation
to a new shared distributed representation, and also
a classifier in this representation. The danger of this
semi-supervised approach in the domain-adaptation
setting is that some of the latent variables will cor-
respond to clusters of features specific only to the
source domain, and consequently, the classifier re-
lying on this latent variable will be badly affected
when tested on the target domain. Intuitively, one
would want the model to induce only those features
which generalize between domains. We encode this
intuition by introducing a term in the learning ob-
jective which regularizes inter-domain difference in
marginal distributions of each latent variable.

Another, though conceptually similar, argument
for our method is coming from theoretical re-
sults which postulate that the drop in accuracy of
an adapted classifier is dependent on the discrep-
ancy distance between the source and target do-
mains (Blitzer et al., 2008; Mansour et al., 2009;
Ben-David et al., 2010). Roughly, the discrepancy
distance is small when linear classifiers cannot dis-
tinguish between examples from different domains.
A necessary condition for this is that the feature ex-
pectations do not vary significantly across domains.
Therefore, our approach can be regarded as mini-
mizing a coarse approximation of the discrepancy
distance.

The introduced term regularizes model expecta-
tions and it can be viewed as a form of a general-
ized expectation (GE) criterion (Mann and McCal-
lum, 2010). Unlike the standard GE criterion, where
a model designer defines the prior for a model ex-
pectation, our criterion postulates that the model ex-
pectations should be similar across domains.

In our experiments, we use a form of Harmonium
Model (Smolensky, 1986) with a single layer of bi-
nary latent variables. Though exact inference with
this class of models is infeasible we use an effi-
cient approximation (Bengio and Delalleau, 2007),
which can be regarded either as a mean-field approx-
imation to the reconstruction error or a determinis-
tic version of the Contrastive Divergence sampling
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method (Hinton, 2002). Though such an estimator
is biased, in practice, it yields accurate models. We
explain how the introduced regularizer can be inte-
grated into the stochastic gradient descent learning
algorithm for our model.

We evaluate our approach on adapting sentiment
classifiers on 4 domains: books, DVDs, electronics
and kitchen appliances (Blitzer et al., 2007). The
loss due to transfer to a new domain is very sig-
nificant for this task: in our experiments it was
approaching 9%, in average, for the non-adapted
model. Our regularized model achieves 35% aver-
age relative error reduction with respect to the non-
adapted classifier, whereas the non-regularized ver-
sion demonstrates a considerably smaller reduction
of 26%. Both the achieved error reduction and the
absolute score match the results reported in (Blitzer
et al., 2007) for the best version' of the SCL method
(SCL-MI, 36%), suggesting that our approach is a
viable alternative to SCL.

The rest of the paper is structured as follows. In
Section 2 we introduce a model which uses vec-
tors of latent variables to model statistical dependen-
cies between the elementary features. In Section 3
we discuss its applicability in the domain-adaptation
setting, and introduce constraints on inter-domain
variability as a way to address the discovered lim-
itations. Section 4 describes approximate learning
and inference algorithms used in our experiments.
In Section 5 we provide an empirical evaluation of
the proposed method. We conclude in Section 6 with
further examination of the related work.

2 The Latent Variable Model

The adaptation method advocated in this paper is ap-
plicable to any joint probabilistic model which uses
distributed representations, i.e. vectors of latent
variables, to abstract away from hand-crafted fea-
tures. These models, for example, include Restricted
Boltzmann Machines (Smolensky, 1986; Hinton,
2002) and Sigmoid Belief Networks (SBNs) (Saul
et al., 1996) for classification and regression tasks,
Factorial HMMs (Ghahramani and Jordan, 1997)
for sequence labeling problems, Incremental SBNs
for parsing problems (Titov and Henderson, 2007a),

! Among the versions which do not exploit labeled data from
the target domain.



as well as different types of Deep Belief Net-
works (Hinton and Salakhutdinov, 2006). The
power of these methods is in their ability to automat-
ically construct new features from elementary ones
provided by the model designer. This feature induc-
tion capability is especially desirable for problems
where engineering features is a labor-intensive pro-
cess (e.g., multilingual syntactic parsing (Titov and
Henderson, 2007b)), or for multitask learning prob-
lems where the nature of interactions between the
tasks is not fully understood (Collobert and Weston,
2008; Gesmundo et al., 2009).

In this paper we consider classification tasks,
namely prediction of sentiment polarity of a user re-
view (Pang et al., 2002), and model the joint distri-
bution of the binary sentiment label y € {0,1} and
the multiset of text features x, x; € X. The hidden
variable vector z (z; € {0,1},7 = 1,...,m) en-
codes statistical dependencies between components
of x and also dependencies between the label y and
the features . Intuitively, the model can be regarded

as a logistic regression classifier with latent features.

The model assumes that the features and the latent
variable vector are generated jointly from a globally-
normalized model and then the label y is gener-
ated from a conditional distribution dependent on
z. Both of these distributions, P(x, z) and P(y|z),
are parameterized as log-linear models and, conse-
quently, our model can be seen as a combination of
an undirected Harmonium model (Smolensky, 1986)
and a directed SBN model (Saul et al., 1996). The
formal definition is as follows:

(1) Draw (z, z) ~ P(x, z|v),
(2) Draw label y ~ o(wo + > ) wiz;),

where v and w are parameters, o is the logistic sig-
moid function, o(t) = 1/(1 + e7!), and the joint
distribution of (x, z) is given by the Gibbs distribu-
tion:

|| n |z|,n
P(z, z|v) x exp(z vxjo—i—z V0iZit+ Z Vg;i%)-
j=1 i=1 ji=1

Figure 1 presents the corresponding graphical
model. Note that the arcs between x and z are undi-
rected, whereas arcs between y and z are directed.
The parameters of this model § = (v, w) can be
estimated by maximizing joint likelihood L(6) of
labeled data for the source domain {x"), y(},cq,
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Figure 1: The latent variable model: x, z, y are random
variables, dependencies between x and z are parameter-
ized by matrix v, and dependencies between z and y - by
vector w.

and unlabeled data for the source and target domain
{:B(l)}legUuTU, where Sy and Ty stand for the un-
labeled datasets for the source and target domains,
respectively. However, given that, first, amount of
unlabeled data |Syy U Tyy| normally vastly exceeds
the amount of labeled data |S;,| and, second, the
number of features for each example | ()| is usually
large, the label y will have only a minor effect on
the mapping from the initial features x to the latent
representation z (i.e. on the parameters v). Conse-
quently, the latent representation induced in this way
is likely to be inappropriate for the classification task
in question. Therefore, we follow (McCallum et al.,
2006) and use a multi-conditional objective, a spe-
cific form of hybrid learning, to emphasize the im-
portance of labels y:

L(#,0)=a log Py"2.0)+) " log P(«]6)

lesSt leSyUTyuUST,

where « is a weight, o > 1.

Direct maximization of the objective is prob-
lematic, as it would require summation over all
the 2™ latent vectors z. Instead we use a mean-
field approximation. Similarly, an efficient ap-
proximate inference algorithm is used to compute
arg max, P(y|z, ) at testing time. The approxima-
tions are described in Section 4.

3 Constraints on Inter-Domain Variability

As we discussed in the introduction, our goal is
to provide a method for domain adaptation based
on semi-supervised learning of models with dis-
tributed representations. In this section, we first dis-
cuss the shortcomings of domain adaptation with
the above-described semi-supervised approach and
motivate constraints on inter-domain variability of



the induced shared representation. Then we pro-
pose a specific form of this constraint based on the
Kullback-Leibler (KL) divergence.

3.1

Each latent variable z; encodes a cluster or a com-
bination of elementary features x;. At least some
of these clusters, when induced by maximizing the
likelihood L (6, «) with sufficiently large a, will be
useful for the classification task on the source do-
main. However, when the domains are substan-
tially different, these predictive clusters are likely
to be specific only to the source domain. For ex-
ample, consider moving from reviews of electronics
to book reviews: the cluster of features related to
equipment reliability and warranty service will not
generalize to books. The corresponding latent vari-
able will always be inactive on the books domain
(or always active, if negative correlation is induced
during learning). Equivalently, the marginal distri-
bution of this variable will be very different for both
domains. Note that the classifier, defined by the vec-
tor w, is only trained on the labeled source examples
{0, yOY,cs, and therefore it will rely on such la-
tent variables, even though they do not generalize
to the target domain. Clearly, the accuracy of such
classifier will drop when it is applied to target do-
main examples. To tackle this issue, we introduce a
regularizing term which penalizes differences in the
marginal distributions between the domains.

In fact, we do not need to consider the behavior
of the classifier to understand the rationale behind
the introduction of the regularizer. Intuitively, when
adapting between domains, we are interested in rep-
resentations z which explain domain-independent
regularities rather than in modeling inter-domain
differences. The regularizer favors models which fo-
cus on the former type of phenomena rather than the
latter.

Another motivation for the form of regularization
we propose originates from theoretical analysis of
the domain adaptation problems (Ben-David et al.,
2010; Mansour et al., 2009; Blitzer et al., 2007).
Under the assumption that there exists a domain-
independent scoring function, these analyses show
that the drop in accuracy is upper-bounded by the
quantity called discrepancy distance. The discrep-
ancy distance is dependent on the feature represen-

Motivation for the Constraints
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tation z, and the input distributions for both domains
Ps(z) and Pr(z), and is defined as

dz(ST)ZT;{E}XIEPs [f(2)A] (2)]=Ep. [ (2)A] ()],

where f and f’ are arbitrary linear classifiers
in the feature representation z. The quantity
Ep[f(z)#f'(z)] measures the probability mass as-
signed to examples where f and f’ disagree. Then
the discrepancy distance is the maximal change in
the size of this disagreement set due to transfer be-
tween the domains. For a more restricted class of
classifiers which rely only on any single feature?
z;, the distance is equal to the maximum over the
change in the distributions P(z;). Consequently, for
arbitrary linear classifiers we have:

d,(ST) > ,max |Epglzi = 1] — Ep, [z = 1]|.

It follows that low inter-domain variability of the
marginal distributions of latent variables is a neces-
sary condition for low discrepancy distance. Min-
imizing the difference in the marginal distributions
can be regarded as a coarse approximation to the
minimization of the distance. However, we have
to concede that the above argument is fairly infor-
mal, as the generalization bounds do not directly
apply to our case: (1) our feature representation
is learned from the same data as the classifier, (2)
we cannot guarantee that the existence of a domain-
independent scoring function is preserved under the
learned transformation x— z and (3) in our setting
we have access not only to samples from P(z|x, 0)
but also to the distribution itself.

3.2 The Expectation Criterion

Though the above argument suggests a specific form
of the regularizing term, we believe that the penal-
izer should not be very sensitive to small differ-
ences in the marginal distributions, as useful vari-
ables (clusters) are likely to have somewhat differ-
ent marginal distributions in different domains, but
it should severely penalize extreme differences.

To achieve this goal we instead propose to use the
symmetrized Kullback-Leibler (KL) divergence be-
tween the marginal distributions as the penalty. The

>We consider only binary features here.



derivative of the symmetrized KL divergence is large
when one of the marginal distributions is concen-
trated at O or 1 with another distribution still having
high entropy, and therefore such configurations are
severely penalized.> Formally, the regularizer G(6)
is defined as

= D(Ps(z0)||Pr(il6))
=1
+D(Pr(z0)||Ps(2i0)), (1)

where Ps(z;) and Pr(z;) stand for the training sam-
ple estimates of the marginal distributions of latent
features, for instance:

Pr(z

=1]0) = =1z, ).

> P

|T | €Ty

We augment the multi-conditional log-likelihood
L(6, o) with the weighted regularization term G(6)
to get the composite objective function:

r(0,a,0) = L(0, o) — BG(0),

Note that this regularization term can be regarded
as a form of the generalized expectation (GE) crite-
ria (Mann and McCallum, 2010), where GE criteria
are normally defined as KL divergences between a
prior expectation of some feature and the expecta-
tion of this feature given by the model, where the
prior expectation is provided by the model designer
as a form of weak supervision. In our case, both ex-
pectations are provided by the model but on different
domains.

Note that the proposed regularizer can be trivially
extended to support the multi-domain case (Mansour
et al., 2008) by considering symmetrized KL diver-
gences for every pair of domains or regularizing the
distributions for every domain towards their average.

More powerful regularization terms can also be
motivated by minimization of the discrepancy dis-
tance but their optimization is likely to be expensive,
whereas Ly (0, «, 3) can be optimized efficiently.

6> 0.

3An alternative is to use the Jensen-Shannon (JS) diver-
gence, however, our preliminary experiments seem to suggest
that the symmetrized KL divergence is preferable. Though the
two divergences are virtually equivalent when the distributions
are very similar (their ratio tends to a constant as the distribu-
tions go closer), the symmetrized KL divergence stronger penal-
izes extreme differences and this is important for our purposes.
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4 Learning and Inference

In this section we describe an approximate learning
algorithm based on the mean-field approximation.
Though we believe that our approach is independent
of the specific learning algorithm, we provide the de-
scription for completeness. We also describe a sim-
ple approximate algorithm for computing P(y|x, 0)
at test time.

The stochastic gradient descent algorithm iter-
ates over examples and updates the weight vector
based on the contribution of every considered exam-
ple to the objective function Ly (6, «, 3). To com-
pute these updates we need to approximate gradients
of Vglog P(y®|z®,0) (I € Sr), Vglog P(xV]6)
(I € S, U Sy UTy) as well as to estimate the con-
tribution of a given example to the gradient of the
regularizer VoG (6). In the next sections we will de-
scribe how each of these terms can be estimated.

4.1 Conditional Likelihood Term

We start by explaining the mean-field approximation
of log P(y|x,#). First, we compute the means p =

(:u’lv s 7/’Lm):

Hi = P(Zz = 1‘%,’0) = ('UOz + ZJ 1 UJ?JZ)

Now we can substitute them instead of z to approx-
imate the conditional probability of the label:

=>.. Plylz,w)P
o o(wo + Dty wiki)-

P(y = 1|z, ) (z|x,v)

We use this estimate both at testing time and also
to compute gradients Vg log P(y" |z, 0) during
learning. The gradients can be computed efficiently
using a form of back-propagation. Note that with
this approximation, we do not need to normalize
over the feature space, which makes the model very
efficient at classification time.

This approximation is equivalent to the computa-
tion of the two-layer perceptron with the soft-max
activation function (Bishop, 1995). However, the
above derivation provides a probabilistic interpreta-
tion of the hidden layer.

4.2 Unlabeled Likelihood Term

In this section, we describe how the unlabeled like-
lihood term is optimized in our stochastic learning



algorithm. First, we note that, given the directed
nature of the arcs between z and y, the weights
w do not affect the probability of input z, that is
P(x|6) = P(x|v).

Instead of directly approximating the gradient
Vo log P(zW|v), we use a deterministic version of
the Contrastive Divergence (CD) algorithm, equiv-
alent to the mean-field approximation of the recon-
struction error used in training autoassociaters (Ben-
gio and Delalleau, 2007). The CD-based estimators
are biased estimators but are guaranteed to converge.
Intuitively, maximizing the likelihood of unlabeled
data is closely related to minimizing the reconstruc-
tion error, that is training a model to discover such
mapping parameters u that z encodes all the neces-
sary information to accurately reproduce x® from z
for every training example "), Formally, the mean-
field approximation to the negated reconstruction er-
ror is defined as

L(zY,v) = log P(xV|p, v),

where the means, ; = P(z = 1|z, v), are com-
puted as in the preceding section. Note that when
computing the gradient of VL, we need to take into
account both the forward and backward mappings:
the computation of the means g from () and the
computation of the log-probability of z® given the
means fi:

dL oL
dvki - 61)]“‘

6£ dui
Opi dvg;”

4.3 Regularization Term

The criterion G(6) is also independent of the classi-
fier parameters w, i.e. G(6) = G(v), and our goal is
to compute the contribution of a considered example
[ to the gradient V,,G(v).

The regularizer G(v) is defined as in equation (1)
and it is a function of the sample-based domain-
specific marginal distributions of latent variables Pg
and Pr:

1
Przi=10)= — > u,

I Tu] €Ty

where the means ugl) = P(z = 1|z, v); Ps can
be re-written analogously. G(v) is dependent on the

parameters v only via the mean activations of the
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latent variables (Y, and contribution of each exam-
ple I can be computed by straightforward differenti-
ation:

where p = Pg(z; = 1|0) and p’ = Pr(z; = 1/|0)
if [ is from the source domain, and, inversely, p =
Pr(z; =1|0) and p’ = Pg(z; = 1|0), otherwise.

One problem with the above expression is that
the exact computation of Pg and Pr requires re-
computation of the means p() for all the exam-
ples after each update of the parameters, resulting
in O(|SL, U Sy UTy|?) complexity of each iteration
of stochastic gradient descent. Instead, we shuffle
examples and use amortization; we approximate Pg
at update ¢ by:

At l

50, = 1)= (1) B Nz =1) 4yl 1espusy
S Pét_l)(zi =1), otherwise,
where [ is an example considered at update . The
approximation Pr is computed analogously.

5 Empirical Evaluation

In this section we empirically evaluate our approach
on the sentiment classification task. We start with
the description of the experimental set-up and the
baselines, then we present the results and discuss the
utility of the constraint on inter-domain variability.

5.1 Experimental setting

To evaluate our approach, we consider the same
dataset as the one used to evaluate the SCL
method (Blitzer et al., 2007). The dataset is com-
posed of labeled and unlabeled reviews of four dif-
ferent product types: books, DVDs, electronics and
kitchen appliances. For each domain, the dataset
contains 1,000 labeled positive reviews and 1,000 la-
beled negative reviews, as well as several thousands
of unlabeled examples (4,919 reviews per domain in
average: ranging from 3,685 for DVDs to 5,945 for
kitchen appliances). As in Blitzer et al. (2007), we
randomly split each labelled portion into 1,600 ex-
amples for training and 400 examples for testing.
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Figure 2: Averages accuracies when transferring to books, DVD, electronics and kitchen appliances domains, and

average accuracy over all 12 domain pairs.

We evaluate the performance of our domain-
adaptation approach on every ordered pair of do-
mains. For every pair, the semi-supervised meth-
ods use labeled data from the source domain and
unlabeled data from both domains. We compare
them with two supervised methods: a supervised
model (Base) which is trained on the source do-
main data only, and another supervised model (/n-
domain) which is learned on the labeled data from
the target domain. The Base model can be regarded
as a natural baseline model, whereas the In-domain
model is essentially an upper-bound for any domain-
adaptation method. All the methods, supervised and
semi-supervised, are based on the model described
in Section 2.

Instead of using the full set of bigram and unigram
counts as features (Blitzer et al., 2007), we use a fre-
quency cut-off of 30 to remove infrequent ngrams.
This does not seem to have an adverse effect on the
accuracy but makes learning very efficient: the av-
erage training time for the semi-supervised methods
was about 20 minutes on a standard PC.

We coarsely tuned the parameters of the learning
methods using a form of cross-validation. Both the
parameter of the multi-conditional objective « (see
Section 2) and the weighting for the constraint 3 (see
Section 3.2) were set to 5. We used 25 iterations of
stochastic gradient descent. The initial learning rate
and the weight decay (the inverse squared variance
of the Gaussian prior) were set to 0.01, and both pa-
rameters were reduced by the factor of 2 every it-
eration the objective function estimate went down.
The size of the latent representation was equal to 10.
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The stochastic weight updates were amortized with
the momentum (-y) of 0.99.

We trained the model both without regularization
of the domain variability (NoReg, 5 = 0), and with
the regularizing term (Reg). For the SCL method
to produce an accurate classifier for the target do-
main it is necessary to train a classifier using both the
induced shared representation and the initial non-
transformed representation. In our case, due to joint
learning and non-convexity of the learning problem,
this approach would be problematic.* Instead, we
combine predictions of the semi-supervised mod-
els Reg and NoReg with the baseline out-of-domain
model (Base) using the product-of-experts combina-
tion (Hinton, 2002), the corresponding methods are
called Reg+ and NoReg+, respectively.

In all our models, we augmented the vector z with
an additional component set to O for examples in the
source domain and to 1 for the target domain exam-
ples. In this way, we essentially subtracted a un-
igram domain-specific model from our latent vari-
able model in the hope that this will further reduce
the domain dependence of the rest of the model pa-
rameters. In preliminary experiments, this modifica-
tion was beneficial for all the models including the
non-constrained one (NoReg).

5.2 Results and Discussion

The results of all the methods are presented in Fig-
ure 2. The 4 leftmost groups of results correspond
to a single target domain, and therefore each of

“The latent variables are not likely to learn any useful map-
ping in the presence of observable features. Special training
regimes may be used to attempt to circumvent this problem.



them is an average over experiments on 3 domain-
pairs, for instance, the group Books represents an
average over adaptation experiments DVDs—books,
electronics—books, kitchen—books. The rightmost
group of the results corresponds to the average over
all 12 experiments. First, observe that the total drop
in the accuracy when moving to the target domain is
8.9%: from 84.6% demonstrated by the In-domain
classifier to 75.6% shown by the non-adapted Base
classifier. For convenience, we also present the er-
rors due to transfer in a separate Table 1: our best
method (Reg+) achieves 35% relative reduction of
this loss, decreasing the gap to 5.7%.

Now, let us turn to the question of the utility of the
constraints. First, observe that the non-regularized
version of the model (NoReg) often fails to outper-
form the baseline and achieves the scores consider-
ably worse than the results of the regularized ver-
sion (2.6% absolute difference). We believe that
this happens because the clusters induced when opti-
mizing the non-regularized learning objective are of-
ten domain-specific. The regularized model demon-
strates substantially better results slightly beating
the baseline in most cases. Still, to achieve a
larger decrease of the domain-adaptation error, it
was necessary to use the combined models, Reg+
and NoReg+. Here, again, the regularized model
substantially outperforms the non-regularized one
(35% against 26% relative error reduction for Reg+
and NoReg+, respectively).

In Table 1, we also compare the results of
our method with the results of the best ver-
sion of the SCL method (SCL-MI) reported
in Blitzer et al. (2007). The average error reduc-
tions for our method Reg+ and for the SCL method
are virtually equal. However, formally, these two
numbers are not directly comparable. First, the ran-
dom splits are different, though this is unlikely to
result in any significant difference, as the split pro-
portions are the same and the test sets are suffi-
ciently large. Second, the absolute scores achieved
in Blitzer et al. (2007) are slightly worse than those
demonstrated in our experiments both for supervised
and semi-supervised methods. In absolute terms,
our Reg+ method outperforms the SCL method by
more than 1%: 75.6% against 74.5%, in average.
This is probably due to the difference in the used
learning methods: optimization of the Huber loss vs.
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D | Base || NoReg | Reg || NoReg+ | Reg+ ||[SCL-MI
B | 10.6 12.4 7.7 8.6 6.7 5.8
D | 95 8.2 8.0 6.6 7.3 6.1
E | 82 13.0 9.7 6.8 5.5 5.5
K| 75 8.8 6.5 44 33 5.6
Av| 89 10.6 8.0 6.6 5.7 5.8

Table 1: Drop in the accuracy score due to the transfer
for the 4 domains: (B)ooks, (D)VD, (E)electronics and
(K)itchen appliances, and in average over the domains.

our latent variable model.’> This comparison sug-
gests that our domain-adaptation method is a viable
alternative to SCL.

Also, it is important to point out that the SCL
method uses auxiliary tasks to induce the shared
feature representation, these tasks are constructed
on the basis of unlabeled data. The auxiliary tasks
and the original problem should be closely related,
namely they should have the same (or similar) set
of predictive features. Defining such tasks can be
a challenging engineering problem. On the senti-
ment classification task in order to construct them
two steps need to be performed: (1) a set of words
correlated with the sentiment label is selected, and,
then (2) prediction of each such word is regarded a
distinct auxiliary problem. For many other domains
(e.g., parsing (Plank, 2009)) the construction of an
effective set of auxiliary tasks is still an open prob-
lem.

6 Related Work

There is a growing body of work on domain adapta-
tion. In this paper, we focus on the class of meth-
ods which induce a shared feature representation.
Another popular class of domain-adaptation tech-
niques assume that the input distributions P(x) for
the source and the target domain share support, that
is every example z which has a non-zero probabil-
ity on the target domain must have also a non-zero
probability on the source domain, and vice-versa.
Such methods tackle domain adaptation by instance
re-weighting (Bickel et al., 2007; Jiang and Zhai,
2007), or, similarly, by feature re-weighting (Sat-
pal and Sarawagi, 2007). In NLP, most features

>The drop in accuracy for the SCL method in Table 1 is is
computed with respect to the less accurate supervised in-domain
classifier considered in Blitzer et al. (2007), otherwise, the com-
puted drop would be larger.



are word-based and lexicons are very different for
different domains, therefore such assumptions are
likely to be overly restrictive.

Various semi-supervised techniques for domain-
adaptation have also been considered, one example
being self-training (McClosky et al., 2006). How-
ever, their behavior in the domain-adaptation set-
ting is not well-understood. Semi-supervised learn-
ing with distributed representations and its applica-
tion to domain adaptation has previously been con-
sidered in (Huang and Yates, 2009), but no attempt
has been made to address problems specific to the
domain-adaptation setting. Similar approaches has
also been considered in the context of topic mod-
els (Xue et al., 2008), however the preference to-
wards induction of domain-independent topics was
not explicitly encoded in the learning objective or
model priors.

A closely related method to ours is that
of (Druck and McCallum, 2010) which performs
semi-supervised learning with posterior regulariza-
tion (Ganchev et al., 2010). Our approach differs
from theirs in many respects. First, they do not fo-
cus on the domain-adaptation setting and do not at-
tempt to define constraints to prevent the model from
learning domain-specific information. Second, their
expectation constraints are estimated from labeled
data, whereas we are trying to match expectations
computed on unlabeled data for two domains.

This approach bears some similarity to the adap-
tation methods standard for the setting where la-
belled data is available for both domains (Chelba
and Acero, 2004; Daumé and Marcu, 2006). How-
ever, instead of ensuring that the classifier param-
eters are similar across domains, we favor models
resulting in similar marginal distributions of latent
variables.

7 Discussion and Conclusions

In this paper we presented a domain-adaptation
method based on semi-supervised learning with dis-
tributed representations coupled with constraints fa-
voring domain-independence of modeled phenom-
ena. Our approach results in competitive domain-
adaptation performance on the sentiment classifica-
tion task, rivalling that of the state-of-the-art SCL
method (Blitzer et al., 2007). Both of these meth-
ods induce a shared feature representation but un-
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like SCL our method does not require construction
of any auxiliary tasks in order to induce this repre-
sentation. The primary area of the future work is to
apply our method to structured prediction problems
in NLP, such as syntactic parsing or semantic role la-
beling, where construction of auxiliary tasks proved
problematic. Another direction is to favor domain-
invariability not only of the expectations of individ-
ual variables but rather those of constraint functions
involving latent variables, features and labels.
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Abstract et al., 1964) by using.agrangian relaxatiorto de-

We describe an exact decoding algorithm for compose the decoding problem into the following
syntax-based statistical translation. The ap-  sub-problems:
proach uses Lagrangian relaxation to decom-

pose the decoding problem into tractable sub- 1. Dynamic programming over the weighted hy-

problems, thereby avoiding exhaustive dy- pergraph. This step does not require language

namic programming. The method recovers ex- model integration, and hence is highly efficient.

act solutions, with certificates of optimality,

on over 97% of test examples; it has compa- 2. Application of an all-pairs shortest path al-

rable speed to state-of-the-art decoders. gorithm to a directed graph derived from the
1 Introduction weighted hypergraph. The size of the derived

Recent work has seen widespread use of syn- directed graphis linear in the size of the hyper-
chronous probabilistic grammars in statistical ma-  9raph, hence this step is again efficient.

chine translation (SMT). The decoding problem for

a broad range of these systems (e.g., (Chiang, 20d

Marcu et al., 2006; Shen et al., 2008)) corresponc}

to the intersection of a (weighted) hypergraph witl] ) ) )
an n-gram language model The hypergraph rep- ing algorithm is used to_ mtegrate language model

resents a large set of possible translations, and J§0res. Lagrange multipliers are used to enforce
created by applying a synchronous grammar to thaegreement between the structures produced by the

source language string. The language model is th&f{© decoding algorithms.

used to rescore the translations in the hypergraph. In this paper we fir;t give background on hyper-
graphs and the decoding problem. We then describe

Decoding with these models is challenging; ; laorith he alaorith
largely because of the cost of integrating an n-grafi"" decoding algorithm. The algorithm uses a sub-

language model into the search process. Exact d radient method to minimize a dual function. The

namic programming algorithms for the problem aréjual corresppnds toa partit_:ular Iinear'programming
well known (Bar-Hillel et al., 1964), but are too ex- (LP) relaxatlon_ of the original deCOd'”9 prob!em.
pensive to be used in practigePrevious work on The method will recover an exact solution, with a

decoding for syntax-based SMT has therefore beé:rgrtificate of optimality, if the underlying LP relax-

focused primarily on approximate search rnethods_atlon has an integral solution. In some cases, how-

This paper describes an efficient algorithm for exS’e" the underlying LP will have a fractional solu-

act decoding of synchronous grammar models f(ﬂon, in which case the method will not be exact. The

translation. We avoid the construction of (Bar—HiIIelseC,ond technical con_trlbutilon Of_ this paper is to de-
scribe a method that iteratively tightens the underly-

1This problem is also relevant to other areas of statisticqhg LP relaxation until an exact solution is produced.

NLP, for example NL generation (Langkilde, 2000). . . . .
2E g., with a trigram language model they runi| £|w°) We do this by gradually introducing constraints to

time, wherel E| is the number of edges in the hypergraph, andtep 1 (dynamic programming over the hypergraph),
w is the number of distinct lexical items in the hypergraph.  while still maintaining efficiency.

formally, the first decoding algorithm incorporates
e weights and hard constraints on translations from
e synchronous grammar, while the second decod-
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We report experiments using the tree-to-strin@ Background: Hypergraphs

model of (Huang and Mi, 2010). Our method givesTranslation with many syntax-based systems (e.g.,
exact solutions on over 97% of test examples. Th(i:hiang, 2005; Marcu et al., 2006; Shen et al., 2008;
method is comparable in speed to state-of-the-art detuang and Mi, 2010)) can be implemented as a
coding algorithms; for example, over 70% of the tesfyo-step process. The first step is to take an in-
examples are decoded in 2 seconds or less. We copiit sentence in the source language, and from this
pare our method to cube pruning (Chiang, 2007}o create a hypergraph (sometimes called a transla-
and find that our method gives improved modefion forest) that represents the set of possible trans-
scores on a significant number of examples. Ongtions (strings in the target language) and deriva-
consequence of our work is that we give accuratgons under the grammar. The second step is to
estimates of the number of search errors for cubitegrate an n-gram language model with this hy-
pruning. pergraph. For example, in the system of (Chiang,
2 Related Work 2005), the hypergraph is created as foIIows; first, the
source side of the synchronous grammar is used to
A variety of approximate decoding algorithms haveyeate a parse forest over the source language string.
been explored for syntax-based translation systemSecond, transduction operations derived from syn-
including cube-pruning (Chiang, 2007; Huang an@hronous rules in the grammar are used to create the
Chiang, 2007), left-to-right decoding with beamisrget-language hypergraph. Chiang’s method uses
search (Watanabe et al., 2006; Huang and Mi, 2010},synchronous context-free grammar, but the hyper-
and coarse-to-fine methods (Petrov et al., 2008). graph formalism is applicable to a broad range of
Recent work has developed decoding algorithmsther grammatical formalisms, for example depen-

based on finite state transducers (FSTs). Iglesias @ncy grammars (e.g., (Shen et al., 2008)).
al. (2009) show that exact FST decoding is feasible A hypergraph is a pair(V, E) where V. =

for a phrase-based system with limited reorderinng, ...,|V|} is a set of vertices, an8l is a set of

(the MJ1 model (Kumar and Byrne, 2005)), and d@yperedges. A single distinguished vertex is taken

Gispert et al. (2010) show that exact FST decodings the root of the hypergraph; without loss of gener-

is feasible for a specific class of hierarchical gramality we take this vertex to be = 1. Each hyper-

mars (shallow-1 grammars). Approximate searcBdgee € E is a tuple((vi,va, ..., vk), vo) Where

methods are used for more complex reordering mogy, ¢ Vv, andv; € {2...|V|} fori = 1...k. The

els or grammars. The FST algorithms are shown tgertexy, is referred to as theeadof the edge. The

produce higher scoring solutions than cube-pruningrdered sequencé, vy, ..., v;) is referred to as

on a large proportion of examples. thetail of the edge; in addition, we sometimes refer
Lagrangian relaxation is a classical techniquq)vhv%“_vk as thechildrenin the edge. The num-

in combinatorial optimization (Korte and Vygen,ber of childrenk may vary across different edges,

2008). Lagrange multipliers are used to add linput % > 1 for all edges (i.e., each edge has at least

ear constraints to an existing problem that can bgne child). We will usei(e) to refer to the head of

solved using a combinatorial algorithm; the resultan edge:, andt(e) to refer to the tail.

ing dual function is then minimized, for example e will assume that the hypergraph is acyclic: in-

using subgradient methods. In recent woddal  tuitively this will mean that no derivation (as defined

decomposition-a special case of Lagrangian relaxnelow) contains the same vertex more than once (see

ation, where the linear constraints enforce agregmartin et al., 1990) for a formal definition).

ment between two or more models—has been ap- Each vertexw € V is either anon-terminalin the

pIied to inference in Markov random fields (Wain hypergraph, or éeaf. The set of non-terminals is

wright et al., 2005; Komodakis et al., 2007; Sontag

et al., 2008), and also to inference problems in NLP Vv = {v € V': Je € E suchthat h(e) = v}

(Rush et al., 2010; Koo et al., 2010). There are Closéonversely

connections between dual decomposition and work ’

on belief propagation (Smith and Eisner, 2008). Vi ={veV:Bee€ E suchthat h(e) = v}

the set of leaves is defined as
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Finally, we assume that eache V has a label Assumption 3.1 (Bigram start/end assump-
[(v). The labels for leaves will bevords and will  tion.) For any derivation y, with leaves
be important in defining strings and language model(y) = wvy,v2,...,v,, it is the case that: (1)
scores for those strings. The labels for non-terminat, = 2 andv,, = 3; (2) the leave< and 3 cannot
nodes will not be important for results in this paper. appear at any other position in the stringsy) for

We now turn to derivations. Define andex set y € ); (3) [(2) = <s> where<s> is the start
7 =V U E. Aderivation is represented by a vectorsymbol in the language model; (4)3) = </ s>
y = {y, : r € Z} wherey, = 1 if vertexvis used in where</ s> is the end symbol.
the derivationy, = 0 otherwise (similarlyy, = 1 if
edgee is used in the derivation;. = 0 otherwise).
Thusy is a vector in{0,1}%I. A valid derivation
satisfies the following constraints:

This assumption allows us to incorporate lan-
guage model terms that depend on the start and end
symbols. It also allows a clean solution for boundary
conditions (the start/end of string5).

e y; = 1 (the root must be in the derivation). 4 A Simple Lagrangian Relaxation

e Forallv e Vi, yo = X c.p(e)—y Ye- Algon_thm | | |
We now give a Lagrangian relaxation algorithm for
o Forallv e 2...[V],yo = e per(e) Ye- integration of a hypergraph with a bigram language

model, in cases where the hypergraph satisfies the

We use) to refer to the set of valid derivations. i s -
following simplifying assumption:

The sety is a subset of0, 1}1%! (not all members of

{0, 11121 will correspond to valid derivations). Assumption 4.1 (The strict ordering assumptign.
Each derivationy in the hypergraph will imply an For any two leaves) and w, it is either the case

ordered sequence of leaves. . . v,. We uses(y) to  that: 1) for all derivationsy such thatv andw are

refer to this sequence. Tlsentencassociated with both in the sequendéy), v precedesu; or 2) for all

the derivation is thet(vy) ... [(vy,). derivationsy such thatv andw are both inl(y), w
In a weighted hypergraph problem, we assume frecedes.

parameter vectof = {6, : r € Z}. The score for 15 under this assumption, the relative ordering
any derivation isf(y) = 0 -y = >_.cz0ryr- SIM- ot any two leaves is fixed. This assumption is overly
ple bottom-up dynamic programming—essentiallyestrictive® the next section describes an algorithm
the CKY algorithm—can be used to fing" = 4t does not require this assumption. However de-

arg masycy f (?fJ)hU_nder thesﬁldtfﬁ”itionls- bl Ving the simple algorithm will be useful in devel-
__The focus of this paper will be to solve problems, iy ition, and will lead directly to the algo-
involving the integration of &'th order language . :

gthm for the unrestricted case.

model with a hypergraph. In these problems, th
score for a derivation is modified to be 4.1 A Sketch of the Algorithm
n At a high level, the algorithm is as follows. We in-
F@W) =Y 0myr + Y 0(viks1,vikya,---,v:) (1)  troduce Lagrange multipliers(v) for all v € V7,
rez i=k with initial values set to zero. The algorithm then
wherev;...v, = s(y). The 0(vi_py1,...,v;) Involves the following steps: (1) For each leaf
parameters score n-grams of length These find the previous leafy that maximizes the score
parameters are typically defined by a languag&(w,v) — u(w) (call this leafa*(v), and define
model, for example withk = 3 we would have o, = 0(a*(v),v) — u(a*(v))). (2) find the high-

O(vi_o,vi_1,v;) = logp(l(v;)|l(vi_2),l(v;_1)). €stscoring derivation using dynamic programming
The proplem Is .then to fing” = argmaxycy f(y) “The assumption generalizes in the obvious waj 't or-
under this definition. der language models: e.g., for trigram models we assume that
Throughout this paper we make the following as#: = 2, v2 = 3, v, = 4,1(2) = I(3) = <s>,1(4) = </ $>.
sumption when using a bigram language model: ®It is easy to come up with examples that violate this as-

sumption: for example a hypergraph with edgés 5), 1) and
3They might for example be non-terminal symbols from the((5, 4), 1) violates the assumption. The hypergraphs found in
grammar used to generate the hypergraph. translation frequently contain alternative orderings such as this.
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over the original (non-intersected) hypergraph, withinitialization: Setu®(v) = 0 forallv € V7,
leaf nodes having weight®, + «, + u(v). (3) If |Algorithm: Fort=1...T":
the output derivation from step 2 has the same set of
bigrams as those from step 1, then we have an exact
solution to the problem. Otherwise, the Lagrange
multipliers u(v) are modified in a way that encour- s "y .
ages agreement of the two steps, and we returnjto  “ () =0 (¥'(V) = XuitwyenY (”’w))'
step 1.
Steps 1 and 2 can be performed efficiently; in patjgure 1: A simple Lagrangian relaxation algorithm.
ticular, we avoid the classical dynamic programming* > 0 is the step size at iteratian
intersection, instead relying on dynamic program-
ming over the original, simple hypergraph.

oy = argmax,ey L(u'L,y)

o If y! satisfies constraints2, return v,
Else Vv € Vi, u'(v) =

Next, define)’ as

4.2 A Formal Description

We now give a formal description of the algorithm. )’ = {y : y satisfies constraintS80 andC1}
DefineB C V, x V7, to be the set of all ordered pairs ) o

(v, w) such that there is at least one derivatjomitn " this definition we have dropped the2 con-

v directly precedingo in s(y). Extend the bit-vector straints.' To incorporate. these constraints, We 'use
y to include variables(v, w) for (v, w) € B where Lagrangian relaxation, with one Lagrange multiplier

y(v,w) = 1 if leaf v is followed byw in s(y), 0 u(v) for each constraint i€2. The Lagrangian is
otherwise. We redefine the index set tobe- V' U
E U B, and definey C {0, 1}/ to be the set of all L(u,y) )+ Z ) =2 y(v,w))

possible derivations. Under assumptions 3.1 and 4.1 wilvw) B

above,y = {y : y satisfies constrains0, C1, C2} = By
where the constraint definitions are: where, = 6, + u(v), Be = 6., and B(v, w) =
e (CO) They, andy,. variables form a derivation (v, w) — u(v). _ o
in the hypergraph, as defined in section 3. The dual problem is to finchin, L(u) where
e (C1)For allv € V; such thaty # 2, y, = L(u) = max L(u, y)

yey’

Zw:(w,v)EB y(w’ U)'
Figure 1 shows aubgradientmethod for solving
e (C)Forallv € Vi suchthatv # 3, y» = hig problem. At each point the algorithm finds
2w (vw)eB Y (U, W). y! = argmaxycy L(uf~!,y), whereu!~! are the

C1 states that each leaf in a derivation has exactiyagrange multipliers from the previous iteration. |f
derlvatlon hag) |ncom|ng bigramsC2 states that C1. then it is r'eturned as t_hQ output from the algo-
each leaf in a derivation has exactly one out-goin§jthm. Otherwise, the multipliers(v) are updated.
bigram, and that each leaf not in the derivation hias Intuitively, these updates encourage the valueg, of
outgoing bigramé. andz (wwyes Y(v, w) to be equal; formally, these
The score of a derivation is nofi(y) = 6y, i.e., updates correspond to subgradient steps.
The main computational step at each iteration is to
ZGUyUJFZ Oeye+ > O(v,w)y(v,w) computearg max,ey L(u!~!,y) This step is easily
(v,w)eB solved, as follows (we again ugg, 5. ands(vy, v2)
to refer to the parameter values that incorporate La-

wheref (v, w) are scores from the language modelgrange multipliers):

Our goal is to computg* = arg maxycy f(y).

e — H * _
Recall that according to the bigram start/end assumption o For all v < Vi, define o (U) -

the leaves2/3 are reserved for the start/end of the sequence — ArgMaXy,. (v v)eB Blw,v) and ay

s(y), and hence do not have an incoming/outgoing bigram. B(a*(v),v). Forallv € Vy definea, = 0.
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e Using dynamic programming, find values forPreviously, for each derivationy, we had de-

they, andy. variables that form a valid deriva- fined s(y) = wv1,v2,...,v, to be the sequence
tion, and that maximize of leaves iny. In addition, we will define
f/(y) = Zv(ﬂv + )Yy + Ze BeYe- 9(y) = po,v1,P1,V2,P2,V3,P3; - -+, Pn—1,Vn, Pn
_ where eaclp; is a path in the derivation between
e Sety(v,w) = 1iff y(w) = 1anda™(w) = v.  |eavesy; andv;, ;. The path traces through the non-

. . . . ... terminals that are between the two leaves in the tree.
The critical point here is that through our definition

of )/, which ignores th&€2 constraints, we are able As an example, consider the following derivation
to do efficient search as just described. In the firdwith hyperedges(2, 5), 1) and((3,4), 2)):

step we compute the highest scoring incoming bi- 1
gram for each leab. In the second step we use o~
conventional dynamic programming over the hyper- 2 5
graph to find an optimal derivation that incorporates N
weights from the first step. Finally, we fill in the 3 4

y(v,w) values. Each iteration of the algorithm runs _ .
in(O(];E 1)) time. For this exampley(y) is (1 [,2 [) (2 [,3 |)

There are close connections between Lagrangifi ,3BNETLANM), 4N MET121)

relaxation and linear programming relaxations. Th 27,51)(1),5 (1) (1,11). States of the

most important formal results are: 1) for any value2'™m {a |) and <a. ) wherea is a leaf appear in
of u, L(u) > f(y*) (hence the dual value provi deSthe paths respectively before/after the leafStates

an upper bound on the optimal primal value); 2) ungf the form(a, b) correspond to the steps taken in a

der an appropriate choice of the step sigsthe top-down, left-to-right, traversal of the tree, where

subgradient algorithm is guaranteed to converge %own in?j ?p ?rr]ro:ystmdlcate w;?ther gahnc:de N bel-
the minimum of L(u) (i.e., we will minimize the Ing visited for the first or second time (the traversa

upper bound, making it as tight as possible); 3) it this case would bé, 2,3, 4,2,5,1).

at any point the algorithm in figure 1 findsyathat The mapping from a derivation to a pathg(y)

satisfies theC2 constraints, then this is guaranteedcan be performed using the algorithm in figure 2.

to be the optimal primal solution. For a given derivationy, defineE(y) = {y : y. =
Unfortunately, this algorithm may fail to producel}, and useE(y) as the set of input edges to this

a good solution for hypergraphs where the strict oalgorithm. The output from the algorithm will be a

dering constraint does not hold. In this case it iset of states, and a set of directed edg#s which

possible to find derivationg that satisfy constraints together fully define the patj(y).

CO0, C1, C2, but which are invalid. As one exam-

ple, consider a derivation with(y) = 2,4,5,3 and predict the previous leaf for each leaf under

y(2,3) = y(4,5) = y(5,4) = 1. The constraints  go0 that combined a language model score
are gll sa_ltlsfled in this case, but the bigram varlablgﬁith a Lagrange multiplier score (i.e., compute
are invalid (e.g., they contain a cycle). arg max,, B(w,v) where B(w,v) — 8w,v) +
5 The Full Algorithm u(w)). In this sec_tion we describe an algorithm th_at
for each leab again predicts the previous leaf, but in

We now describe our full algorithm, which does notaddition predicts the fulpath back to that leaf. For
require the strict ordering constraint. In addition, thexample, rather than making a prediction for |&af
full algorithm allows a trigram language model. Wethat it should be preceded by leafwe would also
first give a sketch, and then give a formal definitionpredict the path4 7)(4 1,2 1) (2 1,5 |){(5 |) be-

_ tween these two leaves. Lagrange multipliers will
5.1 A Sketch of the Algorithm be used to enforce consistency between these pre-
A crucial idea in the new algorithm is that of dictions (both paths and previous words) and a valid
paths between leaves in hypergraph derivationsderivation.

In the simple algorithm, the first step was to
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Input: A setFE of hyperedgesOutput: A directed graph|e DO. They, andy. variables form a valid derivation
S, T whereS is a set of vertices, arifl is a set of edges.| | in the original hypergraph.
Step 1: Creating S: DefineS = U.cgS(e) whereS(e) || e D1. Foralls € Sy, ys = Zmes(e) ye (see figure 2
is defined as follows. Assume= ((v1,v2,...,vx),vo). | | for the definition ofS(e)).

Include the following states i§'(e): (1) (vo |,v1 |) and||e D2. Forallv € Vi, y, = 2 prvs(p)=v Yp
(ol 001). () (v T, vy ) forg=1...k = 1(f k=1l e D3. Forallv € Vi, yu = 3.0 (50 ¥

then there are no such states). (3) In addition, for@any o p4. For allv ¢ Viiye =3 y.

forj = 1...k such that; € Vi, add the statesv; 1) ||, b5 Foralls ¢ S = Zp:me(p)(:q); y:
) 1 IS8 pis€Ep1(p

and(v; ). e D6.Foralls € Sn,ys =3, cpo(p) Yo

Step 2: CreatingT: T is formed by including the folr
lowing directed arcs: (1) Add an arc frofa,b) € S || Lagrangian with Lagrange multipliers f&3-D6:
to (c¢,d) € S wheneverb = c¢. (2) Add an arc from Ly, Ay, u,0) =0 -y

{(a,b |y € Sto{(c |) € S wheneverb = c. (3) Add \
an arc from{a 1) € Sto (b 1,¢) € S whenever = b. +20 A (y” = 2 pva(p)=v yp)

+2 0 Yo Yo — w1 (p)=v Y
Figure 2: Algorithm for constructing a directed graph 2 2pin o) p)
(S,T) from a set of hyperedges. 205 us (Us = Lpisepi (o) yp)

=+ Zs Vg (ys - Zp:SGZD(Z’) yp> '

5.2 A Formal Description

We first use the algorithm in figure 2 with the en- Figure 3: Constraint®0-D6, and the Lagrangian.

tire set of hyperedgesy, as its input. The result

is a directed grapliS, T') that containsll possible p(ws|wi, ws) is a trigram probability.

pathsfor valid derivations inV, E (it also contains ~ The setp is large (typically exponential in size):
additional, ill-formed paths). We then introduce the,gwever, we will see that we do not need to represent

following definition: the y,, variables explicitly. Instead we will be able
Definition 5.1 A trigram path p is p = to leverage the underlying structure of a path as a
(v1,p1,v2,p2,v3) Where: a)wvi,ve,v3 € Vp; sequence of states.

b) p; is a path (sequence of states) between nodesThe set of valid derivations iY = {y

(v T) and (ve |) in the graph(S,T); c) pe is a y satisfies constrainf30-D6} where the constraints
path between nodg®s 1) and (vs |) in the graph are shown in figure 3D1 simply states thag, = 1

(S,T). We definéP to be the set of all trigram paths iff there is exactly one edgein the derivation such
in (S, 7). thats € S(e). Constraintd2-D4 enforce consis-

The setP of trigram paths plays an analogous rold€ncy between leaves in the trigram paths, andjthe
to the set of bigrams in our previous algorithm. values. Constraint®5 andD6 enforce consistency

We usev: (p), p1(p), v2(p), p2(p), v3(p) to refer between states_seen in thg paths, gnd/;hmlues.
to the individual components of a pagh In addi- The Lagrangian relaxation algorithm is then de-
tion, defineSy to be the set of states ifi of the rived in asimilar way to before. Define
form (a, b) (as opposed to the fore |) or (¢ 1) Y’ = {y : y satisfies constrain@0-D2}
wherec € V1).

We now define a new index sef, = V U F U We have dropped thB3-D6 constraints, but these
Sy U P, adding variableg;, for s € Sy, andy, for  will be introduced using Lagrange multipliers. The
p € P. If we take) c {0,1}% to be the set of resulting Lagrangian is shown in figure 3, and can
valid derivations, the optimization problem is to findbe written asL(y, A\, y,u,v) = [ -y whereg, =
y* = argmaxycy f(y), wheref(y) = 6 -y, thatis, 0,+ 4+, Bs = Os+us+vs, B, = Op,—A(v2(p)) —

Y(1(P)) = 2 sepr (p) U(S) = Dsepa(p) V(S)-
FW = 0o+ Oy +D Oys+D 0¥ The  dual — is  Lh~y.av) _
v e S p

maxyey L(y, A, v,u,v); figure 4 shows a sub-
In particular, we might defind, = 0 for all s, gradient method that minimizes this dual. The key
and 6, = logp(l(vs(p))|l(vi(p)),I(v2(p))) wWhere step in the algorithm at each iteration is to compute
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is vastly more efficient than computing an exact in-
tersection of the hypergraph with a language model.

Exact solutions. By usual guarantees for La-
grangian relaxation, if at any point the algorithm re-
turns a solution,’ that satisfies constrain®3-D6,
theny! exactly solves the problem in Eq. 1.

Upper bounds. At each point in the algorithm,
L\, At ut,ot) is an upper bound on the score of
the optimal primal solutionf(y*). Upper bounds
can be useful in evaluating the quality of primal so-
lutions from either our algorithm or other methods
such as cube pruning.

Simplicity of implementation. Construction of
the (S,T) graph is straightforward. The other
steps—hypergraph dynamic programming, and all-
argmaxyey L(y, A, v, u,v) = argmaxycy -y pairs shortest path—are widely known algorithms
where 3 is defined above. Again, our definitionthat are simple to implement.
of )’ allows this maximization to be performed
efficiently, as follows:

Initialization: SetA\’ = 0,7° =0,u° =0,0"=0
Algorithm: Fort=1...T":

o y' = argmax,cy L(y, N1 4071 w1 i)
o If 3! satisfies the constrainB3-D6, returny?, else:
Vo e Vi, AL = X — 6t (yf — >

t
p:va(p)=v yp)
Yo € VLu ’Yf; = 7571 - 5t (yf} - Zp:vl (p)=v yItJ)
Vs € Sy, ul =ul™t —§(yl —

6t (yt —

1
- Zp:sepl(p) y;)
1 _

Vs € SN! Uf; = lei Zp:sEpQ(p) y;)

Figure 4: The full Lagrangian relaxation algortihii. >
0 is the step size at iteration

6 Tightening the Relaxation

1. For eachv € Vi, define o The algorithm that we have described minimizes
arg Max,,, ;)= 3(p), and a, Blak). the dual functionL (), v, u, v). By usual results for
(i.e., for eachv, compute the highest scoringlLagrangian relaxation (e.g., see (Korte and Vygen,
trigram path ending im.) 2008)), L is the dual function for a particular LP re-

laxation arising from the definition @¢” and the ad-

ditional constaintdD3-D6. In some cases the LP
relaxation has an integral solution, in which case
the algorithm will return an optimal solutiogt.”

