Abstract
Rumours can spread quickly through social media, and malicious ones can bring about significant economical and social impact. Motivated by this, our paper focuses on the task of rumour detection; particularly, we are interested in understanding how early we can detect them. Although there are numerous studies on rumour detection, few are concerned with the timing of the detection. A successfully-detected malicious rumour can still cause significant damage if it isn’t detected in a timely manner, and so timing is crucial. To address this, we present a novel methodology for early rumour detection. Our model treats social media posts (e.g. tweets) as a data stream and integrates reinforcement learning to learn the number minimum number of posts required before we classify an event as a rumour. Experiments on Twitter and Weibo demonstrate that our model identifies rumours earlier than state-of-the-art systems while maintaining a comparable accuracy.- Anthology ID:
- N19-1163
- Volume:
- Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
- Month:
- June
- Year:
- 2019
- Address:
- Minneapolis, Minnesota
- Venue:
- NAACL
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 1614–1623
- Language:
- URL:
- https://aclanthology.org/N19-1163
- DOI:
- 10.18653/v1/N19-1163
- Cite (ACL):
- Kaimin Zhou, Chang Shu, Binyang Li, and Jey Han Lau. 2019. Early Rumour Detection. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1614–1623, Minneapolis, Minnesota. Association for Computational Linguistics.
- Cite (Informal):
- Early Rumour Detection (Zhou et al., NAACL 2019)
- PDF:
- https://preview.aclanthology.org/nodalida-main-page/N19-1163.pdf