In other cases, when the LP relaxation has a frac-

tional solution, the subgradient algorithm will still

converge to the minimum of, but the primal solu-

2. Find values for the,, y. andy, variables that
form a valid derivation, and that maximize

f/(y) = Zv(ﬂv +av)yv + Ze Beye + Zs Bsys

3. Sety, = 1iff y,,(,) = 1andp = oz:g(p).

The first step involves finding the highest scoring in Rt _
coming trigram path for each leaf This step can be 1ONSy" will move between a number of solutions.
performed efficiently using the Floyd-Warshall all- W& now describe a method that incrementally
pairs shortest path algorithm (Floyd, 1962) over th@dds hard constraints to the S&t until the method
graph(S,T); the details are given in the appendixJé{Uns an exact solution. For a given < Y, _
The second step involves simple dynamic progranfor any v with y, = 1, we can recover the previ-
ming over the hypergraptV, E) (it is simple to in- ©0US two leaves (Fhe trigram ending i) from ei-
tegrate thed, terms into this algorithm). In the third ther the path variables,, or the hypergraph vari-

step, the path variableg are filled in. abIeSye_. Sp(_acificallyj define_1 (v, y_) to be the leaf
precedingu in the trigram pathp with y, = 1 and
v3(p) = v, andv_o(v,y) to be the leaf two posi-
tions beforev in the trigram pattp with y, = 1 and
v3(p) = v. Similarly, definev’ (v, y) andv’ (v, y)

to be the preceding two leaves under thevari-
ables. If the method has not converged, these two
frigram definitions may not be consistent. For a con-

5.3 Properties

We now describe some important properties of th

algorithm:
Efficiency. The main steps of the algorithm are
1) construction of the graphS,T); 2) at each it-

eration, dynamic programming over the hypergrap

(V, E); 3) at each iteration, all-pairs shortest path al- 7proyided that the algorithm is run for enough iterations for

gorithms over the graphsS, T'). Each of these steps
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sistent solution, we require_(v,y) = v' {(v,9) Time %age | %age | %age| %age
andv_z(v,y) = v’ 4(v,y) for all v with y, = 1. (LR) | ©P) | (ILP) | (LP)

2% : 0.5s 375 102 | 88 | 21.0
Unfgrtunately, epr!C|tIy enforqlng all of these con- 1.0s 570 | 116 | 139 | 31.1
straints would require exhaustive dynamic program- 2.0s 722 | 151 | 21.1 | 45.9
ming over the hypergraph using the (Bar-Hillel et 4.0s 825 | 20.7 | 30.7 | 63.7
al., 1964) method, something we wish to avoid. 8.0s 88.9 1 252 | 41.8 | 78.3

16.0s 944 | 33.3 | 546 | 889
32.0s 97.8 | 42.8 | 68,5 | 95.2

| Mediantime| 0.79s| 77.5s| 12.1s| 2.4s |

Instead, we enforce a weaker set of constraints,
which require far less computation. Assume some
functionn : Vi, — {1,2,...q} that partitions the
set of leaves 'r_‘tq d'ﬁerenF partitions. Then we will Figure 5:Results showing percentage of examples that are de-
add the following constraints p’: coded in less thanseconds, fot = 0.5,1.0,2.0, ..., 32.0. LR

_ / = Lagrangian relaxation; DP = exhaustive dynamic program-
W(Ufl(v’ y)) - ﬂ-(v_l(v’ y)) ming; ILP = integer linear programming; LP = linear program-
m(v_o(v,y)) = 7w 5(v,y)) ming (LP does not recover an exact solution). The (I)LP ex-
for all v such thaty, = 1. Findingarg max,cyr 0. perlments_, were carried out using Gurobi, a high-performance
. " , : commercial-grade solver.
y under this new definition 0}’ can be performed

using the construction of (Bar-Hillel et al., 1964),in (Huang and Mi, 2010). We use an identical
with ¢ different lexical items (for brevity we omit model, and identical development and test data, to
the details). This is efficient if is small® that used by Huang and MiThe translation model
The remaining question concerns how to choosg trained on 1.5M sentence pairs of Chinese-English
a partitionw that is effective in tlghtenlng the relax- data; a trigram |anguage model is used. The de-
ation. To do this we implement the following stepsielopment data is the newswire portion of the 2006
1) run the subgradient algorithm unfilis close to  N|ST MT evaluation test set (616 sentences). The
convergence; 2) then run the subgradient algorithfigst set is the newswire portion of the 2008 NIST
for m further iterations, keeping track of all pairspmT evaluation test set (691 sentences).
of leaf nodes that violate the constraints (i.e., pairs we ran the full algorithm with the tightening
a = v_1(v,y)lb = v_(v,y) ora = v_2(v,y)lb = method described in section 6. We ran the method
v’ o(v,y) such thata # b); 3) use a graph color- for a limit of 200 iterations, hence some exam-
ing algorithm to find a small partition that places allples may not terminate with an exact solution. Our
pairs(a, b) into separate partitions; 4) continue runmethod gives exact solutions on 598/616 develop-
ning Lagrangian relaxation, with the new constraintghent set sentences (97.1%), and 675/691 test set
added. We expand at each iteration to take into ac- sentences (97.7%).
count new pairga, b) that violate the constraints. In cases where the method does not converge
In related work, Sontag et al. (2008) describgyithin 200 iterations, we can return the best primal
a method for inference in Markov random fieldsso|utionyt found by the algorithm during those it-
where additional constraints are chosen to tightegrations. We can also get an upper bound on the
an underlying relaxation. Other relevant work ingifferencef (y*) — f(y') usingmin, L(u;) as an up-
NLP includes (Tromble and Eisner, 2006; Riedeber bound Onf(y*) Of the examples that did not
and Clarke, 2006). Our use of partitionss related converge, the worst example had a bound that was
to previous work on coarse-to-fine inference for mag 49, of f(y*) (more specificallyf (y') was -24.74,
chine translation (Petrov et al., 2008). and the upper bound of(y*) — f(y*) was 0.34).
7 Experiments Figure 5 gives information on decoding time for

We report experiments on translation from Chines8Ur Mmethod and two other exact decoding methods:

to English, using the tree-to-string model describelfite9er linéar programming (using constraibie-
- - D6), and exhaustive dynamic programming using

8In fact in our experiments we use the original hypergraphhe construction of (Bar-Hillel et al., 1964). Our
to compute admissible outside scores for an exact A* search

algorithm for this problem. We have found the resulting search °We thank Liang Huang and Haitao Mi for providing us with
algorithm to be very efficient. their model and data.

79



method is clearly the most efficient, and is comparae-string models. There are a number of possible
ble in speed to state-of-the-art decoding algorithmsvays to extend this work. Our experiments have

We also compare our method to cube pruninfpcused on tree-to-string models, but the method
(Chiang, 2007; Huang and Chiang, 2007). We reinmshould also apply to Hiero-style syntactic transla-
plemented cube pruning in C++, to give a fair comtion models (Chiang, 2007). Additionally, our ex-
parison to our method. Cube pruning has a paramperiments used a trigram language model, however
ter, b, dictating the maximum number of items storedhe constraints in figure 3 generalize to higher-order
at each chart entry. With = 50, our decoder language models. Finally, our algorithm recovers
finds higher scoring solutions on 50.5% of all examthe 1-best translation for a given input sentence; it
ples (349 examples), the cube-pruning method getsshould be possible to extend the method to find k-
strictly higher score on only 1 example (this was onéest solutions.
of the examples that did not converge within 200 it-p Computing the Optimal Trigram Paths
ergtlons). Withh = 500, our decoder finds better so- For eachy € V., definea, = maxy.,(,)—. 4(p), where
Iutlops on 18.5% of the examples (128 cases), cub%(p) — h(v1(p), va(p), v3(p)) = A1 (v1 (p)) — Ao (va(p)) —
pruning finds a better solution on 3 examples. Thg:sepl(p) u(5) =3 s pu(p) ¥(5)- Herehis a function that
median decoding time for our method is 0.79 seczomputes language model scores, and the other terms in-
onds; the median times for cube pruning wite: 50  volve Lagrange mulipliers. Our task is to compufgfor
andb = 500 are 0.06 and 1.2 seconds respectively.all v € Vr. .

Our results give a very good estimate of the per- 't iS straightforward to show that the, T' graph is

. yclic This will allow us to apply shortest path algo-
centage of search errors for cube pruning. A natura .
i fithms to the graph, even though the weights) and

question is how largé must be before exact solu-v(s) can be positive or negative.
tions are returned on almost all examples. Even at For any pairv;, v, € Vi, defineP(vy,v2) to be the
b = 1000, we find that our method gives a betterset of paths betweefy; 1) and (v, |) in the graphS, T
solution on 95 test examples (13.7%). Each pathp gets a scorescore,(p) = — > ¢, u(s).

Figure 5 also gives a speed comparison of odXext, definep;(vi, v2) = argmaxpep (v, v,) sc0rew(p),
method to a linear programming (LP) solver thaf"dscores(vi,va) = score,(p). We assume similar

solves the LP relaxation defined by constrainés- definitions forp;, (vy, vz) andscore;, (v1, v2). Thep;, and
. . . score’, values can be calculated using an all-pairs short-
D6. We still see speed-ups, in spite of the fac

) - ) Lst path algorithm, with weights(s) on nodes in the
that our method is solving a harder problem (it prograph. Similarly,p andscore’ can be computed using
vides integral solutions). The Lagrangian relaxatioall-pairs shortest path with weighigs) on the nodes.
method, when run without the tightening method Having calculated these values, defifi¢v) for any

of section 6, is solving a dual of the problem beleaf v to be the set of trigramsx, y,v) such that: 1)
ing solved by the LP solver. Hence we can meal:¥ € Vz:2)thereis a path fromu 1) to (y |) and from
sure how often the tightening procedure is absg¥ ) 1 (v 1) inthe graphs, 7. Then we can calculate
lutely necessary, by seeing how often the LP solver o, = o (h(z,y,v) = M (z) — Xa(y)
provides a fractional solution. We find that this is (2 y) + (1, 0))

the case on 54.0% of the test examples: the tighten- . v v

. . . . in O(|7 (v)|) time, by brute force search through the set
ing procedure is clearly important. Inspection of theT

tightening procedure shows that the number of par- ().
titions required (the paramete) is generally quite Acknowledgments Alexander Rush and Michael
small: 59% of examples that require tightening re€ollins were supported under the GALE program of the
quireq < 6; 97.2% require; < 10. Defense Advanced Research Projects Agency, Contract
No. HR0011-06-C-0022. Michael Collins was also sup-
ported by NSF grant 11S-0915176. We also thank the
We have described a Lagrangian relaxation alg@monymous reviewers for very helpful comments; we
rithm for exact decoding of syntactic translatiomope to fully address these in an extended version of the
models, and shown that it is significantly more effipaper.

cient than other exact algorithms for decoding tree-

8 Conclusion
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Abstract

We propose methods for estimating the prob-
ability that an entity from an entity database
is associated with a web search query. Asso-
ciation is modeled using a query entity click
graph, blending general query click logs with
vertical query click logs. Smoothing tech-
niques are proposed to address the inherent
data sparsity in such graphs, including inter-
polation using a query synonymy model. A
large-scale empirical analysis of the smooth-
ing techniques, over a 2-year click graph
collected from a commercial search engine,
shows significant reductions in modeling er-
ror. The association models are then applied
to the task of recommending products to web
queries, by annotating queries with products
from a large catalog and then mining query-
product associations through web search ses-
sion analysis. Experimental analysis shows
that our smoothing techniques improve cover-
age while keeping precision stable, and over-
all, that our top-performing model affects 9%
of general web queries with 94% precision.

1 Introduction

Commercial search engines use query associations
in a variety of ways, including the recommendation
of related queries in Bing, ‘something different’ in
Google, and ‘also try’ and related concepts in Ya-
hoo. Mining techniques to extract such query asso-
ciations generally fall into four categories: (a) clus-
tering queries by their co-clicked url patterns (Wen
etal., 2001; Baeza-Yates et al., 2004); (b) leveraging
co-occurrences of sequential queries in web search
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query sessions (Zhang and Nasraoui, 2006; Boldi et
al., 2009); (c) pattern-based extraction over lexico-
syntactic structures of individual queries (Pasca and
Durme, 2008; Jain and Pantel, 2009); and (d) distri-
butional similarity techniques over news or web cor-
pora (Agirre et al., 2009; Pantel et al., 2009). These
techniques operate at the surface level, associating
one surface context (e.g., queries) to another.

In this paper, we focus instead on associating sur-
face contexts with entities that refer to a particu-
lar entry in a knowledge base such as Freebase,
IMDB, Amazon’s product catalog, or The Library
of Congress. Whereas the former models might as-
sociate the string “Ronaldinho” with the strings “AC
Milan” or “Lionel Messi”, our goal is to associate
“Ronaldinho” with, for example, the Wikipedia en-
tity page “wiki/AC_Milan” or the Freebase entity
“en/lionel_mess”. Or for the query string “ice fish-
ing”, we aim to recommend products in a commer-
cial catalog, such as jigs or lures.

The benefits and potential applications are large.
By knowing the entity identifiers associated with a
query (instead of strings), one can greatly improve
both the presentation of search results as well as
the click-through experience. For example, consider
when the associated entity is a product. Not only
can we present the product name to the web user,
but we can also display the image, price, and re-
views associated with the entity identifier. Once the
entity is clicked, instead of issuing a simple web
search query, we can now directly show a product
page for the exact product; or we can even perform
actions directly on the entity, such as buying the en-
tity on Amazon.com, retrieving the product’s oper-

Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pages 83-92,
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ating manual, or even polling your social network
for friends that own the product. This is a big step
towards a richer semantic search experience.

In this paper, we define the association between a
query string ¢ and an entity id e as the probability
that e is relevant given the query ¢, P(e|q). Fol-
lowing Baeza-Yates et al. (2004), we model rele-
vance as the likelihood that a user would click on
e given ¢, events which can be observed in large
query-click graphs. Due to the extreme sparsity
of query click graphs (Baeza-Yates, 2004), we pro-
pose several smoothing models that extend the click
graph with query synonyms and then use the syn-
onym click probabilities as a background model.
We demonstrate the effectiveness of our smoothing
models, via a large-scale empirical study over real-
world data, which significantly reduce model errors.
We further apply our models to the task of query-
product recommendation. Queries in session logs
are annotated using our association probabilities and
recommendations are obtained by modeling session-
level query-product co-occurrences in the annotated
sessions. Finally, we demonstrate that our models
affect 9% of general web queries with 94% recom-
mendation precision.

2 Related Work

We introduce a novel application of significant com-
mercial value: entity recommendations for general
Web queries. This is different from the vast body
of work on query suggestions (Baeza-Yates et al.,
2004; Fuxman et al., 2008; Mei et al., 2008b; Zhang
and Nasraoui, 2006; Craswell and Szummer, 2007;
Jagabathula et al., 2011), because our suggestions
are actual entities (as opposed to queries or docu-
ments). There is also a rich literature on recom-
mendation systems (Sarwar et al., 2001), including
successful commercial systems such as the Ama-
zon product recommendation system (Linden et al.,
2003) and the Netflix movie recommendation sys-
tem (Bell et al., 2007). However, these are entity-
to-entity recommendations systems. For example,
Netflix recommends movies based on previously
seen movies (i.e., entities). Furthermore, these sys-
tems have access to previous transactions (i.e., ac-
tual movie rentals or product purchases), whereas
our recommendation system leverages a different re-
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source, namely query sessions.

In principle, one could consider vertical search
engines (Nie et al., 2007) as a mechanism for as-
sociating queries to entities. For example, if we type
the query “canon eos digital camera” on a commerce
search engine such as Bing Shopping or Google
Products, we get a listing of digital camera entities
that satisfy our query. However, vertical search en-
gines are essentially rankers that given a query, re-
turn a sorted list of (pointers to) entities that are re-
lated to the query. That is, they do not expose actual
association scores, which is a key contribution of our
work, nor do they operate on general search queries.

Our smoothing methods for estimating associ-
ation probabilities are related to techniques de-
veloped by the NLP and speech communities to
smooth n-gram probabilities in language model-
ing. The simplest are discounting methods, such
as additive smoothing (Lidstone, 1920) and Good-
Turing (Good, 1953). Other methods leverage
lower-order background models for low-frequency
events, such as Katz’ backoff smoothing (Katz,
1987), Witten-Bell discounting (Witten and Bell,
1991), Jelinek-Mercer interpolation (Jelinek and
Mercer, 1980), and Kneser-Ney (Kneser and Ney,
1995).

In the information retrieval community, Ponte and
Croft (1998) are credited for accelerating the use
of language models. Initial proposals were based
on learning global smoothing models, where the
smoothing of a word would be independent of the
document that the word belongs to (Zhai and Laf-
ferty, 2001). More recently, a number of local
smoothing models have been proposed (Liu and
Croft, 2004; Kurland and Lee, 2004; Tao et al.,
2006). Unlike global models, local models leverage
relationships between documents in a corpus. In par-
ticular, they rely on a graph structure that represents
document similarity. Intuitively, the smoothing of a
word in a document is influenced by the smoothing
of the word in similar documents. For a complete
survey of these methods and a general optimization
framework that encompasses all previous proposals,
please see the work of Mei, Zhang et al. (2008a).
All the work on local smoothing models has been
applied to the prediction of priors for words in docu-
ments. To the best of our knowledge, we are the first
to establish that query-click graphs can be used to



create accurate models of query-entity associations.

3 Association Model

Task Definition: Consider a collection of entities
E. Given a search query g, our task is to compute
P(e|q), the probability that an entity e is relevant to
q,foralle € FE.

We limit our model to sets of entities that can
be accessed through urls on the web, such as Ama-
zon.com products, IMDB movies, Wikipedia enti-
ties, and Yelp points of interest.

Following Baeza-Yates et al. (2004), we model
relevance as the click probability of an entity given
a query, which we can observe from click logs of
vertical search engines, i.e., domain-specific search
engines such as the product search engine at Ama-
zon, the local search engine at Yelp, or the travel
search engine at Bing Travel. Clicked results in a
vertical search engine are edges between queries and
entities e in the vertical’s knowledge base. General
search query click logs, which capture direct user
intent signals, have shown significant improvements
when used for web search ranking (Agichtein et al.,
2006). Unlike for general search engines, vertical
search engines have typically much less traffic re-
sulting in extremely sparse click logs.

In this section, we define a graph structure for
recording click information and we propose several
models for estimating P(e|q) using the graph.

3.1 Query Entity Click Graph

We define a query entity click graph, QEC(QUU U
E,C, UC,), as a tripartite graph consisting of a set
of query nodes @), url nodes U, entity nodes £, and
weighted edges C, exclusively between nodes of ()
and nodes of U, as well as weighted edges C. ex-
clusively between nodes of ) and nodes of . Each
edge in C, and C, represents the number of clicks
observed between query-url pairs and query-entity
pairs, respectively. Let wy, (g, u) be the click weight
of the edges in Cy, and we(q, €) be the click weight
of the edges in C.

If C¢ is very large, then we can model the associa-
tion probability, P(e|q), as the maximum likelihood
estimation (MLE) of observing clicks on e given the

query ¢:
Prie(elq) = g9 (3.1)
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Figure 1 illustrates an example query entity
graph linking general web queries to entities in a
large commercial product catalog. Figure 1a illus-
trates eight queries in ) with their observed clicks
(solid lines) with products in E'. Some probabil-
ity estimates, assigned by Equation 3.1, include:
Pmle(panﬁshjigs,el) =0, pmle(icejigs,el) =1,

- . _ ce(ice auger,eq)
and Pmle(lce auger, 64) " ce(ice auger,es)+ce (ice auger,eq)

Even for the largest search engines, query click
logs are extremely sparse, and smoothing techniques
are necessary (Craswell and Szummer, 2007; Gao et
al., 2009). By considering only C,, those clicked
urls that map to our entity collection F, the sparsity
situation is even more dire. The sparsity of the graph
comes in two forms: a) there are many queries for
which an entity is relevant that will never be seen
in the click logs (e.g., “panfish jig” in Figure 1a);
and b) the query-click distribution is Zipfian and
most observed edges will have very low click counts
yielding unreliable statistics. In the following sub-
sections, we present a method to expand QQ EC' with
unseen queries that are associated with entities in F.
Then we propose smoothing methods for leveraging
a background model over the expanded click graph.

Throughout our models, we make the simplifying
assumption that the knowledge base E is complete.

3.2 Graph Expansion

Following Gao et al. (2009), we address the spar-
sity of edges in C, by inferring new edges through
traversing the query-url click subgraph, UC(Q U
U, C,), which contains many more edges than C..
If two queries ¢; and ¢; are synonyms or near syn-
onyms?, then we expect their click patterns to be
similar.

We define the synonymy similarity, s(g;,q;) as
the cosine of the angle between q; and qj, the click
pattern vectors of g; and g;, respectively:

cosine(q;, q;) = x/ﬁg;%yﬁ
where q is an n, dimensional vector consisting of
the pointwise mutual information between g and
each url w in U, pmi(q, u):

'Clicks are collected from a commerce vertical search en-
gine described in Section 5.1.

%A query g; is a near synonym of a query g; if most relevant
results of g; are also relevant to g;. Section 5.2.1 describes our
adopted metric for near synonymy.
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Figure 1: Example QEC graph: (a) Sample queries in (), clicks connecting queries with urls in U, and clicks to
entities in F; (b) Zoom on edges in C,, illustrating clicks observed on urls with weight w, (g, ) as well as synonymy
edges between queries with similarity score s(g;, ¢;) (Section 3.2); (c) Zoom on edges in C.. where solid lines indicate
observed clicks with weight w, (g, ¢) and dotted lines indicate inferred clicks with smoothed weight w.(q, €) (Sec-
tion 3.3); and (d) A temporal sequence of queries in a search session illustrating entity associations propagating from

the QEC graph to the queries in the session (Section 4).

. B Wu (U)X e ul cu Wuld' u')
Pml(q, U) = 10g (Zu’eru (q(fuC;) Z;EQ wu(q’,u))

(3.2)
PMI is known to be biased towards infrequent
events. We apply the discounting factor, d(q,u),
proposed in (Pantel and Lin, 2002):

walgw) M (Tyegwuld W)X, e wulau)

§(q,u)= )
(q ) wu(g,u)+1 min(Zq/eQwu(q’,u),ZuleUwu(qyu’))ﬁ—l

Enrichment: We enrich the original QEC' graph
by creating a new edge {¢,e}, where ¢ € Q and e €
E, if there exists a query g where s(q,q’) > p and
we(q,e) > 0. p is set experimentally, as described
in Section 5.2.

Figure 1b illustrates similarity edges created be-
tween query “ice auger” and both “power auger”
and “d rock”. Since “ice auger” was connected to
entities ez and e4 in the original QEC, our expan-
sion model creates new edges in C between {power
auger, es }, {power auger, e, }, and {d rock, e3}.

For each newly added edge {q.e}, Poe = 0 ac-
cording to our model from Equation 3.1 since we
have never observed any clicks between ¢ and e. In-
stead, we define a new model that uses Pmle when
clicks are observed and otherwise assigns uniform
probability mass, as:

86

~ Pmle(e‘Q)
Prypr(elq) :{ 1
YR ¢(g,e)

if 3¢’ |we (g,e”)>0
! (3.3)

otherwise

where ¢(q, e) is an indicator variable which is 1 if
there is an edge between {q, ¢} in C..

This model does not leverage the local synonymy
graph in order to transfer edge weight to unseen
edges. In the next section, we investigate smooth-
ing techniques for achieving this.

3.3 Smoothing

Smoothing techniques can be useful to alleviate data
sparsity problems common in statistical models. In
practice, methods that leverage a background model
(e.g., alower-order n-gram model) have shown most
promise (Katz, 1987; Witten and Bell, 1991; Je-
linek and Mercer, 1980; Kneser and Ney, 1995). In
this section, we present two smoothing methods, de-
rived from Jelinek-Mercer interpolation (Jelinek and
Mercer, 1980), for estimating the target association
probability P(e|q).

Figure 1c highlights two edges, illustrated with
dashed lines, inserted into C, during the graph ex-
pansion phase of Section 3.2. .(q,e) represents
the weight of our background model, which can be
viewed as smoothed click counts, and are obtained



Label Model Reference
UNIF  Pyunif(elg) Eq.338
MLE Poie(elq) Eq. 3.1
HYBR Phybr(e\q) Eq.3.3
INTU mtu( lq) Eq.3.6
INTP  Piip(elg)  Eq.37

Table 1: Models for estimating the association probabil-
ity P(elq).

by propagating clicks to unseen edges using the syn-
onymy model as follows:

e, €) = Y e "N X Prie(eld)
where Ny, > ¢eqs(a,4'). By normalizing
the smoothed weights, we obtain our background
model, Pygim:

pbsim( |Q)

Below we propose two models for interpolating our
foreground model from Equation 3.1 with the back-
ground model from Equation 3.5.

34

’LUe (q7 )

Socn 0@ (3-5)

Basic Interpolation: This smoothing model,
mtu( |q), linearly combines our foreground and
background models using a model parameter o:

Pintu(e‘Q):aﬁmle(e‘q)'f'(l_a)ﬁ)bsim(e"l) (36)

Bucket Interpolation: Intuitively, edges {q,e} €
C. with higher observed clicks, w,(q, €), should be
trusted more than those with low or no clicks. A
limitation of pmm(e|q) is that it weighs the fore-
ground and background models in the same way ir-
respective of the observed foreground clicks. Our
final model, P (e|q) parameterizes the interpola-
tion by the number of observed clicks:

a[we(Q7 )] mle( |Q)
+ (1 — afwe(q, e)])Pbsim(e‘q)

In practice, we bucket the observed click parame-
ter, we(q, €), into eleven buckets: {1-click, 2-clicks,
., 10-clicks, more than 10 clicks}.
Section 5.2 outlines our procedure for learn-
ing the model parameters for both Pontu (elg) and

Prntp(€lq).

Pintp(elg)=

3.7

3.4 Summary

Table 1 summarizes the association models pre-
sented in this section as well as a strawman that as-
signs uniform probability to all edges in QEC:
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In the following section, we apply these models
to the task of extracting product recommendations
for general web search queries. A large-scale exper-
imental study is presented in Section 5 supporting
the effectiveness of our models.

4 Entity Recommendation

Query recommendations are pervasive in commer-
cial search engines. Many systems extract recom-
mendations by mining temporal query chains from
search sessions and clickthrough patterns (Zhang
and Nasraoui, 2006). We adopt a similar strategy,
except instead of mining query-query associations,
we propose to mine query-entity associations, where
entities come from an entity database as described in
Section 1. Our technical challenge lies in annotating
sessions with entities that are relevant to the session.

4.1 Product Entity Domain

Although our model generalizes to any entity do-
main, we focus now on a product domain. Specifi-
cally, our universe of entities, F, consists of the enti-
ties in a large commercial product catalog, for which
we observe query-click-product clicks, Ce, from the
vertical search logs. Our QEC graph is completed
by extracting query-click-urls from a search engine’s
general search logs, C,. These datasets are de-
scribed in Section 5.1.

4.2 Recommendation Algorithm

We hypothesize that if an entity is relevant to a
query, then it is relevant to all other queries co-
occurring in the same session. Key to our method
are the models from Section 3.

Step 1 - Query Annotation: For each query gina
session s, we annotate it with a set E,, consisting of
every pair {e, P(e|q)}, where e € E such that there
exists an edge {¢, e} € C, with probability P(e|q).
Note that F, will be empty for many queries.

Step 2 — Session Analysis: We build a query-
entity frequency co-occurrence matrix, A, consist-
ing of n|g| rows and n | columns, where each row
corresponds to a query and each column to an entity.



The value of the cell A, is the sum over each ses-
sion s, of the maximum edge weight between any
query ¢’ € s and e*:

Aqe = ZSGS w(sa 6)

where S consists of all observed search sessions and:

P(s,e) = argmax({e,ﬁ(dq’)} € Ey),Vq €s
P(elg’)
Step 3 — Ranking: We compute ranking scores
between each query ¢ and entity e using pointwise
mutual information over the frequencies in A, simi-
larly to Eq. 3.2.

The final recommendations for a query q are ob-
tained by returning the top-k entities e according to
Step 3. Filters may be applied on: f the frequency
Age; and p the pointwise mutual information rank-
ing score between ¢ and e.

5 Experimental Results

5.1 Datasets

We instantiate our models from Sections 3 and 4 us-
ing search query logs and a large catalog of prod-
ucts from a commercial search engine. We form
our QEC graphs by first collecting in C, aggregate
query-click-entity counts observed over two years
in a commerce vertical search engine. Similarly,
C, is formed by collecting aggregate query-click-url
counts observed over six months in a web search en-
gine, where each query must have frequency at least
10. Three final Q EC' graphs are sampled by taking
various snapshots of the above graph as follows: a)
TRAIN consists of 50% of the graph; b) TEST con-
sists of 25% of the graph; c) DEV consists of 25%
of the graph.

5.2 Association Models
5.2.1

We tune the « parameters for pintu and Pimp against
the DEV QEC graph. There are twelve parameters
to be tuned: « for Py, and a(1), (2), ..., a(10),
a(> 10) for Py, where a(z) is the observed
click bucket as described in Section 3.3. For each,
we choose the parameter value that minimizes the
mean-squared error (MSE) of the DEV set, where

Model Parameters

*Note that this co-occurrence occurs because ¢’ was anno-
tated with entity e in the same session as g occurred.
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Figure 2: Alpha tuning on held out data.

Model ‘ MSE Var Er/MLE ‘ ‘ MSEvw Var Er/MLE
Pyunif 0.0328T  0.0112 25.7% 0.0663T 0.0211 -71.8%
Pre 0.0261 0.0111 - || 0.0386 0.0141 -
Ppybr | 0.0232F 00071 11.1% || 0.0385 0.0132 0.03%
Piptw | 002267 0.0075 13.4% 0.0369" 0.0133 4.4%
Bjpip | 002137 0.0068 18.4% 0.0375" 0.0131 2.8%

Table 2: Model analysis: M SFE and M SEy with vari-
ance and error reduction relative to P,,;.. T indicates sta-
tistical significance over P,,;. with 95% confidence.

model probabilities are computed using the TRAIN
QEC graph. Figure 2 illustrates the MSE ranging
over [0, 0.05, 0.1, ..., 1].

We trained the query synonym model of Sec-
tion 3.2 on the DEV set and hand-annotated 100 ran-
dom synonymy pairs according to whether or not the
pairs were synonyms 2. Setting p = 0.4 results in a
precision > 0.9.

5.2.2  Analysis

We evaluate the quality of our models in Table 1 by
evaluating their mean-squared error (MSE) against
the target P(e|q) computed on the TEST set:
MSE(P)=3, ccr (PT(ela)=P(elq))?
MSBw (P)=5, oyecr wE (@.6)- (P (clo)~Plela))?

where CT" are the edges in the TEST QEC graph
with weight w! (g, e), PT(e|q) is the target proba-
bility computed over the TEST QEC' graph, and P
is one of our models trained on the TRAIN QEC
graph. MSFE measures against each edge type,
which makes it sensitive to the long tail of the
click graph. Conversely, M S Ey, measures against
each edge instance, which makes it a good mea-
sure against the head of the click graph. We expect
our smoothing models to have much more impact
on MSFE (i.e., the tail) than on M S Eyy since head
queries do not suffer from data sparsity.

Table 2 lists the M SE and M SEy results for
each model. We consider Pum ¢ as a strawman and
P as a strong baseline (i.e., without any graph
expansion nor any smoothing against a background
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Figure 3: MSE of each model against the number of
clicks in the TEST corpus. Buckets scaled by query in-
stance coverage of all queries with 10 or fewer clicks.

model). Py ¢ performs generally very poorly, how-
ever Pmle is much better, with an expected estima-
tion error of 0.16 accounting for an MSE of 0.0261.
As expected, our smoothing models have little im-
provement on the head-sensitive metric (M .SFEy)
relative to Ppye. In particular, Phw performs nearly
identically to Pmle on the head. On the tail, all three
smoothing models significantly outperform Pre
with ﬁ’mtp reducing the error by 18.4%. Table 3 lists
query-product associations for five randomly sam-
pled products along with their model scores from
Pinie with f)intp-

Figure 3 provides an intrinsic view into M SE as
a function of the number of observed clicks in the
TEST set. As expected, for larger observed click
counts (>4), all models perform roughly the same,
indicating that smoothing is not necessary. However,
for low click counts, which in our dataset accounts
for over 20% of the overall click instances, we see
a large reduction in MSE with Pmtp outperforrnlng
Pmtu, which in turn outperforms Phybr Pum 1 per-
forms very poorly. The reason it does worse as the
observed click count rises is that head queries tend to
result in more distinct urls with high-variance clicks,
which in turn makes a uniform model susceptible to
more error.

Figure 3 illustrates that the benefit of the smooth-
ing models is in the tail of the click graph, which
supports the larger error reductions seen in M SE in
Table 2. For associations only observed once, ]Simp
reduces the error by 29% relative to sze-

We also performed an editorial evaluation of the
query-entity associations obtained with bucket inter-
polation. We created two samples from the TEST
dataset: one randomly sampled by taking click
weights into account, and the other sampled uni-
formly at random. Each set contains results for
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Query PrntePintp || Query Prate Pintp
Garmin GTM 20 GPS Canon PowerShot SX110 IS

garmin gtm 20 044 045 canon sx110 057 0.57
garmin traffic receiver 0.30  0.27 powershot sx110 048 048
garmin nuvi 885t 0.02  0.02 powershot sx110 is 0.38  0.36
gtm 20 0 033 powershot sx130 is 0 033
garmin gtm20 0 033 canon power shot sx110 0 020
nuvi 885t 0 001 canon dig camera review 0 0.10
Samsung PN50A450 50” TV Devil May Cry: 5th Anniversary Col.
samsung 50 plasma hdtv 0.75 0.83 devil may cry 0.76  0.78
samsung 50 0.33  0.32 devilmaycry 0 1.00
50” hdtv 0.17  0.12 High Island Hammock/Stand Combo
samsung plasma tv review 0 042 high island hammocks 1.00  1.00
50 samsung plasma hdtv 0 035 hammocks and stands 0 0.10

Table 3: Example query-product association scores for a
random sample of five products. Bold queries resulted
from the expansion algorithm in Section 3.2.

100 queries. The former consists of 203 query-
product associations, and the latter of 159 associa-
tions. The evaluation was done using Amazon Me-
chanical Turk*. We created a Mechanical Turk HIT?
where we show to the Mechanical Turk workers the
query and the actual Web page in a Product search
engine. For each query-entity association, we gath-
ered seven labels and considered an association to be
correct if five Mechanical Turk workers gave a pos-
itive label. An association was considered to be in-
correct if at least five workers gave a negative label.
Borderline cases where no label got five votes were
discarded (14% of items were borderline for the uni-
form sample; 11% for the weighted sample). To en-
sure the quality of the results, we introduced 30%
of incorrect associations as honeypots. We blocked
workers who responded incorrectly on the honey-
pots so that the precision on honeypots is 1. The
result of the evaluation is that the precision of the as-
sociations is 0.88 on the weighted sample and 0.90
on the uniform sample.

5.3 Related Product Recommendation

We now present an experimental evaluation of our
product recommendation system using the baseline
model Pmle and our best-performing model Pmtp
The goals of this evaluation are to (1) determine
the quality of our product recommendations; and (2)
assess the impact of our association models on the
product recommendations.

5.3.1 Experimental Setup
We instantiate our recommendation algorithm from
Section 4.2 using session co-occurrence frequencies

‘nttps://www.mturk.com
HIT stands for Human Intelligence Task



Query Set Sample Query Bag Sample

Query Product Recommendation

f 10 25 50 100 10 25 50 100
p 10 10 10 10 10 10 10 10

P, 1 precision 0.89 093 096 0.96 094 094 093 092
Isintp precision 086 092 096 0.96 094 094 093 094
0.007 0.004 0.002 0.001 0.085 0.067 0.052 0.039
Pjntp coverage 0.008 0.005 0.003 0.002 0.094 0.076 0.059 0.045

Rintp mie 116 1.14 113 1.4 11 113 115 119

P, 1 coverage

Table 4: Experimental results for product recommenda-
tions. All configurations are for & = 10.

from a one-month snapshot of user query sessions at
a Web search engine, where session boundaries oc-
cur when 60 seconds elapse in between user queries.
We experiment with the recommendation parame-
ters defined at the end of Section 4.2 as follows: &k =
10, f ranging from 10 to 100, and p ranging from 3
to 10.

For each configuration, we report coverage as the
total number of queries in the output (i.e., the queries
for which there is some recommendation) divided by
the total number of queries in the log. For our per-
formance metrics, we sampled two sets of queries:
(a) Query Set Sample: uniform random sam-
ple of 100 queries from the unique queries in the
one-month log; and (b) Query Bag Sample:
weighted random sample, by query frequency, of
100 queries from the query instances in the one-
month log. For each sample query, we pooled to-
gether and randomly shuffled all recommendations
by our algorithm using both Ppe and Pmtp on each
parameter configuration. We then manually anno-
tated each {query, product} pair as relevant, mildly
relevant or non-relevant. In total, 1127 pairs were
annotated. Interannotator agreement between two
judges on this task yielded a Cohen’s Kappa (Cohen,
1960) of 0.56. We therefore collapsed the mildly
relevant and non-relevant classes yielding two final
classes: relevant and non-relevant. Cohen’s Kappa
on this binary classification is 0.71.

Let C)s be the number of relevant (i.e., correct)
suggestions recommended by a configuration M and
let | M| be the number of recommendations returned
by M. Then we define the (micro-) precision of M
as: Py = % We define relative recall (Pantel et

al., 2004) between two configurations M7 and My
R _ P]\/[l X ‘Mﬂ
as My Mz = Py XML

5.3.2 Results

Table 4 summarizes our results for some configura-
tions (others omitted for lack of space). Most re-
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wedding gowns

wedding gowns

wedding gowns

wedding gowns

wedding gowns

low blood pressure

low blood pressure

low blood pressure

low blood pressure

“hello cupcake’ cookbook
*hello cupcake’ cookbook
*hello cupcake’ cookbook
*hello cupcake’ cookbook
1 800 flowers

1 800 flowers

27 Dresses (Movie Soundtrack)

Bridal Gowns: The Basics of Designing, [...] (Book)
Wedding Dress Hankie

The Perfect Wedding Dress (Magazine)

Imagine Wedding Designer (Video Game)
Omron Blood Pressure Monitor

Healthcare Automatic Blood Pressure Monitor
Ridgecrest Blood Pressure Formula - 60 Capsules
Omron Portable Wrist Blood Pressure Monitor
Giant Cupcake Cast Pan

Ultimate 3-In-1 Storage Caddy

13 Cup Cupcakes and More Dessert Stand
Cupcake Stand Set (Toys)

Todd Oldham Party Perfect Bouquet

Hugs and Kisses Flower Bouquet with Vase

Table 5: Sample product recommendations.

markable is the {f = 10, p = 10} configuration
where the ]Smtp model affected 9.4% of all query
instances posed by the millions of users of a major
search engine, with a precision of 94%. Although
this model covers 0.8% of the unique queries, the
fact that it covers many head queries such as wal-
mart and iphone accounts for the large query in-
stance coverage. Also since there may be many gen-
eral web queries for which there is no appropriate
product in the database, a coverage of 100% is not
attainable (nor desirable); in fact the upper bound
for the coverage is likely to be much lower.

Turning to the impact of the association models
on product recommendations, we note that precision
is stable in our Pmtp model relative to our baseline
Pmle model. However, a large lift in relative recall
is observed, up to a 19% increase for the { f = 100,
p = 10} configuration. These results are consistent
with those of Section 5.2, which compared the asso-
ciation models independently of the application and
showed that f’mtp outperforms Pmle.

Table 5 shows sample product recommendations
discovered by our Entp model. Manual inspection
revealed two main sources of errors. First, ambiguity
is introduced both by the click model and the graph
expansion algorithm of Section 3.2. In many cases,
the ambiguity is resolved by user click patterns (i.e.,
users disambiguate queries through their browsing
behavior), but one such error was seen for the query
“shark attack videos” where several Shark-branded
vacuum cleaners are recommended. This is because
of the ambiguous query “shark” that is found in the
click logs and in query sessions co-occurring with
the query “shark attack videos”. The second source
of errors is caused by systematic user errors com-
monly found in session logs such as a user acciden-
tally submitting a query while typing. An example
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session is: {“speedo”, “speedometer’} where the in-
tended session was just the second query and the un-
intended first query is associated with products such
as Speedo swimsuits. This ultimately causes our sys-
tem to recommend various swimsuits for the query
“speedometer”.

6 Conclusion

Learning associations between web queries and
entities has many possible applications, including
query-entity recommendation, personalization by
associating entity vectors to users, and direct adver-
tising. Although many techniques have been devel-
oped for associating queries to queries or queries
to documents, to the best of our knowledge this is
the first that aims to associate queries to entities
by leveraging click graphs from both general search
logs and vertical search logs.

We developed several models for estimating the
probability that an entity is relevant given a user
query. The sparsity of query entity graphs is ad-
dressed by first expanding the graph with query
synonyms, and then smoothing query-entity click
counts over these unseen queries. Our best per-
forming model, which interpolates between a fore-
ground click model and a smoothed background
model, significantly reduces testing error when com-
pared against a strong baseline, by 18%. On associ-
ations observed only once in our test collection, the
modeling error is reduced by 29% over the baseline.

We applied our best performing model to the
task of query-entity recommendation, by analyz-
ing session co-occurrences between queries and an-
notated entities. Experimental analysis shows that
our smoothing techniques improve coverage while
keeping precision stable, and overall, that our top-
performing model affects 9% of general web queries
with 94% precision.
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Abstract

Searching documents that are similar to a
query document is an important component
in modern information retrieval. Some ex-
isting hashing methods can be used for effi-
cient document similarity search. However,
unsupervised hashing methods cannot incor-
porate prior knowledge for better hashing.
Although some supervised hashing methods
can derive effective hash functions from prior
knowledge, they are either computationally
expensive or poorly discriminative. This pa-
per proposes a novel (semi-)supervised hash-
ing method named Semi-Supervised SimHash
(S®H) for high-dimensional data similarity
search. The basic idea of S3H is to learn the
optimal feature weights from prior knowledge
to relocate the data such that similar data have
similar hash codes. We evaluate our method
with several state-of-the-art methods on two
large datasets. All the results show that our
method gets the best performance.

1 Introduction

Document Similarity Search (DSS) is to find sim-
ilar documents to a query doc in a text corpus or
on the web. It is an important component in mod-
ern information retrieval since DSS can improve the
traditional search engines and user experience (Wan
et al., 2008; Dean et al., 1999). Traditional search
engines accept several terms submitted by a user
as a query and return a set of docs that are rele-
vant to the query. However, for those users who
are not search experts, it is always difficult to ac-
curately specify some query terms to express their
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search purposes. Unlike short-query based search,
DSS queries by a full (long) document, which allows
users to directly submit a page or a document to the
search engines as the description of their informa-
tion needs. Meanwhile, the explosion of information
has brought great challenges to traditional methods.
For example, Inverted List (IL) which is a primary
key-term access method would return a very large
set of docs for a query document, which leads to the
time-consuming post-processing. Therefore, a new
effective algorithm is required.

Hashing methods can perform highly efficient but
approximate similarity search, and have gained great
success in many applications such as Content-Based
Image Retrieval (CBIR) (Ke et al., 2004; Kulis et
al., 2009b), near-duplicate data detection (Ke et
al., 2004; Manku et al., 2007; Costa et al., 2010),
etc. Hashing methods project high-dimensional ob-
jects to compact binary codes called fingerprints and
make similar fingerprints for similar objects. The
similarity search in the Hamming space' is much
more efficient than in the original attribute space
(Manku et al., 2007).

Recently, several hashing methods have been pro-
posed. Specifically, SimHash (SH) (Charikar M.S.,
2002) uses random projections to hash data. Al-
though it works well with long fingerprints, SH has
poor discrimination power for short fingerprints. A
kernelized variant of SH, called Kernelized Local-
ity Sensitive Hashing (KLSH) (Kulis ef al., 2009a),
is proposed to handle non-linearly separable data.
These methods are unsupervised thus cannot incor-
porate prior knowledge for better hashing. Moti-

"Hamming space is a set of binary strings of length L.
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vated by this, some supervised methods are pro-
posed to derive effective hash functions from prior
knowledge, i.e., Spectral Hashing (Weiss et al.,
2009) and Semi-Supervised Hashing (SSH) (Wang
et al., 2010a). Regardless of different objectives,
both methods derive hash functions via Principle
Component Analysis (PCA) (Jolliffe, 1986). How-
ever, PCA is computationally expensive, which lim-
its their usage for high-dimensional data.

This paper proposes a novel (semi-)supervised
hashing method, Semi-Supervised SimHash (S*H),
for high-dimensional data similarity search. Un-
like SSH that tries to find a sequence of hash func-
tions, S3H fixes the random projection directions
and seeks the optimal feature weights from prior
knowledge to relocate the objects such that simi-
lar objects have similar fingerprints. This is im-
plemented by maximizing the empirical accuracy
on the prior knowledge (labeled data) and the en-
tropy of hash functions (estimated over labeled and
unlabeled data). The proposed method avoids us-
ing PCA which is computationally expensive espe-
cially for high-dimensional data, and leads to an
efficient Quasi-Newton based solution. To evalu-
ate our method, we compare with several state-of-
the-art hashing methods on two large datasets, i.e.,
20 Newsgroups (20K points) and Open Directory
Project (ODP) (2.4 million points). All experiments
show that S3H gets the best search performance.

This paper is organized as follows: Section 2
briefly introduces the background and some related
works. In Section 3, we describe our proposed Semi-
Supervised SimHash (S>H). Section 4 provides ex-
perimental validation on two datasets. The conclu-
sions are given in Section 5.

2 Background and Related Works

Suppose we are given a set of N documents, X =
{x; | x; € RM}N . For a given query doc q, DSS
tries to find its nearest neighbors in X or a subset
X’ C X in which distance from the documents to
the query doc q is less than a give threshold. How-
ever, such two tasks are computationally infeasible
for large-scale data. Thus, it turns to the approxi-
mate similarity search problem (Indyk et al., 1998).
In this section, we briefly review some related ap-
proximate similarity search methods.
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2.1 SimHash

SimHash (SH) is first proposed by Charikar
(Charikar M.S., 2002). SH uses random projections
as hash functions, i.e.,

if wix >0
otherwise

+1,

i (1)

h(x) = sign(w!x) = {
where w € RM is a vector randomly generated. SH
specifies the distribution on a family of hash func-
tions H = {h} such that for two objects x; and x;,

Pr {h(xi) = h(x)} =1 - 200 g

heH ™
where 0(x;,x;) is the angle between x; and x;. Ob-
viously, SH is an unsupervised hashing method.

2.2 Kernelized Locality Sensitive Hashing

A kernelized variant of SH, named Kernelized
Locality Sensitive Hashing (KLSH) (Kulis ef al.,
2009a), is proposed for non-linearly separable data.
KLSH approximates the underling Gaussian distri-
bution in the implicit embedding space of data based
on central limit theory. To calculate the value of
hashing fuction A(-), KLSH projects points onto the
eigenvectors of the kernel matrix. In short, the com-
plete procedure of KLSH can be summarized as fol-
lows: 1) randomly select P (a small value) points
from X and form the kernel matrix, 2) for each hash
function h(¢(x)), calculate its weight w € RY just
as Kernel PCA (Scholkopf et al., 1997), and 3) the
hash function is defined as:

»
h(o(x)) =sign(d_wi - K(x, %)) (3)
=1

where k(-, -) can be any kernel function.

KLSH can improve hashing results via the kernel
trick. However, KLSH is unsupervised, thus design-
ing a data-specific kernel remains a big challenge.

2.3 Semi-Supervised Hashing

Semi-Supervised Hashing (SSH) (Wang et al.,
2010a) is recently proposed to incorporate prior
knowledge for better hashing. Besides X, prior
knowledge in the form of similar and dissimilar
object-pairs is also required in SSH. SSH tries to
find L optimal hash functions which have maximum



empirical accuracy on prior knowledge and maxi-
mum entropy by finding the top L eigenvectors of
an extended covariance matrix> via PCA or SVD.

However, despite of the potential problems of nu-
merical stability, SVD requires massive computa-
tional space and O(M?3) computational time where
M is feature dimension, which limits its usage for
high-dimensional data (Trefethen et al., 1997). Fur-
thermore, the variance of directions obtained by
PCA decreases with the decrease of the rank (Jol-
liffe, 1986). Thus, lower hash functions tend to have
smaller entropy and larger empirical errors.

2.4 Others

Some other related works should be mentioned. A
notable method is Locality Sensitive Hashing (LSH)
(Indyk et al., 1998). LSH performs a random
linear projection to map similar objects to similar
hash codes. However, LSH suffers from the effi-
ciency problem that it tends to generate long codes
(Salakhutdinov et al., 2007). LAMP (Mu et al.,
2009) considers each hash function as a binary par-
tition problem as in SVMs (Burges, 1998). Spec-
tral Hashing (Weiss et al., 2009) maintains similar-
ity between objects in the reduced Hamming space
by minimizing the averaged Hamming distance’ be-
tween similar neighbors in the original Euclidean
space. However, spectral hashing takes the assump-
tion that data should be distributed uniformly, which
is always violated in real-world applications.

3 Semi-Supervised SimHash

In this section, we present our hashing method,
named Semi-Supervised SimHash (S*H). Let X, =
{(x1,¢1) ... (Xu,cy)} be the labeled data, ¢ €
{1...0},x € RM and Xy = {xyy1...xn} the
unlabeled data. Let X = X1 U Apy. Given the
labeled data X7, we construct two sets, attraction
set ©, and repulsion set ©,.. Specifically, any pair
(x4,Xj) € Oq, 1,7 < u, denotes that x; and x;
are in the same class, i.e., ¢; = c¢;j, while any pair
(x4,%;) € Oy, 1,j < u,denotes that ¢; # ¢;. Unlike

The extended covariance matrix is composed of two com-
ponents, one is an unsupervised covariance term and another is
a constraint matrix involving labeled information.

>Hamming distance is defined as the number of bits that are
different between two binary strings.
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previews works that attempt to find L optimal hyper-
planes, the basic idea of S>H is to fix L random hy-
perplanes and to find an optimal feature-weight vec-
tor to relocate the objects such that similar objects
have similar codes.

3.1 Data Representation

Since L random hyperplanes are fixed, we can rep-
resent a object x € X’ as its relative position to these
random hyperplanes, i.e.,

D=A-V 4
where the element V,,; € {+1,—1,0} of V indi-
cates that the object x is above, below or just in the
I-th hyperplane with respect to the m-th feature, and
A = diag(|x1], |z2|,. .., |zar]) is a diagonal matrix
which, to some extent, reflects the distance from x
to these hyperplanes.

3.2 Formulation

Hashing maps the data set X’ to an L-dimensional
Hamming space for compact representations. If we
represent each object as Equation (4), the [-th hash
function is then defined as:
hi(x) = Iy(D) = sign(w’d;) )
where w € RM is the feature weight to be deter-
mined and d; is the [-th column of the matrix D.
Intuitively, the “contribution” of a specific feature
to different classes is different. Therefore, we hope
to incorporate this side information in S®H for better
hashing. Inspired by (Madani et al., 2009), we can
measure this contribution over X, as in Algorithm 1.
Clearly, if objects are represented as the occurrence
numbers of features, the output of Algorithm 1 is
just the conditional probability Pr(class|feature).
Finally, each object (x,c) € X, can be represented
as an M x L matrix G:
G =diag(vic, V2, .., VMe) - D (6)
Note that, one pair (x;,x;) in O, or ©, corresponds
to (G, G;) while (D;,D;) if we ignore features’
contribution to different classes.

Furthermore, we also hope to maximize the em-
pirical accuracy on the labeled data ©, and ©, and



Algorithm 1: Feature Contribution Calculation

for each (x,c) € X1 do
for each f € x do

vy «— Vst xyr,

Vfc  Vfe+ Tp;

end
end

for each feature f and class c do
V.

l/f’

v

end

maximize the entropy of hash functions. So, we de-
fine the following objective for 7(-)s:

L

1
J(w) = N Z{ Z Pu(x;)hu (x;)
PU=1 % (xix;)€0a
. @)
— Z hl(Xi)hl(X]‘)} +/\12H(hl)
(x4,%;)€0, =1
where N, = |O,| + |©,| is the number of attrac-

tion and repulsion pairs and A; is a tradeoff between
two terms. Wang et al. have proven that hash func-
tions with maximum entropy must maximize the
variance of the hash values, and vice-versa (Wang
et al., 2010b). Thus, H(%(+)) can be estimated over

the labeled and unlabeled data, X, and Ap.
Unfortunately, direct solution for above problem
is non-trivial since Equation (7) is not differentiable.
Thus, we relax the objective and add an additional
regularization term which could effectively avoid
overfitting. Finally, we obtain the total objective:

1 L
L(w) = N, S Y. (W giw(w g
I=1 (G;,G;)€0a
- >

V(wl g )v(wlgii)}

(G§,Gj)€0r (8)
Y L u N
1 2 (i, T 2 (e, T
+ﬁz{z¢ (W' gi) + Z YA (widi)}
=1 =1 i=u+1
A
- w3

where g; ; and d; ; denote the /-th column of G; and
D, respectively, and 1 () is a piece-wise linear func-
tion defined as:

T, t>T,
P(t) =19 t Ty <t<T, )
T, t<-T,

This relaxation has a good intuitive explanation.
That is, similar objects are desired to not only have
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the similar fingerprints but also have sufficient large
projection magnitudes, while dissimilar objects are
desired to not only differ in their fingerprints but also
have large projection margin. However, we do not
hope that a small fraction of object-pairs with very
large projection magnitude or margin dominate the
complete model. Thus, a piece-wise linear function
(-) is applied in S3H.

As a result, Equation (8) is a simply uncon-
strained optimization problem, which can be ef-
ficiently solved by a notable Quasi-Newton algo-
rithm, i.e., L-BFGS (Liu et al., 1989). For descrip-
tion simplicity, only attraction set ©, is considered
and the extension to repulsion set ©, is straightfor-
ward. Thus, the gradient of £(w) is as follows:

oy

P =1 (Gi,Gj) € Og,

lwTlgi .l < Ty
+ >

Y(wlgy) - gj,z} (10)
(Gi, Gj) € Oq,

‘ngj,l‘ < Ty
L
At
-

N

+
i=u+1,

T
[whd; | < Ty

Note that 91 (t)/0t = 0 when |t| > T,.

AL (w)

ow 1/J(Wng,l) * 8i,l

u

2.

i=1,
lwTlgi | < Ty

V(wlgil) - gii

P(wld;) - di,l} — dow

3.3 Fingerprint Generation

When we get the optimal weight w*, we generate
fingerprints for given objects through Equation (5).
Then, it tunes to the problem how to efficiently ob-
tain the representation as in Figure 4 for a object.
After analysis, we find: 1) hyperplanes are randomly
generated and we only need to determine which
sides of these hyperplanes the given object lies on,
and 2) in real-world applications, objects such as
docs are always very sparse. Thus, we can avoid
heavy computational demands and efficiently gener-
ate fingerprints for objects.

In practice, given an object x, the procedure of
generating an L-bit fingerprint is as follows: it main-
tains an L-dimensional vector initialized to zero.
Each feature f € x is firstly mapped to an L-bit
hash value by Jenkins Hashing Function*. Then,

*http://www.burtleburtle.net/bob/hash/doobs.html



Algorithm 2: Fast Fingerprint Generation

INPUT: x and w™;

initialize o < 0,8 «— 0, o, B € RE;

for each f € xdo

randomly project f to hy € {—1,—|—1}L;
a«—a+tzp-wi-hy

end

for! =11t Ldo

if a; > 0 then
| Bi—1

end

end
RETURN g;

these L bits increment or decrement the L compo-
nents of the vector by the value z; x w}:. After all
features processed, the signs of components deter-
mine the corresponding bits of the final fingerprint.
The complete algorithm is presented in Algorithm 2.

3.4 Algorithmic Analysis

This section briefly analyzes the relation between
S3H and some existing methods. For analysis sim-
plicity, we assume 1(t) = ¢ and ignore the regular-
ization terms. So, Equation (8) can be rewritten as
follows:

1 L
J(W)gsp = in[E T(®T -2 )Ilw (1D
=1

where <I>;; equals to 1 when (x;,x;) € O, otherwise
0, <I>i_j equals to 1 when (x;,x;) € ©, otherwise
O, and Fl = [ng - 8Bu,ls du+1,l ce d]\u]. We de-
note >, I, ®*T7 and >, T,® T/ as ST and S~
respectively. Therefore, maximizing above function
is equivalent to maximizing the following:

~ |[wIStw]|

J(W)sag = (12)

[wTS—w|
Clearly, Equation (12) is analogous to Linear Dis-
criminant Analysis (LDA) (Duda et al., 2000) ex-
cept for the difference: 1) measurement. S>H uses
similarity while LDA uses distance. As a result, the
objective function of S?H is just the reciprocal of
LDA’s. 2) embedding space. LDA seeks the best
separative direction in the original attribute space. In
contrast, S3H firstly maps data from RM to RM*L
through the following projection function

¢(x) = x - [diag(sign(ry)), . .., diag(sign(r))] (13)
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wherer; € RM [ =1,..., L, are L random hyper-
planes. Then, in that space (RM*Ly S3H seeks a
direction’ that can best separate the data.

From this point of view, it is obvious that the basic
SH is a special case of S?H when w is set to e =
[1,1,...,1]. That is, SH firstly maps the data via
#(-) just as S3H. But then, SH directly separates the
data in that feature space at the direction e.

Analogously, we ignore the regularization terms
in SSH and rewrite the objective of SSH as:

T(W)ssi = 3 nlWTX(@" — &)X"W]  (14)
where W = [wy,...,wy] € RM*L are L hyper-
planes and X = [xy, ..., Xy]. Maximizing this ob-
jective is equivalent to maximizing the following:

~ tr[WTS'*W
J(W)ssu = M (15)
where S+ = X®*t X" and '~ = X®~ X' Equa-
tion (15) shows that SSH is analogous to Multiple
Discriminant Analysis (MDA) (Duda et al., 2000).
In fact, SSH uses top L best-separative hyperplanes
in the original attribute space found via PCA to hash
the data. Furthermore, we rewrite the projection
function ¢(-) in S®H as:

¢(X):X-[R1,...,RL] (16)

where R; = diag(sign(r;)). Each R; is a mapping
from RM to RM and corresponds to one embedding
space. From this perspective, unlike SSH, S>H glob-
ally seeks a direction that can best separate the data
in L different embedding spaces simultaneously.

4 Experiments

We use two datasets 20 Newsgroups and Open Di-
rectory Project (ODP) in our experiments. Each doc-
ument is represented as a vector of occurrence num-
bers of the terms within it. The class information
of docs is considered as prior knowledge that two
docs within a same class should have more similar
fingerprints while two docs within different classes
should have dissimilar fingerprints. We will demon-
strate that our S®H can effectively incorporate this
prior knowledge to improve the DSS performance.

SThe direction is determined by concatenating w L times.
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Figure 1: Mean Averaged Precision (MAP) for different
number of bits for hash ranking on 20 Newsgroups. (a)
10K features. (b) 30K features.

We use Inverted List (IL) (Manning et al., 2002)
as the baseline. In fact, given a query doc, IL re-
turns all the docs that contain any term within it.
We also compare our method with three state-of-
the-art hashing methods, i.e., KLSH, SSH and SH.
In KLSH, we adopt the RBF kernel x(x;,x;) =

12 .
exp(—”xlé%”?), where the scaling factor 62 takes

0.5 and the other two parameters p and t are set to
be 500 and 50 respectively. The parameter A in SSH
is set to 1. For S?H, we simply set the parameters \;
and Az in Equation (8) to 4 and 0.5 respectively. To
objectively reflect the performance of S3H, we eval-
uate our S*H with and without Feature Contribution
Calculation algorithm (FCC) (Algorithm 1). Specif-
ically, FCC-free S®H (denoted as S3Hf) is just a
simplification when Gs in S®H are simply set to Ds.

For quantitative evaluation, as in literature (Wang
et al., 2010b; Mu et al., 2009), we calculate the pre-
cision under two scenarios: hash lookup and hash
ranking. For hash lookup, the proportion of good
neighbors (have the same class label as the query)
among the searched objects within a given Hamming
radius is calculated as precision. Similarly to (Wang
et al., 2010b; Weiss et al., 2009), for a query doc-
ument, if no neighbors within the given Hamming
radius can be found, it is considered as zero preci-
sion. Note that, the precision of IL is the propor-
tion of good neighbors among the whole searched
objects. For hash ranking, all the objects in X" are
ranked in terms of their Hamming distance from the
query document, and the top K nearest neighbors
are returned as the result. Then, Mean Averaged Pre-
cision (MAP) (Manning et al., 2002) is calculated.
We also calculate the averaged intra- and inter- class
Hamming distance for various hashing methods. In-
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Figure 2: Precision within Hamming radius 3 for hash
lookup on 20 Newsgroups. (a) 10K features. (b) 30K
features.

tuitively, a good hashing method should have small
intra-class distance while large inter-class distance.

We test all the methods on a PC with a 2.66 GHz
processor and 12GB RAM. All experiments repeate
10 times and the averaged results are reported.

4.1 20 Newsgroups

20 Newsgroups® contains 20K messages, about 1K
messages from each of 20 different newsgroups.
The entire vocabulary includes 62,061 words. To
evaluate the performance for different feature di-
mensions, we use Chi-squared feature selection al-
gorithm (Forman, 2003) to select 10K and 30K fea-
tures. The averaged message length is 54.1 for 10K
features and 116.2 for 30K features. We randomly
select 4K massages as the test set and the remain
16K as the training set. To train SSH and S>H,
from the training set, we randomly generate 40K
message-pairs as ©, and 80K message-pairs as O,.

For hash ranking, Figure 1 shows MAP for vari-
ous methods using different number of bits. It shows
that performance of SSH decreases with the grow-
ing of hash bits. This is mainly because the variance
of the directions obtained by PCA decreases with
the decrease of their ranks. Thus, lower bits have
larger empirical errors. For S*H, FCC (Algorithm 1)
can significantly improve the MAP just as discussed
in Section 3.2. Moreover, the MAP of FCC-free
S®H (S®Hy) is affected by feature dimensions while
FCC-based (S®H) is relatively stable. This implies
FCC can also improve the satiability of S’H. As we
see, S°H r ignores the contribution of features to dif-
ferent classes. However, besides the local descrip-
tion of data locality in the form of object-pairs, such

Shttp://www.cs.cmu.edu/afs/cs/project/theo-3/www/
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Figure 3: Averaged searched sample numbers using 4K
query messages for hash lookup. (a) 10K features. (b)
30K features.

(global) information also provides a proper guidance
for hashing. So, for S®Hy, the reason why its re-
sults with 30K features are worse than the results
with 10K features is probably because S*H ¢ learns
to hash only according to the local description of
data locality and many not too relevant features lead
to relatively poor description. In contrast, S*H can
utilize global information to better understand the
similarity among objects. In short, SH obtains the
best MAP for all bits and feature dimensions.

For hash lookup, Figure 2 presents the precision
within Hamming radius 3 for different number of
bits. It shows that IL even outperforms SH. This
is because few objects can be hashed by SH into one
hash bucket. Thus, for many queries, SH fails to
return any neighbor even in a large Hamming radius
of 3. Clearly, S>H outperforms all the other methods
for different number of hash bits and features.

The number of messages searched by different
methods are reported in Figure 3. We find that the
number of searched data of S?H (with/without FCC)
decreases much more slowly than KLLSH, SH and
SSH with the growing of the number of hash bits. As
discussed in Section 3.4, this mainly benefits from
the design of S>H that S®H (globally) seeks a di-
rection that can best separate the data in L embed-
ding spaces simultaneously. We also find IL returns
a large number of neighbors of each query message
which leads to its poor efficiency.

The averaged intra- and inter- class Hamming dis-
tance of different methods are reported in Table 1.
As it shows, S3H has relatively larger margin (A)
between intra- and inter-class Hamming distance.
This indicates that S3H is more effective to make
similar points have similar fingerprints while keep
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intra-class inter-class A

S3H 13.1264 15.6342 2.5078
S3H; 12.5754 13.3479 0.7725
SSH 6.4134 6.5262 0.1128
SH 15.3908 15.6339 0.2431
KLSH 10.2876 10.8713 0.5841

Table 1: Averaged intra- and inter- class Hamming dis-
tance of 20 Newsgroups for 32-bit fingerprint. A is the
difference between the averaged inter- and intra- class
Hamming distance. Large A implies good hashing.
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Figure 4: Computational complexity of training for dif-
ferent feature dimensions for 32-bit fingerprint. (a) Train-
ing time (sec). (b) Training space cost (MB).

the dissimilar points away enough from each other.

Figure 4 shows the (training) computational com-
plexity of different methods. We find that the time
and space cost of SSH grows much faster than SH,
KLSH and S*H with the growing of feature dimen-
sion. This is mainly because SSH requires SVD to
find the optimal hashing functions which is compu-
tational expensive. Instead, S?H seeks the optimal
feature weights via L-BFGS, which is still efficient
even for very high-dimensional data.

4.2 Open Directory Project (ODP)

Open Directory Project (ODP)’ is a multilingual
open content directory of web links (docs) organized
by a hierarchical ontology scheme. In our exper-
iment, only English docs® at level 3 of the cate-
gory tree are utilized to evaluate the performance.
In short, the dataset contains 2,483,388 docs within
6,008 classes. There are totally 862,050 distinct
words and each doc contains 14.13 terms on aver-
age. Since docs are too short, we do not conduct

"http://rdf.dmoz.org/
8The title together with the corresponding short description
of a page are considered as a document in our experiments.
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Figure 5: Overview of ODP data set. (a) Class distribu-
tion at level 3. (b) Distribution of document length.

] | intra-class | inter-class | A \
S*H 14.0029 15.9508 1.9479
S3H; 14.3801 15.5260 1.1459
SH 14.7725 15.6432 0.8707
KLSH 9.3382 10.5700 1.2328

Table 2: Averaged intra- and inter- class Hamming dis-
tance of ODP for 32-bit fingerprint (860K features). A
is the difference between averaged intra- and inter- class
Hamming distance.

feature selection®. An overview of ODP is shown in
Figure 5. We randomly sample 10% docs as the test
set and the remain as the training set. Furthermore,
from training set, we randomly generate 800K doc-
pairs as O,, and 1 million doc-pairs as ©,. Note
that, since there are totally over 800K features, it
is extremely inefficient to train SSH. Therefore, we
only compare our S*H with IL, KLSH and SH.

The search performance is given in Figure 6. Fig-
ure 6(a) shows the MAP for various methods using
different number of bits. It shows KLSH outper-
forms SH, which mainly contributes to the kernel
trick. S*H and S*H; have higher MAP than KLSH
and SH. Clearly, FCC algorithm can improve the
MAP of S3H for all bits. Figure 6(b) presents the
precision within Hamming radius 2 for hash lookup.
We find that IL outperforms SH since SH fails for
many queries. It also shows that S?H (with FCC)
can obtain the best precision for all bits.

Table 2 reports the averaged intra- and inter-class
Hamming distance for various methods. It shows
that S®H has the largest margin (A). This demon-

“We have tested feature selection. However, if we select
40K features via Chi-squared feature selection method, docu-
ments are represented by 3.15 terms on average. About 44.9%
documents are represented by no more than 2 terms.
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Figure 6: Retrieval performance of different methods on
ODP. (a) Mean Averaged Precision (MAP) for different
number of bits for hash ranking. (b) Precision within
Hamming radius 2 for hash lookup.

strates S?H can measure the similarity among the
data better than KLSH and SH.

We should emphasize that KLSH needs 0.3ms
to return the results for a query document for hash
lookup, and S®H needs <0.1ms. In contrast, IL re-
quires about 75ms to finish searching. This is mainly
because IL always returns a large number of ob-
jects (dozens or hundreds times more than S*H and
KLSH) and requires much time for post-processing.

All the experiments show S3H is more effective,
efficient and stable than the baseline method and the
state-of-the-art hashing methods.

5 Conclusions

We have proposed a novel supervised hashing
method named Semi-Supervised Simhash (S3H) for
high-dimensional data similarity search. S?H learns
the optimal feature weights from prior knowledge
to relocate the data such that similar objects have
similar fingerprints. This is implemented by max-
imizing the empirical accuracy on labeled data to-
gether with the entropy of hash functions. The
proposed method leads to a simple Quasi-Newton
based solution which is efficient even for very high-
dimensional data. Experiments performed on two
large datasets have shown that S>H has better search
performance than several state-of-the-art methods.
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Abstract

Marking up search queries with linguistic an-
notations such as part-of-speech tags, cap-
italization, and segmentation, is an impor-
tant part of query processing and understand-
ing in information retrieval systems. Due
to their brevity and idiosyncratic structure,
search queries pose a challenge to existing
NLP tools. To address this challenge, we
propose a probabilistic approach for perform-
ing joint query annotation. First, we derive
a robust set of unsupervised independent an-
notations, using queries and pseudo-relevance
feedback. Then, we stack additional classi-
fiers on the independent annotations, and ex-
ploit the dependencies between them to fur-
ther improve the accuracy, even with a very
limited amount of available training data. We
evaluate our method using a range of queries
extracted from a web search log. Experimen-
tal results verify the effectiveness of our ap-
proach for both short keyword queries, and
verbose natural language queries.

Introduction

Ambherst, MA
croft@s. unass. edu

Ambherst, MA
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articles or web pages). As previous research shows,
these differences severely limit the applicability of
standard NLP techniques for annotating queries and
require development of novel annotation approaches
for query corpora (Bergsma and Wang, 2007; Barr et
al., 2008; Lu et al., 2009; Bendersky et al., 2010; Li,
2010).

The most salient difference between queries and
documents is their length. Most search queries
are very short, and even longer queries are usually
shorter than the average written sentence. Due to
their brevity, queries often cannot be divided into
sub-parts, and do not provide enough context for
accurate annotations to be made using the stan-
dard NLP tools such as taggers, parsers or chun-
kers, which are trained on more syntactically coher-
ent textual units.

A recent analysis of web query logs by Bendersky
and Croft (2009) shows, however, that despite their
brevity, queries are grammatically diverse. Some
gueries are keyword concatenations, some are semi-
complete verbal phrases and some are wh-questions.
It is essential for the search engine to correctly an-
notate the query structure, and the quality of these

Automatic mark-up of textual documents with lin-query annotations has been shown to be a crucial
guistic annotations such as part-of-speech tags, sdfist step towards the development of reliable and
tence constituents, named entities, or semantic rolégbust query processing, representation and under-
is a common practice in natural language processtanding algorithms (Barr et al., 2008; Guo et al.,
ing (NLP). It is, however, much less common in in-2008; Guo et al., 2009; Manshadi and Li, 2009; Li,
formation retrieval (IR) applications. Accordingly, 2010).

in this paper, we focus on annotating search queries However, in current query annotation systems,
submitted by the users to a search engine.

even sentence-like queries are often hard to parse

There are several key differences between usand annotate, as they are prone to contain mis-

gueries and the documents used in NLP (e.g., newgpellings and idiosyncratic grammatical structures.
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(@) (b) (©
Term  CAP TAG SEG  Term CAP TAG SEG  Term CAP TAG SEG

who L X B kindred C N B shih C N B
won L \ | where C X B tzu C N I
the L X B would C X I health L N B
2004 L X B i C X I problems L N I
kentucky C N B be C V I

derby C N I

Figure 1:Examples of a mark-up scheme for annotating capitalizationlpwercase, C — otherwise), POS tags (N —
noun, V — verb, X — otherwise) and segmentation (B/l — begigmif/inside the chunk).

They also tend to lack prepositions, proper punctie show that even with a very limited amount of
ation, or capitalization, since users (often correctlyjraining data, our joint annotation method signifi-
assume that these features are disregarded by the cantly outperforms annotations that were done in-
trieval system. dependently for these queries.

In this paper, we propose a novel joint query an- The rest of the paper is organized as follows. In
notation method to improve the effectiveness of exSection 2 we demonstrate several examples of an-
isting query annotations, especially for longer, moreotated search queries. Then, in Section 3, we in-
complex search queries. Most existing research faroduce our joint query annotation method. In Sec-
cuses on using a single type of annotation for inforion 4 we describe two types of independent query
mation retrieval such as subject-verb-object depemnnotations that are used as input for the joint query
dencies (Balasubramanian and Allan, 2009), namednnotation. Section 5 details the related work and
entity recognition (Guo et al., 2009), phrase chunkSection 6 presents the experimental results. We draw
ing (Guo et al.,, 2008), or semantic labeling (Li,the conclusions from our work in Section 7.

2010).

In contrast, the main focus of this work is on de2  Query Annotation Example
veloping a unified approach for performing reliable
annotations of different types. To this end, we proJo demonstrate a possible implementation of lin-
pose a probabilistic method for performingj@nt ~ guistic annotation for search queries, Figure 1
query annotation This method allows us to exploit pPresents a simple mark-up scheme, exemplified us-
the dependency between different unsupervised alftg three web search queries (as they appear in a
notations to further improve the accuracy of the ensearch log): (ayho won the 2004 kentucky derby
tire set of annotations. For instance, our methotP) kindred where would i heand (c)shih tzu health
can leverage the information about estimated part§roblems In this scheme, each query is marked-
of-speech tags and capitalization of query terms tdp uUsing three annotations: capitalization, POS tags,
improve the accuracy of query segmentation. and segmentation indicators.

We empirically evaluate the joint query annota- Note that all the query terms are non-capitalized,
tion method on a range of query types. Instead @ind no punctuation is provided by the user, which
just focusing our attention on keyword queries, asomplicates the query annotation process. While
is often done in previous work (Barr et al., 2008;the simple annotation described in Figure 1 can be
Bergsma and Wang, 2007; Tan and Peng, 200done with a very high accuracy for standard docu-
Guo et al., 2008), we also explore the performancenent corpora, both previous work (Barr et al., 2008;
of our annotations with more complex natural lanBergsma and Wang, 2007; Jones and Fain, 2003)
guage search queries such as verbal phrases and w&hd the experimental results in this paper indicate
questions, which often pose a challenge for IR applthat it is challenging to perform well on queries.
cations (Bendersky et al., 2010; Kumaran and Allan, The queries in Figure 1 illustrate this point. Query
2007; Kumaran and Carvalho, 2009; Lease, 2007fa) in Figure 1 is a wh-question, and it contains
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a capitalized conceptKentucky Derby”, a single likely to decide that it is a proper noun. Vice versa,
verb, and four segments. Query (b) is a combinatioknowing that it is a preposition will reduce its proba-
of an artist name and a song title and should be intebility of being capitalized. We would like to capture
preted aKindred — “Where Would | Be"Query (c) this intuition in the annotation process.

is a concatenation of two short noun phras&hih To address the problem of joint query annotation,

Tzu” and“health problems”. we first assume that we have an initial set of annota-
. ) tions Z;(I), which were performed for querg in-

3 Joint Query Annotation dependently of one another (we will show an exam-

Given a search quer®, which consists of a se- ple of how to derive such a set in Section 4). Given
quence of termgqs, ..., ¢,), our goal is to anno- the initial setZ, *(1) , we are interested in obtaining

tate it with an appropriate set of linguistic structuresin annotation seZQ(J ) which jointly optimizes the
Zq. Inthis work, we assume that the s&} consists probability ofall the annotations, i.e.
of shallowsequence annotations), each of which
takes the form gg(J ) = argma »(Zo| Z;(I ).
Q

z = PR * . e . . .
¢=( n) If the initial set of estimations is reasonably ac-
In other words, each symba} € z; annotates a curate, we can make the assumption that the anno-
single query term. tations in the seiz, ) are independent given the

Many query annotations that are useful for IRpjtja| estimatesz,, I ) , allowing us to separately op-
can be represented using this simple form, includ- «(J)
ing capitalization, POS tagging, phrase chunklngt'mlie the probability of each annotatl%
named entity recognition, and stopword |nd|catorsZQ( ):
to name just a few. For instance, Figure 1 demon-
strates an example of a set of annotaticfis. In z*Q(J) = argmax p(zQ]ZgI )). 2

zQ

this example,

From Eg. 2, it is evident that the joint an-

Zq = {CAP, TAG, SEG}. notation task becomes that of finding some opti-

Most previous work on query annotation makegnal unobserved sequence (annotarz'é}f)) given
the independence assumption — every annotatidh€ observed sequences (independent annotation set
zq € Zg is done separately from the others. That ISZQ( )-
it is assumed that the optimal linguistic annotation Accordingly, we can directly use a supervised se-
z:1) is the annotation that has the highest probabifuential probabilistic model such as CRF (Lafferty

|ty given the queryQ, regardless of the other anno-ét al., 2001) to find the optimal, ) In this CRF

tations in the segq. Formally, model, the optimal annotatlozb(‘]) is thelabel we
«(D) are trying to predict, and the set of independent an-

2~ argzglaXp(zQ@) (1) notationszgu ) is used as the basis for tfieatures

used for prediction. Figure 2 outlines the algorithm

The main shortcoming of this approach is in thdor performing the joint query annotation.
assumption that the linguistic annotations in the set As input, the algorithm receives a training set of
Zq are independent. In practice, there are depemueries and their ground truth annotations. It then
dencies between the different annotations, and thgyoduces a set of independent annotation estimates,
can be leveraged to derive a better estimate of thehich are jointly used, together with the ground
entire set of annotations. truth annotations, to learn a CRF model for each an-

Forinstance, imagine that we need to perform twaotation type. Finally, these CRF models are used
annotations: capitalization and POS tagging. Knowto predict annotations on a held-out set of queries,
ing that a query term is capitalized, we are moravhich are the output of the algorithm.
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Input: Q. — training set of queries.
Zq, — ground truth annotations for the training set of queries.
Q — held-out set of queries.
(1) Obtain a set of independent annotation estiméﬁg@
) Initialize 2, — 0
(3) for eachzéf) e z30.
(4) Zg, — 2, \ g, |
(5) Train a CRF model'RF (zq, ) usingzq, as alabelandZ,, asfeatures
(6) Predict annotatiof%(;f), usingCRF(zq, )
*(J) *(J) *(J)
(7) ZQh - ZQh, U Z2q, -
Output: Za(}‘f) — predicted annotations for the held-out set of queries.

Figure 2:Algorithm for performing joint query annotation.

Note that this formulation of joint query anno- Following Bendersky et al. (2010) we use a large
tation can be viewed as stacked classificatignn  n-gram corpus (Brants and Franz, 2006) to estimate
which a second, more effective, classifier is traine@((;|¢;) for annotating the query with capitalization
using the labels inferred by the first classifier as feaand segmentation mark-up, and a standard POS tag-
tures. Stacked classifiers were recently shown to et for part-of-speech tagging of the query.
an efficient and effective strategy for structured clas- o
sification in NLP (Nivre and McDonald, 2008; Mar- 42 PRF-based estimation

tins et al., 2008). Given a short, often ungrammatical query, it is hard
_ to accurately estimate the conditional probability in
4 Independent Query Annotations Eq. 1 using the query terms alone. For instance, a

While the joint annotation method proposed in Seckéyword queryhawaiian falls which refers to a lo-
tion 3 is general enough to be applied to any set 4ation, is inaccurately |r_1terpreted by astandarq POS
independent query annotations, in this work we fol299€r as aoun-verbpair. On the other hand, given
cus on two previously proposed independent ann& sentence fro_r_n a corpus that Is releyant to the query
tation methods based on either the query itself, o?“Ch" aSHawauar: Fa”"S_'S a family-friendly water-
the top sentences retrieved in response to the qui?rk , the word *falls™ is correctly identified by a
(Bendersky et al., 2010). The main benefits of thesg@ndard POS tagger as a proper noun.

two annotation methods are that they can be easily Accordingly, the document corpus can be boot-

implemented using standard software tools, do n&tr@Pped in order to better estimate the query anno-

require any labeled data, and provide reasonable ai@tion. To this end, Bendersky et al. (2010) employ

notation accuracy. Next, we briefly describe thesH'® Pseudo-relevance feedba@RRF) — a method

two independent annotation methods. that has a long record of success in IR for tasks such
as query expansion (Buckley, 1995; Lavrenko and
4.1 Query-based estimation Croft, 2001).

The most straightforward way to estimate the con- !N the most general form, given the setaf re-
ditional probabilities in Eq. 1 is using the query it-trievable sentencesin the corpug’ one can derive
self. To make the estimation feasible, Bendersky et

al. (2010) take dag-of-wordsapproach, and assume p(2q|Q) = Zp(zer)p(r‘Q)'
independence between both the query terms and the rec

corresponding annotation symbols. Thus, the inde- since for most sentences the conditional proba-
pentent annotations in Eq. 1 are given by bility of relevance to the query(r|Q) is vanish-

RY ingly small, the above can be closely approximated
ZZJ(Q ) = argmax H p(Glgi). @) -~
(€16n) (1, ) 'http://crftagger. sourceforge. net/

105



by considering only a set of sentencRsretrieved combines several independent annotations to im-
at top+ positions in response to the quegy This prove the overall annotation accuracy. A similar ap-

yields proach was recently proposed by Guo et al. (2008).
There are several key differences, however, between
p(20|Q) = Y p(zq|r)p(r|Q). the work presented here and their work.
reR First, Guo et al. (2008) focus oquery refine-

Intuitively, the equation above models the query agient(spelling corrections, word splitting, etc.) of
a mixture of topk retrieved sentences, where eactshort keyword queries. Instead, we are interested
sentence is weighted by its relevance to the querif) annotationof queries of different types, includ-
Furthermore, to make the estimation of the condiing verbose natural language queries. While there
tional probabilityp(zg |r) feasible, itis assumed that is an overlap between query refinement and annota-
the symbols(; in the annotation sequence are intion, the focus of the latter is on providing linguistic
dependent, given a sentence Note that this as- information about existing queries (after initial re-
sumption differs from the independence assumptiofinement has been performed). Such information is
in Eq. 3, since here the annotation symbolsmoe especially important for more verbose and gramat-

independengiven the queny). ically complex queries. In addition, while all the
Accordingly, the PRF-based estimate for indepenmethods proposed by Guo et al. (2008) require large
dent annotations in Eq. 1 is amounts of training data (thousands of training ex-

W(PRF) amples), our joint annotation method can be effec-
z =argmax Y [[ pGlr)p(r|Q). tively trained with a minimal human labeling effort
(CLowsGn) reRi€(1,.oim) (several hundred training examples).
(4) An additional research area which is relevant to
Following Bendersky et al. (2010), an estimate ofyig paper is the work on joint structure model-
p(¢i|r) is a smoothed estimator that combines thﬁ1g (Finkel and Manning, 2009; Toutanova et al.,
information from the retrieved sentencewith the 2008) and stacked classification (Nivre and Mc-
information about unigrams (for capitalization andDonaId, 2008; Martins et al., 2008) in natural lan-
POS tagging) and bigrams (for segmentation) fror@uage processing. These approaches have been
a large n-gram corpus (Brants and Franz, 2006).  shown to be successful for tasks such as parsing and
named entity recognition in newswire data (Finkel
5 Related Work and Manning, 2009) or semantic role labeling in the
In recent years, linguistic annotation of searchiPenn Treebank and Brown corpus (Toutanova et al.,
gueries has been receiving increasing attention as 2608). Similarly to this work in NLP, we demon-
important step toward better query processing arstrate that a joint approach for modeling the linguis-
understanding. The literature on query annotatiotic query structure can also be beneficial for IR ap-
includes query segmentation (Bergsma and Wanglications.
2007; Jones et al., 2006; Guo et al., 2008; Ha- )
gen et al., 2010; Hagen et al., 2011; Tan and Penf, EXperiments
2008), part-of-speech and semantic tagging (Barr gt
al., 2008; Manshadi and Li, 2009; Li, 2010), named- _
entity recognition (Guo et al., 2009; Lu et al., 20090r evaluating the performance of our query anno-
Shen et al., 2008; Pasca, 2007), abbreviation disarftion methods, we use a random sample of 250

biguation (Wei et al., 2008) and stopword detectiofueries from a search log. This sample is manually
(Lo et al., 2005; Jones and Fain, 2003). labeled with three annotationsapitalization POS

Most of the previous work on query annotationt@ds andsegmen_tatiopacc_ording to the glescription
focuses on performing a particular annotation tasRf these annotations in Figure 1. In this set of 250
(e.g., segmentation or POS tagging) in isolatiordueries, there ar@3 questions96 phrases contain-
However, these annotations are often related, and 2the annotations are available at
thus we take a joint annotation approach, whichttp://ciir.cs.umass. edu/ ~bemni ke/ dat a. ht m
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CAP The performance of the joint annotation methods

_ F1 (% impr) MQA (% impr) is estimated using a 10-fold cross-validation. In or-

-QRY | 0.641(-/-) 0.779(-F) der to test the statistical significance of improve-

i-PRF | 0.711(+10.9/-) 0.811(+4.1/-) .

QRY | 0.620(-3.31-12.8)  0.805(+3.3/-0.7) ments attalr!ed b,y the proposgd method_s we use a

j-PRF | 0.718(+12.0/+0.9) 0.84Q(+7.8/+3.6) two—&deo_l Fishers randqmlzatlon test with 20,000

TAG permutations. Results with p-value 0.05 are con-
Acc. (% impr) MQA (% impr) sidered statistically significant.

i-QRY | 0.893(-/-) 0.878(-/-) For reporting the performance of our meth-

-PRF | 0.916/(+2.6/-) 0.914(+4.1/-) ods we use two measures. The first measure is

JJQRY | 0.913(+2.2/-0.3)  0.912(+3.9/-0.2) classification-oriented — treating the annotation de-

I-PRF | 0.924(+3.5/+0.9) 0.922(+5.0/+0.9) cision for each query term as a classification. In case

SEG . . of capitalization and segmentation annotations these
F1 (% impr) MQA (% impr) L . .
-ORY | 0.694(-) 0.672(-I) decisions are b_mary and we compute the precision
i-PRF | 0.753(+8.5/-) 0.710/(+5.7/-) and recall metrics, and report F1 — their harmonic
j-QRY | 0.817:(+17.7/+8.5) 0.803(+19.5/+13.1) mean. In case of POS tagging, the decisions are
j-PRF | 0.819(+18.0/+8.8) 0.803(+19.5/+13.1) ternary, and hence we report the classification ac-

curacy.

Table 1: Summary of query annotation performance for We also report an additional. IR-oriented perfor-
capitalization (CAP), POS tagging (TAG) and segmenta- P . o P
ance measure. As is typical in IR, we propose

tion. Numbers in parentheses indicate % of improveme ) .
over thei-QRY andi-PRF baselines, respectively. Best Méasuring the performance of the annotation meth-

result per measure and annotation is boldfacednd; ~ 0ds on a per-query basis, to verify that the methods

denote statistically significant differences witQRYand have uniform impact across queries. Accordingly,

i-PRF, respectively. we report themean of classification accuracies per
query(MQA). Formally, MQA is computed as

ing a verb, and1 short keyword queries (Figure 1
contains a single example of each of these types).
In order to test the effectiveness of the joint query
annotation, we compare four methods. In the firsivhereaccg, is the classification accuracy for query
two methodsi-QRY andi-PRFthe three annotations @Q;, andN is the number of queries.
are done independently. Metho@RY is based on ~ The empirical evaluation is conducted as follows.
zg(QRY) estimator (Eq. 3). MethodPRF is based In Section 6.2, we discuss the general performance
ZJ(PRF) of the four annotation techniques, and compare the

on thez estimator (Eq. 4). Focti £ q d o ;
The next two method-QRY andj-PRF, are joint e ectlvc_aness of independent and joint annotations.
In Section 6.3, we analyze the performance of the

annotation methods, which perform a joint optimiza-i denendent and ioint annotation methods by que
tion over the entire set of annotations, as describeH P J y quety

in the algorithm in Figure 2-QRY andj-PRFdiffer  DP>  In Section 64, we compare fhe dficulty
in their choice of the initial independent annotatiory’ Perorming query annotations for diterent query

w(I) - v . _ types. Finally, in Section 6.5, we compare the effec-
setZQ(I) in line (1) of the algorithm (see Figure 2). ypes. Finaty, in Sect W mpar ©

) ) . tiveness of the proposed joint annotation for quer
j-QRY uses only the annotations performed by prop J query

AN . ) segmentation with the existing query segmentation
QRY (3 initial independent annotation estlmates)meg,[hOOIS g query seg

while j-PRF combines the annotations performed by

initial annotation estimates). The CRF model train-
ing in line (6) of the algorithm is implemented usingTable 1 shows the summary of the performance of

CRE-++ toolkif. the two mdepgndent and two jOI.n'[ annot_atlon meth-
ods for the entire set of 250 queries. For independent
3http://crfpp. sourceforge. net/ methods, we see thaPRF outperformsi-QRY for
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CAP Verbal Phrases Questions Keywords

F1 MQA F1 MQA F1 MQA
i-PRF | 0.750 0.862 0.590 0.839 0.784 0.687
j-PRF | 0.687(-8.4%)  0.839°(-2.7%) | 0.671(+13.7%) 0.913(+8.8%) | 0.814(+3.8%) 0.732 (+6.6%)
TAG Verbal Phrases Questions Keywords
Acc. MQA Acc. MQA Acc. MQA
i-PRF | 0.908 0.908 0.932 0.935 0.880 0.890
j-PRF | 0.904(-0.4%) 0.906(-0.2%) 0.95T (+2.1%) 0.953 (+1.9%) | 0.893(+1.5%)  0.900(+1.1%)
SEG Verbal Phrases Questions Keywords
F1 MQA F1 MQA F1 MQA
i-PRF | 0.751 0.700 0.740 0.700 0.816 0.747

j-PRF | 0.772(+2.8%)  0.742(+6.0%) | 0.858(+15.9%) 0.838(+19.7%)| 0.844(+3.4%) 0.853(+14.2%)

Table 2: Detailed analysis of the query annotation performance fpitabzation (CAP), POS tagging (TAG) and
segmentation by query type. Numbers in parentheses imdléaif improvement over thePRF baseline. Best result
per measure and annotation is boldfacedenotes statistically significant differences wiRRF.

all annotation types, using both performance meannotation methodPRF over thei-PRF method are
sures. less than 1%, and are not statistically significant.

In Table 1, we can also observe that the joint annothis is not surprising, since the standard POS tag-
tation methods are, in all cases, better than the cdgers often already use bigrams and capitalization at
responding independent ones. The highest improv#aining time, and do not acquire much additional
ments are attained GyPRF, which always demon- information from other annotations.
strates the best performance both in terms of F1 and
MQA. These results attest to both the importance -3 Evaluation by Query Type

doing a joint optimization over the entire set of an-Table 2 presents a detailed analysis of the perfor-
notations and to the robustness of the initial annotanance of the best independeRrPRF) and joint {-
tions done by the PRF method. In all but one case, PRF) annotation methods by the three query types
the j-PRF method, which uses these annotations assed for evaluation: verbal phrases, questions and
features, outperforms theQRY method that only keyword queries. From the analysis in Table 2, we
uses the annotation done bQRY. note that the contribution of joint annotation varies
The most significant improvements as a result adignificantly across query types. For instance, us-
joint annotation are observed for the segmentatioimg j-PRF always leads to statistically significant im-
task. In this task, joint annotation achieves close tprovements over thePRF baseline for questions.
20% improvement in MQA over theQRY method, On the other hand, it is either statistically indistin-
and more than 10% improvement in MQA over the guishable, or even significantly worse (in the case of
PRF method. These improvements indicate that theapitalization) than thePRF baseline for the verbal
segmentation decisions are strongly guided by caphrases.
italization and POS tagging. We also note that, in Table 2 also demonstrates that joint annotation
case of segmentation, the differences in performand¢es a different impact on various annotations for the
between the two joint annotation methogQRY  samequery type. For instancg;PRF has a signif-
and j-PRF, are not significant, indicating that theicant positive effect on capitalization and segmen-
context of additional annotations fQRY makes up tation for keyword queries, but only marginally im-
for the lack of more robust pseudo-relevance feegproves the POS tagging. Similarly, for the verbal
back based features. phrasesj-PRF has a significant positive effect only
We also note that théowest performance im- for the segmentation annotation.
provement as a result of joint annotation is evi- These variances in the performance of fiRRF
denced for POS tagging. The improvements of jointnethod point to the differences in the structure be-
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SEG | F1 MOQA

Annotation Performance by Query Type

SEG-1| 0.768 0.754
ch TAG SEG-2| 0.824 0.787
T R j-PRF | 0.819 (+6.7%/-0.6%) 0.803 (+6.5%/+2.1%)
8¢ SEG e Table 3: Comparison of the segmentation performance
8 1 B T a of thej-PRF method to two state-of-the-art segmentation
o g4 o methods. Numbers in parentheses indicate % of improve-

ment over theSEG-1and SEG-2baselines respectively.
Best result per measure and annotation is boldfaced.

o _|
~

R, CAP denotes statistically significant differences wBRG-1
_

g ‘ ‘ jacent terms in these queries are likely to have the

Verbal Phrases Questions Keyword Queries same Case).

For the segmentation task, the performance is at
its best for the question and keyword queries, and at
its worst (with a drop of 11%) for the verbal phrases.

e hypothesize that this is due to the fact that ques-
tion queries and keyword queries tend to have repet-
itive structures, while the grammatical structure for
tween the query types. While dependence betweegrbose queries is much more diverse.
the annotations plays an important role for question For the tagging task, the performance profile is re-
and keyword queries, which often share a commoversed, compared to the other two tasks — the per-
grammatical structure, this dependence is less usrmance is at its worst for keyword queries, since
ful for verbal phrases, which have a more diverseneir grammatical structure significantly differs from
linguistic structure. Accordingly, a more in-depththe grammatical structure of sentences in news arti-
investigation of the linguistic structure of the verbalcles, on which the POS tagger is trained. For ques-
phrase queries is an interesting direction for futur@on queries the performance is the best (6% increase
work. over the keyword queries), since they resemble sen-

) o tences encountered in traditional corpora.

6.4 Annotation Difficulty It is important to note that the results reported in
Recall that in our experiments, out of the overall 25Figure 3 are based on training the joint annotation
annotated queries, there 96 verbal phrases)3 model onall available queries with 10-fold cross-
questions andl keyword queries. Figure 3 shows avalidation. We might get different profiles if a sep-
plot that contrasts the relative performance for thesarate annotation model was trained for each query
three query types of our best-performing joint antype. In our case, however, the number of queries
notation methodj-PRF, on capitalization, POS tag- from each type is not sufficient to train a reliable
ging and segmentation annotation tasks. Next, waodel. We leave the investigation of separate train-
analyze the performance profiles for the annotatioing of joint annotation models by query type to fu-
tasks shown in Figure 3. ture work.

For the capitalization task, the performancej-of
PRFon verbal phrases and questions is similar, wit
the difference below 3%. The performance for keyin order to further evaluate the proposed joint an-
word queries is much higher — with improvementnotation methodj-PRF, in this section we compare
over 20% compared to either of the other two typedts performance to other query annotation methods
We attribute this increase to both a larger numbepreviously reported in the literature. Unfortunately,
of positive examples in the short keyword querieshere is not much published work on query capi-
(a higher percentage of terms in keyword queries iglization and query POS tagging that goes beyond
capitalized) and their simpler syntactic structure (adthe simple query-based methods described in Sec-
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Figure 3: Comparative performance (in terms of F1 for
capitalization and segmentation and accuracy for P
tagging) of thg-PRF method on the three query types.

65 Additional Comparisons



tion 4.1. The published work on the more advancethe segmentation produced by the current supervised
methods usually requires access to large amounts sthte-of-the-art segmentation methods, which em-
proprietary user data such as query logs and clickdoy external data sources and high-order n-grams.
(Barretal., 2008; Guo et al., 2008; Guo et al., 2009)The benefit of thg-PRF method compared to the

Therefore, in this section we focus on recent worlSEG-2method, is that, simultaneously with the seg-
on query segmentation (Bergsma and Wang, 200mentation, it produces several additional query an-
Hagen et al., 2010). We compare the segmentatigmotations (in this case, capitalization and POS tag-
effectiveness of our best performing methp®RF, ging), eliminating the need to construct separate se-
to that of these query segmentation methods. guence classifiers for each annotation.

The first method SEG-1 was first proposed by
Hagen et al. (2010). Itis currently the most effectiv
publicly disclosedinsupervisedjuery segmentation |n this paper, we have investigated a joint approach
method.SEG-1method requires an access to a larggor annotating search queries with linguistic struc-
web n-gram corpus (Brants and Franz, 2006). Thgyres, including capitalization, POS tags and seg-
optimal segmentation for query, Sp,, is then ob-  mentation. To this end, we proposed a probabilis-

o Conclusions

tained using tic approach for performing joint query annotation
that takes into account the dependencies that exist
S = argmax > IslFlcount(s), between the different annotation types.
€90 sess|>1 Our experimental findings over a range of queries

from a web search log unequivocally point to the su-
periority of the joint annotation methods over both

) ; ) guery-based and pseudo-relevance feedback based
in 5, andcount(s) is the frequency of in the web independent annotation methods. These findings in-

n-gram corpus. _ dicate that the different annotations are mutually-
The second metho&EG-2 is based on a SUCCeSS-yanendent

ful supervised segmentation method, which was first We are encouraged by the success of our joint
proposed by Bergsma and Wang (20BEG-2em- a1y annotation technique, and intend to pursue the

ploys a large set of features, and is pre-trained on the, o gtigation of its utility for IR applications. In the
query collection described by Bergsma and Wangre “\ve intend to research the use of joint query
(2007). The features used by t6&G-2method are  aphqrations for additional IR tasks, e.g., for con-

described by Bendersky et al. (2009), and includey,cting better query formulations for ranking al-
among others, n-gram frequencies in a sample Ofgaorithms
query log, web corpus and Wikipedia titles. '

Table 3 demonstrates the comparison between tig Acknowledgment

]-PRF, SEG-1and SEG-2methods. When com- hi K qi by th
pared to theSEG-1baseline j-PRF is significantly This work was supported in part by the Center for In-

more effective, even though it only employs bi(‘:]r(,imtelligent Information Retrieya_ll and i.n part by ARRA
counts (see Eq. 4), instead of the high-order n-granﬁSF_ 115-9014442. Any opinions, findings _and con-
used bySEG-1 for computing the score of a Seg_cIu5|ons or recommendations expressed in this ma-

mentation. This results underscores the benefit &arial are those of the authors and do not necessarily

joint annotation, which leverages capitalization an&eﬂeCt those of the sponsor.
POS tagging to improve the quality of the segmen-
tation.

When compared to th&EG-2baseline,j-PRF
andSEG-2are statistically indistinguishabl&EG-2
posits a slightly better F1, whilePRF has a better
MQA. This result demonstrates that the segmenta-
tion produced by the PRF method is as effective as
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whereS, is the set of all possible query segmenta
tions, S is a possible segmentation,is a segment
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Abstract

We propose to directly measure the impor-
tance of queries in the source domain to the
target domain where no rank labels of doc-
uments are available, which is referred to
as query weighting. Query weighting is a
key step in ranking model adaptation. As
the learning object of ranking algorithms is
divided by query instances, we argue that
it’s more reasonable to conduct importance
weighting at query level than document level.
We present two query weighting schemes.
The first compresses the query into a query
feature vector, which aggregates all document
instances in the same query, and then con-
ducts query weighting based on the query fea-
ture vector. This method can efficiently esti-
mate query importance by compressing query
data, but the potential risk is information loss
resulted from the compression. The second
measures the similarity between the source
query and each target query, and then com-
bines these fine-grained similarity values for
its importance estimation. Adaptation exper-
iments on LETOR3.0 data set demonstrate
that query weighting significantly outperforms
document instance weighting methods.

1 Introduction

Learning to rank, which aims at ranking documents
in terms of their relevance to user’s query, has been
widely studied in machine learning and information
retrieval communities (Herbrich et al., 2000; Fre-
und et al.,, 2004; Burges et al., 2005; Yue et al.,
2007; Cao et al., 2007; Liu, 2009). In general,
large amount of training data need to be annotated
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by domain experts for achieving better ranking per-
formance. In real applications, however, it is time
consuming and expensive to annotate training data
for each search domain. To alleviate the lack of
training data in the target domain, many researchers
have proposed to transfer ranking knowledge from
the source domain with plenty of labeled data to the
target domain where only a few or no labeled data is
available, which is known as ranking model adapta-
tion (Chen et al., 2008a; Chen et al., 2010; Chen et
al., 2008b; Geng et al., 2009; Gao et al., 2009).

Intuitively, the more similar an source instance
is to the target instances, it is expected to be more
useful for cross-domain knowledge transfer. This
motivated the popular domain adaptation solution
based on instance weighting, which assigns larger
weights to those transferable instances so that the
model trained on the source domain can adapt more
effectively to the target domain (Jiang and Zhai,
2007). Existing instance weighting schemes mainly
focus on the adaptation problem for classification
(Zadrozny, 2004; Huang et al., 2007; Jiang and Zhai,
2007; Sugiyama et al., 2008).

Although instance weighting scheme may be ap-
plied to documents for ranking model adaptation,
the difference between classification and learning to
rank should be highlighted to take careful consider-
ation. Compared to classification, the learning ob-
ject for ranking is essentially a query, which con-
tains a list of document instances each with a rel-
evance judgement. Recently, researchers proposed
listwise ranking algorithms (Yue et al., 2007; Cao
et al., 2007) to take the whole query as a learning
object. The benchmark evaluation showed that list-
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Source Domain

Target domain

Source Domain Target domain

(a) Instance based weighting

(b) Query based weighting

Figure 1: The information about which document instances belong to the same query is lost in document instance
weighting scheme. To avoid losing this information, query weighting takes the query as a whole and directly measures

its importance.

wise approach significantly outperformed pointwise
approach, which takes each document instance as in-
dependent learning object, as well as pairwise ap-
proach, which concentrates learning on the order of
a pair of documents (Liu, 2009). Inspired by the
principle of listwise approach, we hypothesize that
the importance weighting for ranking model adapta-
tion could be done better at query level rather than
document level.

Figure 1 demonstrates the difference between in-
stance weighting and query weighting, where there
are two queries ¢s1 and gso in the source domain
and ¢;1 and @42 in the target domain, respectively,
and each query has three retrieved documents. In
Figure 1(a), source and target domains are repre-
sented as a bag of document instances. It is worth
noting that the information about which document
instances belong to the same query is lost. To
avoid this information loss, query weighting scheme
shown as Figure 1(b) directly measures importance
weight at query level.

Instance weighting makes the importance estima-
tion of document instances inaccurate when docu-
ments of the same source query are similar to the
documents from different target queries. Take Fig-
ure 2 as a toy example, where the document in-
stance is represented as a feature vector with four
features. No matter what weighting schemes are
used, it makes sense to assign high weights to source
queries ¢s1 and g2 because they are similar to tar-
get queries ¢;1 and g0, respectively. Meanwhile, the
source query gs3 should be weighted lower because
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Figure 2: A toy example showing the problem of docu-
ment instance weighting scheme.

it’s not quite similar to any of ¢;; and g2 at query
level, meaning that the ranking knowledge from gs3
is different from that of ¢;; and g2 and thus less
useful for the transfer to the target domain. Unfor-
tunately, the three source queries gs1, gs2 and ¢s3
would be weighted equally by document instance
weighting scheme. The reason is that all of their
documents are similar to the two document instances
in target domain despite the fact that the documents
of gs3 correspond to their counterparts from different
target queries.

Therefore, we should consider the source query
as a whole and directly measure the query impor-
tance. However, it’s not trivial to directly estimate



a query’s weight because a query is essentially pro-
vided as a matrix where each row represents a vector
of document features. In this work, we present two
simple but very effective approaches attempting to
resolve the problem from distinct perspectives: (1)
we compress each query into a query feature vec-
tor by aggregating all of its document instances, and
then conduct query weighting on these query feature
vectors; (2) we measure the similarity between the
source query and each target query one by one, and
then combine these fine-grained similarity values to
calculate its importance to the target domain.

2 Instance Weighting Scheme Review

The basic idea of instance weighting is to put larger
weights on source instances which are more simi-
lar to target domain. As a result, the key problem
is how to accurately estimate the instance’s weight
indicating its importance to target domain. (Jiang
and Zhai, 2007) used a small number of labeled data
from target domain to weight source instances. Re-
cently, some researchers proposed to weight source
instance only using unlabeled target instances (Shi-
modaira, 2000; Sugiyama et al., 2008; Huang et al.,
2007; Zadrozny, 2004; Gao et al., 2010). In this
work, we also focus on weighting source queries
only using unlabeled target queries.

(Gao et al., 2010; Ben-David et al., 2010) pro-
posed to use a classification hyperplane to separate
source instances from target instances. With the do-
main separator, the probability that a source instance
is classified to target domain can be used as the im-
portance weight. Other instance weighting methods
were proposed for the sample selection bias or co-
variate shift in the more general setting of classifier
learning (Shimodaira, 2000; Sugiyama et al., 2008;
Huang et al., 2007; Zadrozny, 2004). (Sugiyama et
al., 2008) used a natural model selection procedure,
referred to as Kullback-Leibler divergence Impor-
tance Estimation Procedure (KLIEP), for automat-
ically tuning parameters, and showed that its impor-
tance estimation was more accurate. The main idea
is to directly estimate the density function ratio of
target distribution p; () to source distribution ps (),
ie. w(x) = %. Then model w(x) can be used to
estimate the importance of source instances. Model
parameters were computed with a linear model by
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minimizing the KL-divergence from p;(z) to its esti-
mator p;(x). Since py(x) = w(z)ps(z), the ultimate
objective only contains model w(z).

For using instance weighting in pairwise rank-
ing algorithms, the weights of document instances
should be transformed into those of document
pairs (Gao et al., 2010). Given a pair of documents
(xi, ;) and their weights w; and w;, the pairwise
weight w;; could be estimated probabilistically as
w; * w;. To consider query factor, query weight was
further estimated as the average value of the weights
over all the pairs, i.e., wy = 47 i j wij, where M
is the number of pairs in query q. Additionally, to
take the advantage of both query and document in-
formation, a probabilistic weighting for (x;, ;) was
modeled by w, * w;;. Through the transformation,
instance weighting schemes for classification can be
applied to ranking model adaptation.

3  Query Weighting

In this section, we extend instance weighting to di-
rectly estimate query importance for more effec-
tive ranking model adaptation. We present two
query weighting methods from different perspec-
tives. Note that although our methods are based on
domain separator scheme, other instance weighting
schemes such as KLIEP (Sugiyama et al., 2008) can
also be extended similarly.

3.1 Query Weighting by Document Feature
Aggregation

Our first query weighting method is inspired by the
recent work on local learning for ranking (Geng et
al., 2008; Banerjee et al., 2009). The query can be
compressed into a query feature vector, where each
feature value is obtained by the aggregate of its cor-
responding features of all documents in the query.

We concatenate two types of aggregates to construct

lal 7
i=1Ji

the query feature vector: the mean ji = ﬁ >
and the variance & = ﬁ Z‘Zq:ll(ﬁ — ji)?, where fi
is the feature vector of document i and |g| denotes
the number of documents in ¢ . Based on the ag-
gregation of documents within each query, we can
use a domain separator to directly weight the source
queries with the set of queries from both domains.
Given query data sets Dy = {q.};”; and Dy =
{q] j—1 respectively from the source and target do-



Algorithm 1 Query Weighting Based on Document Feature Aggregation in the Query

Input:
Queries in the source domain, Ds = {¢’}™™ ;
Queries in the target domain, D; = {q{ s
Output:

Importance weights of queries in the source domain, /W, = {W;}";

Iys=—1Ly = +1;

2:fori=1;i<m;i++ do

3:  Calculate the mean vector fi; and variance vector &; for qé;

4. Add query feature vector ¢ = (ji;, &;,ys) to D’ ;

5: end for

6: forj=1;7<n;j++ do '
7. Calculate the mean vector ji; and variance vector ¢ for ¢} ;

8:  Add query feature vector cjﬁ = (fij,j,y¢) to Dy;

9: end for
10: Find classification hyperplane H; which separates D’ from Dj;

—_
—_

cfori=1;1<m;7++ do

12:  Calculate the distance of % to H;, denoted as £(%);
13: Wi = P(q; < Dt) = 1+ezp(a>i<1£(tﬁ)+ﬂ)

14:  Add W; to IW;

15: end for

16: return [W;

mains, we use algorithm 1 to estimate the proba-
bility that the query ¢ can be classified to D, i.e.
P(q% € Dy), which can be used as the importance of
¢’ relative to the target domain. From step 1 t0 9, D',
and Dj are constructed using query feature vectors
from source and target domains. Then, a classifi-
cation hyperplane Hy; is used to separate D’ from
Dj in step 10. The distance of the query feature
vector cj:i, from H; are transformed to the probabil-
ity P(¢ € D;) using a sigmoid function (Platt and
Platt, 1999).

3.2 Query Weighting by Comparing Queries
across Domains

Although the query feature vector in algorithm 1 can
approximate a query by aggregating its documents’
features, it potentially fails to capture important fea-
ture information due to the averaging effect during
the aggregation. For example, the merit of features
in some influential documents may be canceled out
in the mean-variance calculation, resulting in many
distorted feature values in the query feature vector
that hurts the accuracy of query classification hy-
perplane. This urges us to propose another query
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weighting method from a different perspective of
query similarity.

Intuitively, the importance of a source query to
the target domain is determined by its overall sim-
ilarity to every target query. Based on this intu-
ition, we leverage domain separator to measure the
similarity between a source query and each one of
the target queries, where an individual domain sep-
arator is created for each pair of queries. We esti-
mate the weight of a source query using algorithm 2.
Note that we assume document instances in the same
query are conditionally independent and all queries
are independent of each other. In step 3, D’q i is con-
structed by all the document instances {Z } in query
qé with the domain label y,. For each target query
qi, we use the classification hyperplane H;; to es-
timate P(Z) € D; ;), i.e. the probability that each

t

document F, of ¢’ is classified into the document set
of qg (step 8). Then the similarity between ¢’ and qg
is measured by the probability P(q% ~ ¢) at step 9.
Finally, the probability of ¢! belonging to the target
domain P(q! € D) is calculated at step 11.

It can be expected that algorithm 2 will generate



Algorithm 2 Query Weighting by Comparing Source and Target Queries

Input:
Queries in source domain, Dy = {qs i=1>
{qt }]:1 >

Queries in target domain, Dy =
Output:

Importance weights of queries in source domain, /Wy = {W;}" ;

1 ys = —1,yr = +1;

2: fori=1;¢ <m;i+ + do
Set Dy ={Zk, ys) el

fOl‘j—l]<TL]++ do

Find a classification hyperplane H;; which separates D’ ; from D’ -;

For each k, calculate the distance of Z, to Hw’ denoted as E(xk)

3

4

5 Set D;j:{ﬂfku yt)}kle’
t

6

7

8

For each k, calculate P(Z, € D ) =

9: Calculate P(q’
10:  end for

11:  AddW; = P(¢. € D;) =
12: end for

13: return [Wg;

NQt) |q|

1+6$P(a*ﬁ($k)+ﬁ) :
Z‘qull P(3r € D,):

@ Nq{)toIWS;

more precise measures of query similarity by utiliz-
ing the more fine-grained classification hyperplane
for separating the queries of two domains.

4 Ranking Model Adaptation via Query
Weighting

To adapt the source ranking model to the target do-
main, we need to incorporate query weights into ex-
isting ranking algorithms. Note that query weights
can be integrated with either pairwise or listwise al-
gorithms. For pairwise algorithms, a straightforward
way is to assign the query weight to all the document
pairs associated with this query. However, document
instance weighting cannot be appropriately utilized
in listwise approach. In order to compare query
weighting with document instance weighting, we
need to fairly apply them for the same approach of
ranking. Therefore, we choose pairwise approach to
incorporate query weighting. In this section, we ex-
tend Ranking SVM (RSVM) (Herbrich et al., 2000;
Joachims, 2002) — one of the typical pairwise algo-
rithms for this.

Let’s assume there are m queries in the data set
of source domain, and for each query ¢; there are
¢(g;) number of meaningful document pairs that can
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be constructed based on the ground truth rank labels.
Given ranking function f, the objective of RSVM is
presented as follows:

m é(‘]z

min— \wHQ—l—CZZ&J (1)
=1 j=1

subject to z;; * f (0, :1?251) ﬂJ(Q)) 1 —&j

§&j=0,0=1,..., O(q;)

m;j=1,...

where fégl) are two documents with dif-

+1if xq( ) is labeled

7

—j(2
and :cél( )
ferent rank label, and z;; =

J()

more relevant than 7, ”; or z;; = —1 otherwise.

LetA = @ and replace &i; with Hinge Loss func-

tion (.)T, Equation 1 can be turned to the following
form:
m () ] ) n
min A|[][*+> > (1 — 25 # (w5, 7Y — 7))
i=1 j=1

2)

Let 1T (q;) represent the importance weight of
source query ¢;. Equation 2 is extended for inte-
grating the query weight into the loss function in a



straightforward way:

min \||@||?+
€(qs)

ZIW(%‘) * Z (1 — 25 * f (T, :E'gfl) — 5252)))4_
i=1

J=1

where [W(.) takes any one of the weighting
schemes given by algorithm 1 and algorithm 2.

5 Evaluation

We evaluated the proposed two query weighting
methods on TREC-2003 and TREC-2004 web track
datasets, which were released through LETOR3.0 as
a benchmark collection for learning to rank by (Qin
et al., 2010). Originally, different query tasks were
defined on different parts of data in the collection,
which can be considered as different domains for us.
Adaptation takes place when ranking tasks are per-
formed by using the models trained on the domains
in which they were originally defined to rank the
documents in other domains. Our goal is to demon-
strate that query weighting can be more effective
than the state-of-the-art document instance weight-
ing.

5.1 Datasets and Setup

Three query tasks were defined in TREC-2003 and
TREC-2004 web track, which are home page finding
(HP), named page finding (NP) and topic distilla-
tion (TD) (Voorhees, 2003; Voorhees, 2004). In this
dataset, each document instance is represented by 64
features, including low-level features such as term
frequency, inverse document frequency and docu-
ment length, and high-level features such as BM25,
language-modeling, PageRank and HITS. The num-
ber of queries of each task is given in Table 1.

The baseline ranking model is an RSVM directly
trained on the source domain without using any
weighting methods, denoted as no-weight. We im-
plemented two weighting measures based on do-
main separator and Kullback-Leibler divergence, re-
ferred to DS and KL, respectively. In DS measure,
three document instance weighting methods based
on probability principle (Gao et al., 2010) were
implemented for comparison, denoted as doc-pair,
doc-avg and doc-comb (see Section 2). In KL mea-
sure, there is no probabilistic meaning for KL weight
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Query Task TREC 2003 | TREC 2004
Topic Distillation 50 75
Home Page finding 150 75
Named Page finding 150 75
Table 1: The number of queries in TREC-2003 and

TREC-2004 web track

and the doc-comb based on KL is not interpretable,
and we only present the results of doc-pair and doc-
avg for KL measure. Our proposed query weight-
ing methods are denoted by qguery-aggr and query-
comp, corresponding to document feature aggrega-
tion in query and query comparison across domains,
respectively. All ranking models above were trained
only on source domain training data and the labeled
data of target domain was just used for testing.

For training the models efficiently, we imple-
mented RSVM with Stochastic Gradient Descent
(SGD) optimizer (Shalev-Shwartz et al., 2007). The
reported performance is obtained by five-fold cross
validation.

5.2 Experimental Results

The task of HP and NP are more similar to
each other whereas HP/NP is rather different from
TD (Voorhees, 2003; Voorhees, 2004). Thus,
we carried out HP/NP to TD and TD to HP/NP
ranking adaptation tasks. Mean Average Precision
(MAP) (Baeza-Yates and Ribeiro-Neto, 1999) is
used as the ranking performance measure.

5.2.1 Adaptation from HP/NP to TD

The first set of experiments performed adaptation
from HP to TD and NP to TD. The results of MAP
are shown in Table 2.

For the DS-based measure, as shown in the table,
query-aggr works mostly better than no-weight,doc-
pair, doc-avg and doc-comb, and query-comp per-
forms the best among the five weighting methods.
T-test on MAP indicates that the improvement of
query-aggr over no-weight is statistically significant
on two adaptation tasks while the improvement of
document instance weighting over no-weight is sta-
tistically significant only on one task. All of the
improvement of query-comp over no-weight, doc-
pair,doc-avg and doc-comb are statistically signifi-
cant. This demonstrates the effectiveness of query



Model Weighting method | HPO3 to TD03 | HP04 to TD04 | NPO3 to TD03 | NP04 to TD04
no-weight 0.2508 0.2086 0.1936 0.1756
doc-pair 0.2505 0.2042 0.1982f 0.1708
doc-avg 0.2514 0.2019 0.21221 0.1716

DS doc-comb 0.2562 0.2051 0.22241% 0.1793
query-aggr 0.2573 0.21061* 0.2088 0.18081#
query-comp 0.28161 0.214711 0.23921 0.1861%
doc-pair 0.2521 0.2048 0.1901 0.1761
doc-avg 0.2534 0.2127" 0.1904 0.1777

KL doc-comb - - - -
query-aggr 0.1890 0.1901 0.1870 0.1643
query-comp 0.2548f 0.2142f 0.23137# 0.1807"

Table 2: Results of MAP for HP/NP to TD adaptation. f, 1,

# and boldface indicate significantly better than no-weight,

doc-pair, doc-avg and doc-comb, respectively. Confidence level is set at 95%

weighting compared to document instance weight-
ing.

Furthermore, query-comp can perform better than
query-aggr. The reason is that although document
feature aggregation might be a reasonable represen-
tation for a set of document instances, it is possible
that some information could be lost or distorted in
the process of compression. By contrast, more ac-
curate query weights can be achieved by the more
fine-grained similarity measure between the source
query and all target queries in algorithm 2.

For the KL-based measure, similar observation
can be obtained. However, it’s obvious that DS-
based models can work better than the KL-based.
The reason is that KL conducts weighting by density
function ratio which is sensitive to the data scale.
Specifically, after document feature aggregation, the
number of query feature vectors in all adaptation
tasks is no more than 150 in source and target do-
mains. It renders the density estimation in guery-
aggr is very inaccurate since the set of samples is
too small. As each query contains 1000 documents,
they seemed to provide query-comp enough samples
for achieving reasonable estimation of the density
functions in both domains.

5.2.2 Adaptation from TD to HP/NP

To further validate the effectiveness of query
weighting, we also conducted adaptation from TD
to HP and TD to NP . MAP results with significant
test are shown in Table 3.

We can see that document instance weighting
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schemes including doc-pair, doc-avg and doc-comb
can not outperform no-weight based on MAP mea-
sure. The reason is that each query in TD has 1000
retrieved documents in which 10-15 documents are
relevant whereas each query in HP or NP only con-
sists 1-2 relevant documents. Thus, when TD serves
as the source domain, it leads to the problem that
too many document pairs were generated for train-
ing the RSVM model. In this case, a small number
of documents that were weighted inaccurately can
make significant impact on many number of docu-
ment pairs. Since query weighting method directly
estimates the query importance instead of document
instance importance, both query-aggr and query-
comp can avoid such kind of negative influence that
is inevitable in the three document instance weight-
ing methods.

5.2.3 The Analysis on Source Query Weights

An interesting problem is which queries in the
source domain are assigned high weights and why
it’s the case. Query weighting assigns each source
query with a weight value. Note that it’s not mean-
ingful to directly compare absolute weight values
between query-aggr and query-comp because source
query weights from distinct weighting methods have
different range and scale. However, it is feasible
to compare the weights with the same weighting
method. Intuitively, if the ranking model learned
from a source query can work well in target do-
main, it should get high weight. According to this
intuition, if ranking models f;1 and fg2 are learned



model weighting scheme | TDO03 to HP03 | TD04 to HP04 | TDO3 to NPO3 | TD04 to NP04
no-weight 0.6986 0.6158 0.5053 0.5427
doc-pair 0.6588 0.6235 0.4878 0.5212
doc-avg 0.6654 0.6200 0.4736 0.5035

DS doc-comb 0.6932 0.6214 0.4974 0.5077
query-aggr 0.7179# 0.6292f% 0.51981# 0.55511#
query-comp 0.72971% 0.649911 0.5203% 0.65411
doc-pair 0.6480 0.6107 0.4633 0.5413
doc-avg 0.6472 0.6132 0.4626 0.5406

KL doc-comb - - - -
query-aggr 0.6263 0.5929 0.4597 0.4673
query-comp 0.6530% 0.63581# 0.4726 0.55591#

Table 3: Results of MAP for TD to HP/NP adaptation. f, I, § and boldface indicate significantly better than no-weight,
doc-pair, doc-avg and doc-comb, respectively. Confidence level is set as 95%.

from queries ¢! and ¢? respectively, and fq% per-
forms better than f,2, then the source query weight
of ¢! should be higher than that of ¢2.

For further analysis, we compare the weight val-
ues between each source query pair, for which we
trained RSVM on each source query and evaluated
the learned model on test data from target domain.
Then, the source queries are ranked according to the
MAP values obtained by their corresponding rank-
ing models. The order is denoted as I2,,,4p. Mean-
while, the source queries are also ranked with re-
spect to their weights estimated by DS-based mea-
sure, and the order is denoted as Ryeignt. We hope
Ryeignt 1s correlated as positively as possible with
R,,qp. For comparison, we also ranked these queries
according to randomly generated query weights,
which is denoted as query-rand in addition to guery-
aggr and query-comp. The Kendall’'s 7 = Ilz_Q
is used to measure the correlation (Kendall, 1970),
where P is the number of concordant query pairs
and @ is the number of discordant pairs. It’s
noted that 7’s range is from -1 to 1, and the larger
value means the two ranking is better correlated.
The Kendall’s 7 by different weighting methods are
given in Table 4 and 5.

We find that Ryc;qn¢ produced by query-aggr and
query-comp are all positively correlated with 1,4
and clearly the orders generated by query-comp are
more positive than those by query-aggr. This is
another explanation why query-comp outperforms
query-aggr. Furthermore, both are far better than
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| weighting | TDO3 to HP03 | TD04 to HP04
doc-pair 28,835 secs 21,640 secs
query-aggr 182 secs 123 secs
query-comp 15,056 secs 10,081 secs

Table 6: The efficiency of weighting in seconds.

query-rand because the R ¢ignt by query-rand is ac-
tually independent of R2,,qp.

5.2.4 Efficiency

In the situation where there are large scale data in
source and target domains, how to efficiently weight
a source query is another interesting problem. With-
out the loss of generality, we reported the weighting
time of doc-pair, query-aggr and query-comp from
adaptation from TD to HP using DS measure. As
doc-avg and doc-comb are derived from doc-pair,
their efficiency is equivalent to doc-pair.

As shown in table 6, query-aggr can efficiently
weight query using query feature vector. The reason
is two-fold: one is the operation of query document
aggregation can be done very fast, and the other is
there are 1000 documents in each query of TD or HP,
which means that the compression ratio is 1000:1.
Thus, the domain separator can be found quickly. In
addition, query-comp is more efficient than doc-pair
because doc-pair needs too much time to find the
separator using all instances from source and target
domain. And query-comp uses a divide-and-conquer
method to measure the similarity of source query to
each target query, and then efficiently combine these



Weighting method | HP03 to TDO3 | HP04 to TD04 | NP03 to TDO3 | NP04 to TD04
query-aggr 0.0906 0.0280 0.0247 0.0525
query-comp 0.1001 0.0804 0.0711 0.1737
query-rand 0.0041 0.0008 -0.0127 0.0163

Table 4: The Kendall’s 7 of Ryeight and Ryy,qp in HP/NP to TD adaptation.

Weighting method | TDO03 to HPO3 | TD04 to HPO4 | TDO3 to NPO3 | TDO04 to NP04
query-aggr 0.1172 0.0121 0.0574 0.0464
query-comp 0.1304 0.1393 0.1586 0.0545
query-rand —0.0291 0.0022 0.0161 -0.0262

Table 5: The Kendall’s 7 of Reign: and Ry, in TD to HP/NP adaptation.

fine-grained similarity values.

6 Related Work

Cross-domain knowledge transfer has became an
important topic in machine learning and natural lan-
guage processing (Ben-David et al., 2010; Jiang
and Zhai, 2007; Blitzer et al., 2006; Daumé III
and Marcu, 2006). (Blitzer et al., 2006) pro-
posed model adaptation using pivot features to build
structural feature correspondence in two domains.
(Pan et al., 2009) proposed to seek a common fea-
tures space to reduce the distribution difference be-
tween the source and target domain. (Daumé III and
Marcu, 2006) assumed training instances were gen-
erated from source domain, target domain and cross-
domain distributions, and estimated the parameter
for the mixture distribution.

Recently, domain adaptation in learning to rank
received more and more attentions due to the lack
of training data in new search domains. Existing
ranking adaptation approaches can be grouped into
feature-based (Geng et al., 2009; Chen et al., 2008b;
Wang et al., 2009; Gao et al., 2009) and instance-
based (Chen et al., 2010; Chen et al., 2008a; Gao et
al., 2010) approaches. In (Geng et al., 2009; Chen et
al., 2008b), the parameters of ranking model trained
on the source domain was adjusted with the small
set of labeled data in the target domain. (Wang et al.,
2009) aimed at ranking adaptation in heterogeneous
domains. (Gao et al., 2009) learned ranking mod-
els on the source and target domains independently,
and then constructed a stronger model by interpo-
lating the two models. (Chen et al., 2010; Chen et

120

al., 2008a) weighted source instances by using small
amount of labeled data in the target domain. (Gao et
al., 2010) studied instance weighting based on do-
main separator for learning to rank by only using
training data from source domain. In this work, we
propose to directly measure the query importance in-
stead of document instance importance by consider-
ing information at both levels.

7 Conclusion

We introduced two simple yet effective query
weighting methods for ranking model adaptation.
The first represents a set of document instances
within the same query as a query feature vector,
and then directly measure the source query impor-
tance to the target domain. The second measures
the similarity between a source query and each tar-
get query, and then combine the fine-grained simi-
larity values to estimate its importance to target do-
main. We evaluated our approaches on LETOR3.0
dataset for ranking adaptation and found that: (1)
the first method efficiently estimate query weights,
and can outperform the document instance weight-
ing but some information is lost during the aggrega-
tion; (2) the second method consistently and signifi-
cantly outperforms document instance weighting.
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Abstract

Joint sentiment-topic (JST) model was previ-
ously proposed to detect sentiment and topic
simultaneously from text. The only super-
vision required by JST model learning is
domain-independent polarity word priors. In
this paper, we modify the JST model by in-
corporating word polarity priors through mod-
ifying the topic-word Dirichlet priors. We
study the polarity-bearing topics extracted by
JST and show that by augmenting the original
feature space with polarity-bearing topics, the
in-domain supervised classifiers learned from
augmented feature representation achieve the
state-of-the-art performance of 95% on the
movie review data and an average of 90% on
the multi-domain sentiment dataset. Further-
more, using feature augmentation and selec-
tion according to the information gain criteria
for cross-domain sentiment classification, our
proposed approach performs either better or
comparably compared to previous approaches.
Nevertheless, our approach is much simpler
and does not require difficult parameter tun-
ing.

1 Introduction

Given a piece of text, sentiment classification aims
to determine whether the semantic orientation of the
text is positive, negative or neutral. Machine learn-
ing approaches to this problem (?; ?; 2; ?; 2; ?) typ-
ically assume that classification models are trained
and tested using data drawn from some fixed distri-
bution. However, in many practical cases, we may
have plentiful labeled examples in the source do-
main, but very few or no labeled examples in the
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target domain with a different distribution. For ex-
ample, we may have many labeled books reviews,
but we are interested in detecting the polarity of
electronics reviews. Reviews for different produces
might have widely different vocabularies, thus clas-
sifiers trained on one domain often fail to produce
satisfactory results when shifting to another do-
main. This has motivated much research on sen-
timent transfer learning which transfers knowledge
from a source task or domain to a different but re-
lated task or domain (?; ?; ?; ?).

Joint sentiment-topic (JST) model (?; ?) was ex-
tended from the latent Dirichlet allocation (LDA)
model (?) to detect sentiment and topic simultane-
ously from text. The only supervision required by
JST learning is domain-independent polarity word
prior information. With prior polarity words ex-
tracted from both the MPQA subjectivity lexicon'
and the appraisal lexicon?, the JST model achieves
a sentiment classification accuracy of 74% on the
movie review data® and 71% on the multi-domain
sentiment dataset*. Moreover, it is also able to ex-
tract coherent and informative topics grouped under
different sentiment. The fact that the JST model
does not required any labeled documents for training
makes it desirable for domain adaptation in senti-
ment classification. Many existing approaches solve
the sentiment transfer problem by associating words

"http://www.cs.pitt.edu/mpga/
http://lingcog.iit.edu/arc/appraisal_
lexicon_2007b.tar.gz
Shttp://www.cs.cornell.edu/people/pabo/
movie-review—data
*http://www.cs.jhu.edu/~mdredze/
datasets/sentiment/index2.html
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from different domains which indicate the same sen-
timent (?; ?). Such an association mapping problem
can be naturally solved by the posterior inference in
the JST model. Indeed, the polarity-bearing topics
extracted by JST essentially capture sentiment asso-
ciations among words from different domains which
effectively overcome the data distribution difference
between source and target domains.

The previously proposed JST model uses the sen-
timent prior information in the Gibbs sampling in-
ference step that a sentiment label will only be sam-
pled if the current word token has no prior sentiment
as defined in a sentiment lexicon. This in fact im-
plies a different generative process where many of
the word prior sentiment labels are observed. The
model is no longer “latent”. We propose an alter-
native approach by incorporating word prior polar-
ity information through modifying the topic-word
Dirichlet priors. This essentially creates an informed
prior distribution for the sentiment labels and would
allow the model to actually be latent and would be
consistent with the generative story.

We study the polarity-bearing topics extracted by
the JST model and show that by augmenting the
original feature space with polarity-bearing topics,
the performance of in-domain supervised classifiers
learned from augmented feature representation im-
proves substantially, reaching the state-of-the-art re-
sults of 95% on the movie review data and an aver-
age of 90% on the multi-domain sentiment dataset.
Furthermore, using simple feature augmentation,
our proposed approach outperforms the structural
correspondence learning (SCL) (?) algorithm and
achieves comparable results to the recently proposed
spectral feature alignment (SFA) method (?). Never-
theless, our approach is much simpler and does not
require difficult parameter tuning.

We proceed with a review of related work on
sentiment domain adaptation. We then briefly de-
scribe the JST model and present another approach
to incorporate word prior polarity information into
JST learning. We subsequently show that words
from different domains can indeed be grouped un-
der the same polarity-bearing topic through an illus-
tration of example topic words extracted by JST be-
fore proposing a domain adaptation approach based
on JST. We verify our proposed approach by con-
ducting experiments on both the movie review data
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and the multi-domain sentiment dataset. Finally, we
conclude our work and outline future directions.

2 Related Work

There has been significant amount of work on algo-
rithms for domain adaptation in NLP. Earlier work
treats the source domain data as “prior knowledge”
and uses maximum a posterior (MAP) estimation to
learn a model for the target domain data under this
prior distribution (?). Chelba and Acero (?) also
uses the source domain data to estimate prior dis-
tribution but in the context of a maximum entropy
(ME) model. The ME model has later been studied
in (?) for domain adaptation where a mixture model
is defined to learn differences between domains.

Other approaches rely on unlabeled data in the
target domain to overcome feature distribution dif-
ferences between domains. Motivated by the alter-
nating structural optimization (ASO) algorithm (?)
for multi-task learning, Blitzer et al. (?) proposed
structural correspondence learning (SCL) for do-
main adaptation in sentiment classification. Given
labeled data from a source domain and unlabeled
data from target domain, SCL selects a set of pivot
features to link the source and target domains where
pivots are selected based on their common frequency
in both domains and also their mutual information
with the source labels.

There has also been research in exploring care-
ful structuring of features for domain adaptation.
Daumé (?) proposed a kernel-mapping function
which maps both source and target domains data to
a high-dimensional feature space so that data points
from the same domain are twice as similar as those
from different domains. Dai et al.(?) proposed trans-
lated learning which uses a language model to link
the class labels to the features in the source spaces,
which in turn is translated to the features in the
target spaces. Dai et al. (?) further proposed us-
ing spectral learning theory to learn an eigen fea-
ture representation from a task graph representing
features, instances and class labels. In a similar
vein, Pan et al. (?) proposed the spectral feature
alignment (SFA) algorithm where some domain-
independent words are used as a bridge to con-
struct a bipartite graph to model the co-occurrence
relationship between domain-specific words and
domain-independent words. Feature clusters are



generated by co-align domain-specific and domain-
independent words.

Graph-based approach has also been studied in
(?) where a graph is built with nodes denoting
documents and edges denoting content similarity
between documents. The sentiment score of each
unlabeled documents is recursively calculated until
convergence from its neighbors the actual labels of
source domain documents and pseudo-labels of tar-
get document documents. This approach was later
extended by simultaneously considering relations
between documents and words from both source and
target domains (?).

More recently, Seah et al. (?) addressed the issue
when the predictive distribution of class label given
input data of the domains differs and proposed Pre-
dictive Distribution Matching SVM learn a robust
classifier in the target domain by leveraging the la-
beled data from only the relevant regions of multiple
sources.

3 Joint Sentiment-Topic (JST) Model

Assume that we have a corpus with a collection of D
documents denoted by C' = {d,ds,...,dp}; each
document in the corpus is a sequence of Ny words
denoted by d = (w1, w2, ...,wy,), and each word
in the document is an item from a vocabulary index
with V' distinct terms denoted by {1, 2, ..., V'}. Also,
let S be the number of distinct sentiment labels, and
T be the total number of topics. The generative
process in JST which corresponds to the graphical
model shown in Figure ??(a) is as follows:

e For each document d, choose a distribution
mq ~ Dir(7y).

e For each sentiment label [ under document d,
choose a distribution §,; ~ Dir(a).

e For each word w; in document d

— choose a sentiment label /; ~ Mult(7y),

— choose a topic z; ~ Mult(6,4,),

— choose a word w; from gpl;z a Multino-
mial distribution over words conditioned
on topic z; and sentiment label [;.

Gibbs sampling was used to estimate the posterior
distribution by sequentially sampling each variable
of interest, z; and [; here, from the distribution over
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Figure 1: JST model and its modified version.

that variable given the current values of all other
variables and data. Letting the superscript —t de-
note a quantity that excludes data from t** position,
the conditional posterior for z; and /; by marginaliz-
ing out the random variables ¢, 0, and 7 is

Pz =4l = klw,z 517" o, 8,7) «

Nupjk 8 Nigatair  Nya+y

Ne+VB Neg+> 050 Nit+Sy
where Ny, ;1 is the number of times word w; ap-
peared in topic j and with sentiment label k, N;
is the number of times words assigned to topic j
and sentiment label k, N; j 4 is the number of times
a word from document d has been associated with
topic j and sentiment label &, Vi 4 is the number of
times sentiment label k£ has been assigned to some
word tokens in document d, and N is the total num-
ber of words in the document collection.

In the modified JST model as shown in Fig-
ure ??(b), we add an additional dependency link of
¢ on the matrix X of size S x V' which we use to en-
code word prior sentiment information into the JST
model. For each word w € {1,..., V'}, if w is found
in the sentiment lexicon, for each | € {1, ..., S}, the
element ), is updated as follows

- 1 if S(w) =1
=13 0 otherwise

ey

) 2

where the function S(w) returns the prior sentiment
label of w in a sentiment lexicon, i.e. neutral, posi-



Book DVD Book  Elec. | Book Kitch. | DVD Elec. | DVD Kitch. Elec.  Kitch.
recommend funni | interest pictur |interest qualiti |concert sound| movi recommend| sound pleas
.| highli cool topic clear |success easili | rock listen| stori highli excel look
é easi entertain knowledg paper | polit servic |favorit bass |classic perfect | satisfi ~ worth
depth  awesom| follow  color |clearli stainless| sing amaz| fun great |perform materi
strong worth easi accur |popular safe | talent acoust|charact qulati |comfort profession
mysteri cop abus problem| bore return | bore poorli| horror cabinet [tomtom elimin
o fbi shock | question poor |tediou heavi | plot low | alien break region regardless
2 investig  prison | mislead design | cheat stick | stupid replac| scari install error  cheapli
death escap point case | crazi defect | stori avoid| evil drop code plain
report dirti | disagre flaw hell mess | terribl crap | dead gap dumb incorrect

Table 1: Extracted polarity words by JST on the combined data sets.

tive or negative.

The matrix A can be considered as a transforma-
tion matrix which modifies the Dirichlet priors 3 of
size S x T x V, so that the word prior polarity can
be captured. For example, the word “excellent” with
index ¢ in the vocabulary has a positive polarity. The
corresponding row vector in A is [0, 1, 0] with its el-
ements representing neutral, positive, and negative.
For each topic j, multiplying A\;; with ;;;, only the
value of 3, ;i is retained, and (3, and 3y, ji
are set to 0. Thus, the word “excellent” can only
be drawn from the positive topic word distributions
generated from a Dirichlet distribution with param-

eter By .-
4 Polarity Words Extracted by JST

The JST model allows clustering different terms
which share similar sentiment. In this section, we
study the polarity-bearing topics extracted by JST.
We combined reviews from the source and target
domains and discarded document labels in both do-
mains. There are a total of six different combi-
nations. We then run JST on the combined data
sets and listed some of the topic words extracted as
shown in Table ??. Words in each cell are grouped
under one topic and the upper half of the table shows
topic words under the positive sentiment label while
the lower half shows topic words under the negative
sentiment label.

We can see that JST appears to better capture sen-
timent association distribution in the source and tar-
get domains. For example, in the DVD+Elec. set,
words from the DVD domain describe a rock con-
cert DVD while words from the Electronics domain
are likely relevant to stereo amplifiers and receivers,
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and yet they are grouped under the same topic by the
JST model. Checking the word coverage in each do-
main reveals that for example “bass” seldom appears
in the DVD domain, but appears more often in the
Electronics domain. Likewise, in the Book+Kitch.
set, “stainless” rarely appears in the Book domain
and “interest” does not occur often in the Kitchen
domain and they are grouped under the same topic.
These observations motivate us to explore polarity-
bearing topics extracted by JST for cross-domain
sentiment classification since grouping words from
different domains but bearing similar sentiment has
the effect of overcoming the data distribution differ-
ence of two domains.

S Domain Adaptation using JST

Given input data x and a class label y, labeled pat-
terns of one domain can be drawn from the joint
distribution P(x,y) = P(y|x)P(x). Domain adap-
tation usually assume that data distribution are dif-
ferent in source and target domains, i.e., Ps(x) #
Py(x). The task of domain adaptation is to predict
the label 4! corresponding to z! in the target domain.

We assume that we are given two sets of training
data, D* and D!, the source domain and target do-
main data sets, respectively. In the multiclass clas-
sification problem, the source domain data consist
of labeled instances, D° = {(x5;y) € X x Y :
1 < n < N¥}, where X is the input space and )
is a finite set of class labels. No class label is given
in the target domain, D! = {2}, € X : 1 < n <
Nt Nt > N*}. Algorithm ?? shows how to per-
form domain adaptation using the JST model. The
source and target domain data are first merged with
document labels discarded. A JST model is then




learned from the merged corpus to generate polarity-
bearing topics for each document. The original doc-
uments in the source domain are augmented with
those polarity-bearing topics as shown in Step 4 of
Algorithm ??, where /;_z; denotes a combination of
sentiment label /; and topic z; for word w;. Finally,
feature selection is performed according to the infor-
mation gain criteria and a classifier is then trained
from the source domain using the new document
representations. The target domain documents are
also encoded in a similar way with polarity-bearing
topics added into their feature representations.

Algorithm 1 Domain adaptation using JST.

Input: The source domain data D% = {(z5;y5) € X x
Y : 1 < n < N%}, the target domain data, D¢ =
{zt, € X:1<n < N' Nt > N*%}

Output: A sentiment classifier for the target domain D*

1: Merge D¢ and D! with document labels discarded,

D={(z5,1<n<N%zl,1<n<N'
2: Train a JST model on D
3: for each document =7 = (w1, wa, ..., W) € D° do
4:  Augment document with polarity-bearing topics
geperated from JST,
x5 = (11,)1,102, vy Wiy 11221, L2 20, ooy Ui —Zim)
5: Add {z?;y?} into a document pool B
6: end for
7: Perform feature selection using IG on B
8: Return a classifier, trained on B

As discussed in Section ?? that the JST model di-
rectly models P(1|d), the probability of sentiment
label given document, and hence document polar-
ity can be classified accordingly. Since JST model
learning does not require the availability of docu-
ment labels, it is possible to augment the source do-
main data by adding most confident pseudo-labeled
documents from the target domain by the JST model
as shown in Algorithm ??.

6 Experiments

We evaluate our proposed approach on the two
datasets, the movie review (MR) data and the multi-
domain sentiment (MDS) dataset. The movie re-
view data consist of 1000 positive and 1000 neg-
ative movie reviews drawn from the IMDB movie
archive while the multi-domain sentiment dataset
contains four different types of product reviews ex-
tracted from Amazon.com including Book, DVD,
Electronics and Kitchen appliances. Each category
127

Algorithm 2 Adding pseudo-labeled documents.
Input: The target domain data, D' = {z!, € X :
1 <n < NY Nt > N*}, document sentiment
classification threshold 7
Output: A labeled document pool 5
1: Train a JST model parameterized by A on D!
2: for each document x!, € D! do
3:  Infer its sentiment class label from JST as
I, = argmaxg P(l|zt; A)

4 if P(l,|zt; A) > 7 then

5: Add labeled sample (z¢,1,) into a docu-
ment pool B

6: end if

7. end for

of product reviews comprises of 1000 positive and
1000 negative reviews and is considered as a do-
main. Preprocessing was performed on both of the
datasets by removing punctuation, numbers, non-
alphabet characters and stopwords. The MPQA sub-
jectivity lexicon is used as a sentiment lexicon in our
experiments.

6.1 Experimental Setup

While the original JST model can produce reason-
able results with a simple symmetric Dirichlet prior,
here we use asymmetric prior a over the topic pro-
portions which is learned directly from data using a
fixed-point iteration method (?).

In our experiment, & was updated every 25 itera-
tions during the Gibbs sampling procedure. In terms
of other priors, we set symmetric prior 3 = 0.01 and
v = (0.05x L)/S, where L is the average document
length, and the value of 0.05 on average allocates 5%
of probability mass for mixing.

6.2 Supervised Sentiment Classification

We performed 5-fold cross validation for the per-
formance evaluation of supervised sentiment clas-
sification. Results reported in this section are av-
eraged over 10 such runs. We have tested several
classifiers including Naive Bayes (NB) and support
vector machines (SVMs) from WEKA’, and maxi-
mum entropy (ME) from MALLET®. All parameters
are set to their default values except the Gaussian

Shttp://www.cs.waikato.ac.nz/ml/weka/
*http://mallet.cs.umass.edu/



prior variance is set to 0.1 for the ME model train-
ing. The results show that ME consistently outper-
forms NB and SVM on average. Thus, we only re-
port results from ME trained on document vectors
with each term weighted according to its frequency.

—&—Movie Review =li=Book DVD =3¢=Electronics Kitchen

100

Accuracy (%)

1 5 10 15 30 50 100 150 200
No. of Topics

Figure 2: Classification accuracy vs. no. of topics.

The only parameter we need to set is the number
of topics T'. It has to be noted that the actual num-
ber of feature clusters is 3 x 7. For example, when
T is set to 5, there are 5 topic groups under each
of the positive, negative, or neutral sentiment labels
and hence there are altogether 15 feature clusters.
The generated topics for each document from the
JST model were simply added into its bag-of-words
(BOW) feature representation prior to model train-
ing. Figure ?? shows the classification results on the
five different domains by varying the number of top-
ics from 1 to 200. It can be observed that the best
classification accuracy is obtained when the number
of topics is set to 1 (or 3 feature clusters). Increas-
ing the number of topics results in the decrease of
accuracy though it stabilizes after 15 topics. Never-
theless, when the number of topics is set to 15, us-
ing JST feature augmentation still outperforms ME
without feature augmentation (the baseline model)
in all of the domains. It is worth pointing out that
the JST model with single topic becomes the stan-
dard LDA model with only three sentiment topics.
Nevertheless, we have proposed an effective way to
incorporate domain-independent word polarity prior
information into model learning. As will be shown
later in Table ?? that the JST model with word po-
larity priors incorporated performs significantly bet-
ter than the LDA model without incorporating such
prior information.

For comparison purpose, we also run the LDA
model and augmented the BOW features with the
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MDS

Method MR

Book DVD Elec. Kitch.
Baseline 82.53 79.96 81.32 83.61 85.82
LDA 83.76 8432 8562 854 87.68
JST 9498 89.95 91.7 88.25 89.85
[YE10] 91.78 82.75 82.85 8455 879
[LI10] - 79.49 81.65 83.64 85.65

Table 2: Supervised sentiment classification accuracy.

generated topics in a similar way. The best accu-
racy was obtained when the number of topics is set
to 15 in the LDA model. Table ?? shows the clas-
sification accuracy results with or without feature
augmentation. We have performed significance test
and found that LDA performs statistically signifi-
cant better than Baseline according to a paired ¢-test
with p < 0.005 for the Kitchen domain and with
p < 0.001 for all the other domains. JST performs
statistically significant better than both Baseline and
LDA with p < 0.001.

We also compare our method with other recently
proposed approaches. Yessenalina et al. (?) ex-
plored different methods to automatically generate
annotator rationales to improve sentiment classifica-
tion accuracy. Our method using JST feature aug-
mentation consistently performs better than their ap-
proach (denoted as [YE10] in Table ??). They fur-
ther proposed a two-level structured model (?) for
document-level sentiment classification. The best
accuracy obtained on the MR data is 93.22% with
the model being initialized with sentence-level hu-
man annotations, which is still worse than ours. Li
et al. (?) adopted a two-stage process by first clas-
sifying sentences as personal views and impersonal
views and then using an ensemble method to per-
form sentiment classification. Their method (de-
noted as [LI10] in Table ??) performs worse than ei-
ther LDA or JST feature augmentation. To the best
of our knowledge, the results achieved using JST
feature augmentation are the state-of-the-art for both
the MR and the MDS datasets.

6.3 Domain Adaptation

We conducted domain adaptation experiments on
the MDS dataset comprising of four different do-
mains, Book (B), DVD (D), Electronics (E), and
Kitchen appliances (K). We randomly split each do-



main data into a training set of 1,600 instances and a
test set of 400 instances. A classifier trained on the
training set of one domain is tested on the test set of
a different domain. We preformed 5 random splits
and report the results averaged over 5 such runs.

Comparison with Baseline Models

We compare our proposed approaches with two
baseline models. The first one (denoted as “Base” in
Table ??) is an ME classifier trained without adapta-
tion. LDA results were generated from an ME clas-
sifier trained on document vectors augmented with
topics generated from the LDA model. The number
of topics was set to 15. JST results were obtained
in a similar way except that we used the polarity-
bearing topics generated from the JST model. We
also tested with adding pseudo-labeled examples
from the JST model into the source domain for ME
classifier training (following Algorithm ??), denoted
as “JST-PL” in Table ??. The document sentiment
classification probability threshold 7 was set to 0.8.
Finally, we performed feature selection by selecting
the top 2000 features according to the information
gain criteria (“JST-IG™)’.

There are altogether 12 cross-domain sentiment
classification tasks. We showed the adaptation loss
results in Table ?? where the result for each domain
and for each method is averaged over all three pos-
sible adaptation tasks by varying the source domain.
The adaptation loss is calculated with respect to the
in-domain gold standard classification result. For
example, the in-domain goal standard for the Book
domain is 79.96%. For adapting from DVD to Book,
baseline achieves 72.25% and JST gives 76.45%.
The adaptation loss is 7.71 for baseline and 3.51 for
JST.

It can be observed from Table ?? that LDA only
improves slightly compared to the baseline with an
error reduction of 11%. JST further reduces the er-
ror due to transfer by 27%. Adding pseudo-labeled
examples gives a slightly better performance com-
pared to JST with an error reduction of 36%. With
feature selection, JST-IG outperforms all the other
approaches with a relative error reduction of 53%.

"Both values of 0.8 and 2000 were set arbitrarily after an ini-
tial run on some held-out data; they were not tuned to optimize
test performance.
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Domain Base LDA JST IJST-PL IST-IG
Book 108 94 72 6.3 5.2
DVD 8.3 6.1 438 4.4 29
Electr. 7.9 777 6.3 5.4 3.9
Kitch. 7.6 76 6.9 6.1 4.4
Average 8.6 77 63 5.5 4.1

Table 3: Adaptation loss with respect to the in-domain
gold standard. The last row shows the average loss over
all the four domains.

Parameter Sensitivity

There is only one parameters to be set in the JST-
IG approach, the number of topics. We plot the clas-
sification accuracy versus different topic numbers in
Figure ?? with the number of topics varying between
1 and 200, corresponding to feature clusters varying
between 3 and 600. It can be observed that for the
relatively larger Book and DVD data sets, the accu-
racies peaked at topic number 10, whereas for the
relatively smaller Electronics and Kitchen data sets,
the best performance was obtained at topic number
50. Increasing topic numbers results in the decrease
of classification accuracy. Manually examining the
extracted polarity topics from JST reveals that when
the topic number is small, each topic cluster contains
well-mixed words from different domains. How-
ever, when the topic number is large, words under
each topic cluster tend to be dominated by a single
domain.

Comparison with Existing Approaches

We compare in Figure ?? our proposed approach
with two other domain adaptation algorithms for
sentiment classification, SCL and SFA. Each set of
bars represent a cross-domain sentiment classifica-
tion task. The thick horizontal lines are in-domain
sentiment classification accuracies. It is worth not-
ing that our in-domain results are slightly different
from those reported in (?; ?) due to different ran-
dom splits. Our proposed JST-IG approach outper-
forms SCL in average and achieves comparable re-
sults to SFA. While SCL requires the construction of
a reasonable number of auxiliary tasks that are use-
ful to model “pivots” and “non-pivots”, SFA relies
on a good selection of domain-independent features
for the construction of bipartite feature graph before
running spectral clustering to derive feature clusters.
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Figure 3: Classification accuracy vs. no. of topics.

On the contrary, our proposed approach based on
the JST model is much simpler and yet still achieves
comparable results.

7 Conclusions

In this paper, we have studied polarity-bearing top-
ics generated from the JST model and shown that by
augmenting the original feature space with polarity-
bearing topics, the in-domain supervised classi-
fiers learned from augmented feature representation
achieve the state-of-the-art performance on both the
movie review data and the multi-domain sentiment
dataset. Furthermore, using feature augmentation
and selection according to the information gain cri-
teria for cross-domain sentiment classification, our
proposed approach outperforms SCL and gives sim-
ilar results as SFA. Nevertheless, our approach is
much simpler and does not require difficult parame-
ter tuning.

There are several directions we would like to ex-
plore in the future. First, polarity-bearing topics
generated by the JST model were simply added into
the original feature space of documents, it is worth
investigating attaching different weight to each topic
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Figure 4: Comparison with existing approaches.

maybe in proportional to the posterior probability of
sentiment label and topic given a word estimated by
the JST model. Second, it might be interesting to
study the effect of introducing a tradeoff parameter
to balance the effect of original and new features.
Finally, our experimental results show that adding
pseudo-labeled examples by the JST model does not
appear to be effective. We could possibly explore in-
stance weight strategies (?) on both pseudo-labeled
examples and source domain training examples in
order to improve the adaptation performance.
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Abstract

We describe a sentiment classification method
that is applicable when we do not have any la-
beled data for a farget domain but have some
labeled data for multiple other domains, des-
ignated as the source domains. We automat-
ically create a sentiment sensitive thesaurus
using both labeled and unlabeled data from
multiple source domains to find the associa-
tion between words that express similar senti-
ments in different domains. The created the-
saurus is then used to expand feature vectors
to train a binary classifier. Unlike previous
cross-domain sentiment classification meth-
ods, our method can efficiently learn from
multiple source domains. Our method signif-
icantly outperforms numerous baselines and
returns results that are better than or com-
parable to previous cross-domain sentiment
classification methods on a benchmark dataset
containing Amazon user reviews for different
types of products.

1 Introduction

Users express opinions about products or services
they consume in blog posts, shopping sites, or re-
view sites. It is useful for both consumers as well
as for producers to know what general public think
about a particular product or service. Automatic
document level sentiment classification (Pang et al.,
2002; Turney, 2002) is the task of classifying a given
review with respect to the sentiment expressed by
the author of the review. For example, a sentiment
classifier might classify a user review about a movie
as positive or negative depending on the sentiment
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expressed in the review. Sentiment classification
has been applied in numerous tasks such as opinion
mining (Pang and Lee, 2008), opinion summariza-
tion (Lu et al., 2009), contextual advertising (Fan
and Chang, 2010), and market analysis (Hu and Liu,
2004).

Supervised learning algorithms that require la-
beled data have been successfully used to build sen-
timent classifiers for a specific domain (Pang et al.,
2002). However, sentiment is expressed differently
in different domains, and it is costly to annotate
data for each new domain in which we would like
to apply a sentiment classifier. For example, in the
domain of reviews about electronics products, the
words “durable” and “light” are used to express pos-
itive sentiment, whereas “expensive” and “short bat-
tery life” often indicate negative sentiment. On the
other hand, if we consider the books domain the
words “exciting” and “thriller” express positive sen-
timent, whereas the words “boring” and “lengthy”
usually express negative sentiment. A classifier
trained on one domain might not perform well on
a different domain because it would fail to learn the
sentiment of the unseen words.

Work in cross-domain sentiment classification
(Blitzer et al., 2007) focuses on the challenge of
training a classifier from one or more domains
(source domains) and applying the trained classi-
fier in a different domain (target domain). A cross-
domain sentiment classification system must over-
come two main challenges. First, it must identify
which source domain features are related to which
target domain features. Second, it requires a learn-
ing framework to incorporate the information re-
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garding the relatedness of source and target domain
features. Following previous work, we define cross-
domain sentiment classification as the problem of
learning a binary classifier (i.e. positive or negative
sentiment) given a small set of labeled data for the
source domain, and unlabeled data for both source
and target domains. In particular, no labeled data is
provided for the target domain.

In this paper, we describe a cross-domain senti-
ment classification method using an automatically
created sentiment sensitive thesaurus. We use la-
beled data from multiple source domains and unla-
beled data from source and target domains to rep-
resent the distribution of features. We represent a
lexical element (i.e. a unigram or a bigram of word
lemma) in a review using a feature vector. Next, for
each lexical element we measure its relatedness to
other lexical elements and group related lexical ele-
ments to create a thesaurus. The thesaurus captures
the relatedness among lexical elements that appear
in source and target domains based on the contexts
in which the lexical elements appear (their distribu-
tional context). A distinctive aspect of our approach
is that, in addition to the usual co-occurrence fea-
tures typically used in characterizing a word’s dis-
tributional context, we make use, where possible, of
the sentiment label of a document: i.e. sentiment la-
bels form part of our context features. This is what
makes the distributional thesaurus sensitive to senti-
ment. Unlabeled data is cheaper to collect compared
to labeled data and is often available in large quan-
tities. The use of unlabeled data enables us to ac-
curately estimate the distribution of words in source
and target domains. Our method can learn from a
large amount of unlabeled data to leverage a robust
cross-domain sentiment classifier.

We model the cross-domain sentiment classifica-
tion problem as one of feature expansion, where we
append additional related features to feature vectors
that represent source and target domain reviews in
order to reduce the mismatch of features between the
two domains. Methods that use related features have
been successfully used in numerous tasks such as
query expansion (Fang, 2008), and document classi-
fication (Shen et al., 2009). However, feature expan-
sion techniques have not previously been applied to
the task of cross-domain sentiment classification.

In our method, we use the automatically created
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thesaurus to expand feature vectors in a binary clas-
sifier at train and test times by introducing related
lexical elements from the thesaurus. We use L1 reg-
ularized logistic regression as the classification al-
gorithm. (However, the method is agnostic to the
properties of the classifier and can be used to expand
feature vectors for any binary classifier). L1 regular-
ization enables us to select a small subset of features
for the classifier. Unlike previous work which at-
tempts to learn a cross-domain classifier using a sin-
gle source domain, we leverage data from multiple
source domains to learn a robust classifier that gen-
eralizes across multiple domains. Our contributions
can be summarized as follows.

e We describe a fully automatic method to create
a thesaurus that is sensitive to the sentiment of
words expressed in different domains.

e We describe a method to use the created the-
saurus to expand feature vectors at train and test
times in a binary classifier.

2 A Motivating Example

To explain the problem of cross-domain sentiment
classification, consider the reviews shown in Ta-
ble 1 for the domains books and kitchen appliances.
Table 1 shows two positive and one negative re-
view from each domain. We have emphasized in
boldface the words that express the sentiment of
the authors of the reviews. We see that the words
excellent, broad, high quality, interesting, and
well researched are used to express positive senti-
ment in the books domain, whereas the word disap-
pointed indicates negative sentiment. On the other
hand, in the kitchen appliances domain the words
thrilled, high quality, professional, energy sav-
ing, lean, and delicious express positive sentiment,
whereas the words rust and disappointed express
negative sentiment. Although high quality would
express positive sentiment in both domains, and dis-
appointed negative sentiment, it is unlikely that we
would encounter well researched in kitchen appli-
ances reviews, or rust or delicious in book reviews.
Therefore, a model that is trained only using book
reviews might not have any weights learnt for deli-
cious or rust, which would make it difficult for this
model to accurately classify reviews of kitchen ap-
pliances.



books

kitchen appliances

+ | Excellent and broad survey of the development of
civilization with all the punch of high quality fiction.

I was so thrilled when I unpack my processor. It is
so high quality and professional in both looks and
performance.

+ | This is an interesting and well researched book.

Energy saving grill. My husband loves the burgers
that I make from this grill. They are lean and deli-
cious.

lately have been sorely disappointed.

- | Whenever a new book by Philippa Gregory comes
out, I buy it hoping to have the same experience, and

These knives are already showing spots of rust de-
spite washing by hand and drying. Very disap-
pointed.

Table 1: Positive (+) and negative (-) sentiment reviews in two different domains.

sentence Excellent and broad survey of
the development of civilization.

POS tags Excellent/J] and/CC broad/]J
survey/NN1 of/IO the/AT
development/NN1 of/IO civi-
lization/NNI1

lexical elements | excellent, broad, survey, devel-

(unigrams) opment, civilization

lexical elements | excellent+broad, broad+survey,

(bigrams) survey+development, develop-
ment+civilization

sentiment fea- | excellent*P, broad*P, sur-

tures (lemma) vey*P, excellent+broad*P,
broad+survey*P

sentiment fea- | JJ*P, NN1*P, J]J+NN1*P

tures (POS)

Table 2: Generating lexical elements and sentiment fea-
tures from a positive review sentence.

3 Sentiment Sensitive Thesaurus

One solution to the feature mismatch problem out-
lined above is to use a thesaurus that groups differ-
ent words that express the same sentiment. For ex-
ample, if we know that both excellent and delicious
are positive sentiment words, then we can use this
knowledge to expand a feature vector that contains
the word delicious using the word excellent, thereby
reducing the mismatch between features in a test in-
stance and a trained model. Below we describe a
method to construct a sentiment sensitive thesaurus
for feature expansion.

Given a labeled or an unlabeled review, we first
split the review into individual sentences. We carry
out part-of-speech (POS) tagging and lemmatiza-
tion on each review sentence using the RASP sys-
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tem (Briscoe et al., 2006). Lemmatization reduces
the data sparseness and has been shown to be effec-
tive in text classification tasks (Joachims, 1998). We
then apply a simple word filter based on POS tags to
select content words (nouns, verbs, adjectives, and
adverbs). In particular, previous work has identified
adjectives as good indicators of sentiment (Hatzi-
vassiloglou and McKeown, 1997; Wiebe, 2000).
Following previous work in cross-domain sentiment
classification, we model a review as a bag of words.
We select unigrams and bigrams from each sentence.
For the remainder of this paper, we will refer to un-
igrams and bigrams collectively as lexical elements.
Previous work on sentiment classification has shown
that both unigrams and bigrams are useful for train-
ing a sentiment classifier (Blitzer et al., 2007). We
note that it is possible to create lexical elements both
from source domain labeled reviews as well as from
unlabeled reviews in source and target domains.

Next, we represent each lexical element u using a
set of features as follows. First, we select other lex-
ical elements that co-occur with u in a review sen-
tence as features. Second, from each source domain
labeled review sentence in which u occurs, we cre-
ate sentiment features by appending the label of the
review to each lexical element we generate from that
review. For example, consider the sentence selected
from a positive review of a book shown in Table 2.
In Table 2, we use the notation “*P” to indicate posi-
tive sentiment features and “*N” to indicate negative
sentiment features. The example sentence shown in
Table 2 is selected from a positively labeled review,
and generates positive sentiment features as shown
in Table 2. In addition to word-level sentiment fea-
tures, we replace words with their POS tags to create



POS-level sentiment features. POS tags generalize
the word-level sentiment features, thereby reducing
feature sparseness.

Let us denote the value of a feature w in the fea-
ture vector u representing a lexical element u by
f(u,w). The vector u can be seen as a compact rep-
resentation of the distribution of a lexical element u
over the set of features that co-occur with w in the re-
views. From the construction of the feature vector u
described in the previous paragraph, it follows that
w can be either a sentiment feature or another lexical
element that co-occurs with « in some review sen-
tence. The distributional hypothesis (Harris, 1954)
states that words that have similar distributions are
semantically similar. We compute f(u,w) as the
pointwise mutual information between a lexical ele-
ment v and a feature w as follows:

c(u,w)

N
o » (1)
% 27:1 c(u,_]) >

N

Z?:l C(iﬂw)
N

f(u,w) = log (

Here, ¢(u,w) denotes the number of review sen-
tences in which a lexical element v and a feature
w co-occur, n and m respectively denote the total
number of lexical elements and the total number of
features, and N = >0, 37", (i, j). Pointwise
mutual information is known to be biased towards
infrequent elements and features. We follow the dis-
counting approach of Pantel & Ravichandran (2004)
to overcome this bias.

Next, for two lexical elements w and v (repre-
sented by feature vectors u and v, respectively), we
compute the relatedness 7(v,u) of the feature v to
the feature u as follows,

Zwe{w|f(v,z)>0} f(ua w)
Zwe{r|f(u,x)>0} f(’LL7 ’LU)

2

T(v,u) =

Here, we use the set notation {x|f(v,z) > 0} to
denote the set of features that co-occur with v. Re-
latedness of a lexical element v to another lexical
element v is the fraction of feature weights in the
feature vector for the element w that also co-occur
with the features in the feature vector for the ele-
ment v. If there are no features that co-occur with
both u and v, then the relatedness reaches its min-
imum value of 0. On the other hand if all features
that co-occur with u also co-occur with v, then the
relatedness , 7(v, u), reaches its maximum value of
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1. Note that relatedness is an asymmetric measure
by the definition given in Equation 2, and the relat-
edness 7(v, u) of an element v to another element u
is not necessarily equal to 7(u, v), the relatedness of
u to v.

We use the relatedness measure defined in Equa-
tion 2 to construct a sentiment sensitive thesaurus in
which, for each lexical element u we list lexical el-
ements v that co-occur with u (i.e. f(u,v) > 0) in
descending order of relatedness values 7(v,u). In
the remainder of the paper, we use the term base en-
try to refer to a lexical element « for which its related
lexical elements v (referred to as the neighbors of )
are listed in the thesaurus. Note that relatedness val-
ues computed according to Equation 2 are sensitive
to sentiment labels assigned to reviews in the source
domain, because co-occurrences are computed over
both lexical and sentiment elements extracted from
reviews. In other words, the relatedness of an ele-
ment u to another element v depends upon the sen-
timent labels assigned to the reviews that generate u
and v. This is an important fact that differentiates
our sentiment-sensitive thesaurus from other distri-
butional thesauri which do not consider sentiment
information.

Moreover, we only need to retain lexical elements
in the sentiment sensitive thesaurus because when
predicting the sentiment label for target reviews (at
test time) we cannot generate sentiment elements
from those (unlabeled) reviews, therefore we are
not required to find expansion candidates for senti-
ment elements. However, we emphasize the fact that
the relatedness values between the lexical elements
listed in the sentiment-sensitive thesaurus are com-
puted using co-occurrences with both lexical and
sentiment features, and therefore the expansion can-
didates selected for the lexical elements in the tar-
get domain reviews are sensitive to sentiment labels
assigned to reviews in the source domain. Using
a sparse matrix format and approximate similarity
matching techniques (Sarawagi and Kirpal, 2004),
we can efficiently create a thesaurus from a large set
of reviews.

4 Feature Expansion

Our feature expansion phase augments a feature vec-
tor with additional related features selected from the



sentiment-sensitive thesaurus created in Section 3 to
overcome the feature mismatch problem. First, fol-
lowing the bag-of-words model, we model a review
d using the set {w1,...,wx}, where the elements
w; are either unigrams or bigrams that appear in the
review d. We then represent a review d by a real-
valued term-frequency vector d € RV, where the
value of the j-th element d; is set to the total number
of occurrences of the unigram or bigram w; in the
review d. To find the suitable candidates to expand a
vector d for the review d, we define a ranking score
score(u;, d) for each base entry in the thesaurus as
follows:

5 i (wj, ui)
Zl]il dy
According to this definition, given a review d, a base
entry u; will have a high ranking score if there are
many words w; in the review d that are also listed
as neighbors for the base entry u; in the sentiment-
sensitive thesaurus. Moreover, we weight the re-
latedness scores for each word w; by its normal-
ized term-frequency to emphasize the salient uni-
grams and bigrams in a review. Recall that related-
ness is defined as an asymmetric measure in Equa-
tion 2, and we use 7(wj,u;) in the computation of
score(u;, d) in Equation 3. This is particularly im-
portant because we would like to score base entries
u; considering all the unigrams and bigrams that ap-
pear in a review d, instead of considering each uni-

gram or bigram individually.

To expand a vector, d, for a review d, we first
rank the base entries, u; using the ranking score
in Equation 3 and select the top k ranked base en-
tries. Let us denote the r-th ranked (1 < r < k)
base entry for a review d by v];. We then extend the
original set of unigrams and bigrams {ws, ..., wy}
by the base entries vé, . ,vfj to create a new vec-
tor d € RWHF) with dimensions corresponding to
w1, ..., wN, v}, ..., 0¥ for a review d. The values
of the extended vector d’ are set as follows. The
values of the first NV dimensions that correspond to
unigrams and bigrams w; that occur in the review d
are set to d;, their frequency in d. The subsequent &
dimensions that correspond to the top ranked based
entries for the review d are weighted according to
their ranking score. Specifically, we set the value of
the 7-th ranked base entry v}; to 1/r. Alternatively,
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3

score(u;, d) =

one could use the ranking score, score(v}}, d), itself
as the value of the appended base entries. However,
both relatedness scores as well as normalized term-
frequencies can be small in practice, which leads to
very small absolute ranking scores. By using the
inverse rank, we only take into account the rela-
tive ranking of base entries and ignore their absolute
scores.

Note that the score of a base entry depends on a
review d. Therefore, we select different base en-
tries as additional features for expanding different
reviews. Furthermore, we do not expand each w;
individually when expanding a vector d for a re-
view. Instead, we consider all unigrams and bi-
grams in d when selecting the base entries for ex-
pansion. One can think of the feature expansion pro-
cess as a lower dimensional latent mapping of fea-
tures onto the space spanned by the base entries in
the sentiment-sensitive thesaurus. The asymmetric
property of the relatedness (Equation 2) implicitly
prefers common words that co-occur with numerous
other words as expansion candidates. Such words
act as domain independent pivots and enable us to
transfer the information regarding sentiment from
one domain to another.

Using the extended vectors d’ to represent re-
views, we train a binary classifier from the source
domain labeled reviews to predict positive and neg-
ative sentiment in reviews. We differentiate the ap-
pended base entries v}, from w; that existed in the
original vector d (prior to expansion) by assigning
different feature identifiers to the appended base en-
tries. For example, a unigram excellent in a feature
vector is differentiated from the base entry excellent
by assigning the feature id, “BASE=excellent” to the
latter. This enables us to learn different weights for
base entries depending on whether they are useful
for expanding a feature vector. We use L1 regu-
larized logistic regression as the classification algo-
rithm (Ng, 2004), which produces a sparse model in
which most irrelevant features are assigned a zero
weight. This enables us to select useful features for
classification in a systematic way without having to
preselect features using heuristic approaches. The
regularization parameter is set to its default value
of 1 for all the experiments described in this paper.



5 Experiments

5.1 Dataset

To evaluate our method we use the cross-domain
sentiment classification dataset prepared by Blitzer
et al. (2007). This dataset consists of Amazon prod-
uct reviews for four different product types: books
(B), DVDs (D), electronics (E) and kitchen appli-
ances (K). There are 1000 positive and 1000 neg-
ative labeled reviews for each domain. Moreover,
the dataset contains some unlabeled reviews (on av-
erage 17,547) for each domain. This benchmark
dataset has been used in much previous work on
cross-domain sentiment classification and by eval-
uating on it we can directly compare our method
against existing approaches.

Following previous work, we randomly select 800
positive and 800 negative labeled reviews from each
domain as training instances (i.e. 1600 x 4 = 6400);
the remainder is used for testing (i.e. 400 x 4 =
1600). In our experiments, we select each domain in
turn as the target domain, with one or more other do-
mains as sources. Note that when we combine more
than one source domain we limit the total number
of source domain labeled reviews to 1600, balanced
between the domains. For example, if we combine
two source domains, then we select 400 positive and
400 negative labeled reviews from each domain giv-
ing (400 + 400) x 2 = 1600. This enables us to
perform a fair evaluation when combining multiple
source domains. The evaluation metric is classifica-
tion accuracy on a target domain, computed as the
percentage of correctly classified target domain re-
views out of the total number of reviews in the target
domain.

5.2 Effect of Feature Expansion

To study the effect of feature expansion at train time
compared to test time, we used Amazon reviews for
two further domains, music and video, which were
also collected by Blitzer et al. (2007) but are not
part of the benchmark dataset. Each validation do-
main has 1000 positive and 1000 negative labeled
reviews, and 15000 unlabeled reviews. Using the
validation domains as targets, we vary the number
of top k ranked base entries (Equation 3) used for
feature expansion during training (Traing) and test-
ing (Testy), and measure the average classification
137

Tesﬁ(

0.786
800 0.784
600 0.782

0.78
400

0.778
200

0.776

0 J

0 200 400 600 800 1000
Train,

Figure 1: Feature expansion at train vs. test times.

~ ©
al o

~
o

[o2]
o

Accuracy on electronics domain

[4)]
o

B D K

B+D B+K D+K B+D+K
Source Domains

Figure 2: Effect of using multiple source domains.

accuracy. Figure 1 illustrates the results using a heat
map, where dark colors indicate low accuracy val-
ues and light colors indicate high accuracy values.
We see that expanding features only at test time (the
left-most column) does not work well because we
have not learned proper weights for the additional
features. Similarly, expanding features only at train
time (the bottom-most row) also does not perform
well because the expanded features are not used dur-
ing testing. The maximum classification accuracy is
obtained when Test;, = 400 and Traing = 800, and
we use these values for the remainder of the experi-
ments described in the paper.

5.3 Combining Multiple Sources

Figure 2 shows the effect of combining multiple
source domains to build a sentiment classifier for
the electronics domain. We see that the kitchen do-
main is the single best source domain when adapt-
ing to the electronics target domain. This behavior
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is explained by the fact that in general kitchen appli-
ances and electronic items have similar aspects. But
a more interesting observation is that the accuracy
that we obtain when we use two source domains is
always greater than the accuracy if we use those do-
mains individually. The highest accuracy is achieved
when we use all three source domains. Although
not shown here for space limitations, we observed
similar trends with other domains in the benchmark
dataset.

To investigate the impact of the quantity of source
domain labeled data on our method, we vary the
amount of data from zero to 800 reviews, with equal
amounts of positive and negative labeled data. Fig-
ure 3 shows the accuracy with the DVD domain as
the target. Note that source domain labeled data is
used both to create the sentiment sensitive thesaurus
as well as to train the sentiment classifier. When
there are multiple source domains we limit and bal-
ance the number of labeled instances as outlined in
Section 5.1. The amount of unlabeled data is held
constant, so that any change in classification accu-
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Figure 5: Effect of target domain unlabeled data.

racy is directly attributable to the source domain la-
beled instances. Because this is a binary classifica-
tion task (i.e. positive vs. negative sentiment), a ran-
dom classifier that does not utilize any labeled data
would report a 50% classification accuracy. From
Figure 3, we see that when we increase the amount
of source domain labeled data the accuracy increases
quickly. In fact, by selecting only 400 (i.e. 50% of
the total 800) labeled instances per class, we achieve
the maximum performance in most of the cases.

To study the effect of source and target domain
unlabeled data on the performance of our method,
we create sentiment sensitive thesauri using differ-
ent proportions of unlabeled data. The amount of
labeled data is held constant and is balanced across
multiple domains as outlined in Section 5.1, so any
changes in classification accuracy can be directly at-
tributed to the contribution of unlabeled data. Figure
4 shows classification accuracy on the DVD target
domain when we vary the proportion of source do-
main unlabeled data (target domain’s unlabeled data
is fixed).

Likewise, Figure 5 shows the classification ac-
curacy on the DVD target domain when we vary
the proportion of the target domain’s unlabeled data
(source domains’ unlabeled data is fixed). From Fig-
ures 4 and 5, we see that irrespective of the amount
being used, there is a clear performance gain when
we use unlabeled data from multiple source domains
compared to using a single source domain. How-
ever, we could not observe a clear gain in perfor-
mance when we increase the amount of the unla-
beled data used to create the sentiment sensitive the-
saurus.



Method K D E B |

No Thesaurus 72.61 | 68.97 | 70.53 | 62.72
SCL 80.83 | 74.56 | 78.43 | T72.76
SCL-MI 82.06 | 76.30 | 78.93 | 74.56
SFA 81.48 | 76.31 | 75.30 | 77.73
LSA 79.00 | 73.50 | 77.66 | 70.83
FALSA 80.83 | 76.33 | 77.33 | 73.33
NSS 77.50 | 73.50 | 75.50 | 71.46
Proposed 85.18 | 78.77 | 83.63 | 76.32
Within-Domain | 87.70 | 82.40 | 84.40 | 80.40

Table 3: Cross-domain sentiment classification accuracy.

5.4 Cross-Domain Sentiment Classification

Table 3 compares our method against a number of
baselines and previous cross-domain sentiment clas-
sification techniques using the benchmark dataset.
For all previous techniques we give the results re-
ported in the original papers. The No Thesaurus
baseline simulates the effect of not performing any
feature expansion. We simply train a binary clas-
sifier using unigrams and bigrams as features from
the labeled reviews in the source domains and ap-
ply the trained classifier on the target domain. This
can be considered to be a lower bound that does
not perform domain adaptation. SCL is the struc-
tural correspondence learning technique of Blitzer
et al. (2006). In SCL-MI, features are selected us-
ing the mutual information between a feature (uni-
gram or bigram) and a domain label. After selecting
salient features, the SCL algorithm is used to train a
binary classifier. SFA is the spectral feature align-
ment technique of Pan et al. (2010). Both the LSA
and FALSA techniques are based on latent semantic
analysis (Pan et al., 2010). For the Within-Domain
baseline, we train a binary classifier using the la-
beled data from the target domain. This upper base-
line represents the classification accuracy we could
hope to obtain if we were to have labeled data for the
target domain. Note that this is not a cross-domain
classification setting. To evaluate the benefit of us-
ing sentiment features on our method, we give a NSS
(non-sentiment sensitive) baseline in which we cre-
ate a thesaurus without using any sentiment features.
Proposed is our method.

From Table 3, we see that our proposed method
returns the best cross-domain sentiment classifica-

139

tion accuracy (shown in boldface) for the three do-
mains kitchen appliances, DVDs, and electronics.
For the books domain, the best results are returned
by SFA. The books domain has the lowest number
of unlabeled reviews (around 5000) in the dataset.
Because our method relies upon the availability of
unlabeled data for the construction of a sentiment
sensitive thesaurus, we believe that this accounts for
our lack of performance on the books domain. How-
ever, given that it is much cheaper to obtain unla-
beled than labeled data for a target domain, there is
strong potential for improving the performance of
our method in this domain. The analysis of vari-
ance (ANOVA) and Tukey’s honestly significant dif-
ferences (HSD) tests on the classification accuracies
for the four domains show that our method is sta-
tistically significantly better than both the No The-
saurus and NSS baselines, at confidence level 0.05.
We therefore conclude that using the sentiment sen-
sitive thesaurus for feature expansion is useful for
cross-domain sentiment classification. The results
returned by our method are comparable to state-of-
the-art techniques such as SCL-MI and SFA. In par-
ticular, the differences between those techniques and
our method are not statistically significant.

6 Related Work

Compared to single-domain sentiment classifica-
tion, which has been studied extensively in previous
work (Pang and Lee, 2008; Turney, 2002), cross-
domain sentiment classification has only recently re-
ceived attention in response to advances in the area
of domain adaptation. Aue and Gammon (2005) re-
port a number of empirical tests into domain adap-
tation of sentiment classifiers using an ensemble of
classifiers. However, most of these tests were un-
able to outperform a simple baseline classifier that
is trained using all labeled data for all domains.
Blitzer et al. (2007) apply the structural corre-
spondence learning (SCL) algorithm to train a cross-
domain sentiment classifier. They first chooses a set
of pivot features using pointwise mutual informa-
tion between a feature and a domain label. Next,
linear predictors are learnt to predict the occur-
rences of those pivots. Finally, they use singular
value decomposition (SVD) to construct a lower-
dimensional feature space in which a binary classi-



fier is trained. The selection of pivots is vital to the
performance of SCL and heuristically selected pivot
features might not guarantee the best performance
on target domains. In contrast, our method uses all
features when creating the thesaurus and selects a
subset of features during training using L1 regular-
ization. Moreover, we do not require SVD, which
has cubic time complexity so can be computation-
ally expensive for large datasets.

Pan et al. (2010) use structural feature alignment
(SFA) to find an alignment between domain spe-
cific and domain independent features. The mu-
tual information of a feature with domain labels is
used to classify domain specific and domain inde-
pendent features. Next, spectral clustering is per-
formed on a bipartite graph that represents the re-
lationship between the two sets of features. Fi-
nally, the top eigenvectors are selected to construct
a lower-dimensional projection. However, not all
words can be cleanly classified into domain spe-
cific or domain independent, and this process is con-
ducted prior to training a classifier. In contrast, our
method lets a particular lexical entry to be listed as
a neighour for multiple base entries. Moreover, we
expand each feature vector individually and do not
require any clustering. Furthermore, unlike SCL and
SFA, which consider a single source domain, our
method can efficiently adapt from multiple source
domains.

7 Conclusions

We have described and evaluated a method to
construct a sentiment-sensitive thesaurus to bridge
the gap between source and target domains in
cross-domain sentiment classification using multi-
ple source domains. Experimental results using a
benchmark dataset for cross-domain sentiment clas-
sification show that our proposed method can im-
prove classification accuracy in a sentiment classi-
fier. In future, we intend to apply the proposed
method to other domain adaptation tasks.
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Abstract

Unsupervised vector-based approaches to se-
mantics can model rich lexical meanings, but
they largely fail to capture sentiment informa-
tion that is central to many word meanings and
important for a wide range of NLP tasks. We
present a model that uses a mix of unsuper-
vised and supervised techniques to learn word
vectors capturing semantic term—documentin-
formation as well as rich sentiment content.
The proposed model can leverage both con-
tinuous and multi-dimensional sentiment in-
formation as well as non-sentiment annota-
tions. We instantiate the model to utilize the
document-level sentiment polarity annotations
present in many online documents (e.g. star
ratings). We evaluate the model using small,
widely used sentiment and subjectivity cor-
pora and find it out-performs several previ-
ously introduced methods for sentiment clas-
sification. We also introduce a large dataset
of movie reviews to serve as a more robust
benchmark for work in this area.

Introduction

many natural language processing systems.

pt pham yuze,

ang, cgpotts] @tanford. edu

recognition, part of speech tagging, and document
retrieval (Turney and Pantel, 2010; Collobert and
Weston, 2008; Turian et al., 2010).

In this paper, we present a model to capture both
semantic and sentiment similarities among words.
The semantic component of our model learns word
vectors via an unsupervised probabilistic model of
documents. However, in keeping with linguistic and
cognitive research arguing that expressive content
and descriptive semantic content are distinct (Ka-
plan, 1999; Jay, 2000; Potts, 2007), we find that
this basic model misses crucial sentiment informa-
tion. For example, while it learns thatonderful
andamazingare semantically close, it doesn't cap-
ture the fact that these are both very strong positive
sentiment words, at the opposite end of the spectrum
from terrible andawful

Thus, we extend the model with a supervised
sentiment component that is capable of embracing
many social and attitudinal aspects of meaning (Wil-
son et al.,, 2004; Alm et al., 2005; Andreevskaia
and Bergler, 2006; Pang and Lee, 2005; Goldberg
and Zhu, 2006; Snyder and Barzilay, 2007). This
component of the model uses the vector represen-

Word representations are a critical component dhtion of words to predict the sentiment annotations
It @n contexts in which the words appear. This causes
common to represent words as indices in a vocalwvords expressing similar sentiment to have similar
ulary, but this fails to capture the rich relationalvector representations. The full objective function

structure of the lexicon. Vector-based models dof the model thus learns semantic vectors that are
much better in this regard. They encode continumbued with nuanced sentiment information. In our

ous similarities between words as distance or angkxperiments, we show how the model can leverage
between word vectors in a high-dimensional spacelocument-level sentiment annotations of a sort that
The general approach has proven useful in taskse abundant online in the form of consumer reviews
such as word sense disambiguation, named ?ﬁitgr movies, products, etc. The technique is suffi-
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ciently general to work also with continuous andng sentiment-imbued topics rather than embedding
multi-dimensional notions of sentiment as well asvords in a vector space.
non-sentiment annotations (e.g., political affiliation, \ector space models (VSMs) seek to model words
speaker commitment). directly (Turney and Pantel, 2010). Latent Seman-
After presenting the model in detail, we pro-tic Analysis (LSA), perhaps the best known VSM,
vide illustrative examples of the vectors it learnsexplicitly learns semantic word vectors by apply-
and then we systematically evaluate the approadhg singular value decomposition (SVD) to factor a
on document-level and sentence-level classificaticlerm—document co-occurrence matrix. It is typical
tasks. Our experiments involve the small, widelyto weight and normalize the matrix values prior to
used sentiment and subjectivity corpora of Pang ar8VD. To obtain g&-dimensional representation for a
Lee (2004), which permits us to make comparisongiven word, only the entries corresponding to the
with a number of related approaches and publishddrgest singular values are taken from the word'’s ba-
results. We also show that this dataset contains masis in the factored matrix. Such matrix factorization-
correlations between examples in the training anbased approaches are extremely successful in prac-
testing sets. This leads us to evaluate on, and matiee, but they force the researcher to make a number
publicly available, a large dataset of informal movieof design choices (weighting, normalization, dimen-
reviews from the Internet Movie Database (IMDB). sionality reduction algorithm) with little theoretical
guidance to suggest which to prefer.
2 Related work Using term frequency (tf) and inverse document
frequency (idf) weighting to transform the values
The model we present in the next section draws iNp 5 \VSM often increases the performance of re-
spiration from prior work on both probabilistic topic yjeval and categorization systems. Delta idf weight-
modeling and vector-spaced models for word mearyq (Martineau and Finin, 2009) is a supervised vari-
INgs. ant of idf weighting in which the idf calculation is
Latent Dirichlet Allocation (LDA; (Blei et al., done for each document class and then one value
2003)) is a probabilistic document model that asis subtracted from the other. Martineau and Finin
sumes each document is a mixture of latent togyresent evidence that this weighting helps with sen-
ics. For each latent topi@’, the model learns a timent classification, and Paltoglou and Thelwall
conditional distributionp(w|7") for the probability (2010) systematically explore a number of weight-
that word w occurs inT. One can obtain &- ing schemes in the context of sentiment analysis.
dimensional vector representation of words by firsthe success of delta idf weighting in previous work
training ak-topic model and then filling the matrix suggests that incorporating sentiment information
with the p(w|T") values (normalized to unit length). into VSM values via supervised methods is help-
The result is a word—topic matrix in which the rOWSsful for sentiment ana|ysis_ We adopt this insight'
are taken to represent word meanings. Howevesyt we are able to incorporate it directly into our
because the emphasis in LDA is on modeling topmodel's objective function. (Section 4 compares

ics, not word meanings, there is no guarantee thgtr approach with a representative sample of such
the row (word) vectors are sensible as points in @eighting schemes.)

k-dimensional space. Indeed, we show in section

4 that using LDA in this way does not deliver ro-3  Qur Model

bust word vectors. The semantic component of our

model shares its probabilistic foundation with LDA,To capture semantic similarities among words, we
but is factored in a manner designed to discovederive a probabilistic model of documents which
word vectors rather than latent topics. Some recefgarns word representations. This component does
work introduces extensions of LDA to capture sennot require labeled data, and shares its foundation
timent in addition to topical information (Li et al., with probabilistic topic models such as LDA. The
2010; Lin and He, 2009; Boyd-Graber and Resniksentiment component of our model uses sentiment
2010). Like LDA, these methods focus on mopﬁannotations to constrain words expressing similar



sentiment to have similar representations. We camow closely its representation vectgy, matches the
efficiently learn parameters for the joint objectivescaling direction off. This idea is similar to the
function using alternating maximization. word vector inner product used in the log-bilinear
language model of Mnih and Hinton (2007).
Equation 1 resembles the probabilistic model of
We build a probabilistic model of a document us{.DA (Blei et al., 2003), which models documents
ing a continuous mixture distribution over words in-as mixtures of latent topics. One could view the en-
dexed by a multi-dimensional random varialfle tries of a word vector as that word’s association
We assume words in a document are conditionallgtrength with respect to each latent topic dimension.
independent given the mixture varialfleWe assign The random variablé then defines a weighting over
a probability to a document using a joint distribu- topics. However, our model does not attempt to
tion over the document artl The model assumes model individual topics, but instead directly models
each wordw; € d is conditionally independent of word probabilities conditioned on the topic mixture
the other words givefi. The probability of a docu- variabled. Because of the log-linear formulation of

3.1 Capturing Semantic Similarities

ment is thus the conditional distributiond is a vector inR? and
N not restricted to the unit simplex as it is in LDA.
p(d) = /p(d,e)de _ /p(9) Hp(wi|9)d9- (1) We now derive maximum likelihood learning for
i1 this model when given a set of unlabeled documents

D. In maximum likelihood learning we maximize
the probability of the observed data given the model
parameters. We assume documehts D are i.i.d.
samples. Thus the learning problem becomes

WhereN is the number of words id andw; is
thei” word ind. We use a Gaussian prior én
We define the conditional distributigrn{w;|6) us-
ing a log-linear model with paramete? and b.
The energy function uses a word representation ma-
trix R € RxIVD where each wora (represented maXp (D; R, b) H / HP wi|0; R, b)d
as a one-on vector) in the vocabula¥y has ag- dx€D
dimensional vector representatign, = Rw corre- ®)

sponding to that word's column iR. The random  ysingmaximum a posteriofMAP) estimates fof),
variabled is also ag-dimensional vectord € R° ;4 approximate this learning problem as
which weights each of thg dimensions of words’

representation vectors. We additionally introduce a . .
biasb,, for each word to capture differences in over- e I1 pO0) [Tp(wilds: 2.0). (6)
all word frequencies. The energy assigned to a word dreD =1

w given these model parameters is

N

where §;, denotes the MAP estimate ¢f for dj.
(030, P, b)) = —0T by — b @) We introduce a Frobenlo_us norm regularization .term
for the word representation matri. The word bi-

To obtain the distributiom(w|#) we use a softmax, asesh are not regularized reflecting the fact that we
want the biases to capture whatever overall word fre-

(w]6: R, b) = exp(—E(w; 0, ¢pu, bw)) quency statistics are present in the data. By taking
> wev eXp(—E(w';0,¢u,byw))  the logarithm and simplifying we obtain the final ob-
(3) jective,
_ exp(07 ¢y, + by) @ N,
> wrer eXp(0T Gy + byy) VIIRIF+ Y Al6kll3+ D log p(w;|0x; R, D),

. . dp€D i=1
The number of terms in the denominator’s sum- *

. . : ) 7
mation grows linearly inV|, making exact com- 0
putation of the distribution possible. For a giverwhich is maximized with respect t& andb. The
f, a wordw's occurrence probability is relatedllﬂhyper—parameters in the model are the regularization



weights ¢ andv), and the word vector dimension- whereo () is the logistic function angy € R? is the

ality . logistic regression weight vector. We additionally
introduce a scalar bids for the classifier.
3.2 Capturing Word Sentiment The logistic regression weights and b. define

The model presented so far does not explicitly capfle Ime:zljr hyperE)Iane n the word vector pratl)(?I? wgere
ture sentiment information. Applying this algorithma word vector's positive sentiment probability de-

to documents will produce representations wherBenOIS on where it lies with respect to this hyper-

words that occur together in documents have Sinp_lane. Learning over a collection of documents re-

ilar representations. However, this unsuperviseﬂuns in words residing different distances from this

approach has no explicit way of capturing Whicmyperp_lane pased on the average polarity of docu-
words are predictive of sentiment as opposed f&‘e”_ts in which the words occur. )
content-related. Much previous work in natural lan- leen_a set of labeled documenlBswhere_sk IS
guage processing achieves better representationstlﬁ sentiment label for documeny, we wish to

learning from multiple tasks (Collobert and Weston'@Ximize the probability of document labels given
2008; Finkel and Manning, 2009). Following thisthe documents. We assume documents in the collec-

theme we introduce a second task to utilize labeledP™ @nd words within a document are i.i.d. samples.
y maximizing the log-objective we obtain,

documents to improve our model’s word representaE
tions. |D| Ny

Sentiment is a complex, multi-dimensional con-  max » > "log p(sk|wy; R, ¢, be). (10)
cept. Depending on which aspects of sentiment we ¥ ;71 i
W'Sh. to capture, We can give some pody of t?Xt %he conditional probabilityp(sg|w;; R, 1, b.) is
sentiment labek which can be categorical, continu- __ . . )

o ) easily obtained from equation 9.

ous, or multi-dimensional. To leverage such labels;
we introduce an objective that the word vectors 08.3 Learning

our model shqutld pre;l'lctt the sentiment label USINGhe full learning objective maximizes a sum of the
Some appropriate predictor, two objectives presented. This produces a final ob-
jective function of,

5= f(gbw)
|D| Ny,
Using an appropriate predictor functiof(z) we — v||R||% + > Allfkll3 + ) log p(w;|0x; R, b)
map a word vectoy,, to a predicted sentiment label k=1 i=1
3. We can then improve our word vecioy, to better |D| Ny,

. . . . 1
predict the sentiment labels of contexts inwhich that ~ +) ~ =T > logp(sklwi; R,4p,be).  (11)
word occurs. = 19l

For simplicity we consider the case where the sefly, | jenotes the number of documents in the dataset

timent labels is a scalar continuous value rePréyyith the same rounded value of (ie. s, < 0.5

senting sentiment polarity of_ a docgment. This capzng sp > 0.5). We introduce the weightingl— to
tures the case of many online reviews where dogs,hat the well-known imbalance in ratingské)resent
uments are associated with a label on a star rating reiew collections. This weighting prevents the
scale. We linearly map such star values to the integ o )| distribution of document ratings from affect-
val s € [0, 1] and treat them as a probability of poS+, the estimate of document ratings in which a par-
itive sentiment polarity. Using this formulation, Weiicular word occurs. The hyper-parameters of the
employ a logistic regression as our predicfdi).  odel are the regularization weights gndv), and
We_ usew's vector repre_sentatio@w and regression the word vector dimensionalitg.
weightsy to express this as Maximizing the objective function with respect to
R, b, ¥, andb. is a non-convex problem. We use

. — T . S . . .
p(s = 1w; R, ) = o (¢ ¢u + be), (9)145alternat|ng maximization, which first optimizes the



word representationsR| b, v, andb.) while leav- beled set of reviews contains neutral reviews as well
ing the MAP estimatesdj fixed. Then we find the as those which are polarized as found in the labeled
new MAP estimate for each document while leavset. Training the model with additional unlabeled
ing the word representations fixed, and continue thdata captures a common scenario where the amount
process until convergence. The optimization algoef labeled data is small relative to the amount of un-
rithm quickly finds a global solution for eadh be- labeled data available. For all word vector models,
cause we have a low-dimensional, convex problemve use 50-dimensional vectors.

in eachd,. Because the MAP estimation problems As a qualitative assessment of word represen-
for different documents are independent, we catations, we visualize the words most similar to a
solve them on separate machines in parallel. Thiguery word using vector similarity of the learned
facilitates scaling the model to document collectiongepresentations. Given a query woud and an-

with hundreds of thousands of documents. other wordw’ we obtain their vector representations
0w and ¢, and evaluate their cosine similarity as
H T
4 Experiments S, dur) = m%. By assessing the simi-

We evaluate our model with document-level and@'ty of w with all other wordsw’, we can find the
sentence-level categorization tasks in the domain ¥fords deemed most similar by the model.

online movie reviews. For document categoriza- Table 1 shows the most similar words to given
tion, we compare our method to previously pub9uery words using our model’s word representations
lished results on a standard dataset, and introdu@& Well as those of LSA. All of these vectors cap-
a new dataset for the task. In both tasks we conture broad semantic similarities. However, both ver-
pare our model's word representations with sever&ions of our model seem to do better than LSA in
bag of words weighting methods, and alternative a@voiding accidental distributional similarities (e.g.,

proaches to word vector induction. screwballandgrant as similar toromantig A com-
parison of the two versions of our model also begins
4.1 Word Representation Learning to highlight the importance of adding sentiment in-

. . . formation. In general, words indicative of sentiment
We induce word representations with our model us-

. X . end to have high similarity with words of the same
ing 25,000 movie reviews from IMDB. Because . g ty .

. ) . .~ “sentiment polarity, so even the purely unsupervised
some movies receive substantially more reviews

. . ) {nodel's results look promising. However, they also

than others, we limited ourselves to including a
. . > ~show more genre and content effects. For exam-

most 30 reviews from any movie in the collection.

We build a fixed dictionary of the 5,000 most fre—ple’ the sentiment enriched vectors fgirastly are

. truly semantic alternatives to that word, whereas the
quent tokens, but ignore the 50 most frequent terms . . .

.. . vectors without sentiment also contain some content
from the original full vocabulary. Traditional stop

words that tend to havghastlypredicated of them.

word removal was not used begaqse .certam St%f course, this is only an impressionistic analysis of
words (e.g. negating words) are indicative of senti- few cases, but it is helpful in understanding why

ment. Stemming was not applied because the mod[a%I ; . .
_ . e sentiment-enriched model proves superior at the
learns similar representations for words of the same

. " sentiment classification results we report next.
stem when the data suggests it. Additionally, be- P

cause certain non-word tokens (e.g. “I” and “-)" )4 5 Other Word Representations
are indicative of sentiment, we allow them in our vo-

cabulary. Ratings on IMDB are given as star value§0" comparison, we implemented several alternative
(€ {1,2,...,10}), which we linearly map td0, 1] to  Vector space models that are conceptually similar to
use as document labels when training our model. Our own, as discussed in section 2:

The semantic component of our model does ndtatent Semantic Analysis (LSA; Deerwester et
require document labels. We train a variant of oual., 1990) We apply truncated SVD to a tf.idf
model which uses 50,000 unlabeled reviews in addiweighted, cosine normalized count matrix, which
tion to the labeled set of 25,000 reviews. The lﬂlgis a standard weighting and smoothing scheme for



Our model Our model
Sentiment + Semantic Semantic only LSA
bittersweet thoughtful poetic
heartbreaking warmth lyrical
melancholy happiness layer poetry
tenderness gentle profound
compassionate loneliness vivid
embarrassingly predators hideous
trite hideous inept
ghastly laughably tube severely
atrocious baffled grotesque
appalling smack unsuspecting
lame passable uninspired
laughable unconvincing  flat
lackluster unimaginative amateurish bland
uninspired clichéd forgettable
awful insipid mediocre
romance romance romance
love charming screwball
romantic sweet delightful grant
beautiful sweet comedies
relationship chemistry comedy

Table 1: Similarity of learned word vectors. Each targetadvsrgiven with its five most similar words using cosine
similarity of the vectors determined by each model. Thevieiion of our model (left) captures both lexical similgarit

as well as similarity of sentiment strength and orientatiGwr unsupervised semantic component (center) and LSA
(right) capture semantic relations.

VSM induction (Turney and Pantel, 2010).

Latent Dirichlet Allocation (LDA; Blei et _ o
al., 2003) We use the method described in sec#3 Document Polarity Classification

tion 2 for inducing word representations from thegyy first evaluation task is document-level senti-
topic matrix. To train the 50-topic LDA model we ment polarity classification. A classifier must pre-

use code released by Blei et al. (2003). We use thfict whether a given review is positive or negative
same 5,000 term vocabulary for LDA as is used fogjyen the review text.

training word vector models. We leave the LDA Given a document's bag of words vector we
hyperparameters at their default values, thougBbtain features from our model using a matrix-

some work suggests optimizing over priors for I‘D'Nector productRv, wherev can have arbitrary tf.idf

is important (Wallach et al., 2009). weighting. We do not cosine normalize instead
Weighting Variants We evaluate both binary (b) applying cosine normalization to the final feature
term frequency weighting with smoothed delta idfvector Rv. This procedure is also used to obtain
(At) and no idf (n) because these variants workefeatures from the LDA and LSA word vectors. In
well in previous experiments in sentiment (Mar-preliminary experiments, we found ‘bnn’ weighting
tineau and Finin, 2009; Pang et al., 2002). In alto work best forv when generating document fea-
cases, we use cosine normalization (c). Paltoglaures via the producRv. In all experiments, we
and Thelwall (2010) perform an extensive anaﬁyﬁsse this weighting to get multi-word representations

of such weighting variants for sentiment tasks.



Features PLO4 Our Dataset Subjectivity

Bag of Words (bnc) 85.45 87.80 87.77
Bag of Words (k\t'c) 85.80 88.23 85.65
LDA 66.70 67.42 66.65
LSA 84.55 83.96 82.82
Our Semantic Only 87.10 87.30 86.65
Our Full 84.65 87.44 86.19
Our Full, Additional Unlabeled 87.05 87.99 87.22
Our Semantic + Bag of Words (bnc) 88.30 88.28 88.58
Our Full + Bag of Words (bnc) 87.85 88.33 88.45
Our Full, Add’l Unlabeled + Bag of Words (bnc) 88.90 88.89 BB.
Bag of Words SVM (Pang and Lee, 2004) 87.15 N/A 90.00
Contextual Valence Shifters (Kennedy and Inkpen, 2006) 2@6. N/A N/A

tf. Aidf Weighting (Martineau and Finin, 2009) 88.10 N/A N/A
Appraisal Taxonomy (Whitelaw et al., 2005) 90.20 N/A N/A

Table 2: Classification accuracy on three tasks. From lefgtd the datasets are: A collection of 2,000 movie reviews
often used as a benchmark of sentiment classification (Raothgee, 2004), 50,000 reviews we gathered from IMDB,
and the sentence subjectivity dataset also released by éPaH_ee, 2004). All tasks are balanced two-class problems.

from word vectors. Our method’s features clearly outperform those of
. . other VSMs, and perform best when combined with
43.1 Pgng and Lee MO.V'e Revllew Dataset the original bag of words representation. The vari-
The polarity dataset version 2.0 mtroduped by Pangnt of our model trained with additional unlabeled
and Lee (20_04)1 consists of 2,000 movie reviews, 4ata performed best, suggesting the model can effec-
where each is associated with a binary sentiment PRvely utilize large amounts of unlabeled data along
larity label. We report 10-fold cross validation re-ith jabeled examples. Our method performs com-
sults using the authors’ published folds to make oWsegitively with previously reported results in spite of
results comparable with others in the literature. Wgr restriction to a vocabulary of only 5,000 words.
use a linear support vector machine (SVM) classifier \ye extracted the movie title associated with each
trained with LIBLINEAR (Fan et al., 2008), and sety\je\ and found that 1,299 of the 2,000 reviews in
the SVM regularization parameter to the same valug,e gataset have at least one other review of the same
used by Pang and Lee (2004). movie in the dataset. Of 406 movies with multiple
Table 2 shows the classification performance gy je\s, 249 have the same polarity label for all of
our method, other VSMs we implemented, and préqeir reviews. Overall, these facts suggest that, rela-
viously reported results from the literature. Bag ofje tg the size of the dataset, there are highly corre-
words vectors are denoted by their weighting notg;e§ examples with correlated labels. This is a nat-
tion. Features from word vector learner are denotegla| and expected property of this kind of document
by the learner name. As a control, we trained Ve, ection, but it can have a substantial impact on
sions of our model with only the unsupervised Seperformance in datasets of this scale. In the random
mantic component, and the full model (semantic ang,ys gistributed by the authors, approximately 50%
sentiment). We also include results for a version of¢ (aviews in each validation fold's test set have a
our full model trained with 50,000 additional unla- .\ iaw of the same movie with the same label in the
beled examples. Finally, to test whether our modgaining set. Because the dataset is small, a learner
els’ representations complement a standard bag gf,y nerform well by memorizing the association be-
words, we evaluate performance of the two featurgyeen |abel and words unique to a particular movie
representations concatenated. (e.g., character names or plot terms).

hitp://www.cs.cornell.edu/people/pabo/movie-revidata We introduce a substantially larger dataset, which

148



uses disjoint sets of movies for training and testings substantially different from the review classifica-
These steps minimize the ability of a learner to relyion task because it uses sentences as opposed to en-
on idiosyncratic word—class associations, therelyyre documents and the target concept is subjectivity
focusing attention on genuine sentiment features. instead of opinion polarity. We randomly split the

. 10,000 examples into 10 folds and report 10-fold
4.3.2 IMDB Review Dataset cross validation accuracy using the SVM training
We constructed a collection of 50,000 reviews fronprotocol of Pang and Lee (2004).

IMDB, allowing no more than 30 reviews per movie. Table 2 shows classification accuracies from the
The constructed dataset contains an even numberdg¥ntence subjectivity experiment. Our model again
positive and negative reviews, so randomly guessingrovided superior features when compared against
yields 50% accuracy. Following previous work ongther VSMs. Improvement over the bag-of-words

polarity classification, we consider only highly po-paseline is obtained by concatenating the two feature
larized reviews. A negative review has a scarel  vectors.

out of 10, and a positive review has a score7
out of 10. Neutral reviews are not included in the Di )
dataset. In the interest of providing a benchmark fo$ ISCussion

future work in this area, we release this dataset to
the public? We presented a vector space model that learns word

We evenly divided the dataset into training andepresentations captuing semantic and sentiment in-

test sets. The training set is the same 25,000 |£Qrmation. The model’'s probabilistic foundation

beled reviews used to induce word vectors with ol V€S @ theoretically justified technique for word

model. We evaluate classifier performance afteyector induction as an alternative to the overwhelm-
cross-validating classifier parameters on the trainingd "umber of matrix factorization-based techniques
set, again using a linear SVM in all cases. Table $0mmonly used. Our model is parametrized as a
shows classification performance on our subset §f9-Pilinear model following recent success in us-
IMDB reviews. Our model showed superior per"9 similar technigues for language models (B_englo
formance to other approaches, and performed bedt&!-» 2003; Collobert and Weston, 2008; Mnih and

when concatenated with bag of words representglinton’ 2007), and it is related to probabilistic latent
tion. Again the variant of our model which utilized topic models (Blei et al., 2003; Steyvers and Grif-

extra unlabeled data during training performed bestt"S: 2006). We parametrize the topical component
our model in a manner that aims to capture word

Differences in accuracy are small, but, becaus((z.\]c ati instead of latent tobi |
our test set contains 25,000 examples, the varianl:,%p.reSen anons inskea of 'atent fopics. ' our &
of the performance estimate is quite low. For oxPeriments, our method performed better than LDA,

ample, an accuracy increase of 0.1% corresponds\"t\’c;1ICh models latent topics directly.

correctly classifying an additional 25 reviews. We extended the unsupervised model to incor-
porate sentiment information and showed how this
4.4 Subjectivity Detection extended model can leverage the abundance of

. sentiment-labeled texts available online to vyield

As a second evaluation task, we performed sentence- . ’
S e . word representations that capture both sentiment

level subjectivity classification. In this task, a clas- . . .
e . . . and semantic relations. We demonstrated the util-
sifier is trained to decide whether a given sentence | . :
L . o L ity of such representations on two tasks of senti-
subjective, expressing the writer’'s opinions, or ob- e . -
o . ment classification, using existing datasets as well
jective, expressing purely facts. We used the dataset

. . .. as a larger one that we release for future research.
2;22:2;?5 ol;ne?n(s\gg?évgwcgurcnor:gizz Ztrjlzji(g.lg‘?_hese tasks involve relatively simple sentiment in-
. ; . oDl rmation, but the model is highly flexible in this
tive sentences from movie plot summaries. This tasrlégard' it can be used to characterize a wide variety

?Dataset and further details are available online at©f @annotations, and thus is broadly applicable in the
http: // ww. andr ew- maas. net / dat a/ sent i nent 149growing areas of sentiment analysis and retrieval.
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Abstract

Sentiment analysis on Twitter data has attract-
ed much attention recently. In this paper, we
focus on target-dependent Twitter sentiment
classification; namely, given a query, we clas-
sify the sentiments of the tweets as positive,
negative or neutral according to whether they
contain positive, negative or neutral senti-
ments about that query. Here the query serves
as the target of the sentiments. The state-of-
the-art approaches for solving this problem
always adopt the target-independent strategy,
which may assign irrelevant sentiments to the
given target. Moreover, the state-of-the-art
approaches only take the tweet to be classified
into consideration when classifying the senti-
ment; they ignore its context (i.e., related
tweets). However, because tweets are usually
short and more ambiguous, sometimes it is not
enough to consider only the current tweet for
sentiment classification. In this paper, we pro-
pose to improve target-dependent Twitter sen-
timent classification by 1) incorporating
target-dependent features; and 2) taking relat-
ed tweets into consideration. According to the
experimental results, our approach greatly im-
proves the performance of target-dependent
sentiment classification.

1 Introduction

Twitter, as a micro-blogging system, allows users
to publish tweets of up to 140 characters in length
to tell others what they are doing, what they are
thinking, or what is happening around them. Over
the past few years, Twitter has become very popu-
lar. According to the latest Twitter entry in Wik-
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ipedia, the number of Twitter users has climbed to
190 million and the number of tweets published on
Twitter every day is over 65 million™.

As a result of the rapidly increasing number of
tweets, mining people’s sentiments expressed in
tweets has attracted more and more attention. In
fact, there are already many web sites built on the
Internet providing a Twitter sentiment search ser-
vice, such as Tweetfeel?, Twendz®, and Twitter
Sentiment*. In those web sites, the user can input a
sentiment target as a query, and search for tweets
containing positive or negative sentiments towards
the target. The problem needing to be addressed
can be formally named as Target-dependent Sen-
timent Classification of Tweets; namely, given a
query, classifying the sentiments of the tweets as
positive, negative or neutral according to whether
they contain positive, negative or neutral senti-
ments about that query. Here the query serves as
the target of the sentiments.

The state-of-the-art approaches for solving this
problem, such as (Go et al., 2009°: Barbosa and
Feng, 2010), basically follow (Pang et al., 2002),
who utilize machine learning based classifiers for
the sentiment classification of texts. However, their
classifiers actually work in a target-independent
way: all the features used in the classifiers are in-
dependent of the target, so the sentiment is decided
no matter what the target is. Since (Pang et al.,
2002) (or later research on sentiment classification

L http://en.wikipedia.org/wiki/ Twitter

2 http:/Avww.tweetfeel.com/

® http://twendz.waggeneredstrom.com/

4 http://twittersentiment.appspot.com/

® The algorithm used in Twitter Sentiment

Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pages 151-160,
Portland, Oregon, June 19-24, 2011. (©2011 Association for Computational Linguistics



of product reviews) aim to classify the polarities of
movie (or product) reviews and each movie (or
product) review is assumed to express sentiments
only about the target movie (or product), it is rea-
sonable for them to adopt the target-independent
approach. However, for target-dependent sentiment
classification of tweets, it is not suitable to exactly
adopt that approach. Because people may mention
multiple targets in one tweet or comment on a tar-
get in a tweet while saying many other unrelated
things in the same tweet, target-independent ap-
proaches are likely to yield unsatisfactory results:

1. Tweets that do not express any sentiments
to the given target but express sentiments
to other things will be considered as being
opinionated about the target. For example,
the following tweet expresses no sentiment
to Bill Gates but is very likely to be classi-
fied as positive about Bill Gates by target-
independent approaches.

"People everywhere love Windows & vista.
Bill Gates™

2. The polarities of some tweets towards the
given target are misclassified because of
the interference from sentiments towards
other targets in the tweets. For example,
the following tweet expresses a positive
sentiment to Windows 7 and a negative
sentiment to Vista. However, with target-
independent sentiment classification, both
of the targets would get positive polarity.

“Windows 7 is much better than Vista! ”

In fact, it is easy to find many such cases by
looking at the output of Twitter Sentiment or other
Twitter sentiment analysis web sites. Based on our
manual evaluation of Twitter Sentiment output,
about 40% of errors are because of this (see Sec-
tion 6.1 for more details).

In addition, tweets are usually shorter and more
ambiguous than other sentiment data commonly
used for sentiment analysis, such as reviews and
blogs. Consequently, it is more difficult to classify
the sentiment of a tweet only based on its content.
For instance, for the following tweet, which con-
tains only three words, it is difficult for any exist-
ing approaches to classify its sentiment correctly.

“First game: Lakers!”
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However, relations between individual tweets
are more common than those in other sentiment
data. We can easily find many related tweets of a
given tweet, such as the tweets published by the
same person, the tweets replying to or replied by
the given tweet, and retweets of the given tweet.
These related tweets provide rich information
about what the given tweet expresses and should
definitely be taken into consideration for classify-
ing the sentiment of the given tweet.

In this paper, we propose to improve target-
dependent sentiment classification of tweets by
using both target-dependent and context-aware
approaches. Specifically, the target-dependent ap-
proach refers to incorporating syntactic features
generated using words syntactically connected
with the given target in the tweet to decide whether
or not the sentiment is about the given target. For
instance, in the second example, using syntactic
parsing, we know that “Windows 7 is connected
to “better” by a copula, while “Vista” is connected
to “better” by a preposition. By learning from
training data, we can probably predict that “Win-
dows 7” should get a positive sentiment and
“Vista” should get a negative sentiment.

In addition, we also propose to incorporate the
contexts of tweets into classification, which we call
a context-aware approach. By considering the sen-
timent labels of the related tweets, we can further
boost the performance of the sentiment classifica-
tion, especially for very short and ambiguous
tweets. For example, in the third example we men-
tioned above, if we find that the previous and fol-
lowing tweets published by the same person are
both positive about the Lakers, we can confidently
classify this tweet as positive.

The remainder of this paper is structured as fol-
lows. In Section 2, we briefly summarize related
work. Section 3 gives an overview of our approach.
We explain the target-dependent and context-
aware approaches in detail in Sections 4 and 5 re-
spectively. Experimental results are reported in
Section 6 and Section 7 concludes our work.

2 Related Work

In recent years, sentiment analysis (SA) has be-
come a hot topic in the NLP research community.
A lot of papers have been published on this topic.



2.1 Target-independent SA

Specifically, Turney (2002) proposes an unsuper-
vised method for classifying product or movie re-
views as positive or negative. In this method,
sentimental phrases are first selected from the re-
views according to predefined part-of-speech pat-
terns. Then the semantic orientation score of each
phrase is calculated according to the mutual infor-
mation values between the phrase and two prede-
fined seed words. Finally, a review is classified
based on the average semantic orientation of the
sentimental phrases in the review.

In contrast, (Pang et al., 2002) treat the senti-
ment classification of movie reviews simply as a
special case of a topic-based text categorization
problem and investigate three classification algo-
rithms: Naive Bayes, Maximum Entropy, and Sup-
port Vector Machines. According to the
experimental results, machine learning based clas-
sifiers outperform the unsupervised approach,
where the best performance is achieved by the
SVM classifier with unigram presences as features.

2.2 Target-dependent SA

Besides the above mentioned work for target-
independent sentiment classification, there are also
several approaches proposed for target-dependent
classification, such as (Nasukawa and Yi, 2003;
Hu and Liu, 2004; Ding and Liu, 2007). (Nasuka-
wa and Yi, 2003) adopt a rule based approach,
where rules are created by humans for adjectives,
verbs, nouns, and so on. Given a sentiment target
and its context, part-of-speech tagging and de-
pendency parsing are first performed on the con-
text. Then predefined rules are matched in the
context to determine the sentiment about the target.
In (Hu and Liu, 2004), opinions are extracted from
product reviews, where the features of the product
are considered opinion targets. The sentiment
about each target in each sentence of the review is
determined based on the dominant orientation of
the opinion words appearing in the sentence.

As mentioned in Section 1, target-dependent
sentiment classification of review sentences is
quite different from that of tweets. In reviews, if
any sentiment is expressed in a sentence containing
a feature, it is very likely that the sentiment is
about the feature. However, the assumption does
not hold in tweets.
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2.3 SA of Tweets

As Twitter becomes more popular, sentiment anal-
ysis on Twitter data becomes more attractive. (Go
et al., 2009; Parikh and Movassate, 2009; Barbosa
and Feng, 2010; Davidiv et al., 2010) all follow the
machine learning based approach for sentiment
classification of tweets. Specifically, (Davidiv et
al., 2010) propose to classify tweets into multiple
sentiment types using hashtags and smileys as la-
bels. In their approach, a supervised KNN-like
classifier is used. In contrast, (Barbosa and Feng,
2010) propose a two-step approach to classify the
sentiments of tweets using SVM classifiers with
abstract features. The training data is collected
from the outputs of three existing Twitter senti-
ment classification web sites. As mentioned above,
these approaches work in a target-independent way,
and so need to be adapted for target-dependent sen-
timent classification.

3 Approach Overview

The problem we address in this paper is target-
dependent sentiment classification of tweets. So
the input of our task is a collection of tweets con-
taining the target and the output is labels assigned
to each of the tweets. Inspired by (Barbosa and
Feng, 2010; Pang and Lee, 2004), we design a
three-step approach in this paper:

1. Subjectivity classification as the first step
to decide if the tweet is subjective or neu-
tral about the target;

2. Polarity classification as the second step to
decide if the tweet is positive or negative
about the target if it is classified as subjec-
tive in Step 1;

3. Graph-based optimization as the third step
to further boost the performance by taking
the related tweets into consideration.

In each of the first two steps, a binary SVM
classifier is built to perform the classification. To
train the classifiers, we use SVM-Light® with a
linear kernel; the default setting is adopted in all
experiments.

® http://svmlight.joachims.org/



3.1 Preprocessing

In our approach, rich feature representations are
used to distinguish between sentiments expressed
towards different targets. In order to generate such
features, much NLP work has to be done before-
hand, such as tweet normalization, POS tagging,
word stemming, and syntactic parsing.

In our experiments, POS tagging is performed
by the OpenNLP POS tagger’. Word stemming is
performed by using a word stem mapping table
consisting of about 20,000 entries. We also built a
simple rule-based model for tweet normalization
which can correct simple spelling errors and varia-
tions into normal form, such as “gooood” to
“good” and “luve” to “love”. For syntactic parsing
we use a Maximum Spanning Tree dependency
parser (McDonald et al., 2005).

3.2 Target-independent Features

Previous work (Barbosa and Feng, 2010; Davidiv
et al., 2010) has discovered many effective features
for sentiment analysis of tweets, such as emoticons,
punctuation, prior subjectivity and polarity of a
word. In our classifiers, most of these features are
also used. Since these features are all generated
without considering the target, we call them target-
independent features. In both the subjectivity clas-
sifier and polarity classifier, the same target-
independent feature set is used. Specifically, we
use two kinds of target-independent features:

1. Content features, including words, punctu-
ation, emoticons, and hashtags (hashtags
are provided by the author to indicate the
topic of the tweet).

2. Sentiment lexicon features, indicating how
many positive or negative words are in-
cluded in the tweet according to a prede-
fined lexicon. In our experiments, we use
the lexicon downloaded from General In-
quirer®,

4  Target-dependent Sentiment Classifica-
tion

Besides target-independent features, we also incor-
porate target-dependent features in both the subjec-

" http://opennlp.sourceforge.net/projects.html
8 http://www.wjh.harvard.edu/~inquirer/
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tivity classifier and polarity classifier. We will ex-
plain them in detail below.

4.1 Extended Targets

It is quite common that people express their senti-
ments about a target by commenting not on the
target itself but on some related things of the target.
For example, one may express a sentiment about a
company by commenting on its products or tech-
nologies. To express a sentiment about a product,
one may choose to comment on the features or
functionalities of the product. It is assumed that
readers or audiences can clearly infer the sentiment
about the target based on those sentiments about
the related things. As shown in the tweet below,
the author expresses a positive sentiment about
“Microsoft” by expressing a positive sentiment
directly about “Microsoft technologies”.

“I am passionate about Microsoft technologies
especially Silverlight.”

In this paper, we define those aforementioned
related things as Extended Targets. Tweets ex-
pressing positive or negative sentiments towards
the extended targets are also regarded as positive
or negative about the target. Therefore, for target-
dependent sentiment classification of tweets, the
first thing is identifying all extended targets in the
input tweet collection.

In this paper, we first regard all noun phrases,
including the target, as extended targets for sim-
plicity. However, it would be interesting to know
under what circumstances the sentiment towards
the target is truly consistent with that towards its
extended targets. For example, a sentiment about
someone’s behavior usually means a sentiment
about the person, while a sentiment about some-
one’s colleague usually has nothing to do with the
person. This could be a future work direction for
target-dependent sentiment classification.

In addition to the noun phrases including the
target, we further expand the extended target set
with the following three methods:

1. Adding mentions co-referring to the target
as new extended targets. It is common that
people use definite or demonstrative noun
phrases or pronouns referring to the target
in a tweet and express sentiments directly
on them. For instance, in “Oh, Jon Stewart.
How I love you so0.”, the author expresses



a positive sentiment to “you” which actual-
ly refers to “Jon Stewart”. By using a sim-
ple co-reference resolution tool adapted
from (Soon et al., 2001), we add all the
mentions referring to the target into the ex-
tended target set.

2. ldentifying the top K nouns and noun
phrases which have the strongest associa-
tion with the target. Here, we use
Pointwise Mutual Information (PMI) to
measure the association.

PMI (w,t) = log—PM0)._
(0 =108 wyp(®

Where p(w,t), p(w), and p(t) are probabili-
ties of w and t co-occurring, w appearing,
and t appearing in a tweet respectively. In
the experiments, we estimate them on a
tweet corpus containing 20 million tweets.
We set K = 20 in the experiments based on
empirical observations.

3. Extracting head nouns of all extended tar-
gets, whose PMI values with the target are
above some predefined threshold, as new
extended targets. For instance, suppose we
have found “Microsoft Technologies” as
the extended target, we will further add
“technologies ” into the extended target set
if the PMI value for “technologies” and
“Microsoft” is above the threshold. Simi-
larly, we can find “price” as the extended
targets for “iPhone” from “the price of
iPhone” and “LoveGame” for “Lady Ga-
ga” from “LoveGame by Lady Gaga .

4.2 Target-dependent Features

Target-dependent sentiment classification needs to
distinguish the expressions describing the target
from other expressions. In this paper, we rely on
the syntactic parse tree to satisfy this need. Specif-
ically, for any word stem w; in a tweet which has
one of the following relations with the given target
T or any from the extended target set, we generate
corresponding target-dependent features with the
following rules:

e w; is a transitive verb and T (or any of the
extended target) is its object; we generate a
feature w; _arg2. “arg” is short for “argu-
ment”. For example, for the target iPhone
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in “I love iPhone”,
“love_arg2” as a feature.

e w; is a transitive verb and T (or any of the
extended target) is its subject; we generate
a feature w;_argl similar to Rule 1.

e w;is aintransitive verb and T (or any of the
extended target) is its subject; we generate
a feature wi_it_arg1l.

e w; is an adjective or noun and T (or any of
the extended target) is its head; we gener-
ate a feature w;_argl.

e w; is an adjective or noun and it (or its
head) is connected by a copula with T (or
any of the extended target); we generate a
feature w;_cp_argl.

e W; is an adjective or intransitive verb ap-
pearing alone as a sentence and T (or any
of the extended target) appears in the pre-
vious sentence; we generate a feature
w;_arg. For example, in “John did that.
Great!”, “Great” appears alone as a sen-
tence, so we generate “great_arg” for the
target “John”.

e Ww; is an adverb, and the verb it modifies
has T (or any of the extended target) as its
subject; we generate a feature argl v_w;.
For example, for the target iPhone in the
tweet “iPhone works better with the Cell-
Band”, we will generate the feature
“argl v_well”.

we generate

Moreover, if any word included in the generated
target-dependent features is modified by a nega-
tion®, then we will add a prefix “neg-” to it in the
generated features. For example, for the target iPh-
one in the tweet “iPhone does not work better with
the CellBand”, we will generate the features
“argl v_neg-well” and “neg-work_it_argl”.

To overcome the sparsity of target-dependent
features mentioned above, we design a special bi-
nary feature indicating whether or not the tweet
contains at least one of the above target-dependent
features. Target-dependent features are binary fea-
tures, each of which corresponds to the presence of
the feature in the tweet. If the feature is present, the
entry will be 1; otherwise it will be 0.

% Seven negations are used in the experiments: not, no, never,
n'’t, neither, seldom, hardly.



5 Graph-based Sentiment Optimization

As we mentioned in Section 1, since tweets are
usually shorter and more ambiguous, it would be
useful to take their contexts into consideration
when classifying the sentiments. In this paper, we
regard the following three kinds of related tweets
as context for a tweet.

1. Retweets. Retweeting in Twitter is essen-
tially the forwarding of a previous message.
People usually do not change the content
of the original tweet when retweeting. So
retweets usually have the same sentiment
as the original tweets.

2. Tweets containing the target and published
by the same person. Intuitively, the tweets
published by the same person within a
short timeframe should have a consistent
sentiment about the same target.

3. Tweets replying to or replied by the tweet
to be classified.

Based on these three kinds of relations, we can
construct a graph using the input tweet collection
of a given target. As illustrated in Figure 1, each
circle in the graph indicates a tweet. The three
kinds of edges indicate being published by the
same person (solid line), retweeting (dash line),
and replying relations (round dotted line) respec-
tively.

Figure 1. An example graph of tweets about a target

If we consider that the sentiment of a tweet only
depends on its content and immediate neighbors,
we can leverage a graph-based method for senti-
ment classification of tweets. Specifically, the
probability of a tweet belonging to a specific sen-
timent class can be computed with the following
formula:
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p(clz,G)=p(clz) X p(cI N(d))p(N(d))

N(d)

Where c is the sentiment label of a tweet which
belongs to {positive, negative, neutral}, G is the
tweet graph, N(d) is a specific assignment of sen-
timent labels to all immediate neighbors of the
tweet, and 7 1s the content of the tweet.

We can convert the output scores of a tweet by
the subjectivity and polarity classifiers into proba-
bilistic form and use them to approximate p(c| 7).
Then a relaxation labeling algorithm described in
(Angelova and Weikum, 2006) can be used on the
graph to iteratively estimate p(c|z,G) for all tweets.
After the iteration ends, for any tweet in the graph,
the sentiment label that has the maximum p(c| 7,G)
is considered the final label.

6 Experiments

Because there is no annotated tweet corpus public-
ly available for evaluation of target-dependent
Twitter sentiment classification, we have to create
our own. Since people are most interested in sen-
timents towards celebrities, companies and prod-
ucts, we selected 5 popular queries of these kinds:
{Obama, Google, iPad, Lakers, Lady Gaga}. For
each of those queries, we downloaded 400 English
tweets'™ containing the query using the Twitter API.

We manually classify each tweet as positive,
negative or neutral towards the query with which it
is downloaded. After removing duplicate tweets,
we finally obtain 459 positive, 268 negative and
1,212 neutral tweets.

Among the tweets, 100 are labeled by two hu-
man annotators for inter-annotator study. The re-
sults show that for 86% of them, both annotators
gave identical labels. Among the 14 tweets which
the two annotators disagree on, only 1 case is a
positive-negative disagreement (one annotator con-
siders it positive while the other negative), and the
other 13 are all neutral-subjective disagreement.
This probably indicates that it is harder for humans
to decide if a tweet is neutral or subjective than to
decide if it is positive or negative.

10 I this paper, we use sentiment classification of English
tweets as a case study; however, our approach is applicable to
other languages as well.



6.1 Error Analysis of Twitter Sentiment Out-
put

We first analyze the output of Twitter Sentiment
(TS) using the five test queries. For each query, we
randomly select 20 tweets labeled as positive or
negative by TS. We also manually classify each
tweet as positive, negative or neutral about the cor-
responding query. Then, we analyze those tweets
that get different labels from TS and humans. Fi-
nally we find two major types of error: 1) Tweets
which are totally neutral (for any target) are classi-
fied as subjective by TS; 2) sentiments in some
tweets are classified correctly but the sentiments
are not truly about the query. The two types take
up about 35% and 40% of the total errors, respec-
tively.

The second type is actually what we want to re-
solve in this paper. After further checking those
tweets of the second type, we found that most of
them are actually neutral for the target, which
means that the dominant error in Twitter Sentiment
is classifying neutral tweets as subjective. Below
are several examples of the second type where the
bolded words are the targets.

“No debate needed, heat can't beat lakers or
celtics ” (negative by TS but positive by human)

“why am i getting spams from weird people ask-
ing me if i want to chat with lady gaga” (positive
by TS but neutral by human)

“Bringing iPhone and iPad apps into cars?
http://www.speakwithme.com/ will be out soon and
alpha is awesome in my car.” (positive by TS but
neutral by human)

“Here's a great article about Monte Veronese
cheese. It's in Italian so just put the url into Google
translate and enjoy http.://ow.ly/30Q77” (positive
by TS but neutral by human)

6.2 Evaluation of Subjectivity Classification

We conduct several experiments to evaluate sub-
jectivity classifiers using different features. In the
experiments, we consider the positive and negative
tweets annotated by humans as subjective tweets
(i.e., positive instances in the SVM classifiers),
which amount to 727 tweets. Following (Pang et
al., 2002), we balance the evaluation data set by
randomly selecting 727 tweets from all neutral
tweets annotated by humans and consider them as
objective tweets (i.e., negative instances in the
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classifiers). We perform 10-fold cross-validations
on the selected data. Following (Go et al., 2009;
Pang et al., 2002), we use accuracy as a metric in
our experiments. The results are listed below.

Features Accuracy (%)
Content features 61.1
+ Sentiment lexicon features 63.8
+ Target-dependent features 68.2
Re-implementation of (Bar- 60.3
bosa and Feng, 2010)

Table 1. Evaluation of subjectivity classifiers.

As shown in Table 1, the classifier using only
the content features achieves an accuracy of 61.1%.
Adding sentiment lexicon features improves the
accuracy to 63.8%. Finally, the best performance
(68.2%) is achieved by combining target-
dependent features and other features (t-test: p <
0.005). This clearly shows that target-dependent
features do help remove many sentiments not truly
about the target. We also re-implemented the
method proposed in (Barbosa and Feng, 2010) for
comparison. From Table 1, we can see that all our
systems perform better than (Barbosa and Feng,
2010) on our data set. One possible reason is that
(Barbosa and Feng, 2010) use only abstract fea-
tures while our systems use more lexical features.

To further evaluate the contribution of target ex-
tension, we compare the system using the exact
target and all extended targets with that using only
the exact target. We also eliminate the extended
targets generated by each of the three target exten-
sion methods and reevaluate the performances.

Target Accuracy (%)
Exact target 65.6
+ all extended targets 68.2
- co-references 68.0
- targets found by PMI 67.8
- head nouns 67.3

Table 2. Evaluation of target extension methods.

As shown in Table 2, without extended targets,
the accuracy is 65.6%, which is still higher than
those using only target-independent features. After
adding all extended targets, the accuracy is im-
proved significantly to 68.2% (p < 0.005), which
suggests that target extension does help find indi-



rectly expressed sentiments about the target. In
addition, all of the three methods contribute to the
overall improvement, with the head noun method
contributing most. However, the other two meth-
ods do not contribute significantly.

6.3 Evaluation of Polarity Classification

Similarly, we conduct several experiments on posi-
tive and negative tweets to compare the polarity
classifiers with different features, where we use
268 negative and 268 randomly selected positive
tweets. The results are listed below.

Features Accuracy (%)
Content features 78.8
+ Sentiment lexicon features 84.2
+ Target-dependent features 85.6
Re-implementation of (Bar- 83.9
bosa and Feng, 2010)

Table 3. Evaluation of polarity classifiers.

From Table 3, we can see that the classifier us-
ing only the content features achieves the worst
accuracy (78.8%). Sentiment lexicon features are
shown to be very helpful for improving the per-
formance. Similarly, we re-implemented the meth-
od proposed by (Barbosa and Feng, 2010) in this
experiment. The results show that our system using
both content features and sentiment lexicon fea-
tures performs slightly better than (Barbosa and
Feng, 2010). The reason may be same as that we
explained above.

Again, the classifier using all features achieves
the best performance. Both the classifiers with all
features and with the combination of content and
sentiment lexicon features are significantly better
than that with only the content features (p < 0.01).
However, the classifier with all features does not
significantly outperform that using the combina-
tion of content and sentiment lexicon features. We
also note that the improvement by target-dependent
features here is not as large as that in subjectivity
classification. Both of these indicate that target-
dependent features are more useful for improving
subjectivity classification than for polarity classifi-
cation. This is consistent with our observation in
Subsection 6.2 that most errors caused by incorrect
target association are made in subjectivity classifi-
cation. We also note that all numbers in Table 3
are much bigger than those in Table 1, which sug-
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gests that subjectivity classification of tweets is
more difficult than polarity classification.

Similarly, we evaluated the contribution of tar-
get extension for polarity classification. According
to the results, adding all extended targets improves
the accuracy by about 1 point. However, the con-
tributions from the three individual methods are
not statistically significant.

6.4 Evaluation of Graph-based Optimization

As seen in Figure 1, there are several tweets which
are not connected with any other tweets. For these
tweets, our graph-based optimization approach will
have no effect. The following table shows the per-
centages of the tweets in our evaluation data set
which have at least one related tweet according to
various relation types.

Relation type Percentage
Published by the same person™ 41.6
Retweet 23.0
Reply 21.0
All 66.2

Table 4. Percentages of tweets having at least one relat-
ed tweet according to various relation types.

According to Table 4, for 66.2% of the tweets
concerning the test queries, we can find at least one
related tweet. That means our context-aware ap-
proach is potentially useful for most of the tweets.

To evaluate the effectiveness of our context-
aware approach, we compared the systems with
and without considering the context.

- 0,
System Accuracy F1-score (%)
pos | neu | neg
Target-dependent 660 | 575 | 70.1 | 66.1
sentiment classifier
+Graph-based op-
timization 68.3 63.5 | 71.0 | 685

Table 5. Effectiveness of the context-aware approach.

As shown in Table 5, the overall accuracy of the
target-dependent classifiers over three classes is
66.0%. The graph-based optimization improves the
performance by over 2 points (p < 0.005), which
clearly shows that the context information is very

1 \We limit the time frame from one week before to one week
after the post time of the current tweet.



useful for classifying the sentiments of tweets.
From the detailed improvement for each sentiment
class, we find that the context-aware approach is
especially helpful for positive and negative classes.

Relation type Accuracy (%)
Published by the same person 67.8
Retweet 66.0
Reply 67.0

Table 6. Contribution comparison between relations.

We further compared the three types of relations
for context-aware sentiment classification; the re-
sults are reported in Table 6. Clearly, being pub-
lished by the same person is the most useful
relation for sentiment classification, which is con-
sistent with the percentage distribution of the
tweets over relation types; using retweet only does
not help. One possible reason for this is that the
retweets and their original tweets are nearly the
same, so it is very likely that they have already got
the same labels in previous classifications.

7 Conclusions and Future Work

Twitter sentiment analysis has attracted much at-
tention recently. In this paper, we address target-
dependent sentiment classification of tweets. Dif-
ferent from previous work using target-
independent classification, we propose to incorpo-
rate syntactic features to distinguish texts used for
expressing sentiments towards different targets in a
tweet. According to the experimental results, the
classifiers incorporating target-dependent features
significantly outperform the previous target-
independent classifiers.

In addition, different from previous work using
only information on the current tweet for sentiment
classification, we propose to take the related tweets
of the current tweet into consideration by utilizing
graph-based optimization. According to the exper-
imental results, the graph-based optimization sig-
nificantly improves the performance.

As mentioned in Section 4.1, in future we would
like to explore the relations between a target and
any of its extended targets. We are also interested
in exploring relations between Twitter accounts for
classifying the sentiments of the tweets published
by them.
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Abstract

It has been widely recognized that one of the
most difficult and intriguing problems in
natural language processing (NLP) is how to
cope with idiosyncratic multiword expressions.
This paper presents an overview of the
comprehensive  dictionary (JDMWE) of
Japanese multiword expressions. The JDMWE
is characterized by a large notational, syntactic,
and semantic diversity of contained expressions
as well as a detailed description of their
syntactic functions, structures, and flexibilities.
The dictionary contains about 104,000
expressions, potentially 750,000 expressions.
This paper shows that the JDMWE’s validity
can be supported by comparing the dictionary
with a large-scale Japanese N-gram frequency
dataset, namely the LDC2009T08, generated by
Google Inc. (Kudo et al. 2009).

1 Introduction

Linguistically idiosyncratic multiword expressions
occur in authentic sentences with an unexpectedly
high frequency. Since (Sag et al. 2002), we have
become aware that a proper solution of
idiosyncratic multiword expressions (MWES) is
one of the most difficult and intriguing problems in
NLP. In principle, the nature of the idiosyncrasy of
MWEs is twofold: one is idiomaticity, i.e., non-
compositionality of meaning; the other is the
strong probabilistic affinity between component
words. Many attempts have been made to extract
these expressions from corpora, mainly using
automated methods that exploit statistical means.
However, to our knowledge, no reliable, extensive
solution has yet been made available, presumably
because of the difficulty of extracting correctly
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without any human insight. Recognizing the
crucial importance of such expressions, one of the
authors of the current paper began in the 1970s to
construct a Japanese electronic dictionary with
comprehensive inclusion of idioms, idiom-like
expressions, and probabilistically idiosyncratic
expressions for general use. In this paper, we begin
with an overview of the JDMWE (Japanese
Dictionary of Multi-Word Expressions). It has
approximately 104,000 dictionary entries and
covers potentially at least 750,000 expressions.
The most important features of the JDMWE are:
1. A large notational, syntactic, and semantic
diversity of contained expressions
2. A detailed description of syntactic function and
structure for each entry expression
3. An indication of the syntactic flexibility of entry
expressions  (i.e., possibility of internal
modification of constituent words) of entry
expressions.

In section 2, we outline the main features of the
present study, first presenting a brief summary of
significant previous work on this topic. In section 3,
we propose and describe the criteria for selecting
MWEs and introduce a number of classes of
multiword expressions. In section 4, we outline the
format and contents of the JIDMWE, discussing the
information on notational variants, syntactic
functions, syntactic structures, and the syntactic
flexibility of MWESs. In section 5, we describe and
explain the contextual conditions stipulated in the
JDMWE. In section 6, we illustrate some
important statistical properties of the JIDMWE by
comparing the dictionary with a large-scale
Japanese  N-gram  frequency dataset, the
LDC2009T08, generated by Google Inc. (Kudo et
al. 2009). The paper ends with concluding remarks
in section 7.



2 Related Work

Gross (1986) analyzed French compound adverbs
and compound verbs. According to his estimate,
the lexical stock of such words in French would be
respectively 3.3 and 1.7 times greater than that of
single-word adverbs and single-word verbs.
Jackendoff (1997) notes that an English speaker’s
lexicon would contain as many MWEs as single
words. Sag et al. (2002) pointed out that 41% of
the entries of WordNet 1.7 (Fellbaum 1999) are
multiword; and Uchiyama et al. (2003) reported
that 44% of Japanese verbs are VV-type
compounds. These and other similar observations
underscore the great need for a well-designed,
extensive  MWE lexicon for practical natural
language processing.

In the past, attempts have been made to produce
an MWE dictionary. Examples include the
following: Gross (1986) reported on a dictionary of
French verbal MWEs with description of 22
syntactic  structures; Kuiper et al. (2003)
constructed a database of 13,000 English idioms
tagged with syntactic structures; Villavicencio
(2004) attempted to compile lexicons of English
idioms and verb-particle constructions (VPCs) by
augmenting existing single-word dictionaries with
specific tables; Baptista et al. (2004) reported on a
dictionary of 3,500 Portuguese verbal MWESs with
ten syntactic structures; Fellbaum et al. (2006)
reported corpus-based studies in developing
German verb phrase idiom resources; and recently,
Laporte et al. (2008) have reported on a dictionary
of 6,800 French adverbial MWEs annotated with
15 syntactic structures.

Our JDMWE approach differs from these
studies in that it can treat more comprehensive
types of MWEs. Our system can handle almost all
types of MWESs except compositional compounds,
named entities, acronyms, blends, politeness
expressions, and functional expressions; in contrast,
the types of MWEs that most of the other studies
can deal with are limited to verb-object idioms,
VPCs, verbal MWEs, support-verb constructions
(SVCs) and so forth.

Many attempts have been made to extract
MWEs automatically using statistical corpus-based
methods. For example, Pantel et al. (2001) sought
to extract Chinese compounds using mutual
information and the log-likelihood measure. Fazly
et al. (2006) attempted to extract English verb-
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object type idioms by recognizing their structural
fixedness in terms of mutual information and
relative entropy. Bannard (2007) tried to extract
English syntactically fixed verb-noun
combinations using pointwise mutual information,
and so on.

In spite of these and many similar efforts, it is
still difficult to adequately extract MWEs from
corpora using a statistical approach, because
regarding the types of multiword expressions,
realistically speaking, the corpus-wide distribution
can be far from exhaustive. Paradoxically, to
compile an MWE lexicon we need a reliable
standard MWE lexicon, as it is impossible to
evaluate the automatic extraction by recall rate
without such a reference. The conventional idiom
dictionaries published for human readers have been
occasionally used for the evaluation of automatic
extraction methods in some past studies. However,
no conventional Japanese dictionary of idioms
would suffice for an MWE lexicon for the practical
NLP because they lack entries related to the
diverse MWE objects we frequently encounter in
common textual materials, such as quasi-idioms,
quasi-clichés, metaphoric fixed or partly fixed
expressions. In addition, they provide no
systematic information on the notational variants,
syntactic functions, or syntactic structures of the
entry expressions. The JDMWE is intended to
circumvent these problems.

In past Japanese MWE studies, Shudo et al.
(1980) compiled a lexicon of 3,500 functional
multiword expressions and used the lexicon for a
morphological analysis of Japanese. Koyama et al.
(1998) made a seven-point increase in the
precision rate of kana-to-kanji conversion for a
commercial Japanese word processor by using a
prototype of the JDMWE with 65,000 MWEs.
Baldwin et al. (2003) discussed the treatment of
Japanese MWEs in the framework of Sag et al.
(2002). Shudo et al. (2004) pointed out the
importance of the auxiliary-verbal MWEs and their
non-propositional meanings (i.e., modality in a
generalized sense). Hashimoto et al. (2009)
studied a disambiguation method of semantically
ambiguous idioms using 146 basic idioms.

3 MWEs Selected for the IDMWE

The human deliberate judgment is indispensable
for the correct, extensive extraction of MWESs. In



view of this, we have manually extracted
multiword expressions that have definite syntactic,
semantic, or communicative functions and are
linguistically idiosyncratic from a variety of
publications, such as newspaper articles, journals,
magazines, novels, and dictionaries. In principle,
the idiosyncrasy of MWEs is twofold: first, the
semantic non-compositionality (i.e., idiomaticity);
second, the strong probabilistic affinity between
component words. Here we have treated them
differently.

The number of words included in a MWE ranges
from two to eighteen. The length distribution is
shown in Figure 1.

Constituent Ratio (%)

2 3 4 5 6 7 8 9 1011 12 13 14 15
Length

Figure 1: Length distribution of MWES

16 17 18

type example

Idiom: Semantically
Non-Compositional
Expression
Morphologically or
Syntactically Non-
Compositional
Expression, Cranberry-
Type Expression
SVC: Support-Verb
Construction
Compound Noun;
Compound Verb;
Compound Adjective;
Compound Adjective-
Verb

JR-D—f A\ aka-no-tanin
(lit. red stranger) “complete stranger”

E-1X-\ % to-ha-ie
“however”

H¥-%-/M x5 hihan-wo-kuwaeru
(lit. add criticism) “criticize”

FIH-hiasis uti-hisigareru
(lit. be hit and smashed)
“become depressed”

Four-Character-ldiom K BfE-IRZY siri-meturetu “incoherence”

Metaphorical
Expression

fiv—D-FRY inoti-no-kagiri

(lit. limit of life) “at the risk of life”
fEE—%—-5(< jisho-wo-hiku (lit. pull
dictionary) “look up in a dictionary”

Quasi-Idiom

Table 1: Non-Compositional Expressions
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3.1 Non-Compositional MWEs

In our approach, we use non-substitutability
criterion to define a word string as an MWE, the
logic being that an MWE expression is usually
fixed in its form and the substitution of one of its
constituent words would vyield a meaningless
expression or an expression with a meaning that is
completely different from that of the original
MWE expression. Formally, a word string wyw,: -
Wi W, (2<n<18) is an MWE if it has a definite
syntactic, semantic, or communicative function of
its own, and if ww, === wy - w, is either
meaningless or has a meaning completely different
from that of wyw,---w;---w, for some i, where w;’
is any synonym or synonymous phrase of w;. For
example, 7R (w,)-D-fth A aka-no-tanin (lit. “red
stranger”) is selected because it has a definite
nominal meaning of “complete stranger” and
neither BT (wy)-D-fll A sinku-no-tanin nor L
v R (wy)- @ - fit A reddo-no-tanin means
“complete stranger”. The evaluation of semantic
relevance of MWEs was carried out by human
judges entirely. It is just too difficult to judge the
semantic relevance automatically and correctly.
Table 1 shows a number of MWES of this type.

3.2 Probabilistically Idiosyncratic MWEs

An MWE must form a linguistic unit of its own.
This and the following transition probability
condition constitute another criterion that we adopt
to define what an MWE is. Formally, a word string
WiW, Wit W, (2<n<18) is an MWE if it has a
definite syntactic, semantic, or communicative
function of its own, and if its forward or backward
transition probability pg{(Wi.a|Wy---W;) or pp(Wi|Wisy
---W,), respectively is judged to be in the relatively
high range for some i. With this definition, for
example, T--%-#£ < te-wo-komaneku “fold arms”
is selected as an MWE because it is a well-formed
verb phrase and py( F| % - #t <) is judged
empirically to be wvery high. No general
probabilistic threshold value can be fixed a priori
because the wvalue s expression-dependent.
Although the probabilistic judgment was
performed, for each expression in turn, on the basis
of the developer’s empirical language model, the
resulting dataset is consistent with this criterion on

! These classes are not necessarily disjoint.



the whole as shown in section 6.1. Table 2 lists
some MWES of this type.?

example

JEB~—4£T fuuzen-no-tomosibi

(lit. light in front of the wind)
“candle flickering in the wind”
2A-1E-[al4 isoga-ba-maware
(lit. make a detour when in a hurry)
“more haste, less speed”

/m /r-E-#3< noronoro-to-aruku
(lit. slouchingly walk) “walk slowly”

type

Cliché, Stereotyped,
Hackneyed, or
Set Expression

Proverb, Old-Saying

Onomatopoeic or
Mimetic Expression

Quasi-Cliché, JA-D~fi-%~"F 579 kata-no-ni-wo-orosu
Institutionalized (lit. lower lord from the shoulder)
Phrase “take a big load off one’s mind”

Table 2: Probabilistically Idiosyncratic Expressions

With entries like these, an NLP system can use the
JDMWE as a reliable reference while effectively
disambiguating the structures in the syntactic
analysis process.

Of the MWEs in the JDMWE, approximately
38% and 92% of them were judged to meet
criterion 3.1 and criterion 3.2, respectively. These
are illustrated in Figure 2.

probabilistically bound
MWEs 92%
p / “hon-compositional
8%) 1 (30%) MWEs 38%
\ (62%)

ex. <o TY-FD
gussuri-nemuru
"sleep soundly"

ex. B-O-W-%-T57
kata-no-ni-wo-orosu

(lit. lower load from the shoulder)

"take a big load off one's mind"

ex. #-%-7%%
abura-wo-uru
(lit. sell...oil)
"loaf"

Figure 2: Approximate constituent ratio of non-
compositional MWEs and probabilistically bound
MWEs

Field-H -N -f -5 -t
PEETS (B-2-T5 Ve

"makea ... face" aface do

(tit. "do a... face")

_Cb

[+ N wo]+Va0]|<adnom.modifier?| --

Figure 3: Example JDMWE entry

2 These classes are not necessarily disjoint.
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4  Contents of the JDMWE

The JDMWE has approximately 104,000 entries,
one for each MWE, composed of six fields, namely,
Field-H, -N, -F, -S, -C;, and -C,. The dictionary
entry form of an MWE is stated in Field-H in the
form of a non-segmented hira-kana (phonetic
character) string. An example is given in Figure 3.

4.1 Notational Information (Field-N)

Japanese has three notational options: hira-kana,
kata-kana, and kanji. The two kanas are
phonological syllabaries. Kanji are originally
Chinese idiographic characters. As we have many
kanji characters that are both homophonic and
synonymous, sentences can contain  kanji
replaceable by others. In addition, the inflectional
suffix of some verbs can be absent in some
contexts. The JDMWE has flexible conventions to
cope with these characteristics. It uses brackets to
indicate an optional word (or a series of
interchangeable words marked off by the slash ““/)
in the Field-N description. Therefore, the entry
whose Field-H (the first field) is & DOV KD ki-
no-ii-yatu (lit. “a guy who has a good spirit”)
“good-natured guy”, can have (&/5)-D-(\VME/
T 3) W -(R2 /8 >7) in its Field-N. The dash
“-” is used as a word boundary indicator. This
example can stand for twenty-four combinatorial
variants, i.e., & DWWV - QD BV, -,
KOFN Y,

If fully expanded with this information, the
JDMWE’s total number of MWEs can exceed
750,000.

4.2 Functional Information (Field-F)

Linguistic functions of MWEs can be simply
classified by means of codes, as shown in Tables 3
and 4. Field-F is filled with one of those codes
which corresponds to a root node label in the
syntactic tree representation of a MWE.

code function size example
; S -#az -1 X ii-kaere-ba
. Discourse- .
Cdis Connective 1,000 (I'|t. if (1) parapklrase)
“in other words
S igi-
Adv  Adverbial 6000 ek & fusigi-to
“strangely enough
Prenominal- «rpfinita”
Pren Adjectival 13,700  fife-7=% kaku-taru “definite




JRH-D-5RE aku-no-tuyosa

Nom Nominal 12,000  (lit. strong taste of lye)
“strong harshness”
Nominal/ — H -4 hitome-bore
Nd Dynamic 4,700 “love at first sight”
Nominal/State- Z-H—F ni-mai-jita
Nk describing 5400 “being double-tongued”
Ver Verbal 49,000 M-E-JE% abura-wo-uru
(lit. sell oil) “idle away”
IR-IZ-AN-THIE <7\
Adj Adjectival 4,600 me-ni-ire-tgmo-ital_(u-nai_(Iit.
have no pain even if put into
eyes) “an apple in ones eye”
Adjective- 587> keiken-yutaka
K 3,500 . !
Verbal “abundant in experience”
Onomatopoeic AZAZ-& surasura-to
Ono or Mimetic 1,300  “smoothly”, “easily”,
Expression “fluently”

Table 3: Syntactic Functions and Examples

code function size example
B -3-—R-lc-mi-9°
hyakubun-ha-ikken-ni-sika-zu (lit.
p Proverb, 2300 hearing about something a
- Old-Saying ' hundred times is not as good as
seeing it once) “a picture is worth
a thousand words”
Self Soliloguy, 200 [K|->~7-~724 komat-ta-naa
- Monologue “Oh boy, we’re in trouble!”
“call call, Yell 150 PAHEEAR .
sumi-mase-n-ga “Excuse me.
Grt Greeting 200 k‘%ob%ﬂb’:*i“ﬁ: irasshai-mase
Welcome!
EH)-neL-FL-T
_Res  Response 350  dou-itasi-masi-te

“You’re welcome.”

Table 4: Communicative Functions and Examples

4.3 Structural Information (Field-S)

4.3.1 Dependency Structure

The dependency structure of an MWE is given in
Field-S by a phrase marker bracketing the
modifier-head pairs, using POS symbols for
conceptual words. For example, an idiom & > 7R-
72 - WE  makka-na-uso (lit. “crimson lie”)
“downright lie” is given a marker [[Ky na] N].
This description represents the structure shown in
Figure 4, where Ko and N are POS symbols
denoting an adjective-verb stem and a noun,
respectively.

% The intra-sentential dependency relation in Japanese is
unilateral, i.e., the left modifier depends on the right head.
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The JDMWE contains 49,000 verbal entries,
making this the largest functional class in the
JDMWE. For these verbal entries, more than 90
patterns are actually used as structural descriptors
in Field-S. This fact can indicate the broadness of
the structural spectrum of Japanese verbal MWEs.
Some examples are shown in Table 5.

Nom (INFP)
-
ANV Pattr
/ \
AN P N
[[ Koo na ] ™]
HoR P S )i
mctickoet jal=3 uso
. A~ -

crimson lie

Figure 4: Example of dependency structure given
in Field-S

example of structural

pattern of verbal MWE example of MWE

F—%-15 2 7% i-wo-tonaeru (lit. chant
the difference) “raise an objection”
#RY-73- K5 yori-ga-modoru (lit. the
twist comes undone) ““get reconciled”
F-IT-ANS te-ni-ireru

(lit. put...into hands) “get”, “obtain”
{biF-D~FZ-H3-311F 5 bake-no-kawa-
ga-hageru (lit. peel off disguise)
“expose the true colors”
F-0>-Hil-|Z-3f % tama-no-kosi-ni-
noru

(lit. ride on a palanquin for the nobility)
“marry into wealth”

%H-"C- N\—%—fi5 ago-de-hito-wo-tukau
(lit. use person by a chin)

“order a person around”
PL-1Z=k=D3~F+< siri-ni-higa-tuku (lit.
buttocks catch fire) “get in great haste”
B)>-T-¥ &7 ki-te-otosu

(lit. cut and drop) “cut off”
FTC-13-%8< ute-ba-hibiku

(lit. reverberate if hit) “respond quickly”
27T
taba-ni-nat-te-kakaru

(lit. attack someone by becoming a
bunch) “attack all at once”

Lol En-7-H5
dotto-tukare-ga-deru

(lit. fatigue bursts out)

“being suddenly overcome with fatigue”

[[N WO] V3o]

[[N ga] V]

[[N n|] V30]

[[[IN no] N] ga] Vo]

[[IIN no] N ni] V]

([N de][[N wo] V]

[IN ni][[N ga] Vad]]

[[V23 te] V3o]

[[V23 ba] V3]

[[[IN ni] V23] te] Vao]

[Adv [[N ga] Va]]

Table 5: Examples of structural types of verbal
MWESs (N: noun, V3. verb (adverbial form), Vz:
verb (end form), Adv: adverb, wo, ga, ni, no, de, te,
and ba: particle)



4.3.2 Coordinate Structure

Approximately 2,500 MWEs in the JDMWE
contain internal coordinate structures. This
information is described in Field-S by bracketing
with “<” and “>”, and the coordinated parts by “(”
and “)”. The coordinative phrase specification
usually requires that the conjuncts must be parallel
with respect to the syntactic function of the
constituents appearing in the bracketed description.
For example, an expression #4-(%-%7- & -7 41-[1-
L -72} ato-ha-no-to-nare-yama-to-nare (lit. “the
rest might become either a field or a mountain™)
“what will be, will be”, has an internal coordinate
structure. Thus, its Field-S is [[N ha]<([[N to]
Veo)([IN to] Veo])>]. This description represents
the structure shown in Figure 5, where Vg, denotes
an imperative form of the verb.

_P (Simp)

— COOD —
VPimp VPimp
P 2N PP
N P N P WVimp N p Vimp

[N 2] <([[N 61 VéoD ([N £5] Veo =]

[E- B & dehr L & Fedn
aro ha o fo nare yamea o nare
A, N\

rest field kecome mountain become

Figure 5: Example of the coordinate structure
shown by “<” and “>” in Field-S

4.3.3 Non-phrasal Structure

Approximately 250 MWEs in the JDMWE are
syntactically ill-formed in the sense of context-free
grammar but still form a syntactic unit on their
own. For example, & ¥ §E-/» b -2 -F C
yurikago-kara-hakaba-made “from the cradle to
the grave” is an adjunct of two postpositional
phrases but is often used as a state-describing noun
as in %0 #E-0 5 -2 F T-O-fR3E yurikago-
kara-hakaba-made-no-hoshou (lit. security of from
cradle to grave) “security from the cradle to the
grave”. Thus Field-F and Field-S have a functional
code N and a description [[N kara][[N made] $]],
respectively. The symbol “$” denotes a null
constituent occupying the position of the governor
on which this MWE depends. This structure is
shown in Figure 6.

166

Nk (VP-%)
VP-5)
PP pp”
~ N -

17‘ P o0 e\
[[N kara] [[N made] $]]
mosE e = T

yurikago fkara halkaba made [ F4
-~ -~ 7

cradle from

Figure 6: Example of a non-phrasal expression
with a null constituent marked with “$” in Field-S

The total number of structural types specified in
Field-S is nearly 6,000. This indicates that
Japanese MWEs present a wide structural variety.

4.3.4 Internal Modifiability

Some MWEs are not fixed-length word strings, but
allow the occurrence of phrasal modifiers
internally. In our system, this aspect is captured by
prefixing a modifiable element of the structural
description stated in the Field-S with an asterisk
“*» An adverbial MWE _|-{Z-R_-72-£%-1T ue-
ni-nobe-ta-you-ni “as | explained above” is one
such MWE and thus has a description [[[[[N ni]
*Vy3] ta] N] ni] in Field-S, meaning that the third
element V,; is a verb that can be modified
internally by adverb phrases. Since the asterisk
designates such optional phrasal modification, our
system allows a derivative expression like Ff
B -Z- E-l2-FF L < -1l R_-72-£k-1Z riyuu-wo-
ue-ni-kuwasiku-nobe-ta-you-ni “as | explained in
detail the reason above”, which contains two
additional, internal modifiers. The structure is
shown in Figure 7.

Adv (PP)
VPpst.attr
P
2 vP
//
/// /gp VP
@ BE o W AR IR
[IC: [[N n/] T *V232]: ta] N] n/i]
(Hig %) FE o GELO B~ = # o

(rivuu wo) wue ni (kuwasiku) nobe ta vou ni
e NN \--%’\_ﬂ\_ﬂ'\_ﬁ'

______________

(reason) (in detail}

mentioned as

Figure 7: Example of internal modifiability marked
by “*” in Field-S

* The positions to be taken by an internal modifier can be
easily decided by the structural description given in Field-S
along with the nest structure requirement.



Roughly speaking, 30,000 MWEs in the JDMWE
have no asterisk in their Field-S. Our rigid
examination reveals that internal modification is
not allowed for them.

5 Contextual Condition (Field-Cs, Cp)

Approximately 6,700 MWEs need to be classified
differently because they require particular forward
contexts, i.e., they require co-occurrence of a
particular syntactic phrase in the context that
immediately precedes them. For example, #A-% -
4 % kao-wo-suru (lit. “do face”) which is a
support-verb construction, cannot occur without an
immediately preceding adnominal modifier, e.g.,
the adjective 25 L\ kanasii “sad”, yielding 25 L
VN-EH-% -3 % kanasii-kao-wo-suru (lit. “do sad
face”) “make a sad face”. This adnominal modifier
co-occurrence requirement is stipulated in Field-Cs
by a code <adnom. modifier>. There are about 30
of these forward contextual requirements.
Similarly, backward contextual requirements, of
which there are about 70, are stated in Field-C,.
Approximately 300 MWEs require particular
backward contexts.

6 Statistical Properties

Without a rule system of semantic composition, it
is difficult to evaluate the validity of the JDMWE
concerning idiomaticity. However, we can confirm
that 3,600 Japanese standard idioms that Sato
(2007) listed from five Japanese idiom dictionaries
published for human readers are included in the
JDMWE as a proper subset. In addition, the
JDMWE contains the information about their
syntactic functions, structures, and flexibilities.

6.1 Comparison with Web N-gram
Frequency Data

We examined the statistical properties of the
JDMWE using the Japanese Web N-gram, version
1: LDC2009T08, which is a word N-gram (1<N<7)
frequency dataset generated from 2 X 10"
sentences in a Japanese Web corpus, supplied by
Google Inc. (Kudo et al. 2009). We will refer to
this (or the Web corpus examined) subsequently as
GND. We will refer to trigram w;w,wj; as an NpV-
trigram only when w; and ws are restricted to a
noun and a verb (end form), respectively, and w, is
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one of the following case-particles: accusative %
wo, subjective 73 ga, or dative (Z ni.> We write the
number of occurrences of an expression X, counted
in the GND, as C(x).

First, we obtain from the GND sets G, T, D, B,
and R;s defined below, using a Japanese word
dictionary IPADIC (Asahara et al. 2003):

G:{W1W2W3| Wi W,oW; € GND, W{W,W3 is an
NpV-trigram.}
T={w,w,ws| ww,w;€ JDMWE, ww,w; is an

NpV-trigram.}
D={w,w,| I ws, ww,w;€ G}
B={w,w,| Fw;, w,w,w;€ T}

R={w,w,ws| ww,w;€ T, C(w;w,ws) is the i-th
largest among C(w;w,V)’s for all w,w,v € G}.

We then found the following data:

* |B|=10,548

- |D|=110,822

- |Ry|=4,983, |R,|=1,495, |R3|=786, |R4=433,
From these, we realize, for example, that 47.2%
=(|Ry)/|B[)x100 of trigrams in T have verbs that
occur most frequently in the GND, succeeding the
individual bigrams. An example of such a trigram
is7 7 3 a % -ifL 27 akushon-wo-okosu (lit.
“raise action”) “take action”. Similarly, 14.0%=
(JR2}/|B[)*100 have the second most frequent verbs,
7.5% have the third most frequent verbs, and so on.
Figure 8(a) illustrates the results. From this, we can
assume that the higher probability pg(wsw,w,) a
trigram w;w,w3 has, the more likely ws is chosen
for each w;w, in the JDMWE. This is consistent
with what we wrote in section 3.2. Figure 8(b) is
the accumulative substitute of Figure 8(a).
Extrapolating Figure 8(b) suggests that 10% of
NpV-trigrams in the JDMWE do not occur in the
GND. This implies that the size, i.e., 2x10%
sentences of the Web corpus used by the GND is
not sufficiently large to allow MWE extraction. °

® The NpV-trigrams represent the typical forms of shortest
Japanese sentences, corresponding roughly to subject-verb,
verb-object/direct, and verb-object/indirect constructions in
English.

® Otherwise, the frequency cut-off point of 20 adopted in GND
is too high.
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123456 7891011121314151617181920

Rank

Figure 8 (a): Constituent ratio (|R;|/|B|)x100 for
rank i of probability pgwsww,);  (b):
Accumulative variant of (a) for rank i of
probability ps(wa|w;w,)

Second, we calculate the (normalized) entropy
He(ws|w,w,) for each wyw,€ D defined below,
where the probability p{w;w,w,) is estimated by
C(w,w,w3)/C(w,w,). This provides a measure of
the flatness of the pg(w;lw,w,) distribution
canceling out the influence of the number N of
verb types ws’s.

H(ws|w,w)
== (Z P(Wswiw,) log pwslwiws)) / log N

After arranging 110,822 bigrams in D in ascending
order of Hgwsw,w,), we divided them into 20
intervals A, A,, ..., Ay each with an equal number
of bigrams (5,542). We then examined how many
bigrams in B were included in each interval.
Figures 9(a) and (b) plot the resulting constituent
ratio of the bigrams in B and the mean value of
H{wslw;w,)’s in each interval, respectively. We
found, for example, that 1,262 out of 5,542
bigrams are in B for the first interval, i.e., the
constituent ratio is 22.8%=(1,262/5,542) X 100.
Similarly, we obtain 22.5%=(1,248/5,542) X 100
for the second interval, 20.5%=(1,136/5,542) X 100
for the third, and so on. From this, we realize the
macroscopic tendency that the larger the entropy
Hedws|w,w,), or equivalently the perplexity of the
succeeding verb wjs, a bigram w,w, has, the less
likely it is adopted as a prefix of a trigram in T.
Taking the results in Figure 8 and Figure 9
together, we can presume that not only frequently
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but also exclusively occurring verbs would be the
preferred choice in T.

25 - 1
. - -
“\ =" (b)
20 et 0.8

- - :
X \\3-\""
£ 15 = 0.6

Average Entropy

Constituent Ratio (%)
=
)
1
[}

1234567 8 91011121314151617181920

Interval

Figure 9 (a): Constituent ratio of the bigrams in B
among bigrams in D in interval k (1<k<20); (b):
Mean value of entropies Hq(wslw;w,)’s in the
interval k (1<k<20)

This suggests the general feasibility of the
JDMWE, for its relative compactness, in
effectively disambiguating the syntactic structures
of input word strings.

The above investigations were carried out on the
forward conditional probabilities for restricted
types of MWEs. However, the results imply a
general validity of the JDMWE since the same
criteria for selection were applied to all kinds of
multiword expressions.

6.2 Occurrences in Newspapers

We examined 2,500 randomly selected sentences
in Nikkei newspaper articles (published in 2009) to
determine how many MWE tokens of the JDMWE
occur in them. We found that in 100 sentences an
average of 74 tokens of our MWESs were used. This
suggests a large lexical coverage of the JDMWE.

7  Concluding Remarks

The JDMWE is a slotted tree bank for
idiosyncratic multiword expressions, annotated
with detailed notational, syntactic information.

The idea underlying the JDMWE is that the
volume and meticulousness of the lexical resource
crucially affects the outcome of the rule-oriented,
large-scale NLP. In view of this, the JDMWE was
designed to encompass the wide range of linguistic
objects related to Japanese MWEs, by placing
importance on the recall rate in the selection of the



candidate expressions.” The statistical properties
clarified in this paper imply the general feasibility
of the IDMWE at least in the probabilistic respect.

Possible fields of application of the JDMWE
include, for example:

+ Phrase-based machine translation

+ Phrase-based speech recognition

+ Phrase-based kana-to-kanji conversion
+ Search engine for Japanese corpus

+ Paraphrasing system

- Japanese dialoguer

+ Japanese language education system

Another aspect of the JDMWE is that it would
provide linguists with lexicological data. For
example, the usage of Japanese onomatopoeic
adverbs, which are mostly bound probabilistically
to specific verbs or adjectives, is extensively
catalogued in the JDMWE.

The first version of the JIDMWE will be released
after proofreading.? If possible, we would like to
add further information to each MWE on
morphological variants, passivization,
relativization, decomposability, paraphrasing, and
semantic disambiguation for future versions.
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Abstract

We describe an annotation tool developed to as-
sist in the creation of multimodal action-
communication corpora from on-line massively
multi-player games, or MMGs. MMGs typically
involve groups of players (5-30) who control
their avatars', perform various activities (quest-
ing, competing, fighting, etc.) and communicate
via chat or speech using assumed screen names.
We collected a corpus of 48 group quests in
Second Life that jointly involved 206 players
who generated over 30,000 messages in quasi-
synchronous chat during approximately 140
hours of recorded action. Multiple levels of co-
ordinated annotation of this corpus (dialogue,
movements, touch, gaze, wear, etc) are required
in order to support development of automated
predictors of selected real-life social and demo-
graphic characteristics of the players. The anno-
tation tool presented in this paper was developed
to enable efficient and accurate annotation of all
dimensions simultaneously.

1 Introduction

The aim of our project is to predict the real world
characteristics of players of massively-multiplayer
online games, such as Second Life (SL). We sought
to predict actual player attributes like age or educa-
tion levels, and personality traits including leader-
ship or conformity. Our task was to do so using
only the behaviors, communication, and interaction
among the players produced during game play. To
do so, we logged all players’ avatar movements,

! All avatar names seen in this paper have been changed to
protect players’ identities.
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“touch events” (putting on or taking off clothing
items, for example), and their public chat messages
(i.e., messages that can be seen by all players in the
group). Given the complex nature of interpreting
chat in an online game environment, we required a
tool that would allow annotators to have a synchro-
nized view of both the event action as well as the
chat utterances. This would allow our annotators to
correlate the events and the chat by marking them
simultaneously. More importantly, being able to
view game events enables more accurate chat anno-
tation; and conversely, viewing chat utterances
helps to interpret the significance of certain events
in the game, e.g., one avatar following another. For
example, an exclamation of: “l can’t do it!” could
be simply a response (rejection) to a request from
another player; however, when the game action is
viewed and the speaker is seen attempting to enter a
building without success, another interpretation
may arise (an assertion, a call for help, etc.).

The Real World (RW) characteristics of SL
players (and other on-line games) may be inferred
to varying degrees from the appearance of their
avatars, the behaviors they engage in, as well as
from their on-line chat communications. For exam-
ple, the avatar gender generally matches the gender
of the owner; on the other hand, vocabulary choices
in chat are rather poor predictors of a player’s age,
even though such correlation is generally seen in
real life conversation.

Second Life? was the chosen platform because
of the ease of creating objects, controlling the play
environment, and collecting players” movement,
chat, and other behaviors. We generated a corpus of
chat and movement data from 48 quests comprised
of 206 participants who generated over 30,000

2 An online Virtual World developed and launched in 2003, by
Linden Lab, San Francisco, CA. http://secondlife.com
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messages and approximately 140 hours of recorded
action. We required an annotation tool to help us
efficiently annotate dialogue acts and communica-
tion links in chat utterances as well as avatar
movements from such a large corpus. Moreover,
we required correlation between these two dimen-
sions of chat and movement since movement and
other actions may be both causes and effects of
verbal communication. We developed a multi-
modal event and chat annotation tool (called RAT,
the Relational Annotation Tool), which will simul-
taneously display a 2D rendering of all movement
activity recorded during our Second Life studies,
synchronized with the chat utterances. In this way
both chat and movements can be annotated simul-
taneously: the avatar movement actions can be re-
viewed while making dialogue act annotations.
This has the added advantage of allowing the anno-
tator to see the relationships between chat, behav-
ior, and location/movement. This paper will
describe our annotation process and the RAT tool.

2 Related Work

Annotation tools have been built for a variety of
purposes. The CSLU Toolkit (Sutton et al., 1998) is
a suite of tools used for annotating spoken lan-
guage. Similarly, the EMU System (Cassidy and
Harrington, 2001) is a speech database management
system that supports multi-level annotations. Sys-
tems have been created that allow users to readily
build their own tools such as AGTK (Bird et al.,
2001). The multi-modal tool DAT (Core and Al-
len, 1997) was developed to assist testing of the
DAMSL annotation scheme. With DAT, annota-
tors were able to listen to the actual dialogues as
well as view the transcripts. While these tools are
all highly effective for their respective tasks, ours is
unique in its synchronized view of both event ac-
tion and chat utterances.

Although researchers studying online communi-
cation use either off-the shelf qualitative data anal-
ysis programs like Atlas.ti or NVivo, a few studies
have annotated chat using custom-built tools. One
approach uses computer-mediated discourse analy-
sis approaches and the Dynamic Topic Analysis
tool (Herring, 2003; Herring & Nix; 1997; Stromer-
Galley & Martison, 2009), which allows annotators
to track a specific phenomenon of online interaction
in chat: topic shifts during an interaction. The
Virtual Math Teams project (Stahl, 2009) created a

172

ated a tool that allowed for the simultaneous play-
back of messages posted to a quasi-synchronous
discussion forum with whiteboard drawings that
student math team members used to illustrate their
ideas or visualize the math problem they were try-
ing to solve (Cakir, 2009).

A different approach to data capture of complex
human interaction is found in the AMI Meeting
Corpus (Carletta, 2007). It captures participants’
head movement information from individual head-
mounted cameras, which allows for annotation of
nodding (consent, agreement) or shaking (dis-
agreement), as well as participants’ locations within
the room; however, no complex events involving
series of movements or participant proximity are
considered. We are unaware of any other tools that
facilitate the simultaneous playback of multi-modes
of communication and behavior.

3 Second Life Experiments

To generate player data, we rented an island in
Second Life and developed an approximately two
hour quest, the Case of the Missing Moonstone. In
this quest, small groups of 4 to 5 players, who were
previously unacquainted, work their way together
through the clues and puzzles to solve a murder
mystery. We recruited Second Life players in-game
through advertising and setting up a shop that inter-
ested players could browse. We also used Facebook
ads, which were remarkably effective.

The process of the quest experience for players
started after they arrived in a starting area of the
island (the quest was open only to players who
were made temporary members of our island)
where they met other players, browsed quest-
appropriate clothing to adorn their avatars, and re-
ceived information from one of the researchers.
Once all players arrived, the main quest began,
progressing through five geographic areas in the
island. Players were accompanied by a “training
sergeant”, a researcher using a robot avatar, that
followed players through the quest and provided
hints when groups became stymied along their in-
vestigation but otherwise had little interaction with
the group.

The quest was designed for players to encounter
obstacles that required coordinated action, such as
all players standing on special buttons to activate a
door, or the sharing of information between players,
such as solutions to a word puzzle, in order to ad-
vance to the next area of the quest (Figure 1).



Slimy Roastbeef: “who’s got the square gear?”
Kenny Superstar: “I do, but I’m stuck™

Slimy Roastbeef: *““can you hand it to me?”
Kenny Superstar: “i don’t know how”

Slimy Roastbeef: “open your inventory, click
and drag it onto me”

Figure 1: Excerpt of dialogue during a coor-
dination activity

Quest activities requiring coordination among the
players were common and also necessary to ensure
a sufficient degree of movement and message traf-
fic to provide enough material to test our predic-
tions, and to allow us to observe particular social
characteristics of players. Players answered a sur-
vey before and then again after the quest, providing
demographic and trait information and evaluating
other members of their group on the characteristics
of interest.

3.1 Data Collection

We recorded all players’ avatar movements as they
purposefully moved avatars through the virtual
spaces of the game environment, their public chat,
and their “touch events”, which are the actions that
bring objects out of player inventories, pick up ob-
jects to put in their inventories, or to put objects,
such as hats or clothes, onto the avatars, and the
like. We followed Yee and Bailenson’s (2008)
technical approach for logging player behavior. To
get a sense of the volume of data generated, 206
players generated over 30,000 messages into the
group’s public chat from the 48 sessions. We com-
piled approximately 140 hours of recorded action.
The avatar logger was implemented to record each
avatar’s location through their (X,y,z) coordinates,
recorded at two second intervals. This information
was later used to render the avatar’s position on our
2D representation of the action (section 4.1).

4 RAT

The Relational Annotation Tool (RAT) was built to
assist in annotating the massive collection of data
collected during the Second Life experiments. A
tool was needed that would allow annotators to see
the textual transcripts of the chat while at the same
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time view a 2D representation of the action. Addi-
tionally, we had a textual transcript for a select set
of events: touch an object, stand on an object, at-
tach an object, etc., that we needed to make avail-
able to the annotator for review.

These tool characteristics were needed for
several reasons. First, in order to fully understand
the communication and interaction occurring be-
tween players in the game environment and accu-
rately annotate those messages, we needed
annotators to have as much information about the
context as possible. The 2D map coupled with the
events information made it easier to understand.
For example, in the quest, players in a specific
zone, encounter a dead, maimed body. As annota-
tors assigned codes to the chat, they would some-
times encounter exclamations, such as “ew” or
“gross”. Annotators would use the 2D map and the
location of the exclaiming avatar to determine if the
exclamation was a result of their location (in the
zone with the dead body) or because of something
said or done by another player. Location of avatars
on the 2D map synchronized with chat was also
helpful for annotators when attempting to disam-
biguate communicative links. For example, in one
subzone, mad scribblings are written on a wall. If
player A says “You see that scribbling on the
wall?” the annotator needs to use the 2D map to see
who the player is speaking to. If player A and
player C are both standing in that subzone, then the
annotator can make a reasonable assumption that
player A is directing the question to player C, and
not player B who is located in a different subzone.
Second, we annotated coordinated avatar move-
ment actions (such as following each other into a
building or into a room), and the only way to read-
ily identify such complex events was through the
2D map of avatar movements.

The overall RAT interface, Figure 2, allows
the annotator to simultaneously view all modes of
representation. There are three distinct panels in
this interface. The left hand panel is the 2D repre-
sentation of the action (section 4.1). The upper
right hand panel displays the chat and event tran-
scripts (section 4.2), while the lower right hand por-
tion is reserved for the three annotator sub-panels
(section 4.3).
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Figure 2: RAT interface

4.1 The 2D Game Representation

The 2D representation was the most challenging of
the panels to implement. We needed to find the
proper level of abstraction for the action, while
maintaining its usefulness for the annotator. Too
complex a representation would cause cognitive
overload for the annotator, thus potentially deterio-
rating the speed and quality of the annotations.
Conversely, an overly abstract representation would
not be of significant value in the annotation proc-
ess.

There were five distinct geographic areas on our
Second Life Island: Starting Area, Mansion, Town
Center, Factory and Apartments. An overview of
the area in Second Life is displayed in Figure 3. We
decided to represent each area separately as each
group moves between the areas together, and it was
therefore never necessary to display more than one
area at a time. The 2D representation of the Man-
sion Area is displayed in Figure 4 below. Figure 5
is an exterior view of the actual Mansion in Second
Life. Each area’s fixed representation was rendered
using Java Graphics, reading in the Second Life
(x,y,z) coordinates from an XML data file. We rep-
resented the walls of the buildings as connected
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solid black lines with openings left for doorways.
Key item locations were marked and labeled, e.g.
Kitten, maid, the Idol, etc. Even though annotators
visited the island to familiarize themselves with the
layout, many mansion rooms were labeled to help
the annotator recall the layout of the building, and
minimize error of annotation based on flawed re-
call. Finally, the exact time of the action that is cur-
rently being represented is displayed in the lower
left hand corner.

Zone 1:
Mansion
L]
Zone 4:
Apartments

. PEEE——

Zone 0
Starting Area

Zone Z: Town
Center

Figure 3: Second Life overview map
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+
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Ghost
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rabhit
Polige Box En

Time: 13:24:50

2D Map Avatar Key

. Kenny Superstar
. Vinny Paolino

. Elliot .Jurassosaurus
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Figure 4: 2D representation of Second Life action
inside the Mansion/Manor

Figure 5: Second Life view of Mansion exterior

Avatar location was recorded in our log files as an
(x,y,2) coordinate at a two second interval. Avatars
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were represented in our 2D panel as moving solid
color circles, using the x and y coordinates. A color
coded avatar key was displayed below the 2D rep-
resentation. This key related the full name of every
avatar to its colored circle representation. The z
coordinate was used to determine if the avatar was
on the second floor of a building. If the z value
indicated an avatar was on a second floor, their icon
was modified to include the number “2” for the du-
ration of their time on the second floor. Also logged
was the avatar’s degree of rotation. Using this we
were able to represent which direction the avatar
was looking by a small black dot on their colored
circle.

As the annotators stepped through the chat and
event annotation, the action would move forward,
in synchronized step in the 2D map. In this way at
any given time the annotator could see the avatar
action corresponding to the chat and event tran-
scripts appearing in the right panels. The annotator
had the option to step forward or backward through
the data at any step interval, where each step corre-
sponded to a two second increment or decrement, to
provide maximum flexibility to the annotator in
viewing and reviewing the actions and communica-
tions to be annotated. Additionally, “Play” and
“Stop” buttons were added to the tool so the anno-
tator may simply watch the action play forward ra-
ther than manually stepping through.

4.2 The Chat & Event Panel

Avatar utterances along with logged Second Life
events were displayed in the Chat and Event Panel
(Figure 6). Utterances and events were each dis-
played in their own column. Time was recorded for
every utterance and event, and this was displayed in
the first column of the Chat and Event Panel. All
avatar names in the utterances and events were
color coded, where the colors corresponded to the
avatar color used in the 2D panel. This panel was
synchronized with the 2D Representation panel and
as the annotator stepped through the game action on
the 2D display, the associated utterances and events
populated the Chat and Event panel.
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Figure 6: Chat & Event Panel

4.3 The Annotator Panels

The Annotator Panels (Figures 7 and 10) contains
all features needed for the annotator to quickly
annotate the events and dialogue. Annotators could
choose from a number of categories to label each
dialogue utterance. Coding categories included
communicative links, dialogue acts, and selected
multi-avatar actions. In the following we briefly
outline each of these. A more detailed description
of the chat annotation scheme is available in
(Shaikh et al., 2010).

4.3.1 Communicative Links

One of the challenges in multi-party dialogue is to
establish which user an utterance is directed to-
wards. Users do not typically add addressing in-
formation in their utterances, which leads to
ambiguity while creating a communication link be-
tween users. With this annotation level, we asked
the annotators to determine whether each utterance
was addressed to some user, in which case they
were asked to mark which specific user it was ad-
dressed to; was in response to another prior utter-
ance by a different user, which required marking
the specific utterance responded to; or a continua-
tion of the user’s own prior utterance.

Communicative link annotation allows for accu-
rate mapping of dialogue dynamics in the multi-
party setting, and is a critical component of tracking
such social phenomena as disagreements and lead-
ership.

4.3.2 Dialogue Acts

We developed a hierarchy of 19 dialogue acts for
annotating the functional aspect of the utterance in
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the discussion. The tagset we adopted is loosely
based on DAMSL (Allen & Core, 1997) and
SWBD (Jurafsky et al., 1997), but greatly reduced
and also tuned significantly towards dialogue
pragmatics and away from more surface character-
istics of utterances. In particular, we ask our anno-
tators what is the pragmatic function of each
utterance within the dialogue, a decision that often
depends upon how earlier utterances were classi-
fied. Thus augmented, DA tags become an impor-
tant source of evidence for detecting language uses
and such social phenomena as conformity. Exam-
ples of dialogue act tags include Assertion-Opinion,
Acknowledge, Information-Request, and Confirma-
tion-Request.

Using the augmented DA tagset also presents a
fairly challenging task to our annotators, who need
to be trained for many hours before an acceptable
rate of inter-annotator agreement is achieved. For
this reason, we consider our current DA tagging as
a work in progress.

4.3.3 Zone coding

Each of the five main areas had a correspond-
ing set of subzones. A subzone is a building, a
room within a building, or any other identifiable
area within the playable spaces of the quest, e.g. the
Mansion has the subzones: Hall, Dining Room,
Kitchen, Outside, Ghost Room, etc. The subzone
was determined based on the avatar(s) (X,y,z) coor-
dinates and the known subzone boundaries. This
additional piece of data allowed for statistical
analysis at different levels: avatar, dialogue unit,
and subzone.
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4.3.4 Multi-avatar events

As mentioned, in addition to chat we also were in-
terested in having the annotators record composite
events involving multiple avatars over a span of
time and space. While the design of the RAT tool
will support annotation of any event of interest with
only slight modifications, for our purposes, we
were interested in annotating two types of events
that we considered significant for our research hy-
potheses. The first type of event was the multi-
avatar entry (or exit) into a sub-zone, including the
order in which the avatars moved.

Figure 8 shows an example of a “Moves into
Subzone” annotation as displayed in the Chat &
Event Panel. Figure 9 shows the corresponding se-
ries of progressive moments in time portraying en-
try into the Bank subzone as represented in RAT. In
the annotation, each avatar name is recorded in or-
der of its entry into the subzone (here, the Bank).
Additionally, we record the subzone name and the
time the event is completed®.

The second type of event we annotated was the
“follow X” event, i.e., when one or more avatars
appeared to be following one another within a sub-
zone. These two types of events were of particular
interest because we hypothesized that players who
are leaders are likely to enter first into a subzone
and be followed around once inside.

In addition, support for annotation of other types
of composite events can be added as needed; for
example, group forming and splitting, or certain

% We are also able to record the start time of any event but for
our purposes we were only concerned with the end time.
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joint activities involving objects, etc. were fairly
common in quests and may be significant for some
analyses (although not for our hypotheses).

For each type of event, an annotation subpanel is
created to facilitate speedy markup while minimiz-
ing opportunities for error (Figure 10). A “Moves
Into Subzone” event is annotated by recording the
ordinal (1, 2, 3, etc.) for each avatar. Similarly, a
“Follows” event is coded as avatar group “A” fol-
lows group “B’, where each group will contain one
or more avatars.

Time Events/Annotations
Moves Into Subzone: Bank in order. [ Slimy Roasthee,
13:40:24  [Kenny Superstar, Vinny Paolino, Elliot Jurassosaurus,

Figure 8: The corresponding annotation for Figure
9 event, as displayed in the Chat & Event Panel

5 The Annotation Process

To annotate the large volume of data generated
from the Second Life quests, we developed an an-
notation guide that defined and described the anno-
tation categories and decision rules annotators were
to follow in categorizing the data units (following
previous projects (Shaikh et al., 2010). Two stu-
dents were hired and trained for approximately 60
hours, during which time they learned how to use
the annotation tool and the categories and rules for
the annotation process. After establishing a satisfac-
tory level of interrater reliability (average Krippen-
dorff’s alpha of all measures was <0.8.
Krippendorff’s alpha accounts for the probability of



chance agreement and is therefore a conservative
measure of agreement), the two students then anno-
tated the 48 groups over a four-month period. It
took approximately 230 hours to annotate the ses-
sions, and they assigned over 39,000 dialogue act

tags. Annotators spent roughly 7 hours marking up
the movements and chat messages per 2.5 hour
quest session.
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Figure 9: A series of progressive moments in time portraying avatar entry into the Bank subzone
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5.1 The Annotated Corpus

The current version of the annotated corpus consists
of thousands of tagged messages including: 4,294
action-directives, 17,129 assertion-opinions, 4,116
information requests, 471 confirmation requests,
394 offer-commits, 3,075 responses to information
requests, 1,317 agree-accepts, 215 disagree-rejects,
and 2,502 acknowledgements, from 30,535 pre-
split utterances (31,801 post-split). We also as-
signed 4,546 following events.

6 Conclusion

In this paper we described the successful imple-
mentation and use of our multi-modal annotation
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tool, RAT. Our tool was used to accurately and
simultaneously annotate over 30,000 messages and
approximately 140 hours of action. For each hour
spent annotating, our annotators were able to tag
approximately 170 utterances as well as 36 minutes
of action.

The annotators reported finding the tool highly
functional and very efficient at helping them easily
assign categories to the relevant data units, and that
they could assign those categories without produc-
ing too many errors, such as accidentally assigning
the wrong category or selecting the wrong avatar.
The function allowing for the synchronized play-
back of the chat and movement data coupled with
the 2D map increased comprehension of utterances



and behavior of the players during the quest, im-
proving validity and reliability of the results.
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Abstract

We demonstrate how supervised discrimina-
tive machine learning techniques can be used
to automate the assessment of ‘English as a
Second or Other Language’ (ESOL) examina-
tion scripts. In particular, we use rank prefer-
ence learning to explicitly model the grade re-
lationships between scripts. A number of dif-
ferent features are extracted and ablation tests
are used to investigate their contribution to
overall performance. A comparison between
regression and rank preference models further
supports our method. Experimental results on
the first publically available dataset show that
our system can achieve levels of performance
close to the upper bound for the task, as de-
fined by the agreement between human exam-
iners on the same corpus. Finally, using a set
of ‘outlier’ texts, we test the validity of our
model and identify cases where the model’s
scores diverge from that of a human examiner.

1 Introduction

The task of automated assessment of free text fo-
cuses on automatically analysing and assessing the
quality of writing competence. Automated assess-
ment systems exploit textual features in order to
measure the overall quality and assign a score to a
text. The earliest systems used superficial features,
such as word and sentence length, as proxies for
understanding the text. More recent systems have
used more sophisticated automated text processing
techniques to measure grammaticality, textual co-
herence, prespecified errors, and so forth.
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Deployment of automated assessment systems
gives a number of advantages, such as the reduced
workload in marking texts, especially when applied
to large-scale assessments. Additionally, automated
systems guarantee the application of the same mark-
ing criteria, thus reducing inconsistency, which may
arise when more than one human examiner is em-
ployed. Often, implementations include feedback
with respect to the writers’ writing abilities, thus fa-
cilitating self-assessment and self-tutoring.

Implicitly or explicitly, previous work has mostly
treated automated assessment as a supervised text
classification task, where training texts are labelled
with a grade and unlabelled test texts are fitted to the
same grade point scale via a regression step applied
to the classifier output (see Section 6 for more de-
tails). Different techniques have been used, includ-
ing cosine similarity of vectors representing text in
various ways (Attali and Burstein, 2006), often com-
bined with dimensionality reduction techniques such
as Latent Semantic Analysis (LSA) (Landauer et al.,
2003), generative machine learning models (Rudner
and Liang, 2002), domain-specific feature extraction
(Attali and Burstein, 2006), and/or modified syntac-
tic parsers (Lonsdale and Strong-Krause, 2003).

A recent review identifies twelve different auto-
mated free-text scoring systems (Williamson, 2009).
Examples include e-Rater (Attali and Burstein,
20006), Intelligent Essay Assessor (IEA) (Landauer
et al., 2003), IntelliMetric (Elliot, 2003; Rudner et
al., 2006) and Project Essay Grade (PEG) (Page,
2003). Several of these are now deployed in high-
stakes assessment of examination scripts. Although
there are many published analyses of the perfor-
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mance of individual systems, as yet there is no pub-
lically available shared dataset for training and test-
ing such systems and comparing their performance.
As it is likely that the deployment of such systems
will increase, standardised and independent evalua-
tion methods are important. We make such a dataset
of ESOL examination scripts available! (see Section
2 for more details), describe our novel approach to
the task, and provide results for our system on this
dataset.

We address automated assessment as a supervised
discriminative machine learning problem and par-
ticularly as a rank preference problem (Joachims,
2002). Our reasons are twofold:

Discriminative classification techniques often
outperform non-discriminative ones in the context of
text classification (Joachims, 1998). Additionally,
rank preference techniques (Joachims, 2002) allow
us to explicitly learn an optimal ranking model of
text quality. Learning a ranking directly, rather than
fitting a classifier score to a grade point scale after
training, is both a more generic approach to the task
and one which exploits the labelling information in
the training data efficiently and directly.

Techniques such as LSA (Landauer and Foltz,
1998) measure, in addition to writing competence,
the semantic relevance of a text written in response
to a given prompt. However, although our corpus
of manually-marked texts was produced by learners
of English in response to prompts eliciting free-text
answers, the marking criteria are primarily based on
the accurate use of a range of different linguistic
constructions. For this reason, we believe that an
approach which directly measures linguistic compe-
tence will be better suited to ESOL text assessment,
and will have the additional advantage that it may
not require retraining for new prompts or tasks.

As far as we know, this is the first application
of a rank preference model to automated assess-
ment (hereafter AA). In this paper, we report exper-
iments on rank preference Support Vector Machines
(SVMs) trained on a relatively small amount of data,
on identification of appropriate feature types derived
automatically from generic text processing tools, on
comparison with a regression SVM model, and on
the robustness of the best model to ‘outlier’ texts.

"http://www.ilexir.com/

181

We report a consistent, comparable and replicable
set of results based entirely on the new dataset and
on public-domain tools and data, whilst also exper-
imentally motivating some novel feature types for
the AA task, thus extending the work described in
(Briscoe et al., 2010).

In the following sections we describe in more de-
tail the dataset used for training and testing, the sys-
tem developed, the evaluation methodology, as well
as ablation experiments aimed at studying the con-
tribution of different feature types to the AA task.
We show experimentally that discriminative models
with appropriate feature types can achieve perfor-
mance close to the upper bound, as defined by the
agreement between human examiners on the same
test corpus.

2 Cambridge Learner Corpus

The Cambridge Learner Corpus? (CLC), developed
as a collaborative project between Cambridge Uni-
versity Press and Cambridge Assessment, is a large
collection of texts produced by English language
learners from around the world, sitting Cambridge
Assessment’s English as a Second or Other Lan-
guage (ESOL) examinations>.

For the purpose of this work, we extracted scripts
produced by learners taking the First Certificate in
English (FCE) exam, which assesses English at an
upper-intermediate level. The scripts, which are
anonymised, are annotated using XML and linked
to meta-data about the question prompts, the candi-
date’s grades, native language and age. The FCE
writing component consists of two tasks asking
learners to write either a letter, a report, an article,
a composition or a short story, between 200 and 400
words. Answers to each of these tasks are anno-
tated with marks (in the range 1-40), which have
been fitted to a RASCH model (Fischer and Mole-
naar, 1995) to correct for inter-examiner inconsis-
tency and comparability. In addition, an overall
mark is assigned to both tasks, which is the one we
use in our experiments.

Each script has been also manually tagged with
information about the linguistic errors committed,

2http://www.cup.cam.ac.uk/gb/elt/catalogue/subject/custom/
item3646603/Cambridge-International-Corpus-Cambridge-
Learner-Corpus/?site_locale=en_GB

3http://www.cambridgeesol.org/



using a taxonomy of approximately 80 error types
(Nicholls, 2003). The following is an example error-
coded sentence:

In the morning, you are <NS type = “TV”>
waken|woken</NS> up by a singing puppy.

In this sentence, TV denotes an incorrect tense of
verb error, where waken can be corrected to woken.

Our data consists of 1141 scripts from the year
2000 for training written by 1141 distinct learners,
and 97 scripts from the year 2001 for testing written
by 97 distinct learners. The learners’ ages follow
a bimodal distribution with peaks at approximately
16-20 and 26-30 years of age.

The prompts eliciting the free text are provided
with the dataset. However, in this paper we make
no use of prompt information and do not make any
attempt to check that the text answer is appropriate
to the prompt. Our focus is on developing an accu-
rate AA system for ESOL text that does not require
prompt-specific or topic-specific training. There is
no overlap between the prompts used in 2000 and in
2001. A typical prompt taken from the 2000 training
dataset is shown below:

Your teacher has asked you to write a story for the
school’s English language magazine. The story must
begin with the following words: “Unfortunately, Pat
wasn’t very good at keeping secrets”.

3 Approach

We treat automated assessment of ESOL text (see
Section 2) as a rank preference learning problem
(see Section 1). In the experiments reported here
we use Support Vector Machines (SVMs) (Vap-
nik, 1995) through the SVM!£" package (Joachims,
1999). Using the dataset described in Section 2, a
number of linguistic features are automatically ex-
tracted and their contribution to overall performance
is investigated.

3.1 Rank preference model

SVMs have been extensively used for learning clas-
sification, regression and ranking functions. In its
basic form, a binary SVM classifier learns a linear
threshold function that discriminates data points of
two categories. By using a different loss function,
the e-insensitive loss function (Smola, 1996), SVMs
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can also perform regression. SVMs in regression
mode estimate a function that outputs a real number
based on the training data. In both cases, the model
generalises by computing a hyperplane that has the
largest (soft-)margin.

In rank preference SVMs, the goal is to learn a
ranking function which outputs a score for each data
point, from which a global ordering of the data is
constructed. This procedure requires a set R consist-
ing of training samples &,, and their target rankings
Tt

R = {(#1,71), (Z2,72), ..., (Zn, ) }

such that #; >~gr Z; when r;
1<i,j<mnandi#j.

)

< 1, where

A rank preference model is not trained directly on
this set of data objects and their labels; rather a set of
pair-wise difference vectors is created. The goal of
a linear ranking model is to compute a weight vec-
tor w that maximises the number of correctly ranked
pairs:

V(fz R .’I_f]) : u_)'(f, — :L“_;) >0 2)

This is equivalent to solving the following opti-
misation problem:

Minimise:
L
Sl +C) &, 3)
Subject to the constraints:
V(% =R @) 0T —25) 21— &; ()
&; >0 )

The factor C' allows a trade-off between the train-
ing error and the margin size, while ;; are non-
negative slack variables that measure the degree of
misclassification.

The optimisation problem is equivalent to that for
the classification model on pair-wise difference vec-
tors. In this case, generalisation is achieved by max-
imising the differences between closely-ranked data
pairs.

The principal advantage of applying rank prefer-
ence learning to the AA task is that we explicitly



model the grade relationships between scripts and
do not need to apply a further regression step to fit
the classifier output to the scoring scheme. The re-
sults reported in this paper are obtained by learning
a linear classification function.

3.2 Feature set

We parsed the training and test data (see Section
2) using the Robust Accurate Statistical Parsing
(RASP) system with the standard tokenisation and
sentence boundary detection modules (Briscoe et al.,
2006) in order to broaden the space of candidate fea-
tures suitable for the task. The features used in our
experiments are mainly motivated by the fact that
lexical and grammatical features should be highly
discriminative for the AA task. Our full feature set
is as follows:

i. Lexical ngrams

(a) Word unigrams
(b) Word bigrams

ii. Part-of-speech (PoS) ngrams

(a) PoS unigrams
(b) PoS bigrams
(c) PoS trigrams

iii. Features representing syntax

(a) Phrase structure (PS) rules

(b) Grammatical relation (GR) distance mea-
sures

iv. Other features

(a) Script length
(b) Error-rate

Word unigrams and bigrams are lower-cased and
used in their inflected forms. PoS unigrams, bigrams
and trigrams are extracted using the RASP tagger,
which uses the CLAWS* tagset. The most proba-
ble posterior tag per word is used to construct PoS
ngram features, but we use the RASP parser’s op-
tion to analyse words assigned multiple tags when
the posterior probability of the highest ranked tag is
less than 0.9, and the next n tags have probability
greater than % of it.

“http:/fucrel.lancs.ac.uk/claws/
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Based on the most likely parse for each identified
sentence, we extract the rule names from the phrase
structure (PS) tree. RASP’s rule names are semi-
automatically generated and encode detailed infor-
mation about the grammatical constructions found
(e.g. V1/modal_bse/+-, ‘a VP consisting of a modal
auxiliary head followed by an (optional) adverbial
phrase, followed by a VP headed by a verb with base
inflection’). Moreover, rule names explicitly repre-
sent information about peripheral or rare construc-
tions (e.g. S/pp-ap-s-1, ‘a S with preposed PP with
adjectival complement, e.g. for better or worse, he
left’), as well as about fragmentary and likely extra-
grammatical sequences (e.g. T/txt-frag, ‘a text unit
consisting of 2 or more subanalyses that cannot be
combined using any rule in the grammar’). There-
fore, we believe that many (longer-distance) gram-
matical constructions and errors found in texts can
be (implicitly) captured by this feature type.

In developing our AA system, a number of dif-
ferent grammatical complexity measures were ex-
tracted from parses, and their impact on the accuracy
of the system was explored. For the experiments re-
ported here, we use complexity measures represent-
ing the sum of the longest distance in word tokens
between a head and dependent in a grammatical re-
lation (GR) from the RASP GR output, calculated
for each GR graph from the top 10 parses per sen-
tence. In particular, we extract the mean and median
values of these distances per sentence and use the
maximum values per script. Intuitively, this feature
captures information about the grammatical sophis-
tication of the writer. However, it may also be con-
founded in cases where sentence boundaries are not
identified through, for example, poor punctuation.

Although the CLC contains information about the
linguistic errors committed (see Section 2), we try
to extract an error-rate in a way that doesn’t require
manually tagged data. However, we also use an
error-rate calculated from the CLC error tags to ob-
tain an upper bound for the performance of an auto-
mated error estimator (true CLC error-rate).

In order to estimate the error-rate, we build a tri-
gram language model (LM) using ukWaC (ukWaC
LM) (Ferraresi et al., 2008), a large corpus of En-
glish containing more than 2 billion tokens. Next,
we extend our language model with trigrams ex-
tracted from a subset of the texts contained in the



Table 1: Correlation between the CLC scores and the AA
system predicted values.

CLC (CLC LM). As the CLC contains texts pro-
duced by second language learners, we only extract
frequently occurring trigrams from highly ranked
scripts to avoid introducing erroneous ones to our
language model. A word trigram in test data is
counted as an error if it is not found in the language
model. We compute presence/absence efficiently us-
ing a Bloom filter encoding of the language models
(Bloom, 1970).

Feature instances of types i and ii are weighted
using the #f*idf scheme and normalised by the L2
norm. Feature type iii is weighted using frequency
counts, while iii and iv are scaled so that their final
value has approximately the same order of magni-
tude as i and ii.

The script length is based on the number of words
and is mainly added to balance the effect the length
of a script has on other features. Finally, features
whose overall frequency is lower than four are dis-
carded from the model.

4 Evaluation

In order to evaluate our AA system, we use two cor-
relation measures, Pearson’s product-moment cor-
relation coefficient and Spearman’s rank correla-
tion coefficient (hereafter Pearson’s and Spearman’s
correlation respectively). Pearson’s correlation de-
termines the degree to which two linearly depen-
dent variables are related. As Pearson’s correlation
is sensitive to the distribution of data and, due to
outliers, its value can be misleading, we also re-
port Spearman’s correlation. The latter is a non-
parametric robust measure of association which is
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Pearson’s | Spearman’s Ablated Pearson’s | Spearman’s
Features . . . .
correlation| correlation feature correlation | correlation
word ngrams 0.601 0.598 none 0.741 0.773
+PoS ngrams 0.682 0.687 word ngrams 0.713 0.762
+script length 0.692 0.689 PoS ngrams 0.724 0.737
+PS rules 0.707 0.708 script length 0.734 0.772
+complexity 0.714 0.712 PS rules 0.712 0.731
Error-rate features complexity 0.738 0.760
+ukWaC LM 0.735 0.758 ukWaC+CLC LM 0.714 0.712
+CLCLM 0.741 0.773 Table 2: Ablation tests showing the correlation between
+true CLC error-rate 0.751 0.789 the CLC and the AA system.

sensitive only to the ordinal arrangement of values.
As our data contains some tied values, we calculate
Spearman’s correlation by using Pearson’s correla-
tion on the ranks.

Table 1 presents the Pearson’s and Spearman’s
correlation between the CLC scores and the AA sys-
tem predicted values, when incrementally adding
to the model the feature types described in Sec-
tion 3.2. Each feature type improves the model’s
performance. Extending our language model with
frequent trigrams extracted from the CLC improves
Pearson’s and Spearman’s correlation by 0.006 and
0.015 respectively. The addition of the error-rate ob-
tained from the manually annotated CLC error tags
on top of all the features further improves perfor-
mance by 0.01 and 0.016. An evaluation of our best
error detection method shows a Pearson correlation
of 0.611 between the estimated and the true CLC er-
ror counts. This suggests that there is room for im-
provement in the language models we developed to
estimate the error-rate. In the experiments reported
hereafter, we use the ukWaC+CLC LM to calculate
the error-rate.

In order to assess the independent as opposed to
the order-dependent additive contribution of each
feature type to the overall performance of the sys-
tem, we run a number of ablation tests. An ablation
test consists of removing one feature of the system
at a time and re-evaluating the model on the test set.
Table 2 presents Pearson’s and Spearman’s correla-
tion between the CLC and our system, when remov-
ing one feature at a time. All features have a positive
effect on performance, while the error-rate has a big
impact, as its absence is responsible for a 0.061 de-
crease of Spearman’s correlation. In addition, the



Model Pearson’s | Spearman’s CLC| E1 E2 E3 E4 | AA
correlation | correlation CLC - 0.820| 0.787] 0.767| 0.810| 0.741
Regression 0.697 0.706 E1 | 0.820| - 0.851| 0.845] 0.878| 0.721
Rank preference 0.741 0.773 E2 | 0.787| 0.851 - 0.775| 0.788]| 0.730
Table 3: Comparison between regression and rank pref- E3 | 0.767] 0.845] 0.775 - 0.779| 0.747
erence model. E4 | 0.810| 0.878| 0.788| 0.779 - 0.679
AA | 0.741| 0.721| 0.730| 0.747| 0.679 -

removal of either the word ngrams, the PS rules, or
the error-rate estimate contributes to a large decrease
in Pearson’s correlation.

In order to test the significance of the improved
correlations, we ran one-tailed t-tests with ¢ = 0.05
for the difference between dependent correlations
(Williams, 1959; Steiger, 1980). The results showed
that PoS ngrams, PS rules, the complexity measures,
and the estimated error-rate contribute significantly
to the improvement of Spearman’s correlation, while
PS rules also contribute significantly to the improve-
ment of Pearson’s correlation.

One of the main approaches adopted by previ-
ous systems involves the identification of features
that measure writing skill, and then the application
of linear or stepwise regression to find optimal fea-
ture weights so that the correlation with manually
assigned scores is maximised. We trained a SVM
regression model with our full set of feature types
and compared it to the SVM rank preference model.
The results are given in Table 3. The rank preference
model improves Pearson’s and Spearman’s correla-
tion by 0.044 and 0.067 respectively, and these dif-
ferences are significant, suggesting that rank prefer-
ence is a more appropriate model for the AA task.

Four senior and experienced ESOL examiners re-
marked the 97 FCE test scripts drawn from 2001 ex-
ams, using the marking scheme from that year (see
Section 2). In order to obtain a ceiling for the perfor-
mance of our system, we calculate the average corre-
lation between the CLC and the examiners’ scores,
and find an upper bound of 0.796 and 0.792 Pear-
son’s and Spearman’s correlation respectively.

In order to evaluate the overall performance of our
system, we calculate its correlation with the four se-
nior examiners in addition to the RASCH-adjusted
CLC scores. Tables 4 and 5 present the results ob-
tained.

The average correlation of the AA system with the
CLC and the examiner scores shows that it is close
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| Avg | 0.785] 0.823] 0.786] 0.782] 0.786] 0.723

Table 4: Pearson’s correlation of the AA system predicted
values with the CLC and the examiners’ scores, where E1
refers to the first examiner, E2 to the second etc.

CLC| E1 E2 E3 E4 | AA
CLC| - |0.801] 0.799| 0.788| 0.782| 0.773
E1 | 0.801 - 10.809| 0.806| 0.850| 0.675
E2 | 0.799| 0.809| - | 0.744| 0.787| 0.724
E3 | 0.788] 0.806| 0.744| - | 0.794| 0.738
E4 | 0.782] 0.850| 0.787| 0.794| - | 0.697
AA | 0.773| 0.675| 0.724| 0.738| 0.697| -

| Avg | 0.788] 0.788] 0.772] 0.774] 0.782] 0.721 |

Table 5: Spearman’s correlation of the AA system pre-
dicted values with the CLC and the examiners’ scores,
where El refers to the first examiner, E2 to the second
etc.

to the upper bound for the task. Human-machine
agreement is comparable to that of human—human
agreement, with the exception of Pearson’s correla-
tion with examiner E4 and Spearman’s correlation
with examiners E1 and E4, where the discrepancies
are higher. It is likely that a larger training set and/or
more consistent grading of the existing training data
would help to close this gap. However, our system is
not measuring some properties of the scripts, such as
discourse cohesion or relevance to the prompt elicit-
ing the text, that examiners will take into account.

5 Validity tests

The practical utility of an AA system will depend
strongly on its robustness to subversion by writers
who understand something of its workings and at-
tempt to exploit this to maximise their scores (in-
dependently of their underlying ability). Surpris-
ingly, there is very little published data on the ro-
bustness of existing systems. However, Powers et
al. (2002) invited writing experts to trick the scoring



capabilities of an earlier version of e-Rater (Burstein
et al., 1998). e-Rater (see Section 6 for more de-
tails) assigns a score to a text based on linguistic fea-
ture types extracted using relatively domain-specific
techniques. Participants were given a description of
these techniques as well as of the cue words that the
system uses. The results showed that it was easier
to fool the system into assigning higher than lower
scores.

Our goal here is to determine the extent to which
knowledge of the feature types deployed poses a
threat to the validity of our system, where certain
text generation strategies may give rise to large pos-
itive discrepancies. As mentioned in Section 2, the
marking criteria for FCE scripts are primarily based
on the accurate use of a range of different grammati-
cal constructions relevant to specific communicative
goals, but our system assesses this indirectly.

We extracted 6 high-scoring FCE scripts from the
CLC that do not overlap with our training and test
data. Based on the features used by our system and
without bias towards any modification, we modified
each script in one of the following ways:

i. Randomly order:

(a) word unigrams within a sentence
(b) word bigrams within a sentence
(c) word trigrams within a sentence

(d) sentences within a script

ii. Swap words that have the same PoS within a
sentence

Although the above modifications do not ex-
haust the potential challenges a deployed AA system
might face, they represent a threat to the validity of
our system since we are using a highly related fea-
ture set. In total, we create 30 such ‘outlier’ texts,
which were given to an ESOL examiner for mark-
ing. Using the ‘outlier’ scripts as well as their origi-
nal/unmodified versions, we ran our system on each
modification separately and calculated the correla-
tion between the predicted values and the examiner’s
scores. Table 6 presents the results.

The predicted values of the system have a high
correlation with the examiner’s scores when tested
on ‘outlier’ texts of modification types i(a), i(b) and
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Modification Pearsor.l’s Spearma}n’s
correlation | correlation

i(a) 0.960 0.912

i(b) 0.938 0.914

i(c) 0.801 0.867

i(d) 0.08 0.163

ii 0.634 0.761

Table 6: Correlation between the predicted values and the
examiner’s scores on ‘outlier’ texts.

i(c). However, as i(c) has a lower correlation com-
pared to i(a) and i(b), it is likely that a random order-
ing of ngrams with N > 3 will further decrease per-
formance. A modification of type ii, where words
with the same PoS within a sentence are swapped,
results in a Pearson and Spearman correlation of
0.634 and 0.761 respectively.

Analysis of the results showed that our system
predicted higher scores than the ones assigned by the
examiner. This can be explained by the fact that texts
produced using modification type ii contain a small
portion of correct sentences. However, the marking
criteria are based on the overall writing quality. The
final case, where correct sentences are randomly or-
dered, receives the lowest correlation. As our sys-
tem is not measuring discourse cohesion, discrepan-
cies are much higher; the system’s predicted scores
are high whilst the ones assigned by the examiner
are very low. However, for a writer to be able to
generate text of this type already requires significant
linguistic competence, whilst a number of generic
methods for assessing text and/or discourse cohe-
sion have been developed and could be deployed in
an extended version of our system.

It is also likely that highly creative ‘outlier’ essays
may give rise to large negative discrepancies. Recent
comments in the British media have focussed on this
issue, reporting that, for example, one deployed es-
say marking system assigned Winston Churchill’s
speech ‘We Shall Fight on the Beaches’ a low score
because of excessive repetition®. Our model pre-
dicted a high passing mark for this text, but not the
highest one possible, that some journalists clearly
feel it deserves.

Shttp://news.bbc.co.uk/1/hi/education/8356572.stm



6 Previous work

In this section we briefly discuss a number of the
more influential and/or better described approaches.
Pérez-Marin et al. (2009), Williamson (2009), Dikli
(2006) and Valenti et al. (2003) provide a more de-
tailed overview of existing AA systems.

Project Essay Grade (PEG) (Page, 2003), one of
the earliest systems, uses a number of manually-
identified mostly shallow textual features, which are
considered to be proxies for intrinsic qualities of
writing competence. Linear regression is used to as-
sign optimal feature weights that maximise the cor-
relation with the examiner’s scores. The main is-
sue with this system is that features such as word
length and script length are easy to manipulate in-
dependently of genuine writing ability, potentially
undermining the validity of the system.

In e-Rater (Attali and Burstein, 2006), texts
are represented using vectors of weighted features.
Each feature corresponds to a different property of
texts, such as an aspect of grammar, style, discourse
and topic similarity. Additional features, represent-
ing stereotypical grammatical errors for example,
are extracted using manually-coded task-specific de-
tectors based, in part, on typical marking criteria. An
unmarked text is scored based on the cosine simi-
larity between its weighted vector and the ones in
the training set. Feature weights and/or scores can
be fitted to a marking scheme by stepwise or lin-
ear regression. Unlike our approach, e-Rater mod-
els discourse structure, semantic coherence and rel-
evance to the prompt. However, the system contains
manually developed task-specific components and
requires retraining or tuning for each new prompt
and assessment task.

Intelligent Essay Assessor (IEA) (Landauer et al.,
2003) uses Latent Semantic Analysis (LSA) (Lan-
dauer and Foltz, 1998) to compute the semantic sim-
ilarity between texts, at a specific grade point, and
a test text. In LSA, text is represented by a ma-
trix, where rows correspond to words and columns
to context (texts). Singular Value Decomposition
(SVD) is used to obtain a reduced dimension matrix
clustering words and contexts. The system is trained
on topic and/or prompt specific texts while test texts
are assigned a score based on the ones in the training
set that are most similar. The overall score, which is
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calculated using regression techniques, is based on
the content score as well as on other properties of
texts, such as style, grammar, and so forth, though
the methods used to assess these are not described
in any detail in published work. Again, the system
requires retraining or tuning for new prompts and
assessment tasks.

Lonsdale and Strong-Krause (2003) use a mod-
ified syntactic parser to analyse and score texts.
Their method is based on a modified version of
the Link Grammar parser (Sleator and Templerley,
1995) where the overall score of a text is calculated
as the average of the scores assigned to each sen-
tence. Sentences are scored on a five-point scale
based on the parser’s cost vector, which roughly
measures the complexity and deviation of a sentence
from the parser’s grammatical model. This approach
bears some similarities to our use of grammatical
complexity and extragrammaticality features, but
grammatical features represent only one component
of our overall system, and of the task.

The Bayesian Essay Test Scoring sYstem
(BETSY) (Rudner and Liang, 2002) uses multino-
mial or Bernoulli Naive Bayes models to classify
texts into different classes (e.g. pass/fail, grades A—
F) based on content and style features such as word
unigrams and bigrams, sentence length, number of
verbs, noun—verb pairs etc. Classification is based
on the conditional probability of a class given a set
of features, which is calculated using the assumption
that each feature is independent of the other. This
system shows that treating AA as a text classifica-
tion problem is viable, but the feature types are all
fairly shallow, and the approach doesn’t make effi-
cient use of the training data as a separate classifier
is trained for each grade point.

Recently, Chen et al. (2010) has proposed an un-
supervised approach to AA of texts addressing the
same topic, based on a voting algorithm. Texts are
clustered according to their grade and given an ini-
tial Z-score. A model is trained where the initial
score of a text changes iteratively based on its sim-
ilarity with the rest of the texts as well as their Z-
scores. The approach might be better described as
weakly supervised as the distribution of text grades
in the training data is used to fit the final Z-scores to
grades. The system uses a bag-of-words represen-
tation of text, so would be easy to subvert. Never-



theless, exploration of the trade-offs between degree
of supervision required in training and grading ac-
curacy is an important area for future research.

7 Conclusions and future work

Though many of the systems described in Section
6 have been shown to correlate well with examin-
ers’ marks on test data in many experimental con-
texts, no cross-system comparisons are available be-
cause of the lack of a shared training and test dataset.
Furthermore, none of the published work of which
we are aware has systematically compared the con-
tribution of different feature types to the AA task,
and only one (Powers et al., 2002) assesses the ease
with which the system can be subverted given some
knowledge of the features deployed.

We have shown experimentally how rank prefer-
ence models can be effectively deployed for auto-
mated assessment of ESOL free-text answers. Based
on a range of feature types automatically extracted
using generic text processing techniques, our sys-
tem achieves performance close to the upper bound
for the task. Ablation tests highlight the contribu-
tion of each feature type to the overall performance,
while significance of the resulting improvements in
correlation with human scores has been calculated.
A comparison between regression and rank prefer-
ence models further supports our approach. Prelim-
inary experiments based on a set of ‘outlier’ texts
have shown the types of texts for which the system’s
scoring capability can be undermined.

We plan to experiment with better error detection
techniques, since the overall error-rate of a script is
one of the most discriminant features. Briscoe et
al. (2010) describe an approach to automatic off-
prompt detection which does not require retraining
for each new question prompt and which we plan
to integrate with our system. It is clear from the
‘outlier’ experiments reported here that our system
would benefit from features assessing discourse co-
herence, and to a lesser extent from features as-
sessing semantic (selectional) coherence over longer
bounds than those captured by ngrams. The addition
of an incoherence metric to the feature set of an AA
system has been shown to improve performance sig-
nificantly (Miltsakaki and Kukich, 2000; Miltsakaki
and Kukich, 2004).
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Finally, we hope that the release of the training
and test dataset described here will facilitate further
research on the AA task for ESOL free text and, in
particular, precise comparison of different systems,
feature types, and grade fitting methods.
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Abstract

A lack of standard datasets and evaluation
metrics has prevented the field of paraphras-
ing from making the kind of rapid progress
enjoyed by the machine translation commu-
nity over the last 15 years. We address both
problems by presenting a novel data collection
framework that produces highly parallel text
data relatively inexpensively and on a large
scale. The highly parallel nature of this data
allows us to use simple n-gram comparisons to
measure both the semantic adequacy and lex-
ical dissimilarity of paraphrase candidates. In
addition to being simple and efficient to com-
pute, experiments show that these metrics cor-
relate highly with human judgments.

1 Introduction

Machine paraphrasing has many applications for
natural language processing tasks, including ma-
chine translation (MT), MT evaluation, summary
evaluation, question answering, and natural lan-
guage generation. However, a lack of standard
datasets and automatic evaluation metrics has im-
peded progress in the field. Without these resources,
researchers have resorted to developing their own
small, ad hoc datasets (Barzilay and McKeown,
2001; Shinyama et al., 2002; Barzilay and Lee,
2003; Quirk et al., 2004; Dolan et al., 2004), and
have often relied on human judgments to evaluate
their results (Barzilay and McKeown, 2001; Ibrahim
et al., 2003; Bannard and Callison-Burch, 2005).
Consequently, it is difficult to compare different sys-
tems and assess the progress of the field as a whole.

190

William B. Dolan
Microsoft Research
One Microsoft Way
Redmond, WA 98052, USA
billdol@microsoft.com

Despite the similarities between paraphrasing and
translation, several major differences have prevented
researchers from simply following standards that
have been established for machine translation. Pro-
fessional translators produce large volumes of bilin-
gual data according to a more or less consistent spec-
ification, indirectly fueling work on machine trans-
lation algorithms. In contrast, there are no “profes-
sional paraphrasers”, with the result that there are
no readily available large corpora and no consistent
standards for what constitutes a high-quality para-
phrase. In addition to the lack of standard datasets
for training and testing, there are also no standard
metrics like BLEU (Papineni et al., 2002) for eval-
uating paraphrase systems. Paraphrase evaluation
is inherently difficult because the range of potential
paraphrases for a given input is both large and unpre-
dictable; in addition to being meaning-preserving,
an ideal paraphrase must also diverge as sharply as
possible in form from the original while still sound-
ing natural and fluent.

Our work introduces two novel contributions
which combine to address the challenges posed by
paraphrase evaluation. First, we describe a frame-
work for easily and inexpensively crowdsourcing ar-
bitrarily large training and test sets of independent,
redundant linguistic descriptions of the same seman-
tic content. Second, we define a new evaluation
metric, PINC (Paraphrase In N-gram Changes), that
relies on simple BLEU-like n-gram comparisons to
measure the degree of novelty of automatically gen-
erated paraphrases. We believe that this metric,
along with the sentence-level paraphrases provided
by our data collection approach, will make it possi-
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ble for researchers working on paraphrasing to com-
pare system performance and exploit the kind of
automated, rapid training-test cycle that has driven
work on Statistical Machine Translation.

In addition to describing a mechanism for collect-
ing large-scale sentence-level paraphrases, we are
also making available to the research community
85K parallel English sentences as part of the Mi-
crosoft Research Video Description Corpus .

The rest of the paper is organized as follows. We
first review relevant work in Section 2. Section 3
then describes our data collection framework and the
resulting data. Section 4 discusses automatic evalua-
tions of paraphrases and introduces the novel metric
PINC. Section 5 presents experimental results estab-
lishing a correlation between our automatic metric
and human judgments. Sections 6 and 7 discuss pos-
sible directions for future research and conclude.

2 Related Work

Since paraphrase data are not readily available, var-
ious methods have been used to extract parallel text
from other sources. One popular approach exploits
multiple translations of the same data (Barzilay and
McKeown, 2001; Pang et al., 2003). Examples of
this kind of data include the Multiple-Translation
Chinese (MTC) Corpus > which consists of Chinese
news stories translated into English by 11 transla-
tion agencies, and literary works with multiple trans-
lations into English (e.g. Flaubert’s Madame Bo-
vary.) Another method for collecting monolingual
paraphrase data involves aligning semantically par-
allel sentences from different news articles describ-
ing the same event (Shinyama et al., 2002; Barzilay
and Lee, 2003; Dolan et al., 2004).

While utilizing multiple translations of literary
work or multiple news stories of the same event can
yield significant numbers of parallel sentences, this
data tend to be noisy, and reliably identifying good
paraphrases among all possible sentence pairs re-
mains an open problem. On the other hand, multiple
translations on the sentence level such as the MTC
Corpus provide good, natural paraphrases, but rela-

"Available for download at http://research.
microsoft.com/en-us/downloads/
38cfl15fd-b8df-477e-aded-ad680caal5af/

2Linguistic Data Consortium (LDC) Catalog Number
LDC2002T01, ISBN 1-58563-217-1.
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tively little data of this type exists. Finally, some ap-
proaches avoid the need for monolingual paraphrase
data altogether by using a second language as the
pivot language (Bannard and Callison-Burch, 2005;
Callison-Burch, 2008; Kok and Brockett, 2010).
Phrases that are aligned to the same phrase in the
pivot language are treated as potential paraphrases.
One limitation of this approach is that only words
and phrases are identified, not whole sentences.

While most work on evaluating paraphrase sys-
tems has relied on human judges (Barzilay and
McKeown, 2001; Ibrahim et al., 2003; Bannard and
Callison-Burch, 2005) or indirect, task-based meth-
ods (Lin and Pantel, 2001; Callison-Burch et al.,
20006), there have also been a few attempts at creat-
ing automatic metrics that can be more easily repli-
cated and used to compare different systems. Para-
Metric (Callison-Burch et al., 2008) compares the
paraphrases discovered by an automatic system with
ones annotated by humans, measuring precision and
recall. This approach requires additional human an-
notations to identify the paraphrases within paral-
lel texts (Cohn et al., 2008) and does not evalu-
ate the systems at the sentence level. The more
recently proposed metric PEM (Paraphrase Evalu-
ation Metric) (Liu et al., 2010) produces a single
score that captures the semantic adequacy, fluency,
and lexical dissimilarity of candidate paraphrases,
relying on bilingual data to learn semantic equiva-
lences without using n-gram similarity between can-
didate and reference sentences. In addition, the met-
ric was shown to correlate well with human judg-
ments. However, a significant drawback of this ap-
proach is that PEM requires substantial in-domain
bilingual data to train the semantic adequacy evalu-
ator, as well as sample human judgments to train the
overall metric.

We designed our data collection framework for
use on crowdsourcing platforms such as Amazon’s
Mechanical Turk. Crowdsourcing can allow inex-
pensive and rapid data collection for various NLP
tasks (Ambati and Vogel, 2010; Bloodgood and
Callison-Burch, 2010a; Bloodgood and Callison-
Burch, 2010b; Irvine and Klementiev, 2010), includ-
ing human evaluations of NLP systems (Callison-
Burch, 2009; Denkowski and Lavie, 2010; Zaidan
and Callison-Burch, 2009). Of particular relevance
are the paraphrasing work by Buzek et al. (2010)



and Denkowski et al. (2010). Buzek et al. automati-
cally identified problem regions in a translation task
and had workers attempt to paraphrase them, while
Denkowski et al. asked workers to assess the validity
of automatically extracted paraphrases. Our work is
distinct from these earlier efforts both in terms of
the task — attempting to collect linguistic descrip-
tions using a visual stimulus — and the dramatically
larger scale of the data collected.

3 Data Collection

Since our goal was to collect large numbers of para-
phrases quickly and inexpensively using a crowd,
our framework was designed to make the tasks short,
simple, easy, accessible and somewhat fun. For each
task, we asked the annotators to watch a very short
video clip (usually less than 10 seconds long) and
describe in one sentence the main action or event
that occurred in the video clip

We deployed the task on Amazon’s Mechanical
Turk, with video segments selected from YouTube.
A screenshot of our annotation task is shown in Fig-
ure 1. On average, annotators completed each task
within 80 seconds, including the time required to
watch the video. Experienced annotators were even
faster, completing the task in only 20 to 25 seconds.

One interesting aspect of this framework is that
each annotator approaches the task from a linguisti-
cally independent perspective, unbiased by the lexi-
cal or word order choices in a pre-existing descrip-
tion. The data thus has some similarities to parallel
news descriptions of the same event, while avoiding
much of the noise inherent in news. It is also simi-
lar in spirit to the ‘Pear Stories’ film used by Chafe
(1997). Crucially, our approach allows us to gather
arbitrarily many of these independent descriptions
for each video, capturing nearly-exhaustive cover-
age of how native speakers are likely to summarize
a small action. It might be possible to achieve sim-
ilar effects using images or panels of images as the
stimulus (von Ahn and Dabbish, 2004; Fei-Fei et al.,
2007; Rashtchian et al., 2010), but we believed that
videos would be more engaging and less ambiguous
in their focus. In addition, videos have been shown
to be more effective in prompting descriptions of
motion and contact verbs, as well as verbs that are
generally not imageable (Ma and Cook, 2009).
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Watch and describe a short segment of a video

You will be shown a segment of a video clip and asked to describe the main action/event in that segment in
ONE SENTENCE.

Things to note while completing this task:

 The video will play only a selected segment by default. You can choose to watch the entire clip and/or
with sound although this is not necessary.
o Please only describe the action/event that occurred in the selected segment and not any other parts of
the video.
o Please focus on the main person/group shown in the segment
o If you do not understand what is happening in the selected segment, please skip this HIT and move
onto the next one
« Write your description in one sentence
 Use complete, grammatically-correct sentences
 You can write the descriptions in any language you are comfortable with
« Examples of good descriptions:
o A woman is slicing some tomatoes.
o A band is performing on a stage outside.
o A dog is catching a Frisbee.
o The sun is over a mountain landscape.
o Examples of bad tions (With the reasons why they are bad in parentheses):
o Tomato slicing
(Incomplete sentence)
o This video is shot outside at night about a band performing on a stage
(Description about the video itself instead of the action/event in the video)
o T like this video because it is very cute
(Not about the action/event in the video)
o The sun is rising in the distance while a group of tourists standing near some railings are taking
pictures of the sunrise and a small boy is shivering in his jacket because it is really cold
(Too much detail instead of focusing only on the main action/event)

How to Make Bento (Japanese Boxed Lunch)
by coolingwindog

P ]| 0281031 @

Segment starts: 25 | ends: 30 | length: 5 seconds

Play Segment - Play Entire Video

Please describe the main event/action in the selected segment (ONE SENTENCE):

Note: If you have a hard time typing in your native language on an English keyboard, you may find
Google's transliteration service helpful.

http://www.google com/transliterate

Language you are typing in (c.g. English, Spanish, French, Hindi, Urdu, Mandarin Chinese, etc):

Your one-sentence description:

Please provide any comments or suggestions you may have below, we appreciate your input!

Figure 1: A screenshot of our annotation task as it was
deployed on Mechanical Turk.

3.1 Quality Control

One of the main problems with collecting data using
a crowd is quality control. While the cost is very low
compared to traditional annotation methods, work-
ers recruited over the Internet are often unqualified
for the tasks or are incentivized to cheat in order to
maximize their rewards.

To encourage native and fluent contributions, we
asked annotators to write the descriptions in the lan-
guage of their choice. The result was a significant
amount of translation data, unique in its multilingual
parallelism. While included in our data release, we
leave aside a full discussion of this multilingual data
for future work.



To ensure the quality of the annotations being pro-
duced, we used a two-tiered payment system. The
idea was to reward workers who had shown the abil-
ity to write quality descriptions and the willingness
to work on our tasks consistently. While everyone
had access to the Tier-1 tasks, only workers who had
been manually qualified could work on the Tier-2
tasks. The tasks were identical in the two tiers but
each Tier-1 task only paid 1 cent while each Tier-2
task paid 5 cents, giving the workers a strong incen-
tive to earn the qualification.

The qualification process was done manually by
the authors. We periodically evaluated the workers
who had submitted the most Tier-1 tasks (usually on
the order of few hundred submissions) and granted
them access to the Tier-2 tasks if they had performed
well. We assessed their work mainly on the gram-
maticality and spelling accuracy of the submitted de-
scriptions. Since we had hundreds of submissions to
base our decisions on, it was fairly easy to identify
the cheaters and people with poor English skills .
Workers who were rejected during this process were
still allowed to work on the Tier-1 tasks.

While this approach requires significantly more
manual effort initially than other approaches such
as using a qualification test or automatic post-
annotation filtering, it creates a much higher quality
workforce. Moreover, the initial effort is amortized
over time as these quality workers are retained over
the entire duration of the data collection. Many of
them annotated all the available videos we had.

3.2 Video Collection

To find suitable videos to annotate, we deployed a
separate task. Workers were asked to submit short
(generally 4-10 seconds) video segments depicting
single, unambiguous events by specifying links to
YouTube videos, along with the start and end times.
We again used a tiered payment system to reward
and retain workers who performed well.

Since the scope of this data collection effort ex-
tended beyond gathering English data alone, we

3Everyone who submitted descriptions in a foreign language
was granted access to the Tier-2 tasks. This was done to encour-
age more submissions in different languages and also because
we could not verify the quality of those descriptions other than
using online translation services (and some of the languages
were not available to be translated).
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Someone is coating a pork chop in a glass bowl of flour.
* A person breads a pork chop.
* Someone is breading a piece of meat with a white powdery

substance.

A chef seasons a slice of meat.

* Someone is putting flour on a piece of meat.

* A woman is adding flour to meat.

* A woman is coating a piece of pork with breadcrumbs.
* A man dredges meat in bread crumbs.

* A person breads a piece of meat.

A woman is breading some meat.

* Someone is breading meat.

* A woman coats a meat cutlet in a dish.

* A woman is coating a pork loin in bread crumbs.
The laldy coated the meat in bread crumbs.

* The woman is breading pork chop.

* A woman adds a mixture to some meat.

* The lady put the batter on the meat.

Figure 2: Examples of English descriptions collected for
a particular video segment.

tried to collect videos that could be understood
regardless of the annotator’s linguistic or cultural
background. In order to avoid biasing lexical
choices in the descriptions, we muted the audio and
excluded videos that contained either subtitles or
overlaid text. Finally, we manually filtered the sub-
mitted videos to ensure that each met our criteria and
was free of inappropriate content.

3.3 Data

We deployed our data collection framework on Me-
chanical Turk over a two-month period from July to
September in 2010, collecting 2,089 video segments
and 85,550 English descriptions. The rate of data
collection accelerated as we built up our workforce,
topping 10K descriptions a day when we ended our
data collection. Of the descriptions, 33,855 were
from Tier-2 tasks, meaning they were provided by
workers who had been manually identified as good
performers. Examples of some of the descriptions
collected are shown in Figure 2.

Overall, 688 workers submitted at least one En-
glish description. Of these workers, 113 submitted
at least 100 descriptions and 51 submitted at least
500. The largest number of descriptions submitted
by a single worker was 3496 4. Out of the 688 work-
ers, 50 were granted access to the Tier-2 tasks. The

“This number exceeds the total number of videos because
the worker completed both Tier-1 and Tier-2 tasks for the same
videos



Tier 1 | Tier 2
pay $0.01 | $0.05
# workers (English) 683 50
# workers (total) 835 94
# submitted (English) | 51510 | 33829
# submitted (total) 68578 | 55682
# accepted (English) | 51052 | 33825
# accepted (total) 67968 | 55658

Table 1: Statistics for the two video description tasks

success of our data collection effort was in part due
to our ability to retain these good workers, building a
reliable and efficient workforce. Table 1 shows some
statistics for the Tier-1 and Tier-2 tasks >. Overall,
we spent under $5,000 including Amazon’s service
fees, some pilot experiments and surveys.

On average, 41 descriptions were produced for
each video, with at least 27 for over 95% of the
videos. Even limiting the set to descriptions pro-
duced from the Tier-2 tasks, there are still 16 de-
scriptions on average for each video, with at least 12
descriptions for over 95% of the videos. For most
clusters, then, we have a dozen or more high-quality
parallel descriptions that can be paired with one an-
other to create monolingual parallel training data.

4 Paraphrase Evaluation Metrics

One of the limitations to the development of ma-
chine paraphrasing is the lack of standard metrics
like BLEU, which has played a crucial role in driv-
ing progress in MT. Part of the issue is that a
good paraphrase has the additional constraint that
it should be lexically dissimilar to the source sen-
tence while preserving the meaning. These can be-
come competing goals when using n-gram overlaps
to establish semantic equivalence. Thus, researchers
have been unable to rely on BLEU or some deriva-
tive: the optimal paraphrasing engine under these
terms would be one that simply returns the input.
To combat such problems, Liu et al. (2010) have
proposed PEM, which uses a second language as
pivot to establish semantic equivalence. Thus, no
n-gram overlaps are required to determine the se-
mantic adequacy of the paraphrase candidates. PEM

5The numbers for the English data are slightly underesti-

mated since the workers sometimes incorrectly filled out the
form when reporting what language they were using.
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also separately measures lexical dissimilarity and
fluency. Finally, all three scores are combined us-
ing a support vector machine (SVM) trained on hu-
man ratings of paraphrase pairs. While PEM was
shown to correlate well with human judgments, it
has some limitations. It only models paraphrasing at
the phrase level and not at the sentence level. Fur-
ther, while it does not need reference sentences for
the evaluation dataset, PEM does require suitable
bilingual data to train the metric. The result is that
training a successful PEM becomes almost as chal-
lenging as the original paraphrasing problem, since
paraphrases need to be learned from bilingual data.

The highly parallel nature of our data suggests
a simpler solution to this problem. To measure
semantic equivalence, we simply use BLEU with
multiple references. The large number of reference
paraphrases capture a wide space of sentences with
equivalent meanings. While the set of reference sen-
tences can of course never be exhaustive, our data
collection method provides a natural distribution of
common phrases that might be used to describe an
action or event. A tight cluster with many simi-
lar parallel descriptions suggests there are only few
common ways to express that concept.

In addition to measuring semantic adequacy and
fluency using BLEU, we also need to measure lexi-
cal dissimilarity with the source sentence. We intro-
duce a new scoring metric PINC that measures how
many n-grams differ between the two sentences. In
essence, it is the inverse of BLEU since we want to
minimize the number of n-gram overlaps between
the two sentences. Specifically, for source sentence
s and candidate sentence c:

N

1 | n-gram, N n-gram, |
PINC(s,c) = NZ 1k \n-gramcg\

n=1

where [V is the maximum n-gram considered and n-

gramg and n-gram, are the lists of n-grams in the
source and candidate sentences, respectively. We
use N = 4 in our evaluations.

The PINC score computes the percentage of n-
grams that appear in the candidate sentence but not
in the source sentence. This score is similar to the
Jaccard distance, except that it excludes n-grams that
only appear in the source sentence and not in the
candidate sentence. In other words, it rewards candi-



dates for introducing new n-grams but not for omit-
ting n-grams from the original sentence. The results
for each n are averaged arithmetically. PINC eval-
uates single sentences instead of entire documents
because we can reliably measure lexical dissimilar-
ity at the sentence level. Also notice that we do not
put additional constraints on sentence length: while
extremely short and extremely long sentences are
likely to score high on PINC, they still must main-
tain semantic adequacy as measured by BLEU.

We use BLEU and PINC together as a 2-
dimensional scoring metric. A good paraphrase, ac-
cording to our evaluation metric, has few n-gram
overlaps with the source sentence but many n-gram
overlaps with the reference sentences. This is con-
sistent with our requirement that a good paraphrase
should be lexically dissimilar from the source sen-
tence while preserving its semantics.

Unlike Liu et al. (2010), we treat these two cri-
teria separately, since different applications might
have different preferences for each. For example,
a paraphrase suggestion tool for a word processing
software might be more concerned with semantic
adequacy, since presenting a paraphrase that does
not preserve the meaning would likely result in a
negative user experience. On the other hand, a query
expansion algorithm might be less concerned with
preserving the precise meaning so long as additional
relevant terms are added to improve search recall.

5 Experiments

To verify the usefulness of our paraphrase corpus
and the BLEU/PINC metric, we built and evaluated
several paraphrase systems and compared the auto-
matic scores to human ratings of the generated para-
phrases. We also investigated the pros and cons of
collecting paraphrases using video annotation rather
than directly eliciting them.

5.1 Building paraphrase models

We built 4 paraphrase systems by training English to
English translation models using Moses (Koehn et
al., 2007) with the default settings. Using our para-
phrase corpus to train and to test, we divided the sen-
tence clusters associated with each video into 90%
for training and 10% for testing. We restricted our
attention to sentences produced from the Tier-2 tasks
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Figure 3: Evaluation of paraphrase systems trained on
different numbers of parallel sentences. As more training
pairs are used, the model produces more varied sentences
(PINC) but preserves the meaning less well (BLEU)

in order to avoid excessive noise in the datasets, re-
sulting in 28,785 training sentences and 3,367 test
sentences. To construct the training examples, we
randomly paired each sentence with 1, 5, 10, or
all parallel descriptions of the same video segment.
This corresponds to 28K, 143K, 287K, and 449K
training pairs respectively. For the test set, we used
each sentence once as the source sentence with all
parallel descriptions as references (there were 16
references on average, with a minimum of 10 and a
maximum of 31.) We also included the source sen-
tence as a reference for itself.

Overall, all the trained models produce reasonable
paraphrase systems, even the model trained on just
28K single parallel sentences. Examples of the out-
puts produced by the models trained on single paral-
lel sentences and on all parallel sentences are shown
in Table 2. Some of the changes are simple word
substitutions, e.g. rabbit for bunny or gun for re-
volver, while others are phrasal, e.g. frying meat for
browning pork or made a basket for scores in a bas-
ketball game. One interesting result of using videos
as the stimulus to collect training data is that some-
times the learned paraphrases are not based on lin-
guistic closeness, but rather on visual similarity, e.g.
substituting cricket for baseball.

To evaluate the results quantitatively, we used the
BLEU/PINC metric. The performance of all the
trained models is shown in Figure 3. Unsurprisingly,
there is a tradeoff between preserving the meaning



Original sentence

Trained on 1 parallel sentence

Trained on all parallel sentences

a bunny is cleaning its paw
a man fires a revolver
a big turtle is walking

a guy is doing a flip over a park bench

milk is being poured into a mixer
children are practicing baseball

a boy is doing karate

a woman is browning pork in a pan

a player scores in a basketball game

arabbit is licking its paw

a man is shooting targets

a huge turtle is walking

a man does a flip over a bench

a man is pouring milk into a mixer
children are doing a cricket

a man is doing karate

a woman is browning pork in a pan
a player made a basketball game

arabbit is cleaning itself

a man is shooting a gun

a large tortoise is walking

a man is doing stunts on a bench
a man is pouring milk into a bowl
children are playing cricket

a boy is doing martial arts

a woman is frying meat in a pan
a player made a basket

Table 2: Examples of paraphrases generated by the trained models.

and producing more varied paraphrases. Systems
trained on fewer parallel sentences are more con-
servative and make fewer mistakes.
hand, systems trained on more parallel sentences of-
ten produce very good paraphrases but are also more
likely to diverge from the original meaning. As a
comparison, evaluating each human description as
a paraphrase for the other descriptions in the same
cluster resulted in a BLEU score of 52.9 and a PINC
score of 77.2. Thus, all the systems performed very
well in terms of retaining semantic content, although
not as well in producing novel sentences.

To validate the results suggested by the automatic
metrics, we asked two fluent English speakers to
rate the generated paraphrases on the following cate-
gories: semantic, dissimilarity, and overall. Seman-
tic measures how well the paraphrase preserves the
original meaning while dissimilarity measures how
much the paraphrase differs from the source sen-
tence. Each category is rated from 1 to 4, with 4
being the best. A paraphrase identical to the source
sentence would receive a score of 4 for meaning and
1 for dissimilarity and overall. We randomly se-
lected 200 source sentences and generated 2 para-
phrases for each, representing the two extremes: one
paraphrase produced by the model trained with sin-
gle parallel sentences, and the other by the model
trained with all parallel sentences. The average
scores of the two human judges are shown in Ta-
ble 3. The results confirm our finding that the sys-
tem trained with single parallel sentences preserves
the meaning better but is also more conservative.

5.2 Correlation with human judgments

Having established rough correspondences between
BLEU/PINC scores and human judgments of se-
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Semantic | Dissimilarity | Overall
1 3.09 2.65 2.51
On the other All 291 2.89 243

Table 3: Average human ratings of the systems trained on
single parallel sentences and on all parallel sentences.

mantic equivalence and lexical dissimilarity, we
quantified the correlation between these automatic
metrics and human ratings using Pearson’s corre-
lation coefficient, a measure of linear dependence
between two random variables. We computed the
inter-annotator agreement as well as the correlation
between BLEU, PINC, PEM (Liu et al., 2010) and
the average human ratings on the sentence level. Re-
sults are shown in Table 4.

In order to measure correlation, we need to score
each paraphrase individually. Thus, we recomputed
BLEU on the sentence level and left the PINC scores
unchanged. While BLEU is typically not reliable at
the single sentence level, our large number of ref-
erence sentences makes BLEU more stable even at
this granularity. Empirically, BLEU correlates fairly
well with human judgments of semantic equiva-
lence, although still not as well as the inter-annotator
agreement. On the other hand, PINC correlates as
well as humans agree with each other in assessing
lexical dissimilarity. We also computed each met-
ric’s correlation with the overall ratings, although
neither should be used alone to assess the overall
quality of paraphrases.

PEM had the worst correlation with human judg-
ments of all the metrics. Since PEM was trained on
newswire data, its poor adaptation to this domain is
expected. However, given the large amount of train-
ing data needed (PEM was trained on 250K Chinese-



Semantic | Dissimilarity | Overall
Judge A vs. B 0.7135 0.6319 0.4920
BLEU vs. Human 0.5095 N/A 0.2127
PINC vs. Human N/A 0.6672 0.0775
PEM vs. Human N/A N/A 0.0654
PINC vs. Human (BLEU > threshold)
threshold = 0 N/A 0.6541 0.1817
threshold = 30 N/A 0.6493 0.1984
threshold = 60 N/A 0.6815 0.3986
threshold = 90 N/A 0.7922 0.4350
Combined BLEU and PINC vs. Human
Arithmetic Mean N/A N/A 0.3173
Geometric Mean N/A N/A 0.3003
Harmonic Mean N/A N/A 0.3036
PINC x
Sigmoid(BLEU) N/A N/A 0.3532

Table 4: Correlation between the human judges as well
as between the automatic metrics and the human judges.

English sentence pairs and 2400 human ratings of
paraphrase pairs), it is difficult to use PEM as a gen-
eral metric. Adapting PEM to a new domain would
require sufficient in-domain bilingual data to sup-
port paraphrase extraction. In contrast, our approach
only requires monolingual data, and evaluation can
be performed using arbitrarily small, highly-parallel
datasets. Moreover, PEM requires sample human
ratings in training, thereby lessening the advantage
of having automatic metrics.

Since lexical dissimilarity is only desirable when
the semantics of the original sentence is unchanged,
we also computed correlation between PINC and the
human ratings when BLEU is above certain thresh-
olds. As we restrict our attention to the set of para-
phrases with higher BLEU scores, we see an in-
crease in correlation between PINC and the human
assessments. This confirms our intuition that PINC
is a more useful measure when semantic content has
been preserved.

Finally, while we do not believe any single score
could adequately describe the quality of a para-
phrase outside of a specific application, we experi-
mented with different ways of combining BLEU and
PINC into a single score. Almost any simple combi-
nation, such as taking the average of the two, yielded
decent correlation with the human ratings. The best
correlation was achieved by taking the product of
PINC and a sigmoid function of BLEU. This follows
the intuition that semantic preservation is closer to a
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Figure 4: Correlation between BLEU and human judg-
ments as we vary the number of reference sentences.

binary decision (i.e. a paraphrase either preserves
the meaning or it does not, in which case PINC does
not matter at all) than a linear function. We used
an oracle to pick the best logistic function in our
experiment. In practice, some sample human rat-
ings would be required to tune this function. Other
more complicated methods for combining BLEU
and PINC are also possible with sample human rat-
ings, such as using a SVM as was done in PEM.
We quantified the utility of our highly parallel
data by computing the correlation between BLEU
and human ratings when different numbers of refer-
ences were available. The results are shown in Fig-
ure 4. As the number of references increases, the
correlation with human ratings also increases. The
graph also shows the effect of adding the source sen-
tence as a reference. If our goal is to assess seman-
tic equivalence only, then it is better to include the
source sentence. If we are trying to assess the overall
quality of the paraphrase, it is better to exclude the
source sentence, since otherwise the metric will tend
to favor paraphrases that introduce fewer changes.

5.3 Direct paraphrasing versus video
annotation

In addition to collecting paraphrases through video
annotations, we also experimented with the more
traditional task of presenting a sentence to an anno-
tator and explicitly asking for a paraphrase. We ran-
domly selected a thousand sentences from our data
and collected two paraphrases of each using Me-
chanical Turk. We conducted a post-annotation sur-



vey of workers who had completed both the video
description and the direct paraphrasing tasks, and
found that paraphrasing was considered more diffi-
cult and less enjoyable than describing videos. Of
those surveyed, 92% found video annotations more
enjoyable, and 75% found them easier. Based on
the comments, the only drawback of the video an-
notation task is the time required to load and watch
the videos. Overall, half of the workers preferred the
video annotation task while only 16% of the workers
preferred the paraphrasing task.

The data produced by the direct paraphrasing task
also diverged less, since the annotators were in-
evitably biased by lexical choices and word order
in the original sentences. On average, a direct para-
phrase had a PINC score of 70.08, while a parallel
description of the same video had a score of 78.75.

6 Discussions and Future Work

While our data collection framework yields useful
parallel data, it also has some limitations. Finding
appropriate videos is time-consuming and remains a
bottleneck in the process. Also, more abstract ac-
tions such as reducing the deficit or fighting for jus-
tice cannot be easily captured by our method. One
possible solution is to use longer video snippets or
other visual stimuli such as graphs, schemas, or il-
lustrated storybooks to convey more complicated in-
formation. However, the increased complexity is
also likely to reduce the semantic closeness of the
parallel descriptions.

Another limitation is that sentences produced by
our framework tend to be short and follow simi-
lar syntactic structures. Asking annotators to write
multiple descriptions or longer descriptions would
result in more varied data but at the cost of more
noise in the alignments. Other than descriptions, we
could also ask the annotators for more complicated
responses such as “fill in the blanks” in a dialogue
(e.g. “If you were this person in the video, what
would you say at this point?”), their opinion of the
event shown, or the moral of the story. However, as
with the difficulty of aligning news stories, finding
paraphrases within these more complex responses
could require additional annotation efforts.

In our experiments, we only used a subset of our
corpus to avoid dealing with excessive noise. How-
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ever, a significant portion of the remaining data is
useful. Thus, an automatic method for filtering those
sentences could allow us to utilize even more of the
data. For example, sentences from the Tier-2 tasks
could be used as positive examples to train a string
classifier to determine whether a noisy sentence be-
longs in the same cluster or not.

We have so far used BLEU to measure seman-
tic adequacy since it is the most common MT met-
ric. However, other more advanced MT metrics
that have shown higher correlation with human judg-
ments could also be used.

In addition to paraphrasing, our data collection
framework could also be used to produces useful
data for machine translation and computer vision.
By pairing up descriptions of the same video in dif-
ferent languages, we obtain parallel data without re-
quiring any bilingual skills. Another application for
our data is to apply it to computer vision tasks such
as video retrieval. The dataset can be readily used
to train and evaluate systems that can automatically
generate full descriptions of unseen videos. As far as
we know, there are currently no datasets that contain
whole-sentence descriptions of open-domain video
segments.

7 Conclusion

We introduced a data collection framework that pro-
duces highly parallel data by asking different an-
notators to describe the same video segments. De-
ploying the framework on Mechanical Turk over a
two-month period yielded 85K English descriptions
for 2K videos, one of the largest paraphrase data re-
sources publicly available. In addition, the highly
parallel nature of the data allows us to use standard
MT metrics such as BLEU to evaluate semantic ad-
equacy reliably. Finally, we also introduced a new
metric, PINC, to measure the lexical dissimilarity
between the source sentence and the paraphrase.
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Abstract

This paper presents an attempt at building
a large scale distributed composite language
model that simultaneously accounts for local
word lexical information, mid-range sentence
syntactic structure, and long-span document
semantic content under a directed Markov ran-
dom field paradigm. The composite language
model has been trained by performing a con-
vergent N-best list approximate EM algorithm
that has linear time complexity and a follow-
up EM algorithm to improve word prediction
power on corpora with up to a billion tokens
and stored on a supercomputer. The large
scale distributed composite language model
gives drastic perplexity reduction ovet-
grams and achieves significantly better trans-
lation quality measured by the BLEU score
and “readability” when applied to the task of
re-ranking the N-best list from a state-of-the-
art parsing-based machine translation system.

I ntroduction

are efficient at encoding local word interactions, the
n-gram model clearly ignores the rich syntactic and
semantic structures that constrain natural languages.
As the machine translation (MT) working groups
stated on page 3 of their final report (Lavie et al.,
2006), “These approaches have resulted in small im-
provements in MT quality, but have not fundamen-
tally solved the problem. There is a dire need for de-
veloping novel approaches to language modeling.”

Wang et al. (2006) integrated-gram, structured
language model (SLM) (Chelba and Jelinek, 2000)
and probabilistic latent semantic analysis (PLSA)
(Hofmann, 2001) under the directed MRF frame-
work (Wang et al., 2005) and studied the stochas-
tic properties for the composite language model.
They derived ggeneralized inside-outsiddgorithm
to train the composite language model from a gen-
eral EM (Dempster et al., 1977) by following Je-
linek’s ingenious definition of the inside and outside
probabilities for SLM (Jelinek, 2004) with 6th order
of sentence length time complexity. Unfortunately,

The Markov chain {-gram) source models, which there are no experimental results reported.

predict each word on the basis of previousl

In this paper, we study the same composite lan-

words, have been the workhorses of state-of-the-aguage model. Instead of using the 6th order general-
speech recognizers and machine translators that héhed inside-outside algorithm proposed in (Wang et
to resolve acoustic or foreign language ambiguitieal., 2006), we train this composite model by a con-
by placing higher probability on more likely original vergent N-best list approximate EM algorithm that
underlying word strings. Research groups (Brants étas linear time complexity and a follow-up EM al-
al., 2007; Zhang, 2008) have shown that using agorithm to improve word prediction power. We con-
immense distributed computing paradigm, up to 6duct comprehensive experiments on corpora with 44
grams can be trained on up to billions and trillionamillion tokens, 230 million tokens, and 1.3 billion
of words, yielding consistent system improvementdokens and compare perplexity results wittgrams
but Zhang (2008) did not observe much improve{n=3,4,5 respectively) on these three corpora, we
ment beyond 6-grams. Although the Markov chainsbtain drastic perplexity reductions. Finally, we ap-
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ply our language models to the task of re-rankinghe CONSTRUCTOR hits NULL, it passes control
the N-best list from Hiero (Chiang, 2005; Chiangto the WORD-PREDICTOR. See detailed descrip-
2007), a state-of-the-art parsing-based MT systertipn in (Chelba and Jelinek, 2000).
we achieve significantly better translation quality A PLSA model (Hofmann, 2001) is a gener-
measured by the BLEU score and “readability”.  ative probabilistic model of word-document co-
occurrences using the bag-of-words assumption de-
scribed as follows: (i) choose a documehtvith
The n-gram language model is essentially a worgprobability p(d); (i) SEMANTIZER: select a se-
predictor that given its entire document history itmantic classg with probability p(g|d); and (iii)
predicts next worduy,; based on the last-1 words WORD-PREDICTOR: pick a wordv with proba-
with probability p(wy1 |wf_, ) Wherew}_ ., = bility p(w|g). Since only one pair ofd, w) is being
Wg—n+2," ", Wk- observed, as a result, the joint probability model is
The SLM (Chelba and Jelinek, 1998; Chelba and mixture of log-linear model with the expression
Jelinek, 2000) uses syntactic information beyong(d,w) = p(d) 3, p(w|g)p(gld). Typically, the
the regulam-gram models to capture sentence levehumber of documents and vocabulary size are much
long range dependencies. The SLM is based on starger than the size of latent semantic class variables.
tistical parsing techniques that allow syntactic analfhus, latent semantic class variables function as bot-
ysis of sentences; it assigns a probability/, 7') to  tleneck variables to constrain word occurrences in
every sentencéV and every possible binary parsedocuments.
T. The terminals of”” are the words ofV with POS When combiningn-gram, m order SLM and
tags, and the nodes @f are annotated with phrase PLSA models together to build a composite gen-
headwords and non-terminal labels. Btbe a sen- erative language model under the directed MRF
tence of lengtm words to which we have prependedparadigm (Wang et al., 2005; Wang et al., 2006),
the sentence beginning markes> and appended the TAGGER and CONSTRUCTOR in SLM and
the sentence end marker/s> so thatwy, =<s> SEMANTIZER in PLSA remain unchanged; how-
andw, 1 =</s>. Let W}, = wo,--- ,w; be the everthe WORD-PREDICTORS im-gram,m-SLM
word k-prefix of the sentence — the words from theand PLSA are combined to form a stronger WORD-
beginning of the sentence up to the current positioRREDICTOR that generates the next word,, 1,
k and W, T}, the word-parse:-prefix. A word-parse not only depending on then left-most exposed
k-prefix has a set of exposed hedds,,, - ,h_;, headwords:_;, in the word-parse:-prefix but also
with each head being a pair (headword, non-termindlis n-gram hlStOfywk_n+2 and its semantic con-
label), or in the case of a root-only tree (wordtentgy 1. The parameter for WORD-PREDICTOR
POS tag). Anm-th order SLM (m-SLM) has in the compositen-gramin-SLM/PLSA language
three operators to generate a sentence: WORMDiodel becomep(wy.i1|wf_, . ,h"} gi1). The re-
PREDICTOR predicts the next word;,, based sulting composite language model has an even more
on the m left-most exposed headwords:}n = complex dependency structure but with more ex-
h—m,--- ,h_yinthe word-parsé&-prefix with prob- pressive power than the original SLM. Figure 1 il-
ability p(wg+1|hZ,,), and then passes control to thdustrates the structure of a compositegramin-
TAGGER; the TAGGER predicts the POS tag; SLM/PLSA language model.
to the next wordwy,; based on the next word, | The composite n-gramin-SLM/PLSA  lan-
and the POS tags of the left-most exposed head- 9uage model can be formulated as a directed
words k=) in the word-parsek-prefix with prob- MRF model (Wang et al., 2006) with lo-
ability p(tpi1|wpi1, homtag, -+, h_1.tag); the cal normalization constraints for the param-

CONSTRUCTOR builds the partial par§e from €ters of each model component, WORD-
Ty_1, wi, andt,, in a series of moves ending with PREDICTOR,  TAGGER, =~ CONSTRUCTOR,

NULL, where a parse move is made with proba- SEMANTIZER, i.e., > ¢y p(w|wZ n+1h—m9) =
bility p(alh=) ): a € A={(unary, NTlabel), (adjoin- 1,3 co p(tlwh =), tag) = 1,3, 4p(alh’,,) =
left, NTlabel), (adjoin-right, NTlabel), nul Once 1.>_,cgp(gld) =1.
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of tag ¢t predicted by wordw and the tags oin
most recent exposed headwords in parse ffée
of the Ith sentencéV! in documentd, and finally
#(ah=) W' T! d) is the count of constructor
movea conditioning onm exposed headwords:}n
in parse tred” of the Ith sentencéV’ in document

&

The objective of maximum likelihood estimation
is to maximize the likelihoodl(D,p) respect to
Figure 1: A compositen-gram/im-SLM/PLSA language model parameters. For a given sentence, its parse
model where the hidden information is the parse tregree and semantic content are hidden and the num-
T and semantic contery. The WORD-PREDICTOR per of parse trees grows faster than exponential with
generates the next wordwy;y with probability genence length, Wang et al. (2006) have derived a
p(w“l'wﬁ;”“h‘mgk“) instead op(wi1|wy_,2) generalized inside-outside algorithm by applying the
Pkt 1h=pn) ANAD(wE+1]gk-+1) respectively. standard EM algorithm. However, the complexity of
this algorithm is 6th order of sentence length, thus it
is computationally too expensive to be practical for
a large corpus even with the use of pruning on charts
(Jelinek and Chelba, 1999; Jelinek, 2004).

3 Training algorithm

Under the composite:-gramin-SLM/PLSA lan-
guage model, the likelihood of a training corpls

a collection of documents, can be written as
I1 (Z (Z PP(WCT%G%))) (1)
( U \at \7 Similar to SLM (Chelba and Jelinek, 2000), we
ol . adopt anN-best list approximate EM re-estimation
where (W*,T%, G, d) denote the joint sequence ofyjth modular modifications to seamlessly incorpo-
the ith sentencd?’! with its parse tree structuré’ rate the effect ofn-gram and PLSA components.
and semantic annotation string in documentd. Instead of maximizing the likelihood (D, p), we
This sequence is produced by a unique sequent@ximize theN-best list likelihood,
of model actions: WORD-PREDICTOR, TAGGER,
CONSTRUCTOR, SEMANTIZER moves, its prob- max £(D, p, T'n) = ( ( max
T'N d16_£ H T’ZNE’T’N%L:

£(p,p) =[] 3.1 N-best list approximate EM

deD

ability is obtained by chaining the probabilities of
these moves

PP(WZ7TL7Gl|d)

I1 <p<g|d>#<ng“°’“d) I

9g€g h_q1,h_mer

-1 -1 Ul Al
[T soluch b #omsnmhow'ateto

;W1 €V

1 p(tlwh=s, tag)
teO

[T paln=,y#emm it
acA

#(t,wh” ] tag, W, T! d)

)

where #(g,W!,G!,d) is the count of seman-
tic content g in semantic annotation string
G' of the Ith sentence W' in document d,

#(w_} whZ) g, WL T G d) is the count

of n-grams, itsm most recent exposed headwords

and semantic content in parseT’ and semantic

annotation stringG! of the ith sentencelV! in

documentd, #(twh~} tag, W' T'.d) is the count
203

> WL T,G'd)
TLeT'h || T |I=N

whereT ’ﬂv is a set of N parse trees for sententg!
in documentd and|| - || denotes the cardinality and
T’ is a collection ofT"; for sentences over entire
corpusD.

The N-best list approximate EM involves two
steps:

1. N-best list search: For each senteficen doc-
umentd, find N-best parse trees,

S > RWLT LG, IT V] = N}

Iy = arg max{
7'

N L 1

GlrieT’l,

and denoteZy as the collection ofV-best list
parse trees for sentences over entire corpus
under model parametet

. EM update: Perform one iteration (or several
iterations) of EM algorithm to estimate model



parameters that maximize¥-best-list likeli- EM update: Once we have th&/-best parse trees

hood of the training corpu®, for each sentence in documehand N-best topics
£(D,p, Tw) = P (W, T!, Gld for documentd, we derive the EM algorithm to esti-
( : dg(n(;(m%ﬁf( o mate model parameters.
) In E-step, we compute the expected count of
Thatis, each model parameter over sentei&é in docu-
(a) E-step: Compute the auxiliary function ofmentd in the training corpusD. For the WORD-
the N-best-list likelihood PREDICTOR and the SEMANTIZER, the number
5 of possible semantic annotation sequences is expo-
QW p,Tn) =Y > > > P(T,G'W'd) nential, we use forward-backward recursive formu-
deD | Gl TleTheTy las that are similar to those in hidden Markov mod-

log P,y (W', T", G'|d) els to compute lthe expected counts. We define the
3 forward vectora/ (¢g|d) to be
(b) M-step: MaximizeQ(p', p, Ty) with re- . -
spect top' to get new update fgp. tes1(g1d) = D Py(Wi, T iy 2ti1h=img. Gild)
Gh
Iterate steps (1) and (2) until the convergence of thﬁﬁat can be recursively computed in a forward man-
N-best-list likelihood. Due to space constraints, we, wheréV'! is the wordk-prefix for sentencél’!

. . ’ k )
omit th? proof of the convergence of the N-best_ Ifsﬁ“,i is the parse fork-prefix. We define backward
approximate EM algorithm which uses Zangw'llsvectorﬁl(gu) to be
global convergence theorem (Zangwill, 1969).

N-best list search strategy: To extract theN- Brr1(gld)

best parse trees, we adopt a synchronous, mult= " P,(Wi 1., Tisr., G, [Wh—nsowii1hZ,,g, d)
stack search strategy that is similar to the one in ¢, .

(Chelba and Jelinek, 2000), which involves a Se{hat can be computed in a backward manner, here

of stacks sto_nng part_lal parses of the most I|kerW]i+1" is the subsequence aftes1th word in sen-
ones for a given prefiX¥y, and the less probable

I gl ; ; )
parses are purged. Each stack contains hypothestggcew’ Tiea,. is the incremental parse struc

(partial parses) that have been constructed by tfidre after the parse structurg], , of word k+1-

same number of WORD-PREDICTOR and the sam@/€fix Wi, that generates parse tré, Gi, . is

number of CONSTRUCTOR operations. The hythe semantic subsequenceGh relevant toW  , .

potheses in each stack are ranked according to tfiéen, the expected count af,  ,whZ,, g for the
log(>_¢, Pp(Wk, Tk, Gi|d)) score with the highest WORD-PREDICTOR on sentend&’ in document
on top, whereP,(Wy, Ty, Gi|d) is the joint prob- dis

ability of prefix Wy = W, Wk .With it.s parse > BT GHW! d)#(w - why,g, W T G d)
structure7;, and semantic annotation strirg, = P

g1, ,gr inadocumentl. A stack vector consists = _ S5 abyi (gld) B (gld)p(gld)

of the ordered set of stacks containing partial parses & &

with the same number of WORD-PREDICTOR 0p- §(wh_py2wik1hZmgii1 = w_pywh )/ Pp(W'|d)
eratloqs but different number of CONSTRUCTORNhereé(-) is an indicator function and the expected
operations. In WORD-PREDICTOR and TAGGER .41t of g for the SEMANTIZER on sentencl’!
operations, some hypotheses are discarded dueijftdocumentd is

the maximum number of hypotheses the stack can

1 1 l 1 l
contain at any given time. In CONSTRUCTOR 2 BT G (e, W', 6, d)

Gl

operation, the resulting hypotheses are discarded i1
due to either finite stack size or the log-probability = Za2+1(g|d)ﬂi+1(g\d)p(gld)/Pp(Wl\d)
threshold: the maximum tolerable difference be- k=0

tween the log-probability score of the top-most hy- For the TAGGER and the CONSTRUCTOR,

pothesis and the bottom-most hypothesis at arihe expected count of each event Mh:}n.tag

given state of the stack. and ah”), over parseT' of sentenceW! in
204



documentd is the real count appeared in parsestack pruning strategy and itis a function of the word

tree 7' of sentenceW! in documentd times k-prefix ;.
the